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ABSTRACT

A presentation of the theory of linear models subject to
equality constraints on the parameters is set forth. No rank
conditions on the matrices appearing in the model are required
and reparameterization of the model is unnecessary in order to
use the methods developed. The bias which may arise due to false
restrictions or deficient rank of the input matrix is derived and
convenient methods for detecting the presence of this bias in
applications are given. Attention is given to accurate and
efficient computing procedures and an example is provided to

illustrate the application of these methods to data.



1. INTRODUCTION .

It is very common in economic investigations to assume that a
linear model gives an adequate representation of the data. Often, how-
ever, the investigator knows from the underlying theory that certain
restrictions exist among the parameters. It is the aim of this paper
to set out the important practical and theoretical aspects of con-
strained linear models theory using mathematical forms which are
computationally convenient.

We have specified our model so as not to put any limitations on
the dimensions or ranks of the matrices involved nor on the
relationship of the constraints to the input matrix. Also, we have
adopted an approach for our analysis which does not rely on a re-
parametrization of the model. We feel that these features are of
practical importance because they allow the investigator to specify
his model in exactly the form he wants and allows him to keep in touch
with his original input variables throughout the analysis.

Attention shall be given to determining the effect of incorrectly
specifying the restrictions and to matters of computational efficiency.
Almost all of the theoretical results used but not proved in this
paper can be found in Theil [3].

Section 2 contains notation and some matrix results which will be
used in the paper. Section 3 spells out the basic properties of the
estimators under the assumption that the model is correctly specified.
Section 4 gives two decompositions of an arbitrary linear function of
the parameters and gives a discussion of conditions under which bias

may occur and how to eliminate it. Section 5 discusses the singular

value decomposition of a general matrix, indicates how this can be



used to obtain the Moore-Penrose inverse of a matrix. These results
provide the tools necessary for implementing the methods of earlier
sections. Section 6 gives an example which illustrates the use of
the model and how the formulas should be applied to data.

The Model. Suppose that
y=XB +e and R8 =r ,

where y is an (n X 1) v;ctor of observations, X is an (n X p)
matrix of fixed input variables, P is a (p X 1) vector of unknown
parameters, e is an (n X 1) vector of uncorrelated random
variables each with mean zero and variance 02 s, R is a (gXx p)
matrix of constants and r is a (g X 1) vector of constants. The
equations RB = r shall be referred to as the constraints and we
shall assume that they are a consistent set of equatioans.

In Section 2 we shall demonstrate that a more general model can
be handled by the methods we present. In fact, it will be shown that,
if Var(e) = Z 02 , where I 1is a known, positive semi-definite
(possibly singular) matrix and @ is unknown, the model can be re-

duced to the form we give

2. REDUCTION TO STANDARD FORM

: 2
In this section, we show how a model with Var(e) = ¢ I can be
reduced to the form given in the preceeding section and set forth our

notation and certain matrix relations to be used in the sequel.



The model appears in first form as

* * * * *
y =XpB t+te and RB=r

* * * * * *
where y : (n x1), X: (n xp), B: (pX 1), e: (n x1),
* * * * . s
R: (g Xxp) and r : (q X 1) . We make no restriction on the

* * * *
order or rank of X and R but we do require RP =r to be a
*
consistent set of equations. We shall take €(e ) = O and
*
Var(e ) = o 5 , where L is known and positive semi-definite.
The case when X is full rank is handled in the usual way by finding
* *

a non-singular matrix T: (n x n ) such that T Z T/ =1 & . Then

n
the model may be transformed to

=XpB + e and RB=r,

* * *
where y =Ty : (nX1l), X=TX: (nXp), and e=Te : (nx 1) .

2 2

¥ ¥ TET =¢°T.

*
Then n=n, q=q and Var(e) =T Var(e )T/ =
Notice that the original parameters P are not altered by this
transformation.
If I 1is singular then we can find a non-singular matrix T
‘ In 0 * T(l)
such that T £ T = ;, n<n . We partition T =
0 0 T
where T(l): (n, n) and T(2): (n -n, n ). Transforming the

model as before we obtain the relations

* * *
T(l)y = T(l)X p + T(l)e

* *
Ty =T B+ (p)°



Now Var(T,..e') =T, .Var(e' ) T/.. =0 so that T, e =0 and
(2" 7 " “(2) (2) (2)
* *
T(e)x P = T(z)y become known linear restrictions on the parameters,
Appending these to the previous restrictions we obtain the

restrictions RB = r with

T, T,y
(2) (2)Y
R = « |t (@axp) and r= * : (ax 1),
R r
* ¥*

where g=q +n - n. We will assume, additionally, that the new
set of restrictions RP = r &re consistent. The remainder of the model
is obtained by setting y = T(l)y*: (nx1l), X-= T(l)x*: (n x p)
and e = T(l)e*: (a X 1) . Then Var(e) = T(l)Var(e*)T(l) = o I

as required.

We have seen that whether or not I is of full rank there is a
non-singular transformation matrix T which may be used to reduce the
model to standard form. We will consider in Section 5 how T may be
obtained in practice.

We will make extensive use of the Moore-Penrose inverse in what
is to follow. We define it here and defer the discussion of
computation to Section 5.

Definition. (Theil [3], pp. 269-274). Let A be an (mX n)
matrix. Then there exists a matrix A+ of order (nx m) which
satisfies A AT A=A, aAtaat=4a", AAY) =aAT, and (ATA) = a2
The matrix A’ is unique and is called the Moore-Penrose (pseudo)
inverse of A .

The following matrix notation shall be used in what is to follow.
If A is an arbitrary (mx n) matrix and a is an (n X 1) vector

then let



A’ = the transpose of A,

“a”2 =a’a,

I-A+A,

O
]

Hd
[

A A , and

I-aa",

whose dimensions are, respectively, (nxm), (1x1), (anx n),
(nxn), (mxm), and {(mXx m) . The ranks of the last four
matrices are, respectively, rank (A), n-rank (A), rank (A), and

m-rank (A) .

Notation which is specific to the model (in standard form) is as

follows:

W=X(I-R+R)=XQR,

B= QR(XQ,R)+[y - Xx®'r} +R'r ,

>
fl

Xy,



x8|® ,

SSE(B) = (v - XB)'(y - XB) = |ly

32

-

SSE(B)/ (n - rank(W))

P SSE(B)/(n - rank(X)) ,

L[}

whose dimensions are, respectively, (nx p), (n+qXp), (px 1),

px1), x1), (Lx1), ad (1X1).
The following matrix relations are easily verified using the four

properties of the Moore-Penrose inverse. Much of the verification may

be found in Theil ([3], pp. 269-27h4) .

PA’ QA’ P:, QZ are symmetric and idempotent,
@)’ = @,
AT = (),
@A = a @At = A,
R R+r = r provided RB = r are consistent,
R(B - R'r) = 0 provided RB =r ,

Qﬂ(ﬁ -R'r) = (8 - R'r) provided R8 =r ,

PRR+r =R'r,
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In the remaining sections we will assume that the above relations are

known and will use them repeatedly without reference to this section.
3. STATISTICAL PROBERTIES OF B

The following theorems parallel the standard results in (un-
constrained) linear models theory. In each case, our theorem is
followed by the corresponding result for an unconstrained linear model
stated as a corollary. The proof of each corollary is obtained by
setting q=1, R =0 and r = O then applying the theorem which
preceeds 1it.

