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1 Introduction

A number of asset pricing puzzles pose remarkable challenges to the standard consumption-based

model with a fully rational representative agent. Among them is the “equity premium puzzle”

first documented by Mehra and Prescott (1985), which states that the standard model requires an

implausibly high level of risk aversion to explain the historical equity premium in the U.S. data.

Other important stylized facts of the stock market include excess volatility of returns, counter-

cyclical equity premium and equity volatility, and return predictability.1 A recent strand of the

literature proposes to embed ambiguity in an otherwise standard model to explain various asset

pricing puzzles. An ambiguity-averse agent recognizes uncertainty about an objective law govern-

ing the state process and is averse to such uncertainty. There are two popular approaches to model

ambiguity in the asset pricing literature, the multiple-priors approach and the smooth ambigu-

ity approach.2 Existing consumption-based models with ambiguity are largely confined to model

calibration. However, calibration does not provide the likelihood of a model given observed macroe-

conomic and financial variables, and thus statistical support for the importance of ambiguity in

asset pricing is still limited in the literature on estimation of structural models.

In this paper, we use Gallant and McCulloch (2009) “General Scientific Models” (henceforth,

GSM), a simulation-based Bayesian estimation method, to estimate a set of three consumption-

based asset pricing models with smooth ambiguity preferences and three models with recursive

utility. Due to non-linearities inherent in structural asset pricing models, the likelihood of these

models is generally not available in closed-form. In addition, similar to other macro-finance ap-

plications, we face sparsity of data. As has become standard in the macro-finance empirical liter-

ature, we use Bayesian methods (in our case, GSM) coupled with prior information to overcome

data sparsity. We describe this estimation method in Section 3.2. We are interested in estimates

of preferences parameters and parameters governing state dynamics jointly obtained from fitting

structural models to data. We consider models with an ambiguity-averse representative agent who

1 See Shiller (1981), Fama and French (1989), Schwert (1989), and Fama and French (1988a) for related empirical
evidence.

2 See Epstein and Wang (1994), Chen and Epstein (2002), Epstein and Schneider (2008), and Drechsler (2013) for
applications of the multiple-priors preferences and Ju and Miao (2012), Collard, Mukerji, Sheppard, and Tallon
(2018), and Jahan-Parvar and Liu (2014) for applications of smooth ambiguity preferences. The smooth ambiguity
utility model has a connection with risk-sensitive control and robustness, see Klibanoff, Marinacci, and Mukerji
(2009), Hansen (2007) and Hansen and Sargent (2010).
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is uncertain about the conditional mean growth rate of aggregate consumption. The agent’s pref-

erences are represented by generalized recursive smooth ambiguity utility advanced by Hayashi

and Miao (2011) and Ju and Miao (2012). This class of preferences builds on the seminal work of

Klibanoff, Marinacci, and Mukerji (2005, 2009) and allows for the separation among risk aversion,

ambiguity aversion and the elasticity of intertemporal substitution (EIS). Our estimation suggests

a clear distinction of the EIS from risk aversion for all models and statistical evidence supporting

a preference for early resolution of uncertainty.

We examine three models featuring smooth ambiguity. The first is the original model of Ju and

Miao (2012). The growth rate of consumption follows a Markov-switching process in which the mean

growth rate depends on a hidden state. The hidden state evolves according to a two-state Markov

chain. The agent cannot observe the state but can learn about the state in a Bayesian fashion

by observing realized growth rates of consumption. Ambiguity arises since the mean growth rate

is unobservable. Because the hidden state evolves dynamically over time, learning cannot resolve

the agent’s ambiguity in the long run. The agent is ambiguity-averse in that he dislikes a mean-

preserving spread in the continuation value led by the agent’s belief about the hidden state. As

a result, compared with a solely risk-averse agent, the ambiguity-averse agent effectively assigns

more probability weight to “bad” states that are associated with lower levels of the continuation

values.

The second model is an extension of the first and incorporates time-varying conditional volatility.

We postulate that conditional volatility of consumption growth follows another two-state Markov

chain that is independent of the chain for the mean growth state, as in McConnell and Perez-Quiros

(2000) and Lettau, Ludvigson, and Wachter (2008). A number of studies have examined the role

of time-varying volatility and found that volatility risk is significantly priced in the stock market,

see Bollerslev, Tauchen, and Zhou (2009), Drechsler (2013) and Bansal, Kiku, Shaliastovich, and

Yaron (2014), among others. By estimating a model with ambiguity, learning and time-varying

volatility, we aim to investigate whether (1) inclusion of time-varying volatility affects the estimated

impact of ambiguity on asset prices, and (2) the model with time-varying volatility represents an

improvement over the original model. In addition, our estimation results allows us to disentangle

the contribution of time-varying volatility and ambiguity aversion to improvements in fitting the
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data.

The third model is built on the long-run risk model of Bansal and Yaron (2004) and the smooth

ambiguity model of Collard et al. (2018). The motivation for examining this model is to study

the impact of ambiguity in a long-run risk setting. This model features consumption growth

dynamics similar to the model studied by Bansal, Kiku, and Yaron (2012). It features a long-run

risk component and stochastic volatility in conditional mean and volatility of the consumption

growth process, respectively. The persistent long-run risk component in the conditional mean of

consumption growth is empirically difficult to detect. Thus, it is reasonable to postulate that the

agent also faces the same difficulty as an econometrician does.3 Similar to the model setup of Ju and

Miao (2012), the agent cannot observe the long-run risk component governing mean consumption

growth but can learn about it in a Bayesian fashion by observing realizations of consumption and

dividend growth rates. In addition, we incorporate stochastic volatility as an exogenous process

as in Bansal and Yaron (2004).4 By estimating this model, we want to investigate to what extent

the estimated level of ambiguity aversion depends on specifications of state processes and the

information structure.

In all three models, the agent’s ambiguity aversion endogenously generates pessimistic beliefs

about the distribution of consumption growth. In contrast to an ambiguity-neutral investor, the

ambiguity-averse agent always slants his belief toward states with low levels of conditional mean

growth of consumption. This pessimism is manifested by a sharp increase in the stochastic discount

factor (SDF) when the economy experiences a negative shock after staying at the “normal” growth

rate for several periods. The pessimistic distortion to the SDF raises its volatility and thus implies

a high market price of risk and high equity premium.

In addition to models with smooth ambiguity, we also estimate three baseline models with

Epstein and Zin (1989)’s recursive utility for model comparison. The first baseline model is the

long-run risk model studied by Bansal, Kiku, and Yaron (2012), which is an improved formulation of

3 Bidder and Dew-Becker (2016) study a related framework where the agent estimates the consumption process non-
parameterically and prices assets using a pessimistic model. They find that long-run risks arise endogenously as the
worst-case outcome. Collard et al. (2018) consider a more elaborate model in which the agent is not only ambiguous
about the latent mean growth rate of consumption but also ambiguous about whether the latent variable comes from
a highly persistent process or a moderately persistent process.

4 Incorporating an unobservable stochastic volatility component together with learning is beyond the scope of our
study. We leave estimation of the model in which the agent also has ambiguity about the volatility state for future
research.
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the original model of Bansal and Yaron (2004). The long-run risk model allow for heteroskedasticity

in consumption growth and generate time-varying volatility in returns. The second baseline model

is a special case of Ju and Miao’s model by suppressing ambiguity aversion. In this model, the agent

without endogenous pessimism makes Bayesian inference to evaluate mean consumption growth.

The third model is an extension of the second and incorporates time-varying conditional volatility.

By estimating a series of structural models with and without smooth ambiguity, we address two

important questions: (1) Does a structural estimation with macro-finance data lend statistical

support to the class of smooth ambiguity preferences that have sound decision-theoretic basis? (2)

Based on a standard Bayesian model comparison between those featuring smooth ambiguity and

Epsetin-Zin’s preferences, which estimated model is the preferred model?

We find a significant distinction between risk aversion and ambiguity aversion in the estimated

models. This distinction is robust to different specifications of consumption dynamics. Incorpo-

rating smooth ambiguity aversion in consumption-based asset pricing models reduces the burden

on risk aversion greatly, and yields posterior distributions of the risk aversion parameter that are

centered on values between 0.8 and 5. These values are noticeably smaller than median and mean

values of the posterior distributions of the ambiguity aversion parameter that range between 6.9

and 23.5. We find that incorporating smooth ambiguity in models lowers the estimated values of

the EIS parameter. However, our estimation indicates that the EIS parameter is greater than 1 and

thus lends support to preference for early resolution of uncertainty. A model comparison exercise

based on posterior likelihoods and the Bayesian information criteria (BIC) shows that the two mod-

els featuring smooth ambiguity and time-varying volatility are preferred to the long-run risk model

and the Epstein-Zin’s recursive utility model with regime-switching mean consumption growth,

learning and time-varying volatility. Prior to our study, Bansal, Gallant, and Tauchen (2007) and

Aldrich and Gallant (2011) concluded that the long-run risk model is a preferred model.5 In ad-

dition, we find that the estimated smooth ambiguity models can match moments of asset returns

better than the Epstein-Zin’s models do. The estimated Ju and Miao’s model, while receiving less

statistical support than the long-run risk model, can match the equity premium and variance risk

5 In a Bayesian estimation study, Chen, Wasyk, and Winkler (2018) estimate asset pricing models with multiple risks
including long-run growth, long-run volatility, habit, and a residual and find that the residual is important to explain
variations in the price-dividend ratio.
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premium in the data well.

We use the projection method to solve all models examined in this paper. The widely used log-

linear approximation method in the long-run risk literature is not applicable to smooth ambiguity

models. This is because learning is an important ingredient in smooth ambiguity models and

induces nonlinearities in the dynamics of the agent’s beliefs. Additionally, the smooth ambiguity

utility function is highly nonlinear. To keep our quantitative analysis consistent, we also use the

projection method to solve the long-run risk model. In a recent work, Pohl, Schmedders, and

Wilms (2018) assess numerical accuracy of the log-linear approximation method and find that

applying log-linearization to solve long-run risk models can yield biased results due to neglecting

higher-order effects. The bias becomes more pronounced when the long-run risk and stochastic

volatility components are highly persistent. Using the log-linear approximation and a mixed data

frequency approach, Schorfheide, Song, and Yaron (2018) perform Bayesian estimation of long-

run risk models with several specifications of stochastic volatility and find that the long-run risk

component and stochastic volatilities are highly persistent. While our estimation is based on annual

data and Bayesian indirect inference, we also find persistent long-run risk and stochastic volatility

components as well as a high EIS.

This paper contributes to a growing body of literature on ambiguity, learning and macro-finance.

We discuss closely related papers here. Epstein and Schneider (2007) develop a model with learning

under ambiguity. They use the multiple-priors approach to model ambiguity and assume a set of

priors and a set of likelihoods for signals. Beliefs are updated by Bayes’ rule in an appropriate

way. Epstein and Schneider (2008) apply this model to study information quality and asset prices.

Leippold, Trojani, and Vanini (2008) adopt the continuous-time multiple-priors framework of Chen

and Epstein (2002) to analyze asset pricing implications of learning under ambiguity. Cogley and

Sargent (2008) examine the impacts of pessimistic beliefs on the market price of risk and equity

premium. Hansen and Sargent (2010) consider robustness concerns in learning and study time-

varying model uncertainty premia. Collard et al. (2018) assume that a representative agent with

smooth ambiguity preferences faces both model uncertainty and state uncertainty and analyze the

dynamics of risk premia conditioning on the historical data. Johannes, Lochstoer, and Mou (2016)

and Collin-Dufresne, Johannes, and Lochstoer (2016) study parameter learning and asset prices in
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the consumption-based framework with recursive utility. Jeong, Kim, and Park (2015) estimate an

asset pricing model in which the agent has multiple-priors utility. Their estimation results suggest

that ambiguity on the true probability law governing fundamentals carries a sizable premium. Ai

and Bansal (2018) show that a wide class of non-expected utility models including the smooth

ambiguity model implies demands for risk compensation for news affecting continuation values and

generates a premium related to macroeconomic announcements.

