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1 Introduction

The theoretical properties of constrained estimators when the objective function and con-
straints are smoothly differentiable and the parameters are uniquely identified over the un-
constrained parameter space are already well understood (see e.g. Gallant, 1987). Fur-
thermore, Hansen (2016) has shown the importance of applying shrinkage to nonlinearly
constrained parameter spaces. However, in many settings, the objective function can be
nonsmooth or nonconvex, or the parameters might be uniquely identified only over the
constrained parameter space, in which case directly solving the constrained optimization
problem through nonlinear programming methods remains computationally challenging in
practice.

In this paper, we propose instead to adopt a Bayesian approach that defines penalized
Laplace type estimators which are asymptotically equivalent to the original constrained es-
timators. Although the frequentist properties of unpenalized Laplace type estimators are
well studied (e.g. Chernozhukov and Hong, 2003), the properties of penalized Laplace type
estimators remain unknown. Similar to the unpenalized versions, penalized Laplace type
estimators are typically defined as the mean or median of the quasi-posterior distribution
of the parameters simulated using Markov Chain Monte Carlo (MCMC) methods. Our pe-
nalized Laplace type estimators include as a special case the Bayesian LASSO of Park and
Casella (2008), who define their estimator using either the posterior mean or median in a
Gaussian linear regression model with a Laplace prior. Furthermore, while much of the exist-
ing LASSO literature focuses on the Gaussian linear regression model, this paper considers
general nonlinear and non-likelihood-based models, such as those in GMM, empirical likeli-
hood, and minimum distance methods and allows for general nonlinear constraints for which
traditional frequentist estimators are difficult to compute, since they require maximizing a
possibly nonconvex or nonsmooth objective function.

We find that the penalized posterior mean and median are y/n-consistent for the true
parameters and achieve first order asymptotic efficiency implied by the imposition of the
constraints under general conditions that allow for nonsmooth objective functions which

arise in simulation-based models. We require that the parameters are identified only along



the constrained subspace instead of the whole parameter space. Bayesian credible intervals
are asymptotically valid confidence intervals in a pointwise sense, providing exact asymptotic
coverage for general functions of the parameters. Our methods encompass the 1, {5, and £
penalty functions by defining a kernel function, which appears in part of the quasi-posterior
density’s limiting density concerning the constrained subspace of the parameter space.

When the constraints are correctly specified, and the penalty parameter diverges at a
suitable rate, the posterior distribution along the constraints converges at a faster than /n
rate, which induces a singular posterior distribution along the constrained subspace and
efficient posterior locations for general nonlinear functions of the parameters that do not lie
in the subspace of the constraints. However, if some of the constraints are misspecified, the
asymptotic bias can diverge. We therefore consider adaptive methods to identify and place
more weight on the correctly specified constraints.

Adaptive methods motivated by the adaptive LASSO of Zou (2006) use the inverse of
an initial 4/n-consistent estimator of the constraints to place more weight on the correctly
specified constraints and less weight on the misspecified constraints so that the asymptotic
bias remains bounded and the posterior mean and median remain 4/n-consistent. Under
proper rate restrictions on the penalty parameter, we show that the posterior mean and
median can adaptively and selectively identify the correctly specified constraints. Further-
more, Bayesian posterior intervals are asymptotically valid confidence intervals in a pointwise
sense, providing asymptotically exact and more efficient coverage for general and possibly
nonlinear functions of the parameters.

The prior results apply when the constraints are known to the researcher and depend only
on the parameters. If the constraints instead depend on the data, then posterior quantiles
cannot be used to form asymptotically valid confidence intervals unless the constraints are
asymptotically negligible in the sense that when evaluated at the true parameter value, they
converge in probability to zero at a rate faster than 1/4/n. However, a consistent estimate
of the constrained estimator’s influence function can still be used for asymptotically valid
inference.

Related Literature. Alhamzawi et al. (2012), Hans (2009), and Leng et al. (2014) study

the Bayesian LASSO and its variants from a fully Bayesian perspective without reference to



frequentist inference. The latter two papers refer to their methods as the “Bayesian adaptive
LASSO,” which is distinct from the notion of adaptiveness used in Zou (2006) and in this
paper.

There is a large literature on the use of unpenalized Laplace-type estimators (LTEs)
to simplify the computation of unconstrained extremum estimators with nonlikelihood ob-
jective functions that can be nonconcave or discontinuous. For example, Blackwell (1985),
Chernozhukov and Hong (2003) and Tian et al. (2007) consider the setting where the di-
mension of the parameter space is fixed, while Belloni and Chernozhukov (2009) allows for
parameters of increasing dimension. None of these papers consider penalized LTEs, which
are the focus of this paper. Our paper is also related to the literature on Bayesian estimation
of moment condition models, which includes, for example, Schennach (2005), Kitamura and
Otsu (2011), Chib et al. (2018), Florens and Simoni (2019), and Gallant (2020b).

Our results only pertain to the pointwise asymptotic properties of penalized LTEs. In
a series of papers, Leeb and Potscher argue forcefully for studying the uniform asymptotics
of post-model-selection inference procedures, including the LASSO (e.g. Leeb and Pé&tscher,
2005, 2008a,b). A general lesson from their work is that consistent model-selection procedures
(what they also refer to as “sparse estimators”) have arbitrarily large risk, and pointwise
asymptotics provide poor approximations to the finite-sample behavior of estimators. We
only note that the location functionals considered in this paper, the posterior mean and
quantiles, are not consistent model-selection estimators.*

Outline. Section 2 contains the main theoretical results for penalized Laplace-type
estimators using nonadaptive penalties. We extend the results to adaptive penalties where
the constraints are possibly misspecified in section 3. Extensions to estimated and simulated
constraints are discussed in section 4.1. Section 4.2 discusses an application of our methods
to a GMM setting where we would like to enforce that a subset of the sample moment
conditions are zero. Section 4.4 shows that the asymptotic distribution of an /5 penalized
estimator obtained after one Newton-Raphson or Gauss-Newton iteration is equal to the

asymptotic distribution of the solution to the original constrained optimization problem.

'We thank a referee for pointing out that no method can achieve uniform model selection consistency
over 4/n neighborhoods of zero.



Next, section 5 presentes simulation results on the empirical coverage of posterior quantile
based confidence intervals in a constrained IV quantile regression example. The empirical
application is presented in section 6. Finally, section 7 concludes. All proofs are stated in

Appendix B.

2 Penalized and Laplace-Type Estimators

Extremum estimators 6 are typically defined as maximizers of random criterion functions

Qn (0) in the sense that

~

Qn(é) = sup Qn (0) —op (n_l) .

PcOcRE

It is often useful to incorporate nonlinear constraints for identification or efficiency purposes.
An extremum estimator subject to (potentially nonlinear) equality constraints § instead

satisfies

~

Qn (0) = 31%3 Q. (0) — op (n7'), where © ={0e©O:g(F) =0}, (1)

K is the dimension of 0, g (9) = (g, (0),7 = 1,...,J) for J < K encodes constraints on 6, ©
denotes the constrained parameter space, and 0 is assumed to exactly satisfy the constraints
(6 e0O).

The asymptotic properties of § for smoothly differentiable @,, (§) using Lagrange multi-
pliers are extensively developed in Gallant (1987). This paper studies potentially nonsmooth
objectives and penalized and Laplace-type versions of @, which have computational advan-

tages. Before introducing these estimators, we discuss some examples of constraints.

Example 1. The maximum rank correlation estimator (Han, 1987; Sherman, 1993) corre-

sponds to

Qn 0) = (Z) 2 {1 (yi >y;) 1 (mi@ > xé&) +1(y; <y;)l (x;9 < xgﬁ)}

1<j



Because Q,, 0) = Qn (70) for any v > 0, a scale normalization is required to guarantee a
unique solution. The typical normalization 6; = 1 is not innocuous because it implies that
the first regressor is non-zero. The preferred normalization adopted in Han (1987) is |6] = 1,
which can be imposed by maximizing Q,(f) subject to the constraint g (§) = |§] — 1 = 0.
However, solving this constrained program in practice can be difficult, which motivates the

use of MCMC.

Example 2. Hausman and Woutersen (2014) study a semiparametric duration model, which
corresponds to 6 = (3,8"),

n

1 K K
Qn (0) = —ﬁZZZZ [1(Ti = 1) = 1(T; = k)] 1(Z: (1; B,6) < Z; (k; B,0)),
nin i=1j#i1=1k=1

where Z; (1; 3,0) = le:l exp {X;sf + d5}. In addition to the normalization that 5| = 1,
they also impose the constraint d; = 0 in order to normalize the integrated baseline hazard

in the first time period, so g (0) = (|| — 1,61).

Example 3. Sparsity constraints are commonly imposed, for example in LASSO regression
(Tibshirani, 1996), penalized quantile regression (Belloni and Chernozhukov, 2011), and
machine-learning methods such as support vector machines (Zhu et al., 2004). In the latter

case, for k > 0,

. 1 &
Qn (6) =~ max{p. (i~ 216) .0},

i=1
where p,(u) = (T1—1(u < 0))u. Imposing a sparsity constraint on the first J < K components
of § corresponds to g; (§) = 0; for j = 1,...,J. Unlike the previous two examples, such
constraints are often imposed by the econometrician, despite possible misspecification in the
sense that the corresponding components of the true parameter may actually be nonzero.

Methods discussed in section 3 will allow for misspecified constraints.

Penalized estimator. An alternative to 6 is a penalized M-estimator §F, which satisfies

~

Qn (6%) = sup Qn(0) —op (n7")  where Qy () = Q, (0) — penalty, (g (6)). (2)



We consider a general class of penalty functions defined using a J-dimensional kernel function

k() and penalty parameter \,,:

penalty, (g (6)) = — Toa s (\u/ig (6)).

This paper focuses on ¢, penalties for 1 < p < oo that are of the form

”“72n

J
—log K, (u Z lu;|P, so that penalty, (g(6))

The cases of p = 1,2, oo correspond respectively to the Laplace, normal, and uniform kernel

functions, which we respectively denote
Ky (u) = e~ Zimihul (u) = 6_23]:1“?, and Ky (u) =1(|u| <1).

The ¢, penalty corresponds to an optimization program in which the equality constraints

are relaxed to inequality constraints ||g (0) | < e, = (A\y/n) ™!

penalty, (g (0)) = % 1 (Auv/nlg (0) | > 1).

Laplace-type estimators. We focus on Laplace-type estimators consisting of taking the
mean and quantiles of a quasi-posterior, which can be computed in practice using MCMC.
Given a user-defined prior density function 7 (f) and penalty parameter \,, define the

quasi-prior density function

m0(6) o m (6) & (Au/g (6)) 3)

and quasi-posterior density function

T, (0) Q1 (e @)  m(0) "1 (he O
p0<9|)€n): () A( ): 0() - (9 ) (4)
Jom (0)er@®@do— fymo (6) @ O)df

Note that (4) is similar to the definition of the quasi-posterior in Chernozhukov and Hong



(2003) except for the addition of k(A,+/ng(f)), which serves to impose the constraints. For
intuition, consider the case where r(u) = exp{— Z;.]:1|uj|}, mo(0) is the uniform prior, and
() is a sparsity constraint (Example 3). Then ,(0) is a Laplace prior. If we specify Q,(f)
as the least-squares objective, then the mode of the quasi-posterior (4) corresponds to the
LASSO, while the mean and median correspond to the Bayesian LASSO (Park and Casella,
2008).

Remark 1. In principle, nonbinding inequality constraints can be incorporated into the
MCMC routine by multiplying the criterion function with an indicator function for the va-
lidity of the inequality constraints, and under pointwise asymptotics, nonbinding constraints
do not affect the asymptotic distribution. Also, linear equality constraints, assuming they are
correctly specified, can be easily imposed by reparameterizing and reducing the dimension of
the parameter space. We therefore focus on potentially nonlinear equality constraints. Be-
cause they are nonlinear, we do not directly impose them in the construction of the prior, say
by replacing 1(f € ©) in the quasi-posterior with 1(§ € ©). This would require specialized,
computationally intensive, MCMC algorithms because the constrained parameter space ©
is singular with respect to Lebesgue measure. Such algorithms require a starting value close
to the estimator #, and the penalized methods proposed here can provide this starting value

(see e.g. Gallant, 2020b).

We study inference on a known scalar function of the true parameter ¢y = ¢ (6y) of the
parameter 6§, where ¢ (+) is twice continuously differentiable. Denote by ¢* the posterior 7th

quantile of ¢, which satisfies

/ 1(6(6) < 6%)p (01,) d6 = . (5)

A point estimate can be based on ¢} /25 and an equal-tailed confidence interval of level 1 —7 is
given by (¢* /2> o1, /2). We provide conditions under which this interval has asymptotically

correct coverage in the sense that

lim inf P (G0 € (972 01_rpp)) 21—



We will see that if ¢q lies in the constrained space, then coverage is conservative, whereas if
it does not, coverage is asymptotically exact. A point estimator for ¢, can also be based on

the posterior mean:

0) |%,) /¢ P (0], d (6)

Note that Laplace-type estimators are not Bayesian estimators, since the formula for the
quasi-posterior density is missing a Jacobian term that reflects the transformation from the
moments to the data (see Gallant, 2020a). In addition, to be considered Bayesian, ¢"@n ()
must also satisfy a finite-sample normality assumption, which may be violated in practice.
This assumption can be checked and remedied using the penalization methods proposed in

this paper (see Gallant, 2020a).

2.1 Assumptions

We next state conditions used to prove consistency and asymptotic normality of the penal-
ized and Laplace-type estimators in the next two subsections. We will assume here that
constraints are correctly specified. This is relevant for Examples 1 and 2 but not 3 because
usually sparsity constraints are imposed without a priori knowledge about which coefficients
are truly zero. In section 3, we consider an adaptive Laplace-type estimator that does not
require correct specification of constraints, which is useful for all the examples, in particular

Example 3.

Assumption 1. © is a compact subset of RX containing ©, and the true parameter 8y belongs
to the interior of the constrained parameter space ©, where the interior is with respect to the

topology of ©.
The second assumption requires constraints to be smooth.

Assumption 2. The constraints g (0) are three times continuously differentiable in 0 € ©.

For G (0) = aé/) REXT Gy = G (0y) has rank J.



