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RAVI BANSAL, A. RONALD GALLANT, ROBERT HUSSEY AND GEORGE TAUCHEN

Computational Aspects of Nonparametric
Simulation Estimation

ABSTRACT. This paper develops & nonparameltric estimator for structural equilibrium models
that combines numerical solution techniques for nonlinear rational expectations models with
arametric statistical techniques for characterizing the dynamic properties of time series

The estimator uses the the score function from a nonparametric estimate of the law
of motion of the observed data to define 2 GMM criterion function. In effect, it forces the
cconomic model to generate simulated data so as to match a nonparametric estimate of the
conditional density of the observed data. It differs from other simulated method of moments
estimators in using the nonparametric density estimate, thereby allowing the data to dictate
what features of the data are important for the structural mode! to match. The components
of the scoring function characterize important kinds of nonlinearity in the data, including
properties such as nonnormality and stochastic volatility.

“The nonparametric density estimate is obtained using the Gallant-Tauchen seminonpara-
metric (SNP} model. The simulated data that soive the economic model are obtained using
Marcet's method of parameterized expectations. The paper gives a detailed description of the
method of parameterized expectations applied to an equilibrium monetary model. It shows that
the choice of the specification of the Euler equations and the manner of testing convergence
have large effects on the rate of convergence of the solution procedure. It also reviews sev-
eral optimization algorithms for minimizing the GMM objective function. The Nelder-Mead
simplex method is found to be far more successful than others for our estimation problem,

neng:
data.

1. INTRODUCTION

A structural equilibrium model is a complete description of a model economy in-
cluding the economic environment, the optimization probiem facing each agent, the
market clearing conditions, and an assumption of rationat expectations. A structural
equilibrium model is difficult to estimate, as doing so entails repeated solution of a
fixed-point problem in many variables. One approach is to employ a linearization,
typically linear-quadratic, in conjunction with Gaussian specification for the errors,
A linear specification is attractive because a closed form solution can be obtained
(Hansen and Sargent, 1980). However, recent advances in numerical techniques now
make it possible to obtain good approximate solutions for nonlinear models. (See
the 1990 symposium in the Journal of Business and Economic Statistics (JBES),
summarized in Tauchen, 1990 and Taylor and Uhlig, 1990.) At the same time as
these developments in structural modelling have occurred, purely statistical models,
such as ARCH (Engle, 1982), GARCH (Bollersiev, 1986), and seminonparametric
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4 R. Bansal et al.

models (Gallant and Tauchen, 1989, 1992), have been used to discover and charac-
terize important forms of nonlinear behavior in economic time series, especially in
financial time series. Linear Gaussian models cannot explain such nonlinear behayv-
ior in actual data. Thus, nonlinear structural models must be examined to see the
extent to which they can explain the nonlinear behavior found in actual economic
data. This paper shows how statistical technigues can be combined with numerical
solution techniques to estimate nonlinear structural equilibrium models.

The most common approach for estimation of nonlinear structural models is
probably generalized method of moments (GMM) applied to Euler equations, ‘as de-
veloped in Hansen and Singleton (1982). This technique has been widely employed in
financial economics and macroeconomics, though it is a limited information method
and has shortcomings. For example, the estimation can encounter problems when
there are unobserved variables, as is the case for the model we consider in Section
2 where the decision interval is a week, but some of the data are observed monthiy.
Also it does not provide an estimate of the law of motion of the economic variables.
Thus, if the model is rejected, little information is available regarding the properties
of the observed data that the model has failed to capture.

In this paper we describe an alternative strategy for estimating nonlinear structural
models that was first applied in Bansal, Gallant, Hussey, and Tauchen (1992). The
approach is similar to the simulated method of moments estimators of Duffie and
Singleton (1989) and Ingram and Lee (1991). However, unlike those estimators,
which match preselected moments of the data, our estimator minimizes a GMM
criterion based on the score function of a nonparametric estimator of the conditional
density of the observed data. In effect, the estimator uses as a standard of comparison
a nonparametric estimate of the law of motion of the observed data. By selecting the
GMM criterion in this way, we allow the observed data to determine the dynamic
properties the structural model must match.

The estimator works by combining the method of parameterized expectations for
numerically solving a nonlinear structural equilibrium model (Marcet, 1991; den
Haan and Marcet, 1990) with the seminonparametric (SNP} method for estimating
the conditional density of actuat data (Gallant and Tauchen, 1989, 1992). For a par-
ticular setting of the parameters of the structural model, the method of parameterized
expectations generates simulated data that solve the model. The model parameters
are then estimated by searching for the parameter values that minimize a GMM crite-
rion function based on the scoring function of the SNP conditional density estimate.
The nonparametric structurat estimator thus has three components: (1) using SNP to
estimate the conditional density of actual data, (2) using the method of parameter-
ized expectations to obtain simulated data that satisfy the structural model. and 3
estimating the underlying structural parameters by using an optimization algorithm
that finds those parameter values that minimize the GMM criterion function.

