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Bayesian Inference Using the EMM Objective
Function

Changes to frequentist EMM required:

• Need a proper prior

• Use either a continuously updated weighting matrix or a

static weighting matrix obtained by averaging over the prior.

• Nead to determine the distribution of the mean score either

by simulation or a CLT. Due to averaging over the prior,

issues of uniform convergence do not arise.

• Need a Jacobian term.



Application to the Dominant Index

Posterior 95% Credibility
Moneyness Mean Mode Interval

IV1 1.0134 1.0073 1.0026 1.0257
IV2 1.1266 1.1231 1.1125 1.1556
IV3 1.3041 1.3090 1.2915 1.3097
IV4 1.5586 1.5617 1.5398 1.5737
IV5 1.7672 1.7706 1.7438 1.7902
IV6 1.8240 1.8210 1.8023 1.8664
IV7 1.8808 1.8808 1.8807 1.8810

Futures 1.8808 1.8808 1.8799 1.8812



The Setting

• The standard jump-diffusion model used for modeling many

stochastic processes is an Itô semimartingale given by the

following differential equation

dXt = σt−dWt+ dYt, (1)

• Wt is a Brownian motion

• Yt is an Itô semimartingale process of pure jump type



Dominant (Brownian) Piece

• At high-frequencies, provided σt does not vanish, the domi-

nant component of Xt is its continuous martingale compo-

nent

σt−dWt

• At these frequencies the increments of Xt in (1) behave like

scaled and independent Gaussian random variables.

1√
h
(Xt+h −Xt)

L−→ σt (Bt+1 −Bt), (2)

as h→ 0



Implications

There are two distinctive features of the convergence in (2):

1. The scaling factor of the increments on the left side of (2) is

the square-root of the length of the high-frequency interval.

2. The limiting distribution of the (scaled) increments on the

right side of (2) is mixed Gaussian (the mixing given by σt).



Only Jumps, Small and Large

• The pure jump diffusion model is an Itô semimartingale given

by the following differential equation

dXt = σt−dSt+ dYt (3)

• σt and Yt are processes with càdlàg paths

• Yt is a pure jump process

• St is a symmetric stable process with a characteristic function

given by

log
[
E

(
eiuSt

)]
= −t|cu|β, β ∈ [0,2] (4)

• If β = 2, then Xt becomes the jump diffusion model (1)



Role of the Big Jump Process Yt

• When β < 2, X is of pure-jump type, Yt in (3) plays the role

of a “residual” jump component at high frequencies

• Yt can have dependence with St (and σt), therefore Xt does

not inherit the tail properties of the stable process St.

Y
D
= X − S

• Under reasonable assumptions the local result (2) extends:

h−1/β(Xt+h −Xt)
L−→ σt (St+1 − St) (5)

as h→ 0



Inference Strategy

• View the data as doubly indexed:

Xi,t ∈ [t− 1, t] = one day

i = 1,2, . . . , n within day index, t = 1,2, . . . , T indexes days

• Use fill-in theory to indicate what to expect for

∆iX = Xi,t −Xi−1,t

as n→ ∞ for Xi,t ∈ [t− 1, t]

• Use multiple spans [t − 1, t] to improve estimation accuracy,

t = 1,2, . . . , T



De-Volatizing Returns

• Proceed as in the locally Gaussian case (1) by using a

bi-power variation estimate of local scale.

• Estimate σt locally by a leave-one-out block estimate V̂ nj (i)

that has kn increments within each block j and then divide

the high-frequency increments by this estimate.

• The procedure is both automatically self-scaling and valid in

the locally β–stable situation of (3).



Estimating Local Scale

• One divides the interval [0,1] into blocks, each of which con-

tains kn increments, for some deterministic sequence kn → ∞
with kn/n→ 0.

• On each of the blocks the local estimator of σ2t is given by

V̂ nj =
π

2

n

kn − 1

jkn∑

i=(j−1)kn+2

|∆n
i−1X||∆n

iX|, (6)

j = 1, . . . , ⌊n/kn⌋

• V̂ nj is the bi-power variation estimator proposed by Barndorff-

Nielson and Shephard for measuring the quadratic variation

of the diffusion component of X.



