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Abstract. We study inference for parameters defined by either classical extremum

estimators or Laplace-type estimators subject to general nonlinear constraints on the

parameters. We show that running MCMC on the penalized version of the problem

offers a computationally attractive alternative to solving the original constrained opti-

mization problem. Bayesian credible intervals are asymptotically valid confidence in-

tervals in a pointwise sense, providing exact asymptotic coverage for general functions

of the parameters. We allow for nonadaptive and adaptive penalizations using the `p

for p ě 1 penalty functions. These methods are motivated by and include as special

cases model selection and shrinkage methods such as the LASSO and its Bayesian and

adaptive versions. A simulation study validates the theoretical results. We also provide

an empirical application on estimating the joint density of U.S. real consumption and

asset returns subject to Euler equation constraints in a CRRA asset pricing model.
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1 Introduction

The theoretical properties of constrained estimators when the objective function and con-

straints are smoothly differentiable and the parameters are uniquely identified over the un-

constrained parameter space are already well understood (see e.g. Gallant, 1987). Fur-

thermore, Hansen (2016) has shown the importance of applying shrinkage to nonlinearly

constrained parameter spaces. However, in many settings, the objective function can be

nonsmooth or nonconvex, or the parameters might be uniquely identified only over the

constrained parameter space, in which case directly solving the constrained optimization

problem through nonlinear programming methods remains computationally challenging in

practice.

In this paper, we propose instead to adopt a Bayesian approach that defines penalized

Laplace type estimators which are asymptotically equivalent to the original constrained es-

timators. Although the frequentist properties of unpenalized Laplace type estimators are

well studied (e.g. Chernozhukov and Hong, 2003), the properties of penalized Laplace type

estimators remain unknown. Similar to the unpenalized versions, penalized Laplace type

estimators are typically defined as the mean or median of the quasi-posterior distribution

of the parameters simulated using Markov Chain Monte Carlo (MCMC) methods. Our pe-

nalized Laplace type estimators include as a special case the Bayesian LASSO of Park and

Casella (2008), who define their estimator using either the posterior mean or median in a

Gaussian linear regression model with a Laplace prior. Furthermore, while much of the exist-

ing LASSO literature focuses on the Gaussian linear regression model, this paper considers

general nonlinear and non-likelihood-based models, such as those in GMM, empirical likeli-

hood, and minimum distance methods and allows for general nonlinear constraints for which

traditional frequentist estimators are difficult to compute, since they require maximizing a

possibly nonconvex or nonsmooth objective function.

We find that the penalized posterior mean and median are
?
n-consistent for the true

parameters and achieve first order asymptotic efficiency implied by the imposition of the

constraints under general conditions that allow for nonsmooth objective functions which

arise in simulation-based models. We require that the parameters are identified only along
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the constrained subspace instead of the whole parameter space. Bayesian credible intervals

are asymptotically valid confidence intervals in a pointwise sense, providing exact asymptotic

coverage for general functions of the parameters. Our methods encompass the `1, `2, and `8

penalty functions by defining a kernel function, which appears in part of the quasi-posterior

density’s limiting density concerning the constrained subspace of the parameter space.

When the constraints are correctly specified, and the penalty parameter diverges at a

suitable rate, the posterior distribution along the constraints converges at a faster than
?
n

rate, which induces a singular posterior distribution along the constrained subspace and

efficient posterior locations for general nonlinear functions of the parameters that do not lie

in the subspace of the constraints. However, if some of the constraints are misspecified, the

asymptotic bias can diverge. We therefore consider adaptive methods to identify and place

more weight on the correctly specified constraints.

Adaptive methods motivated by the adaptive LASSO of Zou (2006) use the inverse of

an initial
?
n-consistent estimator of the constraints to place more weight on the correctly

specified constraints and less weight on the misspecified constraints so that the asymptotic

bias remains bounded and the posterior mean and median remain
?
n-consistent. Under

proper rate restrictions on the penalty parameter, we show that the posterior mean and

median can adaptively and selectively identify the correctly specified constraints. Further-

more, Bayesian posterior intervals are asymptotically valid confidence intervals in a pointwise

sense, providing asymptotically exact and more efficient coverage for general and possibly

nonlinear functions of the parameters.

The prior results apply when the constraints are known to the researcher and depend only

on the parameters. If the constraints instead depend on the data, then posterior quantiles

cannot be used to form asymptotically valid confidence intervals unless the constraints are

asymptotically negligible in the sense that when evaluated at the true parameter value, they

converge in probability to zero at a rate faster than 1{
?
n. However, a consistent estimate

of the constrained estimator’s influence function can still be used for asymptotically valid

inference.

Related Literature. Alhamzawi et al. (2012), Hans (2009), and Leng et al. (2014) study

the Bayesian LASSO and its variants from a fully Bayesian perspective without reference to
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frequentist inference. The latter two papers refer to their methods as the “Bayesian adaptive

LASSO,” which is distinct from the notion of adaptiveness used in Zou (2006) and in this

paper.

There is a large literature on the use of unpenalized Laplace-type estimators (LTEs)

to simplify the computation of unconstrained extremum estimators with nonlikelihood ob-

jective functions that can be nonconcave or discontinuous. For example, Blackwell (1985),

Chernozhukov and Hong (2003) and Tian et al. (2007) consider the setting where the di-

mension of the parameter space is fixed, while Belloni and Chernozhukov (2009) allows for

parameters of increasing dimension. None of these papers consider penalized LTEs, which

are the focus of this paper. Our paper is also related to the literature on Bayesian estimation

of moment condition models, which includes, for example, Schennach (2005), Kitamura and

Otsu (2011), Chib et al. (2018), Florens and Simoni (2019), and Gallant (2020b).

Our results only pertain to the pointwise asymptotic properties of penalized LTEs. In

a series of papers, Leeb and Pötscher argue forcefully for studying the uniform asymptotics

of post-model-selection inference procedures, including the LASSO (e.g. Leeb and Pötscher,

2005, 2008a,b). A general lesson from their work is that consistent model-selection procedures

(what they also refer to as “sparse estimators”) have arbitrarily large risk, and pointwise

asymptotics provide poor approximations to the finite-sample behavior of estimators. We

only note that the location functionals considered in this paper, the posterior mean and

quantiles, are not consistent model-selection estimators.1

Outline. Section 2 contains the main theoretical results for penalized Laplace-type

estimators using nonadaptive penalties. We extend the results to adaptive penalties where

the constraints are possibly misspecified in section 3. Extensions to estimated and simulated

constraints are discussed in section 4.1. Section 4.2 discusses an application of our methods

to a GMM setting where we would like to enforce that a subset of the sample moment

conditions are zero. Section 4.4 shows that the asymptotic distribution of an `2 penalized

estimator obtained after one Newton-Raphson or Gauss-Newton iteration is equal to the

asymptotic distribution of the solution to the original constrained optimization problem.
1We thank a referee for pointing out that no method can achieve uniform model selection consistency

over
?
n neighborhoods of zero.
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Next, section 5 presentes simulation results on the empirical coverage of posterior quantile

based confidence intervals in a constrained IV quantile regression example. The empirical

application is presented in section 6. Finally, section 7 concludes. All proofs are stated in

Appendix B.

2 Penalized and Laplace-Type Estimators

Extremum estimators θ̂ are typically defined as maximizers of random criterion functions

Q̂n pθq in the sense that

Q̂npθ̂q ě sup
θPΘĂRK

Q̂n pθq ´ oP
`

n´1
˘

.

It is often useful to incorporate nonlinear constraints for identification or efficiency purposes.

An extremum estimator subject to (potentially nonlinear) equality constraints θ̄ instead

satisfies

Q̂n

`

θ̄
˘

ě sup
θPΘ̄

Q̂n pθq ´ oP
`

n´1
˘

, where Θ̄ “ tθ P Θ: g pθq “ 0u, (1)

K is the dimension of θ, g pθq “ pgj pθq , j “ 1, . . . , Jq for J ď K encodes constraints on θ, Θ̄

denotes the constrained parameter space, and θ̄ is assumed to exactly satisfy the constraints

(θ̄ P Θ̄).

The asymptotic properties of θ̄ for smoothly differentiable Qn pθq using Lagrange multi-

pliers are extensively developed in Gallant (1987). This paper studies potentially nonsmooth

objectives and penalized and Laplace-type versions of θ̄, which have computational advan-

tages. Before introducing these estimators, we discuss some examples of constraints.

Example 1. The maximum rank correlation estimator (Han, 1987; Sherman, 1993) corre-

sponds to

Q̂n pθq “

ˆ

n

2

˙´1
ÿ

iăj

 

1 pyi ą yjq 1
`

x1iθ ą x1jθ
˘

` 1 pyi ă yjq 1
`

x1iθ ă x1jθ
˘(

.
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Because Q̂n pθq “ Q̂n pγθq for any γ ą 0, a scale normalization is required to guarantee a

unique solution. The typical normalization θ1 “ 1 is not innocuous because it implies that

the first regressor is non-zero. The preferred normalization adopted in Han (1987) is }θ} “ 1,

which can be imposed by maximizing Q̂npθq subject to the constraint g pθq “ }θ} ´ 1 “ 0.

However, solving this constrained program in practice can be difficult, which motivates the

use of MCMC.

Example 2. Hausman and Woutersen (2014) study a semiparametric duration model, which

corresponds to θ “ pβ1, δ1q1,

Q̂n pθq “ ´
1

n pn´ 1q

n
ÿ

i“1

ÿ

j‰i

K
ÿ

l“1

K
ÿ

k“1

r1 pTi ě lq ´ 1 pTj ě kqs 1 pZi pl; β, δq ă Zj pk; β, δqq ,

where Zi pl; β, δq “
řl
s“1 exp tXisβ ` δsu. In addition to the normalization that }β} “ 1,

they also impose the constraint δ1 “ 0 in order to normalize the integrated baseline hazard

in the first time period, so g pθq “ p}β} ´ 1, δ1q.

Example 3. Sparsity constraints are commonly imposed, for example in LASSO regression

(Tibshirani, 1996), penalized quantile regression (Belloni and Chernozhukov, 2011), and

machine-learning methods such as support vector machines (Zhu et al., 2004). In the latter

case, for κ ą 0,

Q̂n pθq “ ´
1

n

n
ÿ

i“1

maxtρτ pyi ´ x
1
iθq ´ κ, 0u,

where ρτ puq “ pτ´1pu ď 0qqu. Imposing a sparsity constraint on the first J ď K components

of θ corresponds to gj pθq “ θj for j “ 1, . . . , J . Unlike the previous two examples, such

constraints are often imposed by the econometrician, despite possible misspecification in the

sense that the corresponding components of the true parameter may actually be nonzero.

Methods discussed in section 3 will allow for misspecified constraints.

Penalized estimator. An alternative to θ̄ is a penalized M-estimator θ`, which satisfies

Q̄n

`

θ`
˘

ě sup
θPΘ

Q̄n pθq ´ oP
`

n´1
˘

where Q̄n pθq “ Q̂n pθq ´ penaltyn pg pθqq . (2)
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We consider a general class of penalty functions defined using a J-dimensional kernel function

κ p¨q and penalty parameter λn:

penaltyn pg pθqq “ ´
1

n
log κ

`

λn
?
ng pθq

˘

.

This paper focuses on `p penalties for 1 ď p ď 8 that are of the form

´ log κp puq “
J
ÿ

j“1

|uj|
p, so that penaltyn pg pθqq “

λpn
?
n
p

n

J
ÿ

j“1

|gj pθq |
p.

The cases of p “ 1, 2,8 correspond respectively to the Laplace, normal, and uniform kernel

functions, which we respectively denote

κ1 puq “ e´
řJ
j“1 |uj |, κ2 puq “ e´

řJ
j“1 u

2
j , and κ8 puq “ 1 p}u} ď 1q .

The `8 penalty corresponds to an optimization program in which the equality constraints

are relaxed to inequality constraints }g pθq } ď εn ” pλn
?
nq´1 and

penaltyn pg pθqq “ 8 ¨ 1
`

λn
?
n}g pθq } ą 1

˘

.

Laplace-type estimators. We focus on Laplace-type estimators consisting of taking the

mean and quantiles of a quasi-posterior, which can be computed in practice using MCMC.

Given a user-defined prior density function π0 pθq and penalty parameter λn, define the

quasi-prior density function

πnpθq 9 π0 pθqκ
`

λn
?
ng pθq

˘

(3)

and quasi-posterior density function

pθ pθ|Xnq “
πn pθq e

nQ̂npθq1 pθ P Θq´
Θ
πn pθq enQ̂npθqdθ

“
π0 pθq e

nQ̄npθq1 pθ P Θq´
Θ
π0 pθq enQ̄npθqdθ

. (4)

Note that (4) is similar to the definition of the quasi-posterior in Chernozhukov and Hong
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(2003) except for the addition of κpλn
?
ngpθqq, which serves to impose the constraints. For

intuition, consider the case where κpuq “ expt´
řJ
j“1|uj|u, π0pθq is the uniform prior, and

gpθq is a sparsity constraint (Example 3). Then πnpθq is a Laplace prior. If we specify Q̂npθq

as the least-squares objective, then the mode of the quasi-posterior (4) corresponds to the

LASSO, while the mean and median correspond to the Bayesian LASSO (Park and Casella,

2008).

Remark 1. In principle, nonbinding inequality constraints can be incorporated into the

MCMC routine by multiplying the criterion function with an indicator function for the va-

lidity of the inequality constraints, and under pointwise asymptotics, nonbinding constraints

do not affect the asymptotic distribution. Also, linear equality constraints, assuming they are

correctly specified, can be easily imposed by reparameterizing and reducing the dimension of

the parameter space. We therefore focus on potentially nonlinear equality constraints. Be-

cause they are nonlinear, we do not directly impose them in the construction of the prior, say

by replacing 1pθ P Θq in the quasi-posterior with 1pθ P Θ̄q. This would require specialized,

computationally intensive, MCMC algorithms because the constrained parameter space Θ̄

is singular with respect to Lebesgue measure. Such algorithms require a starting value close

to the estimator θ̄, and the penalized methods proposed here can provide this starting value

(see e.g. Gallant, 2020b).

We study inference on a known scalar function of the true parameter φ0 “ φ pθ0q of the

parameter θ, where φ p¨q is twice continuously differentiable. Denote by φ˚τ the posterior τth

quantile of φ, which satisfies

ˆ
1 pφ pθq ď φ˚τ q p pθ|Xnq dθ “ τ. (5)

A point estimate can be based on φ˚1{2, and an equal-tailed confidence interval of level 1´τ is

given by pφ˚τ{2, φ
˚
1´τ{2q. We provide conditions under which this interval has asymptotically

correct coverage in the sense that

lim inf
nÑ8

P
`

φ0 P
`

φ˚τ{2, φ
˚
1´τ{2

˘˘

ě 1´ τ.
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We will see that if φ0 lies in the constrained space, then coverage is conservative, whereas if

it does not, coverage is asymptotically exact. A point estimator for φ0 can also be based on

the posterior mean:

φ˚ “ E pφ pθq |Xnq “
ˆ
φ pθq p pθ|Xnq dθ. (6)

Note that Laplace-type estimators are not Bayesian estimators, since the formula for the

quasi-posterior density is missing a Jacobian term that reflects the transformation from the

moments to the data (see Gallant, 2020a). In addition, to be considered Bayesian, enQ̄npθq

must also satisfy a finite-sample normality assumption, which may be violated in practice.

This assumption can be checked and remedied using the penalization methods proposed in

this paper (see Gallant, 2020a).

2.1 Assumptions

We next state conditions used to prove consistency and asymptotic normality of the penal-

ized and Laplace-type estimators in the next two subsections. We will assume here that

constraints are correctly specified. This is relevant for Examples 1 and 2 but not 3 because

usually sparsity constraints are imposed without a priori knowledge about which coefficients

are truly zero. In section 3, we consider an adaptive Laplace-type estimator that does not

require correct specification of constraints, which is useful for all the examples, in particular

Example 3.

Assumption 1. Θ is a compact subset of RK containing Θ̄, and the true parameter θ0 belongs

to the interior of the constrained parameter space Θ̄, where the interior is with respect to the

topology of Θ̄.

The second assumption requires constraints to be smooth.

Assumption 2. The constraints g pθq are three times continuously differentiable in θ P Θ.

For G pθq “ Bgpθq
Bθ1

P RKˆJ , G0 “ G pθ0q has rank J .
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The third assumption imposes a weak uniform consistency requirement on Q̂npθq. Note

that for many M-estimators, we can let an “
?
n.

Assumption 3. There exists a deterministic and three times continuously differentiable

function Q pθq, and a sequence an Ñ 8, an{n “ O p1q, such that supθPΘ an|Q̂n pθq´Q pθq | “

OP p1q .

The fourth assumption only requires θ0 to be identified along the constrained subspace

Θ̄ instead of the entire parameter space Θ, which is important for Examples 1 and 2.

Assumption 4. Q pθq ď Q pθ0q for all θ P Θ, and for all δ ą 0, there exists ε ą 0 such that

sup
}θ´θ0}ěδ,θPΘ̄

Q pθq ´Q pθ0q ď ´ε.

Finally, to establish the asymptotic distribution of the quasi-posterior distribution we

assume the existence of a local quadratic approximation to the possibly nonsmooth objective

function.

Assumption 5 (Local Asymptotic Normality). There exists a positive semi-definite

matrix H0 such that

Q pθq “ Q pθ0q ´
1

2
pθ ´ θ0q

1H0 pθ ´ θ0q ` o
`

}θ ´ θ0}
2
˘

. (7)

In addition, there exists a random sequence ∆n,θ0 such that for

Rn pδq “ sup
}h}ď

?
nδ

nQ̂n

´

θ0 `
h?
n

¯

´ nQ̂n pθ0q ´∆1
n,θ0

h´ n pQ pθ0 ` h{
?
nq ´Q pθ0qq

1` }h}2
,

(a) Rn pδnq “ oP p1q for any δn Ñ 0, and (b) ∆n,θ0
d
ÝÑ N p0,Ωq for some positive semi-

definite matrix Ω.

Equation (7) implies that BQ pθ0q {Bθ “ 0, assuming Q pθq is differentiable at θ0. Assump-

tion 5 implies Assumption 4 in Chernozhukov and Hong (2003) and is satisfied for a broad
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class of estimators. When Q̂n pθq is continuously differentiable, ∆n,θ0 is the scaled Ja-

cobian
?
nBQ̂n pθ0q {Bθ, Ω is the asymptotic variance-covariance matrix of the Jacobian,

and H0 is the negative of the population Hessian ´B2Q pθ0q {BθBθ
1. If Q̂n pθq is non-

smooth, then ∆n,θ0 is the subgradient of Q̂n pθq evaluated at θ0 and scaled by
?
n, Ω is

the asymptotic variance-covariance matrix of ∆n,θ0 , and H0 is the second derivative of the

expected value of the subgradient evaluated at θ0. For example, for quantile regression,

Q̂n pθq “ ´n´1
řn
i“1 pτ ´ 1 pyi ď x1iθqq pyi ´ x

1
iθq, ∆n,θ0 “ n´1{2

řn
i“1 pτ ´ 1 pyi ď x1iθ0qqxi,

Ω “ τ p1´ τqE rxix
1
is, and H0 “ Erfu|xp0qxix

1
is.

