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COMMENTS ON COMPUTING MINIMUM ABSOLUTE DEVLl'\.TIONS REGRESSIONS BY

ITERATIVE LEAS'r SQUARES REGRESSIONS AND BY LINEAR PROGRAMMING

ABSTRACT

This note considers some aspects of the computational problem of

by minimizing the sum of absolute deviations

Yt = t 1 x· t l3·l= l l
fitting the regression model (t = 1, 2, ... , n)

- r!: 1 x· t l3·1l= l l

The iterative method recently proposed by Schlossmacher (1973) is

shown to have undesirable features under certain conditions. The

linear programming approach using the simplex method as suggested by

Fisher (1961) requires that the simplex tableau contain a submatrix

of order n by 2k + n which restricts the method to relatively

small problems. We show that an n by k matrix and a 2k + n vector

are sufficient to represent this submatrix. This representation

improves the efficiency of the simplex method and allows its use in

a large proportion of the problems which occur in applications.



1. INTRODUCTION

Consider the linear model

where )l is the (n X 1) vector of responses, X the,.... (n X k) matrix

of inputs, the (k X 1) vector of unknown parameters, and the
'"

(n X 1) vector of unobservable errors. The parameter is to be

estimated by minimizing

n
I:
t==l

Iy - X I R I .t rvt,l:V

An iterative technique was recently proposed by Schlossmacher

(1973) for solving this problem. The method consists of doing weighted

regressions using diagonal weights equal to the reciprocal of the

residual for each observation from the previous iterative step. When

a residual becomes small relative to the others, the weight for the

corresponding observation is set to zero. The procedure terminates

when residuals from successive steps differ by only a small amount.

We have found this method is unsatisfactory in some cases. An

example is given where there exists a serious lack of stability at

the answer and another where the procedure converges to the wrong

answer.

The objection to the use of linear programming and the simplex

method of Dantzig as suggested by Fisher (1961) is the excessive size

of the simplex tableau which limits the method to small problems. We

show that a submatrix of the simplex tableau may be represented by a
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considerably smaller matrix which both reduces storage requirements

and improves the efficiency of the simplex method.

We call attention to the paper by Wagner (1959) which gives an

alternative method of achieving storage compression by recasting the

primal linear program as a bounded variables dual linear program.

We think that the reader will find the simplex method with storage

compression as suggested in this note to be the simpler approach.
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2· COMMENTS ON I'I'ERATlVELY REWEIGHTED IEAST SQUARES

The following example illustrates the lack of stability of

Schlossmacher's (1973) iteratively reweighted regression procedure.

Suppose we wish to estimate the location, of a population from

the following data: -1, -1, 0, 0, 2. The starting estimate (the
'"sample mean) is = 0 yielding associated residuals -1, -1, 0,

0, 2 and weights 1, 1, 0, 0, 1/2. The second step yields an

estimate = 3[(-1)(1) + (-1)(1) + (0)(0) + (0)(0) +

Thus, the first step estimate is the desired answer (the median) while

the second step is a significant step away from the answer.
'"To see why this happened let ) be the (k X 1) estimate

th '"from the j step, W = diag(wl , w2' ... , w ),
rv n

w. /r·(j)l-lif /r·(j)l>o, w. = 0 if and
1 1 1 1 1

= (Sl' S2'

stopping is

... , S ),n and S. = sgn(r. (j)).
1 1

Then the condition for

'" '"(ll - ( j +l)) - (ll - AS ( j )) =Q

X'S = 0
rv rv '"



Thus, at the solution, XiS = 0 is a necessary condition for the
rv rv rv
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residuals from the "next step" to be identical to those at the

answer. No such S vector exists for the example given above and
rv

can be shown not to exist in many situations. In view of this, it

is not surprising that the method exhibits the observed instability.

The following example illustrates an instance when the process

converges to the wrong answer. Suppose we wish to estimate the

location, 13, of a population from the following sample: -1, 3t, 1,

where and 2t is less than the test value for setting.. .
"weights to zero. Then the first step estimate is 13(1) =

5[-1 + 3t + 1] = t with residuals (-l-t), 2t, (l-t) and associated

( ) -1 ( -1weights l+t ,0, I-t) • The second step estimate is

= [(l+t)-l + (l_t)-l]-l[_(l+t)-l + 0 + (l_t)-l] = t with

residuals (-l-t), 2t, (l-t). That is, the residuals are unchanged,

the procedure has converged but to t not the correct answer 3t.
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3. THE PROBLEM AS A LINEAR PROGRAM

The problem of fitting the regression model + by

minimizing the sum of absolute deviations may be put in the form of

a linear programming problem as follows. Decompose the vector

into its positive and negative parts f2-+ and f2-- so that

where Similarly decompose the residuals

= - into

the problem

+e e - e
rv rv '"

where +e ° and e 0.
"" '" rv

Then

is equivalent to the linear program

min

++ e - e
rv rv

+0, 0, e 0, e °rv rv '" rv '" '"

where l' is a (1 )t n) row vecto::r whose elements are ones. The
rv

most convenient form of this linear program for our purposes is

max -6 1 'X /G+ - - 2 lie - l'y
'" rv rv rv rv rv '" rv

+ -s. t. - erv

+
2 Q, 2 Q, e Q.

