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ABSTRACT

The paper considers the estimation of the parameters of a set of

nonlinear regression equations when the responses are contemporaneously-

but not serially correlated. Conditions are set forth such that the

estimator obtained is strongly consistent, asymptotically normally

and asymptotically more efficient than the single-

equation least squares estimator. The methods presented allow estima-

tion of the parameters subject to nonlinear restrictions across equatfons.

The paper includes a discussion of methods to perform the computations,

a worked example, and a Monte Carlo simulation.
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1. INTRODUCTION

This paper may be viewed as a generalization of Zellner's (1962)

paper in the following respects. The response functions are allowed

to be nonlinear in the parameters as well as linear. The parameters

of the model may be estimated sUbject to nonlinear restrictions across

equations as well as linear restrictions across equations.

We rely on Zellner's paper to provide the general economic consid-

erations which motivate the study of the Seemingly Unrelated Regressions

situation. The extension to the nonlinear case is motivated by concern

for the specification error due to requiring that economic theory

accommodate the assumptions of linear regression. The argument based

on Taylor's Theorem used to justify the linear model as an adequate

approximation of the economic model often leaves the reader of an

econometric study less than satisfied. The case when the approxfmati.on

is inadequate provides the primary motivation for this paper. It

attempts to give the practioner the freedom to let his econometric

model more adequately represent his economic model.

The estimation procedure set forth in Section 2 is the same as

Zellner's (1962) Seemingly Unrelated Regressions technique with the

exception that nonlinear response functions and nonlinear parametric

constraints are permitted. The variances and covariances of the dis-

turbances are estimated from the residuals derived from an equatfon-by-

equation application of least squares. All parameters are then estimated

simultaneously by applying Aitken's (1935) generalized le.ast squares

to the whole system of equations using these estimated vari.ances and
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covariances. Nonlinear constraints on the parameters may be imposed in

the Aitken phase of the procedure.

Conditions are set forth in Section 3 under which this procedure

yields estimators which are strongly consistent (almost sure convergence)

and asymptotically normally distributed. These assertions are proved

in Section 4 using a set of lemmas stated and proved in the Appendix.

The conditions used to obtain these results are patterned after the

assumptions used by (1970) in a nonlinear regression context.

Either Hartley's (1961) Modified Gauss-Newton Method or Marquardt's

(1963) Algorithm may be used to obtain the restricted or_unrestrrcted

estimates of the parameters in the Aitken phase of the procedure as

well as in the equation-by-equation phase. The details and a worked

example are in Section 5.

The unrestricted estimator obtained according tothe Zellner proce-

dure is shown to be asymptotically more efficient than the equation-by-

equation least squares estimator except in two special cases. The

first case would be more apt to occur in a designed multivariate experi-

ment than in an econometric investigation. It is the case when each

of the contemporaneous responses has the same response fUnction and

same independent variables. This special situation is entirely analo-

gous with the one discussed by Zellner (1962, p. 170). A second case

where the equation-by-equation least squares estimator is fully effi-

cient is when there are no contemporaneous correlations among the

responses.

The reader who is only interested in the statistical and numerical

methods proposed in this paper need only read Section 2 for a description
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of the method and Section 5 for a discussion of how available computer

programs may be used to carry out the computations.

Section 7 reports the results of a Monte-Carlo simulation.
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2. ESTIMATION PROCEDURE

The estimation procedure is entirely analogous to Zellner's (1962)

Seemingly Unrelated Regressions estimation method except that (possibly)

nonlinear response functions are substituted for linear response func-

tions.

We have a set of M nonlinear regression equations

Yt = f (lC... , eO) + et ,..a, a, ,-va, rva, ""
(a, = 1, 2, ••• , M) (t = 1, 2, .•. , n)

where the inputs kta, are k by 1 vectors and the unknown parametersa
eO are p by 1 vectors known to be contained in the sets ®. The("Va, a, rva

errors

(M )( 1)

are assumed to be each having mean 0, the same distribu-, rv

tion function, and positive definite variance-covariance matrix t·rv
Each,Qf the M regression equations may be written in a convenient

vector form as

where

+ erva, (a =1, 2, •.. , M)

(n )( 1),

f (a ) = (f (Xl' e ), f (x2 ' e ), ..• , f (x , e»)'1"lJ<;X. a,\:e a, rva, a, rv a, ("Va, a, rvna, ("Va (n Xl),

e = (el ' e2 ' "" e ) ,"'a, a, a no. (n X 1).
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The first step of the procedure is to obtain the least squares esti-

A

mators e by minimizing(Va,

over equation by equation.

The second step is to form the residual vectors

A A
e = v - f (8 )(Va, Na, (Va, (Va. (<J;. = 1, "', M)

and estimate the elements of the matrix

by

(a, = 1, 2, "', M) (13 = 1, 2, ... , M)

A

to obtain the estimate of

To carry out the next step, the set of M regressions are

arranged in a single regression

where

+ e(V

(,," ')'il ;;: 'K-l' il2' '''', (nM Xl),

(nM Xl),

(nM X 1) •
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The variance-covariance matrix for thi$ regression is

crlliS

°Z:J, cr2Mf,

= =1 (nM X nM)

where I is the n by n identity matrix. This variance-covariance,.
ma.trix is estimated by obtained in the second step of the

procedure.