The reader who is primarily interested in applications of these
results 1s invited to read the statements of the theorems, skip the
proot's, and go on to the next section where he will find what we feel
is a more applications oriented interpretation of the properties of

~

the estimator 8 .
THECREM 1:

B = QR(X QR)+(y - X R+r) +R'r



minimizes
SSE(B) = (v - xB)'(y - XB)
subject to the (consistent) constraints

RB=r.

PROCF: We will first verify that RE =r . Now there is a B

such that RE = r since we'assumed a consistent set of constraint

equations. Then

1

R Qg (X Q,R)+(y -XR'r) + RR'r

O+RRRE=RP=r.

We now verify that SSE(B) < SSE(B) provided B satisfies

RS =r .

SSE) = || v - X BB - X b |2

XR'r

1
[

x of +x o - B) |I°

=1y

=y -x8r-xqP P+ | x uf - B) |I°

X R+r

+2(y X qf)! (x ap) (B - B)

X PP - X QR'E 12+ x RE - B) |12

|y



+2(y - XR'r)[T - (X Q)X @)™ (x ) - B)
=ly-xBIF+lxoB -5 IF+o0

28sE@) . [

COROLLARY :

is the unconstrained minimum of
SSE(B) = (v - xB)'(y - XB) .
THEOREM 2: There is a P of the form
B=ay+c

such that e(A’B) = A'B for every P satisfying the consistent

equations RB =r if and only if there are vectors 6 and p such

that

' §'X + p’R .

PROOF: (If) Let \' =68'X+ p'R . As we will see in the next

section 8(1;5) = \'8 provided RB =r . Note that B is of the

required form.

(Only if) If B is of the form

p = R+r + QR7
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then RB =r for all choices of 7y . We will take P to be of this
form and examine the consequences of various choices of 7 under the

assumption that there is a

such that &(A’B) = A8 for all 7y . Under this assumption, for

all 7
+ . +
AMAXRr +2\AX QRy + AMc=7NRr + x'QR7 .
First set y = 0, hence
\A X R'r + ae = aR'r,
so that
MA X Qg = MGy

for all choices of ¥y . By successive choice of the elementary

vectors for 7 we obtain

)\IAX QR= XIQR

whence

)\I }\lA X Q’R + )\IPR

AMAX + A X PR + X’PR

[AMAX + [MAXR + WRTIR

§’X + p’'R . |
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COROLLARY: There is a B of the form

such that e(\’B) = \’B for all B if and only if there is a vector

§ such that

A o= 8'X .

THEOREM 3: Let P be any estimator of the form P = Ay + ¢

and )\ be of the form )’ = 6’X + p’R . If e()'B) = A’P for all B

satisfying t

PROCF:

MAX Qo= )

The variance

Var (\’B)

he consistent equations RP = r then
var (\’B) s Var(A/B) .

From the proof of the previous theorem we have

'QR . The variance of )\"5 is

var (\’B)

Mg (X Q)T (x gp) " Yggh o

A Qg (QX/X QR)+qu o .

of \’B is

AA AT 02

* * )
[
MALRL + Q] AL @

MA(K Gg) (X Q) A\ o8 + wragq ANk o7

MAK Q) (QUX ap) (X Q)7 Ak 6 + n1A G o7
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= A Qg (QX/X QR)+QRx o2 + A/A Q;A'x o2
2 Var(xB) . |

COROLLARY: Let f be any estimator of the form B = Ay + ¢

and )\ be of the form )/ = §/X . If e(a'B) = /B for all B then

Var(3’B) s Var(r/f) .

THEOREM k4

e(SSE@)) = [n - rank(W)] o° provided BB = r .
PROCF.

sse@) = || v - x B ||°

- X q(x @) (v - XxR'r) - XRr |2

I
<«

= || Q;e + Q;X(B - R+r) H2 .
Now
Q;;X(ﬁ -R'r) = Q;W(B -R'r) + Q;X P (B - R'r) = 0

*
since wa = 0 and PR(B - R+r) = 0 provided RB =r . We now have

that
¥*
SSE(B) = e'qe

* *
wnere 18 S etric and idempotent wi ran = n « ran .
h is symmetri d idempotent with rank k (W)

Thus e(e’Q;e) = [n - rank(W)] 02 0



COROLLARY:

e(SSE(R)) = [a - rank(X)] o° .

THEOREM 5: Let e Dbe distributed as a multivariate normal

Nn[o, 021} and let o be chosen between zero and one.
a) If A is of the form )/ = §’X + p’R then
P[i’ﬁ -esABsABtrelzl-a,
where
? = (x’QR(W’W)+QRx) @ Pla; 1, n - rank(W)}

provided RB =r .

b) If A is a matrix of the form A’ = A’X +( 'R then
P(s 2 F{a; rank(A’QR), n - rank(W)]|ﬁ=6°] <o,

where

B - aB) (v (W) Tapn) (B - B )[renk(a'gp)]”

~Z

g

S
provided RB° =r.

Flas £ f2} denotes the « level percentage point of an F
random variable with fl degrees freedom for the numerator and f2
for the denominator.

PROOF: Part (a) follows from Part (b) when A’ is a (1 X p)

row vector. To prove Part (b) we write

A =A%+ 'R=8'XQ+ (WKE 4+ /)R =AW+ TR
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so that S may be written
(a8 - 479" (AW W) Wa)T (o - arWB°)/£)

S =
SSE(B')/f2
N/fl
= 57?2- ’
where £, = rank(A QR) and f, =n - rank(W) (set 1/fl =0 if

rank(AQR) =0) .
If A'W=0 then S =0 and Part (b) follows trivially. We will

therefore consider the case when A’W # O . From the proof of Theorem
* *

L, D/aa = e'Qwe/o2 . Since Qw is idempotent with rank f2 we have

by Theil ([3], p. 83) that D/cr2 is distributed as a X randem

variable with f2 degrees freedom.

If B° is the true value of B and RB° = r we may write

AWIW (e + X(B° - R'r)} + R'r - B°]

a'w@ - B°)

AW W e + AMWIWX(E® - R'r) - (8° - R'r)]

AW W e + AM[WHE® - R'r) - B - R'r))]

a'W whe + A/[W(E° - R'r) - W(B° - R'r)]

,o¥
A Pwe .

