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Abstract

Methodology is proposed that addresses two problems that arise in application of the

generalized method of moments representation of the likelihood in Bayesian inference: (1)

a missing Jacobian term and (2) a normality assumption. The proposals are illustrated by

application to the seminal application of the generalized method of moments methodology in

the econometric literature: an endowment economy whose representative agent has constant

relative risk aversion utility.
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1 Introduction

We consider Bayesian estimation of the parameters that appear in a set of over-identified,

nonlinear, moment equations.

This is a well studied problem in the frequentist literature. Solutions divide into two main

groups. Group (1): Estimate a nonparametric likelihood subject to the moment conditions.

Empirical likelihood is an illustration of the basic idea (Owen, 1988). A example in a dynamic

setting where both the likelihood and moment conditions are nonparametric is Gallant and

Tauchen (1989). Group (2): Apply method of moments directly. The best known example

in economic research is generalized method of moments (GMM) (Hansen, 1982). GMM is

simple to implement and is more widely used in economic research than Group (1) methods.

Consideration of this problem from the Bayesian perspective follows the same division

into two these two groups.

A Bayesian Group (1) approach is a difficult to implement when the moment equations

are over-identified because the support of the posterior has Lebesgue measure zero. See

Born, Shephard, and Solgi (2018) for a discussion of the issues, a review of the literature,

and proposed remedies for likelihoods with discrete support using notions from geometric

measure theory. For just identified moment equations the problem simplifies (Chamberlain

and Imbens, 2003). A judicious choice of likelihood in time series applications can permit a

solution (Shin, 2015). Schennach (2005) and Gallant, Hong, Leung, and Li (2019) propose

approximate solutions based on asymptotics. Gallant (2020a) resolves most of the above

issues by adapting the Surface Sampling Algorithm of Zappa, Holmes-Cerfon, and Goodman

(2018) to the problem thereby permitting exact Bayesian analysis for any smooth likelihood

estimated subject to over-identified moment conditions.

A Bayesian Group (2) approach is inspired by the simplicity of the Markov chain Monte

Carlo (MCMC) computational methods proposed by Chernozhukov and Hong (2003). If

Q(x, θ) = Z ′(x, θ)Z(x, θ) represents the GMM criterion function, where Z are the moment

conditions normalized to unit variance, x = [x1, . . . , xn] is a matrix containing the data, and

θ is the parameter vector, the idea is to treat

p∗(x | θ) = φ [Z(x, θ)] ∝ exp

[

−1

2
Q(x, θ)

]

(1)

as a likelihood in MCMC computations, where φ is the standard multivariate normal den-
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sity. We term1 equation (1), together with variants described later, variously as a method of

moments representation of the likelihood or as a GMM representation of the likelihood. Ex-

amples of applications using a method of moments representation of the likelihood are Romeo

(2007), Gallant and Hong (2007), Duan and Mela (2009), Yin (2009), Gallant, Giacomini,

and Ragusa (2017), and Gallant and Tauchen (2017, 2018).

Using the method of moments representation of the likelihood was formally justified by

Gallant (2016a). In the comments and reply between Sims (2016) and Gallant (2016b, 2016c)

two problems with this approach are revealed: (1) the GMM representation of the likelihood

in equation (1) is missing a Jacobian term, (2) the standard approach of assuming normality

of the random variable Z as in equation (1) may be suspect. This paper addresses these two

problems.

The first problem is addressed by outlining a practical procedure for constructing the

Jacobian term and applying it in the seminal GMM application (Hansen and Singleton,

1982). The method suggested by Gallant, Hong, Leung, and Li (2019) can be adapted to

addressing the issue of non-normality, as will be explained in Section 6.

2 Bayesian Inference from Moment Functions

2.1 Intuitive Development

Even though the parameter vector θ may be regarded as fixed, Bayesian analysis proceeds

as if the data x ∈ X and parameter θ ∈ Θ were random variables on X × Θ with joint

density po(x, θ) for which the marginal for θ is the prior po(θ) and the conditional for x given

θ is the likelihood po(x | θ). Consequently, po(x, θ) = po(x | θ) po(θ) and we are working on a

probability space of the form (X ×Θ, Co, P o), where Co denotes the Borel subsets of X ×Θ.

The goal of Bayesian inference is to obtain the posterior po(θ | x) = po(x, θ) /
´

po(x, θ) dθ.

To obtain it analytically when possible. When not possible, to find a numerical method

for computing
´

g(θ) po(θ | x) dθ. E.g., by Markov Chain Monte Carlo (MCMC) (Gamerman

and Lopes, 2006).

1The term “GMM representation of the likelihood” in the present context was coined by Gallant, Gia-
comini, and Ragusa (2017) but as it was applied to state space models, the likelihood was a “measurement
density.” Gallant and Tauchen (2018) called it “method of moments representation of the likelihood.” Here
may be the first use of the term “GMM representation of the likelihood.” It has been used in other contexts
to mean maximum likelihood estimation by method of moments using the scores of the likelihood as the
moment equations.
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In a GMM analysis the likelihood po(x | θ) is ignored because one does not know it, or

because it is too hard to compute, or because of misspecification concerns. Nonetheless,

existence is assumed here.

One works, instead, with moment conditions Z(x, θ), where
´

Z(x, θ) po(x, θo) dx = 0

when θ = θo else nonzero.2 The moment equations are derived from an economic agent’s

first order conditions, an asset pricing identity, or similar considerations.

We assume that the moment equations satisfy a semi-pivotal condition

ASSUMPTION 1 The set

C(θ,z) = {x ∈ X : Z(x, θ) = z}, (2)

is not empty for any (θ, z) ∈ Θ×Z.

Consider shifting the data {xt}nt=1 by {xt+ τei}nt=1, where ei has a one in the ith element

and zeros elsewhere. If, for some ei, the shifted data is in X and Z is continuous and

unbounded in τ , then Assumption 1 is satisfied.

Suppose that we are given Z(x, θ) defined over X ×Θ and told that the random variable

z = Z(x, θ) has density ψ(z), which may be standard multivariate normal or some other

density such as multivariate Student’s t. Assuming in addition to Assumption 1 that the

dimension3 of x and z are the same, and that the mapping Z(x, θ) from x to z is one-to-one

when θ is held fixed, Gallant (2016a, 2016b) proves that that the conditional density of x

given θ is

p∗(x | θ) =
∣

∣det[(∂/∂x′)Z(x, θ)]
∣

∣ψ[Z(x, θ)]. (3)

We now have a likelihood; Bayesian analysis can proceed forthwith with prior p∗(θ) = po(θ).

Bayesian Efficient Method of Moments (EMM) is an instance where the dimension of x and

z is the same and this construction is applicable (Gallant and Tauchen, 2017).

Suppose now that the situation is as in the previous paragraph but, as is usually the

case, the dimension of x is larger than z. Suppose that we can find mappings u = U(x, θ)

and x = X(u, θ) such that u has the same dimension as z and such that z = Z[X(u, θ), θ].

We are now essentially in the same situation as the previous paragraph with u replacing

x. However, Z[X(u, θ), θ] will likely be sufficiently intractable that numerical methods will

be required to compute (∂/∂u′)Z[X(u, θ), θ].

2Before normalization to have unit variance if not after.
3Meaning the number of rows times the number of columns of x.
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In the above X(u, θ) does not reconstruct the data but rather maps to an x ∈ X that

evaluates to the same z as the data; i.e., maps to a single point in C(θ,z) given by (2). This

condition is essential. One cannot arbitrarily choose some elements from {xt}nt=1 as u. One

must be able to recompute z from knowledge of u and θ; u is similar to a sufficient statistic

except that, unlike a sufficient statistic, u may depend on θ.

Often it is possible to put u = U(x, θ) into the form u = U(z, θ) with inverse z = U−1(u, θ)

whose Jacobian can be computed analytically. In which case z = U−1(u, θ) = Z[X(u, θ), θ]

and

p∗(x | θ) =
∣

∣ det[(∂/∂u′)U−1(u, θ)]
∣

∣ψ[Z(x, θ)].

The adjustment term becomes

adj(x, θ) =
∣

∣ det[(∂/∂u′)U−1(u, θ)]
∣

∣ (4)

Note that, given (x, θ), the u at which the right hand side of (4) is evaluated is computed

by first computing z = Z(x, θ) then computing u = U(z, θ).4 The prior remains po(θ).

Examples are in Gallant (2016b).

While in most instances the above suffices, a slight generalization is helpful in instances

such as the the case study of Section 3. Suppose that for some invertable transformation v =

V (z) we can find mappings u = U(z, θ) and x = X(u, θ) such that u has the same dimension

as z and such that V (z) = Z[X(u, θ), θ]. In this case, supposing that an analytic expression

for U−1(u, θ) is available, z = U−1(u, θ) = V −1{Z[X(u, θ), θ]}, whence the expression for

adj(x, θ) is again given by (4).

If adj(x, θ) does not depend on θ and MCMC is used for the computations, then the

adjustment adj(u, θ) is not necessary because it cancels in the MCMC ratio. For the same

reason, adj(u, θ) only needs to be correct to within a scale factor that does not depend on θ.

2.2 Formal Development

Here we consider a formal derivation of the function Z(x, θ) of the previous subsection and

the probabilistic implications. To do so, we presume the existence of po(x | θ) that implies

moment equations from which Z(x, θ) is constructed. We do not presume knowledge, only

existence.

4In theory, to draw x from p∗(x | θ) for given θ, draw z ∼ ψ, compute u = U(z, θ), map u to C(θ,z) using
X(u, θ), then draw x from the uniform on C(θ,z) if C(θ,z) is bounded or from a density over C(θ,z) with large
variance that is nearly flat if not bounded.
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As mentioned above, in Bayesian inference θ is formally manipulated as if it were random

even though one might regard it as fixed. Thus, one has a joint distribution P o(x, θ) defined

over X × Θ, whose density is the product of a likelihood po(x | θ) times a prior po(θ).5 The

joint probability space under consideration is, therefore, (X × Θ, Co, P o), where Co denotes

the Borel subsets of X ×Θ.

Recall, the data x are arranged as a matrix with columns xt, t = 1, 2, . . . , n. One sets

forth moment functions m(xt, θ) of dimension M and computes their mean

m̄(x, θ) =
1

n

n
∑

t=1

m(xt, θ). (5)

The model implies that at the true value θo the unconditional expectation of the mean is

zero, i.e., Em̄(x, θo) = 0, and that θo is the only value of θ for which this is true. Put

Z(x, θ) =
√
n [W (x, θ)]−

1

2 [m̄(x, θ)] , (6)

where

W (x, θ) =
1

n

n
∑

t=1

[m(xt, θ)− m̄(x, θ)] [m(xt, θ)− m̄(x, θ)]′ (7)

and [W (x, θ)]−
1

2 denotes the inverse of the Cholesky factorization of W (x, θ). If the m(xt, θ)

are serially correlated one will have to use a HAC (heteroskedatic, autoregressive invariant)

variance matrix estimate of the form given by Gallant (1987, p. 446, 533) instead. In this

case, residuals et = m(xt, θ)− m̄(x, θ) should be used to form the estimate as in (7).

The random variable z = Z(x, θ) on (X × Θ, Co, P o) has some distribution Ψ(z) with a

support Z. Let C be the smallest σ-algebra containing the preimages C = Z−1(B) where

B ranges over the Borel subsets of Z. Because the distribution Ψ(z) of z = Z(x, θ) is

determined by P o the probability measure P [C = Z−1(B)] =
´

B
dΨ(z) over (X ×Θ, C) will

satisfy P (C) = P o(C) for every C ∈ C.
Define C∗ to be the smallest σ-algebra that contains all sets in C plus all sets of the

form RB = (X×B), where B is a Borel subset of Θ. Gallant (2016a) proves that there is

an extension of (X × Θ, C, P ) to a space (X × Θ, C∗, P ∗) such that P o(C) = P ∗(C) for all

C ∈ C∗. In particular, P o(C) = P (C) = P ∗(C) for C ∈ C and P o(RB) = P ∗(RB). The

σ-algebras involved satisfy C ⊂ C∗ ⊂ Co.