The third assumption imposes a weak uniform consistency requirement on Qn(ﬁ) Note

that for many M-estimators, we can let a,, = \/n.

Assumption 3. There exists a deterministic and three times continuously differentiable
function Q (0), and a sequence a, — ©, an/n = O (1), such that supye a,|Qn () —Q (0) | =
Op(1).

The fourth assumption only requires 6y to be identified along the constrained subspace

O instead of the entire parameter space ©, which is important for Examples 1 and 2.

Assumption 4. Q (0) < Q (0y) for all 6 € ©, and for all 6 > 0, there exists € > 0 such that

sup  Q(0) —Q (6y) < —e.

[6—60]>6,0c0

Finally, to establish the asymptotic distribution of the quasi-posterior distribution we
assume the existence of a local quadratic approximation to the possibly nonsmooth objective

function.

Assumption 5 (Local Asymptotic Normality). There exists a positive semi-definite

matriz Hy such that

Q0) = Q60) 50— 00) Ho (6~ ) + 0 (16— 6]%). 1)

In addition, there exists a random sequence A, g, such that for

nQu (0 + 4) = 1Qu (00) = A0, 5,h = (Q (B + h/V0) = Q (80))
o s EnE |

(a) R, (6,) = op (1) for any 6, — 0, and (b) A, g, N N (0,Q) for some positive semi-

definite matrix €.

Equation (7) implies that 0@ () /00 = 0, assuming @ () is differentiable at 6. Assump-

tion 5 implies Assumption 4 in Chernozhukov and Hong (2003) and is satisfied for a broad

10



class of estimators. When Q, (0) is continuously differentiable, A, g, is the scaled Ja-
cobian /ndQ, (6y) /00, Q is the asymptotic variance-covariance matrix of the Jacobian,
and H, is the negative of the population Hessian —d%Q (6,) /0006'. If Q, (f) is non-
smooth, then A, g, is the subgradient of Q, (f) evaluated at 6, and scaled by /n, Q is
the asymptotic variance-covariance matrix of A, g,, and Hj is the second derivative of the
expected value of the subgradient evaluated at 6,. For example, for quantile regression,
Qu(0) = —n ', (r = 1(ys < 2i0)) (g — 10), Ang, = n 7230, (7= 1(y: < i) mi,
Q=71(1~-71)FExx}], and Hy = E| fy(0)x;2]].

Assumption 6. (a) 38 > 0 such that a,\?/n" /n*™P — oo, (b) N\, — w. (c) \,/y/n — 0.

Part (a) is needed for consistency of the penalized estimator 6*. It ensures that the sample
penalized objective is within 0,(1) of the population penalized objective after scaling the
objective to ensure the penalty will contribute asymptotically. Part (b) is needed to ensure
the penalized estimator is sufficiently close to the constrained estimator so that they share the
same asymptotic distribution. Part (c) is additionally needed for the posterior distribution
to be sufficiently informative for inference. When p = oo, Assumption 6 can be further
weakened to a,\2+/n”/n — oo. Example 6 and the discussion after the proof of Theorem 4
illustrate why (c) is required.

The final assumption concerns the function for which we would like to conduct inference.

Assumption 7. The function ¢ : R¥ — R is twice continuously differentiable.

2.2 Large-Sample Theory

We first investigate consistency and asymptotic normality of the constrained and penalized
estimators § and 6% defined in (1) and (2). Then we prove a Bernstein von-Mises type
result and show asymptotic normality of the quasi-posterior distribution and validity of
quasi-posterior quantiles for inference.

Heuristically, as long as the penalty parameter )\, is sufficiently large, the penalized

estimator * should be sufficiently close to the equality constrained M-estimator @ so that

11



they are both consistent and share the same asymptotic distribution. There is a tradeoff
between the rate requirement for A, and the sample objective function Qn (0). Tt can be
shown that if Q,, (0) globally identifies 6, in ©, meaning that Assumption 4 holds on the full
parameter space O rather than the constrained subspace ©, then 6% is consistent for any
sequence \,. On the other hand, if Qn (6) only uniquely identifies 6, on ©, then consistency
of 8" requires A, to be sufficiently large. We only provide a formal result for the latter case.

Our first result establishes consistency of the constrained and penalized estimators, as

well as the posterior mean and quantiles.

Theorem 1. (a) Under Assumptions 1/, 0 = 0y + op (1). (b) If additionally Assumption
6(a) holds, then 07 = 6y +op (1). (c) If additionally Assumption 7 holds, then ¢* = ¢ (0y) +
op (1) for 7€ (0,1), and 6 = 6 (6) + op (1),

The next theorem derives the asymptotic distribution of 4, allowing Hy to be possibly

singular.

Theorem 2. Let R be a K x (K — J) matriz of rank K — J such that R'Gy = 0 and

B = (Go, R) is nonsingular.”* Under Assumptions 1-5, if R'HoR is nonsingular,
Vi (0 —0y) = R(RHoR) ™ R'Apg, +o0p(1). (8)

To prove the result in the simple case where Hj is nonsingular, we first linearize the con-
straints g(fy + h/y/n) = 0 for h = \/n(0 — 6) to obtain Gyh = op(1) and apply Assumption
5 to expand n(Qn(0y + h/y/n) — Qn(fy)). Then to obtain the influence function represen-
tation, we use arguments in the proof of Theorem 9.1 of Newey and McFadden (1994) for
asymptotically linearizing a constrained GMM estimator. For the case where H is singular,

we use a transformation of the parameter space following p. 21 of Amemiya (1985).

2Such a matrix always exists and is not necessarily unique (Amemiya, 1985, section 1.4.2).

12



Remark 2. In smooth models with nonsingular Hy, it is known that
Vi (8- 00) = Hy' (1= Go (GyH; ' Go) ™ GoHy ) Ang, + 0 (1) 9)

(Gallant, 1987). In contrast, (8) only requires the weaker condition that R'HyR is nonsin-
gular. If Hy is in fact nonsingular, then the influence functions in (8) and (9) coincide. To
see this, let v, = R (R'HyR) " R'A, g, and 7o = Hy'! (1 — Gy (GyHy ' Gy) ™! GgHgl) Aoy
As in Amemiya (1985), we calculate that

( R'H,

o ) Gi=) =0

Therefore ~; = 7, if the first matrix is nonsingular. But nonsingularity holds because

R'H, R'HyR R HyGy
R Gy) = .
G 0 GGy
The right matrix is nonsingular since nonsingular Hy implies nonsingular R'HyR. Since

(R, Gp) is nonsingular, so is the first matrix on the left, as desired.

Our last result for the penalized and constrained estimators shows the two are asymp-

totically equivalent.

Theorem 3. Suppose the conditions of Theorem 2 and Assumptions 6(a) and (b) hold. Then
07 — 0 = op(n~Y?).

To prove the result, we first expand the penalty function locally around € and expand
n(Qn(0 + B 'un"'2) — Q,(A)) using Assumption 5. Then for ut = By/n(#* — ) and
B = (Gy, R)', we use the fact that n(Q, (0 + B~ 'u™n"12) — Q,,(9)) = 0,(1) by definition of
6% to argue that u® = o,(1).

Laplace-type estimators. To derive the asymptotic distribution of Laplace-type estima-

tors, a key step is to prove a generalized Bernstein-von Mises (BvM) result on convergence

13



of the quasi-posterior density (4). In the typical BvM setting, the influence of the prior dis-
appears, so the density is asymptotically normal. Our setting is different due to the scaling
An in m,(0), which ensures the prior plays a nontrivial role in the limit. This is needed to
impose the constraints.

A common technique for deriving a BvM result is to study the quasi-posterior of a
localized parameter (e.g. van der Vaart, 2000). Let h = /n (§ — ), and define the localized

quasi-posterior density

po(0+ 1/ | X)) _ w0 + h/y/n)er @ TN (R e \/n(© — )

NG - . (10)

h|X,) = ’ €,
i fhe\/ﬁ(®f6’_) 70 (0 + h/y/n)en@n@+h/vn)dp,

Note that h is defined by localizing relative to the constrained estimator , rather than the
true parameter 6y, which is more typically done for unconstrained models (e.g. Chernozhukov
and Hong, 2003).

Parameters inside the constrained subspace will have different asymptotic behavior than
those outside. To handle this, we first transform the localized parameter space in a manner
similar to Theorem 2. As in that theorem, let R be a K x (K — J) matrix of rank K — J
such that R'Gy = 0. For B = (Go, R) and u = Bh, let

1

Pu(u | Xn) = th(

B u|X,).

Now partition u into two parts: w;, which contains the first J components of u and corre-
sponds to the parameters contained inside the constrained subspace, and us, which contains
the remaining K — J components of U and corresponds to parameters off the constrained
subspace. Let v = (v},v}) = (A, uh) = Dyu with D, = diag (A1, Ix_;). Define the

reparametrized, localized quasi-posterior

1

Doy (U Xn :/\_‘leu D;LU Xn = .
W) SOME A/l det (B) |

n

pn (B7'D'v | &) (11)

This corresponds to a A,+/n scaling for parameters contained inside the constrained subspace
and a 4/n scaling for parameters off the constrained subspace, which reflects their differing

rates of convergence.

14



We can now state our BvM result. Define the total variation of moments norm |f (-) —
() e = [R|*|f (h)—g (h)|dh for & = 0 and densities f, g. The usual BvM theorem shows
convergence under the total variation norm, which corresponds to our norm with o = 0. As
in Chernozhukov and Hong (2003), we will need the stronger norm in order to guarantee

convergence of posterior moments in a later result.

Theorem 4. Let Assumptions 1-6 hold. Then for any 0 < a < 0,?

[po (- 0) = poo () la = 0p (1)

for pe (U) = Pio (Ul) P20 (U2)7 where

O"_le_Zj:l il forp <o det (2) 2 iy,
Do (V1) = . Do (V2) = e 2.
Coll(lun] <1)  forp=o NoT

> 1= (RR)'"RHyR(RR)™", and

(f e"“'pdu)J for p <
C,. =
1

2J fOTp:OO

This shows the quasi-posterior density of v converges in the total variation of moments norm
to a product of two densities. One part is a multivariate mean zero normal random vector
corresponding to the unconstrained part vy and the other a density given by the kernel
function corresponding to the constrained part v;. The quasi-posterior density concentrates
around the constrained estimator f at a y/n rate off the constraints but at a \,+/n rate along
the constraints.

To prove the result, we apply Assumption 5 to n(Q,(f + B-'D; v/y/n) — Qn(#)) and

30ur result applies for « fixed with respect to n. See e.g. Theorem 2.2 of Belloni and Chernozhukov
(2014) for a result in a setting without constraints where a can diverge.

15



linearize the constraints g(f + B~'D; 'v/y/n). We then reduce the problem to showing (68):

/ |v| %70 (v) exp (w (v)) dv = op (1)
|v]| =M veHy, | B—1 Dy to||</mb

for any § — 0, where 7 (v) = mo(6 + B*D;'v/\/n), H, = D,B\/n(© — 0), and w (v) =
n(Qu(@ + BT D v/ = Qu(6)) + X, [Aav/ng;(6 + BT D o /)P

Remark 3. It is instructive to compare the limit distribution p(-) in Theorem 4 with the
limit in the unconstrained case. The latter is given in Theorem 1 of Chernozhukov and Hong
(2003), namely the multivariate normal density with mean zero and variance Hy. Denote

this density by ps(h). That theorem implies that h vg;» P (), meaning

/xph<h|xn>dh—/xﬁoo<h>dh] = op(1).

sup
x

Now, Theorem 4 implies that v VIE,’) P (+). Recalling that v = (A,u) w))’, this has two
consequences of note. First, uy = v;/\, = 0p(1), by which we mean that Ve > 0,

f\\uluzep“ (u | X,)du = op (1). This follows from the fact that

/ pu (U] X)) du = / po(v] X)) du = / Poo (V1) dvy + 0p (1)
[uill=e [v1]=Ane Jv1]|=Ane

< 2/ o) top (1) = S e 4 op (1) = op (1).
vij]=

jed 7 jed

Second, s v\\% N (0,%). Finally, recalling that h = B~(u},u})’, by the Bootstrap CMT
(Kosorok, 2007, Proposition 10.7),

h=B'u=R(RR) " uy+ Gy (GoGo) 1y 12
12
—R(R'R) "uy + 0% (1) ‘?% R(R'R)™'N(0,%) = RN (o, (R’HOR)_1> .

Therefore, py, (- | X,) converges to the density of a singular multivariate normal distribution

described on p. 32 of Anderson (1958).
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Inference on scalar functions of parameters can be based on (5) and (6) using the Delta
method. The next theorem shows that the asymptotic normality of the posterior distribu-
tion established in Theorem 4 translates into desirable statistical properties of the MCMC
computational procedure. First, the posterior mean and median of scalar functions ¢(-) of
0 are y/n-consistent and asymptotically equivalent to ¢ (9) Second, confidence intervals

constructed from quasi-posterior quantiles have correct asymptotic coverage.

Theorem 5. Let Assumptions 1 to 7 hold. Let A = a¢(§go). Then ¢* and gb’l“/z are asymptot-

cally equivalent to ¢ (é) :
" — o (é) = OP(”_l/Q) and ¢T/2 —¢ (é) = OP(”_l/Q)- (13)

Also, for any T € (0,1),

o~ 6(0) - q\/iﬁ\/ NR(RHoR) ™ RA — op(n~/2). (14)

where ¢, = ®~1 (1) is the Tth quantile of the standard normal distribution.
Furthermore, if NR # 0 and the “information matriz equality” R'QR = R'HyR holds,
where  and Hy are defined in Assumption 5, then posterior quantile confidence intervals

are asymptotically exact:
lim P (0 € (2.6 1)) =17 (15)
On the other hand, if A = Gyn for some n (so that R =0), then

AV (6" =6 (0)) —op (1) and A (6F—6(0) = +op(1),  (16)

where G, is the T-th quantile of 'V} and Vi is distributed as pio (v1), and posterior quantile

confidence intervals are asymptotically conservative:

Ai_{rolcp (¢0 € (¢i/27 ¢T—7/2)) =1-r (17)

17



If A = Gyn for some 7, this is the setting in which the parameters lie along the constraints.
The theorem shows that the quasi-posterior mean and median are then superconsistent, and
confidence intervals obtained from quasi-posterior quantiles are conservative. If A’R # 0, the
parameters do not lie along the constraints, so the Laplace-type estimators are 4/n-consistent,
and the quasi-posterior quantiles can be used to obtain asymptotically exact coverage.