The third step of the procedure is to obtain the Aitken type,.,.
estimator e by minimizing

r<J

over

Define

'il f (x , CI) :;;: the p by 1 vector whose i th element is"'a a "'a a

b f (x , e ) ,vo. ct rva,

(nM )( Po,) •

o...o
'"

o
'"

o
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The fourth and final step is to obtain the inverse of the matrix

distributed with a matrix for which

,..,..
In Section 4 it is shown that - ,fi0) is asymptotically normally,..

,.. -1
(0) is a
'"

strongly oonsistent estimator-

One may wish to impose restrictions across in the Aitken

improvement phase of the estimation. For our purposes, the most con-

venient way to represent these restrictions is by reparameterization.

Let be an r by 1 vector of new parameters and let be a Pa

by vector valued function relating the original parameters to the

new parameters according to

We assu,me that

parameter space

Define

r:5p

p •
rv

tM 1 P and thatar
is contained in the

(p :::: p ex. X 1)

r by 1 vector whose J.th element is gbp. iex.%'
J

R.a.(R.-) :::: the p ex. by r matrix whose i th row is ,

(p = Pex. X r) •

)
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The third step of the procedure is modified to read: Obtain the,.,.
estimator by minimizing

over the parameter space l .
The fourth step of the procedure is modified to read: Obtain

the inverse of the matrix
,. ,. ,.,. ,. . ,.
Q'Q,Q = Q(;J •

distributed with a variance-covariance matrix for which

In Section 4 it is shown that is asymptotically normally,.,.,.
,.,.,. 1
(G'n G'- is

a strongly consistent

Either Hartley1s (1961) Modified Gauss-Newton Method or Marquardt1s

(1963) Algorithm may be used to find minimizing Using

The details are discussed in Section 5.

either of these, methods may be applied to,. ,.
(and or Q.. minimizingQ IV and

a suitable transformation,,.,.
find e minimizing,. ,. ,.rv ,_
,.,.,. 1
(Q; QQ)- as the case may

One may wish to estimate the parameters of the model subject to the

restrictions = e but present the results in terms of the original
f'V A A

A ,..

This is done by setting ! = As shown in Section
,..

t and Jil - t) is asymptoti-

parameters 8.
,.. rv,..

4, S is strongly consistent for

cally normally distributed with a variance-covariance matrix for which
,.. AAA ,..

is a strongly consistent estimator. This matrix

will be singular when r < p •
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ASSUMPrIONS

In order to obtain asymptotic results, it is necessary to specify

the behavior of the inputs as n becomes large. A general way

of I?pecifying the limiting behavior of nonlinear regression inputs is

due to Malinvaud (1970). Two of his definitions are repeated below

for the reader's convenience; a more complete discussion and examples

are contained in his paper. In reading the two definitions, it will

help if the reader keeps in mind two situations where the inputs satisfy
k

Definitions 3.1 and 3.2•. Let X be the subset of R from which
"""Cf.,

the inputs are to be chosen, k = ka;' ,

X = (x' X I x./.) I... , (k Xl),

and let X = xM 1 X • The first is to choose some set of points
a;=

* T and choose inputs according to the scheme

*= * *••• , = .2S:r' *=ASl' * ... ,
that is, "constant in repeated samples" (Theil, 1971, p. 364). The

second is to choose inputs by randomly sampling from a distribution

function- defined over the set

uniform distribution.

X· for example, the k dimensional

Definition 3.1: Let a be the Borel subsets of X and let

be a sequence of inputs chosen from For a set A in a
let be its indicator function. The probability measure

on (X, a) is defined by



Definition 3.2: A sequence of measures

said to converge weakly to a measure on

10

£Mn}:==l on (h a) is

(h a) if for every real

valued, bounded, and continuous function g with domain X,rv

lim J g(x) <tL (x) == J g(x) <tL (x) •n-+oo rv nrv rv rv

The following Assumptions are sufficient to obtain the asymptotic
A
A

properties of the estimator 8 in the case when no restrictions are
rv

imposed on the parameters 8 •

Assumptions: The parameter spaces ® and setsrva, X are compact.rva,
The response function f (x , 8 ), the first partial derivatives in

and the second partial derivatives in are continuous on

X X® for each a, == 1, 2, ••• , M. The sequence of inputs __ lrva,· '-lJ

are chosen such that the sequence of measures r converges
1.. n n==l

weakly to a measure on (h a). The true parameter value

eO is contained in an open spehre S which is, in turn, contained in
""CL rva,

® for each a, == 1, 2, ... , M. If e ) == f (x , 8° ) except
rva, rva,

for x in A where (A) == 0, it is assumed that e == 8°· The prv rva, rva,

by P matrix

l2Vcr rv12 ·..
a21v 22

rv21 a ·..
=

M2
cr 2M2 ·..
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is non-singular where the are the elements of and the Pa

by Pf3 matrices have the ijth element

As mentioned earlier, the errors are independently and identically

distributed with mean 0 and unknown positive-definite variance-
rv

covariance matrix

In the case where the restrictions = are imposed on the

parameters, the following additional assumptions are required.