Then N becomes
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=
L}

*
e /B A (M W(HM) Wa) A Pre

* * 4+ *
e'PwA(A’PwA) A'Pwe

e’ (P;A)(P:A)+e )

In general rank(AB) s rank(A) so that in particular rank(pA’W) =
* *
rank(A'PwW) < rank(A'Pw) < rank(A’W) whence f, = rank(A'QR) = rank(pA’'W) =
*
rank(A’Pw) . Again citing Theil ([3], p.83), N/02 is distributed as

a %% with f, de freedom. Si *Ba)(Boa)t = 0 we have b
1 grees freedom. ince Qw WA WA = we have by

Theil ([3], p. 84) that N and D are independent. y 5
N/fo f
It follows that if AW £0 and R8° = r then S = ——5-—1 is
D/c £,

distributed as an F with fl numerator degrees of freedom and f2

for the denominator. ]

COROLLARY: Let e be distributed as a multivariate normal

Nn[O, 021} and let o be chosen between zero and one.
a) If )\ 1is of the form )’ = §’X then
P(AB - es \/B < AP +ejz l-a,
where
e® = (' (x'X)"\) 6 Flas 1, n - rank(X)} -
b) If A is a matrix of the form A’ = A’X then

P[S 2 Fla; rank(p), n - rank(X)} | B=p"1<a,
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where

o - (B - NB°) (x'xg*m*wé - nB°)/rank(p)
(o2

L. SOURCES OF BIAS

In the preceeding section we saw that 1'3 is unbiased for
AP provided )’ =8’X + p/R and RB =r . In this section, we will
examine the bias which resalts when either )/ f §’X + p’'R  or
R f r or both. As a result of this examination, we will be able to
characterize those ()\/P)'s which are estimated unbiasedly by (A’B)
even when RB £ r and determine what additional information is

necessary to allow unbiased estimation of )\’f when the condition

A = 8/’X + p’R 1is not satisfied. We have deferred proofs of the less
obvious claims made in this section to the Appendix in -order to focus

attention on the main points of the discussion.

Recalling the notation and relations given in Section 2 we can

write

B=qxa)'(y-xRr) +Rr
=B - (T - (X ap) )P (B - R'r) - q (B - R'r) + qp(x qp)"e

=8 +B,(B) + By(®) + Qu(x qp)e .

Consider the estimation of an arbitrary linear function of the para-
meters, )\/’B . It ts clear from the decomposition of 5 that

€(k;é) = \'P + x'Bl(B) + x'Be(ﬁ) . We will consider the conditions
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on )\ and P which eliminate the two sources of bias X'Bl(ﬁ) and
A'By(B) -

The first source of bias is due to specification error since
Bl(ﬁ) = 0 for all .ﬁ satisfyihg RB = r . The second source is due
to the deficient rank of V since Q; =0 if rank(V) = p .

There do exist linear functions of the parameters, )\’B , for
which x'Bl(B) = X'Bg(ﬁ) = 0 for arbitrary choice of B . These are
the parametric functions which are estimated unbiasedly by A'E

whether or not the restrictions RP = r are correctly specified.

Consider )\ of the form )/ 6'QR(X QR)+X . It is not difficult to

verify that for such )

8(>\'é) = \'B,

e(A'B)

and
~ ~ + 2
Var(\/B) = Var(\’B) = » (X’X)" A ¢" .
An easy test for A of this form is to check whether

A (X Q)X = A/ .

This test follows from the fact that QR(X QR)+X is -idempotent hence
+
A/ 1is of the form )’ = 6/QR(X QR) X if and only if

Qg (X Qp)"X =
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In general, bias of the form X'Bl(ﬁ) is best eliminated by not
using x'E to estimate )\/f if RB ﬁ r . That is, do not use false
restrictions. (Toro-Vizcarrondo and Wallace [4] consider the question
of using possibly false restrictions to reduce mean square error
under the condition that rank(X) = p and rank(R) = q .)

The second source of bias x'Be(B) is eliminated when
A = 8’X + p’R  since X Q=R g =0. (In fact, wBe(a) = 0 for
all B satisfying RB = r if and only if A’ = 6’X + p’R by
Theorem 2). Discussions of estimability (Theil [3], pp. 147, 152)
revolve around this second component of bias and the conditions under

which it vanishes.

Consider, now, an attempt to estimate an arbitrary function of the

parameters )\’f using x'E when RB = r . Since

we can write

M= NP B+ MG

’ TS
Xl + )\2 )\3
It can be verified that

e(VB) = e(\f) + e(B) + e(gf)

Var(\'B) = var(\{B) + Var(aff) + Var(\gE) .
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If the true tut unknown value of P satisfies RB = r then these

expectations and variances are
e(\f) =rp, var(n®) - o,

eP) =ap,  var(F) = A (W) 00,

e(MB) = 0,  Var(nB) = mgW () age”

Inspection of these expectations and variances indicates that the
component xig of x'g is the constant xiR+r (since RB =r implies
PR(B - R+r) = 0 ) regardless of the value taken or by the random
variable y . Thus, any information about »/f conteined in the
sample y 1is completely overridden by the restriction RKB =r .

The second component, xéﬁ , varies with y and is the portion
of A’'B estimated from the sample.

If the third component xé = x'QV of A 1is not zero, then xéﬁ
(and hence )\’B) cannot te estimated unbiasedly using Xﬁi . If the

estimation of )’P 1is important to the econometric investigation the

investigator must augment V by row vectors which will yield xé as
a linear combination and recompute 5 using the additional information.

V can be augmented by appending additional data

V@) %Pt ce

and additional restrictions

FP 7T
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to the original model. If observations with the rows of X(2) as

inputs can be obtained and restrictions R(E\ﬁ = r(e) can be deduced
J

such that
: = a'X + b/R
Az (2) (2)

then A’P can be estimated unbiasedly by E computed from the

augmented model provided the true value of £ satisfies

R ) r
o) *
R(2) T(2)

In summary, we recommend that the results of this section be used
in applications to estimate a linear parametric function A’ as
follows. First, check that X’QR(X QR)+X £ A\ since if equality holds,
the estimate based on x'E coincides with the unrestricted least
squares estimate x'é . This may be either a comfort or a
disappointment, depending on the application. The variance estimate

?2 has more degrees freedom than the estimator 02 but the extra

~

degrees of freedom may not be worth the extra bother of computing P .

Second, check that A'Qv = 0 to be sure X'E estimates A‘B
AP

unbiasedly. Thirdly, one may wish to compute xi = x'PR and xé

1}
o]

to determine the information which is due to the restrictions RB

and that which is due to the sample Yy .
5. COMPUTATIONS

For a given matrix A of order (m X ) wWith m 2 n we may

decompose A as
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A=UsVv,

where U is (mx n), S8 is an (ax n) diagonal matrix, V/ is

(n x n) and

In =0y =vVV=yVVv

This is called the singular value decomposition of A [2]. Let S5

denote the diagonal elements of S . Set s; = l/si if s, >0,

+ +
set s, = 0 if s; = 0 and form the diagonal S matrix from the elements

+
s; + Then the Moore-Penrose (pseudo) inverse of A is given by
+ +
A =VSU
+
and the rank of A 1is the same as the rank of S . (If m<n

compute B = (A')+ using this method and set AT =3B .)

