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ABSTRACT

A presentation of the theory of linear models subject to

equali ty constraints on the parameters is set forth. No rank

conditions on the matrices appearing in the model are required

and reparameterization of the model is unnecessary in order to

use the methods developed. The bias which may arise due to false

restrictions or deficient rank of the input matrix is derived and

convenient methods for detecting the presence of this bias in

applications are given. Attention is given to accurate and

efficient computing procedures and an example is provided to

illustrate the application of these methods to data.



1. INTRODUCTION

It is very common in economic investigations to assume that a

linear model gives an adequate representation of the data. Often, how-

ever, the investigator knows from the underlYing theory that certain

restrictions exist among the parameters. It is the aim of this paper

to set out the important practical and theoretical aspects of con-

strained linear models theory using mathematical forms which are

computationally convenient•.

We have specified our model so as not to put any limitations on

the dimensions or ranks of the matrices involved nor on the

relationship of the constraints to the input matrix. Also, we have

adopted an approach for our analysis which does not rely on a re-

parametrization of the model. We feel that these features are of

practical importance because they allow the investigator to specify

his model in exactly the form he wants and allows him to keep in touch

with his original input variables throughout the analysis.

Attention shall be given to determining the effect of incorrectly

specifying the restrictions and to matters of computational efficiency.

Almost all of the theoretical results used but not proved in this

paper can be found in Theil [3J.

Section 2 contains notation and some matrix results which will be

used in the paper. Section 3 spells out the basic properties of the

estimators under the assumption that the model is correctly specified.

Section 4 gives two decompositions of an arbitrary linear function of

the parameters and gives a discussion of conditions under which bias

may occur and how to eliminate it. Section 5 discusses the singular

value decomposition of a general matriX, indicates how this can be



used to obtain the Moore-Penrose inverse of a matrix. These results

provide the tools necessary for implementing the methods of earlier

sections. Section 6 gives an example which illustrates the use of

the model and how the formulas should be applied to data.

The Model. Suppose that
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y = + e and

where y is an (n X 1) vector of observations, X is an (n X p)

matrix of fixed input variables, is a (p X 1) vector of unknown

parameters, e is an (n X 1) vector of uncorrelated random

variables each with mean zero and variance 2
(]' , R is a (q X p)

matrix of constants and r is a (q X 1) vector of constants. The

equations = r shall be referred to as the constraints and we

shall assume that they are a consistent set of equations.

In Section 2 we shall demonstrate that a more general model can

be handled by the methods we present. In fact, it will be shown that,

if Var(e) = E (]'2 , where E is a known, positive semi-definite

(possibly singular) matrix and ([2 is unknown, the model can be re-

duced to the form we give

2. REDUCTION TO STANDARD FORM

In this section, we show how a model with Var(e") = ([2 E can be

reduced to the form given in the preceeding section and set forth our

notation and certain matrix relations to be used in the sequel.



The model appears in first form as
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* * *y and * *R = r

where * * *y: (n X 1), X :

*R : * *(q xp) and r

* * *(n X (p Xl), e: (n Xl),

*(q X 1). We make no restriction on the
* * * *order or rank of X and R but we do require R = r to be a

*consistent set of We shall take e(e) = 0 and

* 2Var (e ) = (j Z ,where is known and posi tive semi -definite.

The case when Z is full rank is handled in the usual way by finding

a non-singular matrix T: (n* X n*) such that T T' = I *. Then
n

the model may be transformed to

y=J$+e and = r ,

* * *where y = Ty: (n X 1), X = TX: (n X p), and e = Te: (n X 1) •
* * * 2 2Then n = n , q = q and Var(e) = T Var(e )T' = (j T E T' = (j I

Notice that the original parameters are not altered by this

transformation.

If 1: is singular then we can find a non-singular matrix T

UT'= (:0 :) , * T=(T(lJ)such that n<n We partition ,
T(2)

* * *where T(l): (n, n ) and T(2): (n - n, n ) . Transforming the

model as before we obtain the relations

* *R = r



become known linear restrictions on the parameters.

Now Var(T(2)e*) =T(2)var(e*) T(2) = 0 so that

* *T(2)X =T(2)Y
= 0 and
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Appending these to the previous restrictions we obtain the

restrictions = r with
*

R = C(:t ): (q X p) and r = (q X 1) ,

* *where q = q + n - n. We will assume, additionally, that the new

set of restrictions =r are consistent. The remainder of the model

* *is obtained by setting y =T(l)Y: (n X 1), X =T(l)X: (n X p)

and e = T(l)e* (n X 1). Then Var(e) =T(l)var(e*)T(l) = In

as required.

We have seen that whether or not E is of full rank there is a

non-singular transformation matrix T which may be used to reduce the

model to standard form. We will consider in Section 5 how T may be

obtained in practice.

We will make extensive use of the Moore-Penrose inverse in what

is to follow. We define it here and defer the discussion of

computation to Section 5.

Definition. (Theil [31, pp. 269-214). Let A be an (mx n)
matrix. Then there exists a matrix A+ of order (n X m) which

satisfies A A+ A =A , A+A A+ =A+ , (A A+)I =A A+ , and (A+A)' • A+A •

The matrix A+ is unique and is called the Moore-Penrose (pseudo)

inverse of A.

The following matrix notation shall be used in what is to folloW.

If A is an arbitrary (m X n) matrix and a is an (n X 1) vector

then let



A' = the transpose of A,

l\al12 = a'a,

+PA = A A ,

+Q =I-AA,'A

* +PA = A A , and

whose dimensions are, respectively, (n X m) , (1 X 1) , (n X n) ,

(n X n) , (m X m) , and (m X m). The ranks of the last four

matrices are, respectively, rank (A), n-rank (A), rank (A), and

m-rank (A) •

Notation which is specific to the model (in standard form) is as

follows:

+W=X(I " R R) = ,

'l! + + +
p = (y - XR r) + R r ,

A +t)=Xy,

5
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SSE(,,) = (y _ _ = lIy _ ,

'# =SSE@)/(n - rank(W» ,

"2 " /0' = SSE(,,) (n - rank(X» ,

whose dimensions are, respectively, (n X p) , (n + q X p) , (P X 1) ,

(p X 1) , (1 X 1), (1 X 1), and (1 X 1) •

The following matrix relations are easily verified using the four

properties of the Moore-Penrose inverse. Much of the verification may

be fOWld in Theil «(3], pp. 269-274) .

