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Abstract

There are three main criticisms. The first is to misread Assumption 1 so as to think that

probabilities are being put to zero after having observed the data leading to the erroneous

conclusion that the proposed methods are not Bayesian. The second is due to a failure to

grasp the relevance of the fifth paragraph of the Introduction leading to suggestions that

alternative methods be used that are not available. The third relates to the fact that it

might be advisable to make an adjustment that is analogous to a Jacobian term in some

applications.
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1 Reply to Main Issues

There are three main criticisms.

The first is due to thinking that Assumption 1 states that the probability assigned to some

potential values of the data are being put to zero conditional on what particular value was

actually observed. This is not true. What is being done is that labels called representers are

being assigned to sets to serve as an index. No probabilities are being altered. Probabilities

are determined by the probability space (X ×Θ, Co, P o) described in the first two paragraphs

of Section 3 of Reflections and they are never altered subsequently. This misunderstanding

leads to an erroneous conclusion that the proposed methods are not Bayesian.

The second is due to a failure to grasp the relevance of the fifth paragraph of the Intro-

duction. In that situation, to my knowledge, there are no Bayesian inference procedures for

analytically intractable models that can substitute for the proposals presented in Reflections.

The third regards the fact that MCMC presumes that the dominating measure of a density

is Lebesgue. Therefore, one cannot logically use the density defined by (X ×Θ, C∗, P ∗) with

MCMC without a multiplicative adjustment. In the case where Z(x, θ) is one-to-one with x

when θ is held fixed, the adjustment is a Jacobian term. Otherwise it relies on parameterizing

a representer. Not making the adjustment can be interpreted as using a prior that differs

from one’s intent. Therefore, the adjustment is not needed if it does not involve θ. The effect

of omitting the adjustment typically diminishes as sample size increases. One can argue that

not making the adjustment is preferable to making it when Ψ = Φ.

The adjustment itself is computed as follows. For Z(x, θ) of dimension M one writes the

representer x∗ of C(θ,z) in terms of u = (u1, . . . , uM), where u can depend on θ. E.g., x∗(u) =

(u1, . . . , uM , 0, . . . , 0). Given (x, θ) one finds all K solutions {ûk} to Z(x, θ) = Z(x∗(u), θ).

The adjustment is adj (x, θ) =
∑K

k=1 | det(∂/∂u′)Z(x∗(ûk), θ) | . Case 5 of Example 1 below

is an example. There is another in the Reply to Jae-Young Kim.

I shall next expand upon these three points in the order second, first, third.

Regarding the fifth paragraph of the Introduction to Reflections let me elaborate by

means of an example taken from Gallant and Hong (2007). As far as I know, there is no way

to proceed in the Bayesian fashion for this example absent the results of Reflections.
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Consider an asset with price Pt that pays Dt in period t. It’s gross return is Rt =

(Pt + Dt)/Pt−1. Standard models imply the existence of a pricing kernel {θt}
∞

t=−∞
that

satisfies the Euler equation

1 = Et (θt+1Rt+1) , (1)

where Et denotes expectation conditional on information known at time t. The goal is to

infer the posterior distribution of {θt}
n+1
t=1 . The only knowledge of the structural model that

one accepts is equation (1) and standard time series regularity conditions on {θt, Rt} and

variables in the information set. Nothing more.

Gallant and Hong (2007) use a likelihood p∗(x | θ) derived from moment equations that

are the same as equations (36) through (43) of Reflections but with θt replacing Mt. Their

Ψ = Φ. The dimension of θ = (θ1, . . . , θn+1) is 551 and that of mt is M = 810 for their

monthly data set. M is large because they use many assets rather than two as in equations

(36) through (43). Computational costs are reasonable because their variance matrix is block

diagonal. Their prior is obtained by analyzing simulations from a Bansal and Yaron (2004)

economy. It is

p∗(θ | η) p∗(η) =

{[

n
∏

t=1

f(θt+1|θt, . . . , θ1, η)

]

f(θ1|η)

