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1 Introduction

1.1 Overview

This paper has two closely connected objectives. The first to is to gain further understand-

ing of the distributional aspects of high frequency small-time moves of financial prices. In

particular, we aim to evaluate the empirical plausibility of some recent sharp theoretical

predictions regarding the probability distribution governing the small moves. As explained

further below, this effort directly puts us into a situation where we have a parametric proba-

bility model for the data that can be easily simulated, but the density itself is not available in

convenient closed form. Of course, this aspect of the paper puts us into the classical indirect

estimation context, e.g., simulated method of moments, etc. Of the various available tech-

niques for this context, the EMM approach as reviewed at length in (Gallant and Tauchen,

2010) has certain optimality properties. However, EMM was developed long before new

computing techniques made Bayesian inference feasible for more complicated problems than

the classical implausibly simplistic setups. Since Bayes is arguably preferred for parametric

problems (Berger and Wolpert, 1988, p. 1) our second objective, which follows directly from

the first, is to develop the exact Bayesian version of EMM. By exact we mean the term in

the usual Bayesian sense of the word exact1 — no reliance on asymptotic approximations.

Our exact Bayesian EMM can be expected to have many applications that could be explored

in further work beyond that of this paper .

Our specific interest pertains to the small time structure of the martingale component of

a financial time series. By far the dominant presumption in financial econometrics is that the

martingale component is locally Brownian motion. This assumption underlies all statistical

inference inference theory generating central limit theorems for the various variational mea-

sures commonly used in practice. While Brownian motion is perhaps reasonable for a variety

of financial prices, there is nothing in the standard arbitrage-free semimartingale theory that

1See subsection 1.2 for a precise definition.
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dictates Brownian motion, i.e., local Gaussianitiy, which is a very restrictive form for the

martingale component. As discussed below, under reasonable assumptions the small-time

behavior of the martingale part of any financial series will be either Brownian or infinitely

active pure jump. Unlike Brownian motion, pure jump processes are nowhere continuous

with infinitely many small jumps on any finite interval of time. They can be thought of

as ultra-intense, i.e., infinitely intense, compound Poisson processes; indeed, the analogy

is excellent because the class of Lévy processes is just the closure under weak convergence

(convergence in distribution) of the family of compound Poisson processes.

The behavior of the small-time moves of the martingale component is governed by the

activity index (Jacod and Protter, 2012, p. 67). The index is a higher-order property of

the probability distribution of the martingale increments, and here we treat it as a time

invariant random variable (or parameter), as common in most of the literature.2 The index

is a nonparametric measure of the characteristics of the small moves in the process; it

specifically defines the rate at which the Lévy density diverges to infinity around its pole

at zero. The index ranges over β ∈ [0, 2], with low values of the index associated with

quiescent low-activity processes and large values of the index associated with highly active

processes that in the limit are Brownian motion at β = 2. Evidently, the index separates

the martingale part of financial price processes into equivalence classes labeled by the value

of β.

Options are natural candidates for potential pure jump processes. As noted by Andersen

et al. (2015) short-maturity deep out-of-the-money put options load mostly on the negative

jump intensity and have hardly any exposure to the diffusive spot volatility, and analo-

gous results hold for short-maturity deep out-of-the-money call options. At the same time,

short-maturity at-the-money options are largely determined by the current spot value of the

stochastic volatility, which has a diffusive Brownian component in many stochastic volatility

2Todorov (2016) develops a test for a time varying activity index derived under the null of time-constant
index but only implements the method on Monte Carlo data.
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models. If an asset’s price loads on multiple factors, then its activity index is determined

the largest index of the multiple factors, which would be 2 in the presence of a significant

Brownian component. In applications, one works with the more convenient representation of

an option price in terms of its Black-Scholes implied volatility, which is a smooth nonlinear

function of the option price, and the index is preserved under smooth transformations. In

other words, the implied volatility will inherit the activity index of the options price itself.

Thus, we might expect the implied volatilities of short-maturity deep out-of-the-money put

options possibly to be pure jump processes with index β to be determined in estimation,

and leave open the possibility that the implied volatilities of close-to-the-money options are

either pure jump or diffusive with locally Gaussian behavior of price moves.

We apply the exact Bayesian-EMM method to options data in order to evaluate the

empirical plausibility of a recent result (described below) in high frequency theory that

under very mild conditions on the financial price process, the probability distribution of the

small moves are either Gaussian or locally stable around the origin with index β. The result

is representational, in the sense that it means we can always think of the price process as

one that is stable plus a second piece that compensates for the large moves. The operative

term here is “locally stable.” Their result does not state that the probability distribution is

globally the classical α-stable distribution used in many areas of science. Perhaps a good way

to understand our objective is to contrast it with Garcia et al. (2011), who use a score-based

indirect inference procedure to estimate the α parameter of the α-stable distribution. That

work requires use a heavy-tailed t-like distribution for an auxiliary model because of the

large rare moves that the α-stable generates. We do just the opposite. The data series are

truncated to remove the big jumps, which are totally irrelevant in the present context, and

we use a type of thin-tailed auxiliary model generated by the SNP sieve estimation technique.

We also de-volatilize the data to generate an observed sample reasonably considered iid.

The EMM technique is appealing for model evaluation, because it forces the model under
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consideration to confront the entire distribution of the observed data. In our particular case,

the model predicts only locally stable data, so we thereby expect model validity to imply

that it works well over most of the support of the density of the data but possibly breaks

down in the extreme tails. If the model fails to fit the central part of the distribution of

the data, then that would be construed as discrediting evidence. Of course the estimate of

the index parameter β is quite important as well, because it informs us about the particular

equivalence class the price series belongs.

1.2 Exact Bayesian Inference

The central idea is that moment equations can be used to construct a “method of moments

representation” of the likelihood of a structural model that can be used in otherwise standard

Bayesian inference.

In Bayesian inference the parameter ρ of a structural model is formally manipulated as

if it were random even though one might regard it as fixed. Thus, the structural model

implies a joint distribution P o(y, ρ) defined over Y × R, whose density is the product of

a likelihood p(y | ρ) times a prior π(ρ). The joint probability space under consideration is,

therefore, (Y ×R, Co, P o), where Co denotes the Borel subsets of Y ×R.

One sets forth a set of moment equations m(y, ρ) for use in inference. Supposing, as

is the case for this paper, that the data can be summarized as a vector θ̃(y), then these

moment equations can be written m(θ̃, ρ).3 However, in this subsection, we shall continue to

use m(y, ρ). Normalize the moment equations as Z(y, ρ) = V − 1

2m(y, ρ), where V − 1

2 denotes

a factorization of the inverse of an estimate V (y, ρ) of the variance-covariance matrix of

m(y, ρ).