Assumption 6. (a) Dβ ą 0 such that anλpn
?
n
p
{n1`β Ñ 8. (b) λn Ñ 8. (c) λn{

?
nÑ 0.

Part (a) is needed for consistency of the penalized estimator θ`. It ensures that the sample

penalized objective is within opp1q of the population penalized objective after scaling the

objective to ensure the penalty will contribute asymptotically. Part (b) is needed to ensure

the penalized estimator is sufficiently close to the constrained estimator so that they share the

same asymptotic distribution. Part (c) is additionally needed for the posterior distribution

to be sufficiently informative for inference. When p “ 8, Assumption 6 can be further

weakened to anλpn
?
n
p
{n Ñ 8. Example 6 and the discussion after the proof of Theorem 4

illustrate why (c) is required.

The final assumption concerns the function for which we would like to conduct inference.

Assumption 7. The function φ : RK ÞÑ R is twice continuously differentiable.

2.2 Large-Sample Theory

We first investigate consistency and asymptotic normality of the constrained and penalized

estimators θ̄ and θ` defined in (1) and (2). Then we prove a Bernstein von-Mises type

result and show asymptotic normality of the quasi-posterior distribution and validity of

quasi-posterior quantiles for inference.

Heuristically, as long as the penalty parameter λn is sufficiently large, the penalized

estimator θ` should be sufficiently close to the equality constrained M-estimator θ̄ so that
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they are both consistent and share the same asymptotic distribution. There is a tradeoff

between the rate requirement for λn and the sample objective function Q̂n pθq. It can be

shown that if Q̂n pθq globally identifies θ0 in Θ, meaning that Assumption 4 holds on the full

parameter space Θ rather than the constrained subspace Θ̄, then θ` is consistent for any

sequence λn. On the other hand, if Q̂n pθq only uniquely identifies θ0 on Θ̄, then consistency

of θ` requires λn to be sufficiently large. We only provide a formal result for the latter case.

Our first result establishes consistency of the constrained and penalized estimators, as

well as the posterior mean and quantiles.

Theorem 1. (a) Under Assumptions 1–4, θ̄ “ θ0 ` oP p1q. (b) If additionally Assumption

6(a) holds, then θ` “ θ0` oP p1q. (c) If additionally Assumption 7 holds, then φ˚τ “ φ pθ0q`

oP p1q for τ P p0, 1q, and φ˚ “ φ pθ0q ` oP p1q.

The next theorem derives the asymptotic distribution of θ̄, allowing H0 to be possibly

singular.

Theorem 2. Let R be a K ˆ pK ´ Jq matrix of rank K ´ J such that R1G0 “ 0 and

B ” pG0, Rq
1 is nonsingular.2 Under Assumptions 1–5, if R1H0R is nonsingular,

?
n
`

θ̄ ´ θ0

˘

“ R pR1H0Rq
´1
R1∆n,θ0 ` oP p1q . (8)

To prove the result in the simple case where H0 is nonsingular, we first linearize the con-

straints gpθ0 ` h̄{
?
nq “ 0 for h̄ “

?
npθ̄´ θ0q to obtain G10h̄ “ oP p1q and apply Assumption

5 to expand npQ̂npθ0 ` h̄{
?
nq ´ Q̂npθ0qq. Then to obtain the influence function represen-

tation, we use arguments in the proof of Theorem 9.1 of Newey and McFadden (1994) for

asymptotically linearizing a constrained GMM estimator. For the case where H0 is singular,

we use a transformation of the parameter space following p. 21 of Amemiya (1985).
2Such a matrix always exists and is not necessarily unique (Amemiya, 1985, section 1.4.2).
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Remark 2. In smooth models with nonsingular H0, it is known that

?
n
`

θ̄ ´ θ0

˘

“ H´1
0

´

I ´G0

`

G10H
´1
0 G0

˘´1
G10H

´1
0

¯

∆n,θ0 ` oP p1q (9)

(Gallant, 1987). In contrast, (8) only requires the weaker condition that R1H0R is nonsin-

gular. If H0 is in fact nonsingular, then the influence functions in (8) and (9) coincide. To

see this, let γ1 “ R pR1H0Rq
´1R1∆n,θ0 and γ2 “ H´1

0

´

I ´G0

`

G10H
´1
0 G0

˘´1
G10H

´1
0

¯

∆n,θ0 .

As in Amemiya (1985), we calculate that

ˆ

R1H0

G10

˙

pγ1 ´ γ2q “ 0.

Therefore γ1 “ γ2 if the first matrix is nonsingular. But nonsingularity holds because

ˆ

R1H0

G10

˙ˆ

R G0

˙

“

ˆ

R1H0R R1H0G0

0 G10G0

˙

.

The right matrix is nonsingular since nonsingular H0 implies nonsingular R1H0R. Since

pR,G0q is nonsingular, so is the first matrix on the left, as desired.

Our last result for the penalized and constrained estimators shows the two are asymp-

totically equivalent.

Theorem 3. Suppose the conditions of Theorem 2 and Assumptions 6(a) and (b) hold. Then

θ` ´ θ̄ “ oP pn
´1{2q.

To prove the result, we first expand the penalty function locally around θ̄ and expand

npQ̄npθ̄ ` B´1un´1{2q ´ Q̄npθ̄qq using Assumption 5. Then for u` “ B
?
npθ` ´ θ̄q and

B “ pG0, Rq
1, we use the fact that npQ̄npθ̄ ` B´1u`n´1{2q ´ Q̄npθ̄qq ě opp1q by definition of

θ` to argue that u` “ opp1q.

Laplace-type estimators. To derive the asymptotic distribution of Laplace-type estima-

tors, a key step is to prove a generalized Bernstein-von Mises (BvM) result on convergence
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of the quasi-posterior density (4). In the typical BvM setting, the influence of the prior dis-

appears, so the density is asymptotically normal. Our setting is different due to the scaling

λn in πnpθq, which ensures the prior plays a nontrivial role in the limit. This is needed to

impose the constraints.

A common technique for deriving a BvM result is to study the quasi-posterior of a

localized parameter (e.g. van der Vaart, 2000). Let h “
?
n
`

θ ´ θ̄
˘

, and define the localized

quasi-posterior density

ph ph | Xnq “
pθpθ̄ ` h{

?
n | Xnq

?
n
K

“
πnpθ̄ ` h{

?
nqenQ̂npθ̄`h{

?
nq1ph P

?
npΘ´ θ̄qq´

hP
?
npΘ´θ̄q

πnpθ̄ ` h{
?
nqenQ̂npθ̄`h{

?
nqdh

. (10)

Note that h is defined by localizing relative to the constrained estimator θ̄, rather than the

true parameter θ0, which is more typically done for unconstrained models (e.g. Chernozhukov

and Hong, 2003).

Parameters inside the constrained subspace will have different asymptotic behavior than

those outside. To handle this, we first transform the localized parameter space in a manner

similar to Theorem 2. As in that theorem, let R be a K ˆ pK ´ Jq matrix of rank K ´ J

such that R1G0 “ 0. For B “ pG0, Rq
1 and u “ Bh, let

pu pu | Xnq “
1

| det pBq |
ph

`

B´1u | Xn
˘

.

Now partition u into two parts: u1, which contains the first J components of u and corre-

sponds to the parameters contained inside the constrained subspace, and u2, which contains

the remaining K ´ J components of U and corresponds to parameters off the constrained

subspace. Let v “ pv11, v
1
2q
1
“ pλnu

1
1, u

1
2q
1
“ Dnu with Dn “ diag pλnIJ , IK´Jq. Define the

reparametrized, localized quasi-posterior

pv pv | Xnq “ λ´|J |n pu
`

D´1
n v | Xn

˘

“
1

λ
|J |
n | det pBq |

ph
`

B´1D´1
n v | Xn

˘

. (11)

This corresponds to a λn
?
n scaling for parameters contained inside the constrained subspace

and a
?
n scaling for parameters off the constrained subspace, which reflects their differing

rates of convergence.
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We can now state our BvM result. Define the total variation of moments norm }f p¨q ´

g p¨q }α “
´
}h}α|f phq´g phq |dh for α ě 0 and densities f, g. The usual BvM theorem shows

convergence under the total variation norm, which corresponds to our norm with α “ 0. As

in Chernozhukov and Hong (2003), we will need the stronger norm in order to guarantee

convergence of posterior moments in a later result.

Theorem 4. Let Assumptions 1–6 hold. Then for any 0 ď α ă 8,3

}pv p¨|Xnq ´ p8 p¨q }α “ oP p1q

for p8 pvq “ p18 pv1q p28 pv2q, where

p18 pv1q “

$

’

&

’

%

C´1
κ e´

řJ
j“1 |v1j |

p

for p ă 8

C´1
κ 1 p}v1} ď 1q for p “ 8

, p28 pv2q “
det pΣq´1{2

?
2π

K´J
e´

1
2
v12Σ´1v2 ,

Σ´1 “ pR1Rq´1R1H0R pR
1Rq´1, and

Cκ “

$

’

&

’

%

`´
e´|u|

p
du

˘J for p ă 8

1
2J

for p “ 8

This shows the quasi-posterior density of v converges in the total variation of moments norm

to a product of two densities. One part is a multivariate mean zero normal random vector

corresponding to the unconstrained part v2 and the other a density given by the kernel

function corresponding to the constrained part v1. The quasi-posterior density concentrates

around the constrained estimator θ̄ at a
?
n rate off the constraints but at a λn

?
n rate along

the constraints.

To prove the result, we apply Assumption 5 to npQ̂npθ̄ ` B´1D´1
n v{

?
nq ´ Q̂npθ̄qq and

3Our result applies for α fixed with respect to n. See e.g. Theorem 2.2 of Belloni and Chernozhukov
(2014) for a result in a setting without constraints where α can diverge.
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linearize the constraints gpθ̄`B´1D´1
n v{

?
nq. We then reduce the problem to showing (68):

ˆ
}v}ěMn,vPHn,}B´1D´1

n v}ď
?
nδ

}v}απ̂0 pvq exp pw pvqq dv “ oP p1q

for any δ Ñ 0, where π̂0 pvq “ π0pθ̄ ` B´1D´1
n v{

?
nq, Hn “ DnB

?
npΘ ´ θ̄q, and w pvq “

npQ̂npθ̄ `B
´1D´1

n v{
?
n ´ Q̂npθ̄qq `

řJ
j“1 |λn

?
ngjpθ̄ `B

´1D´1
n v{

?
nq|p.

Remark 3. It is instructive to compare the limit distribution p8p¨q in Theorem 4 with the

limit in the unconstrained case. The latter is given in Theorem 1 of Chernozhukov and Hong

(2003), namely the multivariate normal density with mean zero and variance H0. Denote

this density by p̃8phq. That theorem implies that h P
ù
W

p̃8 p¨q, meaning

sup
x

ˇ

ˇ

ˇ

ˇ

ˆ x

ph ph | Xnq dh´
ˆ x

p̃8 phq dh

ˇ

ˇ

ˇ

ˇ

“ oP p1q .

Now, Theorem 4 implies that v P
ù
W

p8 p¨q. Recalling that v “ pλnu
1
1 u12q

1, this has two

consequences of note. First, u1 “ v1{λn “ o˚P p1q, by which we mean that @ε ą 0,´
}u1}ěε

pu pu | Xnq du “ oP p1q. This follows from the fact that

ˆ
}u1}ěε

pu pu | Xnq du “
ˆ
}v1}ěλnε

pv pv | Xnq du “
ˆ
}v1}ěλnε

p8 pv1q dv1 ` oP p1q

ď
ÿ

jPJ

ˆ
}v1j}ě

λnε
J

p8 pv1jq dv1j ` oP p1q “
ÿ

jPJ

e´
λnε
J ` oP p1q “ oP p1q .

Second, u2
P

ù
W

N p0,Σq. Finally, recalling that h “ B´1pu11, u
1
2q
1, by the Bootstrap CMT

(Kosorok, 2007, Proposition 10.7),

h ” B´1u “R pR1Rq
´1
u2 `G0 pG

1
0G0q

´1
u1

“R pR1Rq
´1
u2 ` o

˚
P p1q

P
ù
W

R pR1Rq
´1
N p0,Σq “ RN

´

0, pR1H0Rq
´1
¯

.
(12)

Therefore, ph p¨ | Xnq converges to the density of a singular multivariate normal distribution

described on p. 32 of Anderson (1958).
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Inference on scalar functions of parameters can be based on (5) and (6) using the Delta

method. The next theorem shows that the asymptotic normality of the posterior distribu-

tion established in Theorem 4 translates into desirable statistical properties of the MCMC

computational procedure. First, the posterior mean and median of scalar functions φp¨q of

θ are
?
n-consistent and asymptotically equivalent to φ

`

θ̄
˘

. Second, confidence intervals

constructed from quasi-posterior quantiles have correct asymptotic coverage.

Theorem 5. Let Assumptions 1 to 7 hold. Let Λ “ Bφpθ0q
Bθ

. Then φ˚ and φ˚1{2 are asymptot-

ically equivalent to φ
`

θ̄
˘

:

φ˚ ´ φ
`

θ̄
˘

“ oP pn
´1{2

q and φ˚1{2 ´ φ
`

θ̄
˘

“ oP pn
´1{2

q. (13)

Also, for any τ P p0, 1q,

φ˚τ ´ φ
`

θ̄
˘

´ qτ
1
?
n

b

Λ1R pR1H0Rq
´1R1Λ “ oP pn

´1{2
q. (14)

where qτ “ Φ´1 pτq is the τ th quantile of the standard normal distribution.

Furthermore, if Λ1R ‰ 0 and the “information matrix equality” R1ΩR “ R1H0R holds,

where Ω and H0 are defined in Assumption 5, then posterior quantile confidence intervals

are asymptotically exact:

lim
nÑ8

P
`

φ0 P
`

φ˚τ{2, φ
˚
1´τ{2

˘˘

“ 1´ τ (15)

On the other hand, if Λ “ G10η for some η (so that Λ1R “ 0), then

λn
?
n
`

φ˚ ´ φ
`

θ̄
˘˘

“ oP p1q and λn
?
n
`

φ˚τ ´ φ
`

θ̄
˘˘

“ q̄τ ` oP p1q , (16)

where q̄τ is the τ -th quantile of η1V1 and V1 is distributed as p18 pv1q, and posterior quantile

confidence intervals are asymptotically conservative:

lim
nÑ8

P
`

φ0 P
`

φ˚τ{2, φ
˚
1´τ{2

˘˘

ě 1´ τ. (17)
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If Λ “ G10η for some η, this is the setting in which the parameters lie along the constraints.

The theorem shows that the quasi-posterior mean and median are then superconsistent, and

confidence intervals obtained from quasi-posterior quantiles are conservative. If Λ1R ‰ 0, the

parameters do not lie along the constraints, so the Laplace-type estimators are
?
n-consistent,

and the quasi-posterior quantiles can be used to obtain asymptotically exact coverage.

The key arguments in the proof establish the following conditional Delta method re-

sult: supsPR|Fn,φ psq ´ Fφ,8 psq| “ oP p1q. In the case where parameters do not lie along

the constraints, Fn,φ psq “ P p
?
npφpθq ´ φpθ̄qq ď s |Xnq is the quasi-posterior distri-

bution of φpθq (centered and scaled), with limit Fφ,8 psq “
´

Λ1RpR1Rq´1v2ďs
p8v pvq dv “

Φps{
b

Λ1R pR1H0Rq
´1R1Λq. Thus, we obtain a normal limit, and as in Chernozhukov and

Hong (2003), valid posterior quantile confidence intervals under the information matrix equal-

ity. On the other hand, in the case where parameters lie along the constraints, Fn,φ psq “

P pλn
?
npφpθq ´ φpθ̄qq ď s |Xnq, which has a different scaling of λn

?
n. For the case of the

`1 penalty, the corresponding limit is Fφ,8 psq “
´
η1v1

p8v pvq dv “
´
η1v1

`

1
2

˘J ś

jPJ e
´|v1j |dv1,

which is the Laplace density. Notably, the latter does not depend on H0, so the result holds

regardless of whether we obtain the information matrix equality.

Remark 4 (Vector functions). When φ pθq is a vector, Λ1R ‰ 0, and Λ is not linearly

dependent with R1ΩR “ R1H0R, (13) continues to hold. Similar to φpθ̄q,
?
npφ˚ ´ φ pθ0qq

and
?
npφ˚1{2´φ pθ0qq are both asymptotically Np0,Λ1R pR1H0Rq

´1R1Λq. The quasi-posterior

joint distribution of φ pθq can be used to estimate the asymptotic variance matrix consistently.

Apply (14) to any linear combination η1lφ pθq , l “ 1, . . . , L,

η1lΛ
1R pR1H0Rq

´1
R1Ληl “ n

˜

η1l
`

φ˚τl1 ´ φ
˚
τl2

˘

qτl1 ´ qτl2

¸2

` oP p1q .

All elements of Λ1R pR1H0Rq
´1R1Λ can then be estimated consistently by varying ηl and τl1

and τl2. Alternatively, the joint posterior variance-covariance matrix of φ pθq also estimates
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the asymptotic variance consistently:

nVar pφ pθq | Xnq ” n

ˆ
pφ pθq ´ φ˚q pφ pθq ´ φ˚q1 p pθ | Xnq dθ

“ Λ1R pR1H0Rq
´1
R1Λ` oP p1q .

(18)

This equation is established at the end of the proof of Theorem 5.

3 Adaptation to Misspecified Constraints

Thus far we have assumed that all constraints are correctly specified (Assumption 4). How-

ever, if some are misspecified, then the asymptotic bias of the estimators in the previous

section can diverge, which motivates the use of adaptive methods. In this section, we adopt

the strategy of the adaptive LASSO (Zou, 2006), which is to use a preliminary estimator to

reweight the constraints such that in the limit, the penalty term vanishes for the misspecified

constraints, leaving only the penalty on the correctly specified constraints.

Let pgm pθq ,m “ 1, . . . , Jq be the J correctly specified constraints, pgm pθq ,m “ J ` 1, . . . ,Mq

the L “ M ´ J misspecified constraints, and gpθq the vector of all M constraints. We do

not assume knowledge of J . We recycle the notation from section 2, first redefining the

constrained parameter space

Θ̄ “ tθ P Θ: gmpθq “ 0 @m “ 1, . . . , Ju. (19)

The true parameter θ0 is now defined as satisfying Assumption 4 but for Θ̄ in (19).

Let θ̃ be a preliminary
?
n-consistent estimate of θ0. Define ŵ “ pŵm,m “ 1, . . . ,Mq, a

vector of data-dependent weights, with ŵm “ |gmpθ̃q|´γ for some γ ą 0 and all m. We define

the adaptively penalized objective function as

Q̄n pθq “ Q̂n pθq ´ penaltyn pg pθqq for penaltyn pg pθqq “ ´
1

n
log κp pλnŵ ˝ g pθqq (20)

As in the adaptive LASSO, the idea is that, for any constraint m that is misspecified, the

associated weight ŵm converges in probability to a positive constant, and our conditions on λn

19



ensure that the constraint does not asymptotically contribute. In contrast, if the constraint

is correctly specified, then ŵm “ Opp
?
n
γ
q, which boosts the penalty on the constraint so

that it matters in the limit.