* *PA' QA' PA' QA are symmetric and idempotent,

+R R r = r provided = r are consistent,

+R(f' - R r) = 0 provided = r ,
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= 0 ,

R PR = R .

In the remaining sections we will assume that the above relations are

known and will use them repeatedly without reference to this section.

3. STATISTICAL PROBERTIES OF

The following theorems parallel the standard results in (un-

constrained) linear models theory. In each case, our theorem is

followed by the corresponding result for an unconstrained linear model

stated as a corollary. The proof of each corollary is obtained by

setting q = 1, R = 0 and r = 0 then applying the theorem which

preceeds it.

The reader who is primarily interested in applications of these

results is invited to read the statements of the theorems, skip the

proofs, and go on to the next section where he will find what we feel

is a more applications oriented interpretation of the properties of
,.,.

the estimator .

'l'IIEOHJ'SM 1:



minimizes

= (y - -

sUbject to the (consistent) constraints

W = r .

PROOF: We will first verify that = r. Now there is a

such that = r since we'assumed a consistent set of constraint

equations. Then

,... + + += R (X (y - X R r) + R R r

+ - -= 0 + R R R = R = r .

We now verify that provided satisfies

R/3=r.

+ ,... - 11 2= II y - X R r - X + X -

+ ,... 2 - 12
= 1\ y - X R r - X II + II X - I

+ ,... ,...-
+ 2(y - X R r - X -

= 1\ y - X P'; - X QJ 11
2
+ II X QR@' - 11

2
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+ 2(y - X R+r)/[I - (x (x

= \I y - x 11
2
+ II x - 11

2
+ 0

SSE@). 0

COROLLARY:

A += X y

is the unconstrained minimum of

SSE = (y - I (y _ )$)

THEOREM 2: There is a of the form

such that = for every satisfying the consistent

equations = r if and only if there are vectors 6 and p such

that

=6/X + p'R •

PROOF: (If) Let = 6'X + p'R. As we will see in the next
,...

section = provided =r. Note that is of the

required form.

(Only if) If is of the form

+
=0 R r +

9
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then = r for all choices of r. We will take to be of this

form and examine the consequences of various choices of r under the

assumption that there is a

such that = for all r. Under this assumption, for

all r

+ +A'A XR r + A'A X + A'c = A'R r + .

First set r = 0 , hence

+ +A'A XR r + A'c = A'R r ,

so that

for all choices of r. By successive choice of the elementary

vectors for r we obtain

A'AX =

whence

+ += [A'A]X + [A'A XR + A'R ] R

= 6'X + p/R. 0
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COROLLARY: There is a of the form

such that = for all if and only if there is a vector

6 such that

"A' = a'x .

THEOREM 3: Let be'any estimator of the form = Ay + c

and "A be of the form A' = 6'X + p'R. If = for all

satisfying the consistent equations = r then

PROOF: From the proof of the previous theorem we have

A'A X = The variance of is

The variance of is

* * 2= A'A[PW+ A'A
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COROLLARY: Let be any estimator of the form = Ay + c

and A be of the form A' = 6'X. If = for all then

THEOREM 4:

e(SSE@'))

PROOF.

2= [n - rank(W)] provided = r .

* * + 2= II + V - R r) II .

Now

* + * + * +- R r) = - R r) + - R r) = 0

since

that

* += 0 and - R r) = 0 provided = r. We now have

* *where is symmetric and idempotent with rank Qw = n - rank (W) .
* 2Thus = [n - rank(W)] . n



COROLLARY:
A

[n - rank(X)]

THEOREM 5: Let e be distributed as a mUltivariate normal

N (0, and let be chosen between zero and one.n

a) If A is of the form A' = 6'X + p'R then

where

provided = r .

b) If A is a matrix of the form A' = A'X +('R then

where

S =

provided = r .

f l , f 2} denotes the level percentage point of an F

random variable with f l degrees freedom for the numerator and f 2
for the denominator.

PROOF: Part (a) follows from Part (b) when A' is a (IX p)

row vector. To prove Part (b) we write

A' = A'X + 'R = A'X + (A'X R+ + ')R = A'W +r'R



so that S may be wri tten

- - 1S =---------------------=
SSE@')/f2

14

where f l = and f 2 = n - rank(W) (set 1/fl = 0 if
= 0) .

If 6'W = 0 then S = 0 and Part (b) follows We will

therefore consider the case when 6'W! O. From the proof of Theorem

./ 2 * / 2 *4, D,a = a . Since

by Theil ([3], p. 83) that D/a2
is idempotent with rank

is distributed as a X2
f 2 we have

random

variable with f 2 degrees freedom.

If is the true value of and = r we may write

+ + 0 + 0 +)=6'W We + 6'W[W - R r) - - R r ]

+ (0 + 0 +)=6'W We + 6'[W - R r) - - R r J

Then N becomes
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D are independent.

f l numerator degrees

2
f lIt follows that if 6 /W FO and 1$0 = r then S = 2 is
f 2

of freedom and f 2

In general rank(AB) s rank(A) so that in particular rank(6'W) =

* *rank(6 /PWW) rank(6 /PW) rank(6'W) whence f l = = rank(6'W) =

rank(6 /P:). Again citing Theil ([3], p.83), is distributed as

2 * * * +a X with f l degrees freedom. Since = 0 we have by

Theil ([3], p. 84) that N and

distributed as an F with

for the denominator. 0
COROLLARY: Let e be distributed as a multivariate normal

Nn(O, and let a be chosen between zero and one.

a) If A is of the form A' = 6'X then

'" '"- € S + €] 1 - cx ,

where

2 + "2
€ = (A' (X'X) A) F(cx; 1, n - rank(X)} .

b) If A is a matrix of the form A' = 6'X then

P[S F(a; rank(A), n - rank(X)} I = a ,
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where

4. SOURCES OF BIAS

In the preceeding section we saw that is unbiased for

provided A' = 6'X + p'R and = r. In this section, we will

examine the bias which results when either A' I 6'X + p'R or

I r or both. As a result of this examination, we will be able to

characterize those which are estimated unbiasedly by

even when I r and determine what additional information is

necessary to allow unbiased estimation of when the condition

A' = 6/X + p/R is not satisfied. We have deferred proofs of the less

obvious claims made in this section to the Appendix in 'order to focus

attention on the main points of the discussion.