}

p(η),

where f(θt+1 | θt, . . . , θ1, η) is a law of motion for {θt}
n+1
t=1 and η its parameters.1

Their joint density

p∗(x, θ, η) = p∗(x | θ) p∗(θ | η) p∗(η) (2)

does look like a state space model, as does the example in the fifth paragraph of the Intro-

duction of Reflections. The mistake is to think that they are, in fact, state space models

with {θt} exogenous and latent. {θt} is not exogenous. It is endogenous so that one must

go to some effort to construct a density p∗(x | θ) that can be viewed as a conditional density

of x given θ.

I cannot fault anyone for this mistake. I made the same mistake myself, which mistake

was forcefully and publicly pointed out to me by Lars Peter Hansen when I presented the

1Gallant and Hong (2007) display a plot of the posterior mean of {θt}
n+1
t=1 that appears reasonable within

the historical context, accept the hypothesis of recursive utility as specified in the long run risks model of
Bansal and Yaron (2004), and reject the long run risks model itself.
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material in Gallant and Hong (2007) at The North American Summer Meetings of the

Econometric Society, Minneapolis, Minnesota, June 22 to June 25, 2006. Those remarks of

Lars provoked the line of thought leading to Reflections.

Christian Robert is correct that if one sets models such as (2) above aside, there are many

alternative Bayesian methods that one might consider and he does a good job of inventorying

them. If one adds to his list those inventoried by Enrique Sentana and Dante Amengual,

one has a nearly exhaustive list of alternative Bayesian methods one might consider. As to

how the proposals of Reflections will hold up against these alternatives, my expectation is

reasonably well if the examples available to date are not misleading. Method of moments

has a powerful appeal in economic research and priors have some appeal as a means to deal

with data limitations, so my guess is that Bayesian method of moments methods along the

lines of Reflections will get used in applied economic research. As John Cochrane (2004)

points out, most researchers find evidence based on method of moments more persuasive

than evidence based on fully specified likelihoods.

Next let me discuss the confusion caused by Assumption 1 of Reflections. Here is the

offending sentence.

Let xo denote the observed realization of X and let zo = Z(xo, θ). For z = zo we

shall choose the representer of C(θ,z) to be xo so that we have xo = Υ[Z(xo, θ), θ]

for every θ ∈ Θ.2

Chris Sims interpreted this to mean

Within each Cz,θ put probability zero on all the x points except one . . .

This interpretation is not correct. Actually, one is merely choosing a convenient label for the

preimage C(θ,z) that contains (xo, θ). Probabilities are not being set to zero. The remarks

in paragraphs three through eight of Section 1 of Chris Sims’s Comment are therefore not

relevant and the conclusion that what is proposed in Reflections is not Bayesian is not correct.

The offending sentence should be deleted from Assumption 1 for two reasons: The nota-

tional convenience it affords is not worth the risk of the confusion it apparently can cause.

It contradicts the construction of the adjustment adj(x, θ) above.

2If this sentence is deleted from Assumption 1, then Υ(zo, θ) has possibly some other definition and the
data xo gets mapped to its representer x∗ = Υ[Z(xo, θ), θ] instead of to itself.
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The following example is taken from Chris Sims’s Comment and will facilitate discussion

of the third criticism.

EXAMPLE 1 Consider

(X × Θ, Co, P o) (3)

with X = (0,∞), Θ = (1,∞), Co the collection of Borel sets, and

po(x, θ) =
(

θ xθ−1e−xθ
)

p∗(θ). (4)

Under the transformation z = xθ, u = θ, we have x = z1/u, θ = u, det[J(z, u)] = u−1z1/u−1,

and

pdf (z, u) = po(z1/u, u) det[J(z, u)] = e−z p∗(u).

Integrating out u we have that Z(x, θ) = xθ has the exponential distribution. A moment

condition for estimating θ is m = xθ − 1, which has density e−m−1 with support (−1,∞).