The key arguments in the proof establish the following conditional Delta method re-
sult: supyep|Frg(s) — Fpo(s)] = op(1). In the case where parameters do not lie along
the constraints, F,,(s) = P(y/n(é(0) — ¢(0)) < s|&,) is the quasi-posterior distri-
bution of ¢(f) (centered and scaled), with limit Fjy o (s) = fA,R(R,R)quS pX(v)dv =

O(s/ \/ AR (R'HyR)"" R'A). Thus, we obtain a normal limit, and as in Chernozhukov and
Hong (2003), valid posterior quantile confidence intervals under the information matrix equal-
ity. On the other hand, in the case where parameters lie along the constraints, £, , (s) =
P(Aun/n(0(0) — ¢(0)) < s|&,), which has a different scaling of A, /n. For the case of the
(1 penalty, the corresponding limit is Fi o (s) = fn,vl P (v)dv = fn’m (%)JHjEJ e~lviildyy
which is the Laplace density. Notably, the latter does not depend on Hj, so the result holds

regardless of whether we obtain the information matrix equality.

Remark 4 (Vector functions). When ¢ () is a vector, A’R # 0, and A is not linearly
dependent with R'QR = R'HyR, (13) continues to hold. Similar to ¢(6), \/n(¢* — ¢ (6p))
and /n(¢7,— (6o)) are both asymptotically N(0, A'R (R'HyR)™' R'A). The quasi-posterior

joint distribution of ¢ (6) can be used to estimate the asymptotic variance matrix consistently.

Apply (14) to any linear combination nj¢ (6),l=1,...,L,

P hE 2
TIZA/R (R/HOR)_l R/Am -n (77[ (q Tz1_ p nz)) + op (1>

All elements of A'R (R’ HOR)_1 R'A can then be estimated consistently by varying 7, and 7

and 7. Alternatively, the joint posterior variance-covariance matrix of ¢ (f) also estimates
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the asymptotic variance consistently:

nVar (6 (6) | X,) = n / (6(6) — 6%) (6(6) — 6 p (8| X,) o

— NR(R'HyR) " R'A+o0p(1).

(18)
This equation is established at the end of the proof of Theorem 5.

3 Adaptation to Misspecified Constraints

Thus far we have assumed that all constraints are correctly specified (Assumption 4). How-
ever, if some are misspecified, then the asymptotic bias of the estimators in the previous
section can diverge, which motivates the use of adaptive methods. In this section, we adopt
the strategy of the adaptive LASSO (Zou, 2006), which is to use a preliminary estimator to
reweight the constraints such that in the limit, the penalty term vanishes for the misspecified
constraints, leaving only the penalty on the correctly specified constraints.
Let (gm (0) ,m = 1,...,J) be the J correctly specified constraints, (g, (0) ,m = J +1,..., M)

the L = M — J misspecified constraints, and ¢(#) the vector of all M constraints. We do
not assume knowledge of J. We recycle the notation from section 2, first redefining the

constrained parameter space
O={0€O:g,(0)=0YYVm=1,...,J}. (19)

The true parameter 6 is now defined as satisfying Assumption 4 but for © in (19).
Let 6 be a preliminary v/n-consistent estimate of 6. Define w = (w,,,m =1,..., M), a

vector of data-dependent weights, with w,, = |g,,(6)|™" for some v > 0 and all m. We define

the adaptively penalized objective function as

— ~

Qu(0) = Qu(6) — penalty, (g (0) Tor penalty, (9(9)) = — logr, (\uib 0 g (9)) (20

As in the adaptive LASSO, the idea is that, for any constraint m that is misspecified, the

associated weight w,, converges in probability to a positive constant, and our conditions on A,
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ensure that the constraint does not asymptotically contribute. In contrast, if the constraint
is correctly specified, then w,, = O,(y/n’), which boosts the penalty on the constraint so
that it matters in the limit.

As before, we focus on the ¢, penalties of the form of
M )\p
—logk, (u) = Z |um|P so that penalty, (g Z | WG (0

m=1

The cases of p = 1,2 correspond respectively to the Laplace and normal kernel functions:

M
K1 (u) = e Tmotluml penalty,, (¢ _ 2 Z m|gm (0) ],
n m=1
M2 721 u
Ko (u) = e~ &#m=1%n = penalty, (g = Z W2 g (0

Unlike section 2, we now need to restrict p € [1,00), in particular ruling out the ¢, case. To

see why, note that this penalty corresponds to

An

m=1

foo (1) = 1(Jul <1) = penalty, (9(0)) =01 (Z Wi |gm (0) | > i) - (21)

For the misspecified constraints, our conditions will imply that the associated weight w,,
converges to a positive constant, while A\, — c0. Then since the constraint is misspecified
(gm(6o) # 0), eventually the estimator infinitely penalizes all parameters that fail to satisfy
the misspecified constraints, including the true parameter, which is the opposite of what
needs to happen. This also suggests that larger values of p can end up penalizing too much
based on misspecified constraints, so to compensate, we will need to ensure that the penalty
parameter )\, diverges more slowly when p is larger. A new condition below formalizes this

requirement.

Estimators. Let us redefine the constrained estimator 6 using the new constrained sub-
space (19). Note that this is an “oracle” estimator because it uses only the constraints that
are correctly specified. Its consistency follows from Theorem 1(a).

In practice, we consider adaptive estimators that do not require knowledge of the correctly
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specified constraints. Toward that end, we redefine the penalized estimator % from section
2 using the above adaptive weights. For the Laplace-type estimators, we redefine the quasi-

prior using adaptive weights as follows:
Tn(0) o mo (0) Ky (A 0 g (9)) (22)

Example 4. Consider the case where 7,(6) is uniform, Q,(6) is the least-squares objective,
and ¢g(0) imposes the sparsity constraints of Example 3. If p = 1, then the mode of the quasi-
posterior corresponds to the adaptive LASSO of Zou (2006). Taking the mean or median
instead, we obtain adaptive versions of the Bayesian LASSO. If p = 2, then the mode is an

adaptive version of ridge regression.

3.1 Assumptions

To construct the weights w, we require a preliminary estimator 0 that is \/n-consistent for

o in the following sense.

Assumption 8. For allm=1,..., M and §m = gm(0), /1 (Gm — gm (60)) = Op (1).

In practice, if 6y is globally identified, then 6 can be obtained from the unconstrained esti-
mator that maximizes Q,(6).

Next, we require the penalty parameter to satisfy the following rate conditions.

Assumption 9. Let \, = )\nn%l, where v > 0 is used in the definition of the weights
W = |G| ™. (a) 3B > 0 such that a, \2\/n’ /n'**P — 0. (b) N\, — 0. (c) \/y/n = o(1).
(d) A /v/n = o(1).

Conditions (a)—(c) are analogous to Assumption 6 for the non-adaptive estimator. Condition
(d) is new and reflects the intuition from the discussion following (21). To see that this is
still compatible with (a), note that in the typical case where a, = 1/n, (a) is equivalent

to \’\/—%";Z/Q, so the first fraction degenerating to zero is compatible with the product of the

fractions diverging, since 3 can be chosen arbitrarily small.
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Strictly speaking, to allow for the possibility that g,, = 0 and to construct a nondegen-

erate posterior density, we should redefine
. . S
Wy, = Wugm #0) + /1" 1(Gm = 0).
In theory, if §,, = 0 for all m € M, and either the constraints are linear in the parameters or

the nonlinear constraints can be inverted, the quasi-posterior distribution can be redefined

to place probability 1 on the restricted parameter set: g,, (8) = 0,m € M:

70 (8) €O =2n Erexre Gmlom (0] ] (0:gm(0) =0,Yme M)
9) enQAn(e)_An ZmEMc (2)m|9m(9)|d9

fo:gm (0)=0,YmeM 7o (

However, direct implementation of (23) can be difficult for general nonlinear constraints (see

Remark 1).
Assumption 10. For all me M, (\/1 (Gm — gm (60)))"" = Op (1).

The assumption states that g, is consistent at exactly the 4/n rate. This is analogous to the
assumption in Zou (2006) that the exact rate of the initial estimate is known. In principle,

we could allow for other rates, provided we adjust the rate conditions on A, appropriately.

3.2 Large-Sample Theory

The first theorem establishes asymptotic equivalence of the adaptively penalized and con-

strained estimators.

Theorem 6. Suppose the conditions of Theorem 2 hold (using the new definition of the
constrained space (19)). Under Assumptions 8 and 9, 0% = 0y+op (1) and 0 —0 = op(n~1/2).

We next provide an analog of Theorems 4 and 5 for adaptive Laplace-type estimators.

Redefine the localized quasi-posterior p, (v | X,,) from (11) by replacing A, with A, in As-
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sumption 9. That is, let D,, = diag (/_\n]J, IK_J) and

1 _
v X,)=————p(B'Dv| X,

where py (- | A,) is now defined using the adaptive quasi-prior (22).

Theorem 7. Under Assumptions 1-10, the conclusions of Theorems J and 5 hold with py (v)
replaced by Py (v | %) = pros (v1 | Xo) pae (v2), where

—1/2
Pros (01 | &) = Clem Zima Wagl T owsl? -y () = det (%)~ e Y v

KJ \/%K—J

> 1= (RR)""RHyR(RR)™", and C,, = fe_23'1=1|‘/ﬁ§j‘7m|”1j|pdu, and (16) replaced by

A/ (¢* — ¢ (0)) =op (1) and An(¢f—0(0)) = +op (1),
where §* is the T-th quantile of n'Vy and Vi is distributed as p1o (v1 | Xy).

This theorem shows that the quasi-posterior density concentrates around the constrained
estimator @ at a \/n rate off the constraints but at a \,/n rate along the correctly spec-
ified constraints. When ¢ (6y) lies along the correctly specified constraints, ¢* and ¢’1*/2
are superconsistent, and equal-tailed quasi-posterior credible intervals provide asymptoti-
cally conservative coverage. On the other hand, if, say, all constraints are misspecified,
then we still obtain \/n-consistency, and the credible interval provides asymptotically ex-
act coverage. This is because the misspecified constraints do not enter the limiting poste-
rior, as the adaptive weighting removes the impact of the part of the quasi-prior involving
(gm(@),m = J +1,...,M). Thus, in the case where all constraints are misspecified, the

limiting quasi-posterior is simply normal, which is the usual BvM result.

Remark 5. As discussed in Example 4, the class of Laplace-type estimators we consider
contains adaptive versions of the Bayesian LASSO. For the ¢; penalty, it is well-known that

the mode of the quasi-posterior leads to concurrent model selection and shrinkage, as in the
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LASSO. The previous theorem indicates that the quasi-posterior mean or median, as in the
Bayesian LASSO, have no model selection properties. More precisely, the posterior mode
can have an asymptotic point mass at zero in certain dimensions of the parameter space,
which is what is meant by model selection (Knight and Fu, 2000). In contrast, it can be
shown, using our characterization of the limiting quasi-posterior, that the posterior mean

and median have no such point mass. This is also true for the non-adaptive case in section

2.

Example 5. We illustrate the contrast between our adaptive and non-adaptive Laplace-
type estimators for the case of estimating the mean. To obtain simple expressions for the
quasi-posterior, we consider the {5 penalty. Let my(#) be the uniform prior, and consider the
constraint g(f) = 6*. Then 7, (§) ~ N(6*,n"')\,?). Suppose that X; ~ N (6,0?), so that
X=n1Y" X;~ N (0,0°n7"). Then the posterior distribution of 6 is

) N<%X+n)\i9* 1 )

n 2 ' 2
=+ nA, S+ nA;

Recall that 6, denotes the true parameter, which may differ from 6*. Write X, \%;» Y, if
pBL, (X, Yn) = op (1), where pgr, (+) metrizes weak convergence.

First consider the non-adaptive prior. Under correct specification, where 0* = 6, if
Ap — o0, then

Ay (0 = 6o) | X o> N (0,1).
In contrast, under misspecification, where 6* # 6,

A/ (0 = 6o) | X, v\% N (Ay/n (6% = 6p) 1)

Therefore, the asymptotic bias diverges under misspecification.
Next consider the adaptive prior using X as the initial estimate. Then the estimated

constraint is § = X — 6%, and the adaptive prior is m, (8) ~ N(6* (X — 6%)2)\-2), resulting
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in the posterior

o1~ N LY 4 (X —6%) 720 1
! n (X —6) PN T (X =)tz )

Now under correct specification, if \,, — oo, then

A/ (0 = B) | X Voo N (o,n (X —90)2> .

Note that the variance differs from the non-adaptive case due to the randomness in the

estimated constraint §. In contrast, under misspecification, if A,/y/n — 0, then

Vi (0 —6o) | X v N (Vi (X = 65) ,0%).

This is the limit we would obtain in the standard unconstrained case. In particular, the
asymptotic bias remains stochastically bounded, unlike the non-adaptive case, and the rate

of convergence is 4/n instead of \,\/n.

4 Generalizations

In this section we discuss several generalizations. They are far from exhaustive and only

serve to illustrate the scope of additional directions.

4.1 Estimated and Simulated Constraints

In empirical applications sometimes the constraints ¢ (#) can only be estimated or simulated
by some g, (#). The next assumption allows for either. For example, we can allow for

simulated constraints
. S(n)
9n (0) = S(”)i Z g(gjae);
j=1

where the {;’s represent simulation draws and S (n) denotes the number of simulations,

which depends on the sample size. Constraints can also be estimated from sample data:
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gn (0) = P,g (-,0) where P, is the empirical measure.
Assumption 11. (a) supeg [gn (0) = g (0) [ = 0op (1). (b) V/nga (6) = O, (1). (¢)

sup  v/n(gn (0) — g (0) — ga (60) + g (60)) = op (1). (24)

16—60]<o(1)

While ¢ () is required to be smooth, g,, (f) can be discontinuous, which makes it difficult
for gy, (A) to be exactly zero in finite sample. We therefore relax the constraint to | g, (s) | <
€n, for €, = op(n™Y?), and define the constrained estimator using estimated/simulated
constraints Og as Q,(fg) > SUDgeo: g, (0 [<en Qn(0) —op(n~1). The next theorem demonstrates

that fg is consistent and gives its influence function representation.
Theorem 8. Under Assumptions 1-5, and 11,

Vi (0s — 00) =R (R'HoR) ™" R'A, 4, -
- <I — R (R,H()R)_l R,H0> G(] (GE)G())_I \/ﬁgn (60) + op (1) .