A listing of a FORTRAN subroutine to obtain the singular value
decomposition of A may be found in [1]. The subroutine as listed is
for a COMPLEX matrix A , but we had no difficulty in converting it
to REAL¥8 from the COMPLEX version. We have had good results using
an IBM 370/165 setting the parameters FETA = 1.D - 14 and
TOL = 1.D - 60; we take S(I) = 0 if S(I).LT.S(l)* 1.D - 13 .

If y and X are too large for storage in core but y’y ,

X’y , and X'’'X can be stored then the computational formulas

B = QXX QR)+QR(XIy - XX R'r) + R'r

N ; + 2
CEB/) = IRNX Q) qg
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10

T = (yly - Brxty + BrXEy/(n - rank{(QX'X Q)

may be used. II the formulas
~ + 4 4
B =qg(¥q) {y -XRr)+%r

2

<

c(BB) = qu(x o) (x @) g o

ey - x By - 2B/ (a - razk(x Q)

are feasible, their use should improvs the accurscy or the
computations by avoiding unnescessary matrix multiplications.
For the computation of the transformstion matrix T we will make
. 3 . () * *
the assumption that two matrices the size of Z: (n X n ) may be
stored in core. The singular value decomposition subroutine can be
used to obtain U, S, V (sirce U =V in this case) and the diagonal

matrix S stored as a vector with diagonal 2lements

Sy 2 S5 2 ...28 ,20. If & is non-singular, form the diagonal
n
* * . . ;o\ B
(n" x n ) matrix D with elements d; = \si) and T=DU’ . If

*
2 has rank n «n then S will have elaments sl 2 52 2 ... 2 sn >

Sp4 = 0 = Sn* = 0 . Xorm the diagonsl (ilx r) matrix D(l) with
elements d, = (s.)—ﬁ and vartition U’ = W(L) where U/ is
i i Ce (1)
(2)
(n x r*) and U/ is fr* - nXn) Then T B, \U/ and
- o(2) T T (L) - 7))

T = Ul.
(2) ~ (@)
In mcst applications wherz I i3 krown it will be patterned in

*
such a way that knowladge o 7 for tmall n can be used to deduce

the form of T for the protlem =t hand. Thus the storage requirement

is not as stringent as it woull first ezpezar.
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6. EXAMPLE

Consider & series of quarterly measurements on & variate y with

an unconstrained model given by

= +
yti a + bt Qi + eti N

where the years are denoted by t =1, 2, ..., 32 and the quarters by
i=1 2, 3, 4. For the first thirty years the parameters were

estimated subject to the constraints

b -
214 =9
Ql - Q“_ =0
Q2 = Q} = O

yielding the estimates
'530 = (1.1581, .53227, 1.0386, -1.0386, -1.0386, 1.0386)’ .

We suspect that the last two restrictions are false and that the
data follow a quarterly effects pattern rather than the winter/summer
pattern used to estimate B from the first thirty years. OQur

problem will be to estimate B subject to the constraint
Ql + Q2 + Q3 + Ql+ =0

and test the hypotheses



5.3279 . 26223 0
= 0 0 10. 954
-9.5715 -19k. 47 0
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was computed using the method suggested in the preceeding section.

By combining T A'gio and T A’ with the data for the years

31 and 32 we obtain X and y as given in Table 1.

TABLE 1
y X
6.0307 5.3279 - 0.26223 1.3320 1.3320 1.3320 1.3320
11.377 0. 0. 2.7385 -2.7385 -2.7385 -2.7385
-114.60 -9.5715  -19h.47 -2.3929 -2.3929 -2.3929 -2.3929
18.52 1. 31. 1 0. 0. " 0.
16.65 1. 31. 0. 1. 0. 0
16.71 1. 31. 0. 0. 1. 0
18.79 1. 31. 0. 0. 0. 1
19. 00 1. 32. 1. 0. -0. 0
17.03 1. 32. 0. 1. 0. 0
16.91 1. 32. o 0. 1. 0
19.61 1. 32 0. 0. 0. 1

The estimate’ of
B = (&) b, Ql’ Qg) Q}) Ql&),
subject to
Q +tQ Q3 +Q, = 0

is



H: Q=9q
Hyt Q= Qs

2k

using as much of the information from the previous study as possible.

The matrix QR( X QR)+X and variance-covariance matrix of 550

can be obtained since we know the form taken by X and RB = r for

the first thirty years. Observe that 330 obtained in the previous

study must coincide with E as defined in this paper since
rank(V) = p = 6 .

The linearly independent rows of QR(X QR)+X are

R/ VSV V
AN o= 0 1 0 0 0 0

0 0 b -lh  -1/h Lk
so that A’B is estimated unbiasedly by
A"53O = (1.1581, .53227, 1.0386)¢

with variance-covariance matrix

. 035057 -.0017241 0
AMVar(®B) A = -. 0017241 . 00011123 0 o
0 0 . 0083333

The transformation matrix



26

B = (1.161, 0.5%2, 0.821, -1.026, -1.056, 1.261)’ .

The (uncorrelated) estimates of Q, - Q3 and Q, - Q, are .030 and
-.L40 each with the same 6 d.f. estimated variance of .0207. The
respective Fé values are .U435 and 9.35. We fail to reject Hl and
reject H2 at a significance level of .025.

The vectors

(O: O, l) O: O: ‘l)

>
~
1

A = (O; 0 0, 1, -1, O)

are each of the form

A = §'P and A o= 8 (X Q )+x
W QX Qg) X -

Thus the estimates of Ql - Qh and Q2 - Q3 vary with the sample data
and are estimated unbiasedly even if the restriction is false.

If we use the outcome of our tests to re-estimate B subject to

Q + A+ Qs tQ = 0

Ql-Qu=o

we obtain the results given in Table 2.



TABIE 2
'5/
1.161 .53%2 .821 -1.041 -1.041 1.261
var (B)
. 0058 -. 000027 0 0 0 0
-. 000027 . 0000016 0 0 o] 0
0 0 . 00k6 -. 00014 ~-. 00014 -.0043
0 0 -. 0001k4 . 00014 . 0001k -. 0001k
0 0 -. 00014 . 00014 . 00014 -. 0001k
0 0 -. 0043 -. 00014 -. 00014 . 0046
PR
0 0 0 0 0 0
0 0 Wl " W 7
0 0 1
0 0 14 5/k -1/4 /4
0 0 1/k -1/k 3/k 1/h4
0 0 /4 1/k /4 1/k
Pw
1 0 0 0 0 0
0 5 /u " " /h
0 0 3 - - -1
0 0 -1/k 1/h /4 -1/k
0 0 -1/4 /4 1/k -1/4
0 0 -1/k -1/4 -1/k 3/b
4 (X @)X
1 0 1/k 1k 1/k /4
0 1 0 0 0 0
0 0 3/L -1/k -1/ -1/k
0 0 -1/4 1/ 1/k -1/4
0 0 -1/h 1/h 1/k -1/4
0 0 -1/4 -1/4 -1/k4 3/k




