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The paper conslders the estimation of the parameters of a set of
nonlinear regression equations when the responses are contempofaneously‘
but not serially correlated. Conditions are set forth such that the
estimator obtained is strongly consistent, asympltotically normally
distributed, and asymptotically more efficient than fThe single-
equation least squafes estimator. The methods presented a}low estima-
tion of the parameters subject to nonlinear restrictions across equations. .
The paper includes a discussion of methods to perform the computations,

a worked example, and a Monte Carlo simulation.
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1. INTRODUCTION

This paper may be viewed as a generalization of Zellner's (1962)
paper in the following respects. The response functions are allowed
to be nonlinear in the parameters as well as linear. The parameters
of the model may be egtimated subject to nonlinear restrictions across
equations as well as linear restrictions across equations.

We rely on Zellner's paper to provide the general economic consid-
erations which motivate the study of the Seemingly Unrelated Regressions
situation. The extension to the nonlinear case is motivated by concern
for the specification error due to requiring that economic theory
accommodate the assumptions of linear regression. The argument based
on Taylor's Theorem used te justify the linear model as an adequate
approximation of the economic model often leaves the reader of an
econometric study less than satisfied. The case when the approximation
is inadequate provides the primary motivation for this paper. It
attempts to give.the practioner the freedom to let his econometric
model more adequately represent his economic model.

The estimation procedure set forth in Section 2 is the same as
Zellner's (1962) Seemiﬁgly Unrelated Regressions technique with the
exception that nonlinear response functions and nonlinear parametric
constraints are permitted. The variances and covariances of the dis-
turbances are estimated from the residuals derived from an equation-by-
equation application of least squares. All parameters are then egstimated
simultaneously by applying Aitken’é (1935) generalized least squares

to the whole system of equations using these estimated variances and
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9ovariances. Nonlinear constraints on the parameters may be imposed in
thé Aitken phase of the procedure.

Conditions are set forth in Section 3 under which this procedure
yields estimators which are strongly consistent (almost sure gonvergenée)
and asympfotically normally distributed. These assertions are proved
in Section U4 using a set of lemmas stated and proved in the Appendix.
The conditions used to obtain these results are patterned after the
assumptions used by Malinvaud (1970) in a nonlinear regression context.

Either Hartley's (1961) Modified Gauss-Newton Method or Marquardt's
(1965)_Algorithm may be used to obtain the restricted or_ﬁnrestribted
estimates of the parameters in the Aitken phase of the procedure ag
well as in the equation-by-equation phase. The details and a worked
example are in Section 5.

The unrestricted estimator obtained according tothe Zéllner proce-
dure is shown to be asymptoticélly more efficient than thevequation~by-
equation least squares estimator except in two special céses- The
first case would be more apt to occur in a designed multivaeriate experi-
ment than in an econometric investigation. It is the case when each
of the contemporanebus responsés has the same response function and
same independent variables. This special gituation is»entirely‘analo-
gous with the one discussed by Zellner (1962, p. 170). A second case
where the equatien-by-equation least squares estimator is fully effi-
cient is when there are no contemporaneous correlations among the
responses.

The reader who is only interested in the statistical and numerical

methods proposed in this paper need only read 8S8ection 2 for a description
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‘ . of the method and Section 5 for a discussion of how available computer
programs may be used to carry out the computations.

Section 7 reports the results of a Monte-Carlo simulation.



2. ESTIMATION PROCEDURE

The estimation procedure is entirely analogous to Zellner's (1962)
Seemingly Unrelated Regressions estimation method except that (possibly)
nonlinear response functions are substituted for linear response func-
tions.

We have a set of M nonlinear regression equations

= ° = = ce e
Vo, = facgtofrga) el (=1, 25 eve, M) (t =1, 2, , 1)
where the inputs étar are k@. by 1 vectors and the unknown parameters

° are p_ by 1 vectors known to be contained in the sets ® . The
~q, o ~g

-errors

u M x 1)

_- 7
B = (eggs epp ooes ey

are assumed to be ihdependent, each having mean ’g, the same distribu-
tion function, and positive definite variance-covariance matrix Z -
Each.of the M regression equations may be written in a convenient

vector form as

O
Xﬁ,=,£aQQa) * L0 (=1, 2, vevy, M)

where

,Xa,z (ylaf y20§ T yhu)/ (n x l)’

,I:ql(@a) = (foc(i{'la,’ ’Q'Ob)’ fa(,iﬁea: ’Q’OL)’ vy foc('zgnoc’ ,@m) ) (n%x 1),

— ?
R = (elaf Cag? *"°7 ena) (0 x1).
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The first step of the procedure is to obtain the least squares esti-

PN B
mators Qu, by minimizing

a(8,) = =z, - £.08.0) G - £.(8.)

~g, e
over Qu, equation by equation.

The second step is to form the residual vectors

~ La)
’%a.—_%&—ia‘(’gtj) (a"—" 1, L) M)

and estimate the elements ¢ of the variance-covariance matrix ’g

o
by
” lo‘\ /A
Oaﬁ =E£a, Eﬁ (=1, 2y veey M) (8 =1, 2 "",M)

e
to obtain the estimate & of Z .
To carry out the next step, the set of M regressions are

arranged in a single regression

where

£(,@) = (,f_,i(,@l); fé(,@e)) AR f,b;l(,@q\q))’ (nM X 1),

8= (8] 80 s G (Toq Py %1



The variance-covariance matrix for this regression is

d 0 %9
Ik O

elee) = 3®L ~ :

where Z ls the n by =n

identity matrix.

.

C

I

. (oM X% nM)

This variance-covariance

A.
matrix is estimated by rg®,;[, obtained in the second step of the

procedure.

The third step of the procedure is to obtain the Altken type
~ 3 )

N
estimator @ by minimizing

n.

Q(e)
X9 .

over @ =
: ~ a=l o

Define

il

'Y'ocfoa(f}sa’ 'Qor,)
d
0.