Jahan-Parvar and Liu (2014), Backus, Ferriere, and Zin (2015) and Altug, Collard, Çakmakli,

Mukerji, and Özsöylev (2017) examine both business cycle and asset pricing implications in dynamic

stochastic general equilibrium (DSGE) models with smooth ambiguity. Thimme and Völkert (2015)

use Hansen (1982)’s generalized method of moments (GMM) to estimate a reduced form, locally-

linearized version of the smooth ambiguity model without characterizing dynamics of beliefs. Their

estimation crucially relies on an approximation of conditional expectation of future utility, a proxy

for the wealth-consumption ratio and omission of any specification for consumption dynamics. Ilut

and Schneider (2014) estimate a DSGE model with multiple-priors utility. Their estimation suggests

that time-varying confidence in future total factor productivity explains a significant fraction of

the business cycle fluctuations. Bianchi, Ilut, and Schneider (2018) estimate another DSGE model

to explain joint dynamics of asset prices and real economic activity in the postwar data. They

show that time-varying ambiguity about corporate profits leads to high equity premium and excess

volatility. They further show that the recursive multiple priors utility model provides a tractable

way to analyze DSGE models with time varying uncertainty and facilitates estimation by means of

likelihood methods.

The rest of the paper proceeds as follows. Section 2 presents consumption-based asset pricing

models with smooth ambiguity. Section 3 discusses the estimation method and empirical findings.

Section 4 presents asset pricing implications. Section 5 concludes. Numerical solution methods and

additional results are included in the online Appendix.
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2 Asset Pricing Models

2.1 Models Featuring Smooth Ambiguity

We examine three consumption-based asset pricing models in which a representative agent is en-

dowed with smooth ambiguity preferences. These models include (1) Ju and Miao (2012)’s model

in which the mean of consumption growth follows a hidden Markov chain with two states, abbre-

viated as “AAMS”, (2) an extended version of Ju and Miao’s model with time-varying conditional

volatility, abbreviated as “AAMSTV,” and (3) a long-run risk model featuring ambiguity in which

the long-run risk component is assumed to be unobservable, abbreviated as “AALRRSV” model.

The latter model shares many features with the models introduced by Collard et al. (2018). In

all these models, the agent cannot observe the state determining mean consumption growth but

learns about the state in a Bayesian fashion. The unobservable mean growth state implies that the

agent is ambiguous about the data-generating process of fundamentals. Smooth ambiguity utility

captures the agent’s aversion toward this ambiguity.

2.1.1 The AAMS model

Aggregate consumption follows the process

∆ct ≡ ln

(
Ct
Ct−1

)
= µ (st) + σcεc,t, εc,t ∼ N (0, 1) ,

where εc,t is an i.i.d. standard normal random variable, and st indicates the state of mean con-

sumption growth and follows a two-state Markov chain. Suppose that “l” and “h” indicate low

and high mean growth states respectively. The transition probabilities are given by

Pr (st = l|st−1 = l) = pll, Pr (st = h|st−1 = h) = phh

Because aggregate dividends are more volatile than aggregate consumption (see Abel, 1999 and

Bansal and Yaron, 2004), the dividend growth process is given by

∆dt ≡ ln

(
Dt

Dt−1

)
= λ∆ct + gd + σ̃dεd,t (1)
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where εd,t is an i.i.d. standard normal random variable that is independent of all other shocks in the

model. The parameter λ is usually interpreted as the leverage parameter; see Abel (1999). We pin

down the parameters gd and σ̃d by the estimates of unconditional mean and volatility of dividend

growth. We set the unconditional mean of dividend growth to that of consumption growth implied

by the Markov-switching model. In addition, we denote the unconditional volatility of dividend

growth by σd.

The agent cannot observe the mean growth state but can learn about it through observing the

history of consumption and dividends. The agent knows the parameters in the consumption and

dividend processes, namely, {µl, µh, pll, phh, σc, λ, gd, σ̃d}. Suppose that the agent’s belief is πt =

Pr (st+1 = h|It) where It denotes information available at time t. With respect to learning about

the unobservable state, dividends do not contain additional information compared to consumption.

As a result, given the prior belief π0, the agent updates his beliefs according to Bayes’ rule:

πt+1 =
phhf (∆ct+1|st+1 = h)πt + (1− pll) f (∆ct+1|st+1 = l) (1− πt)

f (∆ct+1|st+1 = h)πt + f (∆ct+1|st+1 = l) (1− πt)

where f (∆ct|st) is the conditional Gaussian density with mean µ (st) and variance σ2c :

f (∆ct|st) ∝ exp

[
−(∆ct − µ (st))

2

2σ2c

]
.

The generalized recursive smooth ambiguity utility function proposed by Hayashi and Miao

(2011) and Ju and Miao (2012) implies that given consumption plans C = (Ct)t≥0 the value

function Vt = V (C;πt) is given by

Vt (C;πt) =
[
(1− β)C

1−1/ψ
t + β {Rt (Vt+1 (C;πt+1))}1−1/ψ

] 1
1−1/ψ

,

where β ∈ (0, 1) is the subjective discount factor, ψ is the elasticity of intertemporal substitution

(EIS) parameter, γ is the coefficient of relative risk aversion, and Rt (V (Ct+1;πt+1)) is the certainty

equivalent of the continuation value given by

Rt (Vt+1 (C;πt+1)) =

(
Eπt

[(
E{st+1,t}

[
Vt+1 (C;πt+1)

1−γ
]) 1−η

1−γ
]) 1

1−η

. (2)
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Ambiguity aversion is characterized by the parametric restriction η > γ, where η is the ambiguity

aversion parameter. By setting η = γ, we obtain Epstein-Zin’s recursive utility under ambiguity

neutrality.6 In the certainty equivalent (2), the expectation operator Est+1,t [·] is taken with respect

to the conditional distribution of consumption growth in state st+1 and other information at time t.

The expectation operator Eπt is taken with respect to the posterior belief about the unobservable

state.

Following Hayashi and Miao (2011), the stochastic discount factor (SDF) in this model is given

by

Mt,t+1 = β

(
Ct+1

Ct

)−1/ψ ( Vt+1

Rt (Vt+1)

)1/ψ−γ

(
E{st+1,t}

[
V 1−γ
t+1

]) 1
1−γ

Rt (Vt+1)


−(η−γ)

.

The last multiplicative term in the SDF arises due to ambiguity aversion. This term makes the SDF

more countercyclical than in the case of Epstein-Zin’s recursive utility and induces large variations

in the SDF. The risk-free rate, Rft , is the reciprocal of the conditional expectation of the SDF,

Rft =
1

Et [Mt,t+1]
.

Stock returns, defined by Rt+1 =
Pt+1 +Dt+1

Pt
, satisfy the Euler equation

Et [Mt,t+1Rt+1] = 1.

We rewrite the Euler equation as

0 = π̃tEh,t
[
MEZ
t,t+1

(
Rt+1 −Rft

)]
+ (1− π̃t)El,t

[
MEZ
t,t+1

(
Rt+1 −Rft

)]
,

where Eh,t [·] denotes Est+1,t [·] for st+1 = h and similarly for state l. We interpret the term MEZ
t,t+1

as the SDF under recursive utility:

MEZ
zt+1,t+1 = β

(
Ct+1

Ct

)− 1
ψ
(

Vt+1

Rt (Vt+1)

) 1
ψ
−γ
.

6 We follow Ju and Miao (2012) and do not consider η < γ in our estimation as this parametric restriction might imply
“ambiguity loving”, see also Hayashi and Miao (2011).
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We interpret π̃t as the ambiguity-distorted belief and represent it by:

π̃t =
πt

(
Eh,t

[
V 1−γ
t+1

])− η−γ
1−γ

πt

(
Eh,t

[
V 1−γ
t+1

])− η−γ
1−γ

+ (1− πt)
(
El,t

[
V 1−γ
t+1

])− η−γ
1−γ

.

As long as η > γ, distorted beliefs are not equivalent to Bayesian beliefs. The distortion driven by

ambiguity aversion is an equilibrium outcome and implies pessimistic beliefs; see Section 4.

We rewrite the Euler equation to solve for the price-dividend ratio,

Pt
Dt

= Et
[
Mt,t+1

(
1 +

Pt+1

Dt+1

)
Dt+1

Dt

]
.

Since Pt
Dt

is a functional of the state variable πt,
Pt
Dt

= Φ (πt), the Euler equation becomes

Φ (πt) = Et [Mt,t+1 (1 + Φ (πt+1)) exp (∆dt+1)] .

2.1.2 The AAMSTV model

We follow McConnell and Perez-Quiros (2000) and Lettau et al. (2008) and extend Ju and Miao’s

model by incorporating a time-varying conditional volatility. We assume that the conditional mean

and volatility states follow two independent Markov chains. The consumption growth process takes

the form

∆ct = µ (sµt ) + σ (sσt ) εc,t, εc,t ∼ N (0, 1)

with transition probabilities

Pr
(
sµt = l|sµt−1 = l

)
= pµll, Pr

(
sµt = h|sµt−1 = h

)
= pµhh,

Pr
(
sσt = l|sσt−1 = l

)
= pσll, Pr

(
sσt = h|sσt−1 = h

)
= pσhh .

To ease the analysis, we assume that the mean state sµt is unobservable while the volatility state sσt is

observable (thus, no ambiguity about the volatility state). We make this simplifying assumption for

three reasons. First, empirical studies such as Bryzgalova and Julliard (2015) have established that

estimation and characterization of mean consumption growth is more difficult than consumption
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volatility. Second, according to the existing literature, the volatility state is very persistent, leading

to filtered probabilities of the volatility state close to 1. These results suggest that ambiguity has

limited room with respect to the consumption volatility.7 Third, while Epstein and Ji (2013)

and Branger et al. (2016) argue that ambiguity about volatility may have certain asset pricing

implications, Veronesi (1999), Ju and Miao (2012), and Miao, Wei, and Zhou (2018) show that

learning about the conditional mean of fundamentals is sufficient to characterize salient features of

macro-financial variables. We confirm their findings based on structural estimation.

The agent updates beliefs according to Bayes’ rule as

πt+1 =
pµhhf

(
∆ct+1|sµt+1 = h, sσt+1

)
πt +

(
1− pµll

)
f
(
∆ct+1|sµt+1 = l, sσt+1

)
(1− πt)

f
(
∆ct+1|sµt+1 = h, sσt+1

)
πt + f

(
∆ct+1|sµt+1 = l, sσt+1

)
(1− πt)

where f
(
∆ct+1|sµt+1, s

σ
t+1

)
is the conditional Gaussian density

f
(
∆ct+1|sµt+1, s

σ
t+1

)
∝ 1

σ
(
sσt+1

) exp

[
−
(
∆ct+1 − µ

(
sµt+1

))2
2σ
(
sσt+1

)2
]

The value function is given by

Vt (C;πt, s
σ
t ) =

[
(1− β)C

1−1/ψ
t + β

{
Rt
(
Vt+1

(
C;πt+1, s

σ
t+1

))}1−1/ψ] 1
1−1/ψ

,

Rt
(
Vt+1

(
C;πt+1, s

σ
t+1

))
=

(
Eπt

[(
E{sµt+1,s

σ
t ,t}

[
Vt+1

(
C;πt+1, s

σ
t+1

)1−γ]) 1−η
1−γ
]) 1

1−η

in which E{sµt+1,s
σ
t ,t} [·] denotes the expectation conditional on the history up to time t including

the volatility state sσt , and a probability distribution of consumption growth given state sµt+1. The

conditional expectation can be explicitly written as

E{sµt+1,s
σ
t ,t}

[
V 1−γ
t+1

]
=

 pσllE{sµt+1,s
σ
t+1,t}

[
V 1−γ
t+1 |sσt+1 = l

]
+ (1− pσll)E{sµt+1,s

σ
t+1,t}

[
V 1−γ
t+1 |sσt+1 = h

]
, sσt = l

(1− pσhh)E{sµt+1,s
σ
t+1,t}

[
V 1−γ
t+1 |sσt+1 = l

]
+ pσhhE{sµt+1,s

σ
t+1,t}

[
V 1−γ
t+1 |sσt+1 = h

]
, sσt = h

7 We have also examined the model in which both the conditional mean and volatility states are unobservable. But
solving the model requires substantial run time to achieve convergence. For some parameter values, the numerical
algorithm fails to locate a fixed point for the wealth-consumption ratio. These difficulties make our Bayesian MCMC
estimation infeasible. Lettau et al. (2008) also point out the convergence issue for Epstein and Zin’s recursive utility.
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where

E{sµt+1,s
σ
t+1,t}

[
V 1−γ
t+1

]
∝
∫

1

σ
(
sσt+1

) exp

(
−
(
∆ct+1 − µ

(
sµt+1

))2
2σ
(
sσt+1

)2
)
V 1−γ
t+1 d (∆ct+1) .