But when m = xθ − 1 is substituted into e−m−1 the ones cancel so that Z(x, θ) = xθ with

density ψ(z) = e−z that has support (0,∞) is what one actually uses. For S(x, θ) =
∑n

i=1 x
θ
i

computed from a random sample of size n from po(x | θ) we have ψ(s) = sn−1e−s/Γ(n) ✷

For C measurable f(x, θ), which must be of the form f(ex−θ
), we have

�

∞

1

�

∞

0

f(ex−θ

)
(

θ xθ−1e−xθ
)

p∗(θ) dx dθ =

�

∞

1

[
�

∞

0

f(z)ψ(z) dz

]

p∗(θ) dθ. (5)

And, for the probability of a rectangle (0,∞) × (c, d)
� d

c

[
�

∞

0

(

θ xθ−1e−xθ
)

dx

]

p∗(θ) dθ =

� d

c

[
�

∞

0

ψ(z) dz

]

p∗(θ) dθ. (6)

Equation (5) states that for C measurable functions, expectation with respect to the space

(X ×Θ, Co, P o), which is the left hand side, is equal to expectation with respect to the space

(X ×Θ, C∗, P ∗), which is the right hand side. Similarly, equation (6) states that both spaces

assign the same probability to rectangles. This, and the existence of a conditional density on

(X ×Θ, C∗, P ∗) with respect to some dominating measure, is the main result of Reflections.

Now comes the point that I did not realize until I studied Chris Sims’s example:

MCMC implicitly assumes that the dominating measure on (X × Θ, C∗,P∗) is

Lebesgue.

6



Therefore, for Example 1, using e−xθ
p∗(θ) for MCMC implies that (X×Θ, C∗, P ∗) has density

pdf (θ, x) =
e−xθ

p∗(θ)
�

∞

1

�

∞

0
e−xθp∗(θ) dx dθ

.

with Lebesgue as the dominating measure. This differs from (4). One can take the view

that the implied conditional density differs from (4), or take the view that the implied prior

differs from (4), or both. Of these three views, the most useful seems to be to regard failure

to make an adjustment as a distortion to one’s intended prior.

For Z, because z is one-to-one with x when θ is fixed, the adjustment is the Jacobian term

θ xθ−1. If one uses
(

θ xθ−1
)

e−xθ
p∗(θ) for MCMC one gets (X ×Θ, C∗, P ∗) = (X ×Θ, Co, P o).

For S, write the representer of C(θ,s) as x∗(u) = (u, 0, . . . , 0). The solution to S(x, θ) =

S(x∗(u), θ) is u = s1/θ. Then the adjustment is adj (x, θ) = (d/du)S(x∗(u))
∣

∣

u=s1/θ =

θ uθ−1
∣

∣

u=s1/θ = θ s1−1/θ = θ
(
∑n

i=1 x
θ
i

)1−1/θ
.

To gain a feel for how much these considerations matter, I simulated a random sample

from po(x | θ) =
(

θ xθ−1
)

e−xθ
with θ = 5. For the prior I used p∗(θ) ∝ I(1,∞)(θ)n(θ | 5, 52),3

and considered five cases:

1. Bayes using Example 1, i.e., MCMC using

log pdf (x | θ) = n log θ + (θ − 1)
∑

log xi −
∑

xθ
i

with prior p∗(θ).

2. Z(x, θ) =
∑

xi
θ − n implemented with MCMC using

log pdf (x | θ) = (n− 1) log
(

∑

xi
θ
)

−
∑

xi
θ − log Γ(n)

with prior p∗(θ).4

3. Method of Reflections Section 2 with m(xi, θ) = xi
θ − 1, Ψ = Φ, and prior p∗(θ).

4. Method of Reflections Section 2 with m(xi, θ) = θ−1 − log xi − (log xi)x
θ
i , which is the

score of Example 1, Ψ = Φ, and prior p∗(θ).

3These choices were haphazard and I did not consider any others. Should one wish to try others them-
selves, the code is at http://www.aronaldg.org/webfiles/mle.

