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Background

• The GMM (Hansen, 1982) minimum chi-square function

(Neyman and Pearson, 1928) can be used to define a likeli-

hood for Bayesian inference.

• Examples are Romeo (2007), Gallant and Hong (2007),

Duan and Mela (2009), Guosheng (2009), Gallant (2016a),

Gallant, Giacomini, and Ragusa (2017), and Gallant and

Tauchen (2017, 2018).

• In the econometric literature the best known instance of the

GMM representation of the likelihood is Chernozhukov and

Hong (2003), although there it is used for frequentist infer-

ence.



Bayesian GMM

• For data x = [x1, . . . , xn] and parameter θ define

Z(x, θ) =
√
n [W (x, θ)]−

1
2 [m̄(x, θ)]

• Moment conditions

m̄(x, θ) =
1

n

n
∑

t=1

m(xt, θ)

• Weighting matrix (use HAC for time series)

W (x, θ) =
1

n

n
∑

t=1

[m(xt, θ)− m̄(x, θ)] [m(xt, θ)− m̄(x, θ)]′

• GMM representation of the likelihood

p∗(x|θ) ∝ exp[−1

2
Z′(x, θ)Z(x, θ)]

• Given prior po(θ), apply MCMC to p∗(x|θ)po(θ)



Concerns

• The GMM representation of the likelihood, as commonly used

and as above, is missing a Jacobian term.

• The standard approach of assuming normality of the underly-

ing random variable Z used to form the likelihood is suspect.



Strategy to Address Concerns

• Consider two similar examples:

– A normality assumption is acceptable for the first

– It is not acceptable for the second.

• For both:

– Check if the adjustment term matters.

(It doesn’t).

– Check if a proposed non-normality detection scheme works.

(It does.)



Derivation of the Adjustment Term

• Bayesian analysis proceeds as if the data x ∈ X and parameter

θ ∈ Θ were random variables on X × Θ with joint density

po(x, θ) = po(x | θ)po(x | θ) = likelihood x prior

• Suppose z = Z(x, θ) has density ψ(z), then, under a semi-

pivotal condition

p∗(z | θ) = ψ(z)

∣

∣

∣

∣

z=Z(x,θ)

where x is random and θ is fixed.

• If x has the same dimension as z, this implies

p∗(x | θ) =
∣

∣

∣det[(∂/∂x′)Z(x, θ)]
∣

∣

∣ψ[Z(x, θ)].



If the Dimension of x is Larger than θ

• Suppose one can find mappings u = U(x, θ) and x = X(u, θ)

such that u has the same dimension as z and z = Z[X(u, θ), θ].

• Then

p∗(x | θ) =
∣

∣

∣det
{

(∂/∂u′)Z[X(u, θ), θ]
}∣

∣

∣ψ[Z(x, θ)].

• Methods for constructing u = U(x, θ) and x = X(u, θ) are

proposed in the paper.

• p∗(x | θ) is invariant to the choice of u = U(x, θ).



On Asymptotic Normality

• Define Fn(z|θ) =
´

I[Z(x, θ) ≤ z] po(x|θ)dx.

• The finite sample distribution of Z is

Ψn(z) =

ˆ

Fn(z|θ) po(θ) dθ

• Dominated convergence theorem:

lim
n→∞Ψn(z) =

ˆ

lim
n→∞Fn(z|θ) po(θ) dθ =

ˆ

Φ(z) po(θ) dθ = Φ(z).

• The density ψn(z) converges to the normal if it is bounded

and asymptotically equicontinuous (Sweeting, 1986)



Examples use CRRA Utility:

• Parameter: θ = (β, γ) = (discount factor, risk aversion)

• Data: xt =

(

x1t
x2t

)

=

(

lsrt
lcgt

)

=

(

log stock returns
log endowment growth

)

• Moments: m(xt, θ) =







1
lsrt−1
lcgt−1





 [1− exp(logβ − γlcgt+ lsrt)]

• Adjustment: adj(x, θ) = 4(1− e)2

∣

∣

∣

∣

∣

∣

∣

1−tanh
(

1
4z1

)

1−
[

tanh
(

1
4z1

)]2

∣

∣

∣

∣

∣

∣

∣



Data Generating Processes

• A data generating process has the form po(xt | ρ, θ)po(ρ)po(θ) where ρ are
general equilibrium nuisance parameters and θ = (β, γ).

• First example is a Lucus exchange economy where endowment growth
follows an autoregression with parameters ρ = (µ, α, σ). Mean values of
the prior are ρ̄ = (0,0.95,0.2) and θ̄ = (0.95,12.5). Standard deviations
are (0.0, 0.01, 0.01) and (0.01, 2.0).