The SDF in this model is

Mt,t+1 = β

(
Ct+1

Ct

)−1/ψ ( Vt+1

Rt (Vt+1)

)1/ψ−γ

(
E{sµt+1,s

σ
t ,t}

[
V 1−γ
t+1

]) 1
1−γ

Rt (Vt+1)


−(η−γ)

The dividend growth process is specified in the same form as in the AAMS model, i.e., in equation

(1). Stock returns and the risk-free rate are defined as usual. The price-dividend ratio ( PtDt =

Φ (πt, s
σ
t )) satisfies the Euler equation

Φ (πt, s
σ
t ) = Et

[
Mt,t+1

(
1 + Φ

(
πt+1, s

σ
t+1

))
exp (∆dt+1)

]
2.1.3 The AALRRSV model

We consider the long-run risk model of Bansal and Yaron (2004), the specification of which is given

by

∆ct+1 = µc + xt+1 + σtεc,t+1

∆dt+1 = µd + λxt+1 + φdσtεd,t+1

xt+1 = ρxxt + φxσtεx,t+1

σ2t+1 = µ2s + ρs
(
σ2t − µ2s

)
+ σwεw,t+1

εc,t+1, εd,t+1, εx,t+1, εw,t+1 ∼ i.i.d.N (0, 1) .

In Bansal and Yaron’s calibration, xt is a highly persistent component, and σt is the highly persistent

stochastic volatility component representing time-varying economic uncertainty. The long-run risks

literature assumes that xt is fully observable and thus appears as a state variable in the wealth-

consumption ratio and price-dividend ratio. However, this component is difficult to identify using

empirically observed economic variables as documented by Bansal et al. (2007), Ma (2013), and

12



Johannes et al. (2016), among others. The difficulty in estimating xt gives rise to the agent’s

ambiguity about mean consumption growth. As a result, we adopt a more plausible information

structure by assuming that xt is unobservable. Collard et al. (2018) provide ample theoretical

support for this assumption.

In particular, we maintain that the agent observes the realizations of ∆ct+1 and ∆dt+1 contem-

poraneously but never observes the realization of xt or (εc,t, εd,t, εx,t). This feature of the model

characterizes ambiguity, i.e., the agent’s lack of confidence in estimating the conditional mean of

consumption growth. Instead, the agent uses consumption and dividend growth realizations to

filter the unobserved long-run risk component xt. To make the model tractable and comparable to

the long-run risks model, we assume that the conditional volatility of consumption growth, σt, is

observable. We also assume that values of the parameter vector (µc, µd, φd, φx, ρx, λ, µs, ρs, σw) are

known to the agent.

Suppose that x0 has a Gaussian distribution. The standard Kalman filter implies that the agent

updates beliefs according to Bayes’ rule conditional on the history of realizations of ∆ct+1 and ∆dt+1

given the Gaussian prior. The updated belief is also Gaussian with mean x̂t+1 and variance νt+1,

i.e., xt+1 ∼ N (x̂t+1, νt+1). We define x̂t+1|t = E [xt+1|It] and νt+1|t = E
[(
xt+1 − x̂t+1|t

)2 |It]. It

follows that

x̂t+1|t = ρxx̂t, and νt+1|t = ρ2xνt + φ2xσ
2
t .

The Kalman filter implies the following updating equations

x̂t+1 = x̂t+1|t + νt+1|t

[
1 λ

]
F−1t+1|t

 vct+1|t

vdt+1|t


νt+1 = νt+1|t − ν2t+1|t

[
1 λ

]
F−1t+1|t

[
1 λ

]′

where Ft+1|t is given by

Ft+1|t =

 νt+1|t + σ2t λνt+1|t

λνt+1|t λ2νt+1|t + φ2dσ
2
t


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and the innovation vector

[
vct+1|t vdt+1|t

]
is given by

 vct+1|t

vdt+1|t

 =

 ∆ct+1 − µc − ρxx̂t

∆dt+1 − µd − λρxx̂t

 .
This model has three state variables (x̂t, νt, σt). The value function under smooth ambiguity

utility Vt = Vt(C; x̂t, νt, σt) satisfies

Vt =
[
(1− β)C

1−1/ψ
t + β {Rt (Vt+1)}1−1/ψ

] 1
1−1/ψ

,

Rt (Vt+1) =

(
E{x̂t,νt}

[(
E{xt,σt,t}

[
V 1−γ
t+1

]) 1−η
1−γ
]) 1

1−η

.

The certainty equivalent Rt (Vt+1) reflects the agent’s aversion toward ambiguity in estimating the

long-run risk component xt. The agent lacks confidence in the Gaussian posterior of xt and thus

applies pessimistic distortion to the posterior. This distortion is visible in Figure 1. In what follows,

we describe the mechanism of how ambiguity aversion leads to distortion in the posterior.

The SDF in this model is

Mt,t+1 = β

(
Ct+1

Ct

)− 1
ψ
(

Vt+1

Rt (Vt+1)

) 1
ψ
−γ

(
E{xt,σt,t}

[
V 1−γ
t+1

]) 1
1−γ

Rt (Vt+1)


−(η−γ)

.

We solve the price-dividend ratio, Pt
Dt

= Φ (x̂t, νt, σt), from the Euler equation

Φ (x̂t, νt, σt) = Et [Mt,t+1 (1 + Φ (x̂t+1, νt+1, σt+1)) exp (∆dt+1)] .

Given the Gaussian posterior obtained according to Bayes’ rule, xt ∼ N (x̂t, νt), we derive the

distorted density of xt due to ambiguity aversion. The SDF Mt,t+1 can be decomposed as Mt,t+1 =

MEZ
t,t+1M

AA
t in which MEZ

t,t+1 and MAA
t are given respectively by

MEZ
t,t+1 = β

(
Ct+1

Ct

)− 1
ψ
(

Vt+1

Rt (Vt+1)

) 1
ψ
−γ
,MAA

t =


(
E{xt,σt,t}

[
V 1−γ
t+1

]) 1
1−γ

Rt (Vt+1)


−(η−γ)

.
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The Euler equation can be rewritten as

0 = Et

MEZ
t,t+1

(
Rt+1 −Rft

)
(
E{xt,σt,t}

[
V 1−γ
t+1

]) 1
1−γ

Rt (Vt+1)


−(η−γ) .

By the law of iterated expectations, we obtain

0 =

∫
Et
[
MEZ
t,t+1

(
Rt+1 −Rft

)
|xt
] (

Et
[
V 1−γ
t+1 |xt

])− η−γ
1−γ

f (xt|x̂t, νt)∫ (
Et
[
V 1−γ
t+1 |xt

])− η−γ
1−γ

f (xt|x̂t, νt) dxt
dxt (3)

where f (xt|x̂t, νt) denotes the Bayesian density of xt given x̂t and νt. It is clear from (3) that the

distorted density driven by ambiguity, f̃ (xt|x̂t, νt, t), is given by

f̃ (xt|x̂t, νt, t) =

(
Et
[
V 1−γ
t+1 |xt

])− η−γ
1−γ

∫ (
Et
[
V 1−γ
t+1 |xt

])− η−γ
1−γ

f (xt|x̂t, νt) dxt
f (xt|x̂t, νt)

2.2 Alternative Models Featuring Ambiguity Neutral Preferences

The recursive utility function of Epstein and Zin (1989) takes the form

Vt(C) =

[
(1− β)C

1−1/ψ
t + β

{
Et
(
Vt+1 (C)1−γ

)} 1−1/ψ
1−γ

] 1
1−1/ψ

,

As usual, the SDF under recursive utility, denoted by MEZ
t+1, is

MEZ
t,t+1 = β

(
Ct+1

Ct

)− 1
ψ

 Vt+1

Et
(
V 1−γ
t+1

) 1
1−γ


1
ψ
−γ

. (4)

By setting η = γ in the generalized recursive smooth ambiguity utility function, we suppress

ambiguity aversion and obtain Epstein-Zin’s recursive utility model as a special case. We impose

this parametric restriction to obtain model “EZMS” as the ambiguity-neutral version of model

AAMS.
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The second alternative model, which we call “EZMSTV”, is the ambiguity-neutral version of

AAMSTV where we suppress ambiguity aversion by setting η = γ as in the derivation of EZMS.

EZMSTV has the same consumption growth dynamics as the model studied by Lettau et al. (2008)

and features Epstein-Zin preferences.

The third alternative model is the long-run risk model of Bansal et al. (2012), which we label

as “EZLRRSV”. The model specification is

∆ct+1 = µc + xt + σtεc,t+1

∆dt+1 = µd + λxt+1 + φdσtεd,t+1 + φcσtεc,t+1

xt+1 = ρxxt + φxσtεx,t+1

σ2t+1 = µ2s + ρs
(
σ2t − µ2s

)
+ σwεw,t+1

εc,t+1, εd,t+1, εx,t+1, εw,t+1 ∼ i.i.d.N (0, 1) .

with notations defined in the same way as in model AALRRSV. The two state variables are xt and

σ2t . The price-dividend ratio, Pt
Dt

= Φ
(
xt, σ

2
t

)
, satisfies the Euler equation

Φ
(
xt, σ

2
t

)
= Et

[
Mt,t+1

(
1 + Φ

(
xt, σ

2
t

))
exp (∆dt+1)

]
.

We present structural parameters to be estimated for each model in Table 2. In estimating

models AALRRSV and EZLRRSV, we impose that µc = µd. We solve all the models examined in

this paper using the collocation projection method with Chebyshev polynomials. Pohl et al. (2018)

show that this is a reliable solution method for nonlinear asset pricing models. The details of the

implementation and numerical accuracy assessment are available in the online Appendix.

3 Data and the Estimation Method

3.1 Data

Throughout this paper, lower case denotes the natural logarithm of an upper case variable; e.g.,

ct = ln(Ct), where Ct is the observed consumption in period t, and dt = ln(Dt), where Dt is
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dividends paid in period t. Similarly, we use logarithmic risk-free interest rate (rft ) and aggregate

equity market return inclusive of dividends (rt = ln (Pt +Dt) − lnPt−1) in the analysis, where Pt

is the stock price in period t.

We use real annual data from 1941 to 2015. The sample period 1941–1949 provides initial lags

for the recursive parts of our estimation and the sample period 1950–2015 yields estimation results

and diagnostics. Our measure for the risk-free rate is the one-year U.S. Treasury Bill rate. To

construct the real risk-free rate, we regress the ex-post real one-year Treasury Bill yield on the

nominal rate and past annual inflation, available from Wharton Research Data Services (WRDS)

Treasury and Inflation database. The fitted values from this regression are the proxy for the ex-ante

real interest rate. Using other estimates of expected inflation to construct the real rate does not

lead to significant changes in our results. Our proxy for risky assets is the value-weighted returns

(including dividends) on the aggregate stock market portfolio of the NYSE/AMEX/NASDAQ,

which is obtained from the Center for Research in Security Prices (CRSP) and deflated using the

CPI data. We use the sum of real nondurable and services consumption, items 16 and 17 in the

NIPA Table 7.1 “Selected Per Capita Product and Income Series in Current and Chained Dollars,”

published by the Bureau of Economic Analysis (BEA) as our measure of real consumption. These

values are reported in chained 2009 U.S. Dollars and constructed using mid-year population data.

We construct the dividend growth rate series by first computing the gross dividend level from the

value-weighted returns including and excluding dividends and lagged index levels. We then obtain

the real dividend growth rate by deflating the nominal growth rate.

Table 1 presents the summary statistics of the data used in estimation. The p-values of Jarque

and Bera (1980) test of normality imply that the assumption of normality is not rejected for the

consumption growth series, but it is rejected for other variables. Real equity returns, interest rates,

and dividend growth rates all exhibit negative skewness. In addition, both real interest rates and

dividend growth rates show significant excess kurtosis. Figure 2 plots the data.

3.2 GSM: Estimation of the structural model

We use the Bayesian method proposed by Gallant and McCulloch (2009), which they termed Gen-

eral Scientific Models (GSM) to estimate the asset pricing models. The GSM methodology was
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refined in Aldrich and Gallant (2011), abbreviated AG hereafter.8 The discussion here incorporates

those refinements and is to a considerable extent a paraphrase of AG. GSM is a Bayesian simulation

estimator. It is useful when a computationally tractable likelihood function is not available, data

are sparse, but the structural model can be solved and simulated. It shares certain similarities with

the classical “indirect inference” and “efficient method of moments” (hereafter, EMM) methods in-

troduced by Gouriéroux, Monfort, and Renault (1993) and Gallant and Tauchen (1996, 1998, 2010).

These are simulation-based inference methods that rely on an auxiliary model for implementation.