Re-Scaling

The scaling of every high-frequency increment is done after ad-

justing V̂ nj to exclude the contribution of that increment in its

formation

V̂ nj (i) =





kn−1
kn−3V̂

n
j − π

2
n

kn−3|∆n
iX||∆n

i+1X|,
for i = (j − 1)kn+1,

kn−1
kn−3V̂

n
j − π

2
n

kn−3

(
|∆n

i−1X||∆n
iX|+ |∆n

iX||∆n
i+1X|

)
,

for i = (j − 1)kn+2, ..., jkn − 1,

kn−1
kn−3V̂

n
j − π

2
n

kn−3|∆n
i−1X||∆n

iX|,
for i = jkn.

(7)



Jump Removal

• De-volatilized increment:

∆n
iX√

V̂ nj (i)/n
, (8)

• Retain only the increments that do not contain big jumps:

∆n
iX√

V̂ nj (i)/n
1

(
|∆n

iX| ≤ α
√
V̂ nj n

−̟
)
, (9)

α > 0, ̟ ∈ (0,1/2).

• The time-varying jump threshold accounts for the time-

varying σt.



CDF of Adjusted Data

• The empirical distribution of these increments is

F̂n(τ) =
1

Nn(α,̟)

⌊n/kn⌋∑

j=1

(j−1)kn+mn∑

i=(j−1)kn+1

1





∆n
iX√

V̂ n
j (i)/n

≤ τ





1{
|∆n

iX|≤α
√

V̂ n
j n

−̟

} (10)

• The divisor is the total number of retained increments

Nn(α,̟) =

⌊n/kn⌋∑

j=1

(j−1)kn+mn∑

i=(j−1)kn+1

1

(
|∆n

iX| ≤ α

√
V̂ n
j n

−̟
)

(11)

• F̂n(τ) is simply the empirical CDF of the de-volatilized increments that
do not contain large jumps.

• In the jump-diffusion case of (1), F̂n(τ) should be approximately the CDF
of a standard normal random variable.



Limit Theorem

THEOREM 1 For either the processes (1) or (3), assume the

block size grows at the rate

kn ∼ nq, for some q ∈ (0,1), (12)

and mn → ∞ as n→ ∞. Then if β ∈ (1,2],

F̂n(τ)
P−→ Fβ(τ), as n→ ∞ (13)

uniformly in τ over compact subsets of R

Fβ(τ) is the CDF of
√

2
π

S1
E|S1| (S1 is the value of the β-stable

process St at time 1) and F2(τ) is the CDF of a standard normal.

The limit result in (13) shows that when St is stable with β < 2,

F̂n(τ) estimates the cdf of a β-stable random variable.



Predicted Density: β = 1.10
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Predicted Density: β = 1.90
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Data: S&P E-Mini Options and Futures

• We use the very skillfully assembled options data set devel-

oped and in Andersen, Bondarenko, Gonzalez-Perez (2013)

for the purpose of decomposing and analyzing the CBOE

volatility index (VIX).

• Hereafter, we refer to this as the ABG data.

• The data set was years in construction, and it provides a

unique set of very clean high frequency observations of index

options classified by moneyness.



Moneyness

• At expiration put options finish in-the-money (ITM), out-of-the-money
(OTM), or at-the-money (ATM), presuming European style options.

• Before expiration a measure of how far an option is in or out of the money
is useful because one might posit that options will load on different risk
factors depending on moneyness.

• ABG moneyness metric is

m =
log(K/F )

σBS
√
τ

where

K = strike price

F = forward price

σBS = ATM Black-Scholes implied volatility

τ = time to maturity, 30 days for our data

• When m is negative a put option is out of the money



Moneyness Categories and S&P 500 Futures

Groups

IV1 m=-4 Way out of the money
IV2 m=-3 Way out of the money
IV3 m=-2 Out of the money
IV4 m=-1 Out of the money
IV5 m=-.5 Nearly at the money
IV6 m=0 At the money
IV7 m=1 In the money
Futures E-mini S&P futures

Data are 15 sec. pre-averaged to 5 min., de-volatilized, and de-

jumped as per the foregoing.

January 3, 2007, to March 22, 2011, 1062 trading days.



EMM – Structural Model

• Structural model: The observed data are from a sampled,

transformed, Levy process.

• On compacts, the transformed data are distributed as the

stable distribution with parameter β, 1 < β ≤ 2

– We use [−4.5,4.5]

• The likelihood is not known in closed form; standard approx-

imations such as inversion of the characteristic function are

not numerically stable.