1Q

fa(f}'sa,’ rga') ’

the P, by 1 vector whose ith

th

o o

Em(,-@a) = the n by p matrix whosel vt
Bl) 0
9 Ee( 8,) cee

E(@) = . :

0

2

Ly - £0) @O - 580

element is
row is

/.o
Za’f.a(,}f,t o 'Q'G,) ’

(M x Epizl P, *
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The fourth and final step is to obtain the inverse of the matrix

A Fa) N
~ 1 ; ~ A"'l/\ "
R=7E@E &I K@ -

Lo

In Section 4 it is shown that MIT(EJ - g) is asymptotica}\ly normally
distributed with a variance-covariance matrix for which (é)-l is a
strongly consistent estimator.

One may wish to impose restrictions across equations in the Aitken
improvement phase of. the estimation. For our purposes, the most con-
venient way to represent these restrictions is by reparameterization.
Iet p be an r by 1 vector of new parameters and let Bq, be a P,
by 1 wvector valued function relating the originai parameters to the

_ new parameters according to

7 ElR) -

We assume that r<p = EM p_and that p 1is contained in the
: a=1l Fq
parameter space P .

Define

8R) = (g @) g3y s gylR))  (p=T. D %1
V-g. (o) =the r by 1 wvector whose jth element is 2 g )
~ PiaR b4 “ia ’

_ . .th . ’
f%a,('Q') =the p by r matrix whose i’ row is ’y"p gioc(E) ,

) = | ¥ -2, 5 xo) .
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The third step of the procedure is modified to read: Obtain the
N

N
estimator R by minimizing

a5 = = (y - LN CT @D - L&)

over the parameter space P .

The fourth step of the procedure is modified to read: oObtain
the inverse of the matrix

2,2 ~ , A 1, N A n N
ERE=8 R0 52 (ER)E D )] ¢ -
In Section 4 it is shown that ,\/T(E‘ - R’) 1is asymptotically normally

N AN
AN AN l

distributed with a variance-covariance matrix for which (g’g g)- is
a strongly consistent estimators
Either Hartley's (1961) Modified Gauss-Newton Method or Marquardt's
6 . o a o 9 . . .
(1963) Algorithm may be used to find 8, minimizing ro»(f@'a ) Using

a suitable transformation, either of these: methods may be applied to
~ .

A .Y
A ~ A
find @ minimizing Q(g) and (Q)_l or p minimizing Q(g(p)) and

A N

A A .
(’ggfg) 1 as the case may be. The details are discussed in Section 5.
One may wish to estimate the parameters of the model subject to the

restrictions g(p) = 9 but present the results in terms of the original

"N N

N N
parameters @ . This is done by setting ’Q = g(&‘) As shown in Section
S ~7
N

. A
4, 8 is strongly consistent for §° and sn (§ - §°) is asympfoti-
cally‘normally distributed with a variance-covariance matrix for which
N A AA A .

A AAA PN .
JI(2(cX) g)-lg'(g) is a strongly consistent estimator. This matrix

- will be singular when r <p .



3. ASSUMPTIONS

Inr order to obtain asymptotic results, it is necessary"co specify
thé behavior of the inputs i, 8 1 becomes large. A general way
of specifying the limiting behavior of nonlinear regression inputs isg
due to Malinvaud (1970). Two of his definitions are repeated below
for the reader's convenience; a more complete discussion and exampies
are contained in his paper. In readihg the two definitions, it will
help if the reader keeps in mind two situations where the inputs satisfy
Definitions 3.1 and 3.2. . Let X = be the subset of Rk“ from which

the inputs f}sta are to be chosen, k = Blﬁ:l ka,’,

A= (ﬁi: §é: cevy ﬁﬁ)l (k x 1),

and let r)g = Xbi:l 25@ « The first is to choose some set of points

*
{'}\c't}$=l and choose inputs according to the scheme

* * * : * *

B =Xy Ep Ty v Ep T Ep Epg T AP Ao T Xy o

that is, "constant in repeated samples” (Theil, 1971, p. 364). The
second is to choose inputs by randomly sampling from a distribution

- function defined over the set X ; for example, the k dimensional

uniform distribution.

Definition 3.1: Let G be the Borel subsets of X and let

{g\c}t}z’:l be a sequence of inputs chosen from X . Fora set A in G
let IA(BS) be its indicator function. The probability measure u

on (r}g, G) is defined by

u,(8) =28 I,0x) -
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Definition 3.2: A sequence of measures {un}:___l on (%, G) is

said to converge weakly to a measure u on (’)\C’, G) if for every real

valued, bounded, and comtinuous function g with domain ’}5 B

Un [ el @ &) =] ex wulx -

The following Assumptions are sufficient to obtain the asymptotic
~

in the case when no restrictions are

& >

properties of the estimator

imposed on the parameters g -

Assumptions: The parameter spaces r@-'or, and sets ‘ZC‘CL are coinpact-
The response function fa(’}sa, rgoz,)’ the first partial derivatives in
g@, and the second partial derivatives in 'Q*or, are continuous on

. ©

;\(Ja xr@voc for each a =1, 2, «os, M« The sequence of inputs {f%t}t=l
are chosen such that the sequence of measures {un}:_l converges
weakly to a measure p ~ defined on (’}5, G). The true parameter value
_'@i’x is contained in an open spehre '%oc which is, in turn, contained in

f = ee e . 3 = f °
9-'(1, or each o = 1, 2, s Mo IF fa,(r%a,’ 'gcx.) oc(r}sa,’ rgoc) except

for x in A where u(A) =0, it is assumed that § = g°. The p

by p matrix

11 12
o] rYall o V. cuﬁcm

o1 20
O ¥ O Ny cer °2MV~2M
Q = Qo . L]
M1 Mo
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op

is non-singular where the ¢ are the elements of E-l and the D,

by pB matrices V have the ijth element

~af

- ) d
Vijp ~ f 0. fm(,}sa: ,QZL) _bej fﬁ(’}‘cﬁ’ ,QB) du(;s) .

i B

As mentioned earlier, the errors are independently and identically

R
distributed with mean O and unknown positive-definite variance-

0 . /\
covariance matrix 'g o

In the case where the restrictions 8= ,%(Q,) are imposed on the

parameters, the following additlonal assumptions are required.