Assumptions: (Continued) The parameter space P is compact.
rv

The range of ,g is a subset of (8) = xM (8) • The function g(n) and
RJ rv a;::1 ""tX, RJ 1<1

its first and second partial derivatives in are continuous- The

true parameter value satisfies =:t and R,.0 is contained

in an open sphere S which is, in turn, contained in P. If
rv rv

=:t it is assumed that ,Q, =R,.0 •

G = G(nO ) is non-singular.
f'J rv fI<J

The matrix GIn G where
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4. STRONG CONSISTENCY AND ASYMPrOTIC NORMALITY

Two theorems establishing the strong consistency and asymptotic
""normality of the estimator are proved in this section; the strong

""consistency and asymptotic normality of 8 follow as corollaries to
f'<J

these two theorems. In order to simplify the notation in this section

and the remainder of the paper we will adopt the convention of writing

f for the function f (e) when it is evaluated at the true value
"'a, """1:X, "'a,

of the parameter e = 8°. Similarly, we will write F for F (eO),
"""1:X, f'<Ja, "'a """1:X, """1:X,

f for f(eO), F for F(eO ), and G for g'(nO
).

i*'J f"'o,Jf'J t"I rvrv f"'o,J

""Theorem 1: The estimator converges almost surely to under

the Assumptions listed in Section 3.

Proof: Consider the quadratic form

The random variables cr converge almost surely to the elements
-1of by Lemma A.5. Using arguments similar to those employed in

1the proof of Lemma A.5, the terms -(y - f (e - convergen Na, tva, tva, "'P .,.,. ,.,

almost surely and uniformly for e in ® totv f'J

where f (x , eO) - f (x , e ).
a, rva; rva, a, tva, "'Cf,

Thus, Q(e)tv converges

almost surely to
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uniformly for e in ®.
'" '"

-1The matrix is positive definite so the

except for x in A
rv

.*
Q =M impliesThus,= to, by Assumption.which implies

integrand v(l6',a)' is pos itive for all JZ-')' in }S X •

*Consequently, if Q = M then = 0 except for in A

where U(A) = o. This implies 0 (x , = 0
. ....,

= t which implies

Consider a sequence

ft = R,Q.
i"-
A

tRn} of points minimizing over P
'"

corresponding to a realization of the errors Since P isrv

compact there is at
A
A

[Rn 1:=1 such that
m

*least one limit point f<- and one subsequence
A
A ,*lim 0'= n. Unless this realization belongsm -? co I"oU ' . F'V
m

to the exceptional E, converges to *Q uniformly for

in P whence
'"

* *M:::; Q (ll(n )) = lim Q(g(o)) :::; lim Q(ll(nO)) = M •
!<I i<.I m .... co rv I'\Jll m .... co K.Im

* * *This Q )) = M which implies = R,0. Thus, the
A co

sequence [Rn}n=l has only one limit point R,.0 except for realizations

of the errors contained in E where peE) = o.

Corollary 1:
A
A

The estimator A converges almost surely to eO
rv '"

under the Assumptions listed in Section 3.

Proof: Let be the identity mapping of ® onto ®.
rv '"

The

set XM 1 S is an open set containing eO which is, in turn, contained
a;= f"Ja, '"
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in I Thus, there exists an open sphere containing t which

is, in turn, contained in ®. The matrix a(-) == I so a' n a is
'" rv 'J<., f",J f"V f"V

nonsingular. Consequently, the identity mapping satisfies the full

set of assumptions. 0

then

Theorem 2:x
"$ (r<- - R-0 )

If the Assumptions listed in Section 3 are satisfied

converges in distribution to an r-variate normal

with mean 0 and variance-covariance matrix (a' 0 a)-I. The matrix
f"'\.I "" I"J rv

" """" ""
== Q,'

converges almost surely to a 'n a .

" " "" " ", .
Proof: Define if is in S and ==r;..0 if r;.. is not

" ""• • "in S . Set Ii == Since - R-) converges almost surely to
"" .£ by Theorem 1, it will suffice to prove the theorem for •

•The first order Taylor series expansion of . may be written

as

where H is the nM by r matrix
rv

th 1 , 2 -the t row of the n by r submatrix is 2(r;.. - r;..0) ';/a, (.Q..) )

where R.. is on the line segment joining to r<-0' Consider the matrix* which is composed of the Pa, by r submatrices

J:'1 oaf; 1 t: · . . 2"=1"2 n t=l "La,f - !GO); ft3 •
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The elements of this submatrix converge almost surely to zero by the

continuity of the first and second order partial derivatives of f (x ,Cl )a, f'V(J., ':<'a,

and g ("', the compactness of the set X >< ® X P, and the almostK.Ja 1<.1 f'J f"V

• 1 ..
sure convergence of R- to R-0 • In consequence, the matrix nQ' (g) X

converges almost surely to o •
'"

Using Taylor's Theorem, we may write

where is the by matrix with .th elementD r r i, J
'"

d .. cr0f3 t:=l
'02 f , et (3= .