GSM method relies on the theoretical results of Gallant and Long (1997) in its construction of a

likelihood. In particular, Gallant and McCulloch synthesize a likelihood by means of an auxiliary

model and simulations from the structural model. A comparison of AG with Bansal et al. (2007)

displays the advantages of a Bayesian simulation approach relative to a frequentist EMM approach,

particularly for the purpose of model comparison. GSM is an appropriate estimation methodology

in the context of this study since the estimated equilibrium model is highly nonlinear and does not

admit analytically tractable solutions, thereby severely inhibiting accurate numerical construction

of a likelihood by means other than GSM.

GSM uses a sieve specially tailored to macroeconomic and financial time-series applications as

the auxiliary model. When a suitable sieve is used as the auxiliary model, as in this study, the GSM

method synthesizes the exact likelihood implied by the model.9 In this instance, the synthesized

likelihood model departs significantly from a normal-errors likelihood, which suggests that alterna-

tive econometric methods based on normal approximations will give biased results. In particular,

in addition to the generalized autoregressive conditional heteroscedasticity (GARCH) effect, the

four-dimensional error distribution implied by the smooth ambiguity model is skewed in all four

components and has fat-tails for consumption growth, dividend growth and stock returns, and thin

tails for bond returns. Implementing GSM requires fitting the data with an over-parameterized

auxiliary model (not rooted in theory) and then recovering parameter estimates from the structural

model (founded on theory) by computing the mapping linking the parameter spaces of these two

8 The code implementing the method with AG refinements, together with a User’s Guide, is in the public domain at
http://www.aronaldg.org/webfiles/gsm.

9 Gallant and McCulloch (2009) use the terms “scientific model” and “statistical model” instead of the terms “structural
model” and “auxiliary model” used in the indirect inference econometric literature. We will follow the conventions
of the econometric literature. The structural models here are equilibrium asset pricing models.
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models.

Let the transition density of a structural model be denoted by

p(yt|zt−1, θ), θ ∈ Θ,

where yt is the vector of observable variables, zt−1 = (yt−1, . . . , yt−L) if Markovian and zt−1 =

(yt−1, . . . , y1) if not, and Θ is the structural parameter space. As a result, zt−1 serves as a shorthand

for lag-lengths that are generally greater than 1. Thus, transition densities may depend on L-lags

of the data (if Markovian) or the entire history of observations (if non-Markovian). There are

six structural models under consideration in this application: the three models featuring smooth

ambiguity and the three alternative models with Epstein-Zin’s recursive utility, all of which are

Markovian and described in Section 2.

We presume that there is no straightforward algorithm for computing the likelihood but that we

can simulate data from p(·|·, θ) for a given θ ∈ Θ. We presume that simulations from the structural

model are ergodic. We assume that there is a transition density f (called the auxiliary model)

f(yt|zt−1, ω), ω ∈ Ω

and Ω is the auxiliary model parameter space. In addition, we assume that a map exists

g : θ 7→ ω

such that

p(yt|zt−1, θ) = f(yt|zt−1, g(θ)), θ ∈ Θ. (5)

We assume that f(yt|zt−1, ω) and its gradient (∂/∂ω)f(yt|zt−1, ω) are fairly easy to evaluate. Then

g is called the “implied map”.10 When equation (5) holds, f is said to “nest” p. Whenever we need

10 Gouriéroux, Monfort, and Renault (1993), Gallant and Tauchen (1996), Gallant and McCulloch (2009), and Gal-
lant and Tauchen (2010) provide rigorous support for conditions ensuring that the auxiliary model f is a good
approximation for the structural model p.
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the likelihood
∏n
t=1 p(yt|zt−1, θ), we use

L(θ) =
n∏
t=1

f(yt|zt−1, g(θ)), (6)

where {yt, zt−1}nt=1 are the data and n is the sample size. After substituting L(θ) for
∏n
t=1 p(yt|zt−1, θ),

standard Bayesian MCMC methods become applicable. That is, we have a likelihood L(θ) from

equation (6) and a prior ξ(θ) from Subsection 3.5 that are sufficient for us to implement Bayesian

methods by means of MCMC. A good introduction to these methods is Gamerman and Lopes

(2006).

The difficulty in implementing GM’s proposal is to compute the implied map g accurately

enough that the accept/reject decision in an MCMC chain (step 5 in the algorithm below) is

correct when f is a nonlinear model. The algorithm proposed by AG to address this difficulty is

described next.

Given θ, ω = g(θ) is computed by minimizing Kullback-Leibler divergence

d(f, p) =

∫ ∫
[log p(y|z, θ)− log f(y|z, ω)] p(y|z, θ) dy p(z|θ) dz

with respect to ω. The advantage of Kullback-Leibler divergence over other distance measures is

that the part that depends on the unknown p(·|·, θ),
∫∫

log p(y|z, θ) p(y|z, θ) dy p(z|θ) dz, does not

have to be computed to solve the minimization problem. We approximate the integral that must

be computed by

∫ ∫
log f(y|z, ω) p(y|z, θ) dy p(z|θ) dx ≈ 1

N

N∑
t=1

log f(ŷt|ẑt−1, ω),

where {ŷt, ẑt−1}Nt=1 is a simulation of length N from p(·|·, θ). Upon dropping the division by N ,

the implied map is computed as

g : θ 7→
ω

argmax
N∑
t=1

log f(ŷt | ẑt−1, ω). (7)

We use N = 1000 in the estimation of all the six models. Results (posterior means, posterior
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standard deviations, etc.) are not sensitive to N ; doubling N makes no difference other than

doubling computational time. It is essential that the same seed of the random number generator

be used to start these simulations so that the same θ always produces the same simulation.

GM run a Markov chain {ωt}Kt=1 of length K to compute ω̂ that solves expression (7). There are

two other Markov chains discussed below and so this chain is called the ω-subchain to distinguish

among them. While the ω-subchain must be run to provide the scaling for the model assessment

method that GM propose, the ω̂ that corresponds to the maximum of
∑N

t=1 log f(ŷt | ẑt−1, ω) over

the ω-subchain is not a sufficiently accurate evaluation of g(θ) for our auxiliary model. This

is mainly because our auxiliary model is a multivariate GARCH specification of Bollerslev (1986)

that Engle and Kroner (1995) call BEKK. Likelihoods incorporating BEKK are notoriously difficult

to optimize. AG use ω̂ as a starting value and maximize expression (7) using the BFGS algorithm,

see Fletcher (1987). This is also not a sufficiently accurate evaluation of g(θ). A second refinement

is necessary. The second refinement is embedded within the MCMC chain {θt}Ht−1 of length H

that is used to compute the posterior distribution of θ. It is called the θ-chain. The θ-chain is

generated using the Metropolis algorithm. The Metropolis algorithm is an iterative scheme that

generates a Markov chain whose stationary distribution is the posterior of θ. To implement it, we

require a likelihood, a prior, and transition density in θ called the proposal density. The likelihood

is equation (6) and the prior, ξ(θ), is described in Section 3.5.

The prior may require quantities computed from the simulation {ŷt, ẑt−1}Nt−1 that are used in

computing equation (6). In particular, quantities computed in this fashion can be viewed as the

evaluation of a functional of the structural model of the form p(·|·, θ) 7→ %, where % ∈ P and P

is the space of functionals of the form θ 7→ p(·|·, θ) 7→ %. Thus, the prior is a function of the

form ξ(θ, %). But since the functional % is a composite function with θ 7→ p(·|·, θ) 7→ %, ξ(θ, %) is

essentially a function of θ alone. Thus, we only use ξ(θ, %) notation when attention to the subsidiary

computation p(·|·, θ) 7→ % is required.

Let q denote the proposal density. For a given θ, q(θ, θ∗) defines a distribution of potential

new values θ∗. We use a move-one-at-a-time, random-walk, proposal density that puts its mass on

discrete, separated points, proportional to a normal density. Two aspects of the proposal scheme

are worth noting. The first is that the wider the separation between the points in the support of q
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the less accurately g(θ) needs to be computed for α at step 5 of the algorithm below to be correct.

A practical constraint is that the separation cannot be much more than a standard deviation of

the proposal density or the chain will eventually stick at some value of θ. Our separations are

typically 1/2 of a standard deviation of the proposal density. In turn, the standard deviations of

the proposal density are typically no more than the standard deviations of the prior distributions of

structural parameters shown in Tables 3 to 8 and no less than one order of magnitude smaller. The

second aspect worth noting is that the prior is putting mass on these discrete points in proportion

to ξ(θ). Because one does not have to normalize either the likelihood or the prior in an MCMC

chain, normalization of densities does not matter for the computation of the chain and similarly

for the joint distribution f(y|z, g(θ))ξ(θ) considered as a function of θ. However, f(y|z, ω) must be

normalized such that
∫
f(y|x, ω) dy = 1 to ensure that the implied map expressed in equation (7)

is computed correctly.

The algorithm for the θ-chain is as follows. Given a current θo and the corresponding ωo = g(θo),

we obtain the next pair (θ ′, ω ′) as follows:

1. Draw θ∗ according to q(θo, θ∗).

2. Draw {ŷt, ẑt−1}Nt=1 according to p(yt|zt−1, θ∗).

3. Compute ζ∗ = g(θ∗) and the functional %∗ from the simulation {ŷt, ẑt−1}Nt=1.

4. Compute α = min
(

1, L(θ
∗) ξ(θ∗,%∗) q(θ∗, θo)

L(θo) ξ(θo,%o) q(θo,θ∗)

)
.

5. With probability α, set (θ ′, ω ′) = (θ∗, ω∗), otherwise set (θ′, ω ′) = (θo, ωo).

It is at step 3 that AG made an important modification to the algorithm proposed by GM. At that

point one has putative pairs (θ∗, ω∗) and (θo, ωo) and corresponding simulations {ŷ∗t , ẑ∗t−1}Nt=1 and

{ŷot , ẑot−1}Nt=1. AG use ω∗ as a start and recompute ωo using the BFGS algorithm, obtaining ω̂o. If

N∑
t=1

log f(ŷot | ẑot−1, ω̂o) >
N∑
t=1

log f(ŷot | ẑot−1, ωo),

then ω̂o replaces ωo. In the same fashion, ω∗ is recomputed using ωo as a start. Once computed,

a (θ, ω) pair is never discarded. Neither are the corresponding L(θ) and ξ(θ, %). Because the

support of the proposal density is discrete, points in the θ-chain will often recur, in which case
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g(θ), L(θ), and ξ(θ, %) are retrieved from storage rather than computed afresh. If the modification

just described results in an improved (θo, ωo), that pair and corresponding L(θo) and ξ(θo, %o)

replace the values in storage; similarly for (θ∗, ω∗). The upshot is that the values for g(θ) used at

step 4 will be optima computed from many different random starts after the chain has run awhile.

3.3 GSM: Estimation of the auxiliary model

The observed data are yt for t = 1, . . . , n, where yt is a vector of dimension M . The vector

of observable variables used in estimation has four components: real equity returns, real interest

rates, real per capita consumption growth rates, and real dividend growth rates. The symbols P,Q,

V , etc. that appear in this section are general vectors (matrices) of statistical parameters and are

not instances of the model parameters or functionals in Section 2.

The data are modeled as

yt = µzt−1 + Uzt−1εt

where

µzt−1 = b0 +Bzt−1, (8)

which is the location function of a k-lag vector auto-regressive (VAR(k)) specification, obtained by

letting columns of B past the first kM be zero. In this formulation, Uzt−1 is the Cholesky factor of

Σzt−1 = U0U
′
0 (9)

+QΣzt−2Q
′ (10)

+P (yt−1 − µzt−2)(yt−1 − µzt−2)′P ′ (11)

+ max[0, Ṽ (yt−1 − µzt−2)] max[0, Ṽ (yt−1 − µzt−2)]′, (12)

where, as with B, the lag length is determined by letting the trailing columns of P and Ṽ be zeros.

In this application, the auxiliary model is not Markovian due to the recursion in expression (10).11

As in Gallant and Tauchen (2014), the last term in the model above captures the leverage effect.

In computations, max(0, x) in expression (12), which is applied element-wise, is replaced by a twice

11 See Gallant and Long (1997) for the properties of estimators of the form used in this section when the model is not
Markovian.
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differentiable cubic spline approximation that plots slightly above max(0, x) over (0.00,0.10) and

coincides elsewhere.

The density h(ε) of the i.i.d. εt is the square of a Hermite polynomial times a normal density,

the idea being that the class of such h is dense in Hellenger norm and can therefore approximate a

density to within arbitrary accuracy in Kullback-Leibler distance, see Gallant and Nychka (1987).

Such approximations are often called sieves; Gallant and Nychka term this particular sieve semi-

nonparametric or SNP.12 The density h(ε) is the normal when the degree of the Hermite polynomial

is zero. In addition, the constant term of the Hermite polynomial can be a linear function of zt−1.