The random variable z = Z(y, ρ) over (Y × R, Co, P o) has some distribution Ψ(z) with

3The EMM literature uses the ordering (ρ, θ̃(y)) whereas the “Reflections” literature (Gallant, 2016b)
uses the ordering (y, ρ). In this subsection we shall use the “Reflections” convention. Later, in Section 4, we
revert to the EMM convention and use the ordering (ρ, θ).
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a support Z. Let C be the smallest σ-algebra containing the preimages C = Z−1(B) where

B ranges over the Borel subsets of Z. Because the distribution Ψ(z) of z = Z(y, ρ) is

determined by P o the probability measure P [C = Z−1(B)] =
∫
B
dΨ(z) over (Y ×R, C) will

satisfy P (C) = P o(C) for every C ∈ C.

Define C∗ to be the smallest σ-algebra that contains all sets in C plus all sets of the form

RB = (Y×B), where B is a Borel subset of R. (Gallant, 2016b, Section 3) proves that there

is an extension of (Y × R, C, P ) to a space (Y × R, C∗, P ∗) such that P o(C) = P ∗(C) for

all C ∈ C∗. In particular, P o(C) = P (C) = P ∗(C) for C ∈ C and P o(RB) = P ∗(RB). The

σ-algebras involved satisfy C ⊂ C∗ ⊂ Co.

If Z(y, ρ) is a semi-pivotal, a sufficient condition for which is that Z is continuous and

unbounded in at least one element of y, and has distribution Ψ with density ψ, then y has

conditional density adj(y, ρ)ψ[Z(y, ρ)] defined over (Y × R, C∗, P ∗). The term adj(y, ρ) is

analogous to a Jacobian; it is defined in Gallant (2016c) and set forth explicitly for our

application as (22) in Section 4. The density adj(y, ρ)ψ[Z(y, ρ)] is the ‘method of moments

representation” of the likelihood.

The key insight that allows us to substitute the “method of moments representation” of

the likelihood for p(y |ρ) in a Bayesian analysis is the fact that both probability measures

P o and P ∗ assign the same probability to sets in C∗. Naturally, because C∗ is a subset of Co,

some information is lost. Intuitively this is similar to the information loss that occurs when

one divides the range of a continuous variable into intervals and uses a discrete distribution

to assign probability to each interval. Both the continuous and discrete distributions assign

the same probability to each interval but the discrete distribution cannot assign probability

to subintervals. How much information is lost depends on how well one chooses moment

conditions.
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1.3 Relation to Approximate Bayesian Computation

In this section we relate our proposed estimator to the approximate Bayesian computation

(ABC) estimators as summarized and unified in Ng and Forneron (2016). Both the estimator

that we propose and what is described in Ng and Forneron (2016) begin with a summary

of the data: θ̃ = θ̃(y). With our proposal the summary statistic is further normalized to

z = Z(y, ρ), defined in the preceding Subsection 1.2. The ABC statistic may or may not

be further normalized; regardless, we denote it similarly as z = Z(y, ρ), realizing, for ABC,

that Z might be the identity function θ̃(y) = Z(y, ρ).

The crucial difference between ABC and our proposal is subtle: ABC regards z as defined

over a probability space (Y ,B, Pρ). Our proposal regards z as being defined over the joint

probability space (Y ×R, Co, P o) defined in the preceding Subsection 1.2.

In consequence, in order to justify an ABCmethod as a Bayesian method in finite samples,

one must verify that the approximating conditional density of z given ρ converges uniformly

over the parameter space R to a density ψ(z | ρ) and, better, be able to determine the error

of the approximation. In general, if the parameter space is not finite, this is an impossible

task. We are using simulation methods here so that it is in principle possible to assess the

accuracy of the approximation at a finite set of ρ but one cannot as a practical matter do

so over a continuum.

With our proposal, all one needs to do to assess the accuracy of a putative density ψ(z)

for z is to simulate from the probability space (Y × R, Co, P o). This is straightforward; no

issues of uniformity arise. The exact procedure for doing so is described and implemented

in Subsection 6.

There are some caveats in order here. The methodology we propose is new so what we

suggest next cannot be regarded as definitive: Experience acquired to date indicates that it is

important to determine the tails of ψ(z). Other than that, excessive precision does not seem

to be required. One’s natural predilection is to impose symmetry so that
∫
z ψ(z) dz = 0 in
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deference to the frequentist identification condition. However, it is likely that the condition

can be substantially weakened. We guard against reservations one might have due to these

caveats by simulating our methodology from beginning to end in Section 6.5. That cross

check does not suggest any serious flaws.

1.4 Summary of the Computations

The steps to compute the estimator we propose are distributed over the remainder of the

paper as dictated by a logical development. For the reader’s convenience, we provide a

summary here.

1. A probability space (Y ,B, Pρ) determined by a semimartingale with parameter ρ ∈ R

from which one can simulate is defined in Section 2.

2. The maximum likelihood estimator θ̃ of an SNP density fK(y | θ) is computed from the

data {yt}nt=1 as described in Section 4. Code implementing step 2 and a User’s Guide

are available at www.aronaldg.org/webfiles/snp.

3. From a long simulation of {ŷt}Nt=1 distributed as (Y ,B, Pρ) compute

m(ρ, θ̃) =
1

N

N∑

i=1

∂

∂θ
log[fK(ŷi | θ̃)]

I(ρ, θ̃) =
1

N

N∑

t=1

[ ∂
∂θ

log fK(ŷt | θ̃)
][ ∂
∂θ

log fK(ŷt | θ̃)
]′

as described in Section 4.

4. Compute

Z(ρ, θ̃) =
√
n
[
I(ρ, θ̃)

]−1/2

m(ρ, θ̃)

adj(ρ, θ̃) =

∣∣∣∣ det
{
∂

∂θ′
√
n
[
I(ρ, θ̃)

]−1/2

m(ρ, θ̃)

}∣∣∣∣

as described in Section 4, where [(I)−1/2]′[(I)−1/2] = (I)−1.
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5. For prior π(ρ) and proposal density q(ρo, ρ∗), where ρo is contemporaneous and ρ∗

future, generate an MCMC chain {ρt}Rt=1 that is extended from ρo = ρt to ρt+1 by

proposing ρ∗, repeating steps 3 and 4 with ρ = ρ∗, and setting ρt+1 to ρ∗ with proba-

bility α = min
(
1,

adj(ρ∗,θ̃)ψ[Z(ρ∗,θ̃)]π(ρ∗) q(ρ∗, ρo)
adj(ρo,θ̃)ψ[Z(ρo,θ̃)]π(ρo) q(ρo,ρ∗)

)
else to ρo. A more detailed description

of the chain is at the end of Section 4. Code implementing steps 3 though 5 and a

User’s Guide are available at www.aronaldg.org/webfiles/emm.