APPENDIX

1. Verification of the properties of PR’ W Qv . Let A bea
(nx n) matrix and let T be (mX m) and non-singular. It follows

that (TA)'(TA) = A'A . To see this observe that

[(TA)(TA) - ATA)/[(TA)*(TA) - A'A]
= (TA)*(TA)[T - A*A] + Ate"imAlT - (TA)Y(TA)]
= (a)'ro+a'rlo-=0.
Since

X 1 xR} [ x

WA ER A M S
where T is non-singular, we obtain

1*R) (X

V—(R ) (R )
X Q ' X QpX* o\ xg
(R ) ( 0 RR') (R )
xq,R" (xc)ﬂx')+ 0 X Q
IET )

=Pyt P

o
¥

hence I = PR + Pw + Qv . Now
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Qv=(I-Pv)=(I-PR-Pw)
= (g - Bp) = (g - (X q)"(x q) Q)

- (- B)% - 4 -

Since Q‘V’ Qw, Q‘R are symmetric and idempotent
. ?
U = YR = RY = RY

= (%R%Y) = %R¥y = Ry -

Lastly
PP = (X Q)T (x Q)P = (X Q)X o0=0
PRQV=PR(I-PR-PW)=PR(Q,R-PW)=O-O=O

Pva=Pw(I-PR-Pw)=Pw(Qw-PR)=O-O=O.

2. Verification that Var()\’g) = Var(x'lg) * Var(xé'é') + Va.r()‘ég) .
It is required to show that B, Cov(BB/)P, = P, cov (BB’ )Q =
Py Cov(ﬁﬁ')qv =0.

Now Cov@g') = QR(X QR)+(X QR)+IQR0'2 . Since PRQ‘R = 0 we have

the first two equalities.



(x )"
ag) (X ) (X @) (X o)y

wiw') Q%

LR DR
=www)w 4%

+
“www)™
0 &
=0 .

30



(1]

(2]

(3]

[u)

31

REFERENCES

Businger, P. A. and Golub, G« H.: "Singular Value Decomposition
of a Complex Matrix," Communications of the A C M, 12, 1969,

pps 564-65.

Golub, G. and Kahan, W.: "Calculating the Singular Values and
Pseudo-Inverse of a Matrix," S I A M Journal on Numerical

Arlal!sis, 2, 1965’ PP 205-21#.

Theil, Henri: Principles of Econometrics. John Wiley and Sons,
Inc., New York, 1971.

Wallace, T Ds and Toro-Vizcarrondo, C. E.: "A Test of the Mean
Square Error Criterion for Restrictions in Linear
Regression," Journal of the Amerlcan Statistical

Association, 63, 1968, pp. 558-T2.




APPENDIX

Information for TUCC Users

32



35

Three Fortran subroutines are described below which can be used
to analyze constrained linear models data. They are stored at TUCC
and may be called by users through Fortran progrems. Briefly, REGR2
estimates B for the linear model y = XB + e subject to the
consistent constraints RB = r, REGR 5 estimates and gives the
decomposition of a set of linear functions of the parameters p , and
REGR4 tests the hypothesis Hy,: GB = GB,, where ﬁo satisfies the
equations RB_ = r . To illustrate their use, a Fortran program with
an input subroutine and some sample data are also given.

The following is the Job Control Language (JCL) required to access

the subroutines.

JCL TO RUN THE FORTRAN (G) COMPILER.

//JOBNAME JOB ACCOUNT, NAME
// EXEC FTGCG
//C.SYSIN DD *

(SOURCE PROGRAM)
//G.SYSLIB DD DSN=NCS.ES.B4139.GALLANT.GALLANT, DISP=SHR

// DD DSN=SYS1.FORTLIB, DISP=SHR
// DD DSN=SYS1.SUBLIB,DISP=SHR
//G.SYSIN DD *

(DATA CARDS)
JCL TO RUN THE FORTRAN (H) COMPILER.

//JOBNAME JOB ACCOUNT, NAME
// EXEC FTHCG
//C.SYSIN DD *

(SOURCE PROGRAM)
//G.SYSLIB DD DSN=NCS.ES.BL139.GALLANT. GALLANT, DISP=SHR

DD DSN=SYS1.FORTLIB,DISP=SHR
// DD DSN=SYS1.SUBLIB,DISP=SHR
//G.SYSIN DD *

(DATA CARDS)

s
S



DGMPNT 10/6/71

PURPOSE
PRINT A MATRIX

USAGE
CALL DGMPNT(A,N,M)

ARGUMENTS
A - INPUT N BY M MATRIX
STORED COLUMNWISE (STORAGE MODE OF 0)
ELEMENTS OF A ARE REAL*8
N - NUMBER OF ROWS IN A
M - NUMBER OF COLUMNS IN A

3k
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REGR2  &fzofv:

PURPOSE
ESTIMATE B OR THS LINEAR MUDEL Y=X*BE+E SUBJECT TO THE CONSTRAINTS

RR*B=R.

USAGE
CALL REGK2({FY,XPY,X°X,RR,R,N, IP, IqQ, B, C, VAR, IDF, P1, P2, P3, P4)

SUBROUTINZS CALLED
DGMPRD, DGMADD, DCMSUB, DAPLUS, DSVD

ARGUMENTS

YPY - INPUT SCALAR CONTAINING (Y-TRANSPOSE )}*Y.
REAL*8 :

XPY - INPUT VICZOR OF LENGTH IP CONTAINING (X-TRANSPOSE )*Y.
ELEMPNTS (F ¥XZY ARE REAL*8

XPX - INFUT 1P BY IP MATRIX CCNTAINING (X-TRANSPOSE)¥X. STORED
COLIMIWISE (STORAGE MODE OF O).
ELEMFNTS OF XPX ARE REAL*8

RR - INIUT IQ BY IP MATEIX OF CONSTRAINTS. STORED COLUMNWISE
(STORAZE MODE OF 0) ,
ELEMENTS OF RR ARE REAI*8

R - INPUT VECTOK OF LENGTH IQ CONTAINING THE RIGHT HAND SIDE OF
THE CONSTRAINT EQUATIONS.
ELEMENTS OF R ARE REAI*8

N - NUMBER OF OESERVATIONS.
INTEGER

IP - NUMBER OF PARAMETERS IN THE MODEL. IP MUST BE LESS THAN 101
INTEGER

IQ - NUMBER OF CONSTRAINTS. IQ MUST BE GREATER THAN O AND LESS
THAN OR EQUAL 70 IP.
INTEGER

B - ESTIMATE OF THE PARAMETERS SUBJECT TO THE CONSTRAINTS.
VECTOR CF LENGTH IP.
ELEMEHTS OF B ARE REAL*8

C - ESTIMATED IP BY IP VARIANCE-COVARIANCE MATRIX OF B. STORED
COLUMITWISE (STORAGE MODE OF 0).
ELEMENTS OF C ARE REAL*E

VAR - ESTIMATED VARTANCE.
REA™*3

IDF - DECRRES FREEDCM (F VAR.
INTBOSR ~

Pl - ROW SPACT OF SPECIFIED PARAMETRIC FUNCTIONS. ESTIMATED
UNEIASEDLY BY B FRZVIDZD THE TRUE VALUE SATISFIES RR¥*B=R.

