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ABSTRACT

The problem of testing for the location of a subset of the para-
meters entering the response function of a nonlinear regression model
is conslidered. Two test statistics--the Likelihood Ratio Test statistic
and o test derived from the asymptotic normelity of the least squares
estimator--for this problem are discussed and compared. The large
sample distributions of these statistics are derived and Monte-Carlo
power estimates are compared with power computed wsing the large

sample distributions.



1. INTRODUCTION

This study is a continuation of the work reported in [4] which con-
tains a brief review of the literature. Here testing for the location
of a subset of the parameters entering the response function of a non-
linear regression model is considered rather than a joint test of all
the parameters. This problem is more useful in applications but more
tedious to deal with analytically.

Two test statistics are considered for this problem--the Likelihood
Ratio Test statistic and a test statistic derived from the asymptotic
normality of the least squares estimator. The tests based on these
statistics are equivalent in linear regression but differ in nonlinear
regression. Two approximating random variables with known small sample
distributions are derived; they are asymptotically equivalent to these
test statistics. (The mathematical detall is deferred to the Appendix,)
A Monte-Carlo study is employed to verify that estimates of the power
of these tests computed uging the distribution function of the approxi-
mating random variables are sufficiently sgccurate for use in applica-
tions. Lastly, considerations governing a choice between the two
tests are discugsed.

A more formal description of the problem studied in this article

is the following. We consider testing the hypothesis of location
H: =1 against A: o # o

at the o level of significance when the data are responses Yy to

inputs Xy generated according to the nonlinear regression model

v, = £x., 8) + e, (t=1,2, ..., n)



where the parameter @ has been partitiocned according to

The form of the response function f(xt, ) 1s known. The unknown
parameter @ 1is known to be contained in the parameter space (@ which
is a subset of the p-dimensional reals and the first r coordinates p
of the parameter 8‘ = (p’, ¢') are regarded as nuisance parameters.
The inputs x are contained in X which is a subset of the k-

t

dimensional reals. The errors e, are assumed independent and normally
distributed with mean zero and unknown varlance 02

An example of a problem fitting this description is that of testing
whether selected treatment contrasts are zero in a completely randomized
experimental design where some covarigte w such as age is known to
affect the experimental material by shifting its expectation exponentially.

Such a model would be written

pw
zZ., = u-+ ti + o e

i3

Ty e;; (i=1,2, .., T3 g=1,2, ..., )

following the usual conventions. Assume for simplicity of exposition
that I=2 and the hypothesis of interest is H: tl = t2 against
A: tl % t2 . This hypothesis suggests a reparemeterization to the

model

A X

- 3%3¢t )
Ve = 0% T 0%, o9 € * ey (t=1,2, +.., n)

where

Ye 7 2 x/ = (1, 1, wl‘t)’ etzelt (t=1,2, ..., J),

x! = (0, 1, W2t)’ e, = €py (t = J*+1, .,., 2J) ,



and
8" = (t; - t,, u+t t,, B, a) .

With this parameterization the hypothesls of interest becomes H: 61 = 0
against A: al % 0 . The parameter -+ 1is el and the remaining pare-
meters p' = (92, 93, eh) are the nuisance pgrameters. This example

is used for the Monte~Carlo simulations,
2. NOTATION, ASSUMPTIONS, AND A PRELIMINARY THEOREM
The following notation will be useful in the remainder of the paper.
Notation: Given the regression model
vy = f(xt, e*)-+ e (t=1,2, ..., n)
where 6* denotes the true but unknown value of § , the observations
(yt, xt) (t=1,2, ,.., n)
and the hypothesis of location
Hy &= T against Ay 7 # TS
where @ has been paptitioned according to
8’ = (p’s ')

we define:

Jy = (yl: ye: cvey yn) (n P l) ’

f(e) = (f(xl’ 6), f(xez G), ceey f(x ) 6))l (n b4 l) )

n



e-—'(el? 623 ) el’l), (1'1)(1) ’