lJ 'Op jbpi a, a,

1Note that - d.. converges almost surely to 0 by Lemma A.4.n lJ
Using the Taylor series expansions obtained in the two previous

paragraphs, we may write the r by 1 vector of partial derivatives

- [! G + H) - ! D] Jil - nO)
n '" 1'<.1 '" '" !O \i5I'" AJ rv rv n rv I<J I<J

'"'"The estimator is contained in S for n sufficiently large except
rv

on an exceptional event E occurring with probability zero by Theorem 1;

thus
..

converges to £ almost surely as R- is a
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stationary point of
'"A

when is in S.
f'V

In consequence,

In(R, - converges in distribution to a r-variate normal with mean

2 and variance-covariance matrix (Q'QQ)-l because:

A. The first term on the right converges in distribution to a

r-variate normal with mean 0 and variance-covariance matrix
f'V

In .£3:' b Le A 6Y mma ••

B. The matrix in brackets appearing in the second term on the

right converges almost surely to Gin G. This follows because
1 .. '" 1- F'(Cl)O=-<i:I) F converges almost surely to 0 by Lemman f'V N f'V f'V f'V f'V

A. 3, converges almost surely to Q; and the remaining

terms converge almost surely to 0 by our preceeding remarks.
f'V

C. The third term on the right converges in probability to o.
f'V

This follows because the subvectors J'1 ac$)! F'(A)e'r3=1 n ""C(, ""'a

converge in probability to 0 by Le_mma A.5 and Lemma A.4.
f'V

D. The fourth term on the right converges in probability to o.
f'V

This follows because the subvectors - )(
converge in probability to O· by Lemma A.5,

f'V

Lemma A.l, and Theorem 1.

sure con-and by applying Lemma A.3 to obtain the almost
A '"1 '" A

vergence of the submatrices n'tx,(i£a,W)) Xr3 to

The last sentence of the theorem follows by applying Lemma A.5 to
"obtain the almost sure convergence of to aaf3, by applying

A

'"1 to obtain the almost sure convergence of to !t and
'" to Q;
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If the Assumptions listed in Section 3 are satisfied

then

mean

Corollary 2:
x
'" - converges in to a p-variate normal with

Q and variance-covariance matrix Q-l. The matrix

converges almost surely to Q.

Proof: The proof is the same as the proof of Corollary 1.

Let the Assumptions of Section 3 be satisfied and set
'" '"'" '"Then 1 converges. almost surely to t and Jil - t)

Theorem 3:
'" x
A '"= ,&(Q) •
is asymptotically normally distributed with mean 0 and (possibly), rv

singular variance-covariance matrix G(G'O G)-lG'. The matrix
'" '" '" '" '" ("'oJ rv f"oJ f"oJ rv

Q) -lQ' is strongly consistent for Q(Q',Q, ,Q) -lQ,'.

Proof: The almost sure convergence of follows from

the continuity of and Theorem 1•.
Let be as in the proof of Theorem 2. It will suffice to

'" '"'" "'.prove the theorem for instead of because JU (! -
converges almost to zero by Theorem 1. The first order Taylor

series expansion of is
/

where .!! is the p by r matrix A! = ,&2, "", the i th

row of the Pa,'bY r submatrix Ma, is hia, = - R-0

•where lies on the line segment joining R- to The asymptotic

normality of Jil ,- ft) is due to the fact that Jil - R,.0) is
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asymptotically normally distributed as shown in the proof of Theorem 2,

the elements

of and

are bounded by continuity and the compactness

converges almost surely to 0 by Theorem 1.
rv

The last sentence of the Theorem follows from Theorem 1, Theorem 2,

and the continuity of 0
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5. COMPUTATIONAL CONSIDERATIONS

The minimization of to obtain the ordinary least squares

estimators and residual vectors
...
e may be carried out using
rva,

either Hartley's (1961) Modified Gauss-Newton Method or Marquardt's

(1963) Algorithm. Either of these methods may be used to minimize

by proceeding as follows. Factor to obtain a matrix .s
such that t-l = R'R. Let r denote the element of R with row

rv rv rv of3 rv

index a, and column index t3. Define new input vectors,

(
I I= r 01' r 02' >>>, raM' JEtI'

new responses,

. I ) I• >', (M + k X 1) ,

and a new response function,

When the mqdel is transformed in this fashion it is in a form permitting

the application of either Hartley's or Marquardt's algorithm to minimize

......
and obtain

...
The vector! is a good start value for the iterations>

Most implementations of either algorithm will print the matrix
... ...

=«(=1 !) ,i))-l .
=n(p/p)-l the estimated variance-covariance matrix of

rv rv

may be obtained without additional computations.
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The same transformation of the inputs, responses, and response,..
A

function may be used to obtain minimizing as was used.'",..
to obtain e minimizing Q(e). The only modification required is

fV fV

to substi for ,.!2, in the response function ' obtain-

ing Be careful that the number of parameters supplied

to the program are reduced from p to r and that derivatives are

taken with respect to R,. Since
,..,.. ,..,..,.. ,..

;, Q' (0 !

the matrix printed by the program
,.. ,..

(£'£) = Y.; )'-1

will satisfy

Thus it may be used to estimate the matrix of,..,..
$ s:<-0).