This has the effect of adding a nonlinear term to the location function (8) and the variance function

(9). It also causes the higher moments of h(ε) to depend on zt−1 as well. The SNP auxiliary model

is determined statistically by adding terms as indicated by the BIC protocol for selecting the terms

that comprise a sieve, see Schwarz (1978).

In our specification, U0 is an upper triangular matrix, P and Ṽ are diagonal matrices, and Q

is scalar. The degree of the SNP h(ε) density is four. The auxiliary model chosen for our analysis,

based on the BIC, has 1 lag in the conditional mean component, 1 lag in each of ARCH and

GARCH terms. Although the univariate analysis of stock price dynamics generally incorporates a

leverage term, we find in our SNP estimation with four variables that this term is not necessary

according to the BIC.

The auxiliary model in the SNP estimation has 51 parameters of which 50 are estimated and

one determined by a normalization rule. The error distributions implied by the auxiliary model

differ significantly from the distributions of innovation shocks assumed in those structural models

in Section 2. We numerically solve the structural models assuming normally distributed innovation

shocks to consumption and dividend growth rates as discussed in the online Appendix. The error

distributions of simulations from these models are markedly non-Gaussian. For example, in addition

to GARCH effects, the four-dimensional error distribution implied by the AAMS model is skewed

in all four components and has fat-tails for consumption growth, dividend growth and stock returns

and thin tails for bond returns.

12 See Gallant and Tauchen (2014) for an introduction and implementation of the SNP estimation.
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3.4 Relative model comparison

Relative model comparison is standard Bayesian inference. The posterior probabilities of the six

structural models may be computed using the Newton and Raftery (1994) p̂4 method for computing

the marginal likelihood from an MCMC chain when assigning equal prior probability to each model.

An alternative is method f5 of Gamerman and Lopes (2006), Section 7.2.1. The advantage of these

methods is that knowledge of the normalizing constants of the likelihood L(θ) and the prior ξ(θ)

are not required. We do not know these normalizing constants due to the imposition of support

conditions. It is important, however, that the auxiliary model be the same for all models. Otherwise

the normalizing constant of L(θ) would be required. One divides the marginal density for each

model by the sum for all models to get the posterior probabilities for relative model assessment.

Unfortunately, these and similar methods require that the range of the likelihoods that occur

in the MCMC be within the float limits of the computing equipment employed. This can be

remedied by deleting draws with exceedingly small computed likelihood, which can be interpreted

as a modification to the prior. However, not only is it hard to interpret a truncation prior of this

sort, but also we found that the implied ordering of the models is sensitive to the truncation for

both the p̂4 and f5 methods. Therefore, in the results reported below we used the BIC for model

selection.

3.5 The prior and its support

All structural models considered in this paper are richly parameterized. We represent the parameter

vector by θ. Table 2 summarizes structural parameters of all asset pricing models in Section 2. The

prior of any structural parameter vector is the combination of the product of independent normal

density functions and support conditions. The product of independent normal density functions is

given by

ξ (θ) =

ñ∏
i=1

N
[
θi|
(
θ∗i , σ

2
θ

)]
where ñ denotes the number of parameters. The complete set of location and scale parameters for

independent normal priors as well as support conditions are available in the Online Appendix. Our

estimation results do not crucially rely on the choice of values of location and scale parameters. We
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set the location parameter values such that the asset pricing models generate mean risk-free rate

that is not too high and mean equity premium that is not close to zero. For all models’ parameters,

we set the scale parameter values to be sufficiently large and use wide support intervals. This

allows a wide range of parameter values of any model to be explored in the estimation, which in

turn, provides ample room for asset pricing models to contribute to the identification of estimated

parameters. Due to the support conditions, the effective prior is not an independence prior. For

some values of θ∗ proposed in step 1 of the θ-chain described in Section 3, a model solution at

step 2 may not exist. In such cases, α at step 5 is set to zero.

The prior support of the subjective discount factor (β), the coefficient of risk aversion (γ), and

the EIS (ψ) parameter are set to 0.9 < β < 0.995, 0.1 < γ < 100, and 0.1 < ψ < 10, respectively.

The subjective discount factor must be high enough to imply a reasonably low risk-free rate. The

range 0.9 < β < 0.995 is wide compared to the prior on this parameter in Schorfheide et al. (2018).

The support interval for γ that we use is much wider than the reasonable range 1 < γ < 10

suggested by Mehra and Prescott (1985). Different from calibration studies on long-run risks, we

do not impose ψ > 1 but allow for the possibility of ψ < 1 and thus a preference for late resolution

of uncertainty. For the ambiguity aversion parameter η, the support interval is γ < η < 200. Again,

this interval is wide given calibrated studies such as Ju and Miao (2012) and Jahan-Parvar and Liu

(2014). Because the agent is ambiguity averse when η > γ, we impose this condition in estimating

models with smooth ambiguity utility. The location parameters for β, γ, ψ and η in the prior are set

at values consistent with the extant calibration studies. The scale parameters for these preference

parameters are set to large values to deliver loose priors.

For models EZMS, EZMSTV, AAMS and AAMSTV, we use the parameter estimates and the

associated standard errors reported in Cecchetti, Lam, and Mark (2000) to determine the location

and scale parameter values for parameters µh, µl, σc, phh and pll in the Markov-switching model of

consumption growth. In the AAMSTV model with time-varying volatility, our parameter choices

for location and scale of pσhh, pσll, σh and σl rely on estimates of Lettau et al. (2008). The location

values of the dividend volatility parameter σd and the leverage parameter λ are determined by

the calibration of Ju and Miao (2012). Following Abel (1999), we impose λ ≥ 1 in the estimation.

Estimation results of Bansal et al. (2007), Aldrich and Gallant (2011), and Schorfheide et al. (2018)
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lead to values of λ in the [1.5, 4.5] range. We choose 1 ≤ λ ≤ 6 as the support interval.

For models AALRRSV and EZLRRSV, we use the calibrated parameter values in Bansal et al.

(2012) and priors postulated in Schorfheide et al. (2018) to choose the location and scale parameter

values, and support intervals as well. For example, the location of the unconditional mean of

consumption growth, µc, is set at 0.02 with a small scale parameter value. The location of the

persistence parameter of the long-run risk component, ρx, is set at 0.95 with a large scale parameter

value of 0.2. The support interval for ρx is −0.99 < ρx < 0.99. Similarly, other model parameters

also have loose priors and wide support intervals as in Schorfheide et al. (2018).

3.6 Estimation results

We summarize estimation results in Tables 3 to 8.13 We plot the prior and posterior densities of the

estimated structural parameters in Figures 3 to 8. These figures show considerable shifts in both

location and scale between priors and posteriors, suggesting that the estimation procedure and

data have a significant impact on estimation results. The impact of priors and support conditions

is notable, but of second order of importance.

Estimation results show that the posterior estimates of β are tightly bounded in all models and

generally imply low risk-free rates. There is an ongoing debate about the value of the EIS parameter

(ψ) in the macro-finance literature. This parameter is crucial for equilibrium asset pricing models

to match macroeconomic and financial moments in the data, see Bansal and Yaron (2004), Croce

(2014), and Liu and Miao (2015), among others. Our estimation strongly suggests an EIS greater

than 1 and thus a preference for early resolution of uncertainty. As shown in Tables 3 to 8, the

posterior mean, median, and 90% credible intervals of ψ estimates are uniformly above 1 for all

models presented in Section 2. The plots of the posterior density for ψ in Figures 3 to 8 also reveal

that the posterior dispersion of this parameter over the MCMC chain is small. Jeong et al. (2015)

estimate the recursive multiple prior utility model using asset prices data and obtain implausibly

high estimates of ψ that are greater than 10. High estimates of ψ generated from our estimation

imply low and stable risk-free rates (see Section 4). In a DSGE analysis with a broader scope,

Bianchi et al. (2018) rely on the mechanism of time-varying ambiguity on operating costs to ease

13 For each asset pricing model, we run the standard MCMC chain with the likelihood put to 1 at every draw to obtain
the prior distribution of model parameters presented in Tables 3 to 8 and Figures 3 to 8.
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the tension between excess equity volatility and smooth risk-free rates.

The posterior estimates of ψ for models AAMS and EZMS are high and comparable to the

estimates in the long-run risk literature. The posterior mean, median, 5th and 95th percentiles of

ψ estimates are moderately higher in the EZMS model than in the AAMS model, with the posterior

mean and median being above 2. The ψ estimates in the EZMS model are close to results obtained

by Schorfheide et al. (2018) and Bansal, Kiku, and Yaron (2016). Our estimation results suggest

that incorporating ambiguity in the model leads to lower estimates of ψ. This is also evident

from a comparison of estimates in EZMSTV and EZLRRSV models and those in AAMSTV and

AALRRSV models. The posterior estimates of ψ are moderately lower in AAMSTV model, and

significantly lower in AALRRSV than in EZLRRSV. Nevertheless, our estimates of ψ in the long-

run risk model are still lower than those reported by Schorfheide et al. (2018). The discrepancy

arises because (1) we use the projection method rather than log-linear approximation, (2) we use

the GSM Bayesian method for model estimation, and (3) we use a different data sample.

Our estimation results strongly support asset pricing models with smooth ambiguity. The

posterior estimates of the ambiguity aversion parameter η are significantly large in models AAMS,

AAMSTV and AALRRSV. Not surprisingly, the estimates obtained for the AAMS model are close

to the calibrated value in Ju and Miao (2012) (η = 8.864). The estimates of η are modestly

higher when regime-switching volatility in consumption growth is incorporated in the estimation.

We observe that the posterior mean and median of η are about 10 in the AAMSTV model but

only about 7 in the AAMS model. It is important to note that the difference of η estimates in

the two models does not stem from a moments-matching exercise. The GSM Bayesian estimation

delivers estimates of parameters in the utility function and consumption growth process jointly. In

comparison with results for model AAMS, the moderately higher estimates of η in model AAMSTV

are likely due to lower estimates of the transition probability pµll, which implies less persistence of

the contraction regime for this model.14 In the long-run risk setting, the GSM Bayesian estimation

generates high posterior estimates of η with mean and median of about 23. These results suggest

that empirical support for models with smooth ambiguity is robust to different specifications of

consumption dynamics and that the extent of ambiguity aversion largely depend on other preference

14 In a comparative statics exercise, we find that incorporating exogenous time-varying volatility in model AAMS while
keeping original parameters of the model constant can raise equity premium significantly.
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parameters and primitive parameters in the consumption and dividend growth processes. While

the estimated degree of ambiguity aversion varies across several models, these estimates are all

reasonable from the perspective of decision-making. One could conduct thought experiments as

in Halevy (2007) and Ju and Miao (2012) to gauge reasonable values of the ambiguity aversion

parameter.

Estimates of the coefficients of risk aversion (γ) importantly hinge on the presence of ambiguity

aversion. Estimation results for models EZMS, EZMSTV, and EZLRRSV show that the posterior

mean and median of γ are high and the 5th and 95th percentiles imply fairly tight bounds for

the estimate. In particular, the posterior estimates of γ in the estimated long-run risk model

EZLRRSV are close to the results reported by Schorfheide et al. (2018) and Bansal et al. (2016).

The posterior mean of γ is 8.4, and the associated 95th percentile is 10.4. These values are also

close to the calibrated values in Bansal and Yaron (2004) and Bansal et al. (2012). On the other

hand, the γ estimate is more dispersed in models with smooth ambiguity, i.e., models AAMS,

AAMSTV and AALRRSV, as is evident from slightly wider 90% credible intervals. In a related

work, Chen, Favilukis, and Ludvigson (2013) estimate preference parameters of recursive utility

using a semiparametric technique. Their estimated relative risk aversion parameter ranges from 17

to 60.

In the GSM Bayesian estimation, primitive parameters in the consumption and dividend growth

processes are jointly estimated with preference parameters. Models AAMS, AAMSTV, EZMS and

EZMSTV have Markov-switching consumption growth while models AALRRSV and EZLRRSV

feature long-run risks. In the Markov-switching environment, our estimation method identifies a

normal regime and a contraction regime for mean consumption growth. The posterior estimates

of µh are largely in line with the historical average annual consumption growth. For instance, the

posterior mean and median of µh in the AAMS model are about 2%. In addition, the posterior

estimates of the transition probability phh (pµhh in AAMSTV and EZMSTV models) are close to 1

and thus indicate that this regime is very persistent. Furthermore, the estimates of low mean growth

regime for these models indicate a relatively transitory contraction regime with lower estimates of

the transition probability pll (pµll in AAMSTV and EZMSTV models).