Below we discuss in detail how the estimator works in the context of a two-country
equilibrium monetary model. The model is based on Lucas (1982), Svensson (1985).
and Bansal (1990), and is developed in full detail in Bansal, Gallant, Hussey, and
Tauchen (1992). It accommodates time non-separabilities in preferences (Dunn and
Singleton, 1986) and money via a transactions cost technology (Feenstra, 1986). In
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effect, the model is a nonlinear filter that maps exogenous endowment and money
supply processes into endogenous nominal processes, including exchange rates, in-
terest rates, and forward rates. We show how this nonlinear dynamic model can be
solved and simulated for estimation and evaluation. _

In applying our estimator to this model, we find that there are several choices
available to the researcher that greatly affect the estimator’s success and rate of
convergence. For example, the form in which one specifies the Euler equations
on which the parameterized expectations algorithm operates can significantly affect
the speed of convergence. This is an important finding, since our estimator uses
this algorithm repeatedly at different model parameter values. Also, the means for
testing convergence can have important consequences; we find it best to test for
convergence of the projection used in parameterized expectations instead of testing
for convergence of the coefficients representing the projection. Finally, we find that
the complexity of our estimation procedure causes some optimization algorithms
to have greater success in minimizing the GMM objective function. Among the
optimization techniques we tried are gradient search methods, simulated annealing,
and simplex methods. In Section 3.1 below we discuss how these methods work and
their strengths and weaknesses for our type of optimization problem,

The rest of the paper is organized as follows: Section 2 specifies the illustrative
monetary model and describes the simulation estimator. Section 3 discusses practical
aspects of implementing the estimator, inciuding solving the model with parameter-
ized expectations and optimizing the GMM objective function to estimate the model

parameters. Concluding remarks comprise the final section.

2. THE NONPARAMETRIC STRUCTURAL ESTIMATOR

2.1. The Structural Model

We apply our nonparametric structural estimator to the equilibrium monetary model
of Bansal, Gallant, Hussey, and Tauchen (1992). In that model, a representative
world consumer has preferences defined over services from two consumption goods.

The utility function is assumed to have the form

By s (e ) T -] -,
t=0

where 0 < 8 < 1,0 <& < 1,4 > 0, and where ¢}, and ¢j, are the consumption
services from goods produced in countries 1 and 2, respectively. Preferences are of the
constant relative risk aversion (CRRA) type in terms of the composite consumption
goods. The parameter 7 is the coefficient of relative risk aversion, § determines the
allocation of expenditure between the two services, and 3 is the subjective discount

factor. If v = 1, then preferences collapse to log-utility

Euiﬁ‘(é Inc, +(1—6)In 031).
1=0
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The transformation of goods to services is a linear technology

-
&1y =Cu +RuCi -t + .+ KIL.ClLi-L,y

Cy =Cu + KaCyt-1 + o+ KoL, C20- 1,

where ¢ and cy, are the acquisitions of goods, the x,; determine the extent to which
past acquisitions of goods provide services (and hence utility) in the current period,
and L. is the lag length. If L. = 0, then the utility function collapses to the standard
time separable case where ¢}, = ¢, and ¢}, = c. If the nonseparability parameters
&;; are positive, then past acquisitions of goods provide services today. If they are
negative, then there is habit persistence. Other patterns are possible as well. Recent
acquisitions of goods can provide services today, while acquisitions further in the
past contribute to habit persistence,

We introduce money into the model via a transaction-costs technology. The
underlying justification for transactions costs is that the acquisition of goods is costly
both in terms of resources and time. Money, by its presence, economizes on these
costs and hence is valued in equilibrium. Transaction costs, ¥{c,m), in our model are
an increasing function of the amount of goods consumed ¢ and a decreasing function
of the magnitude of real balances m held by the consumer in the trading period. The
functional form we use for the transaction-costs technology is

P(e,m) = Pocm' ™,
where ¢y > Qand a > L.
The consumer’s problem is to maximize expected utility EpEe o 8'U(cy,, c3,) by

choosing e, €2ty Mi 41, Mapg, 05y and b5,y K = 1, Na, attime ¢ subject
to a sequence of budget constraints

Piefere + Ylere, mug)] + ecPafea + p(ca, ma b}

Na A
+ ) (BRI + S (FE/ RIS i1 + Miea + eMayg
k=] k=1

Na Na
< STO/RETON + DU R Wi + My + eMa
k= k=1

+ Ppwye + e Prwn + qig + €0Qae.

Here, P;; and P, are current prices of consumption goods ¢y, and ¢z in the units
of the respective country’s currency. M) (41 and My ey are the stocks of currency
in the two countries carried forward from period ¢ to ¢ + |. Real money balances,
my = M/ Py and my, = My /Py, are defined in terms of beginning of period
money holdings. The b}, | and b , ., are the agent’s holdings of risk-free claims to
the currencies of countries i and 2 in period ¢ + k. Claims on country {'s currency are
made by trading pure discount bonds with gross k-period interest rates RE. Claims
on country 2's currency are made by trading forward contracts in the currency market,
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where e; is the spot exchange rate and £/ is the k-period forward exchange rate, with
both rates defined in units of country 1's currency per unit of country 2's currency.
wy, and wy, are the stochastic endowments of goods within the two countries. Lump
sum transfers of gy, and gz; units of currency are made by the government at time £.
These transfers are known to the agent at the beginning of period ¢ but can be used

for carrying out transactions only in period t + 1.
The stationary decision problem facing the agent delivers the following Euler

equations for the asset holdings M1,.41 and My 14, :
B 1+ 1.,
A . U £it - - =
B[MUey = BMUes (5,5 ) (752 ) (1 = Fmia) | =0 =122
and for bf,u-; and bg_t“ :