Start values for the iterations may be obtained by finding R,;

which will satisfy at least r of the equations in the system
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The computations will be illustrated using the data presented in

Table 1. These observations were generated according to the model

Using the Modified-Gauss Newton Method, one finds that the least squares

estimator for the first equation is

A

- (1.0127, 1.0077, ·9903, -1.0263)' ,

and for the second equation it is

- (1.0450, ·9709, -1.0979) '.

The estimated variance-covariance matrix is

(
.0008856

.• 0004516

and its inverse may be factored as

.0004516 )

.0008258

t-1 = R'R where
rv rv rv

-21.64 )
34.80

The transformed inputs are, therefore,



Table 10 Inputs and Responses

t Ytl xltl x2t1 Yt2 xlt2

1 1·98803 0 0 2.05446 0
2 1·74975 0 .25 1.7.3545 .25
3 1·56687 0 ·5 1·58786 ·5
4 1.48967 0 ·75 1049833 ·75
5 0 1 1·37966 1
6 2.28432 .25 0 2.02124 0
7 1·96907 .25 .25 1·74193 .25
8 1083365 .25 ·5 1.60170 ·5
9 1.66293 .25 ·75 1.43230 ·75
10 1.61976 .25 1 1·34858 1
11 2·51247 ·5 0 2.00361 0
12 2·31425 ·5 .25 1.80896 025

2.08653 ·5 ·5 1·55098 ·5
14 2.05508 ·5 ·75 1.48081 ·75
15 1.84513 ·5 1 1·33590 1
16 2·74747 ·75 0 1.96754 0
17 2·52438 ·75 .25 1·76454 .25
18 2·37002 ·75 ·5 1.63567 ·5
19 2.21222 ·75 ·75 1.41481 ·75
20 2.09650 ·75 1 1·36679 1
21 2·98463 1 0 1098960 0
22 2·77650 1 025 1076581 .25
23 2.60803 1 ·5 1·57198 ·5
24 2.49681 1 ·75 1.47238 ·75
25 2.42138 1 1 1.40579 1
26 2.05712 0 0 2.04711 0
27 1.82886 0 .25 1·78453 .25
28 1.62770 0 ·5 1.65160 ·5
29 1.48741 0 ·75 1.48088 ·75
30 1033268 0 1 1·38178 1
31 2.28643 .25 0 2.02916 0
32 2.08228 .25 025 1.80538 .25
33 1.82655 .25 ·5 1.60661 ·5
34 1.68291 .25 ·75 1.45213 o

35 1.61076 .25 1 1·38909 1
36 2.47966 ·5 0 1·96843 0
37 2·27283 ·5 .25 1·75310 .25
38 2.09720 ·5 ·5 1.61+080 ·5
39 1·98836 ·5 ·75 1.48162 ·75
40 1.85849 05 1 1·37142 1
41 2·73098 ·75 0 2.02424 0
42 2·54987 ·75 .25 1081938 .25
43 2·37716 ·75 ·5 1.62442 ·5
44 2.25082 ·75 ·75 1·51076 ·75
45 2.14113 ·75 1 1·36210 1
46 2099249 1 0 2.06032 0
47 2·78713 1 .25 1082534 .25
48 2.63906 1 ·5 1.60557 ·5
49 2.48154 1 ·75 1.48878 ·75
50 2..36727 1 1 1·34132 1

22
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the transformed responses are,

Ztl == 39· '57 Ytl - 21.64 Yt2

Zt2 == 34.80 Yt2 '

and the new response function is

This transformed model is in a suitable form for the use of the

Modified Gauss-Newton Method. Using e as the start value, one
fV

obtains
,..,..
8 == (1.0119, 1.0096, ·9902, -1.0266, 1.0450, •gy09, -1.0979) '.
fV

and

(p/p)-l ==
fV fV

.006368 .000051 -.006047 -.010380 .002844 -.002692 -.005237

.000051 .000102 0 0 0 0 0
-.006047 0 .005833 .009781 -.002716 .002606 .004939
-.010380 0 .009781 .017418 -.004639 .004332 .008774
.002844 0 -.002'716 -.004639 .004)76 -.004339 -.008394
-.002692 0 .002606.004332 -.004339 .004180 .007847
-.005237 0 .004939 .008774 -.008394·.00'78'1+7 .015849

after four iterations.

Suppose, now, that we wish to impose the constraints

811 == El12 '

831 = 822 '

841 == 832 .
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The reparameterization corresponding to these restrictions is

The matrix of partial derivatives is

o
1

o
o
o
o
o

o
o
1

o
o
1

o

A

Putting and solving the first four equations for we

obtain the start values for the iterations

A,fterfive iterations of the Modified-Gauss Newton Method one obtains
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6. _ASYMPTOTIC EFFICIENCY

,..
In Lemma A.2 it is shown that ,;n (6 - eO) converges in distribution

rv rv

to a normal with mean 0 and variance-covariance matrix
rv

and

v =rv

o
'"

o
'"

o
f'J ·..

·..

·..

orv
o
f'J

T =rv

...

