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ABSTRACT

Te Likelihood Ratio Test statisti; T for the hypothesis .B: g = eo
against A: 8 £ 8, is considered when the data are generated according to
the nonlinear model ¥y = £(x,8) + e with variance unknown. A random variable
¥ is obtained such that n.(T-X) converges in probability to zero; the
distribution function of X is derived assuming normal errors.

| The power of the Likelihood Ratio test is tabulated for selected sample
sizes and selected departures from the null hypothesis by using ﬁhe distribution
function of ¥ +to spproximate the distribution function of T . Monte-Carlo
power esﬁimates for an exponential model are comparéd to power péints calculated

using thie approximation to gain a feel for the adequacy of the spproximation

in applications.

%
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1. INTRCDUCTION

This paper considers the hypothesis of location:
H: 8 = 60 against ‘A: 5 £ 80

at the o level of significance when the data are responses ¥y to inputs

Xt generated according to the nonlinear regression model

yt = f(Xt,e) +et (’t = 1y 2y eeey n) .

The unknown parameter 6 iIs kuown te be contained in the parameter épace Q
which is a subset of the p-dimensionsl reals. The inputs X, are contained in
X which is & subset of the k-dimensional reals. The efrors e are assumed
independent and normally distributed with mean zero and unknown variance g .

The ILikelihood Ratic test and the large sample distridbution of the test
statistic are obtained in Section 3. The power function obtained from this
distribution 1s tabulated at selected departures from the null hypothesis and
selected sample sizes in Section 4. Monbte-Carlo estimates of power are compared
with the large sample valueg for an exponential model in Section % in order to
gain a feel for the adequacy of the large sample approximation in smaller samples.
Section 6 contains summary and concluding remarks.

The resulis presented in this paper are for the case c2 unknown. If 02

is known, the large sample distribution of the Likelihood Ratioc test statistic

is obtained, but not tabulated, in [2;3].

2.  NOTATION AND ASSUMPTIONS
The following notation will be useful in the remainder of the paper.

Notation: Given the regression model

v = £(x58) +e,  (t =1, 2 ..., n)



where 8 € {0 C:RP, the observations

(yt’xt) (t =1, 25 couy n)}

and the hypothesis of location

we define:

H: 8§ = BO against A: 8 f @0

y = (v ¥y -w}'yn)' (n x 1),
£(68) = (£(x),0)5 £(x,58), ~vvy £(x,0))"  (n x 1),

e = (911 92:' ey en)’ (n % 1),

v£(x%,0) = the p X 1 vector whose ;jth element is Sg—
J

t
F(B) = the n X p metrix whose t B orew is V'f(xt,ﬁ),

p = FO)F (O)F(8) T F (0)  (nxn),

P" = I-P {1 Xn),

5=1(0) - £(s) (nx1),

=
i

5" P & /(20°)s

=5 P 5 /(209),

-
]

f(xf 9):



n

g (y) = lan ;l_ Z"l:«:}.{y't - f(xt? 8) }2 2

i

n
~2 1 2
o (v) = 25,0y, - t(x,e)}

g{t;v,A) = the non-central chi-squared density function with v

degrees freedom and non-centrality A [L4, p. 7h],

X
a(xsvd) = [ 5 eltvr)at
2
n{tiu,o ) = the normal density function with mean p and variance. ¢,
X
2 2
N(xsu,0%) = [ n(tw,o) at ,

p(i,A) = the Poisson density function with mean A .

In order to cbitain asymptotic results, it is necessary to specify the
behavior of the inputs ¥, as n becomes large.l A general way of specifying
the limiting behavior of nonlinear regression inputs is due to Malinvaud [6].
Malinvaud's definitions are repeated bhelow fcf the readers convenience; a more
- complete discussicn and examples are contalned in his paper.

Definition. Iet G be the Borel subsets of X and {Xtyle be the

seguence of inputs chogen frem X . ILet IA(X) be the indicator function of

a subset A of X . The measure u_ on (X,0) is defined by

-l.n
un(h) =78 T 0x)
for each A e U .~
Definition. A segquence of measures ﬂjn} on (X,4) is said to converge

weakly to a measure u on {¥,G) if for every real valued, bounded, continuous



functioﬁ g with domain X
Jeta (x) - [ elx)al=x)

as n - .
The assumptions below are used to obbtain the large sample distribution
of the Likelihood Ratio test statistic.
Assumptions. The parameber space {1 and the set ¥  are compact subsets

of the p-dimensional and k-dimensional reals, respectively. The response

function f{x,8) and the partial derivatives S%“ T(x,8) and
i
2
—mmg———f(x,e) are continuous on X X{) . The seguence of inputs {x }m

are chosen such that the sequence of measures ﬂin}le converges weakly to a
measure p defined over (X,G) . The true value of § , denoted by eo, is
contained in an open set which, in turn, is contained in Q. If £(x,8) = £(x,8")
except on a get of u measure zero, it is assumed that 6 = eo. The p ¥7p

matrix

~
Be 0] g5 1God) '5%5 £(x,6%)
is non-singular. As menitloned earlier, the errors {et} are independent with
density n{x;o,ca} where ﬂg is non-zero, finite, and unknown. _