The MCMC chain is used for Bayesian inference in the usual way: The estimate of ρ is, e.g.,

the mean of the chain. Credibility intervals are formed from the 2.5% and 97.5% quantiles

of the chain.

2 The Setting

2.1 Locally Gaussian Itô semimartingale

The basic model underlying most of financial econometrics is the Brownian Itô semimartin-

gale model given by the following differential equation

dXt = σtdWt + dYt, (1)

where σt is a process with càdlàg paths, Wt is a Brownian motion, and Yt is an Itô semi-

martingale process of pure-jump type (i.e., semimartingale with zero second characteristic,

Definition II.2.6 in Jacod and Shiryaev (2003)). The above model is the familiar jump dif-

fusion model with rare jumps embodied in Yt. One can think of the model as comprised of

an ultra-active piece represented by the locally Gaussian part in the Brownian motion and a

second very inactive part reflecting the occasional large jump-like moves that are known to

be present in financial prices. At high-frequencies, the dominant component of Xt in (1) is

the continuous martingale component and at these frequencies the increments of Xt in (1)

behave like scaled and independent Gaussian random variables.
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The local Gaussianity of the model (1) is crucial for essentially all nonparametric estima-

tion and inference with infill asymptotics in high frequency data analysis. Examples include

the jump-robust Bipower Variation of Barndorff-Nielsen and Shephard (2004, 2006) and the

many other alternative measures of powers of volatility summarized in the recent book of

Jacod and Protter (2012). Another important example is the general approach of Mykland

and Zhang (2009) where estimators of functions of volatility are formed by and working as

if price moves are Gaussian with constant local volatility over a block of decreasing length.

Study of the proof strategy used in all this literature reveals that it proceeds by an initial step

for localization and elimination (theoretically) of the jumps (see, e.g., (Jacod and Protter,

2012, 5.3.2 pp. 149–151)) and then zooming down to the local Brownian part and obtaining

the sought after central limit theorem. While easy enough to describe, this proof strategy

is technically very demanding as revealed by review of the arguments of Jacod and Protter

(2012, Sec. 5.3.3, pp. 151–160; Sec. 16.5, pp. 521–551).

2.2 Pure Jump Itô semimartingale

The setup in (1) is a special case of a more general setup in which Xt is a pure-jump type

process. Specifically the process Xt follows dynamics

dXt = σtdSt + dYt, (2)

where σt and Yt are càdlàg with Yt of pure-jump type, and St is a symmetric stable process

with a characteristic function given by

E(eiuSt) = e−t|cu|
β

, (3)

when β ∈ (0, 2] and c > 0 is a scale parameter.

It is important to keep in mind the role of Yt in (2) above. When β = 2 in (3), then Xt

is the original jump-diffusion specification in (1) above. In that case it is natural to think

of Yt as a low activity large jump process independent of the Brownian motion. On the
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other hand, when β < 2, Xt is of pure-jump type. In this case, Yt in (2) is by no means

independent of St and it plays the role of a compensator jump component that cancels out

the large moves in the stable process St at high frequencies. Yt can also have dependence

not only with St but with σt as well, and thus Xt does not inherit the tail properties of the

stable process St. For example Xt can be a tempered stable process, with moments of all

orders, and whose tail behavior is very different from that of the stable process. This setup

works because the large moves in the stable process are a compound Poisson process which

can be canceled in part by moves in the residual jump process Yt.

While the tail behavior of Xt is not the same as the stable St, its local behavior agrees

with that of St. Under reasonable assumptions, the local Gaussianity of (1) extends as

follows:

h−1/β(Xt+sh −Xt)
L−→ σt × (S ′

t+s − S ′
t), as h→ 0 and s ∈ [0, 1], (4)

for every t and where S ′
t is stable of index β as in (3). Put simply, the local behavior of the

increments of the process is like that of a stable process in the more general setting of (2).

3 Inference

3.1 Heuristics

The next subsection draws heavily on Todorov and Tauchen (2014), and it is technically

demanding, so we first give short overview to keep things in perspective. The main result of

is that when financial returns are suitably “de-volatized”, i.e., rescaled to adjust for stochastic

volatility, and the large jumps removed, then the local behavior of the return is necessarily

either Gaussian or β-stable. The result is akin to the classical general central limit theorem

with its domains of attraction. The aforementioned paper only develops this distributional

prediction but never formally tests it. Instead the paper generates a Kolmogorov-Smirnov

type test for local Gaussianity against the alternative of locally stable, and the test statistics
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exploits in essential ways the presumed Gaussianity under the null hypothesis.

Our goal in the paper is to confront this distributional prediction with the data. This

task, of course, entails at the same time estimation of the stability parameter β as well. Since

the probability density of the stable distribution is not available in convenient closed form but

the stable is easy to simulate, our task fits very neatly into the EMM framework. Indeed,

in the empirical section we use an SNP model to represent the reduced form probability

distribution of the data and the local stable with index β as the maintained structural

model (the data generation process).

It is important to always keep in mind that the distributional prediction to be tested

does not imply that the probability distribution of price moves is in the stable class, but

rather it says that the fine scale local moves are β–stable-like.4 Thus in implementation

we necessarily need to truncate the huge moves generated in a simulation from the stable

distribution. These moves play no role in the theory and are just an artifact of the heavy-

tailed nature of the Lévy density of the stable distribution.

Our strategy is to first to use high frequency statistics and econometrics for a fixed

time span to indicate the theoretically predicted distribution, i.e., the locally stable. We

then proceed in the subsequent section to long span estimation which presumes the data

generation process remains constant over time. The long span analysis is needed to overcome

the very inherent limitations of a high frequency data set over a fixed interval over time and

thereby achieve a reasonable degree of precision.

3.2 Fixed Span

For this subsection, we are interested in the process Xt over an interval of fixed length, say

[0, 1], observed over the equidistant grid 0, 1
n
, ..., 1 with n → ∞. Under equation (1) the

high-frequency increments ∆n
iX = X i

n
−X i−1

n
are approximately Gaussian. In equation (2)

4One may view the result as a prior that concentrates on the stable distributions over the space of
infinitely divisible distributions.
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suggests that the high-frequency increments ∆n
iX = X i

n
−X i−1

n
are approximately β–stable.

The idea is to proceed as one might in the locally Gaussian case (1) by using a bipower type

variation estimator to estimate the local scale. We estimate σt locally and then divide the

high-frequency increments by this estimate. It turns out that the procedure is valid in the

locally β–stable situation of (2) as well.