F(g) = the n x p matrix with typical element 8%- f(Xt’ 8) ,
J

Fl(g) = the n % r matrix formed by deleting the last p-r columns

of F(g)
P-F(g )F (g)F(e )T F (8) (nxn),

P B8R (0 (8)17F (8T (mxn)

1

Pt = -p (n x n) ,
l'— -

Pt = I-P (nxn) ,

g = the p %1 vector minimizing 22=l{yt - f(xt, 6)}2 over (1 ,

2= (y - £(8))(y - £(8))/(n-p) ,

~ - . 2
p = the r %1 vector minimizing 22 l{yt - f(Xt, (o, TO))} for

(p, 'T'O) in Q ,

~

= (y - £(8))'(y - £(8))/n ,

2 ~
‘T = (y = f(3> TO)),(y = f(p, TO))/n s
*
5.(p) = £(a) - £(p, 7))  (ax1),
p, = the r x 1 vector minimizing 65(0)60(9) for (p, TO) in Q,
C22 = the g % q matrix formed by deleting the first r rows and

columns of (F’(e*)F(e*))—l s



p

~

C22 = the gq X g matrix formed by deleting the first r rows and

columns of (F’(é)F(é))'l ,

U, = the g x 1 vector obtained by deleting the first r rows of

2
[P (g )F(8 )17 (8 e .

* *
For simplicity we will write F for F(g ), Fl for Fl(e ), and

6, for 60(00). Also, the following vectors and subvectors are related

) . ~ ~on * * %
according to the equalities g= (p, v), 8 = (p , ), and

60 = (pos 'TO)
In the remainder of the paper it will be convenient to use the

following conventions to refer to various distribution and density

functions.

Densities and Distributions. Let g(t; v, A) denote the non-

central chi-squared density function with v degrees-freedom and non-
centrality A [5, p. 74] and let G(t; v, A) denote the correspond-
ing distribution function. Let n(t; s 02) denote the normal density
function with mean p and varlance 02 and let N(t; u, 02) denote
the corresponding distribution function. Let F‘(t; Vi Vo A) denote
the non-central F-distribution function with vy numerator degreess
freedom, v, denominator degrees-freedom and non-centrality A [5,

pp. 77-78]. The central F-distribution with cerresponding degrees-

freedom is denoted by F(t; Vs v Define H(x; Vi Vs A ke) to

2)'

be the distribution function given by

0, x <1, )\2= O;

jZG(t/[x—lj + 2x)\2/[x-112; Vo 12/[x-1]2)g(t; v kl)dt, x <1, \> 0,



Jom(-ts 2h,, 8,)elts vi, Ap)dt, x=1, A> 0,

i 2, g .
1 - j o G(t/[x-1] + 2xX2/[X~l] 5 Vo x2/[x-1] de(t; v Apat, x>1.
It is shown in [ 4] that
H‘(X; Vl’ ‘[2) kl) o) = Fll(v2(x-l)/vl; Vl’ V2) >\l) ¢

The following regularity conditions are taken from [4) and are

repeated here for the readers' convenience.

Definition. Let G be the Borel subsets of X and {x,)7 , be
the sequence of inputs chogsen from X . Let IA(x) be the indicator
function of a subset A of X . The measure W, on (Xx,6) is defined

by

-1 n
QA =0 E ) T,0e)

=

—

~
1

the proportion of x, with t < n which are in A

il

L

for each A ¢ QG

Definition. A sequence of measures {un} on (X,G) 1is said to
converge weakly to a measure p on (X,G) if for every real valued,

bounded, continuous function g with domain X

Je(x)ap, (x) » [ e(x)au(x)

as i = oo



7
Assumgtions. The parameter space ()} and the set Y1 are compact

subsets of the p-dimensional and k-dimensional reals, respectively, The

response function f£(x,8) and the partial derivatives S%— f(x,9) and
i
2
gg-gév f(x,G) are continuous on Y X . The sequence of inputs
1755

=] - -]
{Xt}t:l are chosen such that the sequence of measures {un}nzl con-
verges weakly to a measure p defined over (X,G) . The true value of
*
g , denoted by @ , is contained in an open set which, in turn, is
*
contained in Q . If f(x,a) = £(x,9 ) except on a set of p measure

*
zero, it is assumed that § =8 . The p x p matrix

N * *
=0 [ £(x,0) 22 £(x,0 )du(x)]
d
is non-singular. As mentioned earlier, the errors {et} are independent
with density n{x; 0, 02} where 02 is non-zero, finite, and unknown,
An additional assumption is used to obtain the characterizations
of the test statistics studied in this paper. See [7, p. 305] for

its motivation and justification.