Theze assumptions are patterned after those used by Malinvaud [ 6] to show
that the Maximum ILikelihood {least squares) estimator is comsistent. In
éddition, it can_be shown [ 23] under these assumptions that a meagurable
function a(y) minimizing (y - £(6))(y - £(8)) over Q exists and that
Vﬁ'(g(y) - eo)’ is asymptotically normally distributed with mean zero and

. . . 2 =1
variance-covariance matrix ¢ £ .



The following theorem is proved in [ 2:3].
"2
Theorem 1. Under the assumptions listed above, the estimator o (y) is

consistent for 02 and is characterized by
"o PR
o (y) = e'P e/n + a,

where n.a,  —converges in probability to zero. (The matrix P is evaluated
at 6 = 8°, the true parameter value. There is an 1 such that 752 F(5°%)
is non-singular for all n > .

Asgumptions which allow ) to be an unbounded set and do nob reguire that
the second partial derivatives of f£(x,8) exist vet are sufficient for the

conclusion of Theorem 1 are given in [2].

3. LARGE SAMPLE DISTRIBUTION OF THE LIKELTHOOD RATIO TERT STATISTIC

The Likelihcod of the sample y iz

L(y38 ) = (2x07) 2 el - £ 0y - 2(8)) (v - £(6))] -

The Maximum Likelihood estimators under H are @ = 8, and Ee(y) -
- -~
n l(y - f(eo))’.(y - f(eo)); over the entire parameter space they are 8(y)

minimizing (y - £(8))}'(y - £(8)) over Q and

it

Ply) = 17y - 26N (v - 7(8())) = int, My - 2(6)) (v - 2(a)) -

The Iikelihood Ratio ig, therefore,

2 2 -2
max{L(y; 8,0 )a 8 = 80; <o < m} B ’Eegyz : 2

) 2 - 2 )
max{L(y,e,c;); eé:Q;_O<c <°°} o (y)

Thus, the Likelihood Ratio test has the form: wreject the null hypothesis H

when



Fa

n(y) =

is larger than c¢ where PIT(y) »>c | 6 = @O] = g .

The Tollowing lemma is needed Lo prove the main result of this section.

Temma 1. Under the Assumptions listed in Section 2
e
1/67(y) = nfe’Pe + b,

where n.bn converges in probability to zero.
Proof. Choose 71 guch that 0 < ¢ < 62 and let &, be ag in Theorem 1.
et 6 >0 and € > 0 be given. By Theorem 1, there is an N such that

n>N implies P(Kn) z 1-5 where
K = [r<0 (9] N Ir<ePe/n] N1/ Pnle ]| + (1/°)nla_|? < €]

o)
since gg(y) and e’Pre/n converge in probability to o and n.a ~ converges

in probability to zero. By Tay}or% theorem, for e in Kn

H(L/GE(Y) ~ n/e'PL@) = "(e'Pie/n)“E(n-an) + (e'Ple/n + A aﬂ)_3(n-ai)

for some ) between O and 1. Thus, e € Kn “implies
n!l[cg(y) - nfe’Pel < (l/TE)nian! +—(l/¢5)nian|2-< €
whence e € Kﬁ and n > N imply
-8 = P(Kn) = P[n]l/g'g(y) - nfe’Pe| < €] . i

Theorem 2. Under the Assumptions listed in Section 2 the Likelihood Ratio .

test statistic may be characterized by -

I(y) =X +c



o(y) = .

is larger than c where P[T{(y) >c | § = eo] = g -
The Ffollowing lemma iz needed to prove the main reéult of this section.