Assumptions: (Continued) The parameter space P is compact.

The range of 5 is a subset of 8 = Xl\;l

1ts first and second partial derivatives in g are continuous. The

9+ The function glp) and

true pafameter value p° satisfles g(p°) = § and p° is contained
in an open sphere § which is, in turn, contained in P. If
glR) = 8 it is assumed that g = p° . The matrix G'Q G where

N

g = G(o°) is non-singular,
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L. STRONG CONSISTENCY AND ASYMPTOTIC NORMALITY

Two theorems establishing the strong consistency and asymptotic
N

A
normality of the estimator g are proved in this section; the strong
~

N .
consistency and asymptotic normality of 9 Tfollow as corollaries to
these two theorems. In order to simplify the notation in this section

and the remainder of the paper we will adopt the convention of writing

£, Tor the function f_ (f@a) when it is evaluated at the true value
R <) . s - . (¢}
of the parameter ’g'@ = f@u Similarly, we will write 'Eoo for f1300(@"0([),

£ for £(8°), F for F(g), and G for G(’)-

N
el

Theorem 1: The estimator R, converges almost surely to Qf under

the Assumptions listed in Section 3.

Proof: Consider the quadratic form

aY) = = (g~ L)' TR (g - £(@)
- Tof 1 . / -
= T ’%”:1 07 & Wy~ £(8)) (g - £5(8)) -
The random variables 3"@ converge almost surely to the elements GO@

of z_l by Iemma A.5. Using arguments similar to those employed in

f (8 ))I(”Yﬁ - E:B(AG-B)) converge

1
th f of . oy =
e proof of Lemma A.5, the terms n(fxa, £.\8

almost surely and uniformly for 8 in 8 to
op *J 8%y &) 05(xsr 85) W (x)

~ Where 6@(’5\3@, ﬁa) = fa(gsa, ’g‘;’) - foc(f}*goc’ '_Qa) Thus, Q(g) converges

almost surely to
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i

Q*(g) 21;’;1 z:glzl 00@00@ + [ E;l %Ll caﬁéop()ga, Qa)éﬁ(ﬁﬁ, ,QB) du (x)

M+ [ V(g g) dulx)

uniformly for § in @ . The matrix ’g_l is positive definite so the
integrand v(’;\cj 8) 1is positive for all (x', §’)’ in X X8 .
Consequently, if Q,*(r@) = M ‘then v(;s, ,Q,) = 0 except for x in A
where u(A) = 0. This implies éa(gsa, ’Qa) = 0 except for x in A
which implies 8o = 'Q:; by Assumption. Thus, Q*(%(g)) = M implies
gR) = & which implies p = RS- A

Consider a sequence {gﬂ} of points minimizing Q(g(p)) over P
corresponding to a realization of the errors {r%t}?to:l . Since P is-

‘ , cgmpact there ig at least one ;L\imit point Q* and one subsequence
-

~ @ ] - * . . .
{Qﬂm}mﬂ. such that lim R'nm: p ¢ Unless this realization belongs

%
to the exceptional E, Q(’%(Q‘)) converges to Q (ﬁ(ﬂ)) uniformly for

R, in ’Zg whence
M<Q (gl ) = 1in _ _alglp, )) < Lin . _alg?)) = M-
m

This implies @ (g(o )) = M which impli ¥ = p® . Thus, th
19} /s\ Q g, = which implies p- = p~ 1US 5 e
N
gequence {%};1 hag only one limit point Qj’ except for realizations
of the errors {p%}fc;l contained in E where P(E) = 0. |

N
N

Corollary 1: The estimator ,Q, converges almost surely to ’@0

under the Assumptions listed in Section 3.

Proof: Iet g(g) be the identity mapping of @ onto @ The

. set Xbi_l i@ is an open set containing rgf which is, in turn, contained
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in /9, + Thus, there exists an open sphere § containing (Q}° which
is, in turn, contained in @ . The matrix Gl) =L so G'QG is

nonsingular. Consequently, the identiﬁy mapping satisfies the full

set of assumptions. [

Theorem 2: If the Assumptions listed in Sectlon 3 are satisfied
~neorem o
N
then (g - p°) converges in distribution to an r-variate normal

. . . . -1 .
with mean O and variance-covariance matrix (r(\}" Q G) " The matrix
~J

N

3R e-2 @ L E)E P He®)isR)

converges almost surely to Q'Qg .

N "~ ~
~ N

f: fo @ = of . o ° ] = o] . . . t
Proo Define g =p 1if p is in 8 and o) it g, 1is no
. » . ~
in 8. Set § =pg(p). Since /\/IT(R‘ - p) converges almosf surely to
o by Theorem 1, it will suffice to prove the theorem for g *
»
The first order Taylor series expansion of . £(§) may be written

as

£0) = £+ E G - &%) +ER - g°)

NS "~
where H is the nM by r matrix
H=(H, B, «-ey H)' 3

th . P ’ -
the t '~ row of the n by r submatrix L, is _(Q, Q) V 2p r}sta,’ga(g‘))
where E is on the line segment joining é‘ to Qf . Consider the matrix

IJ;'lj‘J'(FQ‘) (’g—l@yﬁ which is composed of the p . by r . submatrices

R T IR vt )G T S 6@ -
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The elements of this submatrix converge almost surely to zero by the
continuity of the first and second order partial derivatives of f (x 28, )
oA e Mlae’
and ga(g), the compactness of the set % b4 Q X}Z » and the almost
L] . l L
sure convergence of p to % In consequence, the matrix ZE’(Q) %
F'(g) (fg-l@g)g converges almost surely to 0 .