*
Assumptions (continued). As n increases, To tends to + at

_ * - * .
a rate such that ,h (TO -7 ) and 4n (po - p ) converge to finite

limits.
. . \ ° 2 ~2
Theorem 1 gives the asymptotic properties of 6§, o, and ¢

which are used to characterize the two test statistics studied in this

paper. This theorem is proved in the appendix.

Theorem 1. Let the assumptions listed above be satisfied.



8

~

*
The random variable @ converges almost surely to ¢ and may be

characterized as
~ * -
6=0 + (FF) et o

where ,/n o, converges in probability to zero.

The random variable 02 converges almost surely to 02 and its
reciprocal may be characterized as
]/0‘2 = n/e/P'Le +

d. ~
1n

where n a,n converges in probability to zero.

The random varigble '52 may be characterized as
T = (e+ 5 )P et 5, )/ n+ D
o] 1 o n
where n bn converges in probability to zero.
3. THE LIKELTHOCD RATIO TEST AND ITS LARGE SAMPLE DISTRIBUTION
The Likelihood of the sample ¥y 1is
2 2,-n/2 2
L(y; 8 0) = (2n0®) ™ Pexp -(1/2)(y - £(8))"(y - £(8))/o1 .
The maximum of the Likelihood subject to H is
2\ -n/2
L(H) = (213%) ™ 2expl -n/2]
and its maximum over the entire parameter space is
“2y-n/2
L@Q) = (eng”) ™ Pexpl -n/2] .

A2 - .
Thus, the Likelihood Ratio is L(H)/L(@Q) = (3/¢") /2 14 the Likelihood



Ratio Test has the form: Reject the null hypothesis H when the

statistic
2,72
T ='g/q

is larger than c where HT > c|H]) = o .
The computation of the statistic requires that two nonlinear models
be fitted to the data using, say, elther Hartley's [6] or Marquardt's [9]

algorithm. The constrained model
= +
yt f(xts (ps TO)) e‘t
must be fit to obtain EQ and the unconstrained model

yt = f(Xt’ 9) + et

~

to obtain 02
The statistical behavior of T 1is given by Theorem 2 which is

proved in the Appendix.

Theorem 2. Under the assumptions listed in Section 2, the Likeli-

hood Ratio Test statistlc may be characterized as

where n c, converges in probgbility to zero and

>
li

15 4 1ot
(e + 60) P (e + 60)/6 P e .

The random variable X has the distribution function H(x} q, n-p, Al,

A where A = 6é(P-Pl)6o/(202) and XE = 6éPL60/(252) .

o)
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A relationship between the distribution function of the approximat-
ing random variable X and the non-central F-distribution was mentioned
in the previous section. Using this relationship, the critical point
c* of X (HX > c*lkl = xg = 0] = @) can be obtained from the formula

" =1+aF /(np)

where Fa denotes the upper o - 100 percentage point of an F-
distribution with ¢ numerator degrees of freedom and n-p denominator
degrees of freedom. This critical point c* may be used to spproxi-
mate the critical point ¢ of T -~ in applications one rejects

H: 7 = To when the c¢alculated value of T exceeds c*

The calculation of the non-centralities Kl and kg for trial
values of 6* and 52 requires the minimization of the sum of squares
Zgzl[f(xt, (o5 TO)) - f(xt, e*)]2 to obtain Po for computing 5,
This may be done using either Hartley's [6] or Marquardt's [9) algorithm
with f(e*) replacing y . The remaining computations are stralght-
forward matrix algebra.