As before, we focus on the `p penalties of the form of

´ log κp puq “
M
ÿ

m“1

|um|
p so that penaltyn pg pθqq “

λpn
n

M
ÿ

m“1

|ŵmgm pθq |
p.

The cases of p “ 1, 2 correspond respectively to the Laplace and normal kernel functions:

κ1 puq “ e´
řM
m“1 |um| ùñ penaltyn pg pθqq “

λn
n

M
ÿ

m“1

ŵm|gm pθq |,

κ2 puq “ e´
řM
m“1 u

2
m ùñ penaltyn pg pθqq “

λ2
n

n

M
ÿ

m“1

ŵ2
mgm pθq

2 .

Unlike section 2, we now need to restrict p P r1,8q, in particular ruling out the `8 case. To

see why, note that this penalty corresponds to

κ8 puq “ 1 p}u} ď 1q ùñ penaltyn pg pθqq “ 8 ¨ 1

˜

M
ÿ

m“1

ŵm|gm pθq | ą
1

λn

¸

. (21)

For the misspecified constraints, our conditions will imply that the associated weight ŵm

converges to a positive constant, while λn Ñ 8. Then since the constraint is misspecified

(gmpθ0q ‰ 0), eventually the estimator infinitely penalizes all parameters that fail to satisfy

the misspecified constraints, including the true parameter, which is the opposite of what

needs to happen. This also suggests that larger values of p can end up penalizing too much

based on misspecified constraints, so to compensate, we will need to ensure that the penalty

parameter λn diverges more slowly when p is larger. A new condition below formalizes this

requirement.

Estimators. Let us redefine the constrained estimator θ̄ using the new constrained sub-

space (19). Note that this is an “oracle” estimator because it uses only the constraints that

are correctly specified. Its consistency follows from Theorem 1(a).

In practice, we consider adaptive estimators that do not require knowledge of the correctly
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specified constraints. Toward that end, we redefine the penalized estimator θ` from section

2 using the above adaptive weights. For the Laplace-type estimators, we redefine the quasi-

prior using adaptive weights as follows:

πnpθq 9 π0 pθqκp pλnŵ ˝ g pθqq (22)

Example 4. Consider the case where π0pθq is uniform, Q̂npθq is the least-squares objective,

and gpθq imposes the sparsity constraints of Example 3. If p “ 1, then the mode of the quasi-

posterior corresponds to the adaptive LASSO of Zou (2006). Taking the mean or median

instead, we obtain adaptive versions of the Bayesian LASSO. If p “ 2, then the mode is an

adaptive version of ridge regression.

3.1 Assumptions

To construct the weights ŵ, we require a preliminary estimator θ̃ that is
?
n-consistent for

θ0 in the following sense.

Assumption 8. For all m “ 1, . . . ,M and g̃m ” gmpθ̃q,
?
n pg̃m ´ gm pθ0qq “ OP p1q.

In practice, if θ0 is globally identified, then θ̃ can be obtained from the unconstrained esti-

mator that maximizes Q̂npθq.

Next, we require the penalty parameter to satisfy the following rate conditions.

Assumption 9. Let λ̄n “ λnn
γ´1

2 , where γ ą 0 is used in the definition of the weights

ŵm “ |g̃m|
´γ. (a) Dβ ą 0 such that anλ̄pn

?
n
p
{n1`β Ñ 8. (b) λ̄n Ñ 8. (c) λ̄n{

?
n “ o p1q.

(d) λpn{
?
n “ op1q.

Conditions (a)–(c) are analogous to Assumption 6 for the non-adaptive estimator. Condition

(d) is new and reflects the intuition from the discussion following (21). To see that this is

still compatible with (a), note that in the typical case where an “
?
n, (a) is equivalent

to λpn?
n
nγp{2

nβ
, so the first fraction degenerating to zero is compatible with the product of the

fractions diverging, since β can be chosen arbitrarily small.
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Strictly speaking, to allow for the possibility that g̃m “ 0 and to construct a nondegen-

erate posterior density, we should redefine

ŵm “
1

|g̃m|γ
1pg̃m ‰ 0q `

?
n
γ
1pg̃m “ 0q.

In theory, if g̃m “ 0 for all m P M̄ , and either the constraints are linear in the parameters or

the nonlinear constraints can be inverted, the quasi-posterior distribution can be redefined

to place probability 1 on the restricted parameter set: gm pθq “ 0,m P M̄ :

pθ pθ|Xnq “
π0 pθq e

nQ̂npθq´λn
ř

mPM̄c ω̂m|gmpθq|1
`

θ : gm pθq “ 0, @m P M̄
˘

´
θ:gmpθq“0,@mPM̄

π0 pθq enQ̂npθq´λn
ř

mPM̄c ω̂m|gmpθq|dθ
(23)

However, direct implementation of (23) can be difficult for general nonlinear constraints (see

Remark 1).

Assumption 10. For all m PM , p
?
n pg̃m ´ gm pθ0qqq

´1
“ OP p1q.

The assumption states that g̃m is consistent at exactly the
?
n rate. This is analogous to the

assumption in Zou (2006) that the exact rate of the initial estimate is known. In principle,

we could allow for other rates, provided we adjust the rate conditions on λn appropriately.

3.2 Large-Sample Theory

The first theorem establishes asymptotic equivalence of the adaptively penalized and con-

strained estimators.

Theorem 6. Suppose the conditions of Theorem 2 hold (using the new definition of the

constrained space (19)). Under Assumptions 8 and 9, θ` “ θ0`oP p1q and θ`´θ̄ “ oP pn
´1{2q.

We next provide an analog of Theorems 4 and 5 for adaptive Laplace-type estimators.

Redefine the localized quasi-posterior pv pv | Xnq from (11) by replacing λn with λ̄n in As-
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sumption 9. That is, let D̄n “ diag
`

λ̄nIJ , IK´J
˘

and

pv pv | Xnq “
1

λ̄Jn| det pBq |
ph

`

B´1D̄´1
n v | Xn

˘

,

where php¨ | Xnq is now defined using the adaptive quasi-prior (22).

Theorem 7. Under Assumptions 1–10, the conclusions of Theorems 4 and 5 hold with p8 pvq

replaced by p8 pv | Xnq “ p18 pv1 | Xnq p28 pv2q, where

p18 pv1 | Xnq “ C̄´1
κJ
e´

řJ
j“1 |

?
ng̃j |

´pγ |v1j |
p

, p28 pv2q “
det pΣq´1{2

?
2π

K´J
e´

1
2
v12Σ´1v2 ,

Σ´1 “ pR1Rq´1R1H0R pR
1Rq´1, and C̄κJ “

´
e´

řJ
j“1 |

?
ng̃j |

´pγ |v1j |
p

du, and (16) replaced by

λ̄n
?
n
`

φ˚ ´ φ
`

θ̄
˘˘

“ oP p1q and λ̄n
?
n
`

φ˚τ ´ φ
`

θ̄
˘˘

“ q̄˚τ ` oP p1q ,

where q̄˚τ is the τ -th quantile of η1V1 and V1 is distributed as p18 pv1 | Xnq.

This theorem shows that the quasi-posterior density concentrates around the constrained

estimator θ̄ at a
?
n rate off the constraints but at a λ̄n

?
n rate along the correctly spec-

ified constraints. When φ pθ0q lies along the correctly specified constraints, φ˚ and φ˚1{2

are superconsistent, and equal-tailed quasi-posterior credible intervals provide asymptoti-

cally conservative coverage. On the other hand, if, say, all constraints are misspecified,

then we still obtain
?
n-consistency, and the credible interval provides asymptotically ex-

act coverage. This is because the misspecified constraints do not enter the limiting poste-

rior, as the adaptive weighting removes the impact of the part of the quasi-prior involving

pgmpθq,m “ J ` 1, . . . ,Mq. Thus, in the case where all constraints are misspecified, the

limiting quasi-posterior is simply normal, which is the usual BvM result.

Remark 5. As discussed in Example 4, the class of Laplace-type estimators we consider

contains adaptive versions of the Bayesian LASSO. For the `1 penalty, it is well-known that

the mode of the quasi-posterior leads to concurrent model selection and shrinkage, as in the
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LASSO. The previous theorem indicates that the quasi-posterior mean or median, as in the

Bayesian LASSO, have no model selection properties. More precisely, the posterior mode

can have an asymptotic point mass at zero in certain dimensions of the parameter space,

which is what is meant by model selection (Knight and Fu, 2000). In contrast, it can be

shown, using our characterization of the limiting quasi-posterior, that the posterior mean

and median have no such point mass. This is also true for the non-adaptive case in section

2.

Example 5. We illustrate the contrast between our adaptive and non-adaptive Laplace-

type estimators for the case of estimating the mean. To obtain simple expressions for the

quasi-posterior, we consider the `2 penalty. Let π0pθq be the uniform prior, and consider the

constraint gpθq “ θ˚. Then πn pθq „ Npθ˚, n´1λ´2
n q. Suppose that Xi „ N pθ, σ2q, so that

X̄ ” n´1
řn
i“1Xi „ N pθ, σ2n´1q. Then the posterior distribution of θ is

θ | Xn „ N

ˆ n
σ2 X̄ ` nλ2

nθ
˚

n
σ2 ` nλ2

n

,
1

n
σ2 ` nλ2

n

˙

.

Recall that θ0 denotes the true parameter, which may differ from θ˚. Write Xn
P

ù
W

Yn if

ρBL1 pXn, Ynq “ oP p1q, where ρBL1 p¨q metrizes weak convergence.

First consider the non-adaptive prior. Under correct specification, where θ˚ “ θ0, if

λn Ñ 8, then

λn
?
n pθ ´ θ0q | Xn

P
ù
W

N p0, 1q .

In contrast, under misspecification, where θ˚ ‰ θ0,

λn
?
n pθ ´ θ0q | Xn

P
ù
W

N
`

λn
?
n pθ˚ ´ θ0q , 1

˘

.

Therefore, the asymptotic bias diverges under misspecification.

Next consider the adaptive prior using X̄ as the initial estimate. Then the estimated

constraint is g̃ “ X̄ ´ θ˚, and the adaptive prior is πn pθq „ Npθ˚, pX̄ ´ θ˚q2λ´2
n q, resulting
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in the posterior

θ | Xn „ N

˜

n
σ2 X̄ `

`

X̄ ´ θ˚
˘´2

λ2
nθ
˚

n
σ2 `

`

X̄ ´ θ˚
˘´2

λ2
n

,
1

n
σ2 `

`

X̄ ´ θ˚
˘´2

λ2
n

¸

.

Now under correct specification, if λn Ñ 8, then

λn
?
n pθ ´ θ0q | Xn

P
ù
W

N
´

0, n
`

X̄ ´ θ0

˘2
¯

.

Note that the variance differs from the non-adaptive case due to the randomness in the

estimated constraint g̃. In contrast, under misspecification, if λn{
?
nÑ 0, then

?
n pθ ´ θ0q | Xn

P
ù
W

N
`?

n
`

X̄ ´ θ0

˘

, σ2
˘

.

This is the limit we would obtain in the standard unconstrained case. In particular, the

asymptotic bias remains stochastically bounded, unlike the non-adaptive case, and the rate

of convergence is
?
n instead of λn

?
n.

4 Generalizations

In this section we discuss several generalizations. They are far from exhaustive and only

serve to illustrate the scope of additional directions.

4.1 Estimated and Simulated Constraints

In empirical applications sometimes the constraints g pθq can only be estimated or simulated

by some gn pθq. The next assumption allows for either. For example, we can allow for

simulated constraints

gn pθq “ S pnq´1
Spnq
ÿ

j“1

g pξj, θq ,

where the ξj’s represent simulation draws and S pnq denotes the number of simulations,

which depends on the sample size. Constraints can also be estimated from sample data:
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gn pθq “ Png p¨, θq where Pn is the empirical measure.

Assumption 11. (a) supθPΘ }gn pθq ´ g pθq } “ oP p1q. (b)
?
ngn pθq “ Op p1q. (c)

sup
}θ´θ0}ďop1q

?
n pgn pθq ´ g pθq ´ gn pθ0q ` g pθ0qq “ oP p1q . (24)

While g pθq is required to be smooth, gn pθq can be discontinuous, which makes it difficult

for gn pθq to be exactly zero in finite sample. We therefore relax the constraint to }gn
`

θ̄S
˘

} ď

εn, for εn “ oP pn
´1{2q, and define the constrained estimator using estimated/simulated

constraints θ̄S as Q̂npθ̄Sq ě supθPΘ:}gnpθq}ďεn Q̂npθq´oP pn
´1q. The next theorem demonstrates

that θ̄S is consistent and gives its influence function representation.

Theorem 8. Under Assumptions 1–5, and 11,

?
n
`

θ̄S ´ θ0

˘

“R pR1H0Rq
´1
R1∆n,θ0

´

´

I ´R pR1H0Rq
´1
R1H0

¯

G0 pG
1
0G0q

´1?
ngn pθ0q ` oP p1q .

(25)

Remark 6. Note that θ̄S has an influence function that differs from the one in (8) due to

the presence of the additional second term in (25), which captures the additional variation

from the estimated constraints. Unless these constraints satisfy Var pgn pθqq “ 0, or they

are asymptotically negligible in the sense that
?
ngn pθ0q “ oP p1q, then the information

matrix equality will generally not hold and quasi-posterior quantiles cannot be used to form

asymptotically valid confidence intervals in the sense of (15). However, typically in (25),

pΛn,θ0 ,
?
ngn pθ0qq ù Z “ tZ∆,Zgnu, which can be consistently estimated by some Ẑ “

tẐ∆, Ẑgnu
P

ù
W
Z. Then using any R̂ p

Ñ R, Ĥ p
Ñ H0 and Ĝ p

Ñ G0, (25) can be consistently

estimated by

R̂pR̂1ĤR̂q´1R̂1Ẑ∆ ´
`

I ´ R̂pR̂1ĤR̂q´1R̂1Ĥ
˘

ĜpĜ1Ĝq´1ẐgS .

Analogs of Theorem 4 and result (14) of Theorem 5 can also be developed with estimated

or simulated constraints.
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4.2 Constrained Method of Moments

Let `n pθq “ ` pθq ` oP p1q P Rd` , gn pθq “ g pθq ` oP p1q P Rdg be two sets of sample moment

conditions. Instead of weighting all moment conditions using the inverted covariance matrix,

one might wish to enforce gn pθq “ 0 while applying sample weights Ŵl “ Wl ` oP p1q to

`n pθq. This is a special case of section 4.1 and (25) with Q̂n pθq “ `n pθq
1 Ŵl`n pθq,

Q pθq “ ` pθq1Wl` pθq , ∆n,θ0 “ L pθ0qWl

?
n`n pθ0q , and L pθq “

B

Bθ1
` pθq .

An alternative to section 4.1 is combining `2 with a GMM objective function, and defining

θ̄S as Q̄npθ̄Sq ě supθPΘ Q̄n pθq´ oP pn
´1q, where for Ŵ “ diagpŴl, λnŴgq, Ŵg “ Wg ` oP p1q,

Q̄n pθq “ ´`n pθq
1 Ŵl`n pθq ´ λngn pθq

1 Ŵggn pθq “ ´
`

`n pθq
1 gn pθq

1
˘

Ŵ
`

`n pθq
1 gn pθq

1
˘

.

Without optimal weighting, the information matrix equality does not hold in this model,

but the usual sandwich variance estimate will continue to provide consistent inference.

Denote L0 “ L pθ0q, and H0 “ L0W
0
l L

1
0. Using L̂ p

Ñ L0, Ĝ
p
Ñ G0, and Ĥ

p
Ñ H0, the

sandwich formula approximates (25) by, for M̂ “

´

L̂ Ĝ
¯

, Ĥ “ L̂ŴlL̂
1, ∆̂ “ L̂ŴlẐl,

´

M̂ 1ŴM̂
¯´1 ´

L̂ŴlẐl ` λnĜŴgẐg
¯

“

´

Ĥ ` λnĜŴgĜ
1
¯´1 ´

∆̂` λnĜŴgẐg
¯

,

where pẐl, Ẑgq
P

ù
W

Np0,Ωq, Ω “ AsyVar p
?
n`n pθ0q ,

?
ngn pθ0qq. Let λn Ñ 8 and the

parameters be identified: rank pL0 G0q “ dim pθq. There are two cases to consider. In case

(1), rank pG0q “ dim pθq and ĜŴgĜ
1 is invertible, then `n pθq are asymptotically negligible,

and Ŵg can be optimally chosen for valid posterior inference, since

´

Ĥ ` λnĜŴgĜ
1
¯´1 ´

∆̂` λnĜŴgẐg
¯

“

´

λ´1
n Ĥ ` ĜŴgĜ

1
¯´1 ´

λ´1
n ∆̂` ĜŴgẐg

¯

P
ù
W

´

ĜŴgĜ
1
¯´1

ĜŴgẐg.
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In case (2), if rank pG0q ă dim pθq, then (25) will apply:

´

Ĥ ` λnĜŴgĜ
1
¯´1 ´

∆̂` λnĜŴgẐg
¯

P
ù
W

(25).

To show this, let J “ diag
`

λ´1
n Idg , Idl

˘

and B̂ “
´

Ĝ, R̂
¯1

, and manipulate the LHS as

B̂1
´

J
´

B̂ĤB̂1 ` λnB̂ĜŴgĜ
1B̂1

¯¯´1

JB̂
´

∆̂` λnĜŴgẐg
¯

P
ù
W

B1

¨

˝

pG1GqWg pG
1Gq 0

R1HG R1HR

˛

‚

´1 ¨

˝

pG1GqWgẐg
R1∆̂

˛

‚.

Completing the calculation shows that this indeed does not depend on Wg:

R pR1HRq
´1
R1∆̂´

´

I ´R pR1HRq
´1
R1H

¯

G0 pG
1
0G0q

´1 Ẑg
P

ù
W

(25).

Remark 7. The bootstrap (multinomial or wild) can also be used for inference: pẐl, Ẑgq “
?
np`˚npθ̂q, g

˚
npθqq, where for example, g˚npθ̂q “ gnpX

˚
n , θ̂q, `˚npθ̂q “ `npX

˚
n , θ̂q, or `˚npθ̂q “

n´1
řn
i“1 ξ

˚
i `pXi, θ̂q, for i.i.d. ξ˚i ą 0, Eξ˚i “ 1.

Remark 8. It is often of empirical interest to conduct inference on a function of the pa-

rameter and the data. Suppose Q̂n pθq “ Q̂n pθ1q and θ2,0 “ η pθ1,0q is the policy function of

interest, which is estimated by θ̂2 “ ηpXn, θ̂1q. Setting gn pθq “ θ2 ´ η pXn, θ1q in the present

framework enables inference for
?
npθ̂2 ´ θ2,0q as part of

?
npθ̂ ´ θ0q.

Remark 9. When the constraints are estimated with noise, statistically a more efficient

estimator can be obtained by not enforcing the estimated constraints but by instead stacking

up the estimated constraints with the other sample moment conditions implied by the model.

A joint generalized method of moment estimator can be obtained by using the estimated

joint variance-covariance matrix of p`n pθ0q , gn pθ0qq. The choice of enforcing gn pθ0q instead

of weighting it according to its sample variation needs to be based on a priori reasoning

that is beyond merely achieving statistical efficiency. In the special case when p`n pθq , gn pθqq

jointly exactly identifies θ, there is no difference between optimally weighting and strictly
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enforcing the moments. The case with known constraints g pθq is also a special case of section

4.1, 4.2, and optimally weighted GMM when V ar p
?
ngn pθqq “ o p1q.