P2 - ROW SPACE OF REMAINING PARSMETRIC FUNCTIONS ESTIMATED
UNEIASEDLY BY B ZROVIDED THE TRUE VALUE SATISFIES RR*B=R.

P3 - ROW SPACE OF TARAMETXIC FUNCTIONS ESTIMATED SUBJECT TO BIAS
BY 2.
Pl,P2,P%2 ARE SYMMETRIC IDEMFOTENT IP BY IP MATRICES STORED
COLUMIWISE (3TORACE MCDE OF 0). rl+P2+P5=I, P1*P2=P2%P3=
P1¥P3=0. ELEMENTS ARE REAL#*8.



PL

- ROW SPACE OF PARAMETRIC FUNCTIONS ESTIMATED UNBIASEDLY BY B
WHETHER OR NOT THE TRUE VALUE SATISFIES RR*B=R.
IDEMPOTENT IP BY IP MATRIX STORED COLUMNWISE (STORAGE MODE
OF 0). ELEMENTS ARE REAL*8

36



REGR3 2/25/72

PURPOSE
DECCOMPOSE AND ESTIMATE A SET OF IG LINEAR PARAMETRIC FUNCTIONS

USING THE OUTPUT FROM SUBROUTINE REGR2.

USAGE
CALL REGR3(G,B,C,P1,P2,P3,Pk4, IG,IP,GB,GCG,IL,I2,I3,Ik4)

ARGUMENTS

G - INPUT IG BY IP MATRIX OF COEFFICIENTS. STORED COLUMNWISE
(STORAGE MODE 0).
ELEMENTS OF G ARE REAL*8

B - INPUT VECTOR OF LENGTH IP RETURNED BY REGR2.
ELEMENTS OF B ARE REAL*8

C - INPUT IP BY IP MATRIX RETURNED BY REGR2. STORED COLUMNWISE
(STORAGE MODE 0)
ELEMENTS OF C ARE REAL*8

P1 - INPUT IP BY IP MATRIX RETURNED BY REGR2. ON RETURN CONTAINS
THE IG BY IP MATRIX G¥*P1 STORED COLUMNWISE (STORAGE MODE 0).

P2 - INPUT IP BY IP MATRIX RETURNED BY REGR2. ON RETURN CONTAINS
THE IG BY IP MATRIX G¥P2 STORED COLUMNWISE (STORAGE MODE 0).

P3 - INPUT IP BY IP MATRIX RETURNED BY REGR2. ON RETURN CONTAINS
THE IG BY IP MATRIX G¥P3 STORED COLUMNWISE (STORAGE MODE 0).

P4 - INPUT IP BY IP MATRIX RETURNED BY REGR2. ON RETURN CONTAINS
THE IG BY IP MATRIX G*P4 STORED COLUMNWISE (STORAGE MODE 0).
ELEMENTS OF Pl, P2, P3, PL ARE REAIL*8.

IG - NUMBER OF LINEAR PARAMETRIC FUNCTIONS TO BE ESTIMATED.
INTEGER

IP - NUMBER QOF PARAMETERS (LENGTH OF B).
INTEGER

GB - VECTOR OF LENGTH IG CONTAINING THE ESTIMATES OF THE LINEAR
PARAMETRIC FUNCTIONS, G*B.
ELEMENTS OF GB ARE REAL*8

GCG - ESTIMATED IG BY IG VARIANCE-COVARIANCE MATRIX OF CB. STORED
COLUMNWISE (STORAGE MODE 0).
ELEMENTS OF GCG ARE REAL*8

I1 - VECTOR OF LENGTH IG.

I2 - VECTOR OF LENGTH IG.

I3 - VECTOR OF LENGTH IG.

I4 - VECTOR OF LENGTH IG.
I1(I)=0 I ROW I OF G SATISFIES GI¥*P1=0.
I1(I)=1 IF ROW I OF G SATISFIES GI*P1=GI.
I1(I)=-1 IF NEITHER OF THE ABOVE ARE SATISFIED BY GI.
SIMILARLY FOR I2, I3, Ik.
ELEMENTS OF Il, I2, I3, IL ARE INTEGERS.

REMARK
BE SURE P1, P2, P3, P4 ARE DIMENSIONED LARGE ENOUGH TO CONTAIN

MAX (IP*IP,IG*IP) ELEMENTS IN THE CALLING PROGRAM.
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REGRY  3/15/72

PURPOSE
TEST H:GB=0 USING OUTPUT FROM REGR2 AND REGR3.

USAGE
CALL REGRA(GB,GCG, IG, IDF,F, IR, SF,P1,P2,P3,Pk4)

SUBROUTINES CALLED
DAPLUS, DGMPRD, BDTR, DSVD

ARGUMENTS
GB - INPUT VECTOR OF LENGTH IG RETURNED BY REGR3.

ELEMENTS OF GB ARE REAI*8.

GCG - INPUT IG BY IG MATRIX RETURNED BY REGR3. STORED COLUMNWISE
(STORAGE MODE 0).
ELEMENTS OF GCG ARE REAIX*8.

IG - LENGTH OF GB; NUMBER OF ROWS AND COLUMNS IN GCG.

IG MUST BE LESS THAN 100.
INTEGER

IDF - INPUT INTEGER RETURNED BY REGR2; DENOMINATOR D.F. FQR F.
INTEGER
F - COMPUTED F STATISTIC
REAT*8
IR - COMPUTED NUMERATOR D.F. FOR F, RANK OF GCG.
INTEGER
SF - SIGNIFICANCE LEVEL OF F. (I.E. 1-CDF(F)).
REAL*8

Pl - IG BY IG MATRIX USED AS WORKSPACE.
P2 - IG BY IG MATRIX USED AS WORKSPACE.
P53 - IG BY IG MATRIX USED AS WORKSPACE.
P4 - IG BY IG MATRIX USED AS WORKSPACE.

ELEMENTS OF P1,P2,P3,PL ARE REAL¥S8.

REMARK
THE RESULTS RETURNED BY REGR4 ARE INVALID IF B=0O DOES NOT SATISFY

RR¥B=R. TC TEST H:GB=G*BO WHERE RR¥BO=R INPUT G*(B-BO) INSTEAD QF
GB.
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Sample Problem

Measurements are taken on the 12 angles of the following figure.

We assume that the following linear model is appropriate to describe

the data.
y =X + e subject to RB =1r ,

where y: (12x 1) and X: (12 x 6) are given in Table 3, Bl
corresponds to angles 1, 3, 62 to 2, L, ﬁ3 to 5, 7 ﬁh to 6, 8,

By to 9, 11, By to 10, 12,

1 0 1 0 1 0

and



ko
r = (].80, 180’ 180, 180)’ .

We wish to test the hypothesis that the triangle is equilateral. That

is Ho: GB = O, where

It 1s interesting to note that the test of Ho can also be

interpreted as a test of no regression effect.