5The parameters of the likelihood may be the same as the parameter θ that enters Z(x, θ), contain
elements of θ, or be distinct from θ. All three situations occur in applications and there are examples of the
latter two later on. To avoid clutter and to be consistent with Gallant(2016a, 2016b, 2016c), we will assume
here that the parameters are the same.
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If Z(x, θ) is a semi-pivotal and has distribution Ψ with density ψ, then x has conditional

density p∗(x | θ) = adj(x, θ)ψ[Z(x, θ)] defined over (X × Θ, C∗, P ∗) (Gallant, 2016a, 2016b).

The term adj(x, θ) is analogous to a Jacobian, as illustrated in the previous subsection. And

we will illustrate further in Section 3.

2.3 Adjustment Invariance

To put the issue of invariance into perspective, note that the adjustment does two things: It

makes p∗(x | θ) given by (3) integrate to one; It may affect the accept/reject decision in the

MCMC algorithm. If one is trying to learn from data by plotting the contours of a density

then it is essential that that density integrate to one. That is not our concern here. The

issue here is does it affect the accept/reject decision. Especially as it takes human effort to

determine adj(x, θ).

The adjustment adj(x, θ) can be regarded as a data dependent prior. In large enough

samples the prior is dominated by the likelihood and therefore will not not affect the ac-

cept/reject decision. The adjustment cannot be made tighter in light of the sample size as

can an ordinary prior so that the likelihood will eventually dominate. Subjectivity in the

choice of prior is permitted in Bayesian inference. From this viewpoint one could go so far

as to argue that omission of adj(x, θ), thinking that it is likely to be irrelevant, amounts to

subjectivity in the choice of a prior.

The above thoughts are not entirely my own and thus require attribution. They come

from one of the referee reports, from Sims (2016), and remarks by Chris Sims on the con-

sequences of using contours of densities that do not integrate to one in data analysis made

in the floor discussion of this paper when presented at The George Tauchen 70th Birthday

Conference, Duke University, Durham, NC, November 15–16, 2019.

Although the above regarding the accept/reject decision in the MCMC algorithm is

correct and identical accept/reject decisions imply invariance, it is largely beside the point.

The point being not whether the draws in two MCMC chains are identical but rather are

the chains drawing from the same distribution. We turn our attention to this issue.

The only sets to which p∗(x | θ) given by (3) can assign probability are sets in C∗. Consider

a set of the form

A× {θo} = {(x, θo) : |Z(x, θo)− zo| < δ}
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for small δ > 0, arbitrary zo ∈ Z, and arbitrary θo ∈ Θ. Now A× {θo} is in C∗ and

P ∗(A | θ = θo) =

ˆ

{z : z=Z(x,θo), x∈A}

ψ(z) dz.

Apply the change of variables6 u = U(z, θo), z = U−1(u, θo), dz = (∂/∂u′)U−1(u, θo) du,

whence

P ∗(A | θ = θo) =

ˆ

{u :u=U [Z(x,θo),θo], x∈A}

|(∂/∂u′)U−1(u, θo)|ψ[U−1(u, θo)] du.

Because P ∗(A | θ = θo)/δ will be computed the same for any choice of u = U(z, θ), MCMC

computations using the adjustment described in Subsection 2.1 will be drawing from the

same distribution.

2.4 Constructing the Adjustment Term

We next describe a method for constructing the mappings u = U(z, θ) and x = X(u, θ) such

that u has the same dimension as z and z = U−1(u, θ) = Z[X(u, θ), θ]. Recall that the data

x are a matrix with n columns; i.e., x = [x1, . . . , xn].

Let k be the largest column index such that dim[xk, . . . , xn] ≥ dim(z). Find a function

u = U(z, θ) with inverse z = U−1(u, θ) and functions Xk(u, θ), . . . , Xn(u, θ) that map u to

[xk, . . . , xn] such that

m[Xk(u, θ), θ] + . . .+m[Xn(u, θ), θ] = z. (8)

Next find functions X1(u, θ), . . . , Xk−1(u, θ) such that

k−1
∑

t=1

m[Xt(u, θ), θ] = 0

nW [X(u, θ), θ] = I

Equivalently, find X(1)(u, θ) such that

Z[X(u, θ), θ] = z (9)

where

X(u, θ) =
[

X(1)(u, θ), X(2)(u, θ)
]

X(1)(u, θ) = [X1(u, θ), . . . , Xk−1(u, θ)]

X(2)(u, θ) = [Xk(u, θ), . . . , Xn(u, θ)] .

6If, instead, one is using the first construction of Subsection 2.1, then use the change of variables u =
U(x, θo), z = Z[X(u, θo), θo], dz = (∂/∂u′)Z[X(u, θo), θo] du.
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As X(1)(u, θ) is never actually used, it need only exist. Existence is plausible because one

is solving a system of M equations in (k − 1) dim xt unknowns for which the semi-pivotal

condition suggests that a solution ought to exist.

Existence can be checked numerically if there is doubt. One method for checking is to use

a simple iterative approach using random orthogonal matrices O of dimension s. A method

for constructing O is to assign random numbers to the elements of a square matrix and apply

Gram-Schmidt. One transforms successive blocks x(i) of length s from vec[x1, . . . , xk−1] by

drawing random orthogonal O and random v from the uniform over (0, τ) and replacing x(i)

by x∗(i) = x(i) + vO. Denote x = X(u, θ) by x∗ after replacement. One accepts transforms

for which ‖ z − Z(x∗, θ) ‖ decreases then moves on to the next block of vec[x1, . . . , xk−1],

wrapping from end to beginning as necessary. One continues thus until ‖ z − Z(x∗, θ) ‖ is

smaller than a reasonable tolerance. Both τ and the dimension s of O are tuning parameters.

This is repeated for random draws θ from the prior until one is satisfied that X(u, θ) exists.

2.5 Asymptotic Normality

A verification that the limiting density of Z is normal under mild regularity conditions is in

the Online Appendix (Gallant, 2020b).

3 CRRA Utility

Our examples are asset pricing applications under constant relative risk aversion (CRRA)

utility. In this section we describe the stochastic discount factor corresponding to CRRA

utility, describe the standard moment conditions m̄(x, θ) used to estimate the parameters

θ = (β, γ) entering the CRRA utility function, and derive the adjustment term for the

normalized moment conditions Z(x, θ).

Let lsrt denote gross geometric stock returns observed at time t; i.e., lsrt = log(Pt +

Dt) − log(Pt−1), where Pt is the stock price and Dt is the dividend. Let lcgt denote log

consumption growth observed at time t; i.e., lcgt = log(Ct) − log(Ct−1). In a Lucas (1978)

exchange economy Dt = Ct. Data is a matrix x with columns

xt =





x1t

x2t



 =





lsrt

lcgt



 (10)
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The stochastic discount factor (SDF) for CRRA utility is the marginal rate of substitution

Mt,t−1 = β
(

Ct

Ct−1

)−γ

where β is the representative agent’s discount factor, γ is a risk aversion

parameter, and the elasticity of intertemporal substitution (EIS) is 1/γ. The SDF discounts

gross returns to unity so

Et−1 [1− exp(log β − γlcg t + lsrt)] = 0,

where Et−1 is conditional expectation given Ct−1, Ct−2, . . . . We shall refer to the term in

brackets as the Euler equation error.

Standard moment conditions for estimating θ = (β, γ) are

m(xt, θ) =









1

lsrt−1

lcgt−1









[1− exp(log β − γlcgt + lsrt)] , (11)

for t = T0, . . . , n.
7 By the law of iterated expectations, the m(xt, θ) are uncorrelated under

po(x, θ) so that

m̄(x, θ) =
1

n

n
∑

t=1

m(xt, θ) (12)

W (x, θ) =
1

n

n
∑

t=1

[m(xt, θ)− m̄(x, θ)] [m(xt, θ)− m̄(x, θ)]′ (13)

Z(x, θ) =
√
n [W (x, θ)]−

1

2 [m̄(x, θ)] . (14)

To derive the adjustment factor adj(x, θ) consider the last two moment equations. Our

right hand side choices and solution is below followed by a discussion of the logic involved.

For some c > 0, e.g., c = 4 if the distribution Ψ(z) of Z is well approximated by the normal,

larger if Ψ(z) is fat tailed, consider

m(xn−1, θ) =









1

lsrn−2

lcgn−2









[

1− exp(log β − γlcgn−1 + lsrn−1)
]

=









1− e

z2

z3









m(xn, θ) =









1

lsrn−1

lcgn−1









[1− exp(log β − γlcgn + lsrn)] =









tanh
(

1
c
z1
)

(1− log β) tanh
(

1
c
z1
)

0









7T0 > 1 allows for lags inm(xt, θ) and inW (x, θ) whenW is HAC. Thus, xt inm(xt, θ) is to be interpreted
as xt itself and whatever additional lags may be needed.
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A solution is

lsrn−2 =
z2

1− e

lcgn−2 =
z3

1− e

lsrn−1 = 1− log β

lcgn−1 = 0

lsrn = log

[

1− tanh

(

1

c
z1

)]

− log β

lcgn = 0

The logic behind the choices and solution is as follows. Starting with m(xn, θ), we wish to

assign z1 to the right hand side of m1(xn, θ), which is the Euler equation error. The difficulty

here is that the Euler equation error is bounded above by one so z1 must be transformed. Of

the obvious choices, z1/(1 + |z1|) is not differentiable and z1/(1 + z21) is not one-to-one. The

one used, tanh
(

1
c
z1
)

, seems natural to one who is familiar with the various representations

of the logistic distribution. Otherwise it may seem bizarre. But any tractable distribution

function could be used here. With this choice, setting lcgn = 0 determines lsrn. This,

in turn determines both lsrn−1 and the right hand side of m2(xn, θ). Setting lcgn−1 = 0,

hence m3(xn, θ) = 0, is a convenient choice for lcgn−1. With lcgn−1 and lsrn−1 determined,

m1(xn−1, θ) = 1 − e thus allowing us to set m2(xn−1, θ) = z2 and m3(xn−1, θ) = z3, which

determines lcgn−2 and lsrn−2.

The mapping u = U(z, θ) is, thus,

u1 = log

[

1− tanh

(

1

c
z1

)]

− log β (15)

u2 =
z2

1− e

u3 =
z3

1− e

Its inverse z = U−1(u, θ) is

z1 = c {arctanh [1− exp(u1 + log β)]} (16)

z2 = (1− e)u2

z3 = (1− e)u3.
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The Jacobian 8 (∂/∂u′)U−1(u, θ) has elements

(∂/∂u1)U
−1
1 (u, θ) = −c exp(u1 + log β)

1− [1− exp(u1 + log β)]2

= −c 1− tanh
(

1
c
z1
)

1−
[

tanh
(

1
c
z1
)]2

(∂/∂u2)U
−1
2 (u, θ) = (1− e)

(∂/∂u3)U
−1
3 (u, θ) = (1− e)

(∂/∂uj)U
−1
i (u, θ) = 0 if i 6= j

Setting

Xn−2(u, θ) =





u2

u3





Xn−1(u, θ) =





1− log β

0





Xn(u, θ) =





u1

0



 ,

the mapping x = X(u, θ) implied by the above is

X(1)(u, θ) = [X1(u, θ), . . . , Xn−3(u, θ)]

X(2)(u, θ) = [Xn−2(u, θ), Xn−1(u, θ), Xn(u, θ)]

X(u, θ) =
[

X(1)(u, θ), X(2)(u, θ)
]

where X(1)(u, θ) is determined such that

n−3
∑

t=T0

m[Xt(u, θ), θ] = 0

nW [X(u, θ), θ] = I

or, equivalently, where X(1)(u, θ) is determined such that

Z[X(u, θ), θ] = V (z),

8On a machine tanh
(

1
c
z1
)

can equal ±1. For the event +1, (∂/∂u1)Z1(u, θ) = − c
2 by l’Hospital’s rule.

To guard against the event −1, the constant c can be chosen larger than 4 in (17). In this paper, when the
event −1 occurs, the proposed MCMC draw is rejected.
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where

v = V (z) =









1− e+ tanh
(

1
c
z1
)

z2 + (1− log β) tanh
(

1
c
z1
)

z3









with inverse

z = V −1(v) =









c [arctanh(v1 − 1 + e)]

v2 − (1− log β)(v1 − 1 + e)

v3









.