Recalling the notation and relations given in Section 2 we can

write

+ + + += - (I - - R r) - - R r) + e

Consider the estimation of an arbitrary linear function of the para-

meters, It is clear from the decomposition of that

= + + We will consider the conditions
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on >.. and which eliminate the two sources of bias >,,'El and

.

The first source of bias is due to specification error since

= 0 for all satisfying = r. The second source is due

to the deficient rank of V since Qy = 0 if rank(V) = p .

There do exist linear functions of the parameters, for

which = = 0 for arbitrary choice of These are
. ,.,.

the parametric functions which are estimated unbiasedly by

whether or not the restrictions = r are correctly specified.

Consider A of the form A' = It is not difficult to

verify that for such A

and

An easy test for A of this form is to check whether

+
X = A' .

This test follows from the fact that +X is ·idempotent hence

>'" is of the form +A' = X if and only if
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In general, bias of the form is best eliminated by not

using to estimate if f r. That is, do not use false

restrictions. (Toro-Vizcarrondo and Wallace [4] consider the question

of using possibly false restrictions to reduce mean square error

under the condition that rank(X) = p and rankeR) = q .)
The second source of bias is eliminated when

A' = 6'X + p'R since X = R = 0 (In fact, = 0 for

all satisfying = r if and only if A' = 6'X + p'R by

Theorem 2). Discussions of estimability (Theil [3], pp. 147, 152)

revolve around this second component of bias and the conditions under

which it vanishes.

Consider, now, an attempt to estimate an arbitrary function of the

parameters using when = r. Since

we can write

= A' + A' + A'1 23'

It can be verified that
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If the true but unknown value of satisfies = r then these

expectations and variances are

1i"ar ('\.'R) 'W+(W+)' 2
i = A2 ,

Inspection of these expectations and variances indicates that the

component Ai? of A'13 is the constant AiR+r (since = r implies
+- R r) = 0 ) regardless of the value on by the random

variable y. Thus, any information about 1 contained in the

sample y is completely overridden by the restriction = r .
,.."

The second component, , varies with y and is the portion

of estimated from the sample.

If the third component A' - of A is not zero, then3 - 3
(and hence '"cannot be estimated unbiasedly using If the

estimation of is important to the econometric investigation the

investigator must augment V by row vectors which will yield A'3 as

a linear combination and recompute using the additional information.

V can be augmented by appending additional

and additional restrictions



to the original model. If observatior.s with the rows of X(2) as
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inputs can be obtained and restrictions =
such that

can be deduced

-then can be estimated unbiasedly by computed from the

augmented model provided the true value of satisfies

In summary, we recommend that the results of this section be used

in applications to estimate a linear parametric function as

follows. First, check that since if equality holds,

This may be either a comfort or a

--the estimate based on coincides with the unrestricted least

squares estimate

disappointment, depending on the application. The variance estimate
-2 A2has more degrees freedom than the estimator but the extra

degrees of freedom may not be worth the extra bother of computing

Second, check that A'G.y := 0 to be sure estimates

unbiasedly. Thirdly, one may wish to compute Ai:= A'PR and A2 = A'PW
to determine the information which is due to the restrictions = r

and that which is due to the sample y.

5· COMPUTATIONS

For a given matrix A of order (m X r.) with m n we may

decompose A as
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A = U S V' ,

where U is (m X n), S is an (n X n) diagonal matrix, V' is

(n X n) and

I U'U = V'V V V' .n

This is the singular valae decomposition of A [2J. Let s.
;-

Set s. =
1

denote the diagonal of' S.
+set s. = 0 if s. = 0 and form the diagonal

1/s i if si > 0
+S matrix from the elements

+s. Then the Moore-Penrose (pseudo) inverse of A is given by

and the rank of A is the same as the rank of S+ (If m < n

compute B = (A')+ using this method and set A+ = B' .)

A listing of a FORTRAN subroutine to obtain the singular value

decomposition of A may be in [lJ. The SUbroutine as listed is

for a COMPLEX matrix A, but we had no in converting it

to REAL*8 from the COMPLEX version. We have had good results using

an IBM 370/165 setting the parlUlleters ErA = 1. D - 14 and

TOL = LD • 60; we take SCI) = 0 if S(I). LT. S(l) * l.D - 13 •

If y and X are too large for storage in core but y'y,

X'y, and X'X ca.'1 be stored then the computational formulas

- + + += - X'X R r) + R r
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",r-.

= (Y'Y - $'X'Y + ..

may be the

+
= (X (y - X R r) + r

+ + 2
= ex: (x Q,..) , a

are feasible, tLeir use should the of the

computations by avoiding matrix mUltiplications.

For the of the transformation matrix T we will make

the assumption that two matrices tte size of' L.. * *(n X n ) may be

stored in core. The singular va..lue decomposi tioD subroutine caJ1 be

used to obtain U, S, V (sir.ce U = V in this case) and the diagonal

matrix S stored as a vector with diagonal

s >n

with E:leme!lts d. = (s. ft and T = D U'
J. J.

then S 'Nill elements '"u 2*E has rank n < n

sl s2 ' .. s * o. If E is form the diagonal

* * n(n X n) matrix D If

S a
n

d. =-= (s. f!
J. J.

matrix D(l)

where U(l)

(n*-nxn)

sn+l =
elements

( *)n X n and 1"
- (2) J.S

:·'orm the diagona.l (.'1 X r..)

U ' ·--1 '.:"',.,(1))and r;artition
"(?-)

Then T(l) D(l)U(l)

with

is

and

In mest aplJlications r: is known it will te patterned in

such a way that knowledg8 0:'" can be used to deduce

the form of' rr for protlem o.t ha.'ld. tr.e stcrage requirement

is not as stringent as it wOL:.U:'ir'::t &.:;P2;i.I,
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6. EXAMPLE

Consider a series of quarterly measurements on a variate y with

an unconstrained model given by

Yti = a + bt + + eti '

where the years are denoted by t = 1, 2, ... ,32 and the quarters by

i = 1, 2, 3, 4. For the first thirty years the parameters were

estimated subject to the constraints

4.E. 1 Q. = 0i

yielding the estimates

= (1.1581, ·53227, 1.0386, -1.0386, -1.0386, 1.0386)' .