• The second example uses a non-parametrically extracted stochastic dis-
count factor, data on corporate profits, and data on GDP from Gal-
lant and Tauchen (2018). A trivariate VAR for [log(SDF ), log(GDP ) −
log(CP ),∆log(CP )] is fit to these data. The estimated parameters from
this fit determines po(ρ); po(θ) has mean θ̄ = (0.9532,24.5030) and stan-
dard deviations (0.547, 28.2425). Given a (ρ, θ) draw from the prior, the
return to corporate profits is computed analytically from the VAR and
the SDF is transformed to endowment growth by inverting the formula
for the SDF implied by CRRA utility.



Assessment of Adjustment Term

• Draw from the prior N = 1000 times and retain that (ρ, θ)

for which the max minus min adjustment is the largest over

an exhaustive θ grid.

• For that (ρ, θ) evaluate the log likelihood and the log adjust-

ment over the θ grid.

• Determine by inspection if the adjustment is large enough to

affect the accept/reject decision of an MCMC trial.

• For the worst case (ρ, θ) data, check with MCMC.

• Worst case for Example 1 with n = 100 (next slide) occurs for

(ρ, θ) = (0,0.9410,0.01000,0.9542,15.00) at θ = (0.97,0.50)



Table 3. Exchange Economy Likelihood and Adjustment,
n = 100

Log Likelihood

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 -211.99 -16640.04 -170.40 -39.47 -15.89 -8.78 -6.06 -4.92 -4.50 -4.45 -4.61

10.45 -155.11 -13398.32 -126.74 -29.62 -12.51 -7.39 -5.46 -4.70 -4.47 -4.53 -4.75