E, [MU.:“ - BEMU., .\ (Piik) (1 :.ziic:; )Rf‘] =90,

Et [J’lfUcn - ﬂkMUcl.l-pk ( Pﬂ ) ( L+ wc“ ) (e:Rﬁ/ff)] = 01
Py / N+,

where MU,,, is the marginal utility of ¢;;, and 9, and ¥m,, are the derivatives
of transaction costs, ¥{c;, M), with respect to the first and second arguments,
respectively. Transactions costs modify the returns to the two monies, M, and Mo,
We would expect Py¢/ Py 441 to be thereturn at time ¢+ | for carrying forward an extra
unit of country one's currency today. However, because of transaction costs, every
extra unit of currency carried forward also lowers transaction costs in the next period
by a real amount, =/m; ,,, » S0 the total return is given by [(I = Y, o4y ) Pt/ Pie41]-
The model also delivers an intratemporal restriction on the choice of goods ¢, and
(51)

(G (22 (Te)]
&y = Ep_ _— - =l
MUC“ PZt 1 + "J"c;.

In maximizing utility, the consumer faces an exogenous stochastic process that
governs the evolution of money growth and endowment growth in the two countries.
We define the operator d to produce the ratio of the value of a variable in one
period to its value in the previous period, as, for example, dM), = M /M .
Using this operator, we specify a driving process for the exogenous state vector

Sy = (dM),, dM2, dwiy, dwy) of the form
lOgS: = ag + AIOgS[,; + Uy,

where wu; is itd N(0, 1), ao is a 4-vector, and A and ) are 4 x 4 matrices. More
complex stochastic processes for the exogenous state variables could easily be ac-

commodated by our numerical solution method.
The final elements needed to complete the description of the model are the market

clearing conditions

¢y + 'ﬁ(Cm m!l) = Wiy,
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Mt = qie + My, i=1,2.
The parameter vector of the structural economic model is
A= (ﬁi ¥, 6} w(h [4 997 | IR KL,y K21y 0o KoLy ﬂ;), UEC(A)T1 vec‘h‘(gllz)’),'

For each value of A the model defines a nonlinear mapping from the strictly exogenous
process {5} to an output process {U; }. The output process is

U, = (dMy, dMay, duny, dunye, deye, deae, P, dPa, Ry, £ 10, dey),

which is an 11-vector containing the elements of S; along with the gross consumption
growth rates, the gross inflation rates, the four-period interest rate in country 1, the
ratio of the four-period forward exchange rate to the spot rate, and the gross growth
rate of the spot exchange rate. It proves convenient also to include the elements of 5,
in the output process, mapping them directly with an identity map. The particular set
of variables comprising the remaining elements of Uy are those endogenous variables
that turn out to be of interest for various aspects of the analysis of the model and the
empirical work.

The mapping from ({S:}, A) to the endogenous elements of U, is defined by the
solution to the noniinear rational expectations model. Ia practice, we use Marcet’s
method of parameterized expectations (Marcet, 1991; den Haan and Marcet, [990)
to approximate the map. Given a value of ), the method “solves” the model in the
sense of determining simulated realizations of the variables that satisfy the Euler
equations. In what follows, {U}} denotes a realization of the output process given
A and a realization of {S;}. A complete description of how we apply the method of
parameterized expectations to this probiem is given in Section 3.1 below.

2.2. The Estimation Method

The nonlinearity of the economic model prevents estimation by traditional methods
since it is computationally intractable to compute the likelihood of a sample as a
function of the model’s parameters. However, simuiation methods can be used to
compute predicted probabilities and expectations under the model. Thus we propose
a new simulation estimator that estimates the model by searching for the value of
the parameter A for which the dynamic properties of data simulated from the model
match, as closely as possible, the properites of actual data.

Notall elements of [/; generated by the model are actaully observed weekly, so our
empirical strategy is to use latent-variable methods with our simulation estimator.
High quality observations on financial market prices, i.e., payoff data, are widely
available on a weekly basis, and so we concentrate on these series in the estimation.
We utilize weekly observations on three raw series: SPOT,, the spot exchange rate
(in $ per DM); FORWARDY}, the 30-day forward rate (in $ per DM); and TBILL{, the
one month treasury bill interest rate, computed from the term structure, and quoted

on a bank discount basis. From the raw series we form a 3-element process y, =
{vieyy2e, y3e)' with
Y1t = 100 + log(SPOT, /SPOT,_, ),
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yae = 100 % log(FORWARD} /SPOT;),
Y = TBILL‘:.

Exploratory empirical work indicates that {y¢} is reasonably taken as a strictly
stationary process, while the levels of the exchange rate series are nonstationary.
The correspondence between the elements of y, and those of the output vector U,
are as follows: Country 1 is the U.S. and country 2 is Germany. Given a simulated
realization {U}} from the model, the corresponding {37} is computed as

yf, = 100 = log(de}),
y2 = 100 * log(f;}/ev),
42, = 100 * (360/30)[1 = (1/R}})).

The expression for ¥3, converts 1 /Ry, which is the price at time ¢ of $1 in period

t + 4, to an annualized interest rate using the bank discount formula customarily
applied to treasury bill prices (Stigum, 1990, p. 66).