•••

,..,..
_We have seen in Theorem 2 that J'fi (e - eO) converges in distribution

-rv '"

to a p-variate normal with mean 0
f'J

The Aitken improved estimator

and variance-covariance matrix 0-1•
,.. '",..
e is asymptotically more efficient-

-f'J ,..
than the equation by equation least squares estimator e in the

rv

sense that v- l - 0-1 is a positive semi-definite matrix. This
""-J f"'oJ. r-J 'r'J

.. -1-1is proven as follows. By LemmaA.3 V T V is the limit of
'" ,..... rv

(! F'F)-l(! F'(tG?I)F)(! F'F)-l While n- l is the limit ofnrvrv nrv rv .",,,, nrv",
f

The dif'ference

is positive semi-definite by Aitken's Theorem
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(Theil, 1971, p. 238) so the limit - is positive semi-

definite.

There is one situation, likely to occur in a designed experiment,

where the Aitken improvement of e does not result in a gain in
. ""

asymptotic efficiency. When the response functions f (x , e )
a, rva, ""(1,

all

have the same functional form and the inputs are the same for
. -1 -1 -1.. q. ::;: 1, 2, ••• , M the Q, ::; Z XZ . This follows directly

from the faqt that, in this

for 1, 2, ••• , M. Thus,

the same matrix, W,
f'V

In the case when the response functions and inputs are the same,

the recommended procedure is to skip step three and estimate the
A

variance-cova.riance matrix of Jil (£ - i) by

Q-l ::; -1 .



7. MONTE-CARLO SIMULATION

This section reports the results of a Monte-Carlo study which was

undertaken to gain an indication of the adequacy of the asymptotIc theory

in applications. Briefly, the study indicates the need for some con-

servatism in setting confidence intervals and testing hypotheses using

the standard error estimates obtained in step four of the procedure.

This is primarily due to evidence that these estimates understate the
""actual standard deviation of the estimators e. and, to some extent,lex.

due to departures in the shape of the small sample distributions of-tne
"«\e. from the limiting normal distributions.lex.

The details of the study are as follows. Bivariate normal errors

were generated with

(
.001 .0005

.0005 .001
)

anq added to the response functions of Section 5

with

o ( .) I8 = 1, 1, 1, -1, 1, 1, -1
"'"

using the in;puts in Table 1. The replication scheme is "constant in

t d 1 Il f . t t f'repea e samp es a Slze wen y- lve. The sample size n was

taken as fifty yielding two replicates of each input. The results

of the simulation are summarized in Tables 2 and 3.



Table 2. Location and Shape Parameters of the Sampling and Asymptotic Distri-
butions

Parameter Monte-Carlo Asymptotic
Mean Stdo"·Dev. Skewness Kurtosis Mean Std. Dev. SkewneBs Kurtosis

Orqinary Least Squares

811 ·9789 .1082 -1.0160 4·7232 1 .0892 0 3
e21 1.0001 .0124 - .0212 2·7972 1 .0126 0 3
e31 1.0211 .1039 1.0325 4.8957 1 .0855 0 3
841 - ·9942 .1530 .0251 2.9165 -1 .1407 0 3
A12 ·9831 .0973 -1.0827 5·5i?66 1 .0890 0 .3
822 1.0164 .0939 1.0728 5· 5581 1 .0855 0 3
832 - ·9952 .1378 .0684 3·0470 -1 .1407 0 3

Seemingly Unrelated Regressions

ell ·9792 .1079 -1.0171 4·7110 1 .0892 0 3
821 ·9996 .0106 .1084 2.8214 1 .0110 0 3
831 1.0210 .1038 1.0249 4.8379 1 .0855 0 3

841 - ·9943 .1530 .0258 2·9141 -1 .1407 0 3
812 ·9832 .0972 -1.0780 5·5006 1 .0890 0 3
822 1.0164 .0938 1.0673 5,5267 1 .0855 0 3
832 - ·9952 .1377 . 0650 3·0510 -1 .1407 0 3

Constrained Seemingly Unrelated Regressions

P1 ·9850 .0883 - ·9445 4.6118 1 .0771 0 3

P2 1.0000 .0066 .0558 2.8926 1 .0069 0 3

P3 l.0147 .0849 ·9386 4.6365 1 ·0740 0 3
P4 - ·9950 .1275 .0770 3·1294 -1 .1219 0 3



3· Estimated Standard Errors
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Parameter
Mean Estimated
Standard Errors

Monte-Carlo Estimate
of the Standard Error Ratio.

Seemingly Unrelated Regressions

811 .0922 .1079
821 .0104 .0106 1.02
831 .0887 .1038 1-.17
841 .1335 .1530 1.15
812 .0912 .0972 1.07
822 .0878 .0938 1.07
932 .1346 .1377 1.02

Constrained Seemingly Unrelated Regressions

PI .0782 .0883 1.13

°2 .0067 .0066 ·99

°3 .0753 .0849 1.13

P4 .1164 .1275 1.10
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Table 2 conveys the impression that the bias, skewness, and peaked-
A A
A A

ness of the small sample distributions of the estimators 8- or Pl-lex,
are set in the ordinary least squares phase of the estimation procedure

and are not appreciably modified in the later unrestricted or restricted

Aitken phase. No general observations are possible. Some parameters

are estimated with positive bias and some with negative bias, some

distributions are left skewed and some right skewed, some are lepto-

kurtic and some platykurtic. The only effect of the Aitken phase of

the estimation procedure is to reduce the standard errors of the

estimators.