4.3 Lagrange Multiplier Representation

An alternative to Theorems 2, 3 and 8 is by means of a Lagrange multiplier representation of

the estimator. The Lagrange multiplier representation has the form (Silvey (1975), Sections

3.10.2, 4.7.3)
»

–

´H0 `G0G
1
0 G0

G10 0

fi

fl

»

–

?
npθ̄ ´ θ0q

λ

fi

fl “

»

–

´∆n,θ0

0

fi

fl (26)

where H0 and G0 are as in Theorem 3. The matrix on the left hand side is non-singular

(Silvey (1975), Appendix A).

It can be verified that equation (8) asymptotically satisfies (26), together with λ defined

as

λ “ ´pG10G0q
´1
G10

´

I ´H0R pR
1H0Rq

´1
R1
¯

∆n,θ0 .

The second set of rows in (26), hold by definition of (8) and that G10R “ 0. The first

set of rows of (26) can be written as G0λ “ ´
`

I ´H0R pR
1H0Rq

´1R1
˘

∆n,θ0 . Or by the

definition of λ, G0 pG
1
0G0q

´1G10
`

I ´H0R pR
1H0Rq

´1R1
˘

“
`

I ´H0R pR
1H0Rq

´1R1
˘

. This

can be verified to hold by replacing G0 pG
1
0G0q

´1G10 “ I ´R pR1Rq´1R1.

When the constraints are estimated in Theorem 8, (26) is replaced by

»

–

´H0 `G0G
1
0 G0

G10 0

fi

fl

»

–

?
npθ̄ ´ θ0q

λ

fi

fl “

»

–

´∆n,θ0

´
?
ngn pθ0q

fi

fl . (27)

The second equation is now replaced by G10
?
n
`

θ̄ ´ θ0

˘

“ ´
?
ngn pθ0q, which corresponds to

a mean value expansion of the constraints
?
ngn

`

θ̄
˘

“ 0. It has also be shown that (27) is
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asymptotically satisfied by (25) together with

λ “´ pG10G0q
´1
G10

´

I ´H0R pR
1H0Rq

´1
R1
¯

∆n,θ0

´ pG10G0q
´1
G10 pH0 ´G0G

1
0q

´

I ´R pR1H0Rq
´1
R1H0

¯

G0 pG
1
0G0q

´1?
ngn pθ0q .

(28)

4.4 One-Step Iteration

With an `2 penalty the one step iteration methods in Gallant (1987) and Robinson (1988)

apply. Let θ̃ “ θ0 ` OP

´

1?
n

¯

be an initial
?
n consistent estimate of θ0, and consider the

following iteration:

θ´ “ θ̃ ´
´

H̃ ` λnG̃G̃
1
¯´1 ´

∇̃` λnG̃gn
´

θ̃
¯¯

,

where for Gauss-Newton iteration,

L̃ “
B

Bθ1
`n

´

θ̃
¯

, H̃ “ L̃ŴlL̃
1, ∇̃ “ L̃Ŵl`n

´

θ̃
¯

.

Using Taylor expansions and calculations similar to the previous section we will show that

the one step estimator has the following influence function representation.

Theorem 9. Under Assumptions 1–4 and 11,
?
n pθ´ ´ θ0q “ (25)` oP p1q .

5 Monte Carlo

We investigate the empirical coverage frequencies of our posterior quantile intervals using

the instrumental variable quantile regression example in Chernozhukov and Hong (2003).

Our data are generated according to

Y “ α0 `D
1β0 ` u, u “

1

5

˜

1`
3
ÿ

i“1

Dpiq

¸

ε,D „ expNp0, I3q, ε „ Np0, 1q
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Define θ ”

»

–

α

β

fi

fl and Z “
´

1 D
¯

. The objective function is the GMM objective:

Q̂npθq “ ´
1

2

˜

1
?
n

n
ÿ

i“1

mipθq

¸1

Wnpθq

˜

1
?
n

n
ÿ

i“1

mipθq

¸

1

n

n
ÿ

i“1

mipθq ”
1

n

n
ÿ

i“1

ˆ

1

2
´ 1 pyi ď α `D1iβq

˙

zi

Wnpθq “

˜

1

n

n
ÿ

i“1

mipθq
1mipθq

¸´1

We use an adaptive Laplace prior of the form

π pθq “
4
ź

j“1

ˆ

λnŵj
2

˙

e´λnŵj |θj |

The adaptive weights are ŵj “ 1

|θ̂OLSj |
γ , for some γ ě 0. We fix a particular value of λn

that satisfies λn?
n
Ñ 0, λnnγ{2´1 Ñ 0, and λnnpγ´1q{2 Ñ 8 and use the Metropolis Hastings

algorithm to construct our Markov chain for θ. The Metropolis Hastings Sampler has the

following steps:

1. Initialize θp0q “ pZ 1Zq´1
pZ 1Y q.

2. For periods b “1 to B:

(a) For parameters j “ 1 to 4:

i. Draw ξj “ θ
pb´1q
j `N

`

0, σ2
j

˘

ii. θpbqj “

$

’

&

’

%

ξj wp ρ
´

θ
pb´1q
j , ξj

¯

θ
pb´1q
j wp 1´ ρ

´

θ
pb´1q
j , ξj

¯

where ρ
´

θ
pb´1q
j , ξj

¯

“ min

ˆ

exppQ̂npξjqqπpξjq

exppQ̂npθ
pb´1q
j qqπpθ

pb´1q
j q

, 1

˙

The standard deviations σj of the transition kernel are initialized to 0.1 and then adjusted

every 100 periods to maintain an acceptance rate of approximately 50%. After achieving

the desired acceptance rate, we grow another chain for B periods while keeping σj fixed.

The quantiles θ˚α of the distribution of θ’s drawn from this chain are used to form confidence

intervals.
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Table 1 shows the empirical coverage of the equal-tailed and symmetric posterior quan-

tile intervals averaged across R “ 1000 simulations. The equal-tailed interval is given by
´

θ˚α{2, θ
˚
1´α{2

¯

, and the symmetric interval is given by
´

θ˚1{2 ´ c1´α, θ
˚
1{2 ` c1´α

¯

where c1´α

is the 1´ α percentile of the absolute value of the demedianed posterior draws.

The nominal level is 95%. We fix α0 “ 1, β10 “

”

0 0 0
ı

and use λn “ n1{4

and γ “ 1. We grow the chain for B “ 30np periods and burn in the first t “

5np periods. We also report the normalized posterior chain average standard deviation
1
R

řR
i“1

?
n
´

θ˚
p1´α{2qpiq ´ θ

˚
pα{2qpiq

¯

{
`

z1´α{2 ´ zα{2
˘

.

Table 1: Adaptive IV Quantile

Equal-tailed Symmetric Standard Dev

α0 0.949 0.952 1.204
β01 0.999 0.999 0.285
β02 0.999 0.999 0.301
β03 0.998 0.999 0.311

n “ 2000, λn “ n1{4, 1000 simulations.

Notice that the nonzero coefficient has close to 95% coverage while the zero coefficients

have close to 100% coverage. This is due to the quasi-posterior’s faster rate of contraction

along the correctly specified constraints than along the misspecified constraints (see Theorem

7).

To investigate the empirical coverage of the constrained IV Quantile Regression estimator,

we consider a data generating process of the form

Y “ θ0,1 `X2θ0,2 `X3θ0,3 ` u, u “
1

5

˜

1`
3
ÿ

i“1

Dpiq

¸

ε

where D „ expNp0, I3q, ε „ Np0, 1q, X “

´

X2 X3

¯

„ Np0,Ωq, Ω ”

»

–

1 0.3

0.3 1

fi

fl. The

true θ0 “ r0.5, 0.5, 0.5s
1.
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Define Z “
´

1 X
¯

. Our moment conditions are given by

1

n

n
ÿ

i“1

mipθq ”
1

n

n
ÿ

i“1

p0.5´ 1 pyi ď θ1 ` θ2x2i ` θ3x3iqq zi

And the objective function and weighting matrix are given by

Q̂n pθq “ ´
1

2

˜

1
?
n

n
ÿ

i“1

mi pθq

¸1

Wn pθq

˜

1
?
n

n
ÿ

i“1

mi pθq

¸

Wnpθq “

˜

1

n

n
ÿ

i“1

mipθq
1mipθq

¸´1

We first use an adaptive Laplace prior of the form

π pθq “
3
ź

j“1

ˆ

λnŵj
2

˙

e´λnŵj |θj |

where ŵj “ 1

|θ̂OLSj |
γ . The empirical coverage frequencies for the equal-tailed and symmetric

intervals are shown in Table 2. We use n “ 2000,α “ 0.05, R “ 2000, B “ 30np, and the

number of burn-in periods is t “ 5np. Notice that the empirical coverage is close to the

nominal level of 95% for all three parameters, and the equal-tailed interval gives slightly

higher coverage than the symmetric intervals.

Table 2: Adaptive IV Quantile

Equal-tailed Symmetric Standard Dev

θ1 0.944 0.942 1.120
θ2 0.949 0.948 1.208
θ3 0.957 0.954 1.228

n “ 2000, λn “ n1{4, γ “ 1, 2000 simulations.

Now we would like to nonadaptively impose a nonlinear constraint of the form θ2
2 `

sin pθ3q “
1
4
` sin

`

1
2

˘

. Our prior then becomes

π pθq9e´λn
?
n|gpθq|
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where g pθq “ θ2
2`sin pθ3q´

`

1
4
` sin

`

1
2

˘˘

. Table 3 shows the empirical coverage frequencies

and normalized posterior chain average standard deviation for λn “ n1{4, n “ 2000, R “

2000, and t “ 5np. Both the equal-tailed and symmetric intervals give coverage close to the

nominal level of 95%.

Table 3: IV Quantile with Correctly Specified Constraint

Equal-tailed Symmetric Standard Dev

θ1 0.952 0.949 1.131
θ2 0.968 0.966 0.930
θ3 0.968 0.965 1.052

n “ 2000, λn “ n1{4, 2000 simulations, gpθq “ θ22 `
sin pθ3q “

1
4 ` sin

`

1
2

˘

.

As a point of comparison, we also consider a model without the constraint, which effec-

tively sets πpθq “ 0. As seen in Table 4, there is some slight over coverage, and the standard

deviation is higher. This is to be expected since imposing the constraint reduces the size of

the search space for the MCMC routine.

Table 4: IV Quantile without Constraint

Equal-tailed Symmetric Standard Dev

θ1 0.952 0.950 1.126
θ2 0.957 0.956 1.214
θ3 0.972 0.971 1.236

n “ 2000, 2000 simulations.

Now suppose that our constraint is misspecified: gpθq “ 0.5. If we continue to use

a nonadaptive prior, the asymptotic bias diverges due to the nonvanishing penalty term,

which results in severe undercoverage, as shown in Table 5.

Suppose we instead use an adaptive prior:

π pθq 9 e
´

λn
|gpθ̂OLSq´0.5|

γ |gpθq´0.5|

Table 6 shows that the empirical coverage frequencies of the equal-tailed and symmetric

intervals are close to the nominal level of 95%.
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Table 5: Nonadaptive IV Quantile with Misspecified Constraint

Equal-tailed Symmetric Standard Dev

θ1 0.826 0.812 1.398
θ2 0 0 0.841
θ3 0.381 0.407 1.468

n “ 2000, 2000 simulations, g pθq “ 0.5.

Table 6: Adaptive IV Quantile with Misspecified Constraint

Equal-tailed Symmetric Standard Dev

θ1 0.949 0.950 1.127
θ2 0.946 0.944 1.227
θ3 0.970 0.965 1.234

n “ 2000, λn “ n1{4, 2000 simulations, g pθq “ 0.5.

6 Example: Conditional Moment Restrictions

We consider estimation of a conditional density

fpxt |xt´1, θp1qq (29)

subject to conditional moment conditions

0 “

ˆ
mjpxt, xt´1, θp2qq fpxt |xt´1, θp1qq dxt (30)

for all xt´1 and for j “ 1, . . . , J . The context is asset pricing for an endowment economy:

6.1 An Endowment Economy

Let Ct denote the annual consumption endowment. Let

Rst “ pPst `Dstq{Ps,t´1 (31)

denote the gross return on an asset S that pays Dst per period and has price Pst at time t.

Prices and payoffs are real.
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The constant relative risk aversion utility function is

U “
8
ÿ

t“0

δt
ˆ

C1´γ
t ´ 1

1´ γ

˙

(32)

where δ is the time preference parameter and γ is the coefficient of risk aversion (Lucus,

1978). The agent’s intertemporal marginal rate of substitution is

MRSt´1,t “ δ

ˆ

Ct
Ct´1

˙´γ

. (33)

The gross return on an asset S that pays Dst satisfies

1 “ Et´1 pMRSt´1,tRs,tq . (34)

The following variables were constructed for the 86 years 1930 to 2015 as described in

Subsection 6.2 below.

• st = log real gross stock return (value weighted NYSE/AMEX/NASDAQ).

• bt = log real gross bond return (30 day T-bill return).

• ct = log real per capita consumption growth (nondurables and services).

Let xt “ pst, bt, ctq
1, t “ 1, . . . , n, denote these data. They are presumed to follow the

trivariate model

f
`

xt |xt´1, θp1q
˘

“ Npxt |µt´1,Σt´1q (35)

with location parameter

µt´1 “ b0 `Bxt´1 (36)

and two different scale parameter specifications, namely, VAR

Σt´1 “ R0R
1
0 (37)
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and ARCH

Σt´1 “ R0R
1
0 ` rdiagpp1, p2, p3qspxt´2 ´ µt´2qpxt´2 ´ µt´2q

1
rdiagpp1, p2, p3qs. (38)

These densities require initial lags in estimation. We held out five lags so that the years 1930

to 1934 provide the initial lags and the years 1935 to 2015 provide the data for estimation.

Given the parameters θp2q “ pγ, δq and x, one can compute the pricing errors

e1pxt, xt´1, θp2qq “ 1´ exppmrst´1,t ` stq (39)

e2pxt, xt´1, θp2qq “ 1´ exppmrst´1,t ` btq, (40)

where mrst´1,t “ logpMRSt´1,tq “ log δ ´ γct. The pricing errors satisfy

0 “ mjpxt´1, θp2qq “

ˆ
ejpxt, xt´1, θp2qq fpxt |xt´1, θp1qq dxt (41)

for j “ 1, 2 and for all xt´1. Equivalently, the pricing errors satisfy

0 “ gjpθq “

ˆ
“

mjpxt´1, θp2qq
‰2
fpxt´1, θp1qq dxt´1 (42)

for j “ 1, 2, where θ “ pθp1q, θp2qq, and fpx, θp1qq is the stationary density implied by (35).

6.2 Data

The raw data for stock returns are value weighted returns including dividends for NYSE,

AMEX, and NASDAQ from the Center for Research in Security Prices data at the Wharton

Research Data Services web site (http://wrds.wharton.upenn.edu).

The raw data for returns on U.S. Treasury 30 day debt are from the Center for Research

in Security Prices data at the Wharton Research Data Services web site.

The raw consumption data are personal consumption expenditures on nondurables

and services obtained from Table 2.3.5 at the Bureau of Economic Analysis web site

(http://www.bea.gov).

Raw data are converted from nominal to real using the annual consumer price index

37



obtained from Table 2.3.4 at the Bureau of Economic Analysis web site. Conversion of

consumption to per capita is by means of the mid-year population data from Table 7.1 at

the Bureau of Economic Analysis web site.

Simple statistics for these data are shown in the first panel of Table 3. They are plotted

in Figure 1.

6.3 Implementation

The integral in (41) is computed by three dimensional Gaussian quadrature using a five point

rule for each dimension (Golub and Welsch (1969)). The integral in (42) is computed by

summing over the data, viz

gjpθq “
n`1
ÿ

t“6

“

mjpxt´1, θp2qq
‰2 (43)

Parameter estimates are computed using the `2 penalty with a non-adaptive Gaussian

quasi-prior: κ pλn
?
ng pθqq “ exp r´pnλ2

nqpg
2
1pθq `

2
2 pθqqs. λn “ 10k was chosen by increasing

k until plots of the estimated parameters stabilized with attention particularly focused on

the stability of γ and δ. The optimal choice turned out to be λn “ 107.

Standard errors are computed by the method in section 4.3. Note that Ω has zeroes

as its last two rows and columns due to the fact that the parameters θp2q do not appear in

f
`

xt |xt´1, θp1q
˘

and hence Ω is singular. Similarly for the Hessian H0. We estimate ´H0 and

Ω using the average of the outer product of the scores of (35) evaluated at θ̄. We estimate

G0 by B

Bθ
gpθq evaluated at θ̄ with (43) used for gpθq.

6.4 Estimation Results

The moment conditions (42) are well known to be incompatible with U.S. data. Therefore,

what is of interest in our analysis is how the law of motion (35) is distorted by imposing

the conditions and how closely estimates align with partial equilibrium generalized method

of moments (GMM) estimates. Tables 1 and 2 present estimates for the VAR and ARCH

models, respectively for both unconstrained and constrained by (43). Simple statistics for

simulations of xt “ pst, bt, ctq of length 1000 are from these four estimated densities together

with simple statistics for the data are shown in Table 3.

38



Table 1. VAR Maximum Likelihood Estimates

Unconstrained Constrained
Parameter Estimate Std. Dev. Estimate Std. Dev.

b0,1 0.12243 0.11929 -0.35499 0.16911
b0,2 -0.02076 0.07092 0.02931 0.07226
b0,3 0.05274 0.08378 -0.28397 0.17012
B1,1 -0.10189 0.13523 0.03153 0.17053
B2,1 0.13075 0.07228 0.21259 0.07579
B3,1 0.43096 0.08202 0.11228 0.15240
B1,2 -0.00097 0.13280 0.12268 0.19084
b2,2 0.92498 0.05263 0.83099 0.08204
B3,2 -0.01672 0.07313 0.43586 0.12731
B1,3 -0.32357 0.11952 0.02162 0.19237
B2,3 0.09940 0.07222 0.14567 0.07383
B3,3 0.31255 0.09662 0.07672 0.19259
R0,1,1 0.82012 0.08282 0.98122 0.13440
R0,1,2 -0.00160 0.02591 0.00705 0.03570
R0,2,2 0.36936 0.03005 0.38672 0.04490
R0,1,3 0.06736 0.04896 0.12703 0.10800
R0,2,3 -0.00216 0.03939 -0.09160 0.06211
R0,3,3 0.56863 0.04459 0.89382 0.10618
γ 2.49375 2.43299
δ 0.99989 0.07807

Maximum likelihood estimates for the density (35) with location (36) and scale (37). (left two columns)
and same subject to moment conditions (43) (right two columns). The data are as in Figure 1. For the
constrained estimates λn “ 107 and the 0%, 25%, 50%, 75%, 100% quantiles of the conditional moment
conditions (41) evaluated at txt´1u

n`1
t“6 are -1.62e-4, -2.03e-5, 7.70e-6, 3.81e-5, 8.74e-5, respectively.