The observed process is {y;} and the simuiated process is {y}} as defined above.
The {y:} process is computed directly from the raw data while {y;'} is computed
using the structural model of Section 2,1. We assume the model to be “true” in the
sense that there is a particular value, Ag, of the structural parameter vector and a
realization, {So:}, of the exogenous vector such that the observed {v:} is obtained
from ({So:}, Ao} in exactly the same manner that the model generates {y;'} from
({St }! /\)-

In broad terms, the estimation problem of this paper is analogous to the situation
described, among others, by Duffie and Singleton (1989) and Ingram and Lee (1991).
Common practice in such situations is to use a simulated method of moments estima-
tor of Ao based on certain a priori selected moments of the data. We likewise propose
such an estimator, but we take a different approach in determining what moments to
match and in assigning relative weights in matching those moments.

The estimation strategy of this paper starts from the point of view that the structural
model should be forced to confront all empirically relevant aspects of the observed
process. The observed process {y:} is strictly stationary and possibly nonlinear,
so its dynamics are completely described by the one-step ahead conditional density
flyel{ye~;}32,)- Let £(:|-) denote a consistent nonparametric estimate computed

from a realization {y:}{=,,- The estimator F{|) defines what is empirically relevant
about the process and thereby provides a comprehensive standard of reference upon
which to match the economic model to the data.

The keystone to our structural estimator is the scoring function of the SNP estima-
tor of Gallant and Tauchen (1989, 1992), which provides a consistent nonparametric
estimator of the conditional density under mild regularity conditions. This use of
the nonparametric fit to define the criterion of estimation motivates our choice of
the term “nonparametric structural estimator”. The Gallant-Tauchen estimator is a
truncation estimator based on a series expansion that defines an hierarchy of increas-
ingly complex models. The estimator f(:[-) = fx(:|-, 9k, ) is characterized by an
auxiliary parameter vector §g, that contains the coefficients of the expansion; the

L]
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subscript X' denotes the J{** model in the hierarchy. The length of 8 depends on

K is determined by a model selection criterion that slowly

the model. In practice,
\;;h

expands the model with sample size n and thereby ensures consistency. For the f
modet in the hierarchy, the corresponding 0k, solves the first-order condition

a .
G_Q?:EK" ({yt}?z-to: 0k, ) =0,
where Ly, (-} is the sampie log likelihood of the corresponding model.
The nonparametric structural estimator is defined by mimicking this condition.
Specifically, subject to identifiability conditions, a consistent estimator is available by
choosing A to make the same condition hold (as closely as possiblc) in the simulation

a .
mﬁxn({yi}z—:’fulgf(n) ~ 0. it

The left-hand side is the gradient of the log likelihood function evaluated at a simu-
lated realization {y2}7_.,, and at the 8, determined by fitting the /¢ *h SNP model
to the actual data {y; }/, . If the length of A, ¢, is less than the length of 8, ¢k,
then the model is overidentified (under the order condition) and a GMM criterion is
used to minimize the length of the left-hand side with respect to a suitable weighting
matrix.
Interestingly, this approach defines a consistent and asymptotically normal esti-
mator imrespective of the particular SNP model used, so long as £x > £x and an
identification condition is met. In practice, we implement the estimator using the
particular SNP model that emerges from the specification search in the nonparametric
estimation of f(--). The choice of K is thus data-determined. This selection rule
forces the scoring function to be appropriate for the particular sample at hand. The
scoring function of the fitted SNP model contains just those indicators important to
fit the data and no more. Also, because the fitted SNP model has the interpretation of
a nonparametric maximum-likelihood estimator, the information equality from max-
imum likelihood theory provides a convenient simplification that greatly facilitates
estimation of the weighting matrix for the GMM estimation.

3. IMPLEMENTING THE ESTIMATOR

In this section we discuss the practical aspects of implementing the nonparametric
structural estimator described above. The implementation entails an initial SNP
estimation of the conditional density of observed payoff data. The score function from
this density estimate defines what properties our nonparametric structural estimator
must mimic. Because estimating SNP models has been described extensively in
Gailant and Tauchen (1989, 1992), we do not review that procedure here.
Following the SNP estimation, there are three distinct components to the proce-
dure. The first involves using the method of parameterized expectations to solve the
structural model for a particular value of the parameter vector A. The second entails
combining the initial SNP estimation with the parameterized expectations procedure
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to form the GMM objective function for the nonparametric structural estimator. The
third is optimization of the objective function. Each of these components is described

in detail below.,

3.1. Solving the Model Using Parameterized Expectations

We use the method of parameterized expectations (Marcet, 1991; den Haan and
Marcet, 1990} to obtain simulated data that satisfy the Euler equations of the structural
economic model. In essence, this method approximates conditional expectations of
certain terms with the projections of those terms on a polynomial in the state variables.
The method uses Euler equations to iterate between postulated values of time series
and projections based on those postulated values until those values and projections
each converge. This procedure will be explained more fuily below.

We find that the specification of the Euler equations greatly affects the speed with
which the parameterized expectations algorithm converges. From Section 2, the first

two Euler equations are
E[MU., - MU, (Piu )(; ::;i’c; )1 =¥me)] =0, i=1,2.