The adjustment is

adj(x, θ) = c (1− e)2

∣

∣

∣

∣

∣

1− tanh
(

1
c
z1
)

1−
[

tanh
(

1
c
z1
)]2

∣

∣

∣

∣

∣

. (17)

4 An Exchange Economy

In this section we consider the adjustment factor in an instance where assuming normality

for Z is justified.

Following Sargent and Stachurski (2018), we consider the following specification of a pure

exchange economy of Lucas (1978)

Log Endowment: yt = αyt−1 + et

Consumption: Ct = Yt = eyt

Random shock: et ∼ N(0, σ2)

Utility function : E0
(

∞
∑

t=0

βt (Ct)
1−γ − 1

1− γ

)

N(µ, σ2) denotes the normal distribution function with mean µ and variance σ2 and n(µ, σ2)

the normal density function. The time increment is one year. Lower case is the natural

logarithm of upper case quantities, i.e., ct = log(Ct), yt = log(Yt). Shocks are independent.

The stationary distribution of yt is N
(

0, σ2

1−α2

)

.

The stochastic discount factor is Mt+1,t = β
(

Ct+1

Ct

)−γ

, which implies that the price at

14



time t of a claim on the endowment is

P (yt) = Et
{

β

(

Ct+1

Ct

)−γ

[Yt+1 + P (yt+1)]

}

(18)

= βY γ
t Et
[

Y 1−γ
t+1 + Y −γ

t+1P (yt+1)
]

= βY γ
t Et
(

Y 1−γ
t+1

)

+ βY γ
t Et
[

Y −γ
t+1P (yt+1)

]

= βY γ
t e

α(1−γ)yt+
1

2
(1−γ)2σ2

+ βY γ
t Et
[

Y −γ
t+1P (yt+1)

]

.

P (·) is defined as the solution of the Euler condition (18). To compute P (·) we use the

fixed point algorithm set forth in Sargent and Stachurski (2018). The changes we make

are to use a natural cubic spline (Schumaker, 2015) to represent P (·) instead of a grid

approximation and Gaussian quadrature (Golub and Welsch, 1969) instead of Monte Carlo

integration to compute Et
[

Y −γ
t+1P (yt+1)

]

. We make the first change to reduce the number of

grid points required and provide a differentiable approximation with differentiable inverse;

we make the second for improved numerical accuracy. Rather than P (y) we usually work

with p(y) = logP (y) and its inverse y = q(p). Once one has computed P (yi) at some set of

not necessarily equally spaced points yi it is a trivial matter to compute p(y) and q(p) from

these same points.

The geometric return on the endowment is rdt = log(Yt +Pt)− log(Pt−1). The geometric

return on an asset that pays one unit of the endowment one year hence with certainty is

rft = − log β− (1−α)γyt− 1
2
γ2σ2. Following convention, call rdt the geometric stock return,

rft the geometric risk free rate, and P (yt) the stock price. For a given value of ρ = (α, σ, β, γ),

simulated values of xt given by (10) are

xt =





x1t

x2t



 =





rdt

yt



 . (19)

The prior is shown in Table A1 of the Online Appendix (Gallant, 2020b); it is a normal

independence prior with mean = (0.95, 0.02, 0.95, 12.5) and sdev = (0.01, 0.01, 0.01, 2.0).

Support conditions and effective support as determined by a simulation of size 10,000 are

shown in the table; only 0.01 < σ binds. The mean of the prior was calibrated to get an

excess return and standard deviations on the geometric stock return and geometric risk free

rate as close (subjectively) to US values9 over the last 100 years as an exchange economy

9See Table A1 legend for the values.
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with CRRA utility will permit. The fixed point iterations in (18) do not converge for all

choices of ρ; on this see Sargent and Stachurski (2018). The standard deviations of the prior

are close to the upper limit of convergence. Withal, the effective support of the prior is

reasonable. This is the tight prior. A loose prior is also used in estimation; it is the same

but with standard deviations multiplied by ten.

We next examine whether a normality assumption is warranted for this economy and the

relative magnitude of the adjustment term.

Normality is addressed in Figure A1 of the Online Appendix. It is a quantile-quantile

plot of z = Z(x, θ) given by (14) against the quantiles of a standard normal and a Student’s

t-distribution on three degrees freedom. The z draws are computed from x = [x1, . . . , xn]

and (β, γ) obtained by drawing (α, σ, β, γ) from the prior described in Table A1 then drawing

x from p(xt | xt−1, α, σ, β, γ) described above. Complete details are in the table legend. The

desiderata is how closely the plot follows a straight degree line. The components Z1, Z2, and

Z3 of Z are effectively uncorrelated by construction so that the joint distribution of Z can

be reasonably considered to be the product of the marginals shown in Figure A1. The plot

suggests that the assumption that Z follows the normal density is reasonable at n = 100

and that assuming a density with fat tails is not reasonable. Plots for n = 50 and n = 1000

(not shown in the Online Appendix) are nearly identical to Figure A1.

Table 1 about here.

Table 2 about here.

The relative magnitude of the adjustment term is addressed in Table 1 here and in

Tables A3 and A4 of the Online Appendix. The adjustment entries in lower panels of

Tables A3 through A4 are about the same as in Table 1 but likelihood entries of the upper

panels are larger due to the increased sample sizes. In these tables are shown that instance

in N = 1000 draws from the prior for which the adjustment has the maximal effect over the

values of β and γ shown in the table for sample sizes n = 50, 100, 1000. In each legend are

the values of the ρ corresponding to that draw and the range of MCMC draws for the loose

prior, which indicates which values of β and γ shown in the table are relevant. Complete

details are in the legend of Table 1,
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For n = 50 the smallest value of | log10(likelihood)| − | log10(adjustment)| over the two

panels of Tables 1 is 0.6185 which would suggest that the adjustment term can affect the

first significant digit of log p∗(x, θ) and thereby affect the MCMC accept/reject condition.

Table 2 presents MCMC results.10 Panels 1 and 3 are relevant to n = 50. In panel 1, the

prior dominates; little can be said. Freed from the necessity of successful simulation, one

can use a loser prior as in panel 3. In this case the adjustment shifts estimates but not

significantly relative to standard deviations. Standard deviations are larger. See the table

legend for complete details.

For n = 100 the smallest value of | log10(likelihood)| − | log10(adjustment)| over the two

panels of Tables A3 is 0.7131. As now the likelihood is larger relative to the adjustment than

for n = 50 one expects the adjustment to be less important as born out in the second and

fourth panels of Table 2.

For n = 1000 the situation is interesting. The smallest value of | log10(likelihood)| −
| log10(adjustment)| over the two panels of Tables A4 is 3.0316, which suggests that the

adjustment cannot affect the MCMC accept/reject condition. There is one value where the

adjustment is outside IEEE double float limits and thus would entail an automatic rejection

of a proposed MCMC draw at that θ value. But the likelihood is so small at that θ that it

would almost certainly be rejected if proposed and, indeed, the entire MCMC chain stays

well away from that value. As seen from the third and fifth panels of Table 2, the adjustment

has a modest affect for the case n = 1000.

This same dependence on sample size of the effect of the adjustment can be seen by

comparing lines 3 and 5 of Gallant (2016b).

5 Discounted Corporate Profits

In this section we consider correction for non-normality. To do so we define a parameter

vector ρ that has θ = (β, γ) of CRRA utility as a subvector, determine a prior for ρ, and

describe how a draw x is computed from a draw from that prior. From the pair (x, θ) thus

drawn, draws from z = Z(x, θ) can be computed.

The case study in this section is similar to the exchange economy of Section 4 but for

10In Table 2 and throughout the mode is computed as that parameter in an MCMC chain with the largest
posterior, which is only an approximation to the true mode. It’s advantage over other measures of central
tendency, such as the mean, is that the parameter value has actually occurred in the chain and therefore
satisfies support conditions and therefore can be used in subsequent calculations.

17



which distribution of Z violates a normality assumption. The case study relies on a model

free extraction of the SDF from returns on the Fama and French (1993) portfolios and the

30-day T-bill for the years 1930 through 2015 subject to a yield curve prior using the methods

proposed by Gallant and Hong (2007). The yield curve prior is

p(θ) =
2015
∏

t=1930

φ[(Y1,t − 0.00896)/0.01]φ[(Y30,t − 2.0)/0.01)] (20)

where φ is the standard normal density function. Complete details regarding this model free

SDF extraction and data sources are in Gallant and Tauchen (2018). The extracted SDF is

considered to be observed data hereafter.

Consider the trivariate series

yt =









log(SDF t−1,t)

log(GDP t)− log(CP t)

log(CP t)− log(CPt−1)









=









sdf t−1,t

gdpt − cpt

∆cpt−1,t









(21)

where CP t denotes annual corporate profits in year t, GDP t denotes gross domestic product,

and SDF t−1,t denotes the SDF.

Let sdf 0,t =
∑t

s=1 sdf t−1,t, SDF 0,t =
∏t

s=1 SDF t−1,t = exp(sdf 0,t). The time zero present

value of the cash flow CP t is

PV 0,t(CP ) = E(CP t SDF 0,t | F0) = E
[

exp

(

t
∑

s=1

∆cps−1,s +
t
∑

s=1

sdf s−1,s

)

∣

∣

∣

∣

F0

]

(22)

where Ft denotes the time t information set. The time zero discounted value of the sum

of corporate profits through time t is the sum DCP 0,t =
∑t

s=1 PV 0,s(CP ). For a risk free

payoff of one dollar at time t, the time zero present value is

PV 0,t(1) = E(SDF 0,t | F0). (23)

The corresponding yield is

Y LDt = − log[PV 0,t(1))]/t. (24)

Assume that (21) follows the one-lag vector autoregression (VAR)

yt = b0 + Byt−1 + et, (25)

with initial condition y0 where the et are independent, trivariate normal with mean zero and

variance S = RR′, where R is the Cholesky factor of S. Analytic expressions for (22) under
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(25) are given in Gallant and Tauchen (2018) as well as data sources for CP and GDP .

Note that (22) will depend on y0. When we need to call attention to this fact we write

DCP 0,t | y0, Y LDt | y0.
Using observed data for (21) as the yt and given values for (b0, B,R, β, γ), where β

and γ are the subjective discount factor and the risk aversion parameter of CRRA utility,

respectively, geometric returns to corporate profits can be computed as

lsrt = log[(DCP 0,30 | y0 = yt) + CP t]− log(DCP 0,30 | y0 = yt−1) (26)

and log consumption growth can be computed as

lcgt = [log(β)− sdf t−1,t]/γ. (27)

These values for lsrt and lcgt, arranged as in (10), are data x for computing Z(x, θ) given

by (14) with θ = (β, γ).

We next derive a prior for (b0, B,R, β, γ). From CP and GDP data for the years 1960

through 2015, the VAR (25) was estimated subject to a prior comprised of the product of

φ[E(lcg) − 0.04], φ[Var(lcg) − 0.01], and equation (20),11 where E(·) and Var(·) are with

respect to the stationary distribution of (25), and support conditions 0.8 ≤ β ≤ 0.99 and

0 ≤ γ ≤ 100. The mode12 and variance matrix of the posterior of the parameter vector

ρ = (b0, vec(B), vech(R), β, γ) (28)

are used to define a prior for for ρ; i.e, the mode becomes the mean of the prior and the

variance matrix becomes the variance matrix of the prior. The mean and standard deviations

of the prior are displayed in Table A6 of the Online Appendix (Gallant, 2020b); its correlation

matrix is shown in Table A7 of the Online Appendix; it is sparse.

Figure 1 is a quantile-quantile plot of z = Z(x, θ) drawn from Ψ(z)13 for lsr and lcg

computed as described in this section and prior described in Tables A6 and A7 against

the quantiles of a standard normal and a Student’s t-distribution on three degrees freedom.