Using Taylor's Theorem, we may write
¢ . -1 i -1 v
S RE®E ®D &=L E XD & +2p - &)

where D is the r by r matrix with i,jth element

I

2
op d -
=l gbi:l %11 T % 3% T £alR)) St -

Note that -I]i dij converges almost surely to O by Lemma A.L.
‘ Using the Taylor series expansions obtained. in the two previous

paragraphs, we may write the r by 1 vector of partial derivatives

in g of (-.Ji2)algR)) as

(- ﬁ/e)zpexg(g)) = orr(Et @D o

£
v

¢ REWE T RDES +H)-—D]«/’5(Q, )

i
Sll-‘

FUREMUEE - FH@ et

G (QE (D A (F - F H®D (¢ - £®)

}SII——‘

o)
el

The estimator o} is contalned in .§, for n sufficiently large except
on an exceptional event E occurring with probability zero by Theorem 1;

. thus (- A/E/Q)Q(g(é)) converges to 0 almost surely as é is a
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~

T
stationary point of Q(,%(El)) when p is in 8. In consequence,

N (Q“ - o°) converges in distribution to a r-variate normel with mean

. . . -1
0 and variance-covariance mabtrix (G'Q G) because:
(a4 ~ ~

Ao

Be

Ce

Do

The first term on the right converges in distribution to a
r-variate normal with mean ,9, and variance-covariance matrix
3'Q G’ by Lemma A.6.

The matrix in brackets appearing in the second term on the
right converges almost surely to ,%I;Q. G- ‘I'hisrfollows because
%E'(ré) (g-l@i) F converges almost surely to by Lemma
A.3, ,QT,(FS) converges almost surely to G, and the remaining
terms converge almost surely to Q by our preceeding remarks.
The third term on the right converges in probability to Q.
This follows because the subvectors Egﬂﬁ ('(;o@_ O@)%l- E'olc(fécn)sﬁ
converge in probability to 0O by Lemma A.5 and Lemma A.k.

The fourth term on the right converges in probability to Q

o®)= 1’

A -
hi th t a®_
This follows because the subvectors %Llﬁ (o = Na(ﬁﬂ) X

. .
(E‘B - ri:ﬁ(rgﬁ)) converge in probability to Q' by Lemma A.5,

Temma A.l; and Theorem l.

The last sentence of the theorem follows by applying Lemma A.5 to

of

”»
obtain the almost sure convergence of O_o@ to o, by applying
N

N
Theorem 1 to obtain the almost sure convergence of g(p) to & and
A ~

~
,.(:’,(Q,) to G, and by applying Lemma A,-\B to obtain the almost sure con-

vergence of the submatrices %%(ﬁagg)) F-B(f%ﬂ(g'n to ,qu i
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Corollary 2: If the Assumptions listed in Section % are satisfied
A N
N
then ,\/f('@ - '@°) converges. in distribution to a p-variate normal with

. . . -1 .
mean Q and variance=-covariance matrix Q « The matrix

N

N N

1 el /\_l : A

=S EQE @D E®
converges almost surely to Q .

Proof: The proof is the same as the proof of Corollary 1. |

Theorem 3: Let the Assumptions of Section 3 be satisfied and set
_— A

la)
A N ~
8 =s() - Then g converges almost surely to @ and i ("g &)

is asymptotically normally distributed with mean 0O and (possibly)

singular varlance -covariance matrix G(G Q G) G The matrix
Eal A A A

G(R,) (‘g‘Q’ G) '(p) is strongly consistent for ,%(E’,Q g)_lg',

b >>

Proof: The almost sure convergence of to r@° follows from
the continuity of ,.%(Q) and Theorem 1.

Let E, be as in the proof of Tﬁeoretsz 2. It will su{fice to
prove the bheorem for 5(;02‘) instead of é because h (:35’ - '%(5))

converges almost surely to zero by Theorem l. The first order Taylor

series expansion of f%(é) is

gR) =8 +8R-~) +ER - &)

where H is the p by r matrix H= (ﬂi, ,ﬂé’ cesy "Hl\:l)l the ;o

row of the pa' by r submatrix H  is = "(R, )Y ~ 100(52;)
o

where E) lies on the line segment joining Q’ to R The asymptotic

normelity of h (g(g) - &) is due to the fact that ,\/ﬁ-(g’ - Q) is
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asymptotically normally distributed as shown in 'the proof of Theorem 2,
the elements of z;ng(E) are bounded by continuity and the compactness
of P and (EJ - °) converges almost surely to 0 by Theorem 1.
The last sentence of the Theorem follows from Theorem 1, Theorem 2,

and the continuity of G(g). |
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5. COMPUTATTONAL CONSIDERATIONS

The minimization of Q&(@ﬂ) to obtain the ordinary least squares
estimators ’ga and residual vectors é&l may be carried out using
either Hartley's (1961) Modified Gauss-Newton Method or Marquardt's
(1963) Algorithm. Either of these meéhods may be used te minimize
Q(g) by proceeding as follows. Factor gfl to obtain a matrix R
such that lg-l =R'R . Iet iﬂﬁ denote the element of R with row

index o and column index B. Define new input vectors,

Bio = (g2 T oo Tap By Bror vovo B M EXD)

new responses,

Zazzgl=lro@ Vg ?

and a new response function,

mg ey &) = .Egil Vata e B Zg 1 Tp T5le 89 -

When the model is transformed in this fashion 1t is in a form permitting

the application of either Hartley's or Marquardt's algorithm to minimize

£

=1

22=1 (Zta B hCEtaf'@))2 =1 a(g)

~
A N
and obtain 8§ The vector § is a good start value for the iterations.

Most implementations of elther algorithm will print the matrix

@™ - (ZM ny, :9) v nlw, :@:))"l .