Using the definition of the velocity of money, Viy = ¢y Py /My, i = 1,2, one form
in which these equations can be rewritten is

_ E,(MU.,)
B [BMUe, o (amiesttr ) (o) (1= i) |

Because of the time nonseparabilities in our medel, it is also possible to rearrange
these Euler equations into an alternative form that expresses velocity as a single
conditional expectation rather than the ratio of two condilional‘expectalions. (We
omit the derivation here.) It would seem at first that expressing the Euler equations as
a single conditional expectation would be advantageous since the solution algorithm
would have o estimate only one conditional expectation per Euler equation rather
than two. However, we have found that convergence of the algorithm with this
specification is much slower, This occurs because the single conditional expectation
contains a difference of two terms that remains stable across iterations, while the
time series from which it is constructed moves around substantially. The conditional
expectation of this difference is less informative for updating guesses at the solution
time series than are the two conditional expectations specified in the ratio above.
The next step in setting up the Euler equations entails varfous mathematical
manipulations that allow them to be expressed in terms of conditional expectations

of functions of velocity, consumption growth, and money growth:

i=1,2

Vie

E [f.l (dq,c_f,tﬂ‘ derypetbre - dCpyp . d62,¢+:,c:f\)]

Vu =
Ee [fiz (dcl.t—.[,¢+2| dere—pertre 1 A0 Lo +1 82 e pe sy Vi, Vier 1 A 141 \)]
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- E(Fi,) i=12
EFia.) T

where the f;(-} are particular functional forms too complex to be written out here.
The market clearing conditions of the model imply that

dey = g(Vih V;,tul,dwﬂ;,\) = dwu(l +’*”0Vi?t:l|)/(l +¢0Kf"), i=1,2

Givena vector A and arealization of the exogenous state variables S, - which inciudes
money growth dM;; and endowment growth dw;; — consumption growth dc;, is an
exact function of velocity, so the Euler equations above are fixed-point equations in
the two velocity series. This means we can solve these first two Euler equations for
the two equilibrium velocity processes as a unit before considering the remaining
Euler equations. Using the solution velocity processes, we can then calculate directly
equilibrium consumption growth de;; and inflation dP;, for the two countries, and
we can solve the remaining Evler equations to determine the equilibrium k-period
interest rates in country I, R, the premium of the k-period forward rate over the
spot rate fF /e, and exchange rate growth de,.

Several methods have been used to solve nonlinear rational expectations models
with endogenous state variables (Taylor and Uhlig, 1990; Judd, 1991). Among these,
parameterized expectations is particularly suited to use with a simulation estimator
because it produces simulated data that satisfy the Euler equations without having to
solve for the full decision rule. We parameterize each of the conditional expectations
in the above Euler equations as a function of the exogenous and endogenous state

variables. The augmented vector of state variables is
St = (ll Sh dcl.t—l t dc2,!-—h Tty dcl.t—Lc-H ¥ dCZ,t—Lc+| ):

where | is concatenated for use as a constant in the regressions described below, If
L. < 1, then there are no endogenous state variables, and S, is just equal to S, and
a constant. Any class of dense functions, such as polynomials or neural nets, can be
used to approximate the conditional expectations. The particular functional form we

use to parameterize expectations is
E,(Fij,0) = explpoly(Se, vi7)),

where poly(-) is a polynomial in S, and ; is the vector of its coefficients. We
choose to use an exponential polynomial because economic theory implies that
E¢|F;;,:] should be positive. In practice, the polynomial we use consists of linear

and squared terms of the elements of 5.
Below is a description of the algorithm for solving for the equilibrium velocity

series given a vector A. In every instance, the ranges of the indices are { = 1,2 and
J = I, 2; superscripts indicate iteration numbers.

Step 1.
Simulate a realization of {u,}, where u, is itd N(0, 2).
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Step 2.
From some initial Sy, generate a realization of {S;} using

log S = ag + Alog Se—y + uy.

In practice, we set Sp to a vector of ones, but in performing the parameterized
expectations regressions we exclude the first five hundred observations from the
simulated data to eliminate any effect from choosing initial values.

Step 3.
Determine starting realizations of the velocity series {V2}.

We consider two possible ways to do this. The first is to specify starting values
for v?_.,-, perhaps values of v;; obtained from a previous solution at a nearby A. Then,
givenv?; and some initial observations on velocities Vi, ¢ = 0;. .., L., the remaining
elements of the starting velocity series for t = L. + 1,...,T, can be determined

using the following relationships recursively

def, = g(V‘-?, V:’?t—hdwit; A),

V2 = explpoly (82, v4,)}/ explpoly(S7, v}2))-

This structure is recursive because S¢ contains de?,_,. A drawback to this approach
is that the simulated time series produced by the solution procedure are dependent
upon the starting values, so any attempt to replicate the solution exactly would require
knowing those starting values. ‘

A second approach for establishing starting realizations of the velocity series
would set V2 and V;} to be constants for all ¢. For these constants, one could
calculate steady-state values for the two velocities, or simply set the velocities equal
to 1. This latter approach still produces convergence in a relatively small number of
iterations.

Regardless of the approach used to determine starting values of velocity, if one
uses the procedure described below to improve the stability of the algorithm by
dampening iteration updates, starting values must also be specified for the polynomial
coefficients v?j. We recommend setting all of the coefficients to zero except the
constants. This means that E,{Fij¢) = exp[poly(.g'g, vi;)] reduces to E¢(Fije) =
exp[constant;;]. The constants can be set equal to the log of the unconditional means
of the Fy;,.'s. Setting the initial polynomial coefficients in this way gives a very

stable position from which to start the iterations.

Step 4.
Iteration k: Using the V,-f"' series, calculate the F,’;"t' and regress each of these four

on a linearized version of exp[poiy(S,k",u{‘j)] to estimate u,“J The linearization is

done around v}
A linearized version of the exponential function is used to allow one to perform

linear regressions rather than nonlinear regressions at each iteration. When the
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coefficients converge (ufj = ij"' }, the value of the exponential function is equal to
the value of its linearized version at the point at which we want to evaluate it.