Complete details are in the table legend. The desiderata is how closely the solid plot follows

a straight degree line. Fat, t-like tails are indicated by the dotted line being straight. The

11With 1930 replaced by 1960 in (20); the yields entering (20) are computed using (24).
12Recall that the mode is computed as that parameter in an MCMC chain with the largest posterior.
13One draws ρ from the prior defined by Tables A6 and Table A7, computes xt = (lsrt, lcgt) given that ρ

using (26), (27), and the observed data yt, then computes Z(x, θ) for the subvector θ = (β, ρ) of ρ.
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components Z1, Z2, and Z3 of Z are effectively uncorrelated by construction so that the joint

distribution of Z can be reasonably considered to be the product of the marginals shown

in Figure 1. Figure 1 suggests that presuming that Z2 and Z3 follow the normal density is

reasonable for n = 50. However, Z1 is decidedly not normal with fat t-like tails and right

skew.

Figure 1 about here.

Non-normality can be corrected by letting Z1 follow

ψ(z1) =

∣

∣

∣

∣

d

du
Φ−1[FZ1

(z1)]
d

dz1
FZ1

(z1)

∣

∣

∣

∣

φ
{

Φ−1[FZ1
(z1)]

}

, (29)

where Φ is the distribution function of the standard normal and Fz1 is a natural cubic

spline interpolation of the empirical distribution of z1, As seen from Figure A3 of the Online

Appendix, plots of the quantiles of z̃ = (Φ−1[Fz1(z1)], z2, z3) against normal quantiles are

essentially straight lines.

Table 3 about here.

Table 3 here and Tables A9 and A10 of the Online Appendix are evaluations of the

likelihood p∗(x |, θ) = ψ[Z(x, θ)] with Z given by (14) and ψ the standard normal density

for the panel labeled “Log Likelihood” and ψ given by (29) for the panel labeled “Log

Transformed Likelihood” evaluated over a grid with 0.80 ≤ β ≤ 0.99, 0.05 ≤ γ ≤ 100;

complete details are in the legend of Table 3. Table 3 and Tables A9 and A10 suggest,

firstly, that identification is poor. Secondly, they suggest that both normal and transformed

ψ will determine approximately the same posterior location parameters for θ = (β, γ) but

that transformed ψ will have larger posterior standard deviations.

Table 4 about here.

The predictions from the analysis of Table 3 and Tables A9 and A10 are imperfectly

borne out in Table 4. A difficulty we face with this case study is that the fat tails of the

distribution of Z1 affect the MCMC draws: draws for γ mostly cluster about the mode but

there are a number of draws well to the right, some near 100. This can be partly mitigated

by focusing on the mode and interquartile range (IQR) of the draws rather than the mean

and standard deviation.

20



6 Complementary Methods

An alternative implementation of Bayesian method of moments uses an an explicit likelihood

f(x | ρ) that has a non-parametric interpretation such as a sieve. This approach was termed

Group (1) in the Introduction. The elements of ρ do not contain elements of the parameter

θ of the unconditional moment conditions m̄(x, θ) defined by (5). Taking the expectation of

the moment conditions with respect to the likelihood generates parametric restrictions

0 = ḡ(ρ, θ) =

ˆ

m̄(x, θ) f(x|ρ) dx (30)

. The difficulty with the Group (1) approach is that the parameter space

{(ρ, θ) ∈ R×Θ | 0 = ḡ(ρ, θ)} (31)

has Lebesgue measure zero. This makes estimation of the posterior distribution of (ρ, θ) sub-

ject to a joint prior p(ρ, θ) and the constraint (30) by Markov Chain Monte Carlo (MCMC)

problematic. Here we shall presume that the joint prior has the form p(ρ, θ) = p(ρ)po(θ). Rel-

evant statistical methods — Bornn, Shephard, and Solgi (2018), Shin (2015), Gallant, Hong,

Leung, and Li (2019), Schennach (2005), and Gallant (2020a) — were discussed earlier.

The method proposed by Gallant, Hong, Leung, and Li (2019) is best suited to our

purpose here because we are not going to estimate θ but rather to choose a θ and force

f(x | ρ) to accommodate. The method is simple. One uses a general purpose sieve for

f(x | ρ) subject to a prior of the form

pλ(ρ, θ) ∝ po(θ)× p(ρ)× exp
[

−λ n
2
ḡ′(ρ, θ)ḡ(ρ, θ)

]

. (32)

The larger is λ the more f(x | ρ) is forced to approximately satisfy ḡ′(ρ, θ) = 0. To have a

name, call it the λ-prior method.

To implement the λ-prior method we use the seminonparametric density (SNP) fSNP (x | ρ)
proposed by Gallant and Tauchen (1989). Its main advantage in the present context is that

well tested code for estimation and simulation is available. The parameter space for likeli-

hood fSNP (x | ρ) and prior pλ(ρ, θ) does not have measure zero so MCMC can proceed in

the usual fashion. For large λ, ρ draws become concentrated near the parameter space (31)

thereby providing approximate draws from the posterior with likelihood fSNP (x | ρ) and prior

p(ρ)po(θ) subject to constraint (30). For λ sufficiently large, MCMC must fail because the
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effective parameter space collapses to (31). The idea is, by trial and error, to find the largest

λ such that MCMC draws mix and use those draws as the approximation to the posterior.

The plan is to use the λ-prior method to infer a likelihood f(x | ρ) and a prior p(ρ) from

knowledge of m̄(x, θ), po(θ), and the observed data that can be used to construct diagnostics

for the normality of Z(x, θ) similar to Figure 1. One proceeds as follows.

A specification fSNP (x | ρ) is chosen by fitting to the data using the BIC model selection

criterion (Schwarz, 1978). One can experiment with alternative specifications to see if they

impact results.

Figure 2 about here.

Next, discretize the prior po(θ) using a quadrature rule (Golub and Welsch, 1969). A

quadrature rule approximates po(θ) by a discrete density that assign probability poi to points

θoi for i = 1, ..., K. If the quadrature rule puts some points outside the support of θ, these

points are discarded and the poi are renomalized to sum to one.

For each support point θoi , apply the λ-prior method to fSNP (x | ρ), successively, with

piλ(ρ, θ) ∝ po(θ)× exp
[

−λ n
2
ḡ′(ρ, θoi )ḡ(ρ, θ

o
i )
]

(33)

for i = 1, ..., K. Let ρoi be the mode of the posterior density piλ(ρ | x) ∝ fSNP (x | ρ) piλ(ρ, θ).
Approximate draws z from the distribution Ψ(z) of Z(x, θ) defined by (6) are obtained

by drawing i with probability poi , i = 1, ..., K, drawing x from fSNP (x | ρoi ), and putting

z = Z(x, θoi ). One repeats until one has a sample of z as large as desired.

The method just proposed cannot recover the likelihood po(x | ρ) that actually generates

the data because the data x is only observed at a single value of the parameter pair (ρ, θ).

Thus, under smoothness conditions for quasi-maximum likelihood applied to sieves, the best

one can hope for is a local approximation to po(x | ρ), presuming that one of the θoi is actually

that which generated the data. Therefore, all the proposed diagnostic can do is produce

a class of models local to the correct model. Passing or failing the diagnostic implies that

there is a class of models compatible with the observed data for which Z is or is not normally

distributed. Stated differently, one constructs a model that can generate the observed data.

For that model Z is or is not normally distributed.

Figure 2 here, for the discounted cash flow example, and A4 of the Online Appendix

(Gallant, 2020b), for the exchange economy example, show the quantiles of Ψ(z) plotted
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against the quantiles of the standard normal. The quantiles of Ψ(z) are obtained from z

draws obtained as just described. Figures 2 and A4 can be compared to Figures 1 and A1,

respectively. That these figures are constructed for different sample sizes n does not mate-

rially affect their appearance for n ≤ 500. The comparison suggests that the approximation

to Ψ(z) obtained via λ-prior is a reasonable indicator to whether or not Φ(z) can be used as

an approximation in an application.

7 Conclusion

This paper has addressed two issues that arise in the practical application of the GMM

representation of the likelihood in Bayesian inference: (1) a missing Jacobian term and (2)

a normality assumption.

Practicable methods for addressing these two problems in an application are proposed

and illustrated by application to the seminal application of the GMM methodology: an

endowment economy whose representative agent has constant relative risk aversion utility.

While the main contribution of the paper is the proposed methodology, the illustration

does provide some interesting anecdotal evidence that is consistent with the anecdotal evi-

dence in Gallant (2016b): violation of (1) or (2) has less serious consequences in applications

than one might expect for moderately large sample sizes.
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Table 1. Exchange Economy Likelihood and Adjustment,
n = 50

Log Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -95.45 -4295.71 -70.45 -14.64 -6.03 -4.13 -3.86 -4.04 -4.29 -4.49 -4.62

10.45 -69.96 -3823.10 -51.70 -11.02 -5.10 -3.96 -3.95 -4.19 -4.45 -4.63 -4.73

20.40 -49.85 -3262.43 -36.57 -8.26 -4.47 -3.93 -4.09 -4.37 -4.61 -4.77 -4.85

30.35 -34.66 -2619.06 -24.70 -6.27 -4.12 -4.00 -4.27 -4.56 -4.78 -4.91 -4.96

40.30 -23.73 -1919.42 -15.77 -4.96 -4.00 -4.16 -4.49 -4.77 -4.96 -5.06 -5.07

50.25 -16.17 -1219.97 -9.53 -4.24 -4.08 -4.40 -4.74 -4.99 -5.14 -5.20 -5.19

60.20 -10.99 -607.12 -5.71 -4.03 -4.31 -4.70 -5.01 -5.21 -5.32 -5.34 -5.30

70.15 -7.45 -179.24 -4.06 -4.25 -4.69 -5.04 -5.30 -5.45 -5.51 -5.49 -5.41

80.10 -5.38 -13.38 -4.26 -4.81 -5.17 -5.43 -5.60 -5.69 -5.69 -5.63 -5.52

90.05 -4.97 -62.53 -5.87 -5.65 -5.74 -5.85 -5.92 -5.93 -5.88 -5.77 -5.63

100.00 -6.41 -361.68 -8.48 -6.69 -6.37 -6.29 -6.24 -6.17 -6.06 -5.91 -5.73

Log Adjustment

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 1.78 1.78 1.78 1.86 2.04 2.24 2.44 2.60 2.74 2.84 2.92

10.45 1.78 1.78 1.78 1.90 2.10 2.31 2.50 2.66 2.78 2.88 2.95

20.40 1.78 1.78 1.79 1.95 2.18 2.39 2.56 2.71 2.82 2.91 2.97

30.35 1.79 1.78 1.81 2.02 2.26 2.46 2.63 2.76 2.87 2.94 3.00

40.30 1.82 1.78 1.85 2.11 2.35 2.54 2.69 2.81 2.91 2.98 3.02

50.25 1.87 1.78 1.92 2.22 2.45 2.62 2.76 2.87 2.95 3.01 3.05

60.20 1.96 1.78 2.05 2.36 2.55 2.70 2.82 2.92 2.99 3.04 3.07

70.15 2.13 1.78 2.25 2.51 2.67 2.79 2.89 2.97 3.03 3.07 3.09

80.10 2.40 1.92 2.53 2.67 2.78 2.87 2.95 3.01 3.06 3.10 3.12

90.05 2.78 6.78 2.90 2.85 2.90 2.96 3.01 3.06 3.10 3.12 3.14

100.00 3.24 13.16 3.33 3.05 3.02 3.04 3.08 3.11 3.13 3.15 3.16

For sample size n = 50, ρ from the prior shown in Table A1 of the Online Appendix (Gallant, 2020b) was
sampled with N = 1000 repetitions. For each repetition, x with columns given by (19) was simulated
from the exchange economy of Section 4. For θ = (β, γ) as shown, the likelihood is p∗(x |, θ) = φ[Z(x, θ)]
with Z given by (14) and φ the standard normal density. The adjustment is given by (17). Shown are
values for that ρ among the N = 1000 repetitions for which the difference between the maximum and
minimum adjustment was largest. That value is ρ = (0.9415, 0.01103, 0.9431, 17.89). Under the loose
prior, the range of the MCMC draws reported in Table A5 were 0.8006 ≤ β ≤ 0.9899, 0.07502 ≤ γ ≤
84.46 with adjustment and 0.8007 ≤ β ≤ 0.9898, 0.01369 ≤ γ ≤ 82.19 without.
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Table 2. Exchange Economy Estimates