Remark 6. Note that fg has an influence function that differs from the one in (8) due to
the presence of the additional second term in (25), which captures the additional variation
from the estimated constraints. Unless these constraints satisfy Var (g, (0)) = 0, or they
are asymptotically negligible in the sense that \/ng, (6y) = op (1), then the information
matrix equality will generally not hold and quasi-posterior quantiles cannot be used to form
asymptotically valid confidence intervals in the sense of (15). However, typically in (25),
(Mg, V/egn (00)) v Z = {24, Z,,}, which can be consistently estimated by some Z =
(Zn, 2,5} % Z. Then using any R 5 R, H % Hy and G 5 Gy, (25) can be consistently

estimated by

AL A AL A ~

R(RAR) 'R Zx — (I - RIRHR)'R'H)G(G'G) ' Z,,.

Analogs of Theorem 4 and result (14) of Theorem 5 can also be developed with estimated

or simulated constraints.
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4.2 Constrained Method of Moments

Let £, (0) = €(0) + op (1) e R, g, (0) = g (0) + op (1) € R% be two sets of sample moment
conditions. Instead of weighting all moment conditions using the inverted covariance matrix,
one might wish to enforce g, () = 0 while applying sample weights W, = W, + op (1) to
¢, (A). This is a special case of section 4.1 and (25) with Q,, () = ¢, () Wi, (),

0

Q(6) = L(O) Wit (8), Mg, = L(6) Wiv/ta (), and L (8) = ~((0).

An alternative to section 4.1 is combining ¢ with a GMM objective function, and defining

05 as Qn(0s) = supgee @n (0) —op (n™1), where for W = diag(VVl, )\nVVg), Wg =W,+o0p(1),

A

Qn (9) =~y (9)/ VAVlfn (9) — An (9)/ ngn (9) = - (En (0)/ 9n (9>/) w (ﬁn (9)/ dn (9)/) .
Without optimal weighting, the information matrix equality does not hold in this model,
but the usual sandwich variance estimate will continue to provide consistent inference.

Denote Ly = L(6y), and Hy = LoWL},. Using L5 Ly, G5 Gy, and H B Hy, the
sandwich formula approximates (25) by, for M = (f) G), H=LWL, A=LW2ZzZ,

(Nrvwar) (W2 + 0 GW,2,) = (B +0GW,¢)  (A+2,611,2,).

where (2, Z,) vé% N(0,Q), Q = AsyVar (vitly (69) ,v/ngn (65)). Let A, — o0 and the
parameters be identified: rank (Ly Gy) = dim (). There are two cases to consider. In case
(1), rank (Go) = dim (#) and GW,G" is invertible, then £, () are asymptotically negligible,

and Wg can be optimally chosen for valid posterior inference, since

(i + MCW,e) (A n6,2,)
= (W GW,E) T (A G2 L (G,e) oWz,
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In case (2), if rank (Gy) < dim (), then (25) will apply:
. NN I e AN p
<H + AnGWgG’> <A + )\nGWng> o (25).

A\

~ ~ ~\/
To show this, let J = diag ()\glldg, Idl) and B = (G, R) , and manipulate the LHS as

A A A A AN A A A -1 L /. A Al A
B (J(BHB + \BGW,G'B'))  JB (A +0GW,2,)

-1

R (G'GYW, (G'G) 0 (G'GYW, 2,
W RHG R'HR R'A

Completing the calculation shows that this indeed does not depend on Wj:
R(R'HR) ' RA — (1 ~R(RHR)™ R’H) Go (GoGo) ™ 24 5o (25).

Remark 7. The bootstrap (multinomial or wild) can also be used for inference: (2, Z,) =

~ A ~ A A ~

V(€ (0),9:(0)), where for example, gi(0) = g.(X;,0), £;(0) = £,(X;,0), or £3(0) =
nTt Y (X, 0), for idd. & >0, BEF = 1.

Remark 8. It is often of empirical interest to conduct inference on a function of the pa-
rameter and the data. Suppose Q, () = Q,, (61) and 659 = 1 (#1,0) is the policy function of
interest, which is estimated by Oy = n( X, 91) Setting g, (0) = 02 —n (X, 61) in the present
framework enables inference for \/n(6y — 05) as part of \/n(0 — ).

Remark 9. When the constraints are estimated with noise, statistically a more efficient
estimator can be obtained by not enforcing the estimated constraints but by instead stacking
up the estimated constraints with the other sample moment conditions implied by the model.
A joint generalized method of moment estimator can be obtained by using the estimated
joint variance-covariance matrix of (¢, (6y), g, (6o)). The choice of enforcing g, (6y) instead
of weighting it according to its sample variation needs to be based on a priori reasoning
that is beyond merely achieving statistical efficiency. In the special case when (¢, (6), g, (6))

jointly exactly identifies 6, there is no difference between optimally weighting and strictly

28



enforcing the moments. The case with known constraints g (6) is also a special case of section

4.1, 4.2, and optimally weighted GMM when Var (1/ng, (0)) = o(1).

4.3 Lagrange Multiplier Representation

An alternative to Theorems 2, 3 and 8 is by means of a Lagrange multiplier representation of
the estimator. The Lagrange multiplier representation has the form (Silvey (1975), Sections

3.10.2, 4.7.3)

—H() + G0G6 G() \/ﬁ(é - 00) . _Anﬂo (26)
e 0 A\ 0

where Hy and G are as in Theorem 3. The matrix on the left hand side is non-singular
(Silvey (1975), Appendix A).
It can be verified that equation (8) asymptotically satisfies (26), together with A defined

as
A=~ (GLGo) T G (I — HyR(R'HyR)™ R’) Ao

The second set of rows in (26), hold by definition of (8) and that GjR = 0. The first
set of rows of (26) can be written as Go\ = — ([ — [—IOR(R’HOR)f1 R’) Ay g,- Or by the
definition of A\, Gy (GyGo) ' Gy (I — HyR(R'HyR) ' R') = (I - HyR(R'HoR)"' R'). This
can be verified to hold by replacing Gy (G4Go) " Gy =1 — R(R'R) 'R

When the constraints are estimated in Theorem 8, (26) is replaced by

—Hy + GoGly G .y -
0 (O] 0 \/ﬁ( 0) _ ,0, ' (27)

Go 0 A —v/ngn (60)

The second equation is now replaced by G{\/n (é — 90) = —+/ng, (6p), which corresponds to

a mean value expansion of the constraints y/ng, (6) = 0. It has also be shown that (27) is
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asymptotically satisfied by (25) together with

A= (GiGo) ' G (1 — HoR(R'HoR)™" R’) Ao
(28)
(GG G (Hy — GoGl) (1 ~ R(R'HoR)™ R’H0> Go (G1Go) ™" /ngn (60)

4.4 One-Step Iteration

With an /5 penalty the one step iteration methods in Gallant (1987) and Robinson (1988)

apply. Let 0 = 6, + Op <\/Lﬁ> be an initial \/n consistent estimate of y, and consider the

following iteration:

where for Gauss-Newton iteration,

i %en (6). @=LwLl. ¥=Lie, (9).

Using Taylor expansions and calculations similar to the previous section we will show that

the one step estimator has the following influence function representation.

Theorem 9. Under Assumptions 1—/ and 11, v/n (0~ — 6y) = (25) + op (1) .

5 Monte Carlo

We investigate the empirical coverage frequencies of our posterior quantile intervals using
the instrumental variable quantile regression example in Chernozhukov and Hong (2003).

Our data are generated according to

i=1

1 3
Y=o+ DBy + u,u = R <1+ZD(i)> e,D ~ expN(0,1I3),e ~ N(0,1)
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a
Define 0 = and Z = < 1 D ) The objective function is the GMM objective:

B
. 11 & ' 1 &
0u(0) = —1 (72”%(9)) W, (0 (WZmzw))
1 m;(0) = Z (% —1(y; < 04+Dl/ﬂ)> 2

We use an adaptive Laplace prior of the form

4

AN,
7-‘-(9) — H (TJ) e Ant;10;]

7=1

The adaptive weights are w; = for some v > 0. We fix a particular value of A\,

T
J

that satisfies \A/—% — 0, \,n?71 = 0, and A\,n0"Y2 — 0 and use the Metropolis Hastings
algorithm to construct our Markov chain for §. The Metropolis Hastings Sampler has the

following steps:
1. Initialize 8©) = (Z'2)™" (Z2'Y).
2. For periods b =1 to B:

(a) For parameters j =1 to 4:
: (b—1)
i. Draw §; =0, "+ N (0,0]2-)
b—
g woe(6g)
ej(bfl) wp1—p <9§b71)’€j>

il. Hj(-b) = where p (05.{’_1)7 &) = min ( exp(Qn (&) (&) 1)

eap(Qn (0 )m(0" )

The standard deviations o; of the transition kernel are initialized to 0.1 and then adjusted
every 100 periods to maintain an acceptance rate of approximately 50%. After achieving
the desired acceptance rate, we grow another chain for B periods while keeping o; fixed.
The quantiles 0% of the distribution of #’s drawn from this chain are used to form confidence

intervals.
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Table 1 shows the empirical coverage of the equal-tailed and symmetric posterior quan-
tile intervals averaged across R = 1000 simulations. The equal-tailed interval is given by
(9; /2> o7, /2), and the symmetric interval is given by <9f/2 — Cl_a, 61"/2 + cl,a) where ¢;_,
is the 1 — « percentile of the absolute value of the demedianed posterior draws.

The nominal level is 95%. We fix a9 = 1, ) = [ 000 ] and use )\, = n'/4
and v = 1. We grow the chain for B = 30np periods and burn in the first ¢t =

S5np periods. We also report the normalized posterior chain average standard deviation

LA (01 () = O @)) / (21 = 7).

Table 1: Adaptive IV Quantile

Equal-tailed Symmetric Standard Dev

o 0.949 0.952 1.204
Bo 0.999 0.999 0.285
Bos 0.999 0.999 0.301
Bos 0.998 0.999 0.311

n = 2000, \, = n'/*, 1000 simulations.

Notice that the nonzero coefficient has close to 95% coverage while the zero coefficients
have close to 100% coverage. This is due to the quasi-posterior’s faster rate of contraction
along the correctly specified constraints than along the misspecified constraints (see Theorem
7).

To investigate the empirical coverage of the constrained IV Quantile Regression estimator,

3
(1 + Z Dm) €
=1
1 03

where D ~ expN(0, I3), e ~ N(0,1), X = ( Xy Xs ) ~ N(0,Q2), Q= . The
03 1

we consider a data generating process of the form

Y = 90’1 + Xge(),g + X3(9073 +u,u =

o] =

true 6y = [0.5,0.5,0.5]".
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Define Z = < 1 X > Our moment conditions are given by

We first use an adaptive Laplace prior of the form

s )‘nwj —An ;05|
m0)=]] = el

Jj=1

where w; = W The empirical coverage frequencies for the equal-tailed and symmetric
intervals are shown in Table 2. We use n = 2000,a = 0.05, R = 2000, B = 30np, and the
number of burn-in periods is ¢ = 5np. Notice that the empirical coverage is close to the
nominal level of 95% for all three parameters, and the equal-tailed interval gives slightly

higher coverage than the symmetric intervals.

Table 2: Adaptive IV Quantile

Equal-tailed Symmetric Standard Dev

601 0.944 0.942 1.120
0, 0.949 0.948 1.208
05 0.957 0.954 1.228

n = 2000, \, = n'/4, v = 1, 2000 simulations.

Now we would like to nonadaptively impose a nonlinear constraint of the form 63 +

sin (03) = 1 + sin (1). Our prior then becomes

7 (6) oce~AnVnlg(0)]
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where g (6) = 63 + sin (65) — (3 + sin (3)). Table 3 shows the empirical coverage frequencies

and normalized posterior chain average standard deviation for A\, = n'/4, n = 2000, R =

2000, and t = 5np. Both the equal-tailed and symmetric intervals give coverage close to the

nominal level of 95%.

Table 3: IV Quantile with Correctly Specified Constraint

Equal-tailed Symmetric Standard Dev

01 0.952 0.949 1.131
0, 0.968 0.966 0.930
05 0.968 0.965 1.052

n = 2000, \, = n'/% 2000 simulations, g(f) = 6% +

sin (03) = 1 + sin (3).

As a point of comparison, we also consider a model without the constraint, which effec-
tively sets () = 0. As seen in Table 4, there is some slight over coverage, and the standard

deviation is higher. This is to be expected since imposing the constraint reduces the size of

the search space for the MCMC routine.

Table 4: IV Quantile without Constraint

Equal-tailed Symmetric Standard Dev

01 0.952 0.950 1.126
05 0.957 0.956 1.214
05 0.972 0.971 1.236

n = 2000, 2000 simulations.

Now suppose that our constraint is misspecified: ¢(6) = 0.5. If we continue to use

a nonadaptive prior, the asymptotic bias diverges due to the nonvanishing penalty term,
which results in severe undercoverage, as shown in Table 5.

Suppose we instead use an adaptive prior:

An -
m(0) o eimlg(@ 0.5|

Table 6 shows that the empirical coverage frequencies of the equal-tailed and symmetric

intervals are close to the nominal level of 95%.
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Table 5: Nonadaptive IV Quantile with Misspecified Constraint

Equal-tailed Symmetric Standard Dev

01 0.826 0.812 1.398
05 0 0 0.841
05 0.381 0.407 1.468

n = 2000, 2000 simulations, g (#) = 0.5.