Den Haan and Marcet (1990) actually suggest a more gradual way of modifying
the guesses at the polynomial coefficients from iteration to iteration. Rather than
setting Vf‘j equal to the coefficients obtained from the regressions, one can set uf‘J
equal to a convex combination of those coefficients, call them bf-‘j' and the guess at
the coefficients from the previous iteration as

uf‘j =pb‘,'§- +(1 —-p)ufj",

where O < p < 1. This procedure has the effect of dampening the speed with which
the guesses at the coefficients are updated. The smaller is p, the more gradually the
coefficients are modified from one iteration to the next. One might want to use this
gradual updating scheme to stabilize iterations that are not well behaved. For the
model in this paper, we were always able to set p = 1, which implies no dampening
in updating the coefficients.

Step S.
Determine the two V. series according to

Vit = explpoly(5F", v}/ exp(poly[ 5 vi)),
and the two dc}, series according to

def, = g(ViE, V), dwiei M),

Step 6.
Repeat steps 3 and 4 until the velocity serics converge. Convergence is reached when

maxmax |(Vif = Vg™ )/(Vie™! + 9l <

where € and £ are small positive numbers.

Note that we check convergence on the velocity series, that is, on the ratios of
the parameterized expectations projections, which is a different procedure than that
used in Marcet (1991). Marcet looks for convergence of the coefficients of the
projections, rather than of the projections themselves. We check convergence on
the projections because of complications that arise when there is a high degree of
multicollinearity between the variables of the parameterized polynomial, as is the
case in our model. Multicollinearity makes it possible for the coefficients of the
polynomial to continue to oscillate between successive iterations even though the
projection onto the polynomial has essentially converged. Since it is the values of
the projections that are important for solving the model. we look for convergence of

those values,

In summary, the parameterized expectations solution method works by alternating
between estimating values of conditional expectations based on some postulated
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realization of the velocity processes (which amounts to estimating the v;;’s) and
updating the postulated values of the velocity processes based on the estimated
conditional expectation values. The procedure continues until the velocity processes

converge.

Once the equilibrium velocity and consumption growth series have been determined
from the first two Euler equations, the four-period interest rate series in country 1,
the premium of the four-period forward exchange rate over the spot rate, and the

exchange rate growth can be determined from the remaining Euler equations without
additional iterations. The Euler equations can be written as

E(Fn)/(1+aveV:™")
ﬁ“El [fl:‘(dcl.:-q-l ) dcz,H-l: cony el L 45 d‘-'z.t+Lc+5: dPE;.+I Y ,dPl',_M;,\)]

R?z =

Bu( Py )/(1 +ahoV™")

e;R]“/ff =

. Eu(Fa ) Ea(Fre-)(1 + avioVs ™' )1 + ayoVy,_\ )dPder
- .
Eo1(Fat e ) E(FL, ) (1 + avoVy ™ (1 + atpV,7 ' VdPyder,

In these equations dPy = (dMiVie)/(deaVie-1), the gross inflation rate in
each country. As before, fi3 and f2 are particular function forms. The conditional
expectations terms in the equations are each estimated by regressing the value of the
function inside the expectations operator on a polynomial in 5;. The polynomial we
use consists of the elements of 5, raised to the first, second, third, and fourth powers.
The resulting simulation values are used to form {v}}.

The time required to solve the structural economic model at some value of A is
an important consideration, since our nonparametric estimator requires solutions at
many different values of A in finding the value that minimizes the GMM objective
function. When we use simulated time series of length 1000 to solve the model
(excluding an initial discarded 500 observations), convergence for most values of A
is achieved in approximately one minute on a SUN SPARCstation 2.

1.2. Defining the GMM Objective Function

The Gallant-Tauchen (1992) SNP estimator underlies our nonparametric structural
estimator. Following their notation, given the observed process {ve}, let 2oy =
(¥i_\v -, yi_.) and let p(ye|ze—1, Ao) denote the conditional density of 3, con-
ditional on L lags of itself and the true Ao. By stationarity, we can suppress the ¢
subscript and simply write p(ylz, Ao) when convenient. In addition, let p(y, z, Ao}
denote the joint density of (y,, x.—i). Frequently, we suppress the dependence of

BE. [fza (dcl.t+| L RO LTI RRR N: WP SEE 1Y 1 & NESTRERRY .2 o y¥vH /\)]
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the conditional density on A and write p(ylz), but we always make explicit the
dependence of the joint density p(y, =, Ag) on Ag, because that becomes important.