'"



Set

c' ==,..... -2 2:,') (1 X 2k + n), and

(n X 1),
, +' -' -'

== , , )

6

(2k + n X 1). The matrix formulation of the linear program is

max -0 == - k'x,

s.t. A r < b

When the program has been solved to obtain r and the associated,.....
A

minimum - max(-o) the estimate of the parameter f3 is recovered,.....
A A+ A A A A+ A

from r == , e-) by setting f3 == f3 f3f'V ,.....
f'J ,..... ,.....
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4. THE SIMPLEX ALGORITHM AND THE SUBMATRIX A
rv

Our discussion of the simplex algorithm is heavily dependent on

the tabular representation of the problem and description of the method

contained in Chapter III of Owen (1968). It is recommended that the

reader have this reference in hand while reading this section.

The problem is represented initially by the tableau

!
c' d
rv

where the entry d == -1'?f..,' The elementary step of the simplex

algorithm is a pivot on some non-zero element of the sUbmatrix

A to obtain the tableau
rv

A -brv rv

T :=
f"J

C' d
rv

The sUbmatrix A is obtained from A by pivoting on,..,. rv as follows:

i) -1 , f f3' f f3,ao.'f3 ' == a a. 'f3 ' - a 0t3 ao.'f3' a. a.,

ii) -1 f3' f f3,== ,

iii) -1 , f a.,ao.'f3 ;:;: - ao.'f3 , a.

iv) -1
aaf3

The simplex algorithm is a set of rules for choosing these pivots

aa:t3. These rules are explained in complete detail by Owen (1968). Our

concern is with their effect on the submatrix A.
rv



Consider the Figure. Initially the submatrix A can be
rv

8

represented by a copy of a permutation vector initialized at

= 1, 2, ..• , 2k + n), and these rules:

i) if . < k then a = x- a,8

ii) if k < :$ 2k then aat3 = - xa(j - k) ,

iii) if 2k < then aaj3 = -1 if = 2k + a and = o otherwise.

We this set of rules the ,si) representation of A .,....,

Again consider the Figure. It is quite clear from the three

examples given that any number of pivots does not destroy the

structure of A. There will always be k columns with arbitrary,....,

entries, k columns whose entries are their negatives, and n

negative elementary vectors. A pivot on aa,8 amounts to no more

than an alteration of the entries in k columns of A and permuting

two columns. Thus, it is possible to obtain a (%' I) representation

of A via the rules of the previous paragraph by suitably altering
'"

Three possibilities must be taken into account when modifying

to reflect the effect of a pivot on aa,8. These are:

i) a pivot occurs on aat3 such that :$ k,

ii) a pivot occurs on aa,8 such that k < :$ 2k,

iii) a pivot occurs on aa,8 such that 2k < and = 2k + a,.
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In the first case we have

follows:

aa/3 == x . Alter as

i) Pivot on x .

given above with

to obtain X using the pivoting rules
'"

X, replacing A conceptually.
f"V '"

ii) If I == jp + k set , == 2k + a If , == 2k + a

set , == + k Otherwise set , == , .

In the second case we have

as follows:

aaj3 - xa(j - k) . Alter

i)

ii)

Pivot on x to obtain X- k) f"V

Change the sign on each element in row a of X except
'"

== 2k + a set,If

I == •Otherwise set

x (. k).a J -

k set I == 2k + a·== -

== j - k.,

x ( ). Change the sign on each element in column
a k
of X except

'"
Ifiii)

In the third case we have aa/3 -1 and - 2k a- Alter

..t) as follows:

:i,) Do not pivot.

ii) Change the sign on each element in row a of X.
f"V

iii) Do not alter ,Q,'

Clearly the above alterations of (J:S' AL) to obtain (1:;i) may

be performed in place and no additional storage is needed. One word

of caution, modify the vectors b,
f"V

c and the scalar
f"V

d of the

tableau ! before altering (J:S,,,:L).
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5· S'TORAGE AND EFFICIENCY

Asswning double word storage for floating point variables and

single word storage for integers, the representation of A
rv

requires 2nk + 2k + n words rather than the 2 28nk + 8k + 2n words

required to store A itself.rv The elimination of the 2n term

extends the simplex method of solving of the minimum absolute

deviations estimation problem to a considerable proportion of the

regression problems occurring in applications.

A discussion of the relative efficiency of a pivot via the (x, j)
rv rv

representation as opposed to operating directly on A is probably
rv

irrelevant--for small problems it doesn't matter and for moderate

sized problems storage of A is infeasible. Nevertheless, in cases
rv

and indexing operations as opposed to

(i) and (ii) a pivot on A using
rv (h ri) requires nk arithmetic

2n + 2nk using A. For
rv

case (iii) using requires k operations as opposed to

n2 + 2nk. The increased overhead required to index indirectly

via in other portions of the program will be more than offset

by these savings.
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CONFIGURATIONS OF fA SUBMATRIX OF 'I'BE SIMPLEX 'I'ABLEAU

Initial

-X -,V'"

Possi.bilities after Pi.voting

* , ,
0' [xu -, -,

£'lxll .2S12 -x11 -.2S12 -1 xlC) -1 -x11I'V I'V",-+

2S22 -J:el -X2" 0 -I 0 -x -I
rv .2- I'V '" "'21 I'V

, * ,
0 1 r-1 -, -, £,]rXu -xl1 -xl" -1 -,2S12 -x11 XuI'Ve:. rv (-+

.<521 'c22 -2S22 0 -I L,Q -I
rv rv I'V-

[xu 1 , * £] lXU
1 , 0'-xU -AS12 -1 x11 -1

I'V

-+
X -)$22 0 -I ,2521 -)$22 0 -I1'V22 I'V rv "'V '"

X = X -1 ,
rv22 1'V22 - xn
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