We suspect that the last two restrictions are false and that the

data follow a quarterly effects pattern rather than the winter/summer

pattern used to estimate from the first thirty years. OUr

problem will be to estimate subject to the constraint

= 0

and test the hypotheses



T =
5·3279

o
-9· 5715

.26223

o

-194.47

o
10.954

o

25

was computed using the method suggested in the preceeding section.-By combining T A'f!l30 and T A' with the data for the years

31 and 32 we obtain X and y as given in Table 1.

TABLE 1

y X

6.03Cf7 5.3279 - 0.26223 1.3320 1.3320 1.3320 1.3320
11.377 O. o. 2·7385 -2·7385 -2·7385 .2·7385.

-114.60 -9·5715 -194.47 -2·3929 -2.3929 -2'.3929 -2.3929
18·52 1. 31. 1. O. O. o.
16.65 1. 31. O. 1. O. O.
16·71 1. 31. O. O. 1. o.
18·79 1. 31. O. O. O. 1-

19·00 1. 32. 1. O. '0. o.
17·03 1. 32. O. 1. O. O.
16·91 1. 32. O. O. 1. O.
19.61 1. 32 O. O. O. 1.

The estimatef of

SUbject to

is
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using as much of the information from the previous study as possible.
,...

and variance-covariance matrix of

can be obtained since we know the form taken by X and $ = r for
,...

the first thirty years. that obtained in the previous
,...

study must coincide with as defined in this paper since

rank (V) = p = 6 .
The linearly independent rows of are

o 0 1/4 -1/4 -1/4 1/4

1 0 1/4

oo

1/4 1/4

o
1/4

oo 1A' =

so that is estimated unbiasedly by

with variance-covariance matrix

A =
.035057

-.0017241

o

-.0017241

.00011123

o

o
o

.0083333

2a

The transformation matrix
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= (1.161, 0.532, 0.821, -1.026, -1.056, 1.261)' •

The (uncorrelated) estimates of Q2 - Q3 and Ql - Q4 are .030 and

-.440 each with the same 6 d.f. estimated variance of .0207. The

respective 1F6 values are .435 and 9·35· We fail to reject Hl and

reject H2 at a significance level of .025.

The vectors

.Ai = (0, 0, 1, 0, 0, -1)

A2 = (0, 0, 0, 1, -1, 0)

are each of the form

A' = 6 /PW and

Thus the estimates of Q1 - Q4 and vary with the sample data

and are estimated unbiasedly even if the restriction is false.

If we use the outcome of our tests to re-estimate subject to

we obtain the results given in Table 2.



TABLE 2
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'"13'
1.161 ·532 .821 -1. 041 -1. 041 1. 261

A ,."

Var (13)

.0058 -.00002'{ 0 0 0 0
-.00002'{ .0000016 . 0 0 0 0
0 0 .0046 -.00014 -.00014 -.0043
0 0 -.00014 .00014 .00014 -.00014
0 0 -.00014 .00014 .00014 -.00014
0 0 -.0043 -.00014 -.00014 .0046

PR

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1/4 1/4 1/4 1/4
0 0 1/4 3/4 -1/4 1/4
0 0 1/4 -1/4 3/4 1/4
0 0 1/4 1/4 1/4 1/4

Pw
1 0 0 0 0 0
0 1 0 0 0 0
0 0 3/4 -1/4 -1/4 -1/4
0 0 -1/4 i/4 1/4 -i/4
0 0 -1/4 1/4 1/4 -i/4
0 0 -1/4 -1/4 -1/4 3/4

1 0 1/4 1/4 1/4 1/4
0 1 0 0 0 0
0 0 3/4 -1/4 -1/4 -1/4
0 0 -1/4 1/4 1/4 -1/4
0 0 -1/4 1/4 1/4 -1/4
0 0 -1/4 -1/4 -1/4 3/4



APPENDIX

1. Verification of the properties of PR, PW' ",. Let A be a

(m X n) matrix and let T be (m X m) and non-singular. It follows

that (TA)+(TA) = A+A. To see this observe that

+ + -1= (TA) T 0 + A T 0 = 0 .

Since

where T is non-singular, we obtain

hence I = PR + Pw + '\r' Now
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Since Q",' are symmetric and idempotent

Lastly

+ +
PvtR = (X (X == (X X 0 = 0

p = P (I - P - P ) = p - P ) = 0 - 0 = 0 .W--V W R W W R

I"tJ /"tell ,.,." ,.,."

2. Verification that = ;t + •

It is required to show that PR COv<W" )Pw == PR >Q.y ==
,."..

Pw = 0 •
+ +' 2Now = (X . Since = 0 we have

the first two equalities.



+ +'=W (w w') w

+ +'= W(W W') 0 = 0 .

30
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Three Fortran subroutines are described below which can be used

to analyze constrained linear models data. They are stored at TUCC

and may be called by users through Fortran programs. Briefly, REGR2

estimates for the linear model y = + e subject to the

consistent constraints = r, REGR 3 estimates and gives the

decomposition of a set of linear functions of the parameters and

REGR4 tests the hypothesis lb: = where satisfies theo
equations = r. To illustrate their use, a Fortran program with

an input subroutine and some sample data are also given.

The following is the Job Control Language (JCL) required to access

the subroutines.

JCL TO RUN THE FORTRAN (G) COMPILER.

IIJOBNAME JOB ACCOUNT,NAME
II EXEC FTGCG
Ilc.SYSIN DD *

(SOURCE PROGRAM)IIG.SYSLIB DD DSN=NCS.ES.B4139·GALLANT.GALLANT,DISP=SHR
II DD DSN=SYS1.FORTLIB,DISP=SHRII DD DSN=SYS1.SUBLIB,DISP=SHR
IIG.SYSIN DD *

(DATA CARDS)

JCL TO RUN THE FORTRAN (H) COMPILER.

IIJOBNAME JOB ACCOUNT,NAMEII EXEC FTHCG
Ilc.SYSIN DD *

(SOURCE PROGRAM)
IIG.SYSLIB DD DSN=NCS.ES.B4139·GALLANT.GALLANT,DISP=SHR
II DD DSN=SYS1.FORTLIB,DISP=SHR
II. DD
IIG.SYSIN DD *

(DATA CARDS)



DGMPNT 10/6/71

PURPOSE
PRINT A MATRIX

USAGE
CALL DGMPNT(A,N,M)

ARGUMENTS
A - INPUT N BY M MATRIX

STORED COWMNWISE (STORAGE MODE OF 0)
ELEMENTS OF A ARE REAL*8

N - NUMBER OF ROWS IN A
M - NUMBER OF COWMNS IN .A
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REGR2
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PURPOSE
ESTIMATE B 7C!I': 'I'HS 1INEA.'q M::,DEI., Y=X*5+E SUBJECT TO THE CONSTRAINTS
RR*B=R.