20.40 -109.32 -10306.79 -91.12 -21.81 -9.87 -6.33 -5.03 -4.58 -4.51 -4.66 -4.92

30.35 -73.48 -7474.01 -62.69 -15.78 -7.88 -5.56 -4.76 -4.55 -4.61 -4.82 -5.12

40.30 -46.57 -5002.77 -40.72 -11.29 -6.43 -5.05 -4.63 -4.61 -4.76 -5.02 -5.33

50.25 -27.68 -2978.95 -24.59 -8.12 -5.46 -4.76 -4.64 -4.74 -4.97 -5.25 -5.56

60.20 -15.73 -1462.56 -13.67 -6.07 -4.91 -4.69 -4.76 -4.95 -5.21 -5.50 -5.80

70.15 -9.34 -484.22 -7.26 -4.97 -4.72 -4.80 -4.98 -5.22 -5.49 -5.78 -6.06

80.10 -7.08 -58.66 -4.61 -4.70 -4.88 -5.08 -5.30 -5.55 -5.81 -6.07 -6.33

90.05 -8.10 -51.30 -5.04 -5.16 -5.33 -5.52 -5.72 -5.93 -6.16 -6.39 -6.60

100.00 -12.42 -508.94 -8.15 -6.29 -6.07 -6.10 -6.21 -6.36 -6.54 -6.72 -6.89

Log Adjustment

γ/β 0.80 0.82 0.84 0.86 0.88 0.90 0.91 0.93 0.95 0.97 0.99

0.50 1.78 1.78 1.78 1.79 1.86 2.01 2.21 2.42 2.63 2.81 2.95

10.45 1.78 1.78 1.78 1.80 1.90 2.08 2.29 2.50 2.70 2.87 3.00

20.40 1.78 1.78 1.78 1.82 1.96 2.15 2.37 2.59 2.78 2.93 3.06

30.35 1.78 1.78 1.78 1.86 2.03 2.24 2.47 2.67 2.85 2.99 3.11

40.30 1.79 1.78 1.79 1.92 2.12 2.35 2.56 2.76 2.92 3.06 3.16

50.25 1.81 1.78 1.81 2.00 2.23 2.46 2.66 2.85 3.00 3.12 3.20

60.20 1.87 1.78 1.87 2.13 2.37 2.58 2.77 2.93 3.07 3.17 3.25

70.15 2.05 1.78 2.01 2.30 2.52 2.71 2.88 3.02 3.14 3.23 3.30

80.10 2.43 1.78 2.30 2.51 2.68 2.84 2.98 3.11 3.21 3.29 3.34

90.05 3.04 6.38 2.75 2.77 2.87 2.98 3.09 3.20 3.28 3.34 3.38

100.00 3.84 15.45 3.37 3.06 3.06 3.12 3.20 3.28 3.35 3.39 3.42



Table 5. Exchange Economy Estimates

No Adjustment Adjustment

Parameter Mean Mode Sdev Mean Mode Sdev

n = 50, tight prior

β 0.9530 0.9550 0.00513 0.9540 0.9559 0.00510

γ 13.650 12.365 1.4849 13.603 12.233 1.4800

n = 100, tight prior

β 0.9595 0.9603 0.00422 0.9604 0.9611 0.00428

γ 13.603 12.233 1.4800 13.994 12.994 1.3948

n = 1000, tight prior

β 0.9312 0.9315 0.00242 0.9442 0.9445 0.00169

γ 14.995 14.673 0.8594 14.900 14.539 0.7894

n = 50, loose prior

β 0.9177 0.9561 0.03884 0.9228 0.9569 0.03904

γ 31.145 12.025 12.893 31.725 11.939 14.016

n = 100, loose prior

β 0.9416 0.9614 0.03017 0.9449 0.9623 0.03022

γ 33.272 13.301 13.402 34.613 13.189 14.213

n = 1000, loose prior

β 0.9280 0.9296 0.00493 0.9433 0.9441 0.00282

γ 16.539 15.414 2.0841 15.870 14.912 1.8355



Corporate Profits Example

• Adjustment term results for the discounted corporate profits

example are analogous.

• We next consider the effect of non-normality and how to

detect non-normality.
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Figure 2. Corporate Profits Q-Q Plots. Solid line normal; dashed t(3).
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Figure 3. Transformed Corporate Profits Q-Q Plots. Solid line normal.



Table 11. Discounted Cash Flow Estimates

No Adjustment Adjustment

Parameter Mean Mode IQR Mean Mode IQR

n = 50

β 0.9328 0.9556 0.05590 0.9328 0.9559 0.05582

γ 39.595 29.902 17.422 42.082 31.859 18.922

n = 100

β 0.9311 0.9541 0.05653 0.9311 0.9538 0.05666

γ 30.151 25.574 8.6111 31.737 26.849 9.3107

n = 1000

β 0.9310 0.9556 0.05631 0.9305 0.9528 0.05669

γ 40.288 28.940 4.3800 37.489 25.680 5.7771

n = 50, transformed Z

β 0.9327 0.9558 0.05562 0.9327 0.9574 0.05606

γ 35.500 29.562 18.321 39.249 38.540 18.720

n = 100, transformed Z

β 0.9315 0.9539 0.05652 0.9308 0.9533 0.05677

γ 26.797 25.657 8.4857 28.833 29.564 8.3368

n = 1000, transformed Z

β 0.9327 0.9604 0.05570 0.9322 0.9567 0.05606

γ 32.624 27.330 3.0234 35.546 28.259 5.0233



Complementary Methods

• Use an explicit likelihood f(x | ρ) that has a non-parametric

interpretation such as a sieve.

• Estimate subject to

0 = ḡ(ρ, θ) =

ˆ

m̄(x, θ) f(x|ρ) dx

• The difficulty is that the parameter space

{(ρ, θ) ∈ R×Θ |0 = ḡ(ρ, θ)}
has Lebesgue measure zero when m̄(x, θ) is over identified.

• On this see Bornn, Luke, Neil Shephard, and Reza Solgi

(2018), “Moment Conditions and Bayesian Nonparametrics,“

Journal of the Royal Statistical Society, Series B 81(1), 5–43.



Approximate Method: λ-prior

• Use a sieve, e.g. SNP, for f(x | ρ).

• Use λ-prior

pλ(ρ, θ) ∝ po(θ)× p(ρ)× exp

[

−λ n
2
ḡ′(ρ, θ)ḡ(ρ, θ)

]

• By trial and error find the largest λ such that MCMC draws

mix.

• Reference: Gallant, Hong, Leung, and Lee (2019).



Non-normality Detection

• Discretize the prior po(θ) using a quadrature rule to obtain

support points θoi and weights pi

• For each support point θoi of the quadrature rule apply the

λ-prior method with prior

piλ(ρ, θ) ∝ po(θ)× exp

[

−λ n
2
ḡ′(ρ, θoi )ḡ(ρ, θ

o
i )

]

• Let ρi be the corresponding posterior modes.

• Draw z by drawing i with probability pi, draw x from f(x | ρi),
and put z = Z(x, θi).
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Figure 4. Complementary Q-Q Plots for Exchange Economy
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Figure 5. Complementary Q-Q Plots for Discounted Corporate Profits



Conclusion

• Addressed are two issues that arise in application of the GMM

representation of the likelihood in Bayesian inference: (1) a

missing Jacobian term and (2) a normality assumption.

• Practicable methods for addressing these two problems in an

application are proposed and illustrated by application to an

endowment economy whose representative agent has CRRA

utility.

• While the main contribution is the proposed methodology,

the illustration does provide some interesting anecdotal evi-

dence that is consistent with the anecdotal evidence in Gal-

lant (2016b): violation of (1) or (2) has less serious conse-

quences in applications than one might expect for moderately

large sample sizes.