One divides the interval [0, 1] into blocks, each of which contains kn increments, for some

deterministic sequence kn → ∞ with kn/n → 0. On each of the blocks the local estimator

of σ2
t is given by

V̂ n
j =

π

2

n

kn − 1

jkn∑

i=(j−1)kn+2

|∆n
i−1X||∆n

iX|, j = 1, ..., ⌊n/kn⌋. (5)

V̂ n
j is the bipower variation estimator proposed by Barndorff-Nielsen and Shephard (2004,

2006) for measuring the quadratic variation of the diffusion component of Xt. While an

alternative measure of σt is available using a truncated variation, it turns out, however, that

the behavior of the two volatility measures differs in the case when St is stable with β < 2.

Using the truncated variation in our situation leads to degenerate limits of key components,

unlike the case of using the bipower variation estimator in (5) since it leads to the self-scaling

discussed below.

The scaling of every high-frequency increment is done after adjusting V̂ n
j to exclude the

contribution of that increment in its formation

V̂ n
j (i) =





kn−1
kn−3

V̂ n
j − π

2
n

kn−3
|∆n

iX||∆n
i+1X|, for i = (j − 1)kn + 1,

kn−1
kn−3

V̂ n
j − π

2
n

kn−3

(
|∆n

i−1X||∆n
iX|+ |∆n

iX||∆n
i+1X|

)
,

for i = (j − 1)kn + 2, ..., jkn − 1,

kn−1
kn−3

V̂ n
j − π

2
n

kn−3
|∆n

i−1X||∆n
iX|, for i = jkn.

(6)

Now consider

∆n
iX√

V̂ n
j (i)/n

, (7)
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which is the de-volatilized increment. For technical reasons, one uses the first mn increments

in each block, with mn ≤ kn. The case mn = kn amounts to using all increments in the

block but one needs mn < kn. Within the first mn increments on each block one keeps only

the high-frequency increments that do not contain big jumps, i.e., a retained increment is of

the form

∆n
iX√

V̂ n
j (i)/n

1

(
|∆n

iX| ≤ α
√
V̂ n
j n

−̟

)
, (8)

where α > 0 an ̟ ∈ (0, 1/2); there there is a time-varying jump threshold threshold in our

truncation to account for the time-varying σt.

The above procedure takes the original n increments and generates a subset of adjusted

increments that are asymptotically independently and identically distributed increments,

with a distribution that depends upon whether the data generation process is the jump dif-

fusion model (1) or the pure jump model (2). The empirical distribution of these increments

is

F̂n(τ) =
1

Nn(α,̟)

⌊n/kn⌋∑

j=1

(j−1)kn+mn∑

i=(j−1)kn+1

1





∆n
iX√

V̂ n
j (i)/n

≤ τ



 1{

|∆n
i X|≤α

√
V̂ n
j n

−̟
}, (9)

where the divisor is the total number of retained increments

Nn(α,̟) =

⌊n/kn⌋∑

j=1

(j−1)kn+mn∑

i=(j−1)kn+1

1

(
|∆n

iX| ≤ α
√
V̂ n
j n

−̟

)
, (10)

F̂n(τ) is simply the empirical cdf of the de-volatilized increments that do not contain large

jumps. In the jump-diffusion case of (1), F̂n(τ) should be approximately the cdf of a standard

normal random variable.

The de-volatatization procedure resembles the practice of standardizing increments of

the process of fixed length by a measure for volatility constructed from high-frequency data

within the interval (after correcting for jumps and leverage effect), see e.g. Andersen et al.

(2001). The main difference is that here the length of the increments that are standardized

is shrinking and further the volatility estimator is local, i.e., over a shrinking time interval.
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Both these differences are crucial for deriving the limit theory of F̂n(τ).

The limit result for F̂n(τ) obtained in Todorov and Tauchen (2014) subsumes both data

generation processes (1) and (2), but for technical reasons (see below) it is presumes that

β ∈ (1, 2]. Their result is that when the tuning parameters kn and mn grow at appropriate

rates

F̂n(τ)
P−→ Fβ(τ), as n→ ∞, (11)

where the above convergence is uniform in τ over compact subsets of R; Fβ(τ) is the cdf of
√

2
π

Sβ

E|Sβ |
(Sβ is a realization of a β-stable random variable (with t = 1 in (3)), and F2(τ)

equals the cdf of a standard normal variable Φ(τ). The limit result in (11) shows that when

St is stable with 1 < β < 2, F̂n(τ) estimates the cdf of a β-stable random variable around

the origin, while when β = 2 it estimates the cdf of the Gaussian.

The technical restriction β > 1 pertains to a possible drift, but it is innocuous in the

present context. Stable processes with β < 1 are of finite variation with trajectories that

appear nearly flat over long stretches of time interspersed with occasional huge moves that

are so large that the first moment does not exist. Such processes would be inadequate

representations of the high-activity component of conventional financial time series. Stable

processes with 1 < β < 2 are of infinite variation with finite first moment, just like Brownian

motion. Note role that the implied first moment plays in in the statement of the limiting

result (11).

As a final note on the local nature of the distributional prediction to be tested, the

convergence in (11) can trivially be extended from compact sets around the origin to uniform

convergence over the entire line using some standard tools of probability theory. But the

uniform convergence is of theoretical interest at most and is not operational, in the sense

being useful for empirical practice. For the distribution to hold over arbitrarily large intervals

would require arbitrarily large sample sizes well beyond those that would ever be available.
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3.3 Empirical Implications

To summarize, the preceding indicates that on any particular fixed interval of time the

ensemble of de-volatized returns (8) can be expected to be distributed either as locally

Gaussian under the jump diffusion model (1), or locally β-stable under model (2) when

1 < β < 2. To get a visual handle on the implied probability distributions, Figure 1 shows the

probability distribution of the β–stable for β = 1.10 along with a reference Gaussian scaled

so that both distributions have an absolute first moment unity E(|Z|) = 1; the distribution

is more like the Cauchy, which is the case β = 1. Note that β > 1 so the first moment

exists, and with this scaling the variance of the reference Gaussian is π/2. The shape is very

non-Gaussian for β = 1.10 but obviously it would be more Gaussian-like as β gets closer to

2.

4 Bayesian Inference with EMM

We are in a situation that can be characterized as follows. A Levy process determines

the distribution of a certain transform of high frequency data. This distribution, called the

structural model henceforth, has parameter ρ. In general ρ is a vector but here it has only one

element: ρ = (ρ1) = (β). Theory provides strong prior information regarding ρ. Specifically,

the support of the prior must include 1 < ρ1 ≤ 2. The prior we shall use distributes its

mass uniformly over (1, 2]. Denote this prior by π(ρ). We can accurately simulate from the

structural model. The likelihood is not known in closed form and standard approximations

such as inversion of the characteristic function are not numerically stable. This situation

indicates the desirability of a Bayesian method of moments approach. Our preference is for

exact Bayesian inference rather than approximate methods.