No Adjustment Adjustment

Parameter Mean Mode Sdev Mean Mode Sdev

n = 50, tight prior

β 0.9530 0.9550 0.00513 0.9540 0.9559 0.00510

γ 13.650 12.365 1.4849 13.603 12.233 1.4800

n = 100, tight prior

β 0.9595 0.9603 0.00422 0.9604 0.9611 0.00428

γ 13.603 12.233 1.4800 13.994 12.994 1.3948

n = 1000, tight prior

β 0.9312 0.9315 0.00242 0.9442 0.9445 0.00169

γ 14.995 14.673 0.8594 14.900 14.539 0.7894

n = 50, loose prior

β 0.9177 0.9561 0.03884 0.9228 0.9569 0.03904

γ 31.145 12.025 12.893 31.725 11.939 14.016

n = 100, loose prior

β 0.9416 0.9614 0.03017 0.9449 0.9623 0.03022

γ 33.272 13.301 13.402 34.613 13.189 14.213

n = 1000, loose prior

β 0.9280 0.9296 0.00493 0.9433 0.9441 0.00282

γ 16.539 15.414 2.0841 15.870 14.912 1.8355

The x with columns given by (19) are a simulation from the exchange economy of Section 4 with with
ρ set to the values shown in Tables 1 and Tables A3 and A4 of the Online Appendix (Gallant, 2020b).
Without adjustment the likelihood is p∗(x |, θ) = φ[Z(x, θ)] with Z given by (14) and φ denoting
the standard normal density. With adjustment the likelihood is p∗(u |, θ) = adj(u, θ)φ[Z(u, θ)] with
u defined by (15), Z defined by (16), and adj defined by (17). θ = (β, γ), a subvector of ρ. The
tight prior for θ is the last two rows shown in Table A1. The loose prior is the same with standard
deviations multiplied by ten. Estimates are from an MCMC chain (Gamerman and Lopes, 2006) of
length N = 200000 collected past the point where transients have died out. The proposal is move-one-
at-a-time random walk. Mean and standard deviation are computed with a stride of 100; mode is that
over the entire chain.
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Table 3. Discounted Corporate Profits Likelihood, n = 50

Log Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -237.32 -14.67 -5.56 -5.96 -6.29 -6.35 -6.30 -3.17 -3.17 -3.17 -3.17

10.45 -202.61 -14.00 -5.54 -5.96 -6.29 -6.34 -6.28 -3.17 -3.17 -3.17 -3.17

20.40 -171.87 -13.39 -5.52 -5.96 -6.28 -6.32 -6.27 -3.17 -3.17 -3.17 -3.17

30.35 -144.75 -12.82 -5.51 -5.96 -6.27 -6.31 -6.25 -3.17 -3.17 -3.17 -3.17

40.30 -120.93 -12.29 -5.49 -5.96 -6.27 -6.30 -6.24 -3.17 -3.17 -3.17 -3.17

50.25 -100.10 -11.80 -5.48 -5.96 -6.26 -6.29 -6.23 -3.17 -3.17 -3.17 -3.17

60.20 -82.00 -11.34 -5.46 -5.96 -6.25 -6.28 -6.21 -3.17 -3.17 -3.17 -3.17

70.15 -66.39 -10.92 -5.45 -5.96 -6.24 -6.27 -6.20 -3.17 -3.17 -3.17 -3.17

80.10 -53.02 -10.52 -5.44 -5.96 -6.24 -6.26 -6.18 -3.17 -3.17 -3.17 -3.17

90.05 -41.69 -10.15 -5.43 -5.96 -6.23 -6.24 -6.17 -3.17 -3.17 -3.17 -3.17

100.00 -32.19 -9.81 -5.42 -5.96 -6.22 -6.23 -6.15 -3.17 -3.17 -3.17 -3.17

Log Transformed Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -14.67 -7.39 -5.77 -5.96 -6.32 -6.37 -6.31 -3.21 -3.21 -3.21 -3.21

10.45 -14.18 -7.26 -5.74 -5.97 -6.31 -6.36 -6.30 -3.21 -3.21 -3.21 -3.21

20.40 -13.14 -7.15 -5.70 -5.97 -6.31 -6.35 -6.29 -3.21 -3.21 -3.21 -3.21

30.35 -13.24 -7.08 -5.66 -5.97 -6.30 -6.34 -6.27 -3.21 -3.21 -3.21 -3.21

40.30 -12.14 -7.03 -5.62 -5.97 -6.29 -6.32 -6.26 -3.21 -3.21 -3.21 -3.21

50.25 -11.09 -7.01 -5.59 -5.97 -6.28 -6.31 -6.24 -3.21 -3.21 -3.21 -3.21

60.20 -9.52 -6.99 -5.56 -5.97 -6.28 -6.30 -6.23 -3.21 -3.21 -3.21 -3.21

70.15 -9.94 -6.96 -5.53 -5.97 -6.27 -6.29 -6.22 -3.21 -3.21 -3.21 -3.21

80.10 -7.76 -6.92 -5.50 -5.97 -6.26 -6.28 -6.20 -3.21 -3.21 -3.21 -3.21

90.05 -7.89 -6.86 -5.48 -5.97 -6.25 -6.26 -6.19 -3.21 -3.21 -3.21 -3.21

100.00 -8.30 -6.79 -5.46 -5.97 -6.25 -6.25 -6.17 -3.21 -3.21 -3.21 -3.21

For sample size n = 50, ρ from the prior shown in Table A6 was sampled with N = 1000 repetitions.
For each repetition, x with columns given by (10) was computed from simulated cash flows as described
in Section 5. For θ = (β, γ) as shown, the likelihood is p∗(x |, θ) = ψ[Z(x, θ)] with Z given by (14)
and ψ the standard normal density for the panel labeled ”Log Likelihood” and (29) for the panel
labeled ”Log Transformed Likelihood”; Shown are values for that ρ among the N = 1000 repetitions
for which the absolute value of the difference between the likelihoods was largest. For this draw θ =
(β, γ) = (0.8991, 6.359). The range of the MCMC draws reported in Table 4 were 0.8008 ≤ β ≤ 0.9900,
0.05273 ≤ γ ≤ 99.68 with adjustment and 0.8049 ≤ β ≤ 0.9900, 0.40184 ≤ γ ≤ 94.57 without.
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Table 4. Discounted Cash Flow Estimates

No Adjustment Adjustment

Parameter Mean Mode IQR Mean Mode IQR

n = 50

β 0.9328 0.9556 0.05590 0.9328 0.9559 0.05582

γ 39.595 29.902 17.422 42.082 31.859 18.922

n = 100

β 0.9311 0.9541 0.05653 0.9311 0.9538 0.05666

γ 30.151 25.574 8.6111 31.737 26.849 9.3107

n = 1000

β 0.9310 0.9556 0.05631 0.9305 0.9528 0.05669

γ 40.288 28.940 4.3800 37.489 25.680 5.7771

n = 50, transformed Z

β 0.9327 0.9558 0.05562 0.9327 0.9574 0.05606

γ 35.500 29.562 18.321 39.249 38.540 18.720

n = 100, transformed Z

β 0.9315 0.9539 0.05652 0.9308 0.9533 0.05677

γ 26.797 25.657 8.4857 28.833 29.564 8.3368

n = 1000, transformed Z

β 0.9327 0.9604 0.05570 0.9322 0.9567 0.05606

γ 32.624 27.330 3.0234 35.546 28.259 5.0233

The data x are a simulation of log corporate profit returns and log consumption growth as described
in the legend of Table A6 with ρ set to the column labeled Mean in Table A6 of the Online Appendix
(Gallant, 2020b); specifically, θ = (β, γ) = (0.9532, 24.5030) for the subvector θ of ρ. Without adjust-
ment the likelihood is p∗(x |, θ) = φ[Z(x, θ)] with Z given by (14) and φ denoting the standard normal
density. With adjustment the likelihood is p∗(u |, θ) = adj(u, θ)φ[Z(u, θ)] with u defined by (15), Z
defined by (16), and adj defined by (17). Transformed Z are computed as described in the legend to
Figure A3. Estimates are from an MCMC chain (Gamerman and Lopes, 2006) of length N = 800000
collected past the point where transients have died out. The proposal is move-one-at-a-time random
walk. Mean and interquartile range (IQR), and mode are computed with a stride of one.
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Figure 1. Discounted Cash Flow Raw Q-Q Plots. For the discounted cash flows setup of

Section 5, N = 2000 values for ρ = (b0, B,R, β, γ) were drawn from the prior shown in Table A6 of the

Online Appendix (Gallant, 2020b). For each ρ, data x = {xt}nt=1 were computed for n = 50 as described

in the legend to Table A6 of the Online Appendix (2020b). For each x and subvector θ = (β, γ) of

ρ the random variable z = Z(x, θ) was computed as described in the legend to Table A6. From the

N = 2000 values of z thus computed, quantiles at probabilities 0.001 through 0.999 at increments of

0.001 were computed for each of the elements z1, z2, and z3 of z. Plotted are the z quantiles (vertical

axis) against the normal quantiles (solid line) and the t-quantiles (dotted line).
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Figure 2. Complementary Q-Q Plots for Discounted Cash Flows. The prior po(θ) given in

the legend of Table A6 of the Online Appendix (Gallant, 2020b) for the discounted cash flows setup

of Section 5 was discretized by a quadrature rule to obtain a discrete prior (θoi , p
o
i ), i = 1, . . . , 16.

Using the λ-prior method described in Section 6 with piλ(ρ, θ) defined by (33), the discrete prior

(ρoi , p
o
i ), i = 1, . . . , 16, was determined for the likelihood fSNP (x, ρ). In the notation of Gallant and

Tauchen (2017), the BIC determined SNP specification has parameters Lu = 1, and Kz = 4, with

all other parameters zero. Sample size is n = 500; λ = 101.25 ≈ 1.25. N = 1000 values for p were

drawn from the discrete prior (ρoi , p
o
i ). For each ρ drawn, data x of length n = 500 were drawn from

fSNP (x, ρ). For each x, the random variable z = Z(x, θ) defined by (14) was computed. From the

N = 1000 values of z thus computed, quantiles at probabilities 0.001 through 0.999 at increments of

0.005 were computed for each of the elements z1, z2, and z3 of z. Similarly for the normal. Plotted are

the z quantiles against the normal quantiles.
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Asymptotic Normality

The probability space on which Z(x, θ) is defined has density po(x | θ)po(θ), which is a mix-

ture. To draw, one draws θ from po(θ) and then x from the conditional density po(x | θ). Fix
such a θ draw. For data x generated according to po(x | θ) from that draw, define

Fn(z|θ) =
ˆ

I[Z(x, θ) ≤ z] po(x|θ)dx.

Asymptotic normality for that θ is defined as

lim
n→∞

Fn(z | θ) = Φ(z) (34)

at every continuity point of the right hand side, which is everywhere for the normal Φ(z).

Conditions that imply asymptotic normality for cross-sectional data are given by Theorem 9

of Gallant(1987, p. 211) and for time series data by Theorem 10 Gallant(1987, p. 581).

To emphasize the dependence on sample size, write Ψn(z) for the distribution of Z, and

note that

Ψn(z) =

ˆ

Fn(z|θ) po(θ) dθ. (35)

The dominated convergence theorem (Royden and Fitzpatrick, 2010, p. 88), (34) implies

lim
n→∞

Ψn(z) =

ˆ

lim
n→∞

Fn(z|θ) po(θ) dθ = Φ(z).

Thus, asymptotic normality for any draw from po(θ) is enough to imply asymptotic normality

of Z(x, θ) on the probability space (X ×Θ, Co, P o); asymptotic normality uniform over Θ is

not required.14

Denote the density that corresponds to Ψn by ψn. To obtain limn→∞ ψn(z) = φ(z), ψn(z)

must be bounded and asymptotically equicontinuous (Sweeting, 1986). Uniformity is not

required.