Note that we obtain these estimates from structural estimation of asset pricing models using
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data on both fundamentals and asset returns. The GSM Bayesian estimation takes into account

equilibrium asset prices and yields estimated consumption dynamics that corresponds to the agent’s

subjective belief. Compared with estimates of the parameters of the Markov-switching model

reported by calibration studies (e.g., Cecchetti et al. (2000) and Ju and Miao (2012)), our estimates

imply a “peso” version of the model. That is, the severe contraction state rarely realizes in the

observed data or simulations due to its low likelihood (1−phh) implied by our estimation. However,

because an agent cannot observe the mean growth state and is also aware of severity (µl) and

persistence (pll) of the contraction regime, the agent is always concerned about state uncertainty

and moreover, ambiguity aversion magnifies the impact of this concern. In addition, the posterior

estimates of the low mean regime µl seem low given the post-war experience of the economy, and

the estimated persistence of this regime varies significantly across different models. These results

suggest that apart from ambiguity on the mean growth state, additional sources of ambiguity about

parameters of the Markov-switching model may co-exist.

In estimating AAMSTV and EZMSTV models, we find two distinct volatility regimes, both of

which are persistent. This result is consistent with the findings of Lettau et al. (2008). However,

the posterior estimates of the high volatility regime σh are somewhat high compared with the post-

war consumption data. The estimates of µl are more negative than the estimates for the AAMS

model. Nevertheless, these estimates are consistent with the long sample of Shiller’s data.15 Again,

additional sources of ambiguity may arise due to learning from the past experience or parameter

uncertainty.16 For models AAMS, AAMSTV and EZMSTV, the leverage parameter λ and the

dividend growth volatility σd estimates are reasonably close to the calibrated values considered by

Abel (1999), Bansal and Yaron (2004) and Ju and Miao (2012). The posterior estimates of λ are

roughly between 1.5 and 4 with a posterior mean of about 3 for AAMS and AAMSTV, and around

2 for EZMSTV. The estimates of λ and σd for the EZMS model are higher than those for models

AAMS, AAMSTV, and EZMSTV.

Turning to estimation results of models featuring long-run risks, we find that the estimated

models AALRRSV and EZLRRSV both provide support for the presence of a persistent component

15 We thank Robert Shiller for making the data available at http://www.econ.yale.edu/∼shiller/data/chapt26.xlsx.
16 A full-fledged analysis of modeling multiple sources of ambiguity requires development of new models that feature

parameter uncertainty, state uncertainty and learning. Estimating such models is beyond the scope of our current
study.
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in the consumption growth process. This empirical support is evident even when ambiguity about

conditional mean growth is incorporated in the model. The posterior estimates of the persistence

parameter ρx are close to 1 with narrow 90% credible intervals. Converted into estimates at

a monthly frequency, our results are similar to those reported by Schorfheide et al. (2018). In

addition, the stochastic volatility component is persistent in our estimation, a result consistent

with Schorfheide et al. (2018).17 Other parameter estimates including µc, µs, σw λ, φd and φc

are similar to the estimates reported by the studies on long-run risks such as Bansal et al. (2012),

Bansal et al. (2016) and Schorfheide et al. (2018).

We present results of relative model comparison in Tables 3 to 8, based on the maximum

of the log likelihood and the Bayesian information criteria (BIC) of Schwarz (1978) for all es-

timated models. We use the auxiliary model presented in Section 3.3 and the MCMC chain

of structural parameters of each asset pricing model to compute the maximum of the log likeli-

hood and the BIC of the model. According to these two criteria, among all six estimated models

the AAMSTV model best characterizes the data in that the model provides the best fit of the

SNP density given the observed data. The log likelihood computation leads to the model ranking

AAMSTV�AALRRSV�EZMSTV�EZLRRSV�EZMS�AAMS. The BIC gives us the same rank-

ing except that EZMS�EZLRRSV because the number of model parameters is also taken into

account. Based on the BIC ranking AALRRSV and EZMSTV models are close to AAMSTV, but

the remainder are more than 60 orders of magnitude distant. These findings suggest that: (1) time-

varying volatility in consumption growth is important for asset pricing models to deliver the SNP

densities that fit the data well, because according to the log likelihood criterion priority is given to

models AAMSTV, AALRRSV, EZMSTV and EZLRRSV, all of which feature time-varying volatil-

ity, and (2) AAMSTV and AALRRSV models with ambiguity, learning and time-varying volatility

are preferred to the long-run risk model EZLRRSV in the statistical model comparison. Although

the model of Ju and Miao (2012), AAMS, receives less statistical support than other models do, it

can match key financial moments, as shown in the next section.

Rankings of estimated models, either based on log likelihood values or BIC, imply that statistical

support for models are highly contingent on the following factors:

17 Applying the GSM Bayesian estimation, we find that the parameter value of ρs in the MCMC chain remains stagnant
at a high level (ρs = 0.95).
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1. Ambiguity aversion: two models, AAMSTV and AALRRSV, feature both ambiguity aversion

and time-varying volatility. Both occupy the top two spots regardless of the ranking criteria

used.

2. Time-varying volatility: in both rankings, but especially in the ranking based on log likelihood

values, models featuring time-varying volatility rank higher than those with time-invariant

volatility. From a statistical standpoint, the AAMS model does poorly based on both criteria.

3. Markov-switching mean growth: in comparison with models featuring long-run risk, models

with Markov-switching mean consumption growth are preferred. AAMSTV is preferred to

AALRRSV by both criteria, EZMSTV is preferred to EZLRRSV by both criteria, and EZMS

is preferred to EZLRRSV based on the BIC.

Taken together, we can conclude that the gains in fit stem from ambiguity aversion and Markov-

switching dynamics, predominantly for the volatility process but also present for the conditional

mean.

Formally, as discussed in Subsection 2.5 in Aldrich and Gallant (2011), if one compares two

structural models (p1, ζ1) and (p2, ζ2) and find that the fit of (p2, ζ2) is preferred, then, to gain

insight as to why the data imply a preference, one can examine the posterior modes of moments

of the two fits using t-statistics of the form t = (m1 −m2)/σ2 where m1 and m2 are the posterior

modes of a moment of interest for the two fits and σ2 is the standard deviation of the posterior

distribution of the moment under (p2, ζ2). Table 9 summarizes the t−statistics for moments of

the preferred model AAMSTV vs EZMSTV and those for the comparison AAMSTV vs AAMS.

We denote the AAMSTV model by “2”. The moments of interest are volatilities of consumption

growth and dividend growth, and means and volatilities of risk-free rate and equity returns.

We first consider the EZMSTV against AAMSTV mode comparison, focusing on t-statistics

greater than 2. Both models allow time-varying volatility but EZMSTV lacks ambiguity aversion.

The evidence suggests that ambiguity aversion generates a more credible SDF, as evidenced by the

much better fit to the risk-free rate for model AAMSTV. Because the two models imply similar

variations in the dividend growth rate, we can infer for model EZMSTV that a poor fit to the

SDF is the cause of the poor match to moments of equity returns. Next, we consider the AAMS
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against AAMSTV mode comparison. Both models allow ambiguity aversion but AAMS lacks time-

varying volatility. The removal of time-varying volatility leads to significant changes to the level

of the risk-free rate and the volatility of dividend growth. Thus, we conclude that the better fit

of AAMSTV to asset pricing moments and the dividend growth volatility delivers the gains in

empirical performance rather than a better fit to consumption growth moments.

4 Asset Pricing Implications

4.1 Variance risk premium

The moments of equity returns are naturally defined under the physical measure implied by fun-

damentals and the state variables in any asset pricing model. Furthermore, we can study the

dynamics of the risk-neutral variance and variance risk premium (henceforth, VRP) generated

from models considered above. As noted in Bollerslev, Tauchen, and Zhou (2009), the market

variance risk premium is defined as the difference between the expected equity return variances

under the risk-neutral and physical measures, and it measures the risk premium compensation for

investors bearing the variance risk. Several studies show that the mean and volatility of the market

variance risk premium are high, which poses a serious challenge to many existing asset pricing

models, for example, see the discussion in Drechsler (2013). In a calibration study, Miao et al.

(2018) find that the AAMS model can roughly match the mean and volatility of the VRP in the

data. Here, we take a different stance in that we do not calibrate any model to target moments

of the VRP. Instead, we examine whether our estimated models produce empirically reasonable

dynamics of the VRP.

In the literature, a commonly used empirical proxy for the risk-neutral volatility is the Chicago

Board Options Exchange (CBOE)’s volatility index (VIX). In the empirical analysis, we measure

the market variance risk premium as the difference between the model-free implied variance and

the conditional projection of realized variance. Our empirical estimation of the VRP closely follows

the study of Liu and Zhang (2015), which applies the CBOE’s methodology of constructing the

VIX to index options with 90 days maturity. To estimate the variance of equity returns under the

physical measure, we first compute realized returns and then take a linear projection to obtain the
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conditional variance, which denoted by V OL2
t . The variance risk premium is defined as

V RPt = V IX2
t − V OL2

t .

In the model, the risk-neutral variance V IX2
t takes the form

V IX2
t = EQt

[
σ2r,t+1

]
=

Et
[
Mt,t+1σ

2
r,t+1

]
Et [Mt,t+1]

where Q denotes the risk-neutral measure, and the expected variance under the physical measure

is given by

V OL2
t = Et

[
σ2r,t+1

]
where σ2r,t = Et

[
r2t+1

]
− (Et [rt+1])

2.

4.2 Impulse-response functions

We perform impulse responses analyses for the estimated asset pricing models by investigating

key financial variables including the SDF, price-dividend ratio, conditional equity premium, equity

volatility and variance risk premium. We use mean estimates reported in Tables 3 to 8 to param-

eterize models and compute impulse responses functions. Results for models AAMS, AAMSTV,

AALRRSV and EZLRRSV are plotted in Figures 9 and 10. For the long-run risk models EZL-

RRSV and AALRRSV, we assume that the shock to the long-run risk component occurs in the

third period. For models AAMS and AAMSTV featuring Markov-switching consumption growth,

we assume that the economy stays in the good regime for a long time in the absence of innovation

shocks. In the third period, the growth rate of consumption switches to the mean growth rate

of the bad regime. The growth rate of consumption then follows a Markov-switching model after

the regime shift. We simulate consumption growth rates from the two Markov-switching models

respectively, taking into account persistence of regimes, and obtain simulated beliefs accordingly.

We compute responses of financial variables to changes in simulated states and plot mean responses

across simulations in Figure 9.

Figure 9 shows that when the mean consumption growth regime shifts from “high” (µh) to
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“low” (µl), Bayesian updating leads to a lower level of belief πt. Veronesi (1999) has shown

that with CRRA utility, the impact will be an increase in conditional equity volatility and equity

premium. This effect is amplified under ambiguity aversion. The plotted ambiguity-distorted

belief manifests endogenous pessimism that implies a sharp increase in the SDF and a decrease

in the price-dividend ratio. As a result, the conditional equity volatility and equity premium rise

significantly. Since conditional volatility rises in states where the SDF is high, the risk-neutral

variance increases more than the physical return variance does, leading to an increase in the VRP.

Figure 9 displays qualitatively similar impulse responses of beliefs and financial variables for the

AAMSTV model.18 The notable discrepancies in the magnitude of responses between the AAMS

model and the AAMSTV model are largely due to the inclusion of time-varying volatility in the

AAMSTV model and different parameter estimates as discussed in Section 3.6.

Figure 10 displays the responses of key variables in models AALRRSV and EZLRRSV when a

negative shock of size −4φxµs hits the long-run risk component xt, which is assumed to be zero

initially. Different from the AAMS model with Markov-switching growth rates, in the AALRRSV

model Bayesian filtering of xt implies persistent movements in financial variables because of its

long-run risk feature. Again, the plotted ambiguity-distorted belief reflects the agent’s pessimistic

view about the conditional mean growth rate of consumption. In line with the long-run risk model,

learning about xt produces a SDF and a price-dividend ratio that move in the opposite directions

upon the impact of the shock. Thus, in the AALRRSV model the long-run risk component carries

a positive risk premium. Because the conditional volatility of consumption growth is assumed to

be constant in this analysis, the conditional equity volatility decreases on impact and rises slowly

afterwards. The conditional equity premium exhibits a similar response as a consequence. The

VRP falls at first and rises afterwards, due to the response of the conditional equity volatility.