Temma 1. Under the Assumpbions listed in Section 2
o o . '
/o (y) = nfe’Pe + b

where n.bn converges in probability to zero.
Proof. Choose 1 such that O < 1 < 02 and let a, be az in Theorem 1.
et & >0 and e >0 be given. By Theorem 1, there ig an N such that

n>N implies P(Kn) = 1-8 where
K = [7< (0] nlr<ePe/nln {(l/frg)n]anl + (1/¢5)n|anl2< el

n

Fal
gince Ga(y) and e’Pie/n converge in probability to 02 and nea, converges

in probsbility to zero. 3By Tayior% theorem, for e in Kn

n(l/ag(y) - nfe’Pe) = —(e'Pie/n)”E(ntan) + {e’P'ef/n + A an)_E(n.ai)
for some A Dbetween O and 1. Thus, e ¢ Kn “implies
n|1/Fly) - w/ePre| = (/Phnfa ] + (1/7)n]a ] < e
whence ¢ € Kﬁ and n >N imply
1-6 = p(K ) < P[n]1/67(y) - n/e'Prel <el . |

Thecrem 2. Under the Assumpiions listed in Section 2 the Likelihood Ratio

test statistic may be charachberized by

T{y) =X + e



where n.cn converges in probability to zero and the distribution function

of ¥ is:
O’ : = é .l) }ug O?
[ ‘; a(t/[x-1] + EX?\Q/[XJ:}E,: n-p, ;\E/{xdlg)g(t;p,?\l)dm x=< 1, by >0
[ o w5 2k, 83,) gl(tsp,hy)at x =1 Ay > 0

1T ge(t/[x~1] + 2xh2/{x-1}8; n-p; hg/[x~i}%§(t;pjkl)dt, x> 1.

Proof. By the preceeding Lemma

it

2(y) = (v - £(8 ) (v - £(8 ))/e'Pe + b (v - £(8))) (v ~ £(g_)}/n

(e48) “(e+8)/e’Pe + bn(e+6)'(e+6)/n

X +c
n

where & is evaluated at 8. Now n.c = n-bn(e'e/n + 2 8’e/n + 8'8/n)

and n.bn converges in probabllity to zero. The berm e}e/n converges in
probability to 62 by the Strong Law of large Numbers. The term 2 6'e/n
has mean zero and variance & oeé’é/ng. Since {f(x,8°) - f(x,eo)}2 is a

continuous function of x we have
E34’6/11 = I {f(x: 90) - f(xy @O) }ad%ﬁn(x) - j. {f(xy 80) - f(x, 80) }Edﬂ-cx)

as n — = by the weak convergence of the measures u - Thus, var(2 &6’e/n) - O
and 2 5’e/n converges in probability to zero by Chebysheff's inequality. The
last term 6’8/n converges to a finite constant as shown above. Thus, nee

converges In probability Lo zero.
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Set z = L e and ¥ =

Sl

= § . The random varisbles (Zl’ By tees zn)

are independent with density =n{$;0,1}. For an arbitrary constant a, the

random variable (z + ay) P{z + =y} is a non-central Chi-squared with p

degrees fresdom and non-centrality ac7’P7/2 gince P is idempotent with .

rank p . Similarly, (z + by)’PA(z + by) is a non-central Chi-squared with

n-p degrees freedom and non-centrality b y’PLy/zs These two random variables
. 4 . ~

are independent because PP~ = 0; see Graybill [L, ». TLff].

et a > 0.

Pl > a + 1] = P[{zw) (zw) >'{a+i)z’PLz]

il

Pl(zw) ‘Plzw) > az'Pz - oy Pz - ¥ Py ]

It

r - L - - 1
B (24 ) Plzir) > alz-aYy) B (z-a"y) - (1+a 1)y ‘P )

if

2 Blt > aemay) B(z-a ) - (1ea7h)y B ]

% g(t;p,y ‘Pr/2) dt

It

[o B (z-a"7y) ‘P (z-a"y) < (b + (a7T)y ‘Bly)/al

% g(t;p,7 'Pr/2) at

fe=]
[ o clt/a + (asi)y ‘P/8%; n-p, v 'Py/[2a%])
X g(t;p,7 ‘By/2) dt

By substituting | x = atl, A =7 'py/e, and Ay = v'?% /2 one obtains the
form of the distribution funcéion for x > 1.
The derivations for the remaining cases are analogous and are omitted.
The large semple approximation of the critical point ¢ will be denoted

¥* * "
by ¢ and defined by P[X > ¢ [6=C] = o where ¥ 1is as in Theorvem 2. The

i

[
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* ‘
point ¢ can be obtained from a table of ¥ as fellows. When 6=0
* #* *
P[X>c ] = P[e’Pe/e’Pie > e ~1] = P[F > (n-p)(c -1)/p] .

Iet Fa denote the « 100 percentage point of an F random variable
with 1 numnerator degrees freedom and n-p denominator degrees freedom;

*
c ig given by

S pFG/(nﬂp) .

* * :
Note that is ¢ =<1 then P[X>c¢c ] =1 when §=0. I% is assumed
*
that 0 < o<1 and hence that ¢ > 1 +throughout the rest of the

paper.