4With the log Γ term omitted because it is a normalization term that does not affect MCMC.
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Table 1. Summary of MCMC

Draws for Example 1

n = 2 n = 20 n = 200 n = 2000

Case Mean SDev. Mean SDev. Mean SDev. Mean SDev.

1 4.0473 1.8675 5.2498 0.8260 5.2982 0.2865 5.0725 0.08509

2 5.4622 3.0674 3.5376 1.5615 4.8828 1.4957 5.0299 0.27804

3 1.9934 0.7954 5.1121 3.1283 6.0428 1.2143 5.0967 0.27663

4 6.2694 3.3036 6.7336 2.6303 5.3563 0.3084 5.0800 0.08819

5 5.5203 2.7735 4.8472 1.4248 5.6847 0.8992 5.0709 0.26997

The total number of MCMC draws was 100,000. Means and standard errors
were computed from every 25th draw. All chains were started at θ = 5.
Trace plots indicated that transients died out within 10 draws. The code is
at http://www.aronaldg.org/webfiles/mle.

5. Z(x, θ) =
∑

xi
θ − n with adjustment, i.e., implemented with MCMC using

log pdf (x | θ) = log θ+(1− 1/θ) log
(

∑

xθ
i

)

+(n− 1) log
(

∑

xi
θ
)

−
∑

xi
θ − log Γ(n)

with prior p∗(θ).

.

Table 1 indicates that, as is usually the case, priors become swamped by data eventually

so that the consequence of omission of an adjustment diminishes with sample size. This is

consistent with interpreting no adjustment as causing the actual prior5 to differ from p∗(θ).

Does presence or absence of the adjustment affect whether or not method of moments with a

prior can be regarded as a Bayesian procedure? No.6 It is only that the prior is not exactly

what one specifies. Operationally this does not matter much because method of moments is

5Which may be data dependent. And there may be integrability issues. See Chris Sims’s Comment. With
respect to integrability, using a prior with compact support is, in general, good practice with MCMC and
usually eliminates this consideration. However, even then, one should check to be sure posterior mass is not
accumulating at a boundary.

6If one accepts the use of data dependent priors. I do, others do not. With respect to observational data,
one’s views represent accumulated experience so that one can argue that all priors for observational data
sets that span more than one time period are data dependent.
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well understood, especially if Φ = Ψ when it becomes the Chernozhukov and Hong (2003)

estimator, in which case the effect of imposing a prior is easily anticipated. What is relevant

is that one can legitimately use the Bayesian inference apparatus with method of moments

regardless of whether one makes an adjustment or not.

Reflections has shown that moment conditions allow a probability space (X ×Θ, C∗, P ∗)

to be deduced from a probability space (X × Θ, Co, P o) that was derived from a structural

economic model and a prior. And that these two probability spaces have enough in common

that they can serve as substitutes. This part is pure mathematics and I believe that the

logic is correct. If one can actually infer Ψ from (X × Θ, Co, P o), there again should be no

logical problem. Information is lost because C∗ ⊂ Co. I like to think of this as similar to

the information loss that occurs when one divides the range of a continuous variable into

intervals and uses a discrete distribution to assign probability to each interval. Both the

continuous and discrete distributions assign the same probability to each interval but the

discrete distribution cannot assign probability to subintervals.

Difficulties begin when one chooses moment conditions and asserts a distribution Ψ for

Z, then uses (X × Θ, C∗, P ∗) for Bayesian inference with little regard for (X × Θ, Co, P o)

other than for suggestions as to what Z and Ψ ought to be. The Gallant and Hong (2007)

example above is an illustration of this approach. After doing so, is one now obliged to

demonstrate the existence of a fully specified structural model to justify the approach?