The primary distortion caused by imposing (43) occurs in the location parameters with

little effect on scale parameters. While inspection of Tables 1 and 2 suggest this conclusion,

it is readily apparent from inspection of Table 3.

Table 4 verifies that our estimates of the CRRA parameters γ and δ are in line with

a partial equilibrium analysis. One might remark in passing that an assessment of the

distortion of the law of motion cannot be obtained via a partial equilibrium analysis but can

be with the methods proposed in this paper.

All estimates were computed using the Chernozhukov and Hong (2003) method with

support conditions γ ą 0 and 0 ă δ ă 1 and 500,000 repetitions after transients have died

out. The modal value of these repetitions is the estimator reported in the tables.
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Table 2. ARCH Maximum Likelihood Estimates

Unconstrained Constrained
Parameter Estimate Std. Dev. Estimate Std. Dev.

b0,1 0.11492 0.13225 -0.35825 0.15658
b0,2 -0.05429 0.06187 -0.03955 0.06843
b0,3 0.03479 0.08792 -0.24276 0.17066
B1,1 -0.13287 0.16147 0.02529 0.14427
B2,1 0.10029 0.06965 0.17427 0.07920
B3,1 0.41579 0.08997 0.10771 0.13658
B1,2 0.00263 0.14677 0.12602 0.17608
b2,2 0.87614 0.05253 0.85400 0.08317
B3,2 0.05831 0.06666 0.52984 0.12676
B1,3 -0.32081 0.11486 0.01699 0.17895
B2,3 0.06062 0.06961 0.11634 0.09260
B3,3 0.21388 0.10752 0.07236 0.19473
R0,1,1 0.81061 0.10965 0.92173 0.12753
R0,1,2 -0.00014 0.02554 -0.01669 0.02900
R0,2,2 0.28764 0.04132 0.31842 0.04763
R0,1,3 0.03719 0.05189 0.10892 0.08646
R0,2,3 0.07668 0.04901 -0.01727 0.07508
R0,3,3 0.51085 0.07393 0.85212 0.13224
p1 -0.15876 0.26488 0.00562 0.32288
p2 -0.85521 0.19173 0.50124 0.20277
p3 -0.43945 0.13356 0.17750 0.22826
γ 2.11113 1.82603
δ 0.99907 0.05057

Maximum likelihood estimates for the density (35) with location (36) and scale (38) (left two columns)
and same subject to moment conditions (43) (right two columns). The data are as in Figure 1. For the
constrained estimates λn “ 107 and the 0%, 25%, 50%, 75%, 100% quantiles of the conditional moment
conditions (41) evaluated at txt´1u

n`1
t“6 are -4.07e-4, -4.43e-5, -7.60e-7, 2.47e-5, 9.67e-5, respectively.
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Figure 1. Annual Stock, Bond, and Consumption Data The data are real,
annual, per capital consumption for the years 1930–2015 and real, annual gross stock
and bond returns for the same years from BEA (2016) and CRSP (2016). The first five
years are used to provide initial lags and are not otherwise used in estimation. These
observations are to the left of the vertical dashed line. See Subsection 6.2 for complete
details.
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Table 3. Simple Statistics for the Data and Estimates

Standard ExcessSeries Mean Deviation Skewness Kurtosis

Data
st 0.09922 0.16802 -0.90325 0.90152
bt 0.03348 0.02905 0.77644 0.13625
ct 0.02276 0.01584 0.16411 1.35363

Unconstrained VAR
st 0.09395 0.17571 -0.01951 0.32526
bt 0.03093 0.02763 -0.09774 -0.08085
ct 0.02099 0.01682 -0.21009 1.31076

Constrained VAR
st -0.03984 0.19318 0.02980 0.10306
bt -0.01682 0.03916 0.27078 -0.56675
ct -0.00473 0.02438 0.04412 0.07359

Unconstrained ARCH
st 0.09583 0.17469 -0.03754 0.29633
bt 0.02408 0.03195 1.51407 10.4417
ct 0.01994 0.01637 -0.24259 1.58554

Constrained ARCH
st -0.06836 0.18096 0.00821 -0.01557
bt -0.04724 0.03887 0.30045 -0.56528
ct -0.02105 0.02560 0.07442 -0.00714

The first panel are simple statistics of annual data for the years 1935 through
2015. st is log real gross stock return. bt is log real gross bond return. ct
is log real per capita consumption growth. The second panel are simple
statistics computed for a simulation of length 1000 from the VAR density at
parameter estimates shown as "Unconstrained" in Table 1. The third panel
is the same as the second but evaluated at the "Constrained" estimates
shown in Table 1. The fourth and fifth panels are the same as the third and
fourth but for the ARCH estimates in Table 2.

Table 4. GMM Estimates

Just Identified Over Identified
Parameter Estimate Std. Dev. Estimate Std. Dev.

γ 1.5708 303.73 1.9877 0.58828
δ 0.9999 6.9116 0.9999 0.01223

Generalized method of moments estimates (GMM). Data is as in Figure 1, denoted St, Bt, and Ct for
gross stock returns, gross bond returns, and consumption growth, respectively. Just identified moments
are m1,t “ 1´MRSt´1,tSt,m2,t “ 1´MRSt´1,tBt, where MRSt´1,t is given by (33). The additional,
overidentifying moments are m3,t “ logpSt´1qm1,t,m4,t “ logpBt´1qm1,t,m5,t “ logpCt´1qm1,t,m6,t “

logpSt´1qm2,t,m7,t “ logpBt´1qm2,t,m8,t “ logpCt´1qm2,t.
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7 Conclusion

This paper demonstrates the validity of using location functionals of the quasi-posterior

distribution to perform inference on functions of parameters defined in terms of constrained

optimization. We have considered the `1, `2, and `0 penalty functions and both nonadaptive

and adaptive priors. The nonadaptive methods require constraints to be correctly specified,

while adaptive methods provide valid inference even under misspecification of constraints.

We also consider extensions allowing for simulated constraints and constraints that depend

on the data.
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A Commonly used symbols

h
P

ù
W

p̃8 p¨q supx

ˇ

ˇ

ˇ

ˇ

´ x
ph ph | Xnq dh´

´ x
p̃8 phq dh

ˇ

ˇ

ˇ

ˇ

“ oP p1q.

}f p¨q ´ g p¨q }α
´
}h}α|f phq ´ g phq |dh for fixed 0 ď α ă 8.

θgpθq “ arg minθ1PΘ̄ }θ ´ θ
1} projection of θ onto Θ̄.

Q̄n pθq “ Q̂n pθq ´
λpn
?
np

n

řJ
j“1 |gj pθq |

p non-adaptive penalized objective

Q̄n pθq “ Q̂n pθq ´
λpn
?
np

n

řM
m“1|ŵmgm pθq|p adaptive penalized objective

ŵm “ |gmpθ̃q|
´γ for some γ ą 0 adaptive weights using θ̃, a preliminary estimate of θ0.

bn “ min p1, dnq dn “
λpn
?
np

n
(non-adaptive) or dn “ λ̄pn

?
np

n
(adaptive)

Q̄`n pθq ” b´1
n Q̄n pθq rescaled penalized objective

Q` pθq “ b´1
n Q pθq ´ b´1

n
λpn
?
np

n

řJ
j“1|gj pθq|p limit of rescaled non-adaptive penalized objective

Q` pθq “ b̄´1
n Q pθq ´ b̄´1

n
λpn
n

řM
m“1|ŵmgm pθq|p limit of rescaled adaptive penalized objective

B “ pG0, Rq
1 where R1G0 “ 0 and G0 “

Bg
Bθ

ˇ

ˇ

θ“θ0

Dn “ diag pλnIJ , IK´Jq scaling matrix for non-adaptive posterior

D̄n “ diag
`

λ̄nIJ , IK´J
˘

scaling matrix for adaptive posterior

B Proofs

Example 6. We will make use of the following analytic example to illustrate how the relevant

assumptions are employed following the proofs of Theorems 3 and 4 below:

Q̂ pθq “ ´
1

2

`

θ2 ´ X̄
˘2
, g pθq “ θ1 ` θ

2
2,

where X̄ “ 1
n

řn
i“1Xi, Xi „ i.i.d.pθ20, 1q, θ1,0 “ θ2,0 “ 0. Therefore Q pθq “ θ2

2. Both Q̂ pθq

and g pθq are needed to identify and consistently estimate θ1 and θ2.

Proof of Theorem 1.

Part (a) concerns consistency of θ̄, which follows from standard arguments (e.g. Theorem

4.1.1 Amemiya (1985) and Theorem 2.1 Newey and McFadden (1994)).

Part (b) concerns consistency of θ`. Recall that θgpθq “ arg minθ1PΘ̄ }θ´θ
1}. By Assump-

tion 2, for each δ ą 0, there exists ε1 pδq ą 0 such that }θ´θgpθq} ą δ implies |gj pθq| ą ε1 pδq

for all j. Likewise, by Assumption 4, for each δ ą 0, there exists ε2 pδq ą 0 such that
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}θ0´θgpθq} ą δ implies Q pθg pθqq´Q pθ0q ă ´ε2 pδq. We may choose ε1p¨q, ε2p¨q to be strictly

increasing. Define εpδq “ minpε1pδq, ε2pδqq for all δ.

We first establish two preliminary results for later. Let bn “ min p1, dnq for dn “ λpn
?
np

n

and Q̄`n pθq ” b´1
n Q̄n pθq. By Assumptions 3 and 6(a),

sup
θPΘ
|Q̄`n pθq ´Q` pθq| “ oP p1q for Q` pθq “ b´1

n Q pθq ´ b´1
n

λpn
?
n
p

n

J
ÿ

j“1

|gj pθq|p. (44)

For the second preliminary result, for any δ ą 0, we shall argue for the existence of η pδq ą 0,

such that

}θ` ´ θ0} ą δ implies Q`
`

θ`
˘

ă Q` pθ0q ´ η pδq . (45)

On the event }θ` ´ θ0} ą δ, for any C ą 0, either (i) }θg pθ`q ´ θ0} ą
`

1´ 1
C

˘

δ and

}θg pθ
`q ´ θ`} ă 1

C
δ, or (ii) }θg pθ`q ´ θ`} ą 1

C
δ. By Assumption 4, C can be chosen

sufficiently large such that in the first case (i),

Q
`

θ`
˘

´Q pθ0q “Q
`

θ`
˘

´Q pθg pθqq `Q pθg pθqq ´Q pθ0q

ďε

ˆ

δ

C

˙

´ ε

ˆˆ

1´
1

C

˙

δ

˙

” ´η pδq .

This implies that

Q`
`

θ`
˘

´Q` pθ0q ď b´1
n

`

Q
`

θ`
˘

´Q pθ0q
˘

ď ´b´1
n η pδq ď ´η pδq .

In the second case (ii), |gj pθ`q| ě ε
`

1
C
δ
˘

” ε̄ pδq. Since Qpθ0q ě Qpθ`q by Assumption 4,

Q`
`

θ`
˘

´Q` pθ0q ď ´b
´1
n dnJε̄ pδq

p
ď ´Jε̄ pδqp ” ´η pδq .
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Finally, we have

P
`

}θ` ´ θ0} ą δ
˘

ď P
`

Q`
`

θ`
˘

ă Q` pθ0q ´ η pδq
˘

“ P
`

Q`
`

θ`
˘

´ Q̄`n
`

θ`
˘

ă Q` pθ0q ´ Q̄
`
n pθ0q ` Q̄

`
n pθ0q ´ Q̄

`
n

`

θ`
˘

´ η pδq
˘

ď P

ˆ

sup
θPΘ
|Q̄`n pθq ´Q` pθq| ą

η pδq

3

˙

` P

ˆ

Q̄`n
`

θ`
˘

´ Q̄`n pθ0q ă ´
η pδq

3

˙

,

where the first line follows from (45) and the last line from the law of total probability.

The first term on the last line is op1q by (44), and the second is op1q, since Q̄`n pθ`q ě

Q̄`n pθ0q ´ oP p1q by definition.

Lastly we prove part (c). Note that both φ˚τ and φ˚ can be written as special cases of

M-estimators φ̃ that minimize posterior loss of the form:

φ̃ “ arg min
φPφpΘq

Γn pφq ”

´
ρ pφ´ φ pθqq π0 pθq e

nQ̄npθqdθ´
π0 pθq enQ̄npθqdθ

,

where ρ puq is convex and Lipschitz with constant bounded on compact sets and is uniquely

minimized at u ” 0. By the Convexity Lemma in Pollard (1991) and Theorem 4.1.1 Amemiya

(1985), it suffices to show that Γn pφq “ Γ pφq ` oP p1q for each fixed φ, where Γ pφq “

ρ pφ´ φ pθ0qq. For this purpose, note that for C denoting a generic constant,

|Γn pφq ´ Γ pφq| ď C

´
Θ
}θ ´ θ0}π0 pθq e

nQ̄npθqdθ´
Θ
π0 pθq enQ̄npθqdθ

ď Cδ ` C

´
}θ´θ0}ąδ

π0 pθq e
npQ̄npθq´Q̄npθ0qqdθ´

Θ
π0 pθq e

npQ̄npθq´Q̄npθ0qqdθ

It then suffices for the last term to be oP p1q. Separately, we bound, w.p.a. 1, nbn Ñ 8,

pAq “

ˆ
}θ´θ0}ąδ

π0 pθq e
npQ̄npθq´Q̄npθ0qqdθ “

ˆ
}θ´θ0}ąδ

π0 pθq e
nbnpQ̄`n pθq´Q̄`n pθ0qqdθ

ď Cenbnp´ηpδq`oP p1qq ď Ce´nbnηpδq{2.

For the denominator, there are three cases. First suppose dn converges to a positive constant.

Applying (44) twice and using the fact that Q pθq and g pθq have bounded derivatives,

sup
}θ´θ0}ď∆1

|Q̄`n pθq ´ Q̄`n pθ0q| ď ∆2 ` oP p1q
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for some ∆1,∆2 sufficiently small. Then w.p.a. 1,

pBq “

ˆ
Θ

π0 pθq e
npQ̄npθq´Q̄npθ0qqdθ ě

ˆ
}θ´θ0}ă∆1

π0 pθq e
nbnp´∆2`oP p1qq ě c∆K

1 e
´nbn∆2{2.

Therefore w.p.a. 1, for ∆2 sufficiently smaller than η,

pAq{pBq ď C∆´d
1 e´nbnpη{2´∆2{2q ÝÑ 0.

Second, suppose dn Ñ 0. Then, similar to the first case, we can find ∆1,∆2 sufficiently small

such that

sup
}θ´θ0}ď∆1dn

|Q̄`n pθq ´ Q̄`n pθ0q| ď ∆2 ` oP p1q

ùñ pBq ě

ˆ
}θ´θ0}ă∆1dn

π0 pθq e
nbnp´∆2`oP p1qqdθ ě c∆K

1 d
K
n e

´nbn∆2{2.

By Assumption 6(a), w.p.a. 1, for ∆2 sufficiently smaller than η,

pAq{pBq ď C∆´K
1 d´Kn e´nbnpη{2´∆2{2q ÝÑ 0.

Finally, suppose dn Ñ 8. Then we can find ∆1,∆2 small enough such that

sup
}θ´θ0}ď∆1d

´1{p
n

|Q̄`n pθq ´ Q̄`n pθ0q| ď ∆2 ` oP p1q

ùñ pBq ě

ˆ
}θ´θ0}ă∆1d

´1{p
n

π0 pθq e
nbnp´∆2`oP p1qqdθ ě c∆K

1 d
K{p
n e´nbn∆2{2.

Therefore, w.p.a. 1, pAq{pBq ď C∆´K
1 d

´K{p
n e´nbnpη{2´∆2{2q ÝÑ 0.

Proof of Theorem 2.

Consider first the case when H0 is nonsingular. Let h “
?
n pθ ´ θ0q. Note that Theorem

1 in Sherman (1993) goes through verbatim under constraints, since its condition (i) holds

when H0 is nonsingular. Hence h̄ “
?
n
`

θ̄ ´ θ0

˘

“ OP p1q.

Define h˚ “ arg maxh:gpθ0`h{
?
nq“0 ∆1

n,θ0
h ´ 1

2
h1H0h, and h` “ R pR1H0Rq

´1R1∆n,θ0 . By

the same arguments as those following Theorem 9.1 of NM 1994, h˚ “ h` ` oP p1q. Next
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Taylor expanding g
`

θ0 ` h̄{
?
n
˘

“ 0 shows that
´

G0 `OP

´

1?
n

¯¯1

h̄ “ 0, implying G10h̄ “

OP

´

1?
n

¯

since h̄ “ OP p1q. Also G10h` “ 0.

By definition of h̄, for Γn phq “ n
´

Q̂n

´

θ0 `
h?
n

¯

´ Q̂n pθ0q

¯

, Γn
`

h̄
˘

ě Γn ph
˚q ´ oP p1q.

Invoking Assumption 5 on both sides,

∆1
n,θ0

h̄´
1

2
h̄1H0h̄ ě ∆1

n,θ0
h˚ ´

1

2
h˚

1

H0h
˚
´ oP p1q “ ∆1

n,θ0
h` ´

1

2
h`

1

H0h
`
´ oP p1q (46)

If we write η̄ “ h̄´ h`, then this can be rewritten as

1

2
η̄1H0η̄ ´∆1

n,θ0
η̄ ` η̄1H0h

`
ď oP p1q

Let B “ pG0, Rq
1, v̄ “ pv̄11 v̄12q

1
“ Bη̄, η̄ “ B´1v̄, B´1 “

“

G0 pG
1
0G0q

´1 , R pR1Rq´1
‰

. Then

1

2
v̄1B´11H0B

´1v̄ ´∆1
n,θ0

B´1v̄ ` v̄1B´11H0h
`
ď oP p1q . (47)

Since v̄1 “ G10
`

h̄´ h`
˘

“ OP

´

1?
n

¯

“ oP p1q, this translates into

1

2
v̄12 pR

1Rq
´1
R1H0R pR

1Rq
´1
v̄2 ´∆1

n,θ0
R pR1Rq

´1
v̄2 ` v̄

1
2 pR

1Rq
´1
RH0h

`
ď oP p1q . (48)

Using the definition of h` this reduces to

1

2
v̄12 pR

1Rq
´1
R1H0R pR

1Rq
´1
v̄2 ď oP p1q ,

or v̄2 “ oP p1q, so that v̄ “ oP p1q, η̄ “ oP p1q, h̄ “ h` ` oP p1q.

Next we allow for singular H0 in Theorem 9.1 of NM 1994. Note that by consistency,

g pθ0 ` h
˚{
?
nq “ 0 implies that Ḡ1h˚ “ 0, where Ḡ “ G0 ` oP p1q. We can then construct

R̄, continuously as a function of Ḡ, such that R̄1Ḡ “ 0. This is possible since R̄ can be

the basis of the null space of R̄, whose construction through the Gauss-Jordan process to

an Echelon form is easily seen to be a continuous function. By the continuous mapping

theorem, R̄ “ R` oP p1q, and since B̄ “
`

Ḡ, R̄
˘1 is nonsingular w.p.c.1, B̄´1 “ B´1` oP p1q.
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The same arguments as in Amemiya (1985) (pp21) for constructing h` can be applied to h˚:

h˚ “ R̄
`

R̄1H0R̄
˘´1

R̄1∆n,θ0 “ h` ` oP p1q . (49)

Finally, we resolve of the requirement of nonsingular H0 in Theorem 1 of Sherman (1993).