L. PARTTAT, TABUTATION OF THE POWER FUNCTION
The conclusion of Theorem 2 shates that n . (T-X) converges in
probability to zero as n tends to infinity. This is a relatively
rapid approach of the difference T-X to zero which leads cne to expect
that the probability P[X > t] would be a good approximation to
P[T > t] even in small samples.
The probability P[X >—c*] with ¢ chosen for = .05. is

tabulated in Tables 1 through 9 for values of p, n, A, and Xe

1
thought to be representative of those ocecurring most freguently in
applications.

N
The details of the numerical evaluation of P[X > c¢ ] are as

follows. The density g{t;v,A) may be put in the form [4, p. 761

g{t;v,d) = Z:ﬁdp(i;k) g{t;v+2i,0) »
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Using this expression and rearranging Terms

* [ (=3 . X * LD .
Plx > ¢ ] = £ & p(ish/le -110)0(550)

* W *
x [ 0 a(/lc-1] + 2¢ 2/le =115 n-p + 21, 0) g(t; p +2J, O)dt.

This expression was evaluated on an 1BM 5?0/165 using the IBM Scientific
Subroutine Package [ 5] subroutines DEGAM,_CDTR,‘and DRI1A. A listing of the

authors program is available on request.

5. A MONTE-CARIO COMPARISON
In an effort to gain a feel for the adequacy of the large sample approxi-

mation
PI[T > t] = P[X > t]

*
in samples of moderate size, Monte-Carlo estimates of P[T > c¢ ] were obtained

for the model

Thirty inputs were chosen from X = [0,1] by replicating the points 0(.1).7
three times and the points .8(.1)1 twice. The parameter space was taken as
0 = [0,1] x [0,1] and the null hypothesis as H: 0, = (1/2, 1/2). TFor the
null hypothesis and selected departures from the null hypothesis, five
thousand random samples were generated according to the mbdel with 02: taken
as .Obk. The point estimate E of P[T >-c*} is, of course, the ratio of

~

- *
the number of times T exceeded c¢  to five thousand. The variance of p

was egtimated by



1l

Var(g) = P[¥X > ¢ P¥X < c*]/5ooo .

The results are presented in Table 10.
Certain points should be mentioned about the choice of valuves of
g £ B, in the Monte-Carlo study. The ratio le/li is minimized (=0)

for § £ (% s %) of the form (el,%? and, based on a numerical evalua-
1 1
z7 2

R r(cos(g ), sin(g 1) ). Three poin®s were chosen to be of the first

tion of A, and ), over (1, maximized for @ of the form (

form, and two of the latter form. Further, two sets of points were
paired with respect to kl- This was done to evaluate the varistion in

power when AE changes while Al is held fixed.

6. REMARKS
Considering the standard errors of the Monte-Carlo estimstes of
PIT > é*}, the estimates support the use of P » c*] to approximate
power in this instance. Generalizaﬁiéns beyond thisg statement ecarry
the usual risks of generalizing from Monte-Carle studies.
In most applications, AE will be guite small relative to kl as

%
in the Monte-Carlo study. This being the case, a value of P[X > ¢}

computed with AQ = 0 would be adequate. HNote that if RE = 0, then

[X>c ] = P[F' >F ]
.

where F’ denotes a non-central F with p numerator degrees freedom, n-p
denominator degrees freedom, and non-centrality Kl{h, p. T7-781. In obther

words, the first row of Tebles 1 through 9 are a tabulation of the power of the



10. HMHonte-Carlo Power Kshtimates for an Exponential Medel

Power

Parameters Non-centralities Monte~Carlo
8, 8, A Ay P> c ] ;? SE(;)
) 0 | 0 . 050 . 0552 . 00308

368 .5 9854 0 - 200 . 2058 . 00570

L Lp37 . 6849 L9355 L0003k . 20k 211k . 00570
. ;7856 .5 L, 556 0 ST27 . T1h0 . 00630
. 3473 L8697 I 556 . 00537 728 L7312 « 006 eé

.62 .5 - 8.958 0 . 957 « G530 . 00287
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Fmteét. Thus, in most applications, an adequate indication of the powef of
the Likelihood Ratio test can be obtained from charits of the power of the
P-test such as [1] and [7].

One last peint might be mentioned. To reject H when T(y) exceeds
e =1 4 P Fh/(n~p) is equivalent to rejecting H when s(y) exceeds F
where
[F(y) - /e

(5)/ (n-p)

s(y) =

This form of the ILikelihood Ratio test is analagous toc the F-test used in
linear regression and can be compared directly with tabled F-test critical
points. As stated above, the behavior of S(y) wunder the alternative

AB % eo will be adeguately approximated in most applications by a non-central
P with p numerabor degrees freedom, n-p denominator degrees freedom, and
nen~centrality ll» The size of ), will give an indication of the adequacy

2

of the approximation.
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