14I am indebted to Shengbo Zhu for pointing this out to me.
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Table A1. Exchange Economy Prior

Normal Factor Support Factor Range in Simulation

Parameter Mean Sdev Left Right Left Right

α 0.95 0.01 -0.99 0.99 0.914 0.988

σ 0.2 0.01 0.01 100.0 0.010 0.058

β 0.95 0.01 0.8 0.99 0.908 0.987

γ 12.5 2.0 0.0 100.0 4.719 20.10

For parameter ρ = (α, σ, β, γ) the prior has the form
∏4

i=1 n(ρi,Meani, Sdevi)I(Lefti < ρi < Righti),
for the values shown in the columns labeled Normal Factor and Support Factor, respectively. The
effective support of the prior as determined from a simulation of size 10,000 is shown in the columns
labeled Range in Simulation. At ρ = (0.95, 0.02, 0.95, 12.5), in a simulation of size 200,000, the log
endowment has mean 0.00000 and standard deviation 0.02024, the geometric stock return has mean
0.04490 and standard deviation 0.14332, the geometric risk free rate has mean 0.02019 and standard
deviation 0.04032.
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Table A2. Exchange Economy Likelihood and Adjustment,
n = 50

Log Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -95.45 -4295.71 -70.45 -14.64 -6.03 -4.13 -3.86 -4.04 -4.29 -4.49 -4.62

10.45 -69.96 -3823.10 -51.70 -11.02 -5.10 -3.96 -3.95 -4.19 -4.45 -4.63 -4.73

20.40 -49.85 -3262.43 -36.57 -8.26 -4.47 -3.93 -4.09 -4.37 -4.61 -4.77 -4.85

30.35 -34.66 -2619.06 -24.70 -6.27 -4.12 -4.00 -4.27 -4.56 -4.78 -4.91 -4.96

40.30 -23.73 -1919.42 -15.77 -4.96 -4.00 -4.16 -4.49 -4.77 -4.96 -5.06 -5.07

50.25 -16.17 -1219.97 -9.53 -4.24 -4.08 -4.40 -4.74 -4.99 -5.14 -5.20 -5.19

60.20 -10.99 -607.12 -5.71 -4.03 -4.31 -4.70 -5.01 -5.21 -5.32 -5.34 -5.30

70.15 -7.45 -179.24 -4.06 -4.25 -4.69 -5.04 -5.30 -5.45 -5.51 -5.49 -5.41

80.10 -5.38 -13.38 -4.26 -4.81 -5.17 -5.43 -5.60 -5.69 -5.69 -5.63 -5.52

90.05 -4.97 -62.53 -5.87 -5.65 -5.74 -5.85 -5.92 -5.93 -5.88 -5.77 -5.63

100.00 -6.41 -361.68 -8.48 -6.69 -6.37 -6.29 -6.24 -6.17 -6.06 -5.91 -5.73

Log Adjustment

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 1.78 1.78 1.78 1.86 2.04 2.24 2.44 2.60 2.74 2.84 2.92

10.45 1.78 1.78 1.78 1.90 2.10 2.31 2.50 2.66 2.78 2.88 2.95

20.40 1.78 1.78 1.79 1.95 2.18 2.39 2.56 2.71 2.82 2.91 2.97

30.35 1.79 1.78 1.81 2.02 2.26 2.46 2.63 2.76 2.87 2.94 3.00

40.30 1.82 1.78 1.85 2.11 2.35 2.54 2.69 2.81 2.91 2.98 3.02

50.25 1.87 1.78 1.92 2.22 2.45 2.62 2.76 2.87 2.95 3.01 3.05

60.20 1.96 1.78 2.05 2.36 2.55 2.70 2.82 2.92 2.99 3.04 3.07

70.15 2.13 1.78 2.25 2.51 2.67 2.79 2.89 2.97 3.03 3.07 3.09

80.10 2.40 1.92 2.53 2.67 2.78 2.87 2.95 3.01 3.06 3.10 3.12

90.05 2.78 6.78 2.90 2.85 2.90 2.96 3.01 3.06 3.10 3.12 3.14

100.00 3.24 13.16 3.33 3.05 3.02 3.04 3.08 3.11 3.13 3.15 3.16

For sample size n = 50, ρ from the prior shown in Table A1 was sampled with N = 1000 repetitions. For
each repetition, x with columns given by (19) was simulated from the exchange economy of Section 4.
For θ = (β, γ) as shown, the likelihood is p∗(x |, θ) = φ[Z(x, θ)] with Z given by (14) and φ the
standard normal density. The adjustment is given by (17). Shown are values for that ρ among the
N = 1000 repetitions for which the difference between the maximum and minimum adjustment was
largest. That value is ρ = (0.9415, 0.01103, 0.9431, 17.89). Under the loose prior, the range of the
MCMC draws reported in Table A5 were 0.8006 ≤ β ≤ 0.9899, 0.07502 ≤ γ ≤ 84.46 with adjustment
and 0.8007 ≤ β ≤ 0.9898, 0.01369 ≤ γ ≤ 82.19 without.
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Table A3. Exchange Economy Likelihood and Adjustment,
n = 100

Log Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -211.99 -16640.04 -170.40 -39.47 -15.89 -8.78 -6.06 -4.92 -4.50 -4.45 -4.61

10.45 -155.11 -13398.32 -126.74 -29.62 -12.51 -7.39 -5.46 -4.70 -4.47 -4.53 -4.75

20.40 -109.32 -10306.79 -91.12 -21.81 -9.87 -6.33 -5.03 -4.58 -4.51 -4.66 -4.92

30.35 -73.48 -7474.01 -62.69 -15.78 -7.88 -5.56 -4.76 -4.55 -4.61 -4.82 -5.12

40.30 -46.57 -5002.77 -40.72 -11.29 -6.43 -5.05 -4.63 -4.61 -4.76 -5.02 -5.33

50.25 -27.68 -2978.95 -24.59 -8.12 -5.46 -4.76 -4.64 -4.74 -4.97 -5.25 -5.56

60.20 -15.73 -1462.56 -13.67 -6.07 -4.91 -4.69 -4.76 -4.95 -5.21 -5.50 -5.80

70.15 -9.34 -484.22 -7.26 -4.97 -4.72 -4.80 -4.98 -5.22 -5.49 -5.78 -6.06

80.10 -7.08 -58.66 -4.61 -4.70 -4.88 -5.08 -5.30 -5.55 -5.81 -6.07 -6.33

90.05 -8.10 -51.30 -5.04 -5.16 -5.33 -5.52 -5.72 -5.93 -6.16 -6.39 -6.60

100.00 -12.42 -508.94 -8.15 -6.29 -6.07 -6.10 -6.21 -6.36 -6.54 -6.72 -6.89

Log Adjustment

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 1.78 1.78 1.78 1.79 1.86 2.01 2.21 2.42 2.63 2.81 2.95

10.45 1.78 1.78 1.78 1.80 1.90 2.08 2.29 2.50 2.70 2.87 3.00

20.40 1.78 1.78 1.78 1.82 1.96 2.15 2.37 2.59 2.78 2.93 3.06

30.35 1.78 1.78 1.78 1.86 2.03 2.24 2.47 2.67 2.85 2.99 3.11

40.30 1.79 1.78 1.79 1.92 2.12 2.35 2.56 2.76 2.92 3.06 3.16

50.25 1.81 1.78 1.81 2.00 2.23 2.46 2.66 2.85 3.00 3.12 3.20

60.20 1.87 1.78 1.87 2.13 2.37 2.58 2.77 2.93 3.07 3.17 3.25

70.15 2.05 1.78 2.01 2.30 2.52 2.71 2.88 3.02 3.14 3.23 3.30

80.10 2.43 1.78 2.30 2.51 2.68 2.84 2.98 3.11 3.21 3.29 3.34

90.05 3.04 6.38 2.75 2.77 2.87 2.98 3.09 3.20 3.28 3.34 3.38

100.00 3.84 15.45 3.37 3.06 3.06 3.12 3.20 3.28 3.35 3.39 3.42

As for Table A2 but with sample size n = 100, ρ = (0.9410, 0.01000, 0.9542, 15.00), and range 0.0.8105 ≤
β ≤ 0.9896, 0.004808 ≤ γ ≤ 85.11 with adjustment and 0.8002 ≤ β ≤ 0.9899, 0.9028 ≤ γ ≤ 78.52
without.
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Table A4. Exchange Economy Likelihood and Adjustment,
n = 1000

Log Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -1726.42 -113176.30 -1334.75 -282.69 -92.93 -36.92 -18.53 -14.47 -16.73 -21.69 -27.40

10.45 -1216.58 -80780.43 -949.73 -196.16 -63.81 -26.35 -15.65 -15.17 -19.10 -24.74 -30.57

20.40 -816.54 -54890.15 -643.10 -129.38 -42.29 -19.39 -14.68 -16.94 -22.07 -28.11 -33.89

30.35 -514.72 -34764.91 -406.01 -79.84 -27.40 -15.59 -15.40 -19.64 -25.57 -31.75 -37.34

40.30 -299.62 -19758.34 -230.73 -45.29 -18.29 -14.58 -17.62 -23.18 -29.51 -35.63 -40.88

50.25 -158.29 -9316.57 -110.38 -23.74 -14.24 -16.02 -21.14 -27.43 -33.85 -39.70 -44.51

60.20 -76.30 -2996.26 -38.55 -13.50 -14.65 -19.63 -25.83 -32.32 -38.52 -43.93 -48.20

70.15 -40.56 -419.18 -9.06 -13.14 -19.00 -25.18 -31.54 -37.76 -43.47 -48.29 -51.93

80.10 -42.62 -151.26 -16.16 -21.46 -26.85 -32.44 -38.16 -43.69 -48.68 -52.77 -55.70

90.05 -79.04 -2276.10 -54.96 -37.47 -37.83 -41.23 -45.57 -50.03 -54.09 -57.33 -59.49

100.00 -149.07 -7531.50 -121.60 -60.35 -51.59 -51.38 -53.69 -56.74 -59.67 -61.96 -63.29

Log Adjustment

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 1.78 1.78 1.78 1.78 1.78 1.81 2.06 2.71 3.57 4.37 5.00

10.45 1.78 1.78 1.78 1.78 1.78 1.87 2.28 3.08 3.95 4.69 5.26

20.40 1.78 1.78 1.78 1.78 1.80 1.99 2.61 3.49 4.32 5.00 5.51

30.35 1.78 1.78 1.78 1.78 1.85 2.23 3.03 3.92 4.69 5.30 5.75

40.30 1.78 1.78 1.78 1.79 1.99 2.62 3.51 4.35 5.05 5.59 5.99

50.25 1.78 1.78 1.78 1.85 2.31 3.15 4.02 4.78 5.40 5.87 6.21

60.20 1.78 1.78 1.79 2.12 2.89 3.76 4.55 5.21 5.74 6.14 6.42

70.15 2.00 1.78 2.08 2.86 3.67 4.41 5.07 5.62 6.06 6.40 6.63

80.10 3.82 9.54 3.82 4.05 4.54 5.08 5.58 6.02 6.38 6.65 6.83

90.05 6.84 30.26 6.53 5.40 5.44 5.73 6.08 6.41 6.68 6.89 7.02

100.00 9.87 inf 9.25 6.77 6.32 6.37 6.56 6.78 6.98 7.12 7.20

As for Table A2 but with sample size n = 1000, ρ = (0.9377, 0.01009, 0.9424, 17.84), and range 0.8909 ≤
β ≤ 0.9496, 12.92 ≤ γ ≤ 43.86 with adjustment and 0.8539 ≤ β ≤ 0.9383, 12.86 ≤ γ ≤ 40.35 without.
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Table A5. Exchange Economy Estimates