Let Eρ denote expectation with respect to the structural model. Because we can accu-

rately simulate from the structural model, we can compute an expectation to any desired

accuracy using Eρ(g) .= 1
N

∑N
i=1 g(ŷi), where {ŷi}Nt=1 a simulation of length N generated from
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the structural model with the parameter set to ρ. Thus, the ability to accurately simulate

provides a means to implement a Bayesian method of moments approach.

We construct the moments to be used in the analysis as follows. Let f(y | θ) be a density

that well approximates the density of the observed data {yi}ni=1. Let

θ̃ =
θ∈Θ

argmax
1

n

n∑

i=1

log f(yi | θ), (12)

where Θ is the parameter space of the density f(y | θ). We regard θ̃ as a summary of the

data; the data enters our analysis only through this summary. Define

m(ρ, θ) = Eρ
{
∂

∂θ
log f(y | θ)

}
(13)

Our moment equations are m(ρ, θ̃). These moment equations satisfy m(ρ, θ̃) = Op(n
− 1

2 )

when ρ is set to the value of the structural model that generated the data regardless of how

well f(y | θ) approximates the data (Gallant and Tauchen, 1996).

One would expect that better approximations will achieve better results in applications.

In the event that regularity conditions, e.g., Chernozhukov and Hong (2003), are in place

such that the posterior from the methods proposed below has an asymptotic distribution,

the results of Gallant and Tauchen (1996) imply that better approximations yield shorter

credibility intervals.

We shall use the SNP density for f(y | θ) and shall denote it as fK(y | θ). It has the form

of a location-scale transform of an innovation v

y = Rv + µ, (14)

where R is an upper triangular matrix; v and µ are vectors in general but in our application

v, µ, and R are scalars. Nonetheless, for generality, we will retain the multivariate repre-

sentation whereby v and µ are vectors of length M and R is an M×M matrix. The density

function of the innovation is

hK(v) =
[PK(v)]2φ(v)∫
[PK(u)]2φ(u) du

, (15)
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where PK(v) is a polynomial in v of degree K and φ(v) is the standard normal φ(v) =

(2π)−
1

2
Me−

1

2
v′v. A standard representation of a multivariate polynomial PK(v) is

PK(v) =
K∑

|λ|=0

aλv
λ, (16)

where λ is a multi-index and |·| denotes the degree of a multi-index. A multi-index is a vector

λ of dimension M with non-negative integer elements; vλ =
∏M

i=1 v
λi
i ; and |λ| =

∑M
i=1 λi.

The parameters θ of fK(y | θ) are, from (14), the elements of µ and the elements of the upper

triangle of R, and, from (16), the scalars {aλ}λ≤K . Because [PK(v)]2/
∫
[PK(u)]2φ(u)du is

a homogeneous function of the {aλ}λ≤K , hK(v) can only be determined to within a scalar

multiple. To achieve a unique representation, the constant term a0 of the polynomial PK(v) is

put to one. With this normalization, hK(v) has the interpretation of a series expansion whose

leading term is the normal density φ(v) and whose higher order terms induce departures from

normality. To avoid division by zero when evaluating (15) or its score vector one can add a

small ǫ > 0 to the denominator of (15).

The SNP model is a sieve, which is to say that it is a parametric model with a variable

number of parameters that is dense for some class of functions in some statistically relevant

norm. See Gallant and Nychka (1987) for regularity conditions, the most stringent of which

are that that the class of density functions that can be represented by an SNP density

with K = ∞ must possess a moment generating function and must be dominated by a

Sobelev norm. Usually this domination condition has the effect of limiting the parameters

of structural models whose density can be represented to a compact set. In applications,

the SNP density behaves much the same as a kernel density estimator (Fenton and Gallant,

1996) and using the Bayes information criterion (BIC) to choose K is a data driven rule that

guarantees good performance (Coppejans and Gallant, 2002).

The first step of our proposed Bayesian estimator is to use

fK(y | θ), θ ∈ Θ, (17)
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to summarize the data {yi}ni=1 by computing

θ̃ =
θ∈Θ

argmax
1

n

n∑

t=1

log[fK(yt | θ)]. (18)

The data {yi}ni=1 are the retained increments given by (8). The value of K is chosen using

the BIC criterion. The software we use to implement the first step is available together with

a User’s Guide at www.aronaldg.org/webfiles/snp.

We compute m(ρ, θ) given by (13) by averaging over a long simulation

m(ρ, θ)
.
=

1

N

N∑

i=1

∂

∂θ
log[fK(ŷi | θ)]. (19)

Our approach is to use simulations that are long enough that the error in the approximation

of (13) by (19) is negligible.

Define

I(ρ, θ) = 1

N

N∑

t=1

[ ∂
∂θ

log f(ŷt | θ)
][ ∂
∂θ

log f(ŷt | θ)
]′

(20)

and consider

Z(ρ, θ̃) =
√
n
[
I(ρ, θ̃)

]−1/2

m(ρ, θ̃), (21)

where [(I)−1/2]′[(I)−1/2] = (I)−1. Now Z(ρ, θ̃) follows some distribution Ψ(z) determined

by the structural model and the prior; denote the corresponding density by ψ(z). Under

regularity conditions, adj(ρ, θ̃)ψ[Z(ρ, θ̃)] can be used as a likelihood for Bayesian inference

Gallant (2016b,c). The adjustment, defined in Gallant (2016c, 2015), in this instance is the

Jacobian term

adj(ρ, θ̃) =

∣∣∣∣ det
{
∂

∂θ′
√
n
[
I(ρ, θ̃)

]−1/2

m(ρ, θ̃)

}∣∣∣∣ (22)

In Section 6 we verify by simulation that in our application the normal density function φ(z)

can be used for ψ(z).

Note, in passing, that the reason
√
n appears in the above expressions is not due to

asymptotic considerations but due to a presumption that φ(z) expects z to have the identity

as its variance-covariance matrix.
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The regularity conditions are mild, the most important of which is that Z(ρ, θ̃) must

satisfy a semi pivotal condition, a sufficient condition for which is that Z(ρ, θ̃) be continuous

in at least one element of θ̃ and be unbounded from above and below in that element. That

Z(ρ, θ̃) actually be pivotal is also sufficient, but this is harder to verify.