One can try to circumvent the problem by claiming that asymptotic normality justifies the

choice Ψ = Φ, allowing one to omit a demonstration of existence. This approach is fraught

with peril7 as discussed in the Comments, especially that of Chris Sims. What is not clear

to me is to what extent the various counter examples apply in the particular case where the

object of interest is expressed explicitly as a function of the data in a reasonably intelligent

fashion and MCMC is the computational device. The counter example to Kwan in Chris

Sims’s Comment is a case in point. It requires the use of an expression that presupposes

knowledge of the true value of the parameter if one regards θ as fixed or requires use of

a moment condition that does not have unconditional expectation zero if one regards θ as

random. In fairness, the paragraphs in Chris Sims’s Comment following the counter example

7Case 3 of Table 1 for n = 2 is an illustration of the consequence of extreme violation of normality.
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do blunt its impact and perhaps even make the same point that I’m trying to make here.

A more extreme way to deal with the question of does there exist a (X ×Θ, Co, P o) that

implies (X × Θ, C∗, P ∗) is simply to set (X × Θ, Co, P o) equal to (X × Θ, C∗, P ∗).8 This

actually seems legitimate to me. One is insisting that (X ×Θ, C∗, P ∗) is the only information

one is willing to use to address the inference problem at hand.

My personal view is that choosing Ψ = Φ and omitting the adjustment is the best

approach. At least one understands what one is doing: Using method of moments in the

style of Chernozhukov and Hong (2003) but pushing results toward one’s beliefs with a prior.

The most compelling reason for doing so is that the data are sparse and that doing so is far

more scientifically credible and transparent than calibration.

I shall next respond to each Comment individually. A failure to react to a point made

in a Comment that has already been discussed in this section means that I do not see how

reacting to it is helpful, usually because I agree with it.

2 Reply to John Geweke

I have no problems at all with John Geweke’s Comment. He has identified several concerns

and problems that some of the proposals in Reflections entail and I think them well justified.

Regarding his Example 1, his model (1) implies that there can be no Ψ with support R

which rules out the normal, as stated in John Geweke’s Comment. Knowing θ and z rules

out certain x which was a feature of the example of Section 3.1 of Reflections. Therefore

specification of Ψ and Z partially determines a prior. Nonetheless, John Geweke’s Example 1

does make some interesting points, especially the potential sensitivity of conclusions to which

moments are chosen.

With respect to John Geweke’s remarks on Section 4 of Reflections, see also the Comment

of Oliver Linton and Wu Ruochen.

8Logical consistency would require that (X × Θ, Co, P o) is (X × Θ, C∗, P ∗) with the adjustment applied.
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3 Reply to Enrique Sentana and Dante Amengual

The Comment by Enrique Sentana and Dante Amengual is a very nice survey of the liter-

ature. I have three remarks. The first is to note that the motivating problem discussed at

the beginning of Section 1 of Reply rules out many comparisons. The second is that the

behavior of method of moments estimators depends more on skill at selecting moments than

anything else with the best choice usually being the estimating equations of maximum like-

lihood. Thus, comparison of procedures is hard to do in an objective fashion. Comparison

of regularity conditions and scope of applicability, as Enrique Sentana and Dante Amengual

advocate, is, of course, exempt from the second remark. The third remark is that my guess

is that most applications of the notions in Reflections will occur in time series settings. This

too limits the scope of comparisons.

4 Reply to Oliver Linton and Wu Ruochen

Oliver Linton and Wu Ruochen provide a very nice extension to the analysis of the habit

model presented in Section 4 of Reflections. In this connection, see also John Geweke’s

discussion of Section 4. Of most interest in Oliver Linton and Wu Ruochen’s discussion is

the role that the prior plays and the lack of stability of habit model parameter estimates,

especially when periods of more volatile consumption enter the data. They maintained the

tight priors on the parameters g, σ, φ, and δ in their analysis that were imposed in Section 4

of Reflections. Had they relaxed these the instability would have been far worse. The data

and code for Section 4 are at http://www.aronaldg.org/webfiles/mle should one want

to experiment themselves.

5 Reply to Chris Sims

Before reading please read Section 1, Reply to Main Points.