~t o

A
N -
. -1 -1 . . . .
Since Q‘ = n(gﬁg) the estimated wvariance-covariance matrix of
N

A R
Vi (8 ~ §°) may be obtained without additional cemputations.
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The same transformation of the inputs, responses, and response
~N

N
function may be used to obtain g minimizing Q(g()) as was used
.Y
A
to obtain ,@ minimizing QQ@)» The only modification required is
to substitute g(p) for 8  in the response function h(:'!fta’ §) obtain-
ing h(ﬂ%af g(g)) - Be careful that the number of parsmeters supplied

to the program are reduced from p to r and that derivatives are

taken with respect teo p . Since
’» Ca) ~
"N ' o) S
Zp h(ﬂ,ba: ,%(Q)) =G (Q) Y h(;ulfta,’ ,%(Q,))

the matrix printed by the program

~

@™ - @, T v bl £R) L e, RN

will satisfy

Thus 1t may be used to estimate the variance-covariance matrix of
N
"

WA - R
Start values for the iterations may be obtained by finding g

which will satisfy at least r of the equatiens in the system

8- gl) -
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~

The computations will be illustrated using the data presented in

Table 1. These observations were generated according to the model

8, .x_,
va e h1%2tl |

= 0pq T 0y Xypg * B3 £1 °

Y1 = 1

8, X
~ 355140
Vo = 015 * 855 ¢ T

Using the Modified-Gauss Newlton Method, one finds that the least squares
estimator for the first equation is

~

8 = (1.0127, 1.0077, -9903, -1.0263)' ,
and for the second equation it is

= (1.0450, .9709, -1.0979)

v
L
The estimated variance=-covariance matrix is

. 0008856 . 0004516

N
T =
. 000k516 . 0008258
oy
and its inverse may be factored as Z ='5:@ where
39. 57 -21. 6k
R =
0 34.80

The transformed inputs are, therefore,

4

Wy = (3957, <216k x40 X005 X00)

7

) Frgp)

Ho = (05 3580, 405 xy,



Table 1. Inputs and Responses
Ie1 X141 ot It *1t2
1 1.98803 0 2. 05446 0
2 1. 74975 0 .25 1.73545 .25
3 1. 56687 0 .5 1.53786 o5
Y 1. 48967 0 -5 1. 49833 75
5 1. 40154 0 1. 37966 1
6 2. 28432 .25 2. 02124 0
7 1. 96907 .25 .25 1.74193 .25
8 1.83%65 .25 o5 1. 60170 .5
9 1. 66293 .25 .75 1. 4%25%0 .75
10 1.61976 .25 1.34858 1
11 2. 51247 .5 2.00361 0
12 2.31425 .5 .25 1.80896 .25
13 2.08653 .5 <5 1.55098 .5
14 2.05508 .5 .75 1. 48081 .75
15 1.84513 5 , 1-33590 1
16 2. 7h7ht .75 1.96754 0
17 2. 52438 .75 .25 1. 76454 .25
18 2.37002 -T5 .5 1.63567 .5
19 2. 21222 75 .75 1. 41481 .75
20 2.09650 .75 1.36679 1
21 2. 98463 1 1. 98960 0
22 2. 77650 1 .05 1. 76581 .25
23 2. 60803 1 .5 1.57198 o5
24 2. 49681 1 15 1. 47238 .75
25 2. 42138 1 1. 40579 1
26 2.05712 0 2.0k711 0
27 1.82886 0 .25 1.78L453 .25
8 1.62770 0 .5 1. 65160 .5
29 1. 48741 0 .75 1. 48088 15
30 1.33268 0 1.38178 1
31 2. 28643 .25 2.02916 0
32 2,08228 .25 « 25 1.80538 25
33 1.82655 .25 o5 1. 60661 .5
3k 1.68291 .25 15 1.45213 <75
35 1.61076 .25 1.38909 1
36 2. k7966 .5 1.96843 0
37 2. 27283 5 -25 175310 25
38 2.09720 .5 <5 1.64080 05
39 1.98836 .5 75 1.48162 .75
Lo 1.858k49 o5 1.371ko 1
L1 2.73098 L75. 2. 02kok 0
Lo 2. 54087 15 . 05 1.81938 .25
43 2.37716 .75 .5 1.624k42 .5
LL 2. 25082 <75 75 1. 51076 75
L5 2.14113 75 1.36210 1
L6 2. 99249 1 , 2.060%2 0
L7 2.78713% 1 .25 1.82534 <25
48 2. 63906 1 5 1. 60557 .5
Lo 2. 48154 1 :T5 1. 48878 <75
50 2.36727 1 1.34132 1
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the transformed responses are;

Zg1 = 39:57 ygy = 216k yyp

Zip = 34.80 Vo ?

and the new response function is -

1 itg
B(Wior &) = Wipolfpy + 8oy Wap + 65 @ )

=] W
32 Sta
PP ) -

This transformed model is in a suitable form for the use of the
"N

Modified Gauss-Newton Method. Using 8 as the start value, one

obtains

8 = (1.0119, 1.0096, .9902, -1.0266, 1.0450, .9709, -1.0979) -

and

. 006368 .000051 -+ 006047 =.010380 .0028LL -.002692 ~.005237

. 000051 . 000102 0 0 0 0 0
7 -« 006047 0 . 005833 .009781 -.002716 .002606 .00L4939
(p’B)"" =] --010380 0 .009781 .O0LTL18 -.004639 .004332 008774
« 002844 0 -. 002716 -.004639 .00L576 -.004339 -.00839L
-. 002692 0 . 002606 .0043%2 -.004339 .004180 .0078LT
-+ 005237 0 . 004939 .0087T74 -.008394 -..COT8LT .0158L49

after four iterations.