Using adj(ρ, θ̃)ψ[Z(ρ, θ̃)] as a likelihood together with a proper prior is exact Bayesian

inference (Gallant, 2016b,c). It is not approximate Bayesian inference. The analogy with

frequentist inference is nearly exact. In frequentist inference method of moments and max-

imum likelihood confidence interval procedures using exact finite sample distributions can

lead to confidence intervals with different expected lengths but both are, nonetheless, valid

95% frequentist confidence intervals. The same is true here, using adj(ρ, θ̃)ψ[Z(ρ, θ̃)] instead

of the likelihood of the structural model can lead to 95% credibility intervals of different

lengths. Nonetheless, both are valid Bayesian credibility intervals. The difference in lengths

arises because Bayesian method of moments uses less information that classical Bayes; on

this see Gallant (2016b,c). When the regularity conditions of Chernozhukov and Hong (2003)

are in place, the results of Gallant and Long (1997) imply that lengths become the same as

K → ∞.

Note, in passing, that for θ of dimension M , log[adj(ρ, θ̃)] increases with n at the rate

M
2
log(n) whereas log{φ[Z(ρ, θ̃)]} increases at the rate n. Therefore, when ψ = φ the ad-

justment becomes irrelevant for large n when ρ and θ are restricted to compact sets, which

is a typical regularity condition in an asymptotic analysis. Nonetheless, in the work re-

ported here, the adjustment term is included in keeping with our desire for exact rather

than approximate Bayesian inference.

The second step of our proposed Bayesian estimator is to run an MCMC chain. The

chain is a sample from the posterior distribution that can be used for Bayesian infer-

ence. Specifically, the mean ρ̄ over the chain or that value ρ̂ in the chain that maximizes

adj(ρ, θ̃)φ[Z(ρ, θ̃)] π(ρ) can be used as the estimate of ρ. The sample standard deviations over
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the chain can be used as an estimate of the standard deviations of the posterior distribution

of ρ. On this see Gamerman and Lopes (2006). Credibility intervals can be formed from

lower and upper quantiles of the chain; e.g., the 2.5% and 97.5% to get a 95% credibility

interval.

To compute an MCMC chain one needs a proposal density. The proposal density

q(ρold, ρnew) that we use is move-one-at-a-time-random-walk. Specifically, we randomly

choose an index î of the parameter vector ρ = (ρ1, ρ2, ..., ρp) and sample u from φ(u). (In our

application ρ = (β) with p = 1.) Then ρnew is equal to ρold excepting that ρnew
î

= ρold
î

+ σîu.

The scale parameters σi, i = 1, . . . , p are chosen such that the proportion of times ρ ′ is set

to ρo instead of ρ∗ in the algorithm described next paragraph is between 0.4 to 0.8 for each

i, i = 1, . . . , p. These proportions are referred to as the rejection rates.

The MCMC chain is computed as follows: Given a current ρo obtain the next ρ ′ by:

1. Draw ρ∗ according to q(ρo, ρ∗).

2. Simulate {ŷt}Nt=1 from the structural model with parameter set to ρ∗. If the simulation

fails, set ρ ′ = ρo and return to step 1 with the new ρo set to ρ ′.5

3. Compute m(ρ∗, θ̃) using (19), I(ρ∗, θ̃) using (20), Z(ρ∗, θ̃) using (21), and adj(ρ∗, θ̃)

using (22).

4. Compute α = min
(
1,

adj(ρ∗,θ̃)ψ[Z(ρ∗,θ̃)]π(ρ∗) q(ρ∗, ρo)
adj(ρo,θ̃)ψ[Z(ρo,θ̃)]π(ρo) q(ρo,ρ∗)

)
.

5. With probability α, set ρ ′ = ρ∗, otherwise set ρ′ = ρo. Return to step 1 with the new

ρo set to ρ ′.

The software we use to implement the second step is available together with a User’s

Guide at www.aronaldg.org/webfiles/emm.

5The implication of returning to step 1 when simulation fails at step 2 is that simulation success is part of
the support of the prior. The possibility of simulation failure does not arise in our application for ρ ∈ (1, 2].
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5 Data

We use the E-mini futures price series and seven option-implied volatilities developed by

Andersen et al. (2015) who in turn employ the core data set of Andersen et al. (2013).

Options-implied volatilities, instead of raw options prices, are used so as to create stan-

dardized series with a fixed date to maturity for given fixed levels of moneyness. Since

the Black-Scholes implied volatility function is sufficiently smooth, then, as well known, the

small-scale fine structure of the options prices are preserved in the implied volatilities. The

issues, and in particular the invariance of the index β, are discussed at further length in

Andersen et al. (2015).

The E-mini S&P 500 futures contract (commodity ticker symbol ES) and its options

are traded exclusively on the CME GLOBEX electronic platform. The markets for the ES

futures and options are among the deepest and most liquid worldwide. The sample period is

January 3, 2007, to March 22, 2011, covering 1062 trading days, and the underlying data are

at the 15-second frequency. For each 15-second interval there are seven implied volatilities,

IV1-IV7 for the fixed maturity of 30 calendar days.6 The implied volatilities correspond to

values of the the moneyness measure m, defined as follows: Letting σBS denote the ATM

implied Black-Scholes volatility and F the forward price corresponding to tenor (maturity)

τ , then

m =
ln (K/F )

σBS
√
τ
.

The implied (Black-Scholes) volatility measures are labeled IV1-IV7 and match to the fol-

lowing levels of moneyness, m = −4,−3,−2,−1, 0, 0.5, and 1, which covers deep out of the

money (m = −4 to just in the money options at m = 1. To alleviate the effects of trad-

ing friction noise (some staleness as well as price uncertainty associated with the bid-ask

spread), Andersen et al. (2015) aggregate the 15-second observations by pre-averaging over

6The seven implied volatility measures are constructed in the manner described in the Appendix of
Andersen et al. (2015).
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non-overlapping five-minute blocks using the triangular weighting scheme of Podolskij and

Vetter (2009).

To summarize, our data set here consists of seven option-implied volatilities, IV1–IV7,

and the log-returns on the E-mini futures, 5-minute level, January 3, 2007, to March 22,

2011, covering 1062 trading days. All data are 5-minute observations based on pre-averaged

15-second data. The data were de-volatized exactly as described in Subsection 3.2, and

then at the very end rescaled to have absolute first moment unity, which puts all series on

comparable scales and implies the theoretical value of c in (3) is thereby c =
√

2/π.

6 Empirical Results

Before undertaking estimation, we relate our Bayesian EMM method to other approaches

for estimating the index now in the literature. The material of (Ait-Sahalia and Jacod,

2014, Chapter 12, and references therein) mainly concerns estimating the second activity

index in the presence of a Brownian motion with dominating index 2, which is a statistically

challenging problem with a very slow rate of convergence. Here we are interested in making

inference about the dominate index not constrained to equal 2.0. There are several proposed

power variation estimators for the dominate index that work only off scaling laws. Andersen

et al. (2015) implement one such estimator on the same data to used here. However, the

data have been truncated to exclude the uninteresting very large rare jumps. It turns out

that the truncation can upward bias the power variation estimator, as is evident in Figure 4.