The logic of the paper is that one assumes a presample (X × Θ, Co, P o) and derives the

space (X × Θ, C∗, P ∗) used for inference, not the other way around. When it comes to

applications one may cut corners by starting with (X × Θ, C∗, P ∗) without worrying much

about (X ×Θ, Co, P o). But using a risky method in practice does not negate the logic of the
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paper.

The statement “Within each C(z,θ) put probability zero on all the x points except one . . .”

in paragraph three of Section 1 of Comment by Chris Sims is not correct. Within C(z,θ) there

may be many x for which Z(x, θ) = z, all that is being done is choosing one to index C(z,θ).

A convenient property of the index x∗ is that Z(x∗, θ) = z. Probabilities are determined

by the probability space (X × Θ, Co, P o) described in the first two paragraphs of Section 3

of Reflections and they are never altered subsequently. The remarks in paragraphs three

through eight of Section 1 of Chris Sims’s Comment, which follow from the misconception

that probabilities are set to zero after observing the data, are therefore not relevant and

therefore the conclusion that what is proposed in Reflections is not Bayesian is incorrect.

When Chris Sims is discussing his continuous example, which begins in paragraph nine

of Section 1 of his Comment, he makes this statement:

Is there then a joint distribution for θ and x in which p(x | θ) = ψ(x | θ) and the

unconditional distribution of xθ is exponential? No.

But his analysis answers this question:

Is there then a joint distribution for θ and x in which p(x | θ) = ψ(x | θ) and the

unconditional distribution of xθ is exponential when all densities are with

respect to Lebesgue measure?

As to what’s going wrong with Chris Sims’s analysis, it appears to me that he is using

the change of variable formula in the wrong direction. What he is doing is starting with a

probability space (Z,B, PZ), setting forth a random variable X(z), and deducing a space

(X , C, PX) using the change of variable formula PX(C) = PZ [X−1(C)]. Moreover, he is

assigning conditional probability to sets of the form (a < x < b). This cannot be done:

line segments parallel to an axis are not preimages of Z(x, θ) = xθ. Reflections is using the

change of variable formula in the opposite direction. We know (Z,B, PZ) and are trying to

infer P(X,θ) using Z(x, θ). The only sets C to which P(X,θ) can assign probability are of the

form C = Z−1(B). The probability we assign to C is P(X,θ)(C) = PZ [Z−1(B)]. Moreover,

when we condition on θ, we cannot enlarge the σ-algebra to include line segments parallel

to an axis. We can only assign conditional probability to sets of the form C = Z−1(B). All
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this relates to the probability space (X × Θ, C, P ). We then add a prior to get the space

(X × Θ, C∗, P ∗). At that point we can, if desired, re-express p∗(x | θ)p∗(θ) so that Lebesgue

is the dominating measure. Case 5 of Example 1 above, is an illustration. There is another

in the Reply to Jae-Young Kim.

Setting aside the erroneous conclusion that the methods proposed in Reflections are not

Bayesian due to misreading Assumption 1, Chris Sims’s other main points are correct despite

not following the logic of Reflections in his mathematics: One should be aware that claiming

that asymptotic normality of Z justifies setting Ψ = Φ carries risks that one might try to

reduce in an application if one can, e.g., by simulation or checking regularity conditions.

And one should either make an adjustment to p∗(x | θ)p∗(θ) analogous to a Jacobian term

as in Case 5 of Reply to Main Points to account for the fact that MCMC presumes that the

dominating measure is Lebesgue or be aware that the actual prior one is using may not be

the stated prior. The exceptions to the second point are that one can omit the adjustment

without consequence if it does not depend on θ, that the need for the adjustment usually

diminishes as sample size increases, and that one may prefer not to use it for the sake of

transparency.

6 Reply to Christian Robert

Before reading, please read Section 1, Reply to Main Points.

Christian Robert’s Comment can be characterized as a collection of many isolated re-

marks, some similar to those of Chris Sims, and some of which are opinions. Some opinions

I share, some do not, but everyone is entitled to opinions, and arguing about opinions here

will not accomplish much. I’ll restrict attention to those remarks that are more in the nature

of fact, are not similar to those made by Chris Sims, and for which I think responding will

be helpful.