Figure 10 shows similar impulse responses for the EZLRRSV model in which the long-run risk

component is fully observable. In both models, the response of the VRP is negligible compared to

the results for models AAMS and AAMSTV.

18 The impulse-response function plots for models EZMS and EZMSTV are similar and thus omitted here for the sake
of brevity.
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4.3 Financial moments

We investigate the ability of all estimated models in replicating unconditional moments of key

financial variables. Unlike calibration studies, our aim is not to match unconditional moments

of asset returns in the data as closely as possible. Instead, we assess the impact of ambiguity

aversion on financial variables based on estimated models. We examine how well our estimated

models can match moments of asset returns, given that our estimation strategy is designed not

to match moments but to fit the SNP densities of asset pricing models given the observed data.

If any estimated model is reasonably successful in reproducing moments of asset returns, we view

this outcome as confirmation that the model characterizes the underlying data generating process

of returns well. This analysis makes our structural estimation more relevant from an alternative

empirical perspective. By examining asset pricing implications of estimated models, our analysis

supersedes previous studies on structural estimations such as Bansal et al. (2007), Aldrich and

Gallant (2011) and Jeong et al. (2015).

Table 10 presents unconditional moments of asset returns simulated from all asset pricing models

considered in this paper. For each model, we run a chain of 300,000 Monte Carlo draws for each case.

We compute the reported modes from these 300,000 draws. We computed posterior means, medians

and credibility intervals with a stride of 25.19 We report mean, median, standard deviation, 5th and

95th percentiles of simulation results. To facilitate comparison, we present moments computed from

the historical U.S. data. Due to the high EIS estimates in all models and resulting intertemporal

substitution effect, the mean and volatility of the risk-free rate are low across these models. All

models produce simulations on their chains of estimates that contain the historical equity premium

and return volatility in the (5%, 95%) intervals.

Table 10 shows that among all models, the AAMS model can best match moments of returns.

The estimated AAMS model delivers mean and volatility of the risk-free rate, equity premium

and return volatility, and mean and volatility of the VRP close to the moments computed from

the data. In addition, the 5th and 95th percentiles of simulated moments are sufficiently tight to

include the data moments except for the volatilities of the risk-free rate and VRP. The intuition of

the impact of ambiguity on asset returns has been illustrated in previous studies, for example see

19 A stride of 25 translates into 12,000 draws: 300000/25 = 12000.
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Ju and Miao (2012) and Collard et al. (2018). That is, the precautionary savings motive driven

by ambiguity aversion reduces the risk-free rate, and in addition to the standard risk premium

the agent also demands an uncertainty premium for being ambiguous about the data-generating

process. The latter mechanism is evident from inspecting the market price of risk, which is defined

as σ(Mt,t+1)/E(Mt,t+1). According to the conditional version of the Euler equation:

Et (Rt+1)−Rf,t = −σt (Mt,t+1)

Et (Mt,t+1)
σt (Rt+1) ρt (Mt,t+1, Rt+1) ,

the high market price of risk implied by the AAMS model leads to a high equity premium. Since

the estimated model also produces volatility of dividend growth close to the data and the leverage

parameter consistent with previous calibration studies, the model can naturally match the volatility

of equity returns in the data.

The AAMS model also generates a high VRP close to the data. This is a remarkable result,

since we do not use the risk-neutral variance data to aid estimation. The implied high VRP is a

consequence of strong co-movement of the SDF and the return volatility when the economy shifts

to a bad state. The co-movement therefore leads to a substantial wedge between the risk-neutral

variance and the objective variance. On the other hand, the estimated EZMS model (ambiguity

neutral case) shows poor performance in matching the moments. The mean of simulated equity

premium in this model is only half of the historical equity premium whereas the moments of the

VRP are much higher than the data.

It is evident in Table 10 that incorporating time-varying consumption volatility in the Markov-

switching model does not yield significantly better asset pricing results, though the GSM Bayesian

estimation provides statistical support to this model relative to the more parsimonious model

AAMS. The model predicts mean values of equity premium and VRP moderately higher than the

data. The range of the 5th−95th percentile is wider than that in the AAMS model both for the

simulated equity premium and the VRP. The mean of the market price of risk increases greatly

with the addition of regime-switching conditional volatility.

However, the relative success of the AAMSTV model is due to the presence of ambiguity

aversion, not because of incorporating time-varying consumption volatility. It is evident in Table 10
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that the EZMSTV model (ambiguity neutral case) demonstrates a significantly poorer performance

than both AAMS and AAMSTV. In particular, it fails to produce high enough market price of risk

or generate a high and volatile VRP.

In the long-run risk setting, the equity premium and market price of risk implied by the AAL-

RRSV model is higher than those in the EZLRRSV model due to the significant impact of ambiguity.

However, neither model is able to match moments of the VRP in the data. Both models generate

mean and volatility of the VRP close to zero. This is in contrast to models AAMS and AAMSTV

that can match both equity premium and mean VRP well. In fact, one must introduce jumps in

state processes to generate a high and volatile VRP in the long-run risk setting, for example see

Drechsler (2013). We leave structural estimation of this class of models for future research.

As the AAMS model can best match unconditional moments of financial variables, we next

study conditional financial moments generated by this model. Because the AAMSTV model is

an extension of AAMS and a statistically preferred model as suggested by the model comparison,

we also investigate conditional financial moments in AAMSTV. For a model of our interest, we

compute conditional moments given each of the 12,000 parameter draws from the MCMC estimates

of structural parameters of the model. We then obtain summary statistics for the 12,000 sets of

the conditional moments computed above, including the 5th and 95th percentiles. These values of

conditional moments and summary statistics characterize the posterior of the conditional moments

for the model. Figure 11 shows simulated conditional equity premium, return volatility, market

price of risk and the VRP plotted against the state variable πt in model AAMS. We also show

conditional moments generated from Ju and Miao (2012)’s calibration for comparison. We observe

that the simulated 90% region of conditional moments does not include the calibration results of

Ju and Miao (2012). This is because Ju and Miao (2012) use a long sample for their calibration.

Figure 12 plots simulated conditional moments for model AAMSTV, where in each simulation the

expectation with respect to volatility states is computed using stationary probabilities of the two

volatility regimes. For both models, we observe that the key conditional financial moments exhibit

a hump-shape when plotted against πt, and that conditional equity premium, market price of risk

and VRP peak close to high values of πt. This is due to that our estimation implies a very persistent

normal regime of consumption growth with phh close to 1. Suppose that the economy initially stays
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in the normal regime. A negative shock to consumption prompts the agent to update his belief

πt downward, leading to enhanced state uncertainty. Ambiguity aversion further exacerbates the

scenario by inducing endogenous pessimism and thus implies a significant increase in conditional

equity premium, market price of risk and VRP.

5 Conclusion

We have estimated a series of consumption-based asset pricing models with and without smooth

ambiguity preferences. We use the GSM Bayesian estimation method developed by Gallant and

McCulloch (2009) and an encompassing and flexible auxiliary model to jointly estimate prefer-

ence parameters and dynamic models of consumption and dividend growth. We employ the semi-

nonparametric method to estimate the auxiliary model and the GSM Bayesian method to obtain

posterior estimates of structural parameters. Our structural estimation with macro-finance data

provides statistical support for models with smooth ambiguity preferences. Based on our estima-

tion results, the quantitative effects of smooth ambiguity on asset returns are significant, both in

the Markov-switching and long-run risk environments.

Our main findings are: (1) the distinction between risk aversion and ambiguity aversion is

remarkable in models with smooth ambiguity, and the statistical support for smooth ambiguity

is robust to specifications of consumption and dividend processes; the posterior distributions of

the risk aversion parameter are centered on values between 0.8 and 5, while median and mean

of the posterior distributions of the ambiguity aversion parameter range between 6.9 and 23.5

across models, (2) median and mean of the EIS parameter are greater than 1 in estimated models

with and without ambiguity, and this result lends support to preferences for early resolution of

uncertainty, (3) in the Markov-switching environment our estimation identifies a normal regime

and a contraction regime for the mean growth rate of consumption as well as two distinct volatility

regimes; in the long-run risk environment our estimation identifies the long-run risk component,

and (4) models with ambiguity, learning and time-varying volatility are preferred to the long-run

risk model according to likelihood values and the BIC; the gains in fitting are mainly driven by

better performance in explaining the dynamics of asset prices.

39



References

Abel, A. B., 1999. Risk premia and term premia in general equilibrium. Journal of Monetary
Economics 43 (1), 3–33.

Ai, H., Bansal, R., 2018. Risk preferences and the macroeconomic announcement premium. Econo-
metrica forthcoming.

Aldrich, E. M., Gallant, A. R., 2011. Habit, long-run risks, prospect? a statistical inquiry. Journal
of Financial Econometrics 9, 589–618.
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Table 1: Summary Statistics of the Data

ret rft ret − r
f
t ∆ct ∆dt

Mean 5.98 0.96 5.03 1.83 1.56
St. Dev. 19.70 2.47 19.96 2.14 14.08
Skewness -0.8193 -1.4763 -0.6988 0.1079 -0.8716
Kurtosis 0.5926 5.0291 0.4457 0.0360 2.8810
J-B Test 0.0135 0.0010 0.0263 0.5000 0.0010

This table reports summary statistics for annual U.S. data (1941–2015). Mean and standard deviations of

aggregate equity returns (rt), one-year Treasury Bill rate (rft ), excess returns (rt − rft ), real per capita log
consumption growth (∆ct), and real log dividend growth (∆dt) are expressed in percentages. “J-B test”
reports the p-values of Jarque and Bera (1980) test of normality, where the null hypothesis is that the time
series is normally distributed.

Table 2: Model Summary

Model State variables Parameters

AAMS πt {β, γ, ψ, η, µh, µl, phh, pll, σ, λ, σd}
AAMSTV (πt, s

σ
t ) {β, γ, ψ, η, µh, µl, pµhh, p

µ
ll, σh, σl, p

σ
hh, p

σ
ll, λ, σd}

AALRRSV (x̂t, νt, σt) {β, γ, ψ, η, µc, ρx, φx, λ, φd, µs, ρs, σw}
EZMS πt {β, γ, ψ, µh, µl, phh, pll, σ, λ, σd}
EZMSTV (πt, s

σ
t ) {β, γ, ψ, µh, µl, pµhh, p

µ
ll, σh, σl, p

σ
hh, p

σ
ll, λ, σd}

EZLRRSV (xt,σ
2
t ) {β, γ, ψ, µc, ρx, φx, λ, φd, φc, µs, ρs, σw}

This table summarizes relevant state variables and structural parameters for each asset pricing model de-
scribed in Section 2.
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Table 3: GSM Estimation Results: the AAMS Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%

β 0.985 0.985 0.978 0.993 0.975 0.974 0.969 0.985
γ 4.908 4.750 3.250 6.750 2.841 3.063 0.563 4.563
ψ 1.512 1.563 1.188 1.813 2.040 2.031 1.781 2.406
η 9.109 9.500 6.500 12.500 6.959 6.938 5.063 8.938
pll 0.543 0.531 0.344 0.781 0.835 0.839 0.786 0.888
phh 0.783 0.813 0.563 0.938 0.996 0.997 0.994 0.997
µl -0.059 -0.059 -0.074 -0.035 -0.039 -0.039 -0.048 -0.031
µh 0.022 0.021 0.014 0.033 0.022 0.022 0.016 0.029
λ 2.598 2.750 1.250 3.750 3.420 3.422 2.703 4.203
σc 0.028 0.029 0.018 0.041 0.019 0.019 0.015 0.022
σd 0.137 0.133 0.086 0.180 0.137 0.137 0.113 0.168

BIC 831.42
Log likelihood -391.96

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters for

the AAMS model. “BIC” represents the Bayesian information criteria, see Schwarz (1978). “Log likelihood”

represents the maximum of the log likelihood of the encompassing model over the MCMC chain of estimates.