Replace (46) by (without using knowledge of h̄ “ OP p1q)

∆1
n,θ0

h̄´
1

2
h̄1H0h̄ ě ∆1

n,θ0
h` ´

1

2
h`

1

H0h
`
´ oP

`

1` }h̄}2
˘

(50)

Now let v̄ “ B̄
`

h̄´ h`
˘

for B̄ “
`

Ḡ, R̄
˘1, Ḡ1h̄ “ 0, B̄ “ B ` oP p1q. The same manipulation

above (replace pG0, Rq by
`

Ḡ, R̄
˘

if necessary) then shows that

1

2
v̄12 pR

1Rq
´1
R1H0R pR

1Rq
´1
v̄2 ď oP

`

1` }v̄2}
2
˘

(51)

which also implies v̄2 “ oP p1q, and hence h˚ “ h` ` oP p1q “ OP p1q. Note v̄1 “ G10h̄ and

Ḡ1h̄ “ pG0 ` oP p1qq
1 h̄ “ 0 imply that G10h̄ “ oP

`

h̄
˘

, or that }v̄1}
2 “ oP p}v̄1}

2 ` }v̄2}
2q.

Therefore }v̄1} “ oP p}v̄2}q. Finally, taylor expanding g
`

θ0 ` h̄{
?
n
˘

“ 0 with h̄ “ OP p1q in

turn implies v̄1 “ G10h̄ “ Op

´

1?
n

¯

.

Proof of Theorem 3.

Define u ” pu1, u2q “ B
?
n
`

θ ´ θ̄
˘

, representing directions orthogonal to and along the

constrained subspace. Also let h̄ “
?
n
`

θ̄ ´ θ0

˘

. Then by Assumption 5 and Theorem 2,

uniformly in }u{
?
n} ď o p1q,

n

ˆ

Q̂n

ˆ

θ̄ `B´1 u
?
n

˙

´ Q̂n

`

θ̄
˘

˙

“ ´
1

2
u1
`

B´1H0B
´1
˘

u

`∆1
n,θ0

B´1u´ h̄1H0B
´1u` oP

`

1` }u}2
˘

“ ´
1

2
u1
`

B´1H0B
´1
˘

u`∆1
n,θ0

FG0 pG
1
0G0q

´1
u1 ` oP

`

1` }u}2
˘

(52)
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for F “ I ´R pR1H0Rq
´1R1H0. This applies the local expansion from Assumption 5 to

Q̂npθ̄ `B
´1un´1{2

q “ Q̂npθ0 ` h̄n
´1{2

`B´1un´1{2
q and

Q̂npθ̄q “ Q̂npθ0 ` h̄n
´1{2

q.

Also, for G˚ “ G0 `OP pu{
?
nq, Taylor expand the penalties to write

λpn
?
n
p

J
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

gj

ˆ

θ̄ `B´1 u
?
n

˙ ˇ

ˇ

ˇ

ˇ

p

“ λpn

J
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

G˚
1

j B
´1u

ˇ

ˇ

ˇ

ˇ

p

“ λpn

J
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

G
1

0jB
´1u`Op

`

ujB
´1u{

?
n
˘

ˇ

ˇ

ˇ

ˇ

p

“ λpn

J
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

u1j ` op pu1jq ` op pu2jq

ˇ

ˇ

ˇ

ˇ

p
(53)

Now, consider the case p ă 8. By the definition of u` “ B
?
n
`

θ` ´ θ̄
˘

,

n
`

Q̄n

`

θ̄ `B´1u`{
?
n
˘

´ Q̄n

`

θ̄
˘˘

ě oP p1q .

where we have used B´1 “
`

G0 pG
1
0G0q

´1 R pR1Rq´1
˘

and G10jG0 pG
1
0G0q

´1 u “ u1j. Since

θ` “ θ0` opp1q and θ̄ “ θ0` opp1q by Theorem 1, }u`{
?
n} “ opp1q. This together with (52)

and (53) imply that w.p.c.1, Dδ ą 0 such that

δ}u`}2 ´OP p1q }u
`
1 }1 ` λ

p
n

›

›

›

›

u`1 ` oP p1qu
`
1 ` oP p1qu

`
2

›

›

›

›

p

ď oP p1q . (54)

Given that the last term on the LHS is positive, (54) implies that

δ}u`}2 ´OP p1q }u
`
1 }1 ď oP p1q . (55)

which in turn implies that }u`} “ Op p1q. Then (54) implies }u`1 } “ oP p1q. If not, then

since λpn Ñ 8, the LHS is larger than any fixed number infinitely often with positive prob-

ability, contradicting (54). Finally, use (54) again to conclude that }u`2 } “ oP p1q. Then
?
n
`

θ` ´ θ̄
˘

“ B´1u` “ oP p1q.
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For the `8 penalty, θ` satisfies

δ}u`}2 ´OP p1q }u
`
1 }1 `81

˜

J
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

u1j ` op pu1q ` op pu2q

ˇ

ˇ

ˇ

ˇ

ě 1

¸

ď oP p1q . (56)

By (55) }u`} “ oP p1q. Then it must be that }u`1 } “ oP p1q. Otherwise the left hand side of

(56) is 8 infinitely often with positive probability and contradicts (56).

In Example 6, θ̄2 “ X̄, θ̄1 “ ´X̄
2, For all p ă 8, θ` “ θ̄. For p “ 8, θ`2 “ X̄, θ`1 P

´

´X̄2 ´ 1
λn
?
n
,´X̄2 ´ 1

λn
?
n

¯

,
?
n
`

θ`2 ´ θ20

˘ d
Ñ N p0, 1q. For all p ă 8,

?
n
`

θ`1 ´ θ10

˘

“

oP p1q. For p “ 8, θ`1 ´ θ10 “ oP p1q if λn
?
n Ñ 8, and

?
n
`

θ`1 ´ θ10

˘

“ oP p1q if λn Ñ 8.

Given data, the posterior distribution satisfies θ2 „ π pθ2qN
`

X̄, 1
n

˘

, θ1 “ u ´ θ2
2 and u „

π puq e´λ
p
n
?
np|u|p . Posterior consistency is implied by λn

?
n Ñ 8. For p “ 8 and uniform

π puq, u „ Uniform
´

´ 1
λn
?
n
, 1
λn
?
n

¯

.

Proof of Theorem 4. Let π̂0 pvq “ π0

`

θ̄ `B´1D´1
n v{

?
n
˘

, and π0 “ π0 pθ0q. Denote

Hn “ DnB
?
n
`

Θ´ θ̄
˘

,

w pvq “ n
´

Q̂n

`

θ̄ `B´1D´1
n v{

?
n
˘

´ Q̂n

`

θ̄
˘

¯

`

J
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

λn
?
ngj

ˆ

θ̄ `B´1D´1
n

v
?
n

˙
ˇ

ˇ

ˇ

ˇ

p

(57)

Then we can write, with p̄v pv|Xnq “ π̂0 pvq exp pw pvqq 1 pv P Hnq,

pv pv|Xnq “
p̄v pv|Xnq

Cn
where Cn “

ˆ
Hn

p̄v pv|Xnq dv. (58)

We will show that for any finite α ą 0,

An “

ˆ
}v}α|p̄v pv|Xnq ´ p̄8v pvq|dv “ oP p1q , (59)

where for v1 P RJ and v2 P RK´J , p̄8v pvq “ π0e
´ 1

2
v12Σ´1v2´

řJ
j“1 |v1j |

p

. Also let C8 “´
p̄8v pvq dv “ π0 p2πq

K´J
2 det |Σ|1{2Cκ.

Showing (59) is sufficient to prove the theorem. To see this, note that, for p8v pvq “
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p̄8v pvq {C8,

ˆ
}v}α|pv pv|Xnq ´ p8v pvq|dv “ BnC

´1
n , (60)

where we can bound

Bn “

ˆ
}v}α

ˇ

ˇ

ˇ

ˇ

p̄v pv|Xnq ´
Cn
C8

p̄8v pvq

ˇ

ˇ

ˇ

ˇ

dv ď An `

ˇ

ˇ

ˇ

ˇ

Cn ´ C8
C8

ˇ

ˇ

ˇ

ˇ

ˆ
}v}αp̄8v pvq dv.

The second term on the right-hand side is oP p1q because by (59), |Cn ´ C8| “ oP p1q.

As a preliminary step to establishing (59), we show that it is enough to show convergence

when the integral over v in the total variation of moments norm is restricted to a certain

n-dependent subset of RK . Given any δ ą 0, find δ̄ ą 0, such that w.p.c.1,

}D´1
n v} ą

?
nδ ùñ }θ ´ θ̄} ą 2δ̄ ùñ }θ ´ θ0} ą δ̄,

Then just as in the proof of Theorem 1, for any δ̄ ą 0, there exists η
`

δ̄
˘

ą 0, such that

}θ ´ θ0} ą δ̄ implies Q` pθq ă Q` pθ0q ´ η
`

δ̄
˘

Note also that θ̄ “ θ0 `OP

´

1?
n

¯

, g
`

θ̄
˘

“ 0 imply that |Q̄`n pθ`q ´ Q̄`n pθ0q | satisfies

b´1
n |Q

`

θ`
˘

´Q pθ0q | ` oP p1q “ oP

ˆ

max

ˆ

1
?
n
,

?
n

λpn
?
n
p

˙˙

` oP p1q “ oP p1q .

Then on an event sequence such that }θ ´ θ0} ą δ̄, w.p.c.1,

enpQ̄npθq´Q̄npθ̄qq “ enbnpQ̄
`
n pθq´Q̄

`
n pθ0q`oP p1qq ď C1e

´nbnηpδ̄q{2,

and hence,

ˆ
}D´1

n v}ą
?
nδ

}v}αp̄v pv|Xnq dv ď Ce´nbnηpδ̄q{2
ˆ
}θ´θ0}ąδ̄

?
n
K`α

λJ`αn }θ ´ θ0}
απ0 pθq dθ “ oP p1q .
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Furthermore, it also holds that for any Mn Ñ 8

ˆ
}v}ěMn

}v}αp̄8v pvq dv “ oP p1q so that
ˆ
}D´1

n v}ě
?
nδ

}v}αp̄8v pvq dv “ oP p1q , (61)

since D´1
n “ pλ´1

n IJ , IK´Jq and p̄8v pvq has exponential tails.

First consider the case of p ă 8. Let h̄ “
?
n
`

θ̄ ´ θ0

˘

, h “ B´1D´1
n v and F “ I ´

R pR1H0Rq
´1R1H0. By Assumption 5, for any δ Ñ 0 sufficiently slowly, uniformly in v such

that }D´1
n v{

?
n} ă δ,

n
´

Q̂n

`

θ̄ `B´1D´1
n v{

?
n
˘

´ Q̂n

`

θ̄
˘

¯

“∆1
n,θ0

B´1D´1
n v ´ h̄1H0B

´1D´1
n v ´

1

2
v1D´1

n B´1H0B
´1D´1

n v ` oP
`

1` }h}2
˘

“´
1

2
v1D´1

n B´1H0B
´1D´1

n v `∆1
n,θ0

FG0 pG
1
0G0q

´1 v1

λn
` oP

`

1` }h}2
˘

,

(62)

as in (52). Use Assumption 2 and G˚0j “ G0j `OP pD
´1
n v{

?
nq to write

λpn
?
n
p

J
ÿ

j“1

|gj
`

θ̄ `B´1D´1
n v{

?
n
˘

|
p
“

J
ÿ

j“1

|λnG
˚1

0jB
´1D´1

n v|p

“

J
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

v1j ` oP p1q `OP

ˆ

λn
?
n
}v2}

2

˙

`OP

ˆ

}v1}
2

?
nλn

˙ ˇ

ˇ

ˇ

ˇ

p

.

(63)

This follows from B´1 “
`

G0 pG
1
0G0q

´1 R pR1Rq´1
˘

, G10jR “ 0 and G10jG0 pG
1
0G0q

´1 v “ v1j.

Because of (61) (with Mn the diameter of Hn), we can focus on showing

An1 “

ˆ
}B´1D´1

n v}ď
?
nδ

}v}α|p̄v pv|Xnq ´ p̄8v pvq 1 pv P Hnq |dv

“

ˆ
tvPHn,}B´1D´1

n v}ď
?
nδu

}v}αp̄8v pvq

ˇ

ˇ

ˇ

ˇ

π0

`

θ̄ `B´1D´1
n v

˘

π0 pθ0q
eψpvq ´ 1

ˇ

ˇ

ˇ

ˇ

dv “ oP p1q .

(64)
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where we use (62) and (63) to write

ψ pvq “∆1
n,θ0

FG0 pG
1
0G0q

´1 v1

λn
´ v12 pR

1Rq
´1
R1H0G0 pG

1
0G0q

´1 v1

λn

´
1

2λ2
n

v11 pG
1
0G0q

´1
G10H0G0 pG

1
0G0q

´1
v1

´

J
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

v1j ` oP p1q `OP

ˆ

λn
?
n
}v2}

2

˙

`OP

ˆ

}v1}
2

?
nλn

˙ ˇ

ˇ

ˇ

ˇ

p

`

J
ÿ

j“1

|v1j|
p.

(65)

For Mn Ñ 8 sufficiently slowly,

sup
}v}ďMn

|ψ pvq| “ oP p1q and sup
}v}ďMn

ˇ

ˇ

ˇ

ˇ

π0

`

θ̄ `B´1D´1
n v

˘

π0 pθ0q
eψpvq ´ 1

ˇ

ˇ

ˇ

ˇ

“ oP p1q . (66)

Therefore,

An11 “
´
t}v}ďMn,Hn,}B´1D´1

n v}ďδu
}v}αp̄8v pvq

ˇ

ˇ

ˇ

ˇ

π0pθ̄`B´1D´1
n vq

π0pθ0q
eψpvq ´ 1

ˇ

ˇ

ˇ

ˇ

dv “ oP p1q . (67)

Because of (61), to prove (64) it only remains to show that for any Mn Ñ 8,

ˆ
}v}ěMn,vPHn,}B´1D´1

n v}ď
?
nδ

}v}αp̄v pv|Xnq dv “ oP p1q . (68)

Using (62) and (63), write p̄v pv|Xnq “ π̂0 pvq exp pw pvqq for

w pvq “ ´
1

2
v1D´1

n B´1H0B
´1D´1

n v `OP

ˆ

}v1}

λn

˙

` oP p1q ` oP
`

}v2}
2
˘

` oP

ˆ

}v1}
2

λ2
n

˙

´

J
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

v1j ` oP p1q `OP

ˆ

λn
?
n
}v2}

2

˙

`OP

ˆ

}v1}
2

?
nλn

˙
ˇ

ˇ

ˇ

ˇ

p

.

For some δk ą 0 denoting generic small constants, we can let }v1} ď δ2λn
?
n for any δ2 ą 0

and n sufficiently large. There are two cases to consider. First, suppose on the previous

event sequence that δ3}v1} ´
λn?
n
}v2}

2 Ñ c P r0,8s. Then w pvq is bounded above by

´δ1}v2}
2
´

J
ÿ

j“1

ˇ

ˇ

ˇ

ˇ

p1´ δ2 ´ δ3q v1j

ˇ

ˇ

ˇ

ˇ

p

` oP p1q w.p.c.1
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Second, suppose instead λn?
n
}v2}

2 ´ δ3}v1} Ñ c P p0,8s. Then we replace the upper bound

with

´
δ1

4
}v2}

2
´
δ1δ3

4

?
n

λn
}v1} ` oP p1q w.p.c.1. (69)

In either case, (68) holds because its left-hand side is OP

`

Mη1
n e

´η2Mn
˘

“ oP p1q for some

η1, η2 ą 0.

Finally, for the case p “ 8, replace (63) by 81
´›

›

›
v1 `OP

´

λn?
n
}v2}

2 `
}v1}

2
?
nλn

¯›

›

›
ď 1

¯

and

the remainder term in (65) by

ψ pvq “ oP

ˆ

1` }v2}
2
`
}v1}

2

λ2
n

˙

´81

ˆ
›

›

›

›

v1 `OP

ˆ

λn
?
n
}v2}

2
`
}v1}

2

?
nλn

˙
›

›

›

›

ě 1

˙

`81 p}v1} ě 1q ,

For any δn “ o p1q, it is clear that the integral in (64) over |}v1} ´ 1| ď δn is oP p1q. It can

then be shown that

sup
}v}ďMn,|}v1}´1|ěδ

|ψ pvq | “ oP p1q

since, for example

P

ˆ

}v1} ě 1` δ,

›

›

›

›

v1 `OP

ˆ

λn
?
n
}v2}

2
`
}v1}

2

?
nλn

˙›

›

›

›

ă 1

˙

“ o p1q .

Then (66) and (67) both hold. To show (68), if λn?
n
}v2}

2 ď δ3}v1}, we bound w.p.c.1,

w pvq ď ´ δ1}v2}
2
´81 p}p1´ δ2 ´ δ3q v1} ě 1q ` oP p1q w.p.c.1

When λn?
n
}v2}

2 ą δ3}v1}, we then replace the upper bound by (69). The sameOP

`

Mη1
n e

´η2Mn
˘

bound on (68) still holds.

In Example 6, the localized posterior distribution h “
?
n
`

θ ´ θ̄
˘

is proportional to

exp

ˆ

´
1

2
h2

2 ´

ˇ

ˇ

ˇ

ˇ

λnh1 ` 2λnX̄h2 `
λn
?
n
h2

2

ˇ

ˇ

ˇ

ˇ

p˙

For this to be approximated by exp

ˆ

´1
2
h2

2 ´

ˇ

ˇ

ˇ

ˇ

λnh1

ˇ

ˇ

ˇ

ˇ

p˙

it is necessary that λn?
n
Ñ 0 so that
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the posterior distribution can inform inference about
?
n
`

θ̄ ´ θ0

˘

.

Proof of Theorem 5. We first show part (a). The result for the median (second part of

(13)) will follow from (14) with q1{2 “ 0. For the posterior mean, define φ̄ puq “ φ
`

θ̄ `B´1u
˘

,

and write

?
n
`

φ˚ ´ φ
`

θ̄
˘˘

“

ˆ
?
n
`

φ̄
`

D´1
n v{

?
n
˘

´ φ̄ p0q
˘

pv pv|Xnq dv

“
B

Bu12
φ̄ p0q

ˆ
v2pv pv|Xnq dv `

B

Bu11
φ̄ p0q

ˆ
v1

λn
pv pv|Xnq dv ` Cn.

This is oP p1q because
´
v2pv pv|Xnq dv “ oP p1q and

´
v1pv pv|Xnq dv “ oP p1q by Theorem 4,

and

|Cn| ď C

ˆ ˆ

}v1}
2

λ2
n

?
n
`
}v2}

2

?
n

˙

pv pv|Xnq dv “ opp1q.

Next, we show the following conditional posterior weak convergence Delta method

?
n
`

φ pθq ´ φ
`

θ̄
˘˘ P

ù
W

N
´

0,Λ1R pR1HRq
´1
R1Λ

¯

(70)

where θ „ pθ pθ|Xnq and
P

ù
W

denotes conditional weak convergence in probability.