A series expansion of the distribution function H(x; Vi Vo kl,
X2) is given in [4] which may be used to compute PFX >-c*] once kl
and kg have been obtained. However, in most applications x2 will
be small (< .1) and PX > c*] can be adequately approximated by

charts of the non-central F-distribution [1, 10]. The correspondence

for the use of these charts is
% .
H(C ; Vl’ V25 kl) )\2) = Fl(Fa; Vl’ V2, )\l)

That is, the charts are entered at the « level of significance with g
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numerator degrees of freedom, n-p denominator degrees of freedom, and
. 2
. e . _ 7 _
non-centrality A, = 6O(P Pl)éo/(ZU )
A Monte-Carlo study reported in [47] for an exponential model with

g=p=2 and n = 30 suggests that the gpproximation

*. %

HT>c l=Hx>c ]
will be fairly accurate in applications. Additional evidence is given
in Table 1. Using the example of Section 1, five thousand trials were
generated with the parameters set at n = 30,

02 = ,001 with 91 and 93 varied as shown in the table. The

92 = 1, eh = -.5 and
standard errors shown in the table refer to the fact that the Monte-

*
Carlo estimator of HT > c¢ ] is binomially distributed with variance

* *
estimated by PX>c ] F X< ¢ }/5000.

4. A TEST STATISTIC DERIVED FROM THE ASYMPTOTIC NORMALITY OF THE
LEAST SQUARES ESTIMATOR AND ITS LARGE SAMPLE DISTRIBUTION

The least squares estimator 6 is agsymptotically normally distributed
with mean e* and a variance-covariance matrix estimated consistently
by [F'(é)F(B)]—l s° under the assumptions of Section 2 [2, 3].1/ This
suggests the use of the test statistic
(1 -7 )Coa(r -7 )/a
g = o’ 22 o )

2
s
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The test has the form: Reject the null hypothesis H when S exceeds
d where HS > d|H] =« .

The program used to compute the least squares estimator will usually
print é, [F’(%)F(é)]—l, and s2. If g=1, the test statistic can
easily be computed from the printed results. However, 1f accuracy is to
be maintained, some programming effort will be required to: recover é,

~ ~

ng, and szﬁ invert 022* and perform the necessary matrix algebra.
The statistical behaviocr of the statistic S 1s given by Theorem

3 which is proved in the Appendix,

Theorem 3. Under the assumptions listed in Section 2, the test
statistic based on the asymptotic normality of the least squares estimator

may be characterized as
= +
S =Y Yn

where Yn converges in probability to zero and

* s-1 *
‘. (Pg =) Con(Usy + 1 - TO)/(q) )

e’Pte/(n-p)

which is distributed as F’

Coale"= 1 )/ (267

¥* *
The critical point d of Y(P[Y > d |A=0] = @) 1is obtained

*
(v5 @, n-p, A) where A= (1 - 1) X

directly from a table of the F-distribution by setting d* = Fa where
F& denotes the upper o - 100 percentege point with g numerator
degrees of freedom and n-p denominator degrees of freedom. This
critical point may be used to approximate the critical point d of

S -~ in applications one rejects H: 17 = To when the calculgted value

of § exceeds F
o
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Monte-Carlo evidence, Table 2, suggests that, under the alternative,

the approximation
* *x
Hs>da 1= Hx>d )

is not as accurate as the approximation of T by X . However, the
approximation appears to be sufficiently accurate for use in applications.

Tgble 2 was constructed in the same manner as Table 1.

Table 2 about here

- e ae e R e e o e e ee e e ae e e e e me e mm e e e m owm wm m me em e we

5. COMPARISON

Tests based on S and T are equivalent in linear regression;
they are not in nonlinear regression, This raises the question of
which should be used in applications.

Approaching this question on the basis of power, the analytical
and Monte-~Carlo evidence suggests that when a component of the parameter
§ enters the model nonlinearly the Likelihood Ratic Test with respect
to a hypothesis concerning it has better power than the test based on
the asymptotic normality of the least squares estimator. When a compo-
nent enters thlie model linearly the two tests have the same power. How-
ever, the evidence presented here is too limited to place much reliance
on this generalization. If the question is of critical importance in an
application, the non-centralities kl and )\ can be computed and com-

pared. Provided )\, is small (< .1) the Likelihood Ratio Test will



1k
have better power than the test based on the asymptotic normality of
the least squares estimator when Xl is larger than A\ . It is not
necessary to evaluate PX > c*] or HY >'d*] if relative power is
the cnly matter of coricern; the comparison of non-centralities will
suffice.