• The data can be simulated: ŷt, t = 1, . . . , N

– We use N = 55000



EMM – Auxiliary Model

• SNP density:

y = Rv+ µ

hK(v) =
[PK(v)]2φ(v)

´

[PK(u)]2φ(u) du

PK(v) =

K∑

|λ|=0

aλv
λ

– We use K = 8 with even powers only

– φ(v) is the standard normal

• MLE:

θ̃ =
θ∈Θ

argmax
1

n

n∑

t=1

log[fK(yt | θ)]



Auxiliary Model
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EMM – Moment conditions

• Moment conditions

m(β, θ̃) = Eβ
{
∂

∂θ
log[fK(y | θ̃)]

}

• Identification

m(β, θ̃) = 0 ⇐⇒ β = true value

• Moment conditions can be computed by simulation

m(β, θ̃)
.
=

1

N

N∑

i=1

∂

∂θ
log[fK(ŷi | θ̃)]



EMM – Variance Estimate

• Either, continuously updated

Iβ =
1

N

N∑

i=1

[
∂

∂θ
log f(ŷi | θ̃)

][
∂

∂θ
log f(ŷi | θ̃)

]′
,

where, recall, {ŷi}Ni=1 are draws from the stable with index β

• or static

I =

ˆ

Iβ π(β) dβ,

where I is computed by averaging Iβ over draws from the

prior π(β)



Distribution of Moment Conditions

In Bayesian inference the unknown parameter is manipulated as

if it were random even though one might actually regard it as fixed.

Consider the following exercise:

• Draw β from the uniform over 1 < β ≤ 2

• Simulate a sample of size n from Levy process at that β

• Compute the SNP estimate θ̃

• Simulate a sample of size N from Levy process at that β

• Compute z =
√
n (Iβ)−1/2m(β, θ̃) at that β

• Plot z quantiles vs. Normal quantiles and vs. t quantiles



Q-Q Plot of z Draws vs. Normal
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Q-Q Plot of z Draws vs. 3 d.f. t
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Conclusion Regarding Distribution of Z

• Under a uniform (1,2] prior on β and a Levy likelihood for

the data, it is plausible to assume that the distribution of

Zβ = Z(θ̃, β) =
√
n (Iβ)−1/2m(β, θ̃)

is normal.

• A standard CLT for iid data applies here so one would expect

normality.

– The issue of uniform convergence does not arise.

– Differentiates our procedure from other ABC methods.

• Normal distribution denoted Φ normal density denoted φ



Exact Bayesian Inference

The central idea is that moment equations can be used to con-

struct a “method of moments representation” of the likelihood

of a structural model that can be used in otherwise standard

Bayesian inference.



Exact Bayesian Inference - Notation

Temporary change of notation to agree with

Gallant, A. Ronald (2016), “Reflections on the Probability Space Induced
by Moment Conditions with Implications for Bayesian Inference,” Journal

of Financial Econometrics 14, 284–294.

Gallant, A. Ronald (2016), “Reply to Comment on Reflections,” Journal of

Financial Econometrics 14, 284–294.

θ̃ → y ∈ Y, which is viewed as the data

β → θ ∈ Θ

m(β, θ̃) → m(y, θ)

Z(β, θ̃) → Z(y, θ)



Exact Bayesian Inference - Structural P-Space

• The structural model and prior imply a joint distribution

P o(y, θ) defined over Y × Θ, whose density is the product

of a likelihood p(y | θ) times a prior π(θ).

• The joint probability space is, therefore,

(Y ×Θ, Co, P o),

where Co denotes the Borel subsets of Y ×Θ.



Exact Bayesian Inference - Moment Induced
P-Space

• The random variable z = Z(y, θ) over (Y×Θ, Co, P o) has some

distribution Ψ with a support Z. Ψ = Φ in our application.

• Let C be the smallest σ-algebra containing the preimages

C = Z−1(B) where B ranges over the Borel subsets of Z.

• Because the distribution Ψ(z) of z = Z(y, θ) is determined by

P o the probability measure P [C = Z−1(B)] =
´

B dΨ(z) over

(Y ×Θ, C) will satisfy P (C) = P o(C) for every C ∈ C.



Exact Bayesian Inference - Extension of Mo-
ment Induced P-Space

• Define C∗ to be the smallest σ-algebra that contains all sets

in C plus all sets of the form RB = (Y×B), where B is a Borel

subset of Θ.

• If Z(y, θ) is a semi-pivotal, there is an extension to a space

(Y ×Θ, C∗, P ∗)

such that P o(C) = P ∗(C) for all C ∈ C∗. (Gallant, 2016)

– Sufficient to be semi-pivotal is that Z is continuous and unbounded
in at least one element of y

• The σ-algebras involved satisfy C ⊂ C∗ ⊂ Co.