No Adjustment Adjustment

Parameter Mean Mode Sdev Mean Mode Sdev

n = 50, tight prior

β 0.9530 0.9550 0.00513 0.9540 0.9559 0.00510

γ 13.650 12.365 1.4849 13.603 12.233 1.4800

n = 100, tight prior

β 0.9595 0.9603 0.00422 0.9604 0.9611 0.00428

γ 13.603 12.233 1.4800 13.994 12.994 1.3948

n = 1000, tight prior

β 0.9312 0.9315 0.00242 0.9442 0.9445 0.00169

γ 14.995 14.673 0.8594 14.900 14.539 0.7894

n = 50, loose prior

β 0.9177 0.9561 0.03884 0.9228 0.9569 0.03904

γ 31.145 12.025 12.893 31.725 11.939 14.016

n = 100, loose prior

β 0.9416 0.9614 0.03017 0.9449 0.9623 0.03022

γ 33.272 13.301 13.402 34.613 13.189 14.213

n = 1000, loose prior

β 0.9280 0.9296 0.00493 0.9433 0.9441 0.00282

γ 16.539 15.414 2.0841 15.870 14.912 1.8355

The x with columns given by (19) are a simulation from the exchange economy of Section 4 with with
ρ set to the values shown in Tables A2 through A4. Without adjustment the likelihood is p∗(x |, θ) =
φ[Z(x, θ)] with Z given by (14) and φ denoting the standard normal density. With adjustment the
likelihood is p∗(u |, θ) = adj(u, θ)φ[Z(u, θ)] with u defined by (15), Z defined by (16), and adj defined
by (17). θ = (β, γ), a subvector of ρ. The tight prior for θ is the last two rows shown in Table A1.
The loose prior is the same with standard deviations multiplied by ten. Estimates are from an MCMC
chain (Gamerman and Lopes, 2006) of length N = 200000 collected past the point where transients
have died out. The proposal is move-one-at-a-time random walk. Mean and standard deviation are
computed with a stride of 100; mode is that over the entire chain.
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Table A6. Discounted Cash Flow Prior

Normal Factor Support Factor Range in Simulation

Parameter Mean Sdev Left Right Left Right

b0(1) -1.6040 0.0143 −∞ ∞ -1.6506 -1.5578

b0(2) 0.8663 0.0234 −∞ ∞ 0.7835 0.9388

b0(3) -0.9020 0.0376 −∞ ∞ -1.0379 -0.7732

B(1, 1) -0.0003 0.0006 −∞ ∞ -0.0021 0.0016

B(2, 1) 0.0186 0.0093 −∞ ∞ -0.0128 0.0501

B(3, 1) -0.0226 0.0103 −∞ ∞ -0.0558 0.0158

B(1, 2) -0.0020 0.0005 −∞ ∞ -0.0036 -0.0002

B(2, 2) 0.6730 0.0095 −∞ ∞ 0.6450 0.7083

B(3, 2) 0.3457 0.0126 −∞ ∞ 0.2979 0.3921

B(1, 3) -0.0017 0.0061 −∞ ∞ -0.0210 0.0183

B(2, 3) -0.1782 0.0941 −∞ ∞ -0.4941 0.1746

B(3, 3) 0.3144 0.1018 −∞ ∞ -0.0225 0.6647

R(1, 1) 1.7636 0.0083 −∞ ∞ 1.7313 1.7941

R(1, 2) -0.1093 0.0402 −∞ ∞ -0.2404 0.0450

R(2, 2) 0.0314 0.0027 −∞ ∞ 0.0214 0.0422

R(1, 3) -0.2343 0.0336 −∞ ∞ -0.3386 -0.1280

R(2, 3) -0.1373 0.0121 −∞ ∞ -0.1867 -0.0929

R(3, 3) 0.1575 0.0128 −∞ ∞ 0.1141 0.2076

β 0.9532 0.0547 0.8 0.99 0.8003 0.9899

γ 24.5030 28.2425 0 100 0.0479 99.5641

The prior to determine the distribution of Z (e.g., Figure A2), is over ρ = (b0, B,R, β, γ). The prior
is multivariate normal with means and standard errors as shown here and correlations as shown in
Table A7 subject to support conditions shown here. The VAR yt = b0+Byt−1+Ru with u independent
normal determines the the distribution of y = log (marginal rate of substitution, GDP/corporate profits,
corporate profits). For each ρ̃ drawn from the prior, a realization {yt}nt=1 of the VAR with initial
condition y0 for 2015 is computed. From each realization, the return on corporate profits conditional on
yt is computed analytically from the drawn (b̃0, B̃, R̃) and the marginal rate of substitution is converted

to consumption growth using CRRA utility with drawn (β̃, γ̃). The resulting bivariate geometric returns
to corporate profits and log consumption growth series is used to compute the Z corresponding to ρ̃. In
a simulation of size 5,000 with ρ set to the prior mean shown here, log consumption growth has mean
0.0020 and standard deviation 0.1441, the geometric return on corporate profits has mean 0.06310 and
standard deviation 0.07255. To estimate θ = (β, γ) from bivariate returns and consumption growth
data using the method described in Section 2 the prior is bivariate normal with means and standard
deviations as shown here for (β, γ), zero correlation, and support conditions 0.8 ≤ β ≤ 0.99 and
0 ≤ γ ≤ 100.
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Table A7. Discounted Cash Flow Prior Correlations

b0(1)

b0(2)

−◦ b0(3)

B(1, 1)

+◦ −◦ B(2, 1)

−◦ +◦ −• B(3, 1)

−• B(1, 2)

−◦ −• B(2, 2)

−• −◦ B(3, 2)

+◦ B(1, 3)

−◦ +◦ −◦ B(2, 3)

+◦ −◦ +◦ −• B(3, 3)

−• R(1, 1)

+◦ −◦ +◦ +◦ −◦ +• R(1, 2)

R(2, 2)

+◦ R(1, 3)

−◦ +◦ −◦ +◦ −◦ R(2, 3)

+◦ −◦ +◦ −◦ +◦ −• R(3, 3)

β

γ

The prior over ρ = (b0, B,R, β, γ) that is used to determine the distribution of Z is multivariate normal
with means and standard errors as shown in Table A6 and correlation matrix as shown here. A blank
indicates a correlation of less than 0.25 in absolute value. A ◦ indicates a correlation with absolute
value between 0.25 and 0.5 with sign as shown. Similarly a • for between 0.5 and 0.75 and • for larger
than 0.75.

9



Table A8. Discounted Corporate Profits Likelihood, n = 50

Log Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -237.32 -14.67 -5.56 -5.96 -6.29 -6.35 -6.30 -3.17 -3.17 -3.17 -3.17

10.45 -202.61 -14.00 -5.54 -5.96 -6.29 -6.34 -6.28 -3.17 -3.17 -3.17 -3.17

20.40 -171.87 -13.39 -5.52 -5.96 -6.28 -6.32 -6.27 -3.17 -3.17 -3.17 -3.17

30.35 -144.75 -12.82 -5.51 -5.96 -6.27 -6.31 -6.25 -3.17 -3.17 -3.17 -3.17

40.30 -120.93 -12.29 -5.49 -5.96 -6.27 -6.30 -6.24 -3.17 -3.17 -3.17 -3.17

50.25 -100.10 -11.80 -5.48 -5.96 -6.26 -6.29 -6.23 -3.17 -3.17 -3.17 -3.17

60.20 -82.00 -11.34 -5.46 -5.96 -6.25 -6.28 -6.21 -3.17 -3.17 -3.17 -3.17

70.15 -66.39 -10.92 -5.45 -5.96 -6.24 -6.27 -6.20 -3.17 -3.17 -3.17 -3.17

80.10 -53.02 -10.52 -5.44 -5.96 -6.24 -6.26 -6.18 -3.17 -3.17 -3.17 -3.17

90.05 -41.69 -10.15 -5.43 -5.96 -6.23 -6.24 -6.17 -3.17 -3.17 -3.17 -3.17

100.00 -32.19 -9.81 -5.42 -5.96 -6.22 -6.23 -6.15 -3.17 -3.17 -3.17 -3.17

Log Transformed Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -14.67 -7.39 -5.77 -5.96 -6.32 -6.37 -6.31 -3.21 -3.21 -3.21 -3.21

10.45 -14.18 -7.26 -5.74 -5.97 -6.31 -6.36 -6.30 -3.21 -3.21 -3.21 -3.21

20.40 -13.14 -7.15 -5.70 -5.97 -6.31 -6.35 -6.29 -3.21 -3.21 -3.21 -3.21

30.35 -13.24 -7.08 -5.66 -5.97 -6.30 -6.34 -6.27 -3.21 -3.21 -3.21 -3.21

40.30 -12.14 -7.03 -5.62 -5.97 -6.29 -6.32 -6.26 -3.21 -3.21 -3.21 -3.21

50.25 -11.09 -7.01 -5.59 -5.97 -6.28 -6.31 -6.24 -3.21 -3.21 -3.21 -3.21

60.20 -9.52 -6.99 -5.56 -5.97 -6.28 -6.30 -6.23 -3.21 -3.21 -3.21 -3.21

70.15 -9.94 -6.96 -5.53 -5.97 -6.27 -6.29 -6.22 -3.21 -3.21 -3.21 -3.21

80.10 -7.76 -6.92 -5.50 -5.97 -6.26 -6.28 -6.20 -3.21 -3.21 -3.21 -3.21

90.05 -7.89 -6.86 -5.48 -5.97 -6.25 -6.26 -6.19 -3.21 -3.21 -3.21 -3.21

100.00 -8.30 -6.79 -5.46 -5.97 -6.25 -6.25 -6.17 -3.21 -3.21 -3.21 -3.21

For sample size n = 50, ρ from the prior shown in Table A6 was sampled with N = 1000 repetitions.
For each repetition, x with columns given by (10) was computed from simulated cash flows as described
in Section 5. For θ = (β, γ) as shown, the likelihood is p∗(x |, θ) = ψ[Z(x, θ)] with Z given by (14) and
ψ the standard normal density for the panel labeled ”Log Likelihood” and (29) for the panel labeled
”Log Transformed Likelihood”; Shown are values for that ρ among the N = 1000 repetitions for which
the absolute value of the difference between the likelihoods was largest. For this draw θ = (β, γ) =
(0.8991, 6.359). The range of the MCMC draws reported in Table A11 were 0.8008 ≤ β ≤ 0.9900,
0.05273 ≤ γ ≤ 99.68 with adjustment and 0.8049 ≤ β ≤ 0.9900, 0.40184 ≤ γ ≤ 94.57 without.
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Table A9. Discounted Corporate Profits Likelihood, n = 100

Log Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -335.85 -4.20 -4.03 -4.52 -4.54 -4.50 -4.45 -4.41 -3.17 -3.17 -3.17

10.45 -279.67 -4.07 -4.05 -4.52 -4.54 -4.50 -4.45 -4.41 -3.17 -3.17 -3.17

20.40 -230.82 -3.96 -4.06 -4.53 -4.54 -4.50 -4.45 -4.41 -3.17 -3.17 -3.17

30.35 -188.51 -3.86 -4.07 -4.53 -4.55 -4.50 -4.45 -4.41 -3.17 -3.17 -3.17

40.30 -152.08 -3.77 -4.08 -4.53 -4.55 -4.50 -4.45 -4.41 -3.17 -3.17 -3.17

50.25 -120.91 -3.69 -4.09 -4.53 -4.55 -4.50 -4.45 -4.41 -3.17 -3.17 -3.17

60.20 -94.47 -3.62 -4.11 -4.54 -4.55 -4.50 -4.45 -4.41 -3.17 -3.17 -3.17

70.15 -72.27 -3.55 -4.12 -4.54 -4.55 -4.50 -4.45 -4.41 -3.17 -3.17 -3.17

80.10 -53.88 -3.49 -4.13 -4.54 -4.55 -4.50 -4.45 -4.41 -3.17 -3.17 -3.17

90.05 -38.91 -3.44 -4.14 -4.54 -4.55 -4.50 -4.45 -4.41 -3.17 -3.17 -3.17

100.00 -27.02 -3.40 -4.15 -4.54 -4.55 -4.50 -4.45 -4.41 -3.17 -3.17 -3.17

Log Transformed Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -9.47 -4.49 -4.02 -4.79 -4.89 -4.84 -4.79 -4.75 -3.33 -3.33 -3.33

10.45 -8.82 -4.42 -4.03 -4.79 -4.89 -4.84 -4.79 -4.75 -3.33 -3.33 -3.33

20.40 -8.31 -4.35 -4.04 -4.79 -4.89 -4.84 -4.79 -4.75 -3.33 -3.33 -3.33

30.35 -7.64 -4.26 -4.04 -4.79 -4.89 -4.84 -4.79 -4.75 -3.33 -3.33 -3.33

40.30 -8.37 -4.17 -4.05 -4.79 -4.89 -4.84 -4.79 -4.75 -3.33 -3.33 -3.33

50.25 -9.19 -4.07 -4.06 -4.80 -4.89 -4.84 -4.79 -4.75 -3.33 -3.33 -3.33

60.20 -7.95 -3.96 -4.07 -4.80 -4.89 -4.84 -4.79 -4.75 -3.33 -3.33 -3.33

70.15 -6.63 -3.85 -4.07 -4.80 -4.89 -4.84 -4.79 -4.75 -3.33 -3.33 -3.33

80.10 -6.27 -3.75 -4.08 -4.80 -4.89 -4.84 -4.79 -4.75 -3.33 -3.33 -3.33

90.05 -7.73 -3.65 -4.09 -4.80 -4.89 -4.84 -4.79 -4.75 -3.33 -3.33 -3.33

100.00 -7.49 -3.55 -4.10 -4.80 -4.89 -4.84 -4.79 -4.75 -3.33 -3.33 -3.33

As for Table A8 but with sample size n = 100, θ = (β, γ) = (0.9133, 9.427). 0.8036 ≤ β ≤ 0.9900,
0.4313 ≤ γ ≤ 94.32 with adjustment and 0.8028 ≤ β ≤ 0.9900, 0.2902 ≤ γ ≤ 94.53 without.