USAGE
CALL

ooMPRD, DG.\1.A..DD, OCr1STJB, DSVD

ARGUMENTS
Y;PY - INPur S8ALA..'q CONTAINING (Y-TRANSPOSE )*Y.

P..EAL*R
XPY - nr':?lJT 0l' LENGTH IP CONTAINING (X-TRANSPOSE)*Y.

0]' "X.;;'Y ABE RZAL*8
XPX - INPUT IP BY IF MATRIX CONTAINING (X-TRANSPOSE)*X. STORED

(STORAGE MODE OF 0).
ELRMF.IPI'S OF XPX .A::\E REAL*8

RR - INFUT IQ BY IP MATEIX OF CONSTRAHITS. STORED COLUMNWISE
(STORAGE MODE OF 0)
ELEME!{'I'S OF R..'q ARE HEAL*8

R - INPUT VE':::TOR OF LENGTH IQ CONTAINING THE RIGlIT HAND SIDE OF
THE CONSTRAINT EQUA'='IONS.

R P1\E F.EAL*8
N - NUM3ER 07 OBSERVJtrIONS.

nUEGER
IP - NUM3ER OF PARAMETERS IN THE MODEL. IP MUST BE LESS THAN 101

INTEGER
IQ - NT.JMBER COlISTRlL..TNTS. IQ MUST BE GREATER THAN 0 .AND LESS

TF.MI OR EQTJ.4L TO IP.
INTEGER

B - ESTIMATE OF THE PARAMETERS SUBJECT TO THE CONSTRAINTS.
VECTOR eli' LFJiG'rH 1:2.
ELEMEHTS OF B ARE REAL*8

C - ESTIMATED IP BY IP VARIANCE-COVARIANCE MATRIX OF B. STORED
COLUMNWISE (STORACE MCDE OF 0).

O}' C P.3.E REAL*8
VAH - ES'l'IMA',rED ':A.RLI\.NC:G.

IDF - DEc·n.r.,ES :?R?JDOM VAF..
IlI'l'EG:SR

P1 - ROW S?ACS OF Sl'ECIF.ill!) I'ARP.ME'EIC l''UNCTIONS. ESTIMATED
BY 5 THE TRUE VALUE SATISFIES RR*B=R.

P2 - ROW S:i.?A,;r OF REMALl'GNG FUNCTIONS ESTIMATED
UN:2LllliEDLY BY E ?:tOVI!)SI) THE TRUE VALUE SATISFIES P.R*B==R.

P3 - P.OW SPACE OF 70UCTIONS ESTIMATED SUBJECT TO BIAS
BY 3.

IP BY IP MATRICES STORED
(3TORk:-E MCD:8 OF 0). ?1+?2+P3=I, P1*P2==P2*P3==

P1*P3-=-O. ELEMEi'l'S ARE R:sAL*8.



p4 - ROW SPACE OF PARAMETRIC FUNCTIONS ESTIMATED UNBIASEDLY BY B
WHETHER OR NOT THE TRUE VALUE SATISFIES RR*B=R.
IDEMPOTENT IP BY IP MATRIX STORED COLUMNWISE (STORAGE MODE
OF 0). ELEMENTS ARE REAL*8

" .,,,.
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REGR3 2/25/72

PURPOSE
DECOMPOSE AND ESTIMATE A SET OF IG LINEAR PARAMETRIC FUNCTIONS
USING THE OUTPUT FROM SUBROUTINE REGR2.

USAGE
CALL REGR3(G,B,C,Pl,P2,P3,p4,IG,IP,GB,GCG,Il,I2,I3,I4)

ARGUMENTS
G - INPUT IG BY IP MATRIX OF COEFFICIENTS. STORED COLUMNWISE

(STORAGE MODE 0).
ELEMENTS OF G ARE REAL*8

B - INPUT VECTOR OF LENGXH IP RETURNED BY REGR2.
ELEMENTS OF B ARE REAL*8

C - INPUT IP BY IP MATRIX RETURNED BY REGR2. STORED COWMNWISE
(STORAGE MODE 0)
ELEMENTS OF C ARE REAL*8

PI - INPUT IP BY IP MATRIX RETURNED BY REGR2. ON RETURN CONTAINS
THE IG BY IP MATRIX G*Pl STORED COLUMNWISE (STORAGE MODE 0).

P2 - INPUT IP BY IP MATRIX RETURNED BY REGR2. ON RETURN COOTAINS
THE IG BY IP MATRIX G*P2 STORED COLUMNWISE (STORAGE MODE 0).

P3 - INPUT IP BY IP MATRIX RETURNED BY REGR2. ON RETURN CONTAINS
THE IG BY IP MATRIX G*P3 STORED COLUMNWISE (STORAGE MODE 0).

p4 - INPUT IP BY IP MATRIX RETURNED BY REGR2. ON RETURN CONTAINS
THE IG BY IP MATRIX G*p4 STORED COLUMNWISE (STORAGE MODE 0).
ELEMENTS OF PI, P2, P3, P!+ ARE REAL*8.

IG - NUMBER OF LINEAR PARAMETRIC FUNCTIONS TO BE ESTIMATED.
INTEGER

IP - NUMBER OF PARAMETERS (LENGTH OF B).
INTEGER

GB - VECTOR OF LENGTH IG CONTAINING THE ESTIMATES OF THE LINEAR
PARAMETRIC FUNCTIONS, G*B.
ELEMENTS OF GB ARE REAL*8

GCG - ESTIMATED IG BY IG VARIANCE-COVARIANCE MATRIX OF CB. STORED
COLUMNWISE (STORAGE MODE 0).
ELEMENTS OF GCG ARE REAL*8

II - VECTOR OF LENGTH IG.
12 - VECTOR OF LENGTH IG.
13 - VECTOR OF LENGTH IG.
14 - VECTOR OF LENGTH IG.