Table 6: Adaptive IV Quantile with Misspecified Constraint

Equal-tailed Symmetric Standard Dev

01 0.949 0.950 1.127
05 0.946 0.944 1.227
05 0.970 0.965 1.234

n = 2000, A, = n'/*, 2000 simulations, g (6) = 0.5.
6 Example: Conditional Moment Restrictions

We consider estimation of a conditional density
fxe w1, 00)) (29)
subject to conditional moment conditions
0= /mj(xt,xt_l, O(2)) f(¢ | 2e—1,0(1)) day (30)

for all z;_; and for j = 1,...,J. The context is asset pricing for an endowment economy:

6.1 An Endowment Economy

Let C} denote the annual consumption endowment. Let
Rst = (Pst + Dst)/Ps,t—l (31)

denote the gross return on an asset S that pays Dy per period and has price Py at time ¢.

Prices and payoffs are real.
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The constant relative risk aversion utility function is
U=)» 0 +t— 32
2, <1~y) %)

where 0 is the time preference parameter and v is the coefficient of risk aversion (Lucus,

1978). The agent’s intertemporal marginal rate of substitution is

G\
MRSt—l,t = 5 . (33)
Ci

The gross return on an asset S that pays Dg; satisfies
1 = Et—l (MRSt—l,tRS,t) . (34)

The following variables were constructed for the 86 years 1930 to 2015 as described in

Subsection 6.2 below.
e 5, = log real gross stock return (value weighted NYSE/AMEX/NASDAQ).
e b, = log real gross bond return (30 day T-bill return).
e ¢, = log real per capita consumption growth (nondurables and services).

Let z; = (s4,b,¢), t = 1,...,n, denote these data. They are presumed to follow the

trivariate model

f (xt | Tt—1, 9(1)) = N(fﬂt |Mt—17 215—1) (35)

with location parameter

Ht—1 = b() + th—l (36)

and two different scale parameter specifications, namely, VAR

Y1 = RoR), (37)
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and ARCH

Et—l = R0R6 + [dia‘g(p17p27p3)] (It—g - lut—2)(‘rt—2 - Mt—g),[dia’g(plap%p?))]' (38)

These densities require initial lags in estimation. We held out five lags so that the years 1930
to 1934 provide the initial lags and the years 1935 to 2015 provide the data for estimation.

Given the parameters 0(2) = (,0) and x, one can compute the pricing errors

el(xt, Ti_1, 9(2)) = 1- exp(mrst,l,t + St> (39)

62(.1}, Ti_1, 6(2)) = 1- exp(mrst_l,t + bt), (40)
where mrs,_; ; = log(MRS;_1:) = logd — v¢;. The pricing errors satisfy

0 =mj(x4—1,02) = /ej(ﬂﬁt,ﬂ?t—l, O2)) f(xe | 24-1,00)) day (41)

for j = 1,2 and for all z; ;. Equivalently, the pricing errors satisfy

0=yg;(0) = / [mj(xt—b 9(2))]2 f(wi—1,00)) doyy (42)

for j = 1,2, where 0 = (0(1),0(2)), and f(x,0q)) is the stationary density implied by (35).

6.2 Data

The raw data for stock returns are value weighted returns including dividends for NYSE,
AMEX, and NASDAQ from the Center for Research in Security Prices data at the Wharton
Research Data Services web site (http://wrds.wharton.upenn.edu).

The raw data for returns on U.S. Treasury 30 day debt are from the Center for Research
in Security Prices data at the Wharton Research Data Services web site.

The raw consumption data are personal consumption expenditures on nondurables
and services obtained from Table 2.3.5 at the Bureau of Economic Analysis web site
(http://www.bea.gov).

Raw data are converted from nominal to real using the annual consumer price index
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obtained from Table 2.3.4 at the Bureau of Economic Analysis web site. Conversion of
consumption to per capita is by means of the mid-year population data from Table 7.1 at
the Bureau of Economic Analysis web site.

Simple statistics for these data are shown in the first panel of Table 3. They are plotted

in Figure 1.

6.3 Implementation

The integral in (41) is computed by three dimensional Gaussian quadrature using a five point
rule for each dimension (Golub and Welsch (1969)). The integral in (42) is computed by

summing over the data, viz

+
—_

n

g;(0) = > [mj(we-1,02)]" (43)

-
Il

Parameter estimates are computed using the /5 penalty with a non-adaptive Gaussian
quasi-prior: k (Asy/ng (0)) = exp [—(nA7)(g1(0) +3 (0))]. A, = 10* was chosen by increasing
k until plots of the estimated parameters stabilized with attention particularly focused on
the stability of v and 6. The optimal choice turned out to be A, = 107.

Standard errors are computed by the method in section 4.3. Note that 2 has zeroes
as its last two rows and columns due to the fact that the parameters 6(3) do not appear in
f (:Et | 21, 9(1)) and hence € is singular. Similarly for the Hessian Hy. We estimate —H, and
Q) using the average of the outer product of the scores of (35) evaluated at §. We estimate

Go by £g(0) evaluated at 6 with (43) used for g(6).

6.4 Estimation Results

The moment conditions (42) are well known to be incompatible with U.S. data. Therefore,
what is of interest in our analysis is how the law of motion (35) is distorted by imposing
the conditions and how closely estimates align with partial equilibrium generalized method
of moments (GMM) estimates. Tables 1 and 2 present estimates for the VAR and ARCH
models, respectively for both unconstrained and constrained by (43). Simple statistics for
simulations of x; = (s, b, ¢;) of length 1000 are from these four estimated densities together

with simple statistics for the data are shown in Table 3.
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Table 1. VAR Maximum Likelihood Estimates

Unconstrained Constrained
Parameter Estimate Std. Dev. Estimate Std. Dev.
bo 1 0.12243 0.11929 -0.35499 0.16911
bo 2 -0.02076  0.07092 0.02931  0.07226
bo 3 0.05274 0.08378  -0.28397 0.17012
B -0.10189 0.13523 0.03153 0.17053
Bs 1 0.13075 0.07228 0.21259 0.07579
B3 0.43096 0.08202 0.11228 0.15240
B -0.00097 0.13280 0.12268 0.19084
b2 2 0.92498 0.05263 0.83099 0.08204
B3 o -0.01672 0.07313 0.43586 0.12731
B3 -0.32357 0.11952 0.02162 0.19237
Bs3 0.09940 0.07222 0.14567 0.07383
B33 0.31255  0.09662 0.07672  0.19259

Rop1  0.82012 0.08282  0.98122  0.13440
Ro12  -0.00160 0.02591  0.00705 0.03570
Rooz  0.36936  0.03005  0.38672  0.04490
Roi3  0.06736 0.04896  0.12703  0.10800
Roos  -0.00216 0.03939  -0.09160 0.06211
Ross  0.56863 0.04459  0.89382 0.10618
5 249375  2.43299
5 0.99989  0.07807

Maximum likelihood estimates for the density (35) with location (36) and scale (37). (left two columns)
and same subject to moment conditions (43) (right two columns). The data are as in Figure 1. For the
constrained estimates A,, = 107 and the 0%, 25%, 50%, 75%, 100% quantiles of the conditional moment
conditions (41) evaluated at {mt,l}?:(;l are -1.62e-4, -2.03e-5, 7.70e-6, 3.81e-5, 8.74e-5, respectively.

The primary distortion caused by imposing (43) occurs in the location parameters with
little effect on scale parameters. While inspection of Tables 1 and 2 suggest this conclusion,
it is readily apparent from inspection of Table 3.

Table 4 verifies that our estimates of the CRRA parameters v and 4 are in line with
a partial equilibrium analysis. One might remark in passing that an assessment of the
distortion of the law of motion cannot be obtained via a partial equilibrium analysis but can
be with the methods proposed in this paper.

All estimates were computed using the Chernozhukov and Hong (2003) method with
support conditions v > 0 and 0 < ¢ < 1 and 500,000 repetitions after transients have died

out. The modal value of these repetitions is the estimator reported in the tables.
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Table 2. ARCH Maximum Likelihood Estimates

Unconstrained Constrained
Parameter Estimate Std. Dev. Estimate Std. Dev.
bo 1 0.11492 0.13225  -0.35825 0.15658
bo,2 -0.05429 0.06187  -0.03955 0.06843
bo 3 0.03479 0.08792  -0.24276 0.17066
B -0.13287 0.16147  0.02529 0.14427
Bs 1 0.10029  0.06965 0.17427  0.07920
B3 0.41579 0.08997  0.10771 0.13658
B s 0.00263 0.14677  0.12602 0.17608
ba 2 0.87614 0.05253 0.85400 0.08317
B3 o 0.05831 0.06666 0.52984 0.12676
B3 -0.32081 0.11486 0.01699 0.17895
Bs3 0.06062 0.06961 0.11634  0.09260
Bss 0.21388 0.10752 0.07236  0.19473

Ro11 0.81061 0.10965  0.92173 0.12753
Roq2 -0.00014 0.02554  -0.01669 0.02900
Ro2.2 0.28764 0.04132  0.31842 0.04763
Rp13 0.03719 0.05189  0.10892 0.08646
Roo3 0.07668 0.04901  -0.01727 0.07508
Ro33 0.51085 0.07393  0.85212 0.13224

P -0.15876 0.26488  0.00562 0.32288
P2 -0.85521 0.19173  0.50124  0.20277
3 -0.43945 0.13356  0.17750 0.22826
~ 2.11113  1.82603
5 0.99907  0.05057

Maximum likelihood estimates for the density (35) with location (36) and scale (38) (left two columns)
and same subject to moment conditions (43) (right two columns). The data are as in Figure 1. For the
constrained estimates \,, = 107 and the 0%, 25%, 50%, 75%, 100% quantiles of the conditional moment
conditions (41) evaluated at {%4}?:61 are -4.07e-4, -4.43e-5, -7.60e-7, 2.47e-5, 9.67e-5, respectively.
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Figure 1. Annual Stock, Bond, and Consumption Data The data are real,
annual, per capital consumption for the years 1930-2015 and real, annual gross stock
and bond returns for the same years from BEA (2016) and CRSP (2016). The first five
years are used to provide initial lags and are not otherwise used in estimation. These
observations are to the left of the vertical dashed line. See Subsection 6.2 for complete
details.
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Table 3. Simple Statistics for the Data and Estimates

Series Mean ]%%av?gté}g% Skewness Igl}%%%%bls
Data

St 0.09922  0.16802 -0.90325 0.90152

by 0.03348  0.02905 0.77644 0.13625

ct 0.02276  0.01584 0.16411 1.35363
Unconstrained VAR

S¢ 0.09395 0.17571 -0.01951 0.32526

bt 0.03093  0.02763 -0.09774 -0.08085

Ct 0.02099  0.01682 -0.21009 1.31076
Constrained VAR

St -0.03984  0.19318 0.02980 0.10306

by -0.01682  0.03916  0.27078 -0.56675

c -0.00473  0.02438 0.04412 0.07359
Unconstrained ARCH

St 0.09583  0.17469 -0.03754 0.29633

by 0.02408 0.03195 1.51407 10.4417

¢ 0.01994 0.01637 -0.24259 1.58554
Constrained ARCH

St -0.06836  0.18096  0.00821 -0.01557

by -0.04724  0.03887 0.30045 -0.56528

¢ -0.02105  0.02560 0.07442 -0.00714

The first panel are simple statistics of annual data for the years 1935 through
2015. sy is log real gross stock return. b, is log real gross bond return. ¢
is log real per capita consumption growth. The second panel are simple
statistics computed for a simulation of length 1000 from the VAR density at
parameter estimates shown as "Unconstrained" in Table 1. The third panel
is the same as the second but evaluated at the "Constrained" estimates
shown in Table 1. The fourth and fifth panels are the same as the third and
fourth but for the ARCH estimates in Table 2.

Table 4. GMM Estimates

Just Identified Over Identified
Parameter Estimate Std. Dev. Estimate Std. Dev.
~ 1.5708  303.73 1.9877  0.58828
) 0.9999  6.9116 0.9999  0.01223

Generalized method of moments estimates (GMM). Data is as in Figure 1, denoted S, By, and C; for
gross stock returns, gross bond returns, and consumption growth, respectively. Just identified moments
are myy =1 —MRS;_14S;, may =1—MRS,_1 By, where M RS,_1 . is given by (33). The additional,
overidentifying moments are ms ; = log(Si—1)mi ¢, may = log(Bi—1)mi ¢, msy = log(Cr—1)ma, me s =
log(S¢—1)ma,:, myy = log(By—1)mas, mg; = 1og(Cr_1)ma.
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7 Conclusion

This paper demonstrates the validity of using location functionals of the quasi-posterior
distribution to perform inference on functions of parameters defined in terms of constrained
optimization. We have considered the ¢, /5, and ¢y penalty functions and both nonadaptive
and adaptive priors. The nonadaptive methods require constraints to be correctly specified,
while adaptive methods provide valid inference even under misspecification of constraints.
We also consider extensions allowing for simulated constraints and constraints that depend

on the data.
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A Commonly used symbols

hvvor i () sup, | [“pn (h | X,) dh — [*poy (R) dh| = op (1),
1F ) =9()]a JIR|«Lf (h) = g (h) |dh for fixed 0 < a < 0.
0,(0) = argming.g [0 — ¢ projection of @ onto O.

Q. (0) = Qn (0) — ’\Z’)Ln—f”p ijl lg; (0) | non-adaptive penalized objective

Qn(0) =0Q,(0)— ’\i—*n/ﬁp SM tomgm ()P adaptive penalized objective

Wy = | gm(é)]_7 for some v > 0 adaptive weights using 6, a preliminary estimate of 6.
b, = min (1, d,) d, = ’\?‘n—f”p (non-adaptive) or d,, = V’Tfnp (adaptive)
QF (0)=0b1Q, (0) rescaled penalized objective
QT (0) =0b,'Q(0) — bgl)‘ﬁfp Zj:1|gj (0)|P  limit of rescaled non-adaptive penalized objective
Q" (0) =b,'Q (0) — b, 28 S iy ()P limit of rescaled adaptive penalized objective
B = (Go, R)' where R'Go = 0 and Go = &J,_,
D,, = diag (A, 1y, [x_j) scaling matrix for non-adaptive posterior
D,, = diag (5\”] 7y Ik J) scaling matrix for adaptive posterior

B Proofs

Example 6. We will make use of the following analytic example to illustrate how the relevant

assumptions are employed following the proofs of Theorems 3 and 4 below:

~ 1 _
Q) = ) (92—X)27 g(0) =6, + 63,
where X = L3 X, X; ~ i.0.d.(620,1), 619 = 029 = 0. Therefore Q (f) = 63. Both Q (6)

and ¢ () are needed to identify and consistently estimate 6; and 6s.