Interestingly, the range of implied post-truncation index values, 1.65–2.00, seen in the figure

is the range of values reported in Andersen et al. (2015), and these values well above our

posterior medians reported below. Todorov (2015) develops an alternative estimator, which

is rather complex, with a need for determination of five or more tuning parameters (the

tuning parameters determine the number moments used in estimation). It also entails a

sandwich for the asymptotic variance of the estimator, while in the frequentist context EMM
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is asymptotically fully efficient. More important, our procedure circumvents problems with

truncation by mimicking the cutoff in the simulations, and the method entails diagnostic

checks on the distributional implications the model has on the data.

6.1 The Auxiliary Model

Following Section 4 above, the first step of the proposed procedure is estimate the SNP model

fK(y | θ) as described in equation (17) by quasi maximum likelihood (18). Because of serial

independence in the de-volatilized data, we need not make the coefficients of the polynomial

expansion in (16) state dependent (time varying). In doing the quasi maximum likelihood

estimation, there was overwhelming evidence from the BIC criterion (not shown) that all of

the eight series considered here are non-Gaussian. Following established protocols for the

BIC, in the upward SNP expansion we started at Kz = 4 and only used even powers of the

polynomial to enforce symmetry. In several cases the expansion stopped at a polynomial

of degree 4 or 6, while in others it indicated Kz = 8, or possibly higher where numerical

instabilities can set in. To maintain equivalence we set Kz = 8 across all eight series. Thus,

there was mild over-expansion in some cases. But where a lower order polynomial might

suffice, over-expansion just moves fK(y |, θ) a bit closer to an encompassing model with little

computational cost.

6.2 Structural Model Simulations

For the simulations under the model, we used the locally stable distribution exactly as pre-

dicted by the high frequency theory described in Subsections 3.1–3.2 above. For any candi-

date parameter ρ = (β) we simulated long realizations of β-stable deviates with characteristic

function (3) above. To maintain comparability, all observed data after the de-volitization

described in Subsection 3.2 were rescaled to have sample absolute first moment of unity be-

fore entering the SNP step above, which makes the theoretical value of the scale parameter

c =
√

2/π across the eight data series.
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In generating simulations under the model, it is imperative to truncate the extreme

values generated by the stable distribution, and the reason for doing so is fundamental to

the nature of the theory being tested. The main result being evaluated here is that the

high frequency financial increments are locally stable (or Gaussian). It makes no prediction

that the data should be globally stable (or Gaussian), at least for any sample size ever

available in financial econometrics. Without the truncation, the theory would be pushed to

a limit far beyond where it can reasonably be expected to apply. In the implementation, we

generated simulated data from a truncated stable7 with the truncation point set to 4.5. The

truncation has effect — it has to — since the stable is capable of generating extremely large

values unlike any close to resembling an observed financial return, but some experimentation

revealed insensitivity to the chosen value. This robustness is to be expected, because the

stable is known to generate huge values with very low frequency, so reasonable truncations

will all essentially exclude the same set of values.

6.3 Distribution of the Semi-Pivotal

The parameter space of ρ is (1, 2]. The SNP density fK(y | θ) has four even polynomial

coefficients and one location parameter that are unconstrained and one positive scale pa-

rameter whence θ ∈ R
5 × R

+. Therefore, the semi-pivotal Z(ρ, θ̃) given by (21) is defined

over (1, 2] × R
5×R

+. Let p(y | ρ) denote the density of the observed data; π(ρ) is the prior,

which, recall, is uniform over (1, 2]. The density that determines the distribution of Z is

p(y1, . . . , yn, ρ) = [
∏n

i=1 p(yi | ρ)] π(ρ) (Gallant, 2016b).

To simulate Z one first draws ρ̂ from the uniform over (1, 2] then draws two samples

(y1, . . . , yn) and (ŷ1, . . . , ŷN ) from p(y | ρ̂) as described in Subsection 6.2. We used n = N =

55000. One computes θ̃ from (y1, . . . , yn) using (12). Next one computes ẑ = Z(ρ̂, θ̃) from

(ŷ1, . . . , ŷN) using (21) via the intermediate computations (19) and (20). Then ẑ is a draw

7For the stable itself we used the standard algorithm involving trigonometric functions; see (Gennady
and Taqqu, 2000, Proposition 1.7.1, p. 41).
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from ψ. We drew R = 120000 such ẑ.

The tails of ψ are the most important determinant of the behavior of our proposed

estimator of ρ = (β) (Gallant, 2016a). Figure 2 plots the quantiles of {ẑi}Ri=1 (y-axis)

against the quantiles of the standard normal (x-axis) at p-values from 0.001 through 0.999

in increments of 0.001. Figure 3 is the same with quantiles of a 3 d.f. Student’s t-distribution

instead of normal quantiles. It is clear from the plots that ψ(z) is neither fat-tailed nor thin-

tailed relative to the standard normal density φ(z) and that a choice of ψ(z) = φ(z) is

reasonable.

6.4 Findings

Table 1 displays the Bayesian interval estimates of the index β; recall, ρ = (β). The estimates

appear to be rather sharp, given the narrowness of the individual intervals.

As discussed in the introduction, we expect far out-of-the-money options to load heavily

on jump factors because of the embedded value associated with taking jump-like moves back

into the money. We see just that in the very low estimates of β for the three most out-of-the-

money option categories, IV1–IV3, which is consistent with being pure jump processes with

relatively larger jumps. For IV4, the estimate of β is midway between unity and 2, suggesting

it also is a pure jump process but with smaller jumps than IV1–IV3, presumably because

of the relatively more important role that more diffusive-like factors in the determination of

its value. For the near-the money options, IV5–IV7 and the S&P index future, the value

of the estimated index β is much closer to the upper bound of 2. For processes like these,

the jump intensity is so high and the moves so small that the sample trajectories become

nearly indistinguishable from those of Brownian motion. The estimates suggest these assets

presumably load on factors that are essentially diffusive, or nearly so.

It bears noting that our estimates of the index stand in contrast to those of Andersen et al.