11(3;)=0 IF ROW I OF G SATISFIES GI*Pl=O.
11(1):1 IF ROW I OF G SATISFIES GI*Pl=GI.
11(1)=-1 IF NEITHER OF THE ABOVE ARE SATISFIED BY GI.
SIMILARLY FOR 12, 13, 14.
ELEMENTS OF II, 12, 13, 14 ARE INTEGERS.

REMARK
BE SURE PI, P2, P3, p4 ARE DIMENSIONED LARGE ENOUGH TO CONTAIN
MAX (IP*IP, IG*IP) ELEMENTS IN THE CALLING PRCGRAM.
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REGR4 3/15/72
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PURPOSE
TEST H:GB=O USING OUTPUT FROM REGR2 AND REGR3.

USAGE
CALL REGR4(GB,GCG,IG,IDF,F,IR,SF,pl,p2,p3,p4)

SUBROUTINES CALLED
DAPLUS, DGMPRD, BIYrR, DSVD

ARGUMENTS
GB - INPUT VECTOR OF LENGTH IG RETURNED BY REGR3.

ELEMENTS OF GB ARE REAL*8.
GCG - INPUT IG BY IG MATRIX RETURNED BY REGR3. STORED COLUMNWISE

(STORAGE MODE 0).
ELEMENTS OF GCG ARE REAL*8.

IG - LENGTH OF GB; NUMBER OF ROWS AND COLUMNS IN OCG.
IG MUST BE LESS THAN 100.
INTEGER

IDF - INPUT INTEGER RETURNED BY REGR2; DENOMINATOR D. F. FOR F.
INTEGER

F - COMPUTED F STATISTIC
REAL*8

IR - COMPUTED NUMERATOR D. F. FOR F, RANK OF GCG.
INTEGER

SF - SIGNIFICANCE LEVEL OF F. (I.E. l-CDF(F)).
REAL*8

1'1 - IG BY IG MATRIX USED AS WORKSPACE.
1'2 - IG BY IG MATRIX USED AS WORKSPACE.
1'3 - IG BY IG MATRIX USED AS WORKSPACE.
1'4 - IG BY IG MATRIX USED AS WORKSPACE.

ELEMENTS OF 1'1,1'2,1'3,1'4 ARE REAL*8.

REMARK
THE RESULTS RETURNED BY REGR4 ARE INVALID IF B=O DOES Nor SATISFY
RR*B=R. TO TEST H:GB=G*BO WHERE RR*BO=R INPUT G*(B-BO) INSTEAD OF
GB.
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Sample Problem

Measurements are taken on the 12 angles of the following figure.

We assume that the following linear model is appropriate to describe

the data.

y = Xl' + e subject to 1$ = r ,

where y: (12 X 1) and X: (12 X 6) are given in Table 3,

corresponds to angles 1, 3, to 2, 4, to 5, 7 to 6, 8,

to 9, 11, to 10, 12,

1 0 1 0 1 0

1 1 0 0 0 0
R =

0 0 1 1 0 0

0 0 0 0 1 1

and
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r = (LBo, LBo, 180, LBo)' •

We wish to test the hypothesis that the triangle is equilateral. That

is Ho : o , where

(: 0 -1 0 0 0 ).G =
0 0 0 -1 0

It is interesting to note that the test of H can also beo
interpreted as a test of no regression effect.

- A- +The quantities PR , Pw ' and X are given

in Table 4. The results of the test of Ho are

A ( -2.025 )
-0.500

,

and

(
0·2749

0.1J75

0·l.375

0.2749
) ,

2FlO =8.095 (p = 0.0081) •

It is also found that the rows of G are neither in the row space of

R nor in that of , but are orthogonal to the row space of Qy'
This indicates that information from both the restrictions and the

data went into the estimation of the and that, if the restrictions

are valid, the estimates are unbiased. Finally, it is found that the
+rows of G are not in X indicating that if the restrictions are

false then the estimates are biased.
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Angle Measurements: y Design Matrix: X

1 59·1 1 0 0 0 0 0

2 120·5 0 1 0 0 0 0

3 58.6 1 0 0 0 0 0

4 122.1 0 1 0 0 0 0

5 60.4 0 0 1 0 0 0

6 119·8 0 0 0 1 0 0

7 61.3 0 0 1 0 0 0

8 118·7 0 0 0 1 0 0

9 60.1 0 0 0 0 1 0

10 120·7 0 0 0 0 0 1

11 59·2 0 0 0 0 1 0

12 121. 5 0 0 0 0 0 1



TABLE 4
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-
59·158 120.842 61.183 188.817 59.658 120·342

.09164 -.09164 -.04582 .04582 -.4582 .04582
-.09164 .09164 .04582 -.04582 .04582 -.04582
-.04582 .04582 .• 09164 -.09164 -.04582 .04582
.04582 -.04582 -.09164 .09164 .04582 -.04582
-.04582 .04582 -.04582 .04582 .09164 -.09164
.04582 -.04582 .04582 -.04582 ... 09164 ·90164

PR

4/6 2/6 1/6 -1/6 1/6 -1/6
2/6 4/6 -1/6 1/6 -1/6 1/6

i i/6 -1/6 4/6 2/6 1/6 -i/6
-i/6 1/6 2/6 4/6 -1/6 1/6

t 1/6 -1/6 1/6 -1/6 4/6 2/6\, -1/6 1/6 -1/6 1/6 2/6 4/6
,

Pw
2/6 -2/6 -1/6 1/6 -1/6 1/6
-2/6 2/6 1/6 -i/6 1/6 -1/6
-1/6 1/6 2/6 -2/6 -1/6 1/6
1/6 -1/6 -2/6 2/6 1/6 -1/6
-1/6 1/6 -J./6 i/6 2/6 -2/6
1/6 -1/6 1/6 -1/6 -2/6 2/6