~ A~ +
The quantities B , Var(B) , P s Py, and QR(XQR) X are given

in Table 4. The results of the test of Ho are

R -2.025
GP s
'Oo 500

n 0.2149  0.1375
V&P(Gﬁ) ( ) ’

0.1575 0.2749

and

2
Fip = 8:095 (p = 0.0081) .

It is also found that the rows of G are neither in the row space of
R nor in that of XQR s but are orthogonal to the row space of Qv .
This indicates that information from both the restrictions and the
data went into the estimation of the GB and that, if the restrictions
are valid, the estimates are unbiased. Finally, 1t 1s found that the
rows of G are not in QR(XQR)+X indicating that 1f the restrictions are

false then the estimates are biased.



L1

TABLE 3
o

Angle Measurements: ¥y Design Matrix: X

1 59.1 1 0 0 0 0 0

2 120.5 0 1 0 0 0 0

3 58.6 1 0 0 0 0 0

L 122.1 0 1 0 0 0 0

5 60. 4 0 0 1 0 0 0

6 119.8 0 0 0 1 0 0

7 61.3 0 0 1 0 0 0

8 118.7 0 0 0 1 0 0

9 60. 1 0 0 0 0 1 0
10 120.7 0 0 0 0 0 1
11 59. 2 0 0 0 0 1 0
12 121.5 0 0 0 0 0 1




L2

TABLE 4

59. 158 120. 842 61,183 188. 817 59. 658 120. 342

. 09164 -. 09164 -. 04582 . 04582 -. 4582 . oks582
-. 09164 . 09164 .oks582 -. 04582 . 0ls582 -. 04582
-. 04582 . 04582 ", 09164 -. 09164 -. 04582 . 04582

. 04582 -. 04582 -. 09164 . 09164 . 04582 -. 04582
-. 04582 . 04582 -, 04582 . 0is82 . 09164 -. 09164

. 0li582 -. 04582 . 04582 -. 04582 ~. 09164 . 90164




/7 EXEC FTGCG
/7/C.SYSIN DD #

OO0 OOONOOONOO0O0O

MAIN:

PURPOSE ¢
70 ESTIMATE 8 FOR THE LINEAR MODEL Y

CONSTRAINED LINEAR MODELS (C L M)

RR®#*B=R, TO DECOMPOSE AND ESTIMATE A SET OF 16 LINEAR PARAMETRIC
FUNCTIONS (G#B8)s AND TO TEST THE HYPOTHES1S H:iG#8=6%B0.

INPUT

THE USER MUST SUPPLY AN INPUT $UBROUTINE OF THE FOLLOWING FORM ==
SUBROQUTINE INPUT(NsIP+1QsIGsYPY o XPY 9 XPX+RReR+G+GBO) :

WHERE
N -

1 -
10 -
16 -
YPY -
XPY -

XPX =

“RR -

GBO -~

NUMBER OF OBSERVATIONS

INTEGER

NUMBER OF PARAMETERS IN ThE MODEL .
INTEGER i ’

NUMBER OF CONSTRAINTS .

INTEGER i
NUMBER OF LINEAR PARAMETRIC FUNCTIONS TO BE ESTIMATED
INTEGER

SCALAR CONTAINING Y'Y

REAL*®8

VECTOR OF LENGTH IP CONTAINING XtY
ELEMENTS ARE REAL®8
VECTOR OF LENGTH IP#]P CONTAINING X*X STORED COLUMNWISE

ELEMENTS ARE REAL*®8

VECTOR OF LENGTH 10¢IP CONTAINING THE MATRIX OF CONSTRAINTS
STOPED COLUMNWISE

ELEMENTS ARE REAL®8 .

VECTOR OF LENGTH 1Q CONTAINING THE RIGHT HAND SIDE OF THE
CONSTRAINT EQUATIONS '

ELEMENTS ARE REAL*®8 : _
VECTOR OF LENGTH IG®#IP CONTAINING THE MATRIX OF COEFFICIENTS
FOR THE SET OF LINEAR PARAMETRIC FUNCTIONS STORED COLUMNWISE
ELEMENTS ARE REAL®S

VECTOR OF LENGTH I1G CONTAINING THE RIGHT HAND SIDE OF THE
HYPOTHESIS EQUATIONS

ELEMENTS ARE REAL*®S8

THE ABOVE ARRAYS MAY BE DIMENSIONED IN THE SUBROUTINE AS FOLLOWS
REAL®8 YPY o XPY (1) o XPX (1) sRR(1) R (114G (1) GBO(])

SUBROUTINES USED: .-
DGMPNT9REGR20REGR3;REGR4.INPUT

IMPLICIT REAL®#8 (A-Hy0-2)
REAL®8 XPY(10) +XPX(100)yRR(100)+R(10},

REAL®S8 P3(100)0P4(100)oG(lOO)on(lO)vGCG(lOO)quO(lO)
INTEGER 11(10)412(10),13(10)+141010) i
CaLL INPUT‘N-IPOIQ'IG'YPYQXPY’XPX'RROR!GQGBO)
WRITE(3+1000) . -
WRITE(3+41006) N

WRITE(341007) 1P

wRITE(3,1008) IQ

WRITE(3,1010) 16

WRITE(3+1001) YPY

WRITE(3+1002)

CALL OGMPNT(XPYsIPe 1)

WRITE(3+1003)

CALL OGMPNT(XPXelP9sIP)

1F(10.EQ.0) GO TO 100

CLM
CLM
CLM
CLM
CLM
CLM

=X2B+E SUBJECT TO THE CONSTRAINTSCLM

CLM
CLM
CLM
CLM
CLM

TCLM

CLM
CLM
CLM
CLM
CLM
CLM
cLM
CLM
CLM
CLM
CLM
CLM
CLM
cLmM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
cLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM

CLM

CLM
CLM
CLM
CLM

B8(10)+C(100)+P1(100)+P2(100)CLM

CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
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300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620



100

300
400

200

1000
1001
1002
1003
1004
1005
1006

WRITE(3+1004)}

CALL DGMPNT( RR+IQsIP)

WRITE(3,1005)

CALL DGMPNT( RsIQs 1)

GO TO 400

1Q=1

R(1)=0,.0

DO 300 I=1sIP

RR(1)=0.0 K

CALL REGR?(YPYcXPY'XPXoRRpRoN'lpoleBvCoVARvIDF’P10P20939P4)
IF(IG.NEL.0) WRITE(3+,1009) )
IF(IG.NE.0) CALL DGMPNT(GsIGsIP)

IF(1IG.NE.Q) WRITE(3,1031) :

IF(IG.NE.0) CALL DGMPNT(G30+1Gs1) ~
WRITE(3+1011)

CALL DGMPNT( BsIP»1)

WRITE(3s1012) .
CALL DGMPNT( ColIPyIP)

WRITE(3+1013) VAR

WRITE(3,1014) IOF

WRITE(3,1015)

CALL DGMPNT( PlsIPsIP)

WRITE(3+1016)

CALL DGMPNT( P2+1P.IP)

WRITE(3.1017)

CALL DGMPNT( P341P+1IP)

WRITE(3+1018)