Exact Bayesian Inference - Method of Mo-
ments Likelihood

• The “method of moments” likelihood on the extended space

(Y ×Θ, C∗, P ∗) is

adj(y, θ)ψ[Z(y, θ)]

where adj(y, θ) is analogous to a Jacobian term.

– Actually is a Jacobian in our application

• The key insight that allows substitution of the “method of

moments representation” of the likelihood for the likelihood

under the structural model in a Bayesian analysis is the fact

that both probability measures P o and P ∗ assign the same

probability to sets in C∗.



Exact Bayesian Inference - Information Loss

• Because C∗ is a subset of Co, some information is lost

• Intuitively this is similar to the information loss that occurs

when one divides the range of a continuous variable into in-

tervals and uses a discrete distribution to assign probability to

each interval. Both the continuous and discrete distributions

assign the same probability to each interval but the discrete

distribution cannot assign probability to subintervals.

• How much information is lost depends on how well one

chooses moment conditions.



EMM – Objective Function

• Semi-pivotal:

Zβ = Z(θ̃, β) =
√
n (Iβ)−1/2m(β, θ̃)

• EMM objective function

adj(θ̃, β)φ[Z(θ̃, β)]π(β)

– adj(θ̃, β) =
∣∣∣det

[
∂
∂θ′Z(θ̃, β)

]∣∣∣

– adj(θ̃, β)φ[Z(θ̃, β)] is the likelihood

– π(β) is the prior

– We use p(β) uniform on (1,2]



EMM – MCMC
Given a current βo obtain the next β ′ by:

1. Draw β∗ according to q(βo, β∗) = n[β∗ |βo, (σ∗)2].

2. Simulate {ŷt}Nt=1 from the structural model with parameter set to β∗.

3. Compute m(β∗, θ̃), Zβ∗ =
√
n (Iβ)−1/2m(β∗, θ̃), and aβ∗ = adj(θ̃, β∗)

4. Compute α = min
(
1, aβ

∗ φ(Zβ∗)π(β∗) q(β∗, βo)
aβo φ(Zβo)π(βo) q(βo,β∗)

)
.

5. With probability α, set β ′ = β∗, otherwise set β′ = βo. Return to step 1
with the new βo set to β ′.

Result is an MCMC chain βt t = 1, . . . , R; We used R = 50000.

Estimate is either βmode =
βt

argmax{φ(Zβt)π(βt)} or βmean = 1
R

∑R
t=1 βt

Credibility interval is the 2.5% and 97.5% quantiles of {βt | t = 1, . . . , R}



Histograms of Beta Draws
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EMM – Estimates of β

Posterior 95% Credibility
Moneyness Mean Mode Interval

IV1 1.0134 1.0073 1.0026 1.0257
IV2 1.1266 1.1231 1.1125 1.1556
IV3 1.3041 1.3090 1.2915 1.3097
IV4 1.5586 1.5617 1.5398 1.5737
IV5 1.7672 1.7706 1.7438 1.7902
IV6 1.8240 1.8210 1.8023 1.8664
IV7 1.8808 1.8808 1.8807 1.8810

Futures 1.8808 1.8808 1.8799 1.8812



Cross Check – Q-Q Plot of Draws from Model at Est. β vs. Data
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Cross Check – Downward Bias

• Our estimates of the index β are significantly lower than those found else-
where, raising the possibility that the procedure itself might be downward
biased.

• To investigate, we did a Monte Carlo (10,000 reps) by applying the entire
procedure to simulated data sets of length equal to our sample size under
the model distribution implied by Theorem 1 for two separate parameter
settings.

Estimator Mean Std.Dev.
β = 1.10
posterior mean 1.1003 0.0162
posterior mode 1.1006 0.0170
β = 1.90
posterior mean 1.8698 0.0194
posterior mode 1.8679 0.0221

• Evidently, the Monte Carlo values are nearly spot-on adding credence to
our claimed empirical findings.



Conclusion: Exact Bayes Implies

Posterior 95% Credibility
Moneyness Mean Mode Interval

IV1 1.0134 1.0073 1.0026 1.0257
IV2 1.1266 1.1231 1.1125 1.1556
IV3 1.3041 1.3090 1.2915 1.3097
IV4 1.5586 1.5617 1.5398 1.5737
IV5 1.7672 1.7706 1.7438 1.7902
IV6 1.8240 1.8210 1.8023 1.8664
IV7 1.8808 1.8808 1.8807 1.8810

Futures 1.8808 1.8808 1.8799 1.8812