Suppose, now, that we wish to impose the constraints

=80

011 = 830 >

9 8

31 T S22

By = 855 -
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The reparameterization corresponding to these restrictions is

1

E‘I(QJ) (91: p2’ p5’ pu)l

£,R) = (o1 055 01)" -

The matrix of partial derivatives is

oI
2
ft
o O = O O O
o O O O O - O
C = O O +FH O O
H O O = C O O
—

N
Putting E&Q) =0 and solving the first four equations for Q, e

obtain the start values for the iterations
. g = (1.0127, 1.0077, -9903, -1.0263)' .
After five iterations of the Modified-Gauss Newton Method one obtains

£,= (1.0315, 1.0040, .9792, -1.0650)

.004143  -.000009 -.003936 -.007214 \
1 -. 000009 - 000040 0 0
D™ -
-.00393%6 0 - 003794 < 006769 }
/
-. 007214 0 - 006769 .012913 /



6. . ASYMPTOTIC EFFICIENCY

"~
In Lemma. A.2 it is shown that & (8 - §°) converges in distribution

to a p-variate normal with mean O and variance-covariance matrix
~J

viry ™l where
~d e o
.3511 2 2
2 fYQE s e 2
E = . . .
2 Q ces leV]l\d
and
o181 %% vt Tndaw
%1 %ealee ' %adon
- T = { . . . .
%0 el 0 Owsam
~
~We have seen in Theorem 2 that i (§ - §) converges in distribution
to a p-variate normal with mean ,Q, and variance-covariance matrix Q‘“l.
)
~
The Aitken improved estimator 8 is asymptotically more efficient

"
than the equation by equation least squares estimator 8 in the

sense that ’Y’-lg x-l - Qﬂl is a positive semi-definite matrix. This

is proven as follows. By Lemma A.3 E'lg X“l is the limit of
1 rm=l/l o 1oyl s -1, s
GCEDTGEFEEDEE EE)™ while Q7 is the limit of

(%’g’@']‘@g)’]z)'l . The difference n[@’g)’l(g’(rg&;)g) (E’E)"l -

gg(gﬂﬁiglg)'l] is positive semi-definite by Aitken's Theorem
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(Theil, 1971, p. 238) so the limit ¥ 'T y'© - Q™ is positive semi-
definite.

There is one situation, likely to occur in a designed experiment,
where the.Aitken improvement of :é does not result in a gain in

asymptotic efficiency. When the response functions fa(x , 8) all

Ay
" have the same functional form and the inputs p I are the same for
a=1, 2, +coy M the matrix Q—l = z'lg E—l . This follows directly

from the fact that, in this case, XO@ ig the same matrix, say E,

for B =1y 25 e+.y Mo Thus, -

vyt - @RV HEENEETD = &y =g .

(2 (2 o )

In the case when the response functions and inputs are the same,
the recommended procedure is to skip step three and estimate the

N
variance-covariance matrix of m (g - g') by

- Cr@E T GEE)™ .



7. MONTE-CARLO SIMULATION i
This section reports the results of a Monte-Carlo study which was
undertaken to gain an indication of the adequacy of the asymptotic theory
in appiications. Briefly, the study indicates the need for some con-
gervatism in setting confidence intervals and testing hypotheses using
the standard error estimates obtained in step four of the procedure.

This is primarily due to evidence that these estimates understate the

actual standard deviation of the estimators eia and, to some extent,
due to departures in the shape of the small sample distributions of the
A

A .

eia from the limiting normal distributions.

The détails of the study are as follows. Bivariate normal errors

were generatéd with

.00l .0005
g = )

.0005  .001
and added to the response functions of Section 5

B4 %061

X + 8

(%0 81) = 89 + By%yy

31°

835142

£ e

2 82) = Brp ¥ By
with
& =(1 1,1, -1, 1, 1, -1)’

using the inputs in Table 1. The replication scheme is "constant in
repeated samples' of size twenty-five. The sample size n was
taken as fifty ylelding two replicates of each input. The resgults

of the simulation are summarized in Tables 2 and 3.



8

Table 2. Location and Shape Parameters of the Sampling &nd Asymptotic Distri-

‘ " butions

—

Parameter Monte-Carlo Asymptotic

Mean = 8Stds" Dev. Skewness Kurtosis Mean Std. Dev. SBkewness Kurtosis

Ordinary Least Squares

8,1 .9789 .1082 -1.0160 L.7282 1 .0892 0 3
B 1.0001L  .0l2k - .0212 2.7972 1 .0126 0 3
931 1.0211  .103%9 1.0%325 4.8957 1 . 0855 0 3
8,1 - .994k2  .153%0 .0251  2.9165 -1 . 1ko7 0 3
By .9831 .0973 -1.0827 5.5266 1 . 0890 0 3
6,0 1.0164  .0939 -1.0728 5.5581 1 . 0855 0 3
952 - .9952 .1378 L0684 3.0470 -1 . 1ko7 0 3
Seemingly Unrelated Regressions
N .9792  .1079 -1.0171 k47110 1 .0892 0 3
. 6,1 «9996  .0106 .1084  2.8214 1 .0110 0 3
951 1.0210 .1038 1.0249  L4.8379 1 .0855 0 3
By - 93 1530 L0258  2.9141 -1 . 1ho7 0 3
815 .9832  .0972 ~1.0780  5.5006 1 .0890 0 3
922 1.0164 0938 1.0673  5.5267 1 . 0855 0 3
85, -.c99%2. 1377 .0650 3.0510 -1 .1h07 0 3
Congtrained Seemingly Unrelated Regressions
N .9850 .0883 - .94hs  L4.6118 1 L0771 0 3
o 1.0000  .0066 .0558  2.8926 1 . 0069 0 3
Pz 1.0147 . 0849 .9386  L4.6365 1 Noygite 0 3
Py - -99%0 .1275 0770 3.129% -1 1219 0 3
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Table 3. BEstimated Standard Errors

Mean Estimated Monte~Carlo Estimate
Parameter ~ Standard Errors of the Standard Error Ratio

‘Seemingly Unrelated Regressions

911 . 0922 «1079 1.17
81 0104 .0106 - 1.02
83, - 0887 -1038 A 1.17
0,1 «1335 . 1530 1.15
60 .0878 . 0938 1.07
352 . 1346 - 1377 1.02
Constrained Seemingly Unrelated Regressions
Py .0782 .0883 1.13
Po . 0067 ~ .0066 .99
P3 -0753 .08L49 1.13%

o, .116h .1275 1.10
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Table 2 conveys the impression that the bias, skewnesi, and peiked-
ness of the small sample distributions of the estimators gia or gi
are set in the ordinary least sguares phase of the estimation procedure
and are not appreciably modified in the later unrestricted or restricted
Aitken phase. No general observations are possible. Some parameters
are estimated with positive bias and some with negative bias, some
distributions are left skewed and some right skewed, some are lepto-
kurtic and some platykurtic. The only effect of the Aitken phase of
the estimation procedure is to reduce the standard errors of the
estimators.