I think that Christian Robert does not appreciate the relevance of the fifth paragraph of

the Introduction of Reflections and that this lack of appreciation flavors many of his remarks.

Or he does, and it really bothers him to get the notion of what is a parameter and what is

data entangled in such a fashion.

Regarding Christian Robert’s Abstract, Reflections is actually not about the construction
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of priors, excepting when they get constructed inadvertently via violation of Assumption 1

as discussed in Sections 3.1 and 3.3 of Reflections. In the end, Assumption 1 gets imposed

and the prior is as specified in the second paragraph of Section 3. Reflections is, in the main,

a paper about the construction of likelihoods. Christian Robert’s conclusion about priors in

his Abstract regards a peripheral aspect of the paper.

On rereading Section 3 of Reflections I admit that there is some ambiguity as to what

is intended. What is intended is that one has a prior but that when trying to construct a

likelihood using moment conditions one can get oneself in trouble by simultaneously partially

specifying a prior that can interfere with imposing the intended prior. Upon discovering this

fact in Sections 3.1, 3.3, and 3.6, one gets rid the problem with Assumption 1.

Regarding “I would suggest examining the range of prior×likelihood pairs that agree with

this partial property when using the regular Borel σ-algebra,” I would argue that that was

done in Section 3.3 of Reflections and that it did not seem to accomplish anything useful. It

rather suggested to me that one should eliminate this case by imposing Assumption 1.

Regarding Newton and Raftery (1994) and its potential for disaster, my own experience

is that all methods for computing the marginal likelihood from an MCMC chain when the

normalizing constants of densities are not known are disasters. The best of the lot is supposed

to be method f5 from Gamerman and Lopes (2006, section 7.2.1). But it doubles the

computational cost by requiring draws from the prior, has an iterative phase that does not

always converge, and gives results that appear to me to be no less ridiculous than Newton

and Raftery’s method in applications. At least with Newton and Raftery one understands

what one is doing: comparing harmonic means.

In my view, Zellner (1997) has no relation at all to Reflections other than that the words

Bayesian and moments appear in their titles. I also do not understand how whether or not

Gallant and McCulloch (2009) is an ABC method relates to Reflections.

All this said, Christian Robert’s Comment contains many useful observations and sugges-

tions as to how the developments in Reflections could have been done differently and maybe

better.
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7 Reply to Wei Wei and Asger Lunde

This is a nice application. It never would have occurred to me to proceed in this fashion. I

would have used a simulation estimator for this sort of problem out of habit; e.g., Gallant

and Tauchen (2015). A simulation estimator requires numerical approximation whereas Wei

Wei and Asger Lunde’s approach does not. Very nice!

8 Reply to Jae-Young Kim

I believe that Jae-Young Kim’s analysis of Student’s t is correct: The Bayes credibility

interval is indistinguishable from the frequentist confidence interval if one interprets p∗(θ) = c

to mean a proper prior that is nearly flat everywhere.9 This because the representer10

x∗(s) = (µ/s, 0, . . . , 0) with s = 1
n
(1 − t) solves11 T (x∗(s), µ) = t and (∂/∂s)T (x∗(s), µ) is a

constant so that no adjustment is needed.

Most of Jae-Young Kim’s other comments have been touched on above. I’ll respond to

those where more seems needed. As to what are “first principles,” how about knowledge of

Lindley (1985) and Gallant (1997)? The values shown in Table 1 come from the last four

unnumbered equations in Section 3.3. I.e., after die Λ is thrown die X can be equal to, move

up one from, or down one from the realization θ of Λ with equal probability, except that

X is equal to θ with probability one when θ is 1 or 6. The die Λ is fair. The absence of

rectangles means that one can not assign probability to the interval a < θ < b, which is the

usual operation with a posterior distribution.
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11Use l’Hospital’s rule when t = 1.
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