2/6 -2/6 -1/6 1/6 -1/6 1/6
-2/6 2/6 1/6 -1/6 1/6 -1/6
-1/6 1/6 2/6 -2/6 -1/6 1/6
1/6 -1/6 -2/.6 2/6 -i/6
-1/6 1/6 -1/6 1/6 -2/6
1/6 -1/6 1/6 -1/6 -2/6 2/6 I

l



e ..
II EXEC fTGCG ClM
IIC.SYSIN DO * ClMC ClM
C MAIN: CONSTRAINED lINEAR MODELS (C l M) ClMC ClM
C PURPOSE: ClM
C TO ESTIMATE B fOR THE lINEAR MODEL y=x*B+E SUBJECT TO THE CONSTRAINTSClM
C RR*B=R, TO DECOMPOSE AND ESTIMATE A SET Of IG lINEAR PARAMETRIC ClM
C fUNCTIONS lG*B), AND TO TEST THE HYPOTHESIS H:G*d=G*80. ClMC . ClM
C INPUT: . ClM
C THE USER MUST SUPPLY AN INPUT SUBROUTINE Of THE -- CLM
C SUBROUT1NE INPUTlN,IP,IO,IG,YPy,XPY,XPX,RR,R,G,GBO)CLM
C WHERE ClM
C N - NUMBER Of 08SERVATIONS. ClM
C INTEGER CLM
C IP - NUMBER Of PARAMETERS IN ThE MODEL ClM
C INTEGER CLM
C 10 - NUMBER Of CONSTRAINTS CLM
C INTEGER ClM
C IG - NUMBER Of lINEAR PARAMETRIC fUNCTIONS TO ESTIMATED ClM
C INTEGER ClM
C ypy - SCALAR CONTAINING yly CLM
C REAl*8 ClM
C XPY - VECTOR Of lENGTH IP X'v ClM
C ELEMENTS ARE RUl*8 ClM
C XPX _ VECTOR Of lENGTH IP*IP CONTAINING X'X STORED COlUMNWISE ClM
C . ARE REAl*8 CL,M
C'RR _ VECTOR Of lENGTH IO*IP THE CONSTRAINTS ClM
C STOPED COlUMN.W ISE elM
C ELEMENTS ARE REAl*8 ClM
C R _ VECTOR Of LENGTH Ia CONTAINING THE RIGHT HAND SIDE Of THE ClM
C CONSTRAINT EQUATIONS ClM
C ELEMENTS ARE REAl*8 ClM
C G _ vECTOR or LENGTH IG*IP CONTAINING THE MATRIX Of COEffICIENTS ClM
C rOR THE SET or LINEAR PARAMETRIC fUNCTIONS STORED COlUMNwiSE ClM
C ELEMENTS REAl*8 CLM
C GBO _ VECTOR Of LENGTH IG THE RIGHT HAND SIDE or THE ClM
C HYPOTHESIS EQUATIONS ClM
C ELEMENTS ARE REAl*8 ClM
C THE ABOVE ARRAYS MAY BE DIMENSIONED IN THE SUBROUTINE AS fOllOwS ClM
C REAl*8 YPY,XPYll),XPXll),RRl}I,Rl}),G(}),GBOl}) ClM
C ClM
C SUBROUTINES USED: ClM
C DGMPNT,REGR2.REGR3,REGR4,INPUT ClMC ClM

IMPLICIT REAl*8 IA-H,D-Z) ClM
REAL*8 XPY I10) •XPx 1100 I ,RP (100) •R110 I • tl I 10) ,C ( 100) ,P 1( 100 I ,P2 I100) ClM
REAl*8 ClM
INTEGER I1(10I,12(101,I31101,I4{101 ClM
CALL ClM
WRITEI3.}000) ClM
WRITE13,1006) N ClM
WRITE (3.}007) IP CLM

l3, 1008) IQ CLM
WQITEl3,J010) IG CLM
WRITE(3,}00J) YPY CLM
WRITE 13.1002) CLM
CAll DGMPNTlXPY,IP, II CLM
WRITEI3,}003) ClM
CAllDGMPNTlXPX,IP,IP) CLM
If (IO.EO.O) GO TO 100 ClM
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10
20
30
40
50
60
70
80
90
100
llO
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
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eLM 630
elM 640
ClM 650
ClM 660
elM 670
elM 680
ClM 690
elM 700
elM 710
elM 720
elM 730
elM 740
elM 750
ClM 760
elM 770
elM 780
eLM 790
CLM 800
elM 810
CLM 820
eLM 830
elM 840
elM 850
elM 860
elM 870
elM 880
elM 890
elM 900
ClM 910
ClM 920
elM 930
elM 940
elM 950
elM 960
eLM 970
elM 980
CLM 990
elM 1000
eLM 1010
ClM 1020
ClM 1030
ClM 1040
ClM 1050
ClM 1060
ClM 1070
elM 1080
elM. 1090
elM 1100
eLM 1110
elM 1120
elM 1130
eLM 1140
ClM 1150
elM 1160
CLM 1170

RR*b=R'lllelM 1180
elM 1190
elM 1200
ClM 1210
elM 1220
ClM 1230
elM 1240

•CtIP,IPI
VAR
lor

WRITE 13, 10041
CALL DGMPNTI RR,IQ,IP)
WRITE 13,1005)
CALL DGMPNl( R,IQ, J)
GO TO 400
Ia=l
RIJ)=O.O
DO 300 1=1, IP
RRII)=O.OCALL REGR2IYPY,XPY,XPX,RR,R,N,IP,IQ,B,C,VAR,IDf,Pl,P2,P3,P41
IfIIG.NE.OI WRITE13.10091
IfIIG.NE.OI CALL OGMPNTIG,IG,IP)
If(JG.NE.OI WRITE 13, 10311
IfIIG.NE.OI CALL OGMPNTIG90,IG,I)
WRITE 13,}011 I
CALL DGMPNTI B,IP,l)
WRITE 13, 10121
CALL OGMPNTI
WRITE 13.10131
WRITE (3, 1014)
WQITEI3.lC151
CALL DGMPNTI Pl,IP,IPI
WRITE 13,10161
CALL OGMPNTI PZ,IP,IP)
WRITE13,10171
CALL DGMPNTI P3,IP,IP)
WRITE 13, 1018)
CAll OGMPNTI P4,IP,IPI
If I IG.[Q.ol STOP
CALL REGR3IG,B,C,Pl,PZ,P3,P4,IG,IP,GB,GCG,ll,12,I3,I4)
WRITE 13, 10191
CAll OGMPNTIGB,IG,11
WRITEI3,10201
CALL DGMPNTIGCG,IG,IG1
WRITE 13, 10211
CALL OGMPNTIPl,IG,IP1
WRITE13.10221
CALL DGMPNTIP2,IG,IP1
WRITE 13, 10231
CAll DGMPNTIP3,IG,IP)
WRITEI3,1024)
CAll DGMPNTIP4,IG,IPI
WRITE 13, 1025)
wRITE13,1029) (llI11,1=1,IGI
WRITE 13,10261
WQITE13.10291 1I2(1),I=I,IG)
WQITEI3,10271
WRITEI3.1029) (I3III,I=I.IG)
WRITE 13.1026)
WQITEI3.l029) (14111 tI=loIG1
DO 200 1=1, IG
G8111=G8III-G80111
CALL REGR4IGB,GCG,IG,IDf,f,IR,Sf,Pl,P2,P3,P41
WRITE(3tl030) f,IR,IDf,Sf
STOP
fORMATI'l'///' ANALYSIS Of ThE MODEL y=X*B+E SUBJECT TO
fORMATI///'OYPY - (Y-TRANSPOSE)*y,//1 ',015.81