As regards computational convenience, we have seen previously that
for g=1 the test based on the asymptotic normality is more copnvenient;
for g > 1 the Likelihood Ratio Test is more convenient. One qualifica-
tion is necessary. Hartley's [6] and Marquardt's [ 9] algorithms do not
always converge 1in practice. Thus, 1t is possible that ; can be
successfully computed but not B‘.g/ In such situations, B’ must be
computed by other means, e.g., grid search, or the test based on the
agymptotic normality of the least squares estimator employed by default.

In most applications, a hypothesis involves only a single component
of @ and, therefcre, g=1. The author's practice is to use the test
based on the asymptotic normality of the least squares estimator for
computational convenience when the purpose is to assist a Judgment as
tc whether the model employed adequately represents the data. He uses
the Likelihood Ratio Test when the hypothesis is an important aspect of

the study.



FOOTNOTES

1ooJ7 (- 8" £ (o, t716%) ana [%— F(g)F(g)] s .

o

Z. p 1is usually a good start vglue for computing B’.

15
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APPENDIX. PROOFS OF THEOREMS
Three technical lemmas are needed in the proofs of the theorems.

Lemma 1. Let g(x, A\) be a real valued continuous function defined
on X X A where A 1s a compact set. Under the assumptions listed in

Section 2:

. . . l n . .
i) The series o ztzl g(xt, \) converges to the integral
j glx, Mau(x) uvniformly in ) .
. . 1l _n
i1) The random variable ST g(xt, )‘)et converges almost surely
to zero uniformly in ) .

~

*
iii) If kn converges almost surely to )\ in A then

R N
zi:l g(xt, xn) converges almost surely to [ g(x, X )du(x)

=

~

*
iv) If kn converges 1ln probability to A\ in A then

° *
2?:1 g(xt, xn) converges in probability to I g{x, A Jdu(x)

il o

Proof. Part i is proved in [8, p. 967). Part ii is proved as Lemma
3.4 in [3]. Parts iii and iv follow from the uniform convergence given

in Part i. ]

Lemma 2. Under the assumptions listed in Section 2, the random

*
variable B’ converges almost surely to g

Proof. Let 4 (8) = (v - £(8))'(y - £(6))/n = <’c/u+
ae’(f(e*) - £(@))/n + (f(Q*) - f(e))’(f(e*) - £(g))/n which converges
almost surely to Q(g) = gg>+ f {f(x, e*) - f(x, e)}gdu(x) uniformly

in @ by the Strong Law of Large Numbers and Lemma 1 i, 1i., Let
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{B;] be a sequence of points minimizing Qn(p"To) corresponding to a
realization of the errors {et]a Since (i 1s compact there is at least

cne limit point p# and at least one subsequence ﬁgn 1 such that
m

N ~ o # , ;
llmm e pnm = p . Unless the reallzation {et} belongs to the excep-

2 -, # LR r~ . * B
tional set, ¢ <Q(p", v ) = 1.1mm e Q(pnm, TO) < 11mm e Qlp To) =
- % o * KD .
Q(a ) = ¢ so that I {f(x, 8 ) - £(x, (p#, r ))}du(x) = 0 which

*
Implies p#': 0 by assumption. Thus, excepting realizations in the
~ *

excepticnal set, 0, has only one limit point which is p . d

Lemma. 3. Under the assumptions listed in Section 2, the random
vector (1/Mn)F’e converges in distribution to a p-variate normal and

(1/Jh)F'60 converges to a finite limit.