It follows from Theorem 4 that

?
n
`

θ ´ θ̄
˘ P

ù
W

B´1

ˆ

0J

N p0,Σq

˙

It then follows from the conditional Delta method (e.g. Theorem 3.9.11 in van der Vaart

and Wellner (1996), Lemma A.1 and Theorem 3.1 in Hong and Li (2018)) that

?
n
`

φ pθq ´ φ
`

θ̄
˘˘ P

ù
W

Λ1B´1

ˆ

0J

N p0,Σq

˙

which is (70). That (70) implies (14) follows a probablistic version of Lemma 1.2.1 of Politis et

al. (1999). Note that for Fn,φ psq “ P p
?
npφpθq´φpθ̄qq ď s | Xnq,

?
n
`

φ˚τ ´ φ
`

θ̄
˘˘

“ F´1
n,φ pτq
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and F´1
8,φ pτq “ qτ

b

Λ1R pR1HRq´1R1Λ. Since Fφ,8 psq is strictly increasing in s, @ε ą 0,

Dδ ą 0 such that Fφ,8
`

F´1
φ,8 pτq ´ ε

˘

ď τ ´ δ and Fφ,8
`

F´1
φ,8 pτq ` ε

˘

ě τ ` δ. Furthermore,

|F´1
n,φ pτq ´ F

´1
φ,8 pτq | ą ε implies either

Fφ,n
`

F´1
φ,8 pτq ´ ε

˘

ě τ ùñ Fφ,n
`

F´1
φ,8 pτq ´ ε

˘

´ Fφ,8
`

F´1
φ,8 pτq ´ ε

˘

ě τ

or Fφ,n
`

F´1
φ,8 pτq ` ε

˘

ď τ ùñ Fφ,n
`

F´1
φ,8 pτq ` ε

˘

´Fφ,8
`

F´1
φ,8 pτq ` ε

˘

ě δ. The probabilities

of both events are o p1q. Thus (14) is proven.

Next we show (15). By Theorem 2 and the delta method,

?
n
`

φ
`

θ̄
˘

´ φ pθ0q
˘

“ Λ1R pR1H0Rq
´1
R1∆n,θ0 ` oP p1q .

Then for each τ P p0, 1q,

P pφ˚τ ď φ pθ0qq “ P
`?

n pφ˚τ ´ φ pθ0qq ď 0
˘

“ P
`?

n
`

φ˚τ ´ φ
`

θ̄
˘˘

`
?
n
`

φ
`

θ̄
˘

´ φ pθ0q
˘

ď 0
˘

“ P

ˆ

Λ1R pR1H0Rq
´1
R1∆n,θ0 ` oP p1q ď ´qτ

b

Λ1R pR1H0Rq
´1R1Λ

˙

“ p1´ τq ` o p1q ,

since when R1ΩR “ R1H0R, Λ1R pR1H0Rq
´1R1∆n,θ0 ù N

`

0,Λ1R pR1H0Rq
´1R1Λ

˘

.

Next we consider the second part, where Λ “ G10η (so that Λ1R “ 0). Note that B

Bu12
φ̄ p0q “

Λ1R pR1Rq´1
`OP

´

1?
n

¯

“ OP

´

1?
n

¯

, B

Bu11
φ̄ p0q “ η1 `OP

´

1?
n

¯

. Therefore,

λn
?
n
`

φ˚ ´ φ
`

θ̄
˘˘

“

ˆ
λn
?
n
`

φ̄
`

D´1
n v{

?
n
˘

´ φ̄ p0q
˘

pv pv|Xnq dv

“ λn
B

Bu12
φ̄ p0q

ˆ
v2pv pv|Xnq dv `

B

Bu11
φ̄ p0q

ˆ
v1pv pv|Xnq dv ` Cn

(71)

where the 1st term is OP

´

λn?
n

¯

oP p1q “ oP p1q, 2nd term pη1 ` oP p1qq oP p1q “ oP p1q, and

|Cn| ď C

ˆ ˆ

}v1}
2

λn
?
n
`
λn
?
n
}v2}

2

˙

pv pv|Xnq dv “ oP p1q

This proves the claim for the posterior mean part of (16). The part about the posterior
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quantiles will follow from

λn
?
n
`

φ pθq ´ φ
`

θ̄
˘˘ P

ù
W

η1V1. (72)

which is essentially a multivariate conditional Delta method with differing convergence rates.

By the proof of Theorem 2, G10h̄ “ G10
?
n
`

θ̄ ´ θ0

˘

“ Op

´

1?
n

¯

. Hence U1n “

λn
?
nG10

`

θ̄ ´ θ0

˘

“ oP p1q, namely, U1n ù 0. Also, U2n “
?
nR1

`

θ̄ ´ θ0

˘

“ OP p1q. By

Theorem 4, V1n “ λn
?
nG10

`

θ ´ θ̄0

˘ P
ù
W

V1, and V2n “
?
nR1

`

θ ´ θ̄0

˘ P
ù
W

V2. Taylor ex-

panding to the 2nd order shows that λn
?
n
`

φ pθq ´ φ
`

θ̄
˘˘

“ oP p1q . Hence it suffices for

(72) to show

λn
?
n pφ pθq ´ φ pθ0qq

P
ù
W

η1V1. (73)

Define g pu, vq “ η1 pu1 ` v1q, and

gn pu, vq “ λn
?
n

ˆ

φ

ˆ

θ0 `B
´1

ˆ

u11
λn
?
n
,
u12?
n

˙1

`B´1

ˆ

v11
λn
?
n
,
v12?
n

˙1˙

´ φ pθ0q

˙

Then by a second order Taylor expansion, gn pu, vq Ñ g pu, vq. Invoke the extended contin-

uous mapping theorem (Theorem 1.11.1 van der Vaart and Wellner (1996) and Lemma A.1

Hong and Li (2018)) to claim (73):

gn pU1n, U2n, V1n, V2nq
P

ù
W

g pU1, U2, V1, V2q “ η1 pU1 ` V1q “ η1V1.

Note that for any τ P p0, 0.5q, q̄τ ă 0 by symmetry of η1V1. Then for an “ λn
?
n,

P pφ˚τ ď φ pθ0qq “ P
`

an
`

φ˚τ ´ φ
`

θ̄
˘˘

ď an
`

φ pθ0q ´ φ
`

θ̄
˘˘˘

“ P pq̄τ ď oP p1qq “ 1´ o p1q .

Similarly, for any τ ą 0.5, P pφ˚τ ď φ pθ0qq “ o p1q. The proof is thus completed.
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Finally, we also show (18). Note that

nV ar pφ pθq |Xnq “
ˆ
n pφ pθq ´ φ pθ0qq pφ pθq ´ φ pθ0qq

1 p pθ|Xnq dθ ` oP p1q

“

ˆ
n
`

φ̄
`

D´1
n v{

?
n
˘

´ φ̄ p0q
˘ `

φ̄
`

D´1
n v{

?
n
˘

´ φ̄ p0q
˘1
pv pv|Xnq dv ` oP p1q

“
Bφ̄ p0q1

Bu2

ˆ
v2v

1
2pv pv|Xnq dv

Bφ̄ p0q

Bu2

`
Bφ̄ p0q1

Bu1

ˆ
v1v

1
1

λ2
n

pv pv|Xnq dv
Bφ̄ p0q

Bu1

` Cn ` oP p1q

where Bφ̄p0q1

Bu2
“ Λ1R pR1Rq´1

` oP p1q,
´
v2v

1
2pv pv|Xnq dv “ Σ` oP p1q, and

|Cn| ď C

ˆ ˆ

}v1}
2

λ2
n

?
n
`
}v2}

2

?
n

˙2

pv pv|Xnq dv “ oP p1q .

Therefore (18) holds.

Proof of Theorem 6. We first show that θ` “ θ0`opp1q by modifying the proof of The-

orem 1(b). Recall the definition of εpδq from that proof. Redefine dn “ λ̄pn
?
n
p
{n “ λpnn

γp{2{n

and bn “ minp1, dnq. Specifically, we established two preliminary results in Theorem 1(b)

that we will show to hold in the adaptive case. The first result holds in our new context

with the following minor modification to (44):

sup
θPΘ
|Q̄`n pθq ´Q` pθq| “ oP p1q for Q` pθq “ b´1

n Q pθq ´ b´1
n

λpn
n

M
ÿ

m“1

|ŵmgm pθq|p. (74)

For the second preliminary result, for any δ ą 0, we shall argue for the existence of

η pδq ą 0 and a positive sequence of possibly data-dependent terms tRn : n P Nu, such that

}θ` ´ θ0} ą δ implies Q`
`

θ`
˘

ă Q` pθ0q ´ η pδqRn. (75)

On the event }θ` ´ θ0} ą δ, either (1) }θg pθ`q ´ θ0} ą
`

1´ 1
K

˘

δ and }θg pθ`q ´ θ`} ă 1
K
δ,

or (2) }θg pθ`q ´ θ`} ą 1
K
δ. In the first case, we can take, as in the proof of Theorem 1(b),

ηpδq “ εpp1´K´1
qδq ´ εpδK´1

q

and Rn “ 1. In the second case (2), |gj pθ`q| ě ε
`

1
K
δ
˘

” ε̄ pδq for all j “ 1, . . . , J . Since

62



Qpθ0q ě Qpθ`q by Assumption 4,

Q`
`

θ`
˘

´Q` pθ0q ď ´b
´1
n

λpn
n
ε̄ pδqp

J
ÿ

j“1

|g̃j|´γp ď ´ε̄ pδqp
J
ÿ

j“1

|
?
ng̃j|´γp,

We then take ηpδq “ ε̄pδqp and Rn “
řJ
j“1|

?
ng̃j|´γp.

Finally, we prove the assertion using these preliminary results:

P
`

}θ` ´ θ0} ą δ
˘

ď P
`

Q`
`

θ`
˘

ă Q` pθ0q ´ η pδqRn

˘

“ P
`

Q`
`

θ`
˘

´ Q̄`n
`

θ`
˘

ă Q` pθ0q ´ Q̄
`
n pθ0q ` Q̄

`
n pθ0q ´ Q̄

`
n

`

θ`
˘

´ η pδqRn

˘

ď P

ˆ

sup
θPΘ
|Q̄`n pθq ´Q` pθq| ą

η pδq

3
Rn

˙

` P

ˆ

Q̄`n
`

θ`
˘

´ Q̄`n pθ0q ă ´
η pδq

3
Rn

˙

,

where the first line follows from (75) and the last line from the law of total probability. It

remains to show that the two terms on the last line are op1q. In case (1) above where Rn “ 1,

this follows from the same arguments in the proof of Theorem 1(b). For case (2), note that

by the law of total probability,

P

ˆ

sup
θPΘ
|Q̄`n pθq ´Q` pθq| ą

η pδq

3
Rn

˙

ď P

ˆ

sup
θPΘ
|Q̄`n pθq ´Q` pθq| ą

η pδq

3
JM´γp

˙

` J max
jPt1,...,Ju

P
`

|
?
ng̃j| ąM

˘

.

For any fixed M , the first term on the right-hand side is op1q by (74). On the other hand,

the second term satisfies

lim sup
MÑ8

lim
nÑ8

J max
jPt1,...,Ju

P
`

|
?
ng̃j| ąM

˘

“ 0

by Assumption 8, noting that gjpθ0q “ 0 for all j “ 1, . . . , J . Likewise,

P

ˆ

Q̄`n
`

θ`
˘

´ Q̄`n pθ0q ă ´
η pδq

3
Rn

˙

ď P

ˆ

Q̄`n
`

θ`
˘

´ Q̄`n pθ0q ă ´
η pδq

3
JM´γp

˙

` J max
jPt1,...,Ju

P
`

|
?
ng̃j| ąM

˘

,
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and the first term on the right-hand side is op1q, since Q̄`n pθ`q ě Q̄`n pθ0q´oP p1q by definition.

Now we show θ`´ θ̄ “ oppn
´1{2q by modifying the proof of Theorem 3. For the misspec-

ified constraints pgmpθq,m “ J ` 1, . . . ,Mq, w.p.c.1, for G˚ “ G0 `OP pu{
?
nq,

λpn

M
ÿ

m“J`1

1

|g̃m|
pγ

ˆˇ

ˇ

ˇ

ˇ

gm

ˆ

θ̄ `B´1 u
?
n

˙ˇ

ˇ

ˇ

ˇ

p

´
ˇ

ˇgm
`

θ̄
˘ˇ

ˇ

p

˙

“ λpn

M
ÿ

m“J`1

#

1

|g̃m|
pγ

ˇ

ˇ

ˇ
G˚

1

mB
´1u{

?
n
ˇ

ˇ

ˇ

p

`
C1

ˇ

ˇgm
`

θ̄
˘
ˇ

ˇ

|g̃m|
pγ

ˇ

ˇ

ˇ
G˚

1

mB
´1u{

?
n
ˇ

ˇ

ˇ

p´1

`
C2

ˇ

ˇgm
`

θ̄
˘
ˇ

ˇ

2

|g̃m|
pγ

ˇ

ˇ

ˇ
G˚

1

mB
´1u{

?
n
ˇ

ˇ

ˇ

p´2

` ...`
Cp´1

ˇ

ˇgm
`

θ̄
˘
ˇ

ˇ

p´1

|g̃m|
pγ

ˇ

ˇ

ˇ
G˚

1

mB
´1u{

?
n
ˇ

ˇ

ˇ

+

“ λpnOp

˜

M
ÿ

m“J`1

ˇ

ˇG10mB
´1u{

?
n` u1B´1u{n

ˇ

ˇ

¸

“
λpn?
n
Op

˜

M
ÿ

m“J`1

ˇ

ˇu1m ` op
`

}u}2
˘ˇ

ˇ

¸

“ opp1q

by Assumption 9(d).

Also, (53) continues to hold for the correctly specified constraints gj pθq , j “ 1...J :

λpn

J
ÿ

j“1

1

|g̃j|
pγ

ˆ
ˇ

ˇ

ˇ

ˇ

gj

ˆ

θ̄ `B´1 u
?
n

˙
ˇ

ˇ

ˇ

ˇ

p˙

“ λ̄pn
?
n
p

J
ÿ

j“1

ˇ

ˇ

?
ng̃j

ˇ

ˇ

´pγ

ˆˇ

ˇ

ˇ

ˇ

gj

ˆ

θ̄ `B´1 u
?
n

˙ˇ

ˇ

ˇ

ˇ

p˙

“ λ̄pn

J
ÿ

j“1

ˇ

ˇ

?
ng̃j

ˇ

ˇ

´pγ
´ˇ

ˇ

ˇ
G˚

1

j B
´1u

ˇ

ˇ

ˇ

p¯

“ λ̄pn

J
ÿ

j“1

ˇ

ˇ

?
ng̃j

ˇ

ˇ

´pγ ˇ
ˇu1j ` op

`

}u}2
˘
ˇ

ˇ

p

Therefore, (54) can be replaced by

δ}u`}2 ´OP p1q }u
`
1 }1 ` λ̄

p
n

J
ÿ

j“1

|
?
ng̃j|´pγ

›

›

›

›

p1` oP p1qqu
`
1 ` oP p1qu

`
2

›

›

›

›

p

1

ď oP p1q . (76)
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Given that the last term on the LHS is positive,

δ}u`}2 ´OP p1q }u
`
1 }1 ď oP p1q .

The rest of proof of Theorem 3 then goes through.

Proof of Theorem 7. Continuing from the proof of Theorem 4, replace (57) by

w pvq “ n

ˆ

Q̂n

ˆ

θ̄ `
B´1D̄´1

n v
?
n

˙

´ Q̂n

`

θ̄
˘

˙

` log κp

ˆ

λnŵ ˝ g

ˆ

θ̄ `B´1D̄´1
n

v
?
n

˙˙

´ log κp
`

λnŵ ˝ g
`

θ̄
˘˘

We will show (59) with p8v pvq replaced by

p̄8v pv|Xnq “ π0e
´ 1

2
v12Σ´1v2´

řJ
j“1 |

?
ng̃j |

´pγ |v1j |
p

Also let C8 “
´
p̄8v pv|Xnq dv “ π0 p2πq

K´J
2 det pΣq1{2 C̄κJ . By Assumption 10, C´1

8 “ OP p1q,

so that C´1
n “ pC8 ` oP p1qq

´1
“ OP p1q. Thus Bn “ oP p1q in (60) follows from (59).

Given any δ ą 0, find δ̄ ą 0, such that w.p.c.1,

}D̄´1
n v} ą

?
nδ ùñ }θ ´ θ̄} ą 2δ̄ ùñ }θ ´ θ0} ą δ̄,

Then argue as in the proof of Theorem 6 that for any δ̄ ą 0, there exists η
`

δ̄
˘

ą 0 and a

positive sequence of possibly data-dependent terms tRn : n P Nu, such that

}θ ´ θ0} ą δ̄ implies Q` pθq ă Q` pθ0q ´ η
`

δ̄
˘

Rn. (77)

Note also that θ̄ “ θ0`OP

´

1?
n

¯

, λ
p
n

n

řM
m“1|ŵmgm

`

θ̄
˘

|p “ oP

´

1?
n

¯

imply that |Q̄`n pθ`q´

Q̄`n pθ0q | satisfies

b´1
n |Q

`

θ`
˘

´Q pθ0q | ` oP p1q “ oP

ˆ

max

ˆ

1
?
n
,

?
n

λ̄pn
?
n
p

˙˙

` oP p1q “ oP p1q .
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We can then write, for }θ ´ θ0} ą δ̄, w.p.c.1,

enpQ̄npθq´Q̄npθ̄qq “ enbnpQ̄
`
n pθq´Q̄

`
n pθ0q`oP p1qq ď C1e

´nbnηpδ̄qRn{2.

This yields

ˆ
}D̄´1

n v}ą
?
nδ

}v}αp̄v pv|Xnq dv ď Ce´nbnηpδ̄qRn{2
ˆ
}θ´θ0}ąδ̄

?
n
K`α

λ̄J`αn }θ ´ θ0}
απ0 pθq dθ “ oP p1q .

Furthermore, since D̄´1
n “ pλ̄´1

n IJ , IK´Jq and p̄8 pv|Xnq has exponential tails, it also holds

that for any Mn Ñ 8,

ˆ
}v}ěMn

}v}αp̄8v pv|Xnq dv “ oP p1q so that
ˆ
}D̄´1

n v}ě
?
nδ

}v}αp̄8v pv|Xnq dv “ oP p1q . (78)

By Assumption 5, for any δ Ñ 0 sufficiently slowly, uniformly in v such that }B´1D̄´1
n v{

?
n} ď

δ,

n
´

Q̂n

`

θ̄ `B´1D̄´1
n v{

?
n
˘

´ Q̂n

`

θ̄
˘

¯

“´
1

2
v1D̄´1

n B´1H0B
´1D̄´1

n v `∆1
n,θ0

FG0 pG
1
0G0q

´1 v1

λ̄n
` oP

`

1` }h}2
˘

,
(79)

where h “ B´1D̄´1
n v and F “ I ´R pR1H0Rq

´1R1H0.