When each single equation model 1s linear, the variance reduction
in the Aitken phase is entirely due to linear restrictions across
equations. Usually these restrictions take the form of knowledge that
some parameters entering the model are zero. (See Zellner, 1962,
pe 355). In a sense this is true in the nonlinear situation. We have
seen previously that if the inputs ﬁta, are the same and each ofréhe-
response functions faﬂiuf Qa) have the same functional form then there
is no asymptotic variance reduction in the Aitken phase of the estima-
tion procedure. Only when the fuhctional forms differ or restrictions
across equations are imposed does an opportunity for variance reduction
arisé.’ The Monte-Carlo study indicate; that these same considerations
remain valid in the small sample distributions of the parameter estima-
tors.  The slight variation in functional form between fl(ﬁl’ Q&)

A

and f.(x., 6.) yields an improvement in efficiency. Interestingly,
2'~2" R~ A
A

the asymptotic theory indicates an improvement for ﬁQl only whereas

the Monte-Carlo study indicates a slight gain in efficiency in the



remaining parameters. The imposition of the restriction § = gﬁz)
results in additional improvement.

Table 3 indicates that sténdard errors obtained from the diagonal
n _

AN AN .
AN A AN

elements of @i)-l or (Q;Q,Q/)'l as the case may be will lead one
astray. In the absence of further evidence, it would not be an
unreasonable practice to increase estimates of standard errors by

the factor 1.10 before use in éetting confidence intervals or testing

hypotheses.
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APPENDIX: LEMMAS

The appendix contains a sequence of technical lemmas which

are used to obtain the asymptotic properties of the estimators
~n la)
A

2
§ and p in Section 4 and to compare the asymptotic efficiency
"
A A
of § with 8 in Section 6. The almost sure convergence of

~
8 to @ is given in Lemma A.2; the asymptotic distribution

A
of § is given by Lemma A.7. The almost sure convergence of
~ .
gl to ,?, 1 and the rate of convergence are given by Lemma

A.5. The remaining lemmas establish those implications of the
weak convergence of the measures. {un} which are useful in

Sections L4 and 6.

Lemma A.1: Iet X be a compact subset of the m-dimensional
real numbers for some integer m 2 1 and let g(x, g) be con-
tinuous on Z{J X 'I\{J « Under the Assumptions of Section 3, the
- sequence of integrals J‘ g(x, .-T,) d“n(?\c) converges to the integral

Ig(g\c, 1) du(x) wuniformly in g over K -

Proof: Malinvaud (1970, p. 967). |

Temma A.2: Under the Assumptions of Section 3, the least
el

squares estimators ﬁa converge almost surely to r@f;’ and are

of the form

N ~'° ’ -1 /l
Bo = 8o " EE) T E 20t Ban
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~ N

N
where .M a converges in probability to zero. Moreover, .n(8-6°)
converges in distribution to = pa-variate normal with mean O and

. . . -1
variance-covariance matrix ¢ V .
[¢7anTe /o

Proof: Iet Goc be the Borel subsets of ’}\{Jm and Aor, a get in
00; Define uan(Aq) = n‘;zﬁzl I, ggta)- set A=A X nga,ﬁé and
set ua(Aa) =p(A). The me,asul\es,{Oo W, converge weakly to the measure
w  so that Assumption 6 of Gallant (1973) is satisfied. If g(x) =0
Qe “a then g(rzc.,) =0 a.e. gy 80 that Assumption 7 is satisfied.
Since () 1is non-singular x(m must be non-singular and Assumption 11
is satisfied. Assumptions 1, 2, 4, 5, 9, 10, 1k, and 15 of Gallant
(1973) have been assumed directdy and so that the Lemma follows from

Theorems 2, 3, 4, and 5 of Gallant (1973). [

*
Temma A.3: ILet the Assumptions of Section 3 hold and let 'goc

converge almost surely to g2

~B

*
O
converge almost surely to ’ga and reﬁ
Then n-lF'(e*) F (e*) converges almost surely to V , for
Aogy, ‘g, r»ﬁ ~B - ¥ Naﬁ

P =1, 2, «oo, M

Proof: The ijth element of n_lgc;(’@a) gﬁ(rgﬁ) may be written as

YV, .
ijn

= ) o) :

We may apply Lemma A.1 since 8, X ®B is cempact so that vijﬁ(f@a,’ ’@B)

has the uniform limit

_ d d ,
vis(8y Bg) = jbeia' £z, 8) X fo(kar £g) W (x)

which is continuous on f@or, X ®, being the uniform limit of continuous

=
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functionss The difference vijn(r@aq,’ rQﬁ) - vij(@a, '9{3) converges almost

: : * ¥
surely teo zero by uniform convergence "and the difference vij (‘_ga, vQﬁ) -

(o]

Vij (N‘&, f@.a) converges almost surely to zero by continuity. The sum of

* %
these two differences is (8, ’@B) - vij(rg‘&, ’@E) which, therefore,

A
SiJntve

converges almost surely to zero. [

Lemma A.L4: Tet E be a compact subset of the m-dimensional real
numbers for some integer m 2 1. Iet the Assumptions of Section 3 hold

and let g(x, 1) be continuous on X X K. Then for alwost all reali--

the series n_l&lz:l g({}\gt, 1) e, converges to

ti £ {e, I
zatlons © eta t=l

zero uniformly in Tt over X .
~J (asd

-1 2(

Proof: By ILemma A.1l, n = 8 (x T) converges to

Xt
J' gg(’zg, 1) d“(,{i) uniformly in g over K . The Lemma follows from

Theorem 4 of Jennrich (1969). |

Lemma A.5: Let the Assumptions of Section 3 hold. Then the

N e T
=1 ®,N

estimators GCXB =1 e, eB converge almost surely to the corresponding
N
elements o B of fg » For n sufficiently large, the matrix '_g with
~
elements © B is non-singular except on an event occurring with

N ~

probability zero. The elements o‘o6 of g L converge almost surely
o)

to the corresponding elements o o g_l- Moreover, ,\/E(O‘QB - Go@)

.'is bounded in probability; that is, given & > O there is a bound M

N
such that for all n sufficiently large we have P[,\/ﬁ'l UO@--‘GO@I < M] > 1-6.