11



Table A10. Discounted Corporate Profits Likelihood, n = 1000

Log Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -3370.20 -651.29 -90.64 -5.13 -5.45 -6.22 -5.87 -5.47 -5.17 -4.97 -4.83

10.45 -2654.69 -589.82 -82.32 -4.87 -5.54 -6.25 -5.88 -5.47 -5.17 -4.97 -4.83

20.40 -2053.04 -534.00 -74.76 -4.66 -5.63 -6.27 -5.88 -5.47 -5.17 -4.97 -4.83

30.35 -1553.27 -483.26 -67.87 -4.49 -5.71 -6.30 -5.89 -5.47 -5.17 -4.97 -4.83

40.30 -1144.87 -437.10 -61.61 -4.35 -5.80 -6.32 -5.89 -5.47 -5.17 -4.97 -4.83

50.25 -818.50 -395.08 -55.90 -4.25 -5.88 -6.34 -5.90 -5.47 -5.17 -4.97 -4.83

60.20 -565.54 -356.81 -50.70 -4.18 -5.96 -6.37 -5.90 -5.47 -5.18 -4.97 -4.83

70.15 -377.53 -321.93 -45.97 -4.13 -6.04 -6.39 -5.91 -5.47 -5.18 -4.97 -4.83

80.10 -245.61 -290.13 -41.65 -4.11 -6.12 -6.41 -5.91 -5.47 -5.18 -4.97 -4.83

90.05 -159.99 -261.14 -37.73 -4.10 -6.19 -6.43 -5.92 -5.48 -5.18 -4.97 -4.83

100.00 -110.14 -234.71 -34.15 -4.12 -6.27 -6.45 -5.92 -5.48 -5.18 -4.97 -4.83

Log Transformed Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -299.60 -29.99 -39.02 -5.28 -8.55 -8.46 -7.62 -7.87 -7.29 -5.87 -7.12

10.45 -206.38 -30.87 -32.52 -5.00 -10.00 -8.30 -7.60 -7.88 -7.29 -5.87 -7.12

20.40 -131.38 -30.91 -30.32 -4.97 -8.32 -8.17 -7.59 -7.89 -7.30 -5.87 -7.12

30.35 -74.79 -29.45 -28.53 -4.67 -7.81 -8.05 -7.58 -7.90 -7.30 -5.87 -7.12

40.30 -36.72 -28.59 -26.99 -4.34 -7.54 -7.95 -7.57 -7.90 -7.31 -5.87 -7.12

50.25 -15.79 -27.87 -25.65 -4.33 -7.37 -7.86 -7.56 -7.91 -7.31 -5.87 -7.12

60.20 -11.52 -27.18 -24.49 -4.30 -7.11 -7.78 -7.55 -7.92 -7.31 -5.87 -7.12

70.15 -16.05 -26.50 -23.54 -4.19 -7.20 -7.70 -7.54 -7.93 -7.32 -5.87 -7.12

80.10 -31.39 -25.82 -22.87 -4.02 -8.62 -7.64 -7.53 -7.93 -7.32 -5.87 -7.12

90.05 -52.84 -25.13 -21.83 -3.92 -8.38 -7.57 -7.53 -7.94 -7.32 -5.87 -7.12

100.00 -72.31 -24.43 -19.40 -4.19 -7.98 -7.52 -7.52 -7.94 -7.32 -5.87 -7.12

As for Table A8 but with sample size n = 1000, θ = (β, γ) = (0.8832, 25.24). 0.8012 ≤ β ≤ 0.9900,
4.635 ≤ γ ≤ 99.94 with adjustment and 0.8046 ≤ β ≤ 0.9900, 7.306 ≤ γ ≤ 99.27 without.
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Table A11. Discounted Cash Flow Estimates

No Adjustment Adjustment

Parameter Mean Mode IQR Mean Mode IQR

n = 50

β 0.9328 0.9556 0.05590 0.9328 0.9559 0.05582

γ 39.595 29.902 17.422 42.082 31.859 18.922

n = 100

β 0.9311 0.9541 0.05653 0.9311 0.9538 0.05666

γ 30.151 25.574 8.6111 31.737 26.849 9.3107

n = 1000

β 0.9310 0.9556 0.05631 0.9305 0.9528 0.05669

γ 40.288 28.940 4.3800 37.489 25.680 5.7771

n = 50, transformed Z

β 0.9327 0.9558 0.05562 0.9327 0.9574 0.05606

γ 35.500 29.562 18.321 39.249 38.540 18.720

n = 100, transformed Z

β 0.9315 0.9539 0.05652 0.9308 0.9533 0.05677

γ 26.797 25.657 8.4857 28.833 29.564 8.3368

n = 1000, transformed Z

β 0.9327 0.9604 0.05570 0.9322 0.9567 0.05606

γ 32.624 27.330 3.0234 35.546 28.259 5.0233

The data x are a simulation of log corporate profit returns and log consumption growth as described
in the legend of Table A6 with ρ set to the column labeled Mean in Table A6; specifically, θ = (β, γ) =
(0.9532, 24.5030) for the subvector θ of ρ. Without adjustment the likelihood is p∗(x |, θ) = φ[Z(x, θ)]
with Z given by (14) and φ denoting the standard normal density. With adjustment the likelihood
is p∗(u |, θ) = adj(u, θ)φ[Z(u, θ)] with u defined by (15), Z defined by (16), and adj defined by (17).
Transformed Z are computed as described in the legend to Figure A3. Estimates are from an MCMC
chain (Gamerman and Lopes, 2006) of length N = 800000 collected past the point where transients
have died out. The proposal is move-one-at-a-time random walk. Mean and interquartile range (IQR),
and mode are computed with a stride of one.
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Figure A1. Exchange Economy Q-Q Plots. For the exchange economy of Section 4, N = 10000

values for ρ = (α, σ, β, γ) were drawn from the prior shown in Table A1. For each ρ, data x with

columns given by (19) were computed for t = 1, . . . , n, n = 100. For each x and subvector θ = (β, γ)

of ρ the random variable z = Z(x, θ) defined by (14) was computed. From the N = 10000 values of

z thus computed, quantiles at probabilities 0.001 through 0.999 at increments of 0.001 were computed

for each of the elements z1, z2, and z3 of z. Similarly for the normal and Student’s t-distribution on

3 degrees freedom. Plotted are the z quantiles (vertical axis) against the normal quantiles (solid line)

and the t-quantiles (dotted line).

14



−3 −2 −1 0 1 2 3

0
5

10
Z1

−3 −2 −1 0 1 2 3

−8
−6

−4
−2

0
2

4
6

Z2

−3 −2 −1 0 1 2 3

−6
−4

−2
0

2
4

6

Z3

Figure A2. Discounted Cash Flow Raw Q-Q Plots. For the discounted cash flows setup of

Section 5, N = 2000 values for ρ = (b0, B,R, β, γ) were drawn from the prior shown in Table A6. For

each ρ, data x = {xt}nt=1 were computed for n = 50 as described in the legend to Table A6. For each x

and subvector θ = (β, γ) of ρ the random variable z = Z(x, θ) was computed as described in the legend

to Table A6. From the N = 2000 values of z thus computed, quantiles at probabilities 0.001 through

0.999 at increments of 0.001 were computed for each of the elements z1, z2, and z3 of z. Plotted are the

z quantiles (vertical axis) against the normal quantiles (solid line) and the t-quantiles (dotted line).
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Figure A3. Discounted Cash Flow Transformed Q-Q Plots. For the discounted cash flows

setup of Section 5 and draws from the prior shown in Table A6, the random variable z = Z(x, θ)

was computed as described in the legend for Figure A2. Each z = (z1, z2, z3) was transformed to

z̃ =
(

Φ−1[Fz1(z1)], z2, z3
)

, where Φ is the distribution function of the standard normal and Fz1 is a

natural cubic spline interpolation of the empirical distribution of z1. The correlations among the z̃ are

-0.0451, 0.0088, 0.0015 in the order (1,2), (1,3), (2,3). From the N = 2000 values of z̃ thus computed,

quantiles at probabilities 0.001 through 0.999 at increments of 0.001 were computed for each of the

elements of z̃. Plotted are the z̃ quantiles (vertical axis) against the normal quantiles.
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Figure A4. Complementary Q-Q Plots for Exchange Economy. The prior po(θ) given in the

legend of Table A1 for the exchange economy of Section 4 was discretized by a quadrature rule to obtain

a discrete prior (θoi , p
o
i ), i = 1, . . . , 16. Using the λ-prior method described in Section 6 with piλ(ρ, θ)

defined by (33), the discrete prior (ρoi , p
o
i ), i = 1, . . . , 16, was determined for the likelihood fSNP (x, ρ).

In the notation of Gallant and Tauchen (2017), the BIC determined SNP specification has parameters

Lu = 1,, Kz = 4, and Iz = 3, with all other parameters zero. Sample size is n = 500; λ = 102.5 ≈ 316.

N = 1000 values for p were drawn from the discrete prior (ρoi , p
o
i ). For each ρ drawn, data x of length

n = 500 were drawn from fSNP (x, ρ). For each x, the random variable z = Z(x, θ) defined by (14)

was computed. From the N = 1000 values of z thus computed, quantiles at probabilities 0.001 through

0.999 at increments of 0.005 were computed for each of the elements z1, z2, and z3 of z. Similarly for

the normal. Plotted are the z quantiles against the normal quantiles.
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Figure A5. Complementary Q-Q Plots for Discounted Cash Flows. The prior po(θ) given in

the legend of Table A6 for the discounted cash flows setup of Section 5 was discretized by a quadrature

rule to obtain a discrete prior (θoi , p
o
i ), i = 1, . . . , 16. Using the λ-prior method described in Section 6

with piλ(ρ, θ) defined by (33), the discrete prior (ρoi , p
o
i ), i = 1, . . . , 16, was determined for the likelihood

fSNP (x, ρ). In the notation of Gallant and Tauchen (2017), the BIC determined SNP specification has

parameters Lu = 1, and Kz = 4, with all other parameters zero. Sample size is n = 500; λ = 101.25 ≈
1.25. N = 1000 values for p were drawn from the discrete prior (ρoi , p

o
i ). For each ρ drawn, data x

of length n = 500 were drawn from fSNP (x, ρ). For each x, the random variable z = Z(x, θ) defined

by (14) was computed. From the N = 1000 values of z thus computed, quantiles at probabilities

0.001 through 0.999 at increments of 0.005 were computed for each of the elements z1, z2, and z3 of z.

Similarly for the normal. Plotted are the z quantiles against the normal quantiles.
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