Since gj
`

θ̄
˘

“ 0 for j “ 1, . . . , J and G˚ “ G0 ` OP

´

B´1D̄´1
n v?
n

¯

, the correctly specified
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constraints satisfy

λpn

J
ÿ

j“1

1

|g̃j|
pγ

ˆ
ˇ

ˇ

ˇ

ˇ

gj

ˆ

θ̄ `B´1D̄´1
n

v
?
n

˙
ˇ

ˇ

ˇ

ˇ

p˙

“ λ̄pn
?
n
p

J
ÿ

j“1

ˇ

ˇ

?
ng̃j

ˇ

ˇ

´pγ

ˆˇ

ˇ

ˇ

ˇ

gj

ˆ

θ̄ `B´1D̄´1
n

v
?
n

˙
ˇ

ˇ

ˇ

ˇ

p˙

“

J
ÿ

j“1

ˇ

ˇ

?
ng̃j

ˇ

ˇ

´pγ
´
ˇ

ˇ

ˇ
λ̄nG

˚1

j B
´1D̄´1

n v
ˇ

ˇ

ˇ

p¯

“

J
ÿ

j“1

ˇ

ˇ

?
ng̃j

ˇ

ˇ

´pγ
´
ˇ

ˇ

ˇ
λ̄nG

1
0jB

´1D̄´1
n v ` λ̄nv

1D̄´1
n B´11B´1D̄´1

n v{
?
n
ˇ

ˇ

ˇ

p¯

“

J
ÿ

j“1

ˇ

ˇ

?
ng̃j

ˇ

ˇ

´pγ

ˇ

ˇ

ˇ

ˇ

ˇ

v1j `Op

ˆ

λ̄n
?
n
}v2}

2

˙

`Op

˜

}v1}
2

?
nλ̄n

¸ˇ

ˇ

ˇ

ˇ

ˇ

p

In contrast, for the misspecified constraints,

λpn

M
ÿ

m“J`1

1

|g̃m|
pγ

ˆ
ˇ

ˇ

ˇ

ˇ

gm

ˆ

θ̄ `B´1D̄´1
n

v
?
n

˙
ˇ

ˇ

ˇ

ˇ

p

´
ˇ

ˇgm
`

θ̄
˘ˇ

ˇ

p

˙

“ λpn

M
ÿ

m“J`1

#

1

|g̃m|
pγ

ˇ

ˇG˚mB
´1D̄´1

n v{
?
n
ˇ

ˇ

p
`
C1

ˇ

ˇgm
`

θ̄
˘ˇ

ˇ

|g̃m|
pγ

ˇ

ˇG˚mB
´1D̄´1

n v{
?
n
ˇ

ˇ

p´1

`
C2

ˇ

ˇgm
`

θ̄
˘ˇ

ˇ

2

|g̃m|
pγ

ˇ

ˇG˚mB
´1D̄´1

n v{
?
n
ˇ

ˇ

p´2
` ...`

Cp´1

ˇ

ˇgm
`

θ̄
˘
ˇ

ˇ

p´1

|g̃m|
pγ

ˇ

ˇG˚mB
´1D̄´1

n v{
?
n
ˇ

ˇ

+

“ λpnOp

˜

M
ÿ

m“J`1

ˇ

ˇ

ˇ
G10mB

´1D̄´1
n v{

?
n` v1D̄´1

n B´11B´1D̄´1
n v{n

ˇ

ˇ

ˇ

¸

“
λpn?
n
Op

˜

M
ÿ

m“J`1

ˇ

ˇ

ˇ

ˇ

ˇ

v1m `Op

ˆ

λ̄n
?
n
}v2}

2

˙

`Op

˜

}v1}
2

?
nλ̄n

¸
ˇ

ˇ

ˇ

ˇ

ˇ

¸

“ opp1q

by Assumption 9.

Using the previous two relations and (62), (64) holds with p̄8v pvq replaced by p̄8 pv|Xnq,
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Hn replaced by H̄n ” D̄nB
?
n
`

Θ´ θ̄
˘

, and

ψ pvq “∆1
n,θ0

FG0 pG
1
0G0q

´1 v1

λ̄n
´ v12 pR

1Rq
´1
R1H0G0 pG

1
0G0q

´1 v1

λ̄n

´
1

2λ̄2
n

v11 pG
1
0G0q

´1
G10HF0G0 pG

1
0G0q

´1
v1

´

J
ÿ

j“1

ˇ

ˇ

?
ng̃j

ˇ

ˇ

´pγ

ˇ

ˇ

ˇ

ˇ

ˇ

v1j `Op

ˆ

λ̄n
?
n
}v2}

2

˙

`Op

˜

}v1}
2

?
nλ̄n

¸ˇ

ˇ

ˇ

ˇ

ˇ

p

`

J
ÿ

j“1

ˇ

ˇ

?
ng̃j

ˇ

ˇ

´pγ
|v1j|

p ,

which replaces (65). Furthermore, (66) and (67) continue to hold. Finally (68) also holds

since we can now write

w pvq “ ´
1

2
v1D̄´1

n B´1H0B
´1D̄´1

n v ´
J
ÿ

j“1

ˇ

ˇ

?
ng̃j

ˇ

ˇ

´pγ

ˇ

ˇ

ˇ

ˇ

ˇ

v1j `Op

ˆ

λ̄n
?
n
}v2}

2

˙

`Op

˜

}v1}
2

?
nλ̄n

¸
ˇ

ˇ

ˇ

ˇ

ˇ

p

` oP

ˆ

}v1}
2

λ̄2
n

˙

` oP
`

}v2}
2
˘

` oP

ˆ

}v1}

λ̄n

˙

` oP p1q

For some δk ą 0 denoting generic small constants, we can let }v1} ď δ2λ̄n
?
n for any δ2 ą 0

and n sufficiently large. There are two cases to consider. First, suppose on the previous

event sequence that δ3}v1} ´
λn?
n
}v2}

2 Ñ α P r0,8s. Then w pvq is bounded above by

´δ1}v2}
2
´

J
ÿ

j“1

ˇ

ˇ

?
ng̃j

ˇ

ˇ

´pγ

ˇ

ˇ

ˇ

ˇ

p1´ δ2 ´ δ3q v1j

ˇ

ˇ

ˇ

ˇ

p

` oP p1q w.p.c.1

Second, suppose instead λn?
n
}v2}

2 ´ δ3}v1} Ñ α P p0,8s. Then we replace the upper bound

with

´
δ1

4
}v2}

2
´
δ1δ3

4

?
n

λ̄n
}v1} ` oP p1q w.p.c.1 (80)

In either case, the left-hand side of (68) is OP

`

Mη1
n e

´η2Mn
˘

“ oP p1q for some η1, η2 ą 0.

Finally, the proof for Theorem 5 goes through verbatim upon replacing λn with λ̄n and

p8v pvq with p8 pv|Xnq.

Proof of Theorem 8. We first show consistency, θ̄S “ θ0 ` oP p1q, using arguments

similar to the proof of Theorem 1, and we employ the notation defined there. As in that proof,
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the event }θ̄S´θ0} ă δ can be bounded by the union of two events: (1) }θg
`

θ̄S
˘

´ θ̄S} ě δ{K;

and (2) Q
`

θ̄S
˘

ď Q pθ0q ´ η. Event p1q has vanishing probability since g p¨q is continuous

and g
`

θ̄S
˘

“ oP p1q by Assumption 11(a). Event p2q will also have vanishing probability if

we can show Q
`

θ̄S
˘

ě Q pθ0q ´ oP p1q . For this purpose, let ΘS “ tθ P Θ : }gn pθq } ď εnu

and note that by definition of θ̄S and Assumption 3, Q
`

θ̄S
˘

ě supθPΘS Q pθq ´ oP p1q . It

then suffices to show that supθPΘS Q pθq ě Q pθ0q ´ oP p1q, which in turn follows from the

continuity of Q p¨q if we can show that infθPΘS }θ ´ θ0} “ oP p1q.

To show this, note that the constraint set ΘS can be equivalently expressed as ΘS “
 

θ P Θ : }gn pθq}
2
ď ε2n

(

. Furthermore, if inf
}gnpθq}

2
ďε2n

}θ ´ θ0}
2
“ opp1q, then inf

}gnpθq}
2
ďε2n

}θ ´ θ0} “

opp1q as well. Since the constraint set is convex and the objective function is convex, there

exists a unique minimizer θ˚ “ arg min
}gnpθq}

2
ďε2n

}θ ´ θ0}
2. The Lagrangian is

L pθq “ }θ ´ θ0}
2
` λ

`

}gn pθq}
2
´ ε2n

˘

.

The first order KKT conditions are, for Gn pθq “
Bgnpθq
Bθ1

,

∇L pθ˚q “ 2 pθ˚ ´ θ0q ` 2λGn pθ
˚
q gn pθ

˚
q “ 0,

λ
`

}gn pθ
˚
q}

2
´ ε2n

˘

“ 0,

λ ě 0.

Taylor expanding the first KKT condition and using Assumption 11(b),

pθ˚ ´ θ0q ` λ
`

Gn pθ0q `Op

`

1{
?
n
˘˘ `

gn pθ0q `Gn pθ0q
1
pθ˚ ´ θ0q `Op

`

1{
?
n
˘˘

“ 0

ùñ
`

I ` λGn pθ0qGn pθ0q
1
˘

pθ˚ ´ θ0q “ ´λGn pθ0q gn pθ0q `Op

`

1{
?
n
˘

ùñ θ˚ ´ θ0 “ ´λ
`

I ` λGn pθ0qGn pθ0q
1
˘´1

Gn pθ0q gn pθ0q `Op

`

1{
?
n
˘

“ Op

`

1{
?
n
˘

ùñ }θ˚ ´ θ0} “ Op

`

1{
?
n
˘

,

which proves consistency.

To show asymptotic normality, define h` “ arg maxh:gnpθ0`h{
?
nq“εn ∆1

n,θ0
h ´ 1

2
h1H0h. By
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Assumption 11,

h` “arg maxh:gpθ0`h{
?
nq“´gnpθ0q`εn∆1

n,θ0
h´

1

2
h1H0h

“arg maxh:Ḡ1h“´
?
ngnpθ0q`

?
nεn∆1

n,θ0
h´

1

2
h1H0h

for some εn “ oP pn
´1{2q. By consistency, Ḡ “ G0 ` oP p1q. Also construct R̄ “ R0 as in the

proof of Theorem 2. Similar calculations as in Amemiya (1985) show that

h` “ R̄
`

R̄1H0R̄
˘´1

R̄1∆n,θ0 ´

´

I ´ R̄
`

R̄1H0R̄
˘´1

R̄1H0

¯

Ḡ
`

Ḡ1Ḡ
˘´1?

n pgn pθ0q ` εnq “ (25).

Let h̄ “
?
n
`

θ̄S ´ θ0

˘

and Ḡ “ G0 ` op p1q. Noting that G10h` “ ´
?
n pgn pθ0q ` εnq `

oP p1q, we have

g
`

θ0 ` h{
?
n
˘

“ Ḡ1h̄ “ ´
?
n pgn pθ0q ` εnq ` oP p1q “ G10h̄` oP

`

h̄
˘

.

Let v̄ “ B
`

h̄´ h`
˘

. Following calculations similar to those after (50),

}v̄1} “ }G
1
0

`

h̄´ h`
˘

} “ oP p1q ` oP
`

}h̄}
˘

“ oP p1q ` oP p}v̄}q “ oP p1q ` oP p}v̄1}q ` oP p}v̄2}q ,

implying that }v̄1} “ oP p1q ` oP p}v̄2}q. Substituting into (50) analogously to (47) and (48),

1

2
v̄12

´

pR1Rq
´1
R1HR pR1Rq

´1
` oP p1q

¯

v̄2 ` oP p1q }v̄2} ď oP p1q

which implies that v̄2 “ OP p1q and subsequently v̄2 “ oP p1q.

Proof of Theorem 9.

For θ˚ denoting a mean value between θ̃ and θ0, define G˚ “ B

Bθ1
gn pθ

˚q. Also define ∆0
n “

?
nL̃Ŵl`n pθ0q andH˚ “ L̃ŴlL

˚1 for L˚ “ B

Bθ1
`n pθ

˚q. Let D̃n “

´

H̃ ` λnG̃G̃
1

¯´1 ´

H˚ ` λnG̃G
˚1
¯

.

Using the Taylor expansion

∇̃` λnG̃gn
´

θ̃
¯

“ ∆0
n{
?
n` λnG̃gn pθ0q `

´

H˚
` λnG̃G

˚1
¯´

θ̃ ´ θ0

¯

,
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we can write

?
n
`

θ´ ´ θ0

˘

“

´

I ´ D̃n

¯?
n
´

θ̃ ´ θ0

¯

´

´

H̃ ` λnG̃G̃
1
¯´1 ´

∆0
n ` λnG̃

?
ngn pθ0q

¯

Note that

D̃n “ B̃
´

J´1B̃1
´

H̃ ` λnG̃G̃
1
¯

B̃
¯´1 ´

J´1B̃1
´

H˚
` λnG̃G

˚1
¯

B˚
¯

B˚´1
“ I ` oP p1q

and

´

H̃ ` λnG̃G̃
1
¯´1 ´

∆0
n ` λnG̃

?
ngn pθ0q

¯

“ B̃
´

J´1
´

B̃1H̃B̃ ` diag p0dl , λnIdSq
¯¯´1

J´1

¨

˝

´R̃1∆0
n

´G̃1∆0
n ` λn

?
n
´

G̃1G̃
¯

gn pθ0q

˛

‚

“B̃

¨

˝

´

R̃1HR̃
¯´1

R̃1∆0
n `

´

R̃1H̃R̃
¯´1

R̃1H̃G̃
´

G̃1G̃
¯´1?

ngn pθ0q

´
?
n
´

G̃1G̃
¯

gn pθ0q

˛

‚“ (25)` oP p1q .

More generally, if we only know that θ̃ “ θ0 ` OP pn
´αq, then H̃ ´H˚ “ OP

´

}θ̃ ´ θ0}
γ
¯

“

OP pn
´αγq and G̃´G˚ “ OP pn

´αγq for γ ě 0. Typically for smooth models, γ “ 1. Therefore

θ´ ´ θ0 “

´

I ´ D̃n

¯´

θ̃ ´ θ0

¯

`
1
?
n
(25)` oP

ˆ

1
?
n

˙

“

´

H̃ ` λnG̃G̃
1
¯´1 ´

H̃ ´H˚
` λnG̃

´

G̃1 ´G˚
1
¯¯´

θ̃ ´ θ0

¯

`
1
?
n
(25)` oP

ˆ

1
?
n

˙

“ OP p1q
`

OP

`

n´αγ
˘

`OP p1qOP

`

n´αγ
˘˘

OP

`

n´α
˘

`
1
?
n
(25)` oP

ˆ

1
?
n

˙

“ OP

`

n´αp1`γq
˘

`
1
?
n
(25)` oP

ˆ

1
?
n

˙

.

In the κth iteration, then θ´´θ0 “ OP

`

n´ακp1`γq
˘

` 1?
n
(25)`oP

´

1?
n

¯

. Hence
?
n consistency

can be achieved in at most κ ě 1{ p2α p1` γqq iterations.

In appendix C, we consider using numerical derivatives to obtain H̃ and G̃. Numerical
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differentiation changes the iteration rate to

θ´ ´ θ0 “

˜

OP

˜

c

log n

nεn

¸

`O pεpnq `OP

´

}θ̃ ´ θ0}
γ
¯

¸

OP

´

}θ̃ ´ θ0}

¯

`
1
?
n
(25)` oP

ˆ

1
?
n

˙

.

The kth iteration will thus improve the rate to, for εn “ n´φ,

θ´ ´ θ0 “OP

˜

c

log n

nεn

k

n´α

¸

`O
`

εkpn n
´α
˘

`OP

`

n´αkp1`γq
˘

`
1
?
n
(25)` oP

ˆ

1
?
n

˙

“OP

´

a

log nnkpφ´1q´α
¯

`O
`

n´pφkp`αq
˘

`OP

`

n´αkp1`γq
˘

`
1
?
n
(25)` oP

ˆ

1
?
n

˙

.

Again
?
n consistency can be achieved in a finite number of steps.

C Numerical differentiation and one-step iteration

In nonsmooth GMMmodels, numerical derivatives can reduce the convergence rate of I´D̃n.

As in Hong, Mahajan and Nekipelov (HMN) 2015, use step size εn, appropriate c1ls and unit

basis vectors ej to define

L̃ “ Lεn1,p`n

´

θ̃
¯

“

"

1

εn

p
ÿ

l“´p

cl`n

´

θ̃ ` lεnej

¯

, j “ 1, . . . , K

*

,

and similarly G̃ “ Lεn1,pgn

´

θ̃
¯

. The coefficients cl are determined as
řp
l“´p cll

k “ 1 and
řp
l“´p cll

i “ 0 for i ‰ k. The following lemma is derived from Theorem 2.37 in Pollard

(1984) and Lemma 1 in HMN 2015.

Lemma C.1. Let ` pθq “ E`n pθq be more than p times continuously differentiable. Under

the conditions in Theorem 2.37 of Pollard (1984), whenever log n{ pnεnq Ñ 8,

L̃´ L0 “ OP

˜

c

log n

nεn

¸

`O pεpnq `OP

´

}θ̃ ´ θ0}
γ
¯

.
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Proof of Lemma C.1. Decompose L̃´L0 “ ∇L1`∇L2`∇L3, where ∇L2 “ Lεn1,p`
´

θ̃
¯

´

B

Bθ
`
´

θ̃
¯

“ O pεpnq and ∇L3 “
B

Bθ
`
´

θ̃
¯

´ L0 “ }θ̃ ´ θ0}
γ. It remains to show, for ∇L1 “

Lεn1,p

´

`n

´

θ̃
¯

´ `
´

θ̃
¯¯

,

∇L1 “
1

εn

1

n

n
ÿ

i“1

p
ÿ

l“´p

cl

”

`
´

Xi, θ̃ ` lεnej

¯

´ `
´

θ̃ ` lεnej

¯ı

“ OP

˜

c

log n

nεn

¸

by showing that supθPΘ |
1
εn

1
n

řn
i“1

řp
l“´p cl r` pXi, θ ` lεnejq ´ ` pθ ` lεnejqs | “ OP

´b

logn
nεn

¯

.

Let Fn “ t` pXi, θ ` lεnejq , θ P Θu. Then for each f P Fn, pPf 2q
1{2
ď Cεn. For each M ą 0,

consider εn “ Mεn

b

logn
nεn

. By assumption, V ar pPnfq {ε2
n ď M{ log n Ñ 0, so that for all

large n Pollard’s symmetrization applies. Furthermore, Fn being Euclidean, further bound

P

ˆ

sup
fPFn

|P 0
nf | ą 2εn

˙

ď 2Aε´Wn exp

ˆ

´
1

2
nε2

n{64εn

˙

` P

ˆ

sup
Fn

f 2
ą 64εn

˙

.

Lemma 33 in Pollard (1984) bounds the second term by CεWn exp p´nεnq “ o p1q. Finally

bound the first term by

AM´W

˜

εn

c

log n

nεn

¸´W

exp

ˆ

´
M

128
log n

˙

nÑ8,MÑ8
ÝÑ 0.

Therefore, by the symmetrization inequality in equation (30) of Pollard (1984),

lim
MÑ8

lim sup
nÑ8

P

˜

sup
fPFn

|Pnf ´ Pf |

εn
ě 8M

c

log n

nεn

¸

“ 0
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