PROOF OF THEOREM 1.

Part (a) concerns consistency of 6, which follows from standard arguments (e.g. Theorem
4.1.1 Amemiya (1985) and Theorem 2.1 Newey and McFadden (1994)).

Part (b) concerns consistency of 8%. Recall that 6,(f) = argming.g |6 —6'|. By Assump-
tion 2, for each § > 0, there exists €; (6) > 0 such that |0 —6,(0)|| > d implies |g; (8)] > €1 ()

for all j. Likewise, by Assumption 4, for each § > 0, there exists € (4) > 0 such that

47



|60 —0,(8)] > ¢ implies @ (8, (8)) —Q (Ay) < —€2(5). We may choose €(-), €2(+) to be strictly

increasing. Define €(d) = min(e; (), e2(d)) for all 4.
N

n

We first establish two preliminary results for later. Let b, = min (1,d,) for d, =

and Q. (0) = b,'Q,, (#). By Assumptions 3 and 6(a),

wupl; (0) - Q" (0) = op (1) for Q" (0)=5,Q(0) - 1, Y S g @)y (g

0e©

For the second preliminary result, for any § > 0, we shall argue for the existence of 7 (4) > 0,
such that
0% — 6o > & implies QF (67) < Q" (6o) —n(6). (45)

On the event [0% — 6y > 4, for any C' > 0, either (i) |0, (6%) — 6o > (1— %) 3 and
10, (6F) — 0% < &6, or (ii) |6, (67) — 67| > £6. By Assumption 4, C' can be chosen

sufficiently large such that in the first case (i),

Q(07) —Q(6) =Q (67) —Q (6, (0)) + Q (6, (9)) — Q (6)

This implies that

QY (07) — Q" (6) <b," (Q(0F) —Q (b)) < —b,'n(8) < —n(d).

In the second case (ii), |g; (07)] = € (£6) = €(6). Since Q(fy) = Q(67) by Assumption 4,

QY (0%) — Q" (0o) < b, dnJE(0)" < —JE(8)" = =1 (9).-
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Finally, we have

P (|07 = 0o > 0) < P(QF (07) < Q" (6) — 1 (9))
= P(Q7(07) —Q (07) < Q" (6o) — @ (B0) + Qi (00) — Q1 (07) —n (9)
_ S _ _
< P (supl; 0) - Q" ) > ") 4 P (@ (67) - Qi (0] < -
S
where the first line follows from (45) and the last line from the law of total probability.
The first term on the last line is o(1) by (44), and the second is o(1), since Q;F (0%) =
Q.5 (6p) — op (1) by definition.
Lastly we prove part (c¢). Note that both ¢* and ¢* can be written as special cases of

M-estimators ¢ that minimize posterior loss of the form:

5 nQn(6)
¢—argm1nr(¢)5fp(¢ ¢ (0)) o (0) e b

$e(O) [ 70 (6) e () dh ’

where p (u) is convex and Lipschitz with constant bounded on compact sets and is uniquely
minimized at u = 0. By the Convexity Lemma in Pollard (1991) and Theorem 4.1.1 Amemiya
(1985), it suffices to show that T', (¢) = T'(¢) + op (1) for each fixed ¢, where I' (¢) =
p (¢ — ¢ (6p)). For this purpose, note that for C' denoting a generic constant,

Jo 16— 6om (8) "2 dp <C6+ wa Bo)>6 0 (9) ¢ (Qn(0)=Qn(00) gy

T, (¢)—T(¢) <C
T () =T (9)] Jo w0 (8) @@ dp Jiy 70 (6) €™(@n@=@n @) g

It then suffices for the last term to be op (1). Separately, we bound, w.p.a. 1, nb, — 0,

(4) = o (0) o(@n(0)=Qn(00)) 79 — / 7o (6) o1bn (@7 (0)-Q5 (00)) g
10—00]>3 16—00]>6

< Cemba(=n(0)+op(1) < (rp—nbun(6)/2

For the denominator, there are three cases. First suppose d,, converges to a positive constant.

Applying (44) twice and using the fact that @ (6) and g (6) have bounded derivatives,

sup @y (0) = Q7 (00)] < Az + 0p (1)
16—60[|<Aq
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for some Aj, Ay sufficiently small. Then w.p.a. 1,

(B) = /@wo (9) o(@n(0)=Qn(90)) 79 > /6 s 0 (6) enbn(—A2top(1)) 5 CA{('e—nbnAg/Q'
—0o| <A1

Therefore w.p.a. 1, for A, sufficiently smaller than 7,
(A)/(B) < CAembn2=82/2) __, ),

Second, suppose d,, — 0. Then, similar to the first case, we can find Ay, A, sufficiently small

such that

sup  [Qyr (0) — @, (60)] < Ay + 0p (1)

[60—6ol|<A1dn

_— (B) > / o (6)) enb"(_A2+OP(1))d49 > CAfdfe_nb"A2/2.
”9790H<A1dn
By Assumption 6(a), w.p.a. 1, for A, sufficiently smaller than 7,
(A)/(B) < CATEd Kenbnn/2=82/2) __,

Finally, suppose d,, — o0. Then we can find A, Ay small enough such that

sup Qy (0) — Qyf ()] < Ay +0p (1)

1000 <A1dy /P

— (B) > / o (0) enbn(—A2+0p(1))d9 > CA{(df/pe_Nb"AQ/Q.
16—60]<A1dy P

Therefore, w.p.a. 1, (A)/(B) < C’AIKd;K/pe—nbn(nﬂ—Az/?) — 0. -

PROOF OF THEOREM 2.

Consider first the case when Hj is nonsingular. Let h = y/n (6 — 6p). Note that Theorem
1 in Sherman (1993) goes through verbatim under constraints, since its condition (i) holds
when H, is nonsingular. Hence h = \/n (6 — 6y) = Op (1).

Define h* = arg maxy,.(g,+h/m)=0 L0, — %h’Hoh, and h* = R(R'HyR) ™ R'A,p,. By

the same arguments as those following Theorem 9.1 of NM 1994, h* = h* + op (1). Next
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Op <\/iﬁ> since h = Op (1). Also Gyh* = 0.
By definition of h, for T, (h) = n (Qn (90 + \/Lﬁ) Qn (6o)

Invoking Assumption 5 on both sides,

Taylor expanding g (6o + h/y/n) = 0 shows that (Go + Op (%)) h = 0, implying G)h =

=T, (h*) —op (1).

/
An 0o

1-
h — §h’Hoh > A/

n,0o

1 .
h* — §h* H()h* — OP( ) A/

n,00

1 .
h+ — §h+ H0h+ — Op (1) (46)

If we write 7 = h — h*, then this can be rewritten as

1
—i] Hofj — A

5 ’17 + 77],H0h+ < op (1)

n,0o

Let B = (Go, R)', v = (v} ) = Bij, 7= B0, B~' =[G (GyGo) ', R(R'R)"']. Then

1 ! I
~0'B""HyB™'o— Al , B~'o+ 0B " Hoh™ < op(1). (47)

Since vy = Gf) (h — h™) = Op (\%) = op (1), this translates into

1 _ _ _ _
~T (RR) " RHyR(R'R)™ 0, — ALy R(R'R)™ 0, + 0y (R'R) ™ RHoh* < op(1). (48)

Using the definition of A* this reduces to

1@; (RR)""RHyR(R'R) "5, <op(1),
or Uy = op (1), so that © = op (1), 7 = op (1), h = h* + op (1).

Next we allow for singular Hy in Theorem 9.1 of NM 1994. Note that by consistency,
g (0o + h*/y/n) = 0 implies that G'h* = 0, where G = G + op (1). We can then construct
R, continuously as a function of G, such that R'G = 0. This is possible since R can be
the basis of the null space of R, whose construction through the Gauss-Jordan process to
an Echelon form is easily seen to be a continuous function. By the continuous mapping

theorem, R = R+ op (1), and since B = (G, R)/ is nonsingular w.p.c.1, B~ = B~1 +0p (1).
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The same arguments as in Amemiya (1985) (pp21) for constructing h* can be applied to h*:
h* = R (R'HoR) ™ R'Ang, = h* +o0p (1), (49)

Finally, we resolve of the requirement of nonsingular Hy in Theorem 1 of Sherman (1993).
Replace (46) by (without using knowledge of h = Op (1))

;T ]-—/ T / + 1 +/ + 2

naol = ' Hoh = A, g0 = Sh Hoh™ —op (1+ |R)?) (50)
Now let o = B (h — h") for B = (G, Z_%)/, G'h =0, B = B+ op(1). The same manipulation
above (replace (Go, R) by (G, R) if necessary) then shows that

1 _ _
50 (RR) " RHoR(R'R) ™ 02 < op (1+[22)) (51)
which also implies 7, = op (1), and hence h* = h* + op (1) = Op (1). Note v; = G4h and
G'h = (Go+op(1))'h = 0 imply that Gyh = op (h), or that |0:]* = op (|a]? + |B2]?).
Therefore 01| = op (|v2]). Finally, taylor expanding g (6 + h/y/n) = 0 with h = Op (1) in
turn implies ¥, = Gjh = O, (\%) ]

PROOF OF THEOREM 3.

Define u = (uy,uz) = By/n (0 — é), representing directions orthogonal to and along the
constrained subspace. Also let h = \/n (5 — 60). Then by Assumption 5 and Theorem 2,
uniformly in |u/4/n|| < o (1),

n (@n (9 s Bli> 0, (9)) - L HB Y
N 2
+ Ay B 'u— I HoB ™ u + op (1 + [[ul?) (52)

n,0p

_ _%U, (B HoB ™) u+ A, 4 FGo (GyGo) ™ uy + op (1 + [uf?)

n,0o
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for F=1— R(R HOR)_1 R'H,y. This applies the local expansion from Assumption 5 to

Qn(é + B_lun_l/g) = Qn(eo 4 hn /2 + B—lun—1/2) and

Qn(0) = Qn(By + hn~?).
Also, for G* = Gy + Op (u/y/n), Taylor expand the penalties to write
J
NG
j=1

J
— X Z
j=1

p
— 1 U
gj(e+31%)\ Y

Go; B 'u+ O, (u;B'u//n)

J
:,\QZ

Now, consider the case p < c0. By the definition of u* = By/n (0* — 9_),

n(Qn (6 + B 'u"/y/n) —Q, (0)) =op(1).

where we have used B~' = (G (GLGo) ™" R(R’R)_l) and G, Go (G4Go) " u = uy;. Since
0% =0+ 0,(1) and § = 6y + 0,(1) by Theorem 1, |u*//n| = 0,(1). This together with (52)
and (53) imply that w.p.c.1, 39 > 0 such that

p
o * = Op (1) [uf | + Afui +o0p (D) uf +op (Dug | <op(1). (54)
Given that the last term on the LHS is positive, (54) implies that
dlut]* = Op (1) Juf | < op (1). (55)

which in turn implies that |u™| = O, (1). Then (54) implies ||u| = op (1). If not, then
since \? — oo, the LHS is larger than any fixed number infinitely often with positive prob-

ability, contradicting (54). Finally, use (54) again to conclude that ||uj | = op(1). Then
Vi (6% —8) = Bt = op (1),
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For the £, penalty, 07 satisfies

u1j + 0, (u1) + 0p (usg)

J
Slut|* = Op (1) |uf | + ool (Z

By (55) |u™| = op (1). Then it must be that |u]|| = op (1). Otherwise the left hand side of

(56) is co infinitely often with positive probability and contradicts (56). ]

In Example 6, 0, = X, 6, = —X? Forallp < o, 0t = 0. Forp = o, 0 = X, 0] €
( p R C ﬁﬁ) V(03 = 0x) 5 N(0,1). For all p < o0, v/n (6 — 61p) =
op (1) For b = O, OIF — 910 = Oop (1) if )\n\/ﬁ — 00, and \/ﬁ (GT — 910) = Op (1) if )\n — O0.
Given data, the posterior distribution satisfies 05 ~ 7 (6y) N (X' , %), 0 = u— 0% and u ~

7 (u) e V71Ul - Posterior consistency is implied by A,4/n — 0. For p = oo and uniform
: 1 1

7 (u), u ~ Uniform <—m, Wﬁ>

PROOF OF THEOREM 4. Let 7y (v) = m (6 + B™'D,'v/+/n), and 1y = mo (6). Denote

H, = D,B\/n (6 —90),

J P
w(®) =n (Qu 0+ B D, v/vn) = Qu (9)) + 3 Mg, (§+B D ) (57)
Jj=1 \f
Then we can write, with p, (v|X},) = 7o (v) exp (w (v)) 1 (v € H,),
7’U Xn —
o (V| X,) = % where C,, = / Do (V| A,) do. (58)
We will show that for any finite o > 0,

Au = [ Iol*lp. 016,) = 2 (0)ldo = op (1), (59
where for v; € R’ and v € RE= 5% () = mpe 2= X’ Algo let Cy =

[ 52 (v) dv = mg (27T) * det 1X|V2C,.
Showing (59) is sufficient to prove the theorem. To see this, note that, for p¥ (v) =
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P () /Con,
/ o100 (0] X) — 2 (0)]dv = B, (60)

where we can bound

B, = / o]

The second term on the right-hand side is op(1) because by (59), |C,, — Co| = op (1).

dv

N

Ch _
Do (U|Xn) - C(_pzo (v)
0

C,—C
A n o0
[

[ 11z @

As a preliminary step to establishing (59), we show that it is enough to show convergence
when the integral over v in the total variation of moments norm is restricted to a certain

n-dependent subset of RX. Given any ¢ > 0, find § > 0, such that w.p.c.1,
ID M| > v/nd = |6 — 0] > 20 = || — 6|| > 0,

Then just as in the proof of Theorem 1, for any 6 > 0, there exists (5) > (, such that

10 — 60| > 6 implies QF (0) < Q" (6o) — 1 (9)
Note also that § = 0, + Op (\/Lﬁ), g () = 0 imply that [Q; (6F) — Q;f (6p) | satisfies

b:11Q (07) — Q (60) | + op (1) = op (max (\/Lﬁ m—%)) +op (1) = op (1).