The SNP estimator is a sieve estimator that is based on the sequence of models
{fr(y]z, 0k )} P where8x € O C RI%, O C Oy and where f(yjz, 6k ) is
a truncated Hermite series expansion. This hierarchy of models can, under regularity
conditions, approximate p{y|x) well in the sense

dim, inf ik Cl0x) = p(4)l =0

where || - || is a Sobelov norm. The approximation also holds along a sequence of

estimated models fitted to data sets {y-141,- .- JUntyn = 1,2,...00, with the the
appropriate model for each n determined by a model selection strategy.
The key component of our nonparametric structural estimator is the mean gradient

of the log-density of a K** order SNP model,
s0x) = [ [(@100) 0gliyle, 0 oy, 7 Ny

In pracncc the above expectation is approx1mated by simulating {U AI_,, forming
{2} as just described, taking lags to form {z}_,}, and then averaging

T
§(00x) = 7 3 (6/00) 0glfic (4?31, O]
r=|

We take §( X, 8r) = g{A, 0k ).
The nonparametric structural estimator is defined as follows: Let {y:}7.._; ,, be

a realization of the observed process and let
xcn = arg max { Z log{f (efze—1,0x)] }-

Thus, §jn is the estimated parameter vector ofa iy th order SNP model fitted to the
data by maximum likelihood. The estimator X is the solution of the GMM estimation

problem

A = argmin{3a(A)},

where

5n(A) = nG(A, Bcn) Wad(A Gxcn),
and where W,, is a symmelric positive definite weighting matrix such that I¥, — 1

almost surely and W is positive definite. In the application, we use

W = { = 37(3/36) loglf (wlze1, 61cn )0/ 30" loglftlze—r Bical)}
=1



An Estimator for Nonlinear Structural Models 17

which is the natural estimate of the inverse of the information matrix based on the
gradiem—outer-pmduct formula. This choice makes the minimized vaiue of the GMM
objective function, §,(A), approximately X%y — £y) for large K.

Below we consider several different algorithms for minimizing §,(A). Regardless
of the algorithm, it is advantageous to control the interface between the optimizer
and the economic model by scaling the optimizer’s guesses at the parameter values
1o be within a range in accordance with the economic theory behind our model.
For example, in our model it only makes sense for & to be between 0 and 1, so we
constrain the optimizer to attempt solutions only with such values. These constraints
are imposed by using various forms of logistic transformations.

3.3. Optimizing the Objective Function

The basic computational task for the estimator is to evaluate X = argmin, , {5n(A)}.
This minimization is not straightforward for our problem because of the large number
of parameters to be estimated (between 37 and 41 depending upon whether one, two,
or three lags of consumption services enter the utility function) and because analytical
derivatives of the objective function with respect to A are not available. We tried
four different algorithms for minimizing the objective function and found significant
differences across algorithms for our problem.

3.3.1. Optimizing with NPSOL and DFP
We initially tried two classic gradient search methods: NPSOL (Gill, Murray, Saun-

ders, and Wright, 1986), and Davidon-Fletcher-Powell (DFP), as implemented in the
GQOPT package (Quandt and Goldfeld, 1991). Both algorithms work in a sitnilar
manner. A search direction is determined, a one-dimensional optimization is per-
formed along that direction, and then the search direction is updated. The process is
repeated until a putative optimum is achieved.

These algorithms work quite well when analytic derivatives are available. For
example, we use NPSOL to perform the preliminary SNP parameter estimation to
compute § ., which is needed to form §,(A). Analytical derivatives are available
for the SNP objective function, and NPSOL. works adequately even on fairly large
problems. In our application, the SNP estimation itself entails a specification search
over roughly thirty different models with some having as many as 150 parameters.
That whole effort takes only three or four days on a SUN SPARCstation 2. In an
variety of other SNP applications, NPSOL has been found to work reasonably well
(Gallant and Tauchen, 1992).

Analytical derivatives of 5,()), however, are computationally infeasible. The
process {y;'} is a solution to a fixed-point problem, as are its analytical derivatives.
Computing 83,(A)/8X would involve computing a solution to a fixed-point problem
for each component. Evaluating 3,(\) and its derivatives for arbitrary A is well
beyond the reach of current computing equipment. The large computational demands
for analytical derivatives appear to be intrinsic to all solution methods for nonlinear
structural models, including those described in the JBES Symposium (Tauchen, 1990:
Taylor and Uhlig, 1990) or Judd (1991), since they all entail solving nonlinear fixed-
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point problems.
Gradient search methods use numerical derivatives in place of analytical deriva

tives when the latter are unavailable. For ourtype of problem, this does not work well
The computations turn out to be about as demanding as would be those for analytica
derivatives approximating the gradient of the objective function 93,())}/dA at a
single point ) entails computing the simulated process {y;*} after small perturbation:
in each of the A. With £, on the order of 37 to 41, this entails, at a minimum, recom-
puting the equilibrium of the model that many additional times just to approximate ¢
single one-sided gradient. The net effect is to generate about as many function calls
as would a naive grid-search. In fact, our experience suggests that a naive grid search
might even work better. In the course of approximating 93, (A}/8X via perturbing A
and forming difference quotients, values of A that produce sharp improvement in the
objective function are uncovered quite by happenstance. Neither NPSOL nor DFFP
retains and makes use subsequently of these particularly promising values of A; the
effort that goes into to computing the equilibrium for these A is lost. Simple grid

search would retain these \'s.

3.3.2. Optimizing with Simulated Annealing

We also tried simulated annealing, a global method. An implementation of simulated
annealing by William Goffe is available in the GQOPT optimization package (Quand!
and Goldfeld, 1991). We used an updated version that William Goffe kindly made
available to us. See Goffe, Ferrier, and Rodgers (1992) for a discussion of the
algorithm and additional references. We give a brief summary of the essential ideas

here.
From a point A, simulated annealing changes element ¢ of A using

A=A+,
where r isauniformly distributed random number over [— 1, 1] and v is the ith element
of a vector of weights V. If 5,,( ') is smaller than 5,(A) the point is accepted. If not.
the point is accepted if a random draw from the uniform over [0, 1] exceeds

p= e[’.n(‘\')“;n(A)]/T_
The elements of V and T are tuning parameters that must be selected in advance and
are adjusted throughout the course of the iterations. We used the defaults. There are
additional tuning parameters that determine when these adjustments occur. Again,
we accepted the defaults.