When each single equation model is linear, the variance reduction

in the Aitken phase is entirely due to linear restrictions across

equations. Usually these restrictions take the form of knowledge that

some parameters entering the model are zero. (See Zellner, 1962,

p. 353). In a sense this is true in the nonlinear situation. We have
f

seen previously that if the inputs are the same and each of the

response functions have the same functional form then there

is no asymptotic variance reduction in the Aitken phase of the estima-

tioD procedure. Only when the functional forms differ or restrictions

across equations are imposed does an opportunity for variance reduction
(

arise. The Monte-Carlo study indicates that these same considerations

remain valid in the small sample distributions of the parameter estima-

tors. The slight variation in functional form between

and yields an improvement in efficiency. Interestingly,
A
A

the asymptotic theory indicates an improvement for only whereas

the Monte-Carlo study indicates a slight gain in efficiency in the
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remaining parameters. The imposition of the restriction =
results in additional improvement.

Table 3

elements of

indicates
'"(Q,fl or

that standard errors obtained from the diagonal
"'''''''(2 2/)-1 as the case may be will lead one

astray. In the absence of further evidence, it would not be an

unreasonable practice to increase estimates of standard errors by

the 1.10 before use in setting confidence intervals or testing

hypotheses.
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APPENDIX: LEMMAS

The appendix contains a sequence of technical lemmas which

are used to obtain the asymptotic properties of the estimators
'" '"'" '"and f<- in Section 4 and to compare the asymptotic efficiency

'"'"of A with e in Section The almost sure convergence of
'" '"
to !o is given in Lemma A.2; the asymptotic distribution

of is given by Lemma A.7. The almost sure convergence of
"'-1 -1to and the rate of convergence are given by Lemma

A.5. The remaining lemmas establish those implications of the

weak convergence of the measures

Sections 4 and 6.

[" } which are useful in.... n

Lemma A.l: Let K be a compact subset of the m-dimensional
'"

real numbers for some integer m 1 and let be con-

tinuous on X X K. Under the Assumptions of Section 3, the
'" '"

sequeJ+ce of integrals J g(h dlln(.v converges to the integral

uniformly in T over K.
'" -

Proof: Malinvaud (1970, p. 967). 0

Lemma A.2: Under the Assumptions of Section 3, the least

squares estimators

of the form

8 converge almost surely to eO and are
-(1, ""'CX,
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where ,ji1 a converges in probability to zero.
'"""'CXXl

Moreover,

converges in distribution to a p -variate normal with mean 0 anda
. . t· (J V-I.varlance-covarlance ma rlX

a.t:1:"w:L

X and A a set ina

A :;;: AaX X:ta and

be the Borel subsets ofLet aaProof:

Define U (A)an a
U (A ) :;;: U(A).a aset

a .a -1 n ():;;: nti;:;;:l IA .2Sta • Set
a

The U converge weakly to the measurean
u a so that Assumption 6 of Gallant (1973) is satisfied. If 0

a.e. U then g(x) :;;: ° a.e. U so that Assumption 7 is satisfied.a .rY

Since (1 is non-singular must be non-singular and Assumption 11

is satisfied. Assumptions 1, 2, 4, 5, 9, 10, 14, and 15 of Gallant

(1973) have been assumed and so that the Lemma follows from

Theorems 2, 3, 4, and 5 of Gallant (1973).

Lemma A.3: Let the Assumptions of Section 3 hold and let

*converge almost surely to eO and .&. converge almost surely toorr-

Then n-IF' (8*) converges almost surely to V,..,A for
f'JCk rva, ............ f'JU!-'

a,13 :;;: 1, ••• , M.

Proof: The ijth element of may be written as

We may apply Lemma A.l since ® )( ®rva f3 is compact so that v.. (8 , lk,)
1 Jn '""'Ct ° l-'

has the uniform limit

v.,fe,lJ 0-1'"

which is continuous on ® )( ®Q being the uniform limit of continuous
rva, I'"



functions ..
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* * * *The difference v .. (6 , - v .. , i).Q.) . converges almost
1. J n "'a, ""p 1.J a, 'I-'

surely to zero by uniform convergence 'and the diffe:t::ence * *v .. (8 , -
1.J '""'a, """p

.(au , converges almost surely to zero by continuity.' The surn of
1.J (Va, .,..,

* *these two differences is v (aijri "Va! '''''P
converges almost surely to zero. n

which, therefore,

Lemma A.4: Let K be a compact subset of the m-dimensional real
(V

numbers for SOme integer m 1. Let the Assumptions of Section 3 hold

and let g05, -:r;) be continuous on X ,!S. Then for almost all reali- .

zations of [ }oo the series () teta, t=l n (j=l g eta, converges 0

zero uniformly in over K.
. (V (V

..lh 2( )Proof: By Lemma A.l, n g

S g205, ,.!) c¥.t uniformly in ,:r, over ,!S.