Then on an event sequence such that || — 6| > 0, w.p.c.1,

(@020 (9)) _

9

and hence,

/ 10]°F, (] &) dv < Cemmon(9)/2 / NI — G| () dO = op (1)
D7 o] >+/ns |6—60]>5
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Furthermore, it also holds that for any M, — o

/ [o]*p® (v) dv = op (1) s that / [o*p® (v)dv = 0p (1), (61)
[v]=Mn | Dy to|=/né

since D' = (A 11, Ix_;) and p* (v) has exponential tails.

First consider the case of p < . Let h = \/ﬁ(é— 90), h=B'D'vand F = I —
R(R'HyR)™' R'Hy. By Assumption 5, for any § — 0 sufficiently slowly, uniformly in v such
that | D, 'v//n|| <,

n(Qu(0+ B7'D 0/vn) - Q. (6))
- 1
=A 3 B™'D;'v — WHyB™' Dy v — av’Dng_lHoB_nglv +op (1+|h]?) (62)
Lo A 4 v
=~ U D\ BT Hy BT D o + A, FGo (GoGo) ! A_:L +op (1+[1]?),

as in (52). Use Assumption 2 and G§; = Go; + Op (D, 'v/y/n) to write
J ) J
N/ > g (0 + B7'D o/v/n) [P = Y (MG BT D, P
j=1 =1

J
An v
= V15 + op (l)JrOP (—||U2|2) + Op <
; ’ Vn VA

p

This follows from B! = (G, (GyGo) ™" R(R'R)™"), Gy;R = 0 and G§;Gy (GyGo) ™' v = vyj.

Because of (61) (with M, the diameter of H,,), we can focus on showing

A= [ o117, (1) — P () 1 (v € H,)|do
|B=1 Dy ol </

w0 (0 + B-'D: ') (64)

o (90)

e?® —1|dv = op (1)

-/ o157 (o)
{veHy| B-1 D5 "ol </r8}
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where we use (62) and (63) to write

! / - v ! / - / I - v
¥ (v) =A! o FGy (GGo) 1A—1—vg (R'R)™" R'HyGy (G4G) 171

1 _
~ ot v, (GhGo) ™ GhHoGo (GLGo) ™ 0y (65)
; Mo u 1H
Z 1]+Op +OP \/_EHUQH + Op +Z| 1]|p
For M, — oo sufficiently slowly,
o (5 + Binglv)
sup |¢ (v)] =op(1) and  sup e?® — 1| =op(1). (66)
o]l <M, ol <Mn 7o (6o)
Therefore,
o no(0+B~1D; v
Ami = Jorens 51070020 [V1°PY (V) %ew )= 1)dv=op(1). (67)

Because of (61), to prove (64) it only remains to show that for any M, — o,

/ o175 (0126 do = o (1). o8
HUH>MnWeanHBilD;l'U”é\/ﬁé

Using (62) and (63), write p, (v|X,) = 7o (v) exp (w (v)) for
R P g ~1p-1 M 2 o ?
w(v) = 5V D,'B""HyB™'D, v+ Op 3 +op (1) + op (|v2]?) + op 2

J
An 2
v1; + op (1) + Op (\/—ﬁ”y22> + Op <\”/Uﬁl/\ >

For some d; > 0 denoting generic small constants, we can let |[v;]| < daA,4/n for any do > 0

p

j=1

and n sufficiently large. There are two cases to consider. First, suppose on the previous

event sequence that dslvy| — \’\/—%HWHQ — c € [0,00]. Then w (v) is bounded above by

J

—6[loaf* = >

J=1

p

(1 =092 —03)v1;| +op(l) w.p.cl
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Second, suppose instead 2z ||112H2 — d3|v1| — ¢ € (0,00]. Then we replace the upper bound

with

) 010
Hoal? = 22X o+ 0p (1) wpecd (69)

In either case, (68) holds because its left-hand side is Op (M e M) = op (1) for some

M, 12 > 0.
Finally, for the case p = oo, replace (63) by ool <Hv1 + Op < 2wy |% + \‘}lﬁ )H < 1) and
the remainder term in (65) by

Y (v) = op (1 + Jv2|® + \1})\_12|]2) —ool (

n

o+ 0p (2l + ’“2)H 1) et (] > 1)

For any 6, = o(1), it is clear that the integral in (64) over ||v,| — 1] < J, is op (1). It can

then be shown that

sup 1Y (v) | =op (1)
[vll<My,|[v1|—1[=6

An 2
v; + Op <\/—ﬁ|v22 o] >H )

Then (66) and (67) both hold. To show (68), if 2= va||2 d3]v1|, we bound w.p.c.1,

since, for example

P(wl>1+&

w () < — 6 v — 0L (J(1 = 82 — 83) v = 1) + 0p (1) w.p.c.l

When 2z HUQHQ > 03] v1]|, we then replace the upper bound by (69). The same Op (M1e2Mn)
bound on (68) still holds. [

In Example 6, the localized posterior distribution h = y/n (6 — 0_) is proportional to

Lo o
exp —§h2 - 2

p
For this to be approximated by exp (—%h% — ) it is necessary that 2= — 0 so that

_ An
Ahy + 20, X ho + \/_ﬁh

Al %
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the posterior distribution can inform inference about +/n (0_ — 90).

PROOF OF THEOREM 5. We first show part (a). The result for the median (second part of
(13)) will follow from (14) with g1» = 0. For the posterior mean, define ¢ (u) = ¢ (6 + B~'u),

and write

Vi (6" = 0 (8)) = [V (0 (D, v/VR) ~ 60) p ol 6) do

0 - 0 - U1
— au/2¢>(0) /’ngv (v|A,) dv + é’u’lgb (0) / )\—npv (v|X,) dv + C,.

This is 0p(1) because [wap, (v|X,)dv = op (1) and [ vip, (v|X,) dv = op (1) by Theorem 4,

and

cl<C o Y XV do = oo (1
1l < )\2\/5"’ NG po (V] &) dv = 0,(1).

Next, we show the following conditional posterior weak convergence Delta method

Vi (6(6) = ¢ (8)) 2o N (o, NR(RHR)™ R’A) (70)

where 0 ~ py (0]|X,) and vg\;» denotes conditional weak convergence in probability.

It follows from Theorem 4 that

ORGPy

It then follows from the conditional Delta method (e.g. Theorem 3.9.11 in van der Vaart
and Wellner (1996), Lemma A.1 and Theorem 3.1 in Hong and Li (2018)) that

Vi (6(0) ~ ¢ (9)) “%’A/Bl< Ng)JE) >

which is (70). That (70) implies (14) follows a probablistic version of Lemma 1.2.1 of Politis et
al. (1999). Note that for F, , (s) = P(y/n(¢(0) — ¢(0)) < s | X,), v/n (¢F — ¢ (0)) = F, 4 (1)
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and Fogb) (1) = qT\/A/R (R'HR)™' R'A. Since Fj (s) is strictly increasing in s, Ye > 0,
36 > 0 such that Fy . (F, 3 (1) —€) <7 —6 and Fy (F,, (7) +€) = 7 + 6. Furthermore,
|F 5 (1) — F, (7)| > € implies either

Fon (Foor (T) =€) 27 = Fyn (Fyg (1) = €) = Fyoo (Fypp (1) —€) = 7

or Fy,, (F (T)+€) <T= Fy, (qugo (7) + €)= Fpo0 (qugo (7) + €) = 4. The probabilities
of both events are o (1). Thus (14) is proven.
Next we show (15). By Theorem 2 and the delta method,

Vi (6 (0) — ¢ (00)) = NR(R'HyR) ™ R'Apg, +op(1).
Then for each 7€ (0,1),

P (¢7 < 6 (00) = P (Vn (o7 — ¢ (60) <0) = P (Vn (o7~ (0)) +vn (o (0) —6(0)) <0)
=P (A'R (R'HoR) ™' R'Apg, +o0p (1) < \/A’R (R'HyR)™ R’A) =(1-7)+0(1),

since when R'OR = R'HyR, N'R (R HoR) ™" R'A,g, ~> N (0, N'R(R'HoR) " R'A) .
Next we consider the second part, where A = G{n (so that A’R = 0). Note that 6_2/292_5 (0) =
NR(R'R)” +Op< ) Op< n),%_(())—n +Op< > Therefore,

A1¢*< 6(8)) = [ v (6(D; u/vi) = 6(0)) o (16,) do

0
au/1¢ (0) /Ulpv <U|Xn) dv + Cn

(71)

/Uva v|A,) dv +

(3u2

where the 1st term is Op <\/\F> op (1) =op (1), 2nd term (7' 4+ op (1)) 0p (1) = 0p (1), and

Gl <0 [ (320 + 22l ) 0l o = o0 ()

This proves the claim for the posterior mean part of (16). The part about the posterior
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quantiles will follow from

A/t (6(8) = 6 (6)) w1/ Vi (72)

which is essentially a multivariate conditional Delta method with differing convergence rates.

By the proof of Theorem 2, Gijh = Gj/n (é—@o) = 0, <\/iﬁ> Hence U, =

An/NGY (9_—90) = op (1), namely, Uy, v~ 0. Also, Uy, = /nR’ (5— 90) = Op(1). By
Theorem 4, Viy = Ay/nGy (0 = 05) v Vi, and Vo, = v/nR' (0 = 0p) v V3. Taylor ex-
panding to the 2nd order shows that A,v/n (¢ (0) — ¢ (6)) = op (1). Hence it suffices for
(72) to show

A/ (6 (8) = 6 (60)) v V1. (73)

Define g (u,v) = 7' (uy + v1), and

e 2o (.8 (5 5)) o)

Then by a second order Taylor expansion, g, (u,v) — g (u,v). Invoke the extended contin-

uous mapping theorem (Theorem 1.11.1 van der Vaart and Wellner (1996) and Lemma A.1
Hong and Li (2018)) to claim (73):

9n (Ulna Uanvvlny ‘/Qn) Vg;\;i’) g (Ula U27 VY17 ‘/2) = 77/ (Ul + ‘/1) = n/‘/l

Note that for any 7 € (0,0.5), ¢- < 0 by symmetry of n'Vi. Then for a,, = A\,\/n,

P67 < 6(00)) = P (an (63— 6(8)) < an (6(00) — 6 () = P (@ < o (1)) = 1= 0 (1).

Similarly, for any 7 > 0.5, P (¢* < ¢ (6p)) = o(1). The proof is thus completed.
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Finally, we also show (18). Note that

nVar (¢ (0)|X,) = /n (¢ (0) — ¢ (60)) (¢ (6) — ¢ (60)) p (0] X,) dB + 0p (1)
= [0 (6 (D7)~ 6(0) (6 (D7 0VE) 6 0) e (1) o+ 0p (1)

06 (0 25(0)  26(0) [ un! 550
= ?752) /UQUépv (v]A,) dv ?752> + ?fbl) /U;\;jlpv (U|Xn)dv%l>+0n+op (1)

where %2)/ = NR(R'R)™" +o0p (1), [vathp, (v|&,) dv =% + op (1), and

2 2\ 2
|Cy] < C/ (LH + %) o (V| X,) dv = 0p (1) .
Therefore (18) holds. u

PROOF OF THEOREM 6. We first show that 6% = 6, +0,(1) by modifying the proof of The-
orem 1(b). Recall the definition of ¢(§) from that proof. Redefine d,, = A\2/n”/n = X\enP/%/n
and b, = min(1,d,). Specifically, we established two preliminary results in Theorem 1(b)
that we will show to hold in the adaptive case. The first result holds in our new context

with the following minor modification to (44):

P M
uplQ (6) = Q" (0)] = 0p (1) for Q* () = ,'Q(0) = 1,22 Y fingn O)F. (74
€ m=1

For the second preliminary result, for any 6 > 0, we shall argue for the existence of

1 (0) > 0 and a positive sequence of possibly data-dependent terms {R,: n € N}, such that
|0% — 6ol > 6 implies Q* (07) < Q7 (6o) — 1 (6) R,.. (75)

On the event [0 — 6o|| > 4, either (1) |6, (67) — o] > (1 — =) and |6, (67) — 07| < £4,
or (2) |0, (6%) — 67| > +4. In the first case, we can take, as in the proof of Theorem 1(b),

n(0) = e((1 = K71)0) — (6K ™)

and R, = 1. In the second case (2), |g; (07)| = e (+6) = €(0) for all j = 1,...,J. Since
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Q(0y) = Q(0%) by Assumption 4,
J J
QT (67) — Q" (bo) < Z|g'|_7p < —€(8)" Y Wng,| ",
j=1 j=1

We then take n(d) = €(0)? and R,, = Z}]=1|\/ﬁ§j|ﬂp-

Finally, we prove the assertion using these preliminary results:

P (H9+ — o > 5) <P (Q+ (9+) < Q" (6h) —n () Rn)
=P (Q"(67) — @ (6%) < Q" (60) — Q;t (60) + Qs (60) — Qi (6%) — 1 (8) Ry,)
n(9)

<P (323\@2 () —Q* ()] > TRn> + P (QI (67) = Q. (00) < —@Rn) :

where the first line follows from (75) and the last line from the law of total probability. It
remains to show that the two terms on the last line are o(1). In case (1) above where R,, = 1,
this follows from the same arguments in the proof of Theorem 1(b). For case (2), note that

by the law of total probability,

P (sup|@: 6)— 0+ (9)] > @Rn) < p (sup@;t ) - 0% (6)] > @JM—W)
0e® 0e®

.....