MCMC repetitions after transients have dissipated are reported for both the prior and posterior. Estimation

results are for the U.S. annual data 1941–2015.
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Table 4: GSM Estimation Results: the AAMSTV Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%

β 0.984 0.983 0.978 0.991 0.982 0.984 0.972 0.991
γ 4.723 4.750 3.250 6.250 1.167 0.875 0.125 4.125
ψ 1.483 1.438 1.188 1.813 1.357 1.348 1.090 1.668
η 9.235 9.500 6.500 12.500 10.252 10.125 6.875 13.625
pµll 0.508 0.531 0.281 0.719 0.668 0.686 0.504 0.746
pµhh 0.806 0.813 0.563 0.938 0.996 0.998 0.984 0.999
µl -0.059 -0.059 -0.074 -0.027 -0.056 -0.057 -0.068 -0.042
µh 0.022 0.021 0.014 0.029 0.023 0.023 0.014 0.033
pσll 0.849 0.859 0.734 0.953 0.986 0.990 0.948 0.996
pσhh 0.841 0.859 0.734 0.953 0.982 0.984 0.957 0.995
σl 0.015 0.015 0.009 0.021 0.013 0.012 0.004 0.022
σh 0.030 0.029 0.018 0.041 0.038 0.038 0.029 0.050
λ 2.881 2.750 1.750 3.750 2.739 2.641 1.953 4.016
σd 0.131 0.133 0.086 0.180 0.159 0.157 0.122 0.210

BIC 746.31
Log likelihood -342.93

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters

for the AAMSTV model. “BIC” represents the Bayesian information criteria, see Schwarz (1978). “Log

likelihood” represents the maximum of the log likelihood of the encompassing model over the MCMC chain

of estimates. MCMC repetitions after transients have dissipated are reported for both the prior and posterior.

Estimation results are for the U.S. annual data 1941–2015.
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Table 6: GSM Estimation Results: the EZMS Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%

β 0.985 0.985 0.978 0.991 0.976 0.976 0.970 0.986
γ 4.771 4.750 3.250 6.250 2.909 2.906 2.344 3.484
ψ 1.488 1.438 1.188 1.813 2.400 2.281 1.844 3.656
pll 0.530 0.531 0.281 0.781 0.972 0.972 0.943 0.989
phh 0.774 0.813 0.563 0.938 0.993 0.993 0.987 0.999
µl -0.059 -0.059 -0.074 -0.035 -0.030 -0.029 -0.042 -0.017
µh 0.022 0.021 0.014 0.029 0.030 0.030 0.020 0.041
λ 2.647 2.750 1.750 3.750 4.974 5.109 3.391 5.859
σc 0.028 0.029 0.018 0.037 0.021 0.022 0.010 0.029
σd 0.134 0.133 0.086 0.180 0.181 0.184 0.137 0.223

BIC 813.68
Log likelihood -385.25

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters for

the EZMS model. “BIC” represents the Bayesian information criteria, see Schwarz (1978). “Log likelihood”

represents the maximum of the log likelihood of the encompassing model over the MCMC chain of estimates.

MCMC repetitions after transients have dissipated are reported for both the prior and posterior. Estimation

results are for the U.S. annual data 1941–2015.
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Table 7: GSM Estimation Results: the EZMSTV Model

Prior Posterior

Parameter Mean Median 5% 95% Mean Median 5% 95%

β 0.991 0.991 0.991 0.991 0.972 0.970 0.964 0.983
γ 7.995 8.250 6.750 8.250 6.153 6.219 3.844 8.469
ψ 0.975 0.938 0.938 1.063 1.673 1.664 1.086 2.273
pµll 0.595 0.594 0.594 0.594 0.888 0.894 0.780 0.960
pµhh 0.812 0.813 0.813 0.813 0.986 0.985 0.976 0.996
µl -0.035 -0.035 -0.035 -0.035 -0.026 -0.025 -0.036 -0.017
µh 0.037 0.037 0.037 0.037 0.025 0.026 0.016 0.034
pσll 0.856 0.859 0.766 0.984 0.977 0.979 0.938 0.998
pσhh 0.837 0.828 0.734 0.953 0.921 0.929 0.856 0.974
σl 0.006 0.005 0.005 0.009 0.024 0.024 0.016 0.028
σh 0.006 0.006 0.006 0.006 0.044 0.048 0.021 0.058
λ 3.271 3.250 3.250 3.750 2.270 2.242 1.602 2.836
σd 0.102 0.102 0.086 0.117 0.126 0.122 0.099 0.179

BIC 768.55
Log likelihood -356.21

MCMC repetitions 10,000 12,000

This table presents prior and posterior marginal means, medians, 5 and 95 percentiles of model parameters

for the EZMSTV model. “BIC” represents the Bayesian information criteria, see Schwarz (1978). “Log

likelihood” represents the maximum of the log likelihood of the encompassing model over the MCMC chain

of estimates. MCMC repetitions after transients have dissipated are reported for both the prior and posterior.

Estimation results are for the U.S. annual data 1941–2015.
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Table 9: Diagnostic results for AAMSTV

σ(∆c) σ(∆d) E(rft ) σ(rft ) E(rt) σ(rt)

AAMSTV
vs. EZMSTV 0.85 -0.48 5.03 -1.05 -2.27 -2.36

AAMSTV
vs. AAMS -1.00 -2.32 2.69 -1.29 -0.21 -2.71

This table summarizes diagnostics results for models AAMSTV, AAMS and EZMSTV. The table presents
t−statistics for moments of the preferred model AAMSTV vs. AAMS and t−statistics for moments of the
preferred model AAMSTV against EZMSTV. The t−statistic is defined by t = (m1−m2)/σ2 where m1 and
m2 are the posterior modes of a moment of interest for models 1 and 2 respectively, and σ2 is the standard
deviation of the posterior distribution of the moment under model 2. We denote the AAMSTV model by
“2”.
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Table 10: Financial Moments

E(rft ) σ(rft ) E(rt − rft ) σ(rt − rft ) E(V RPt) σ(V RPt) MPR

Data 1.41 2.82 5.32 17.77 11.07 24.94 N.A.

AAMS

Mean 1.595 1.541 5.812 18.441 12.955 9.300 1.280
Median 1.399 1.598 6.349 18.266 12.644 8.833 1.308
St Dev 0.800 0.286 1.738 2.220 2.967 2.720 0.341
95% 2.941 1.951 8.033 22.729 18.860 14.495 1.819
5% 0.444 1.951 3.010 15.378 8.332 5.411 0.758

AAMSTV

Mean 1.183 1.680 6.371 22.818 17.090 14.007 2.987
Median 1.267 1.673 5.910 22.579 14.678 10.430 2.790
St Dev 0.959 0.580 3.542 4.469 12.092 13.418 1.414
95% 2.465 2.685 14.446 30.242 35.407 39.337 5.970
5% -0.622 0.800 1.650 15.633 4.835 3.878 1.205

AALRRSV

Mean 1.079 1.555 7.841 21.134 -0.744 1.752 1.312
Median 1.095 1.581 7.817 21.103 -0.288 1.086 1.142
St Dev 0.473 0.259 1.853 3.629 1.263 1.782 0.772
95% 1.818 1.946 10.838 28.345 0.406 6.490 2.976
5% 0.226 1.128 4.863 16.106 -3.218 0.438 0.489

EZMS

Mean 1.282 2.100 2.919 40.489 58.704 67.854 0.698
Median 1.278 2.035 2.727 41.471 54.164 65.354 0.647
St Dev 0.468 0.394 1.634 8.211 26.877 35.106 0.208
95% 2.107 2.902 6.007 52.464 107.602 128.264 1.128
5% 0.511 1.579 0.706 28.070 21.067 21.228 0.454

EZMSTV

Mean 2.413 1.276 4.579 15.951 2.643 2.362 0.699
Median 2.484 1.260 4.712 15.828 2.156 1.944 0.689
St Dev 0.648 0.170 1.618 1.893 1.511 1.236 0.211
95% 3.330 1.561 7.056 19.216 6.024 4.941 1.103
5% 1.072 1.016 2.017 12.883 0.993 0.900 0.378

EZLRRSV

Mean 1.708 0.973 4.318 17.633 1.436 0.549 0.569
Median 1.686 0.856 4.458 17.560 1.398 0.524 0.573
St Dev 0.336 0.385 1.150 1.906 0.396 0.280 0.078
95% 2.289 1.589 5.999 20.903 2.137 1.130 0.692
5% 1.169 0.718 2.337 14.413 0.858 0.200 0.428

This table presents unconditional financial moments generated from the estimated models. These quantities
are computed from simulated paths based on 12,000 Bayesian MCMC estimates of the structural parameters.
E(rft ) and E(rt − rft ) are mean risk-free rate and mean equity premium respectively (in percentage). σ(rft )

and σ(rt − rft ) are volatilities of risk-free rates and excess returns respectively (in percentage). Moments of
asset returns are computed based on annual data for the period 1941–2015. Variance risk premium (VRP)
data covers the period 1996–2015. σ(Mt)/E(Mt) is the market price of risk.
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Figure 1: Model AALRRSV: Bayesian and distorted densities of x
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Notes: This figure plots Bayesian density and distorted density of the long-run risk component x for the

AALRRSV model. The Bayesian density is xt ∼ N (x̂t, νt), and the distorted density is f̃ (xt|x̂t, νt, t). The

distorted density is generated from solving the model. The state vector is assumed to take the value (x̂t = 0,

νt = ν̄ (steady-state) and σt = µs). Model parameters are set at posterior mean estimates presented in

Table 5.
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Figure 2: Time-series of variables
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The figure shows CRSP value-weighted index returns, one-year Treasury Bill rates, excess returns, per-capita
log consumption growth, and log dividend growth rates for the 1941–2015 period. All series plotted are at
an annual frequency and in real terms. Shaded areas represent NBER recessions.
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Figure 3: Prior and Posterior Densities of Estimated Parameters of AAMS Model
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This figure plots prior and posterior densities of parameters in the AAMS model. The solid lines depict
posterior densities and dotted lines depict prior densities. The results are based on the U.S. annual data for
1941–2015.
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Figure 4: Prior and Posterior Densities of Estimated Parameters of AAMSTV Model
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This figure plots prior and posterior densities of parameters in the AAMSTV model. The solid lines depict
posterior densities and dotted lines depict prior densities. The results are based on the U.S. annual data for
1941–2015.
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Figure 5: Prior and Posterior Densities of Estimated Parameters of AALRRSV Model
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This figure plots prior and posterior densities of parameters in the AALRRSV model. The solid lines depict
posterior densities and dotted lines depict prior densities. The results are based on the U.S. annual data for
1941–2015.
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Figure 6: Prior and Posterior Densities of Estimated Parameters of EZMS Model
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This figure plots prior and posterior densities of parameters in the EZMS model. The solid lines depict
posterior densities and dotted lines depict prior densities. The results are based on the U.S. annual data for
1941–2015.

58



Figure 7: Prior and Posterior Densities of Estimated Parameters of EZMSTV Model
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This figure plots prior and posterior densities of parameters in the EZMSTV model. The solid lines depict
posterior densities and dotted lines depict prior densities. The results are based on the U.S. annual data for
1941–2015.
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Figure 8: Prior and Posterior Densities of Estimated Parameters of EZLRRSV Model
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This figure plots prior and posterior densities of parameters in the EZLRRSV model. The solid lines depict
posterior densities and dotted lines depict prior densities. The results are based on the U.S. annual data for
1941–2015.
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Figure 9: Impulse-response functions: AAMS and AAMSTV
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This figure plots the mean impulse-response functions for models AAMS and AAMSTV when the mean

consumption growth state shifts from µh to µl in the third period. Before the realization of the shock, mean

consumption growth is assumed to stay in state µh without the impact of innovation shocks. The growth

rate of consumption follows the respective Markov-switching models after the regime shift. We compute

the mean impulse-response across 5,000 simulated paths of consumption growth. The results plotted are for

model parameters set at posterior means of Bayesian MCMC estimates.
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Figure 10: Impulse-response functions: AALRRSV and EZLRRSV
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This figure plots the mean impulse-response functions for models AALRRSV and EZLRRSV when a shock of

size −4φxµs to xt occurs in the third period. Before the realization of the shock, the AALRRSV economy is

assumed to stay in state (x̂t, νt, σt) for which ∆ct = µc,∆dt = µd, xt = 0, σt = µs and νt = ν̄ (steady-state)

without the impact of innovation shocks. The distorted mean estimate is computed by applying the rejection

sampling method and simulations. Before the realization of the shock, the EZLRRSV economy is assumed

to stay in state (xt = 0, σ2
t = µ2

s) without the impact of innovation shocks. The results plotted are for model

parameters set at posterior means of Bayesian MCMC estimates.
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Figure 11: AAMS model: Conditional financial moments
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This figure plots conditional financial moments ranging from 5 to 95 percentile of simulated conditional

moments for the AAMS model. The simulation is based on 12,000 Bayesian MCMC estimates of structural

parameters. The dashed line plots the conditional moments calculated based on Ju and Miao’s calibration.
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Figure 12: AAMSTV model: Conditional financial moments
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This figure plots conditional financial moments ranging from 5 to 95 percentile of simulated conditional

moments for the AAMSTV model. The simulation is based on 12,000 Bayesian MCMC estimates of structural

parameters.
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