Theorem 4 of Jennrich (1969). 0

converges to

The Lemma follows from

converge almost surely to the corresponding.,.
sUfficiently large, the matrix I: with

'"

Lemma A.5: Let the Assumptions of Section 3 hold. Then the
-1 ,.. I .,..

estimators aat3 = n ea, e13
elements CJaf3 of ,e. For n

,..
elements aat3 is non-singular except on an event occurring with

probability zero. The elements of t-l converge almost surely
(V

to the corresponding elements rvA -1aU<-' of •

is bounded in probability; that is, given 0 > 0 there is a bound M

such that for all n sUfficiently large we have

Proof: The estimator may be rewritten as
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The first term ! e' converges almost surely to by the strongn 1"'J(X,' ..... ........
1 ,.

Law of Large Numbers. 'I'he second term - 0 converges almostn rva rva· .....

surely to zero by Lemma A. 4. Similarly for the third term. Letting

Which, by Lemma A.l, converges uniformly in (e', 8')'r<;Ja over the

compact set to

,. A

By the same arguments employed in Lemma A· 3 we have that waf3n (,go;'

converges almost surely to wof' := o.
A

The eventual non-singularity of follows from the continuity of

det(t) and the assumption that t is positive definite. The almostrv . rv

A-I -1sure convergence of t to t follows from the standard continuityrv rv

argument.

By Taylor's theorem, for given in Srva and x
rv in X

rv
there

is a 8 on the line segment joining 8 and 8° such that
""'a rva "'a

f (x , 8 ) = f {x , 8°) + 'V' f (x , e )(a - eO) •a rva "'a a 1"'J(X, rva rva a ""a r<;Ja ""'tG

l' A
+ t- e' A... (8 - 8°) In In ,.q3



The first term on the right is in probability because

- is asymptotically normally distributed by the

Central Limit Theorem. The second term on the right converges in
,..

probability to zero because is asymptotically normally

distributed by Lemma A.2 and A converges almost surely ton ...... rva,

zero by Lemma A.4. Similarly for the third term on the right. The

fourth term converges in probability

asymptotically normally distributed,

to zero, and the elements of ! A'A

SuPt>-. at> f (x ,a ) >-ab fQ. _aQ.) :v 0 a, f'Ja, rva, V OR 1-" ...... .,..,
J. a, JI-'

,..
to zero because ,jn (a - eU ) is'""a, rva,,..

- 3Q.U . 1m t 1r<.p '.,.., converges a . os sure y

are uniforml.y bounded by

E X X®X&\:ea, f'Ja, . -po ...... f'Ja, "'a, . ..... . .,..,

which is finite by the compactness of X X ® XX X® and the
"'a, "'a, "13 "{3

continuity of the partial derivatives. Using a Taylor series expansion

one can show that if is a function with continuous first deriva-

tives on a bounded open
,..

peT E S) tends to one as n tends
rv '"

to infinity, and is bounded in probability then
,..

In {g (rt.) - g (,.r.u )) is bounded in probability. The 'matrix ,E; is

positive-definite so there is an E > 0 such that deter:) - E > O.
'",..

Since P(det(r:) - E < deter:) < deter:) + E) tends to one as n tends
'f"V .f"'..J f"o",I

r.:::- -1)to infinity we have that the elements of - are bounded

in probability. n



Lemma A.6: Under the Assumptions listed in Section },

L F I GSJI) e converges in distribution to a p-variate normal with
$ '" '" '"

O d · . t· ("'1-1mean an varlance-covarlance ma rlX
'" '"

Proof: We will apply the Central Limit Theorem stated in Problem

4.7 of Rao (1965, p. 118). We may write

1 1 -1 I-nc! \8h == '- !St == .c- '"t==l

where JSt is the p by M matrix

Ustl,,.{?,l) 0 0,....., '"

0 !.L2f 2 0
'" '"!t ::

0 0 ...
'" ry

The are independent by the independence of the and

1 e( ') 1 -n -1 I b th kn == n '"t==l JSt which converges to y e wea

convergence of the measures Un. Let Gt(Z) be the distribution

function of and let be the distribution function of

:: (which does not depend on t). For given E > 0



where = [v:,..,
40

= ! j' IIV f (x cP) 112 W2 dH(W)n t=l B a=l rvd atn

where = [w:rv
-M 2 2 2';. 1 IIV f (lCA- ,eU )1I W > n € )
aP ""'(t, a '-lJa, f"V a,

compact

where

$ -n
l JB K

. tn

K = sUPa,suPX IlZa,f 11
2 and is finite becausek,a is

rva

where e = [w:n f"V

$ K Ie
n

dReW)
f"V

because Beetn n for t = 1, 2, ••• , n;
this term converges to zero as n tends to infinity because

I is finite. D

Lemma A.7: Under the Assumptions listed in Section 3,

converges in distribution to a p-variate normal with mean 0 and
N

. . . -1 -1V V •
f"V ""'rv

Proof: By Lemma A.2

(1 I )-1 1 I t:::'- F F - F e + 'l!n an f"V f"V rnrv f"V f"V

where JUarv converges in probability to 0' •
f"V

The matrix

converges to -1
Vrv by Lemma A.3.

.
Using arguments similar to those used



in the proof of Lemma A.6'we have that !- Fie = !- tn K uJll "" rv Jll t=l Nt Nt
in distribution to a p-variate normal with mean 0 and

rv

variance-covariance matrix .t. n
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