For any fixed M, the first term on the right-hand side is o(1) by (74). On the other hand,

the second term satisfies

limsup lim J max P(\fg]\>M)—0

M—0 n—o ] { 7777

by Assumption 8, noting that g;(fy) = 0 for all j = 1,..., J. Likewise,

P (@;: (6%) — Q1 () < _@RQ _p <Q; ) -3 () < -2 JM_W)

+J gnax P (|v/ng;| > M),

.....
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and the first term on the right-hand side is o(1), since Q7 (6%) = Q;" (6y)—op (1) by definition.
Now we show 6% — 0 = 0,(n~%/2) by modifying the proof of Theorem 3. For the misspec-
ified constraints (g,,(0),m = J + 1,..., M), w.p.c.1, for G* = Gy + Op (u/+/n),

M 1 u \|P
X, ~—(gm (e+B-1—) —\gm(e)\p)
M 1 o C gm .
1 d gt gl
m=J+1 m
+ 2|‘ o i ‘G - 1|‘ i ’G B~ u/f’}

M
=XO, ( Z |Gl B u/v/n + u'B_lu/n‘)

m=J+1
Ao 3 2 1
= \/_ﬁ P m;ﬂ ‘ulm + 0p (”u” )‘ = 0,(1)

by Assumption 9(d).
Also, (53) continues to hold for the correctly specified constraints g; (¢),j = 1...J:

(o))
(o 5)

Y il ™ (|65

)

Z [Vng;| ™ fuag + o (Jul*) |

Therefore, (54) can be replaced by

" < op (1) (76)

1

Olwt* = Op (1) Jluf ||1+A”Z|\ng| e

(1+o0p(1)uf +op(1)ug
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Given that the last term on the LHS is positive,
Slu*|* = Op (1) Juf |1 < op (1)

The rest of proof of Theorem 3 then goes through.

PROOF OF THEOREM 7. Continuing from the proof of Theorem 4, replace (57) by

~ (-~ B7'D:! N
w(v) =n (@n (e e ) — (6))
+logr, ()\nw . <§ . BanI\/Lﬁ)> ~log, (i 0 g (3))

We will show (59) with p (v) replaced by

PE (0| X)) = moe 2% vem X Vgl
Also let Coy = [ PP (v|X,) dv = (QW)% det (£)2 C,,. By Assumption 10, C;* = Op (1),
so that C>1 = (Cy + 0p (1)) = Op (1). Thus B, = op (1) in (60) follows from (59).

Given any 6 > 0, find § > 0, such that w.p.c.1,

ID | > v/néd = 0 — 0] > 26 = [0 — 6| >0,

Then argue as in the proof of Theorem 6 that for any ¢ > 0, there exists 7 (5) > (0 and a

positive sequence of possibly data-dependent terms {R,: n € N}, such that
|0 — 6o > 6 implies QF (0) < Q" (6p) — 1 (8) Ry (77)

Note also that § = 6,4+ Op (\%), % Z%Zlmmgm (é) P =op (ﬁ) imply that |QF (67) —
Q7 (6y) | satisfies

1 _vn
NSNS

510 6%) = @ 60) ]+ or (1) = op max )) +or 1) = or (1),
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We can then write, for |6 — 6y > &, w.p.c.1,

¢(@n(0)=Qn(0)) _ onba(QEO-QTG0)+or (V) < (1, pmban(5)Fn/2,
This yields

/ e 105, (v]X,) dv < Cemonn (%) /2 /9 . 6\/#“&}#&”9 — 0o *70 (8) dB = 0p (1) .
n UV||>A/T —0o||>

Furthermore, since D;! = (A-'1;, Ix_;) and py (v|&,) has exponential tails, it also holds

that for any M,, — oo,

/ o] (v]X,) dv = op (1)  so that / [v]|*Pe (v]X,) dv = op (1) . (78)
[v|= M | D7t o)|=y/né

By Assumption 5, for any § — 0 sufficiently slowly, uniformly in v such that | B~1D; v /y/n| <

n(Qu (0 +B7D;v/vn) = Q. (6))

=— —'D;'B'HyB™'D,;'v + Al , FGo (G{Gy) o tor (1+ |,

n,00
n

(79)

DN | —

where h = B~'D;'v and F = I — R(R'HyR)™" R'H,.

Since g; (9) =0forj=1,...,J and G* = Gy + Op <377%;1”>, the correctly specified
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constraints satisfy

:Z_:‘\Fng m<

_ p
1D;1v‘ )

||
| g

‘\/79]| —py (

A oy |\ |
n v
“ﬂ‘%Q%”“)+%<w$J|

In contrast, for the misspecified constraints,

(9 B 1Dn1f) ‘p ~lgm (9) \p)

(B D, v+ A D B BD, /| )
7j=1
J

= Z\fgﬂ

M 1
N2 G (

m=J+1
M
e S R (M L Y e
wFer ([19m] m|
-
+% G B D o/ 7 Cpt |‘gm|§f)’ ]G;Banlv/\/ﬁ\}

M
=XN0, ( Z ‘GgmB_nglv/\/ﬁ—k U'Dng_llB_nglv/nD

m=J+1
AP & A v
- ko, < > foun+ 0y (2 1ual*) + 0, (%A )D = 0,1)
m=J+1 n

by Assumption 9.
Using the previous two relations and (62), (64) holds with p° (v) replaced by py (v|A},),
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H, replaced by H, = D,B\/n (@ — 9_), and
/ ! - v / / - / !/ - v
W (v) =, o FGo (GyGo) 171 — v, (R'R)™" R HoGy (G}Gy) lx_l
1 ! ! ! -
Tk V) (G Go) "t GLH FyGo (GLGo) ™!

P
nt o]
_ZM‘%‘ O (f' ) +0 (ﬁxn
which replaces (65). Furthermore, (66) and (67) continue to hold. Finally (68) also holds
W) =~ S D BB D 3 | o O (&vf>+0 <W3>
oo 0 nov J 1j p | == V2 p =
2 j=1 Vn AV,

(P oo (WY
Pl 5z +op (Jva]?) + op 3 + op(1)

For some &, > 0 denoting generic small constants, we can let |[v;| < daA,4/n for any dy > 0

J
+ Z ‘\/ﬁgg’rm oy,
j=1

since we can now write

p

and n sufficiently large. There are two cases to consider. First, suppose on the previous

event sequence that dslv; | — \)\/_%HUQHZ — «a € [0,00]. Then w (v) is bounded above by

J p
—61[val? = > [Wngs| " | (1= 6y — b3) v

j=1

+op(l) wp.cl

Second, suppose instead \)}_%H/UQ||2 — d3|v1| = a € (0,90]. Then we replace the upper bound

with

o — 200

—=|v| +0op(1) w.p.cl (80)

In either case, the left-hand side of (68) is Op (MMe~"M) = op (1) for some n;, 1, > 0.
Finally, the proof for Theorem 5 goes through verbatim upon replacing A, with A, and
P (v) with py (v|A). |

PROOF OF THEOREM 8. We first show consistency, fg = 6y + op (1), using arguments

similar to the proof of Theorem 1, and we employ the notation defined there. Asin that proof,
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the event |65 — 6| < & can be bounded by the union of two events: (1) |6, (6s) —0s| = §/K;
and (2) Q (fs) < @ (fp) —n. Event (1) has vanishing probability since g (-) is continuous
and g (fs) = op (1) by Assumption 11(a). Event (2) will also have vanishing probability if
we can show @ (6s) = @ (6y) — op (1). For this purpose, let Og = {6 € © : |g, () || < €.}
and note that by definition of f5 and Assumption 3, @ (fs) > supgee, @ (0) — op (1). It
then suffices to show that supg.g, @ (f) = @ (6b) — op (1), which in turn follows from the
continuity of @ (-) if we can show that infgeq, |0 — 6| = op (1).

To show this, note that the constraint set ©g can be equivalently expressed as Og =

{6€0:|g, 0 < ¢2}. Furthermore, if  inf [ — fol> = 0,(1), then inf  [|§ — 6| =
lgn (8)]*<€3 lgn (0)]*<e3
0p(1) as well. Since the constraint set is convex and the objective function is convex, there

exists a unique minimizer #* = argmin ||§ — 6y|°. The Lagrangian is
lgn (0)]° <€

L(0) =0 00l> + A (lga (0)] — €2) .

The first order KKT conditions are, for G,, (6) = agge(le)’

VL(0%)=2(6*—6) +2\G,, (0%) g, (6%) =0,
A (”gn 9* ‘ 2) =0,

’I’L

>/

= 0.

Taylor expanding the first KKT condition and using Assumption 11(b),

(0" = 6) + A (G (60) + Op (1/3/n)) (90 (B0) + G (60) (07 — ) + O, (1/v/n)) =
— (I +AG, (60) G (60)') (6% = 5) = —AGhn (60) gn (60) + O, (1/+/n)
— 0% — 0 = =\ (I + AGy, (60) G (00)) ™" Go (60) g (60) + O, (1/3/n) = O, (1/v/n)
= [0 — 6o = O, (1/v/n),

which proves consistency.

To show asymptotic normality, define h™ = arg max,.g, g,+h/ym)=e, Do, P — %h’ Hyh. By
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Assumption 11,

1
WY =arg MaXy,g (g1 h/yim)——gu 00)+en Dngo 10 — §h’H0h
1
=arg maXh:@/h:_\/ﬁgn(eo)_i_\/ﬁenA;Lﬁ()h — §h/H0h

for some €, = op(n~?). By consistency, G = Gy + op (1). Also construct R = Ry as in the

proof of Theorem 2. Similar calculations as in Amemiya (1985) show that
Wt = R(RHoR) ™ Ry, — (1 — R(R'HR)™ R’H()) G (G'G) " v (gn (00) + €n) = (25).

Let h = y/n (0s — 6y) and G = Gy + 0, (1). Noting that Gyht = —/n (g, (60) + €,) +

op (1), we have

g (60 + h/v/n) = G'h = —\/n (g, (00) + €,) + op (1) = Goh + op (h) .
Let o = B (h — h'). Following calculations similar to those after (50),
|01 =[Gy (h = h*) | = op (1) + op (|R]) = op (1) + op (|5]) = 0p (1) + op (|01])) + op ([52]) ,
implying that |01 = op (1) + op (||v2])). Substituting into (50) analogously to (47) and (48),
%v; (BB RER(RR)™ + 0p (1)) 02 + 0p (1) 2] < 0p (1)
which implies that v = Op (1) and subsequently o5 = op (1). u

PROOF OF THEOREM 9.

For 6* denoting a mean value between 6§ and 6y, define G* = % gn (0%). Also define A? =
el jagiia) / - 5 = X _1 = /
JnLWit,, (8y) and H* = LW,L* for L* = 2.0, (6*). Let D, = (H 4 )\nGG’) (H* NP Welex )

Using the Taylor expansion

i ) - S0+ (1 00°) ().
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we can write
00 = (1= D) i 0 - ) ~ (8- 2.66) (88 .G 0)
Note that
D, = B (7B (f + 2,6 B)l (7B (B + 0GE") BY) B = T+ 0p (1)
and
(i + 7 GE) (AL + AGvng, (6))

~ ~ - _R,Ag
o o) (L T
_ 0 n n (0o

) )0 )

 (66) 80 = (25) +op (1).

More generally, if we only know that § = 6, + Op (n™®), then H — H* = Op (Hé — HOHV> =
Op (n=*) and G—G* = Op (") for 4 > 0. Typically for smooth models, v = 1. Therefore

0 — 6y — (1 _ Dn) (é . 90) v \%(25) +op <\/iﬁ>
= (066 (=G (6 6)) (- 80) + =9) + or ()

= Op(l) (Op (nfa'y) + Op(l)Op (niaw)) Op (n*a) + %(25) + op (—)

= Op (n ) + \%(25) +op (\/Lﬁ) :

In the th iteration, then 0~ —f = Op (n-ox(+7) —|—\/Lﬁ(25)+0p (\/Lﬁ) Hence 4/n consistency

can be achieved in at most x = 1/ (2a (1 + 7)) iterations. u

In appendix C, we consider using numerical derivatives to obtain H and G. Numerical
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differentiation changes the iteration rate to

o= — 6 = <0P ( 12%”) L O(e?) + Op (Hé - @(ﬂ)> Op (Hé— 90”) + \%(25) + op (%ﬁ) .

The kth iteration will thus improve the rate to, for €, = n=?,

k
- _ ,lOgTL —a kp, —a —ak(1+7) 1 = 1
0 —90—0p< ne, n )—I—O(enn )+Op(n )—F\/—E(QL))-FOP \/_ﬁ

1=« — a —« 1 5 !
~0n (Vg e-170) 40 (=) + 0p (u=K00) + -25) 00 ().

Again /n consistency can be achieved in a finite number of steps.

C Numerical differentiation and one-step iteration

In nonsmooth GMM models, numerical derivatives can reduce the convergence rate of I —D,,.
As in Hong, Mahajan and Nekipelov (HMN) 2015, use step size €,, appropriate ¢;s and unit

basis vectors e; to define

p

f}zLi’pﬁn (é) = {i Z cily, <§+lenej> ] = 1,...,K},

€n 2

and similarly G = Li’:pgn (é) The coeflicients ¢; are determined as Zfzfp ¢l* = 1 and

p
I=—p

(1984) and Lemma 1 in HMN 2015.

qlt = 0 for ¢ # k. The following lemma is derived from Theorem 2.37 in Pollard

Lemma C.1. Let ¢ (0) = E¢, (0) be more than p times continuously differentiable. Under
the conditions in Theorem 2.37 of Pollard (1984), whenever logn/ (ne,) — o,

logn

i—L0=0P< >+0(eg)+op(é—eow>.

ney,
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PROOF OF LEMMA C.1. Decompose L— Lo = VL +V Ly+V L, where VL, = L' ( (9) _
20 (é) = O(e?) and VL3 = Z¢ (é) — Ly = |6 — 6|". It remains to show, for VL; =

Lty (6 (6) - ¢ (9)):
= LS afo (0 s te) 1 (74 100)] - 0n {227

i=1]=—p

by showing that supgee |22 7 37 ¢ [¢(Xi0 + lene;) — £ (0 + lege;)] | = Op (4 /lnﬁ)
Let F,, = {{(X;,0 + leye;) , 0 € O}, Then for each f € F,, (PfQ)l/2 < C¢,. For each M > 0,
consider &, = Mepy/ 2% By assumption, Var (P,f) /e2 < M/logn — 0, so that for all

néEp

large n Pollard’s symmetrization applies. Furthermore, F,, being Euclidean, further bound
1
P (sup |Pf| > 25n) < 24" exp (——ngi/64en> + P (sup f*> 64en> .
feFn 2 Fn

Lemma 33 in Pollard (1984) bounds the second term by Ce! exp (—ne,) = o(1). Finally
bound the first term by

-W
AM™ | e, logn exp M logn ey,
ney 128

Therefore, by the symmetrization inequality in equation (30) of Pollard (1984),

P,f—P 1
lim lim sup P (sup M > 8M ﬂ) =0
M- n—o feFn €n neyn
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