Proof: The estimator may be rewritten as
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The first term 1;-3; e converges almost surely to by the Strong

2 %

. A
law of Iarge Numbers. The second term %Qa(rga,)sﬁ converges almost

surely to zero by Iemma A.4. Similarly for the third term. Ietting

= CANS A .
6@(;5&, r@@) = f(xa, ea) f(x , f@oc) we may write

il

J oy 8) 00z &) i, (®)

which, by Lemma A.l, converges uniformly in (f@&) Qé) ' over the

compact set ’@ax,@ﬁ to

WO@(NOC, ’@‘5) =J 6ot,(?\c'on’ ,@a) 65(’}55’ "9-15) du(x) -

o) N

»By the same arguments employed in Lemma A.3 we havg that w aﬁn(rga’ '@ﬁ )
converges almost surely to WO@(’Q‘;, 'Qfé) = O.

The eventual non-singularity of g follows from the continuity of
det(g) and the assumption that § is positive definite. The almost
‘sure convergence of g_l to §_1 follows from the standarc_i cohtinulity
| argument.

By Taylor's theorem, for given 'Q«x in r%oc and X in ’}\CJ there

is a E@ on the line segment joining g and ’g‘(’x such that

. . th ’ ry
t b ! .
Let A ~be the n by p - matrix with t™ row z‘a’fa(xl o rg@) so that

o - ol SIS o5y - gl + 12 gip (B, - £) A
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The first term on the right is bounded in probability because
JE(% 5&% - GqB) is asymptotically normally distributed by the
Central Limit Theorem. The second term. on the right converges in
probability to zero because ,\/E?T(:Q\J(Jc - E&) is asymptotically normally
distributed by Lemma A.2 and %Eé» r%oo converges almost surely to
zero by Iemma A.4. Similarly for the third term on the right. The
fourth term converges in probability to zero because A (:e\aoc - rg‘(’x) is

o

N
asymptotically normally distributed, 'Qﬁ - 'QB converges almost surely

to zero, and the elements of Lan  are uniformly bounded by

n ~e

) _ d
S“p{bel foc%oa’f\efoo) o))

i 3B fa(fﬁ:,ﬁﬁ)? (’}éa’f@a’zgﬁ"gﬁ Ko X By % &5

which is finite by the compactness of zor, X8 and the

« X,ZCE) X@B
continuity of the partial derivatives. Using a Taylor series expansion
one can show that if g(;_r,) is a function with continuous first deriva-
tives on a bounded open sphere g, P(Er: € ’%) tends to one as n ‘tends
to infinity, and /o (3 - 1) is bounded in probability then

N (g(;g) - g(7°)) is bounded in probability. The‘matrix F is
positive-definite so there is an e > O such that det(g) - ¢ > O
Since P(det(Z) - ¢ < det(g) < det(Z) +e) tends to one as n tends
to infinity we have that the elements of & (2-1_7 ’g_l) are bounded

in probability. [



Temma A.6: Under the Assumptions listed in Section 3, - ---

L F’ _l®£) & converges in distribution to a p-variate normal with
S

mean 0 and variance-covariance matrix Q

Proof: We will apply the Central Limit Theorem stated in Problem

4.7 of Rao (1965, p. 118). We may write

SEG ’1®J~=-—f5_1 z‘:étfz?ii:lxt

where rISzt is the p by M matrix

O
V% (?ét]_’,gl) Q Q
. ©
& Vool dp) oo R
rIS't = . . Vc B .
R L o GfuEae S

The . are independent by the independence of the Y and

1l -1, .
22 =1 éll(V =0 Zil:l I(gt 2 rISJt which converges to () by the weak

convergence of the measures oo Let Gt(x) be the distribution

function of i and let H(l":) be the distribution function of

= g'lu (which does not depend on t). For given e >0

P At
1 2
<=, fAth,zll a6, (¥)
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where A

]

en = W I > WA e}

> B T2 (s s B IF v an(y)

=1 -J'Btn o=l T~

1l

1
n

- o o[22 2
where By, = {w: 5;1 ”Za,fa,(f%ta"g‘ M Wa> ne-}
<igh /n K w'y dH(w)
T n “t=1 ¢B ~ ~~ ~

tn

where K = sup supy || _f (x £2)|,2 and is finite because X  is
~%

compeact

<Ko Xyt

where C = {w: Xw'w>n e2} because B &C ~for t =1, 2, «v0, 1

this lagt term converges to zero as n tends to infinity because

J w'w aH(w) is finite. |

) A
Lemma A.7: Under the Assumptions listed in Section 3, i (8 - §')

converges in distribution to a p-variate normal with mean Q and

. . . -1 -1
variance~covariance matrix V "LV " .

Proof: By Lemma A.2

PSR R |
FA-8) = GEE T —Ee+ig

=

where iU a converges in probability to 0'. The matrix (%E'E)-l

converges to X—l by Lemma A.3. Using argurr;ents similar to those used



Ele=212 X

. 1

in the proof of Iemma A.6&'we have that = T u
t=1 ~t ~t

s A

converges in distribution to a p-variate normal with mean O and
) ~7

~variance-covariance matrix T . [

L1