CALL OGMPNT( P&+IP4IP)

1F(1G.EQ.0) STOP ’
catL REGR3(GOBQC0P10P29P3;P4)IGOIP'GBQGCG'II'120]3314)
WRITE(3,1019) )

CALL OGMPNTI(GBs1Gy1)

WRITE(3,1020)

CALL DGMPNT(GCGs1G»1G6)

WRITE (3s1021)

CALL OGMPNT(Plys16Gs1IP)

WRITE(3+1022)

CALL DGMPNTI(P241G+1P)

WRITE(3y1023)

CALL DGMPNT(P3+16G+1P}

WRITE(341024)

CALL DGMPNT (P4s1GyIP)

WRITE(3+41025)

WRITE(3+1029) (11(1)e1=1416G)

WRITE(3+1026) '

WRITE(3,1029) (I2(1)+1=14+16)

WRITE(341027)

WRITE(3+1029) (I3(1)1e151416)

WRITE(3+1028)

WRITE(351029) (14(1)91=14+16)

D0 200 I=1+16

GB(1)=GR(I)=GENI(I)

CALL REGRQ(GBoGCGoIGOlDF,F'lRoSFQPl'PZoP3oP“)
WRITE(3+1030) FsIRsIDFSF

STOP

CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
LM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM,
CLM
CLM
CLM
CLM
CLM
CLM
CLM
CLM

FORMAT (v1v/7/7% ANALYSIS OF ThE MODEL y=x#B+E SUBJECT TO RR#b=R'//)ICLM

FORMAT(///'0YPY ~ (Y-TRANSPOSE)®Y!//? 14015.8)
FORMAT (//7/'0XPY = (X~TRANSPOSE)®Y?)
FORMAT(///Y0XPX = (X-TRANSPOSE)®#X1)

FORMAT (//7/%0RR - COEFFICIENT MATRIX OF THE RESTRICTIONS RR#8=R?')

FORMAT (//7'0R = RIGHT HAND SI10E OF THE RESTRICTIONS RReB=R?')
FORMAT (/770N = NUMBER OF OBSERVATIONS'//! ,15)

CLM
CLM
CLM
CLM
CLM
CLM

L

630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

1140

1150

1160

1170

1180

1190

1200

1210

1220

1230

1240



:

1007 FORMAT(///'01P - NUMBER OF PARAMETERS /7Y *415) CLM
1008 FORMAT(///%01Q = NUMBER OF  RESTRICTIONS'//' 1,15} CLM
1009 FORMAT(///7%06 = COEFFICIENT MATRIX OF G#B?) CLM
1010 FORMAT(///'01G - NUMBER OF ROuS IN Gt/7/' %,195) CLM
1011 FORMAT(///%0B -~ ESTIMATE OF Y=X¢B+E SUDJECT TO RR#B=R!) CLM
1012 FORMAT(///'0C - ESTIMATED VARJANCE~-COVARIANCE MATRIX OF ESTIMATE*)CLM
1013 FORMAY(///'0VAR = ESTIMATE OF VAR(E(I)) /7% '4D15.8) CLM
1014 FORMAT(///%01DF - NUMBER COF D.F. FOR VAP ESTIMATE'//' %,15) CLM
1015 FORMAT(///'0P1 - ROW SPACE SPECIFIED BY RR*®*B=R?) CLM
1016 FORMAT(///%0P2 - P1+P2 ‘IS ROW SPACE EST. UNBIASEDLY IF RR#B=R') CLM
1017 FORMAT(///%0P3 - ROW SPACE ESTIMATED wlTh BIlAS?) CLM
1018 FORMAT(///'0P4 ~ ROW SPACE EST. UNBIASEDLY EVEN IF RRe#B.NE.R') CLM
1019 FORMAT(///7'0GB - ESTIMATE OF G#B') - : CLM
1020 FORMAT(///%0GC6 - ESTIMATED VARIANCE-COVARIANCE MATRIX?) CLM
1021 FORMAT(///7'06G=P11) ’ CLM
1022 FORMAY(///'06G#P2") CLM
1023 FORMAT(///7'06G=P3") * CLM
1024 FORMAT(///t0G=P4Y) CLM
1025 FORMAT(///%011 = ROWS = (0+1) IF ROWS G (ORTHQG,IN) ROW SPACE P1')CLM
1026 FORMAT(///'012 = ROWS = (0+1) IF ROWS G (ORTHOGsIN) ROW SPACE P2')CLM
1027 FORMAT(///%013 = ROWS = (0s1) IF ROWS G (ORTHOGsIN) ROW SPACE P3')CLM
1028 FORMAT(///'014 - ROWS = 1 IF ROwS OF G ARE IN THE ROw SPACE P4t') CLM
. 1029 FORMAT('.v/{" s,18)) CLM
1030 FORMAT(///7'0F yDF1+4DF2,P = TEST OF HIGH=GBO'/'0'¢F15455215:F15.5) CLM
1031 FORMAT(///'06B0 -~ HYPOTHESIZED VALUE OF G#B9) CLM
END : CLM
SUBROUTINE INPUT(NoIpoIQ’IGvYPY,XPYyXPXvRQonGQGBO) CLM
REAL®S8 YPY.XPY(I).XPX(I)-RR(I);G(I).R(I).X(]O)vY.GBO(l) CLM
READ()+15)NeIP+1Q416 : CLM
YPY=0,0 ’ CLM

00 10 1=1,1IP CLM
XPY(1)=0. CLM

DO 10 JU=1,1P CLM

10 XPX((J=1)e]Pe])=0. CLM
DO 20 I=1.N CLM
READ(1411) Yo (X{(J)sJ=1e1P) CLM
YPY=YPYeY®Y CLM

DO 30 J=1.1IP CLM

XPY (J) =XPY (J) Y ®X (J) CLM

00 30 K=1.1P . CLM
1J=(K=1)2]1PsJ Ci.M

30 XPXATIJ)=XPX(1J) +X(J) #X(K) CLM
20 CONTINUE CLM
0o 13 I=1,1Q ’ CLM

13 READ(1+1DIRII) 4 (RR((J=1)®10+1) s J=1+1P) CLM
1IF(16G.EQ.0) RETURN CLM

Do 40 I=1.16 . CLM

40 READ(1¢11) (G{(J=118]1G+1)oJ=1s1P) CLM
READ(1,1)) (GBO(I)sI=141G) CLM
RETURN CLM

11 FORMAT(7FS. 1) CLM
15 FORMAT (415) CLM
END CLM
/7/7G.SYSL1I8 DD DSN=NCS<ES.B4139.GALLANT s GALLANT +DISP=SHR CLM
// DD DSN=SYS1.FORTLIB,DISP=SHR CLM
/7 DD DSN=SYS1.SUBLIB.DISP=SHR CLM
/7/G.SYSIN DD * CLM
00012000060000400002 CLM
9.1 1. 0. 0. 0. 0. 0. CLM
1200500 lo‘ Oe O Oe 0. CLM
58.6 1. 0. 0. 0. 0. 0, CLM
CLM
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