- IX-TRANSPOSE)*Y')
fORMATI///'OXPX - Ix-TRANSPOSE)*X')
fORMATI/I/'ORR - COEfFICIENT MATRIX Of THE RESTRICTIONS RR*d=R'1
fORMATI/I/'OR - RIGHT HAND SlOE Of THE RR*B=RI)
fORMATIIII'ON - NUMBER Of OdSERVATIONS'//' ',lSI

1000
1001
1002
1003
1004
1005
1006

100

200

300
400
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ClM 1250
ClM 1260
ClM 1210
ClM 1280
ClM 1290

ESTIMATE')ClM 1300
ClM 1310
ClM 1320
ClM 1330
ClM 1340
ClM 1350
ClM 1360
ClM 1310
ClM 1380
ClM 1390
ClM 1400
ClM 1410
ClM 1420

10,1) If G ROW SPACE Pl l )ClM 1430
10,1) If ROWS G ROw SPACE P2'IClM 1440
10,11 If ROwS G ROW SPACE: P3 1)ClH 1450
1 If ROwS OF G ARE IN THE ROw SPACE P4 1) ClM 1460

ClM 1410
ClM 1480
ClM 1490
ClM 1500
ClM 1510
ClM 1520
ClM 1530
ClM 1540
ClM 1550
ClM 1560
ClM 1510
ClM 1580
ClM 1590
ClM 1600
ClM 1610
ClM 1620
elM 1630
ClM 1640
ClM 1650
ClM 1660
ClM 1670
ClM 1680
CLM 1690
ClM 1100'
ClM" 1710
ClM 1720
ClM 1730
ClM 1740
ClM 1750
ClM 1760
ClM 1710
ClM 1180
ClM 1790
ClM 1800
ClM 1810
ClM 1820
ClM 1830
ClM 1840
ClM 1850
ClM 1860

o.
o.
o.o.

o.
o.
O.o.

11
IS

13

10

30
20

40

fORMATII/IIOIP -NUMBER Of PARAMETERSI//' ',15)
- Of'RESTRICTIONS'/I' ',IS)

fORMATI///'OG - COEFFICIENT MATRIX OF GoB')
- Of IN GII/' '.IS)

fORMATI/IIIOB - ESTIMATE Of V=xoB.E SUdJECT TO RRoB=R')
fORMATII//'OC - ESTIMATED VARIANCE-COVARIANCE MATRIX Of
fORMATII/I'OVAR - ESTIMATE OF VARIEIII)I/I' ',015.8)
fORMATIII/'OIDf - NUMdER Of D.f. FOR VAP. ESTIMATE'II' ',IS)
fORMATI//I'OPl - ROw SPACE SPECIFIED RROB=R')
fORMATIII/'OP2 - Pl,P2 ,IS ROw SPACE EST. UNBIASEDLY If RR·B=Rt)
fORMATII/I'OP3 - ROW SPACE ESTIMATED BIAS')
fOQMATII//'OP4 - ROW SPACE EST. UNBIASEDLY EvEN If RR·8.NE.R'1

- ESTIMATE Of G·B')
- ESTIMATED VARIANCE-COVARIANCE MATRIX')

FORMATI/I/'OG*PI')

fORMATI/I/'OG*P3'1
fORMATfl//'OG*P4'1
fORMATII/I'OII - ROwS =
fORMATI/II'OI2 - ROWS =
fORMATIII/'OI3 - ROwS =
fORMATI//I'OI4 - =
fORMAT (I ,1/(1 ',181)
fORMATIIII'Of,Dfl,Df2,P - TEST Of
fORMATIII/'OGBO - HYPOTHESIZED VALUE Of G*B')
ENDSUBROUTINE INPUTIN,IP,IO,IG,ypy,XPV,XVx,RR,R,G,GBO)
REAL*EI YPy,XPYlll.XPX(1),RRIlI,GIII,KIII,XI10),V,:lBOIl)
READll,lSIN,lP,lQ,lG
VPV=O.O
DO 10 1=1, IP
XPYII)=O.
DO 10 J=I.IP
XPXflJ-l)*IP·I)=O.
DO 20 1=I,N
READlltll) YtlXIJltJ=I,IPI
VPV=ypY'V*Y
DO 30 J=I.IP
XPVlJ)=XPVlJ).yoXlJ)
DO 30 K=I.IP
IJ=IK-IloIP'J
XPXIIJI=XPXIIJ)'XIJloXIKI
CONTINUE
DO 13 I =I. IQ
READll.11IRII),IRRIIJ-1)*IQ.I),J=l,IPI
IFlIG.EQ.O) RETURN
DO 40 l=l.IG
READll,11) lGIIJ-l)OIG'II,J=I.IPI
READll,111 lGtiOlI),I=l.IGI
RETURN
fORMAT I1fs.l)
FORMATI4JsI
END

IIG.SYSlJ8 DO DSN=NCS.ES.B4139.GAllANT.GAllANT,DJSP=SHR
II DO OSN=SYSl.fORTlIH,DISP=SHR
II DO OSN=SYSl.SUBlJB.OISP=SHR
I/G.SYSIN DO °
00012000060000400002
59.1 I. O. O. O.
120.50. 1. O. O.
58.6 1. O. O. O.
122.10. 1. O. O.

1007
1008
.1009
1010
1011
1012
1013
1014
1015
1016
1011
101E1
1019
1020
1021
1022
1023
1024
1025
1026
1021
1028
1029
1030
1031
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