The algorithm was defeated by the large number of function evaluations that it
requires. Most exasperating was its insistence on exploring unprofitable parameter
values, After making some promising initial progress the algorithm would plateau
far from an optimum and give no indication that further progress could be achieved

if the iterations were permitted to continue.

3.3.3. Optimizing with Simplex Methods
The optimization method that performs best for our problem is the simplex methad

developed by Nelder and Mead (1964). Fortran code for implementing this method
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is available in the GQOPT optimization package (Quandt and Goldfeld, 1991). The
method works as follows: We begin the minimization of a function of £ variables
by constructing a simplex of (£, + 1) points in £x-dimensional space: Ag, Ay, ...y
Ae, - We denote the value of the function at point A; by s;. The lowest, highest, and

second highest values are

51 = m.in(si)a Sh = max(s;), Shh = max(st’)a
i i i¥h

corresponding to points A, A, and An,. We also define the notation {A; ;] to indicate
the distance from A; to A;.

The algorithm works by repiacing A in the simplex continuously by another
point with a lower function value. Three operations are used to search for such a new
point-reflection, contraction, and expansion—each of which is undertaken relative to
the centroid X of the simplex points excluding Ax. The centroid is constructed as

- I «
T==3 A, i # h.
The reflection of Ay, through the centroid is A, which is defined by

Ar = (1 + ar)d = apdn,

where a, > 0 is the reflection coefficient. A, lies on the line between A and X, on
the far side of X, and o, is the ratio of the distance [A.A] to [ARAL I 5; < 8¢ < S,
we replace A, with A, and start the process again with this new simplex.

If reflection has produced a new minimum (s, < 8}, we search for an even lower
function value by expanding the reflection. The expansion point is defined by

Ae =@ + (1 —a)A

where a. > 1 is the expansion coefficient that defines the ratio of the distance [AA)
to [ArA]. A, is farther out than A, on the line between A, and X If s, < 3¢, Ay iS
replaced in the simplex by A.. Otherwise, the expansion has failed and A, replaces
Ax. The process is then restarted with the new simpiex.

If reflection of s has not even produced a function value less than sy - which
means that replacing Ap with A, would leave s, the maximum - we rename A to be
either the old A, or A., whichever has a lower function value. Then we attempt to

find an improved point by constructing the contraction

e = adp + (1 = ad)A,

where 0 < a. < 1. The contraction coefficient o is the ratio of the distance [,\CX]
to [AnA]. If sc < sn, then the contraction has succeeded, and we replace Ay with
A, and restart the process. If this contraction has failed, we construct a new simplex
by contracting ail the points toward the one with the lowest function value, which is
accomplished by replacing the A;’s with (A; + Ar}/2. Then the process of updating

the simplex reslarts.
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Nelder and Mead suggest stopping their procedure when the standard deviation
of the A;’s is less than some critical value. In our empirical work, we strengthen this
stopping rule by restarting the algorithm several times from the value on which the
Nelder-Mead procedure settles. When this restarting leads to no further significant
improvement in the objective function value, we accept the best point as the minimum
of the function. In implementing the algorithm, we also found it advantageous to
modify the error handling procedures of the Nelder-Mead code provided in GQOPT
slightly to allow us to start the procedure with a wider ranging simplex.

The Nelder-Mead simplex method was far more successful than the other methods
we tried for minimizing our objective function. There are two aspects of this method
that we believe are responsible for its success. First, the method finds new lower
points on the objective surface without estimating derivatives. Second, by using
the operations of reflection, expansion, and contraction, the Nelder-Mead method
is designed to jump over ridges in the objective surface easily in searching for new
lower points. This property can be important in preventing an optimization algorithm
from shutting down too early. Despite these advantages, however, the performance
of the Nelder-Mead method is not completely satisfactory, because it requires a very
large number of function calls to find the minimum of the function. Given the number
of parameters in our model and the complexity of evaluating the objective function
at any one point, the method can occupy several weeks of computing time on a Sun
SPARCstation. Even though this computing demand is substantial and far greater
than we expected from the outset of this project, we still consider our nonparametric
structural estimator very successful in achieving our goal of estimating a nonlinear
rational expectations model and fully accounting for the complex nonlinear dynanics
of actual time series in that estimation.

Results from applying this estimator to the illustrative monetary mo
able in Bansal, Gallant, Hussey, and Tauchen (1992).

del are avail-

4, CONCLUSION

In this paper we describe a new nonparametric estimator for structural equilibrium
models and show its application to an equilibrium monetary model. The discussion
of the implementation of the estimator indicates important considerations that might
arise in applying the estimator {0 other nonlinear rational expectations models.
There are several advantages to this estimator. By using the method of parameter-
ized expectations to solve the model numericaily, structural equilibrium models can
be estimated without limiting oneself to linear approximations. By using a consistent
nonparamelric estimate of the conditional density of the observed data to define the
criterion to be minimized in estimation, the estimator forces the model to confront the
law of motion of the observed data, which can include compiex forms of nonlinearity.
Finally, the estimator provides simulated data from the model. If a model is rejected,
then it is possible to evaluate the dimensions in which it fails to match characteristics

of the observed data, thus providing valuable diagnostic information for building

better models.
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