(2015), among others. We find that for the options data the estimates range from just over

26



1.0 to 1.88 across the moneynessm, while those reported by Andersen et al. (2015) for options

data range from 1.64 to 2.00 across the moneyness. The resolution of the discrepancies lies

in characteristics of the estimators. The latter set of estimates were constructions based on

the behavior of the power variations computed at two different sampling frequencies without

using much information regarding the distributional aspects of the data, and in particular to

the truncation for large jumps. Figure 4 shows the large sample limit of the power variation

estimator applied to truncated data for various candidate values of the index. As can be

seen from the figure, the truncation imparts an upward bias, and the range of the asymptotic

limits of the power variation estimator seen in the figure is about the same of the range of

the estimates reported in the aforementioned study. By way of contrast, our EMM approach

perforce must accommodate the truncation in the data simulator, and it is thereby unaffected

by any biases due to truncation of large jumps. Below, we validate by Monte Carlo that the

EMM is indeed unbiased. Prior to this work, most financial econometricians thought that,

in view of the general vibrancy of financial prices, the activity index of any price process

was nearly always 2.0 (Brownian) or no less than, say 1.60 or 1.70. Our results using a full

information technique indicates that for these data the evidence suggests much lower values

of the index than previously thought for the prices of far out of the money options.

Figure 5 makes clear the distributional aspects of our model assessments. The figure

shows Q–Q plots of the model-implied quantiles against the quantiles of the observed data

for each of the moneyness categories. The model-implied quantiles are computed from a

random sample of size 1000 drawn from the model density at the estimated median value of

the index β for each moneyness level; the data quantiles are computed from random sample

of the observed data also of size 1000. We use the shorter random samples just to keep the

number of plot points low enough so the figure can be rendered by printers now in use. The

units of the axes are absolute first moments, which for Gaussian data would be
√
π/2 = 1.25,

so (−3, 3) is akin to a range of ±3.75 standard deviations. As seen from the figures, the
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model- and data-implied quantiles are in very close agreement within the range (−3, 3), just

as the theory implies. Outside that range the agreement is less close, also to be expected

given that the theory implies only locally, not globally, stable data.

6.5 Cross Checks

Two key aspects of our findings deserve careful scrutiny.

First, in all cases, the initial SNP estimate of the auxiliary model indicates non-Gaussian

data with highly significant Hermite polynomial coefficients. Once such an auxiliary model

is put in place, then the EMM procedure has to generate an estimate of the index β that is

less than 2.0 because that is the only way to account for the non-Gaussian character of the

auxiliary model. Selection of the auxiliary model is based on the conservative BIC criterion,

but still it is important to verify that first step is not systematically finding spurious non-

Gaussianity. As a check, we estimated the SNP model on 10, 000 replicates of independently

and identically distributed Gaussian data sets of size 1, 000, and never once did BIC reject

Gaussianity. Thus, it is very unlikely our findings are due to spurious non-Gaussianity.

Second, our estimates of the index β are significantly lower than those found elsewhere,

raising the possibility that the procedure itself might be systematically downward biased. To

investigate this issue, we did a small scale Monte Carlo by applying the entire procedure to

simulated data sets of length equal to our sample size under the model distribution implied

by Theorem 1 for two separate parameter settings, β = 1.1 and β = 1.9. The following

display shows the Monte Carlo means and standard deviations over 10,000 replications:

28



Estimator Mean Std.Dev.

β = 1.10

posterior mean 1.1003 0.0162

posterior mode 1.1006 0.0170

β = 1.90

posterior mean 1.8698 0.0194

posterior mode 1.8679 0.0221

Evidently, the Monte Carlo values are near spot on center adding credence to our claimed

empirical findings.

7 Conclusion

We undertake an extension of the exact Bayesian method of moment estimation methodology

proposed by Gallant (2016b,c,a) to simulated method of moments. It can also be viewed as

an extension of of the EMM method described in the Handbook of Financial Econometrics

(Gallant and Tauchen, 2010). We undertake an extension for the purposes of evaluating the

sharp distributional predictions arising from high frequency theory and estimating the jump

activity index. Under reasonable regularity conditions, recent results in high frequency

predict that at fine time scales financial prices are either locally Gaussian, as commonly

presumed, or locally stable with pure jump sample paths governed by the activity index.

Since short-dated options derive value from the possibility of taking jump-like moves, we use

options and futures data in the empirical evaluation, specifically S&P 500 index options and

futures over the period January 3, 2007, to March 22, 2011 of the Andersen et al. (2013,

2015) data set. These options extend over seven levels of moneyness, including deep out

of the money puts which present some of the strongest challenges in asset pricing. Our

empirical findings strongly suggest that the four most out of the money options are pure

jump processes while the three other options much nearer the money and the future are
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closer to locally Gaussian. We note that our estimates of the jump index are well below

those previously reported in the literature, because, as we have shown, previous estimates

are upward biased.

The findings have strong implications for theoretical financial econometrics. Essentially

all the central limit theorems for nonparametric volatility estimation exploit in essential ways

presumed local Gaussianity. To the extent this presumption fails, as the evidence suggests

for some of the options data, the classical central limit theory is invalid. Development of

statistical inference theory for the pure jump case is an extremely challenging task deferred

to future work.

We emphasize in closing that our findings pertain to the local fine time scale behavior

of option price moves. The estimation method is not a technique for applying the stable

distribution to data, and it has nothing to do with the large jumps so often associated with

the stable distribution. Rather, the technique provides evidence on the characteristic of the

small moves. In other words, our findings pertain to the characteristics of the pole of the

Lévy density around the origin which governs the intensity of the very small jumps.
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Figure 1: Model implied pdf with β = 1.10 and reference Gaussian

Table 1: Posterior Distribution of β

Moneyness Mean Mode 95% Cred Interval

IV1 1.0134 1.0073 1.0026 1.0257

IV2 1.1266 1.1231 1.1125 1.1556

IV3 1.3041 1.3090 1.2915 1.3097

IV4 1.5586 1.5617 1.5398 1.5737

IV5 1.7672 1.7706 1.7438 1.7902

IV6 1.8240 1.8210 1.8023 1.8664

IV7 1.8808 1.8808 1.8807 1.8810

Futures 1.8808 1.8808 1.8799 1.8812

31



−3 −2 −1 0 1 2 3

−
5

−
4

−
3

−
2

−
1

0
1

2

Z_1

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

Z_2

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Z_3

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

Z_4

−3 −2 −1 0 1 2 3

−
0.

5
0.

0
0.

5

Z_5

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

4

Z_6

Figure 2: Quantile-quantile plot of z draws vs. normal
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Figure 3: Quantile-quantile plot of z draws vs. 3 d.f. t
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Figure 4: Probability limit (dots) computed via simulation of the power-variation estimation
β̂pv computed on truncated data versus true β. The x–y coordinated axes are (β, β̂pv).
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Figure 5: QQ-plots: quantiles of model-generated simulated data versus quantiles of observed
data.
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