Proof. By Lemma 3.5 of [3) or Lemma 4.2 of [2] (1/y/njF’e converges
in distribution to a p-variate normal. By Taylor's theorem, (l/Jh)FIGO =
-— * —
-(l/Jh)F'F(Q)(eO -9 ) where @ is on the line segment joining 8, to
* *
8§ - The assumption that ./n (eo - g ) tends to a finite limit and

Leuma 1, i applied to % F'F(R) imply the result. ]

Proof of Theorem 1. The first conclusion is proved as Theorem 3

of [3] or as Proposition 6.1 of {2]. The second conclusion is proved
as Lemma 1 of [L4].

By Lemms 2, (3: To) will almost surely be contained in the open
subgset of () containing 9* allowing the use of Taylor's expansions
in the proof and causing ‘3 to eventually become a stationary point of

alp, 1) = (v - 2o, 7))y - £(p, 7 ))/n .
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In this paragraph we will obtain intermediate results based on
Taylor's expansions which will be used later in the proof, Using

Taylor's theorem,
~
£(p, 7,) = t(e,) + P, (o - o)+ H( - p,)

where H is the n % r matrix with typical row V'f(xt, eo) -
I * 1~ ,2 —_ —_— p
VOI(Xt, a )+ §(p - po) Vof(Xt, (p>» TO)) and p 1is on the line segment
Jjoining 'a to Po- Using Lemmas 1 and 2 and the assumption that
Ji (e
1

and o FiH, and % H'H converge almost surely to the zero matrix.

- § ) converges to a finite limit one cau show that % Fiq;, TO)H,

Applydng Taylor's theorem twice one can write
[F/(p, 7 ) -F/J(e+ 5 )=E(8 -8)+Dp-p)
10 Ty 1 o) Q : P %o
where E 1is the r X p matrix with typical element

R ¢ « N Y *y
3 % By 5,00, E e)e, + £lx, a) x5 8,)]

and D is the r x r matrix with typical element

2
e = *y -

We will write Eo when this matrix depends on oo and will write E

and D when the dependence is on S’. Using Lemmea 1 and the assumed
» f to * o how that L E i'ﬁ and 1 D
convergence o eo 0 ne can sho P - s -

converge almost surely to the zero matrix.
In this paragraph we will obtain the probability order of Bﬁ As
~e

mentloned earlier, for almost every realization of the errors {et}, o)

is eventually a stationary point of (v /2)alp, TO) so that the
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) , ~ _ ~ \
random vector (- 4n /2)VQQ(p, TO) —(lﬁJn)Fi(p, TO)(y - (g, TO)) con-
verges almost surely to the zero vector. Substituting the expansions

in the previous paragraph we have that

1
n

L

PG, )P S Gt H - VA Gep,) - B Ble,-e) - - Fl(ers)
Jn W
converges almost surely to zero. Lemma 1 and our previous results imply
that the matrix in brackets converges almost surely to a positive
definite submatrix of t . Lemma 3 implies that G/Q%)Fi(e + 60) coti-
verges in distribution to a r-variate normal; (%'ﬁ) JH’(QO - e*) con-
verges almost surely to the zero vector., These facts allow us to con-

clude that
~ -1
u, =0 Lp -p, - (F{F)) F(et 5)]

converges in probability to zero and that v, = VE'CE - po) is bounded
in probability.

The sum of squares

lle+ 6+ £(8) - £t I

1}

ly - £(5r )IF

Py (evs ) + P (erd ) - F (50 ) - H-p )|

L}

IPT(ers )]

i

2 PN
= - 2(e+6o) PlH(p-po)

b
P, (ers_) - F,G-p.) - HE-p )IF

+

The cross product term may be written as
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P N top (Y ’ ’ S

fi

~E;(Qo”e*),(% Eo)lvn

1 ,,1 .n . * 2. -

+ 53 Vn(H zt:l[et + f(Xt:G ) - f(X‘t’eO)]vpf(xt’ (D ’TO))Vn
1 ' 1l -1,1

- - (e+60) Fl(n FlFl) (n FlH)Vh .

Bach of these terms converges almost surely to zero by Lemmas 1, 2, and 3 and

our previous results. By the triangle inequality

P, (erd ) + Fl(:-po) - H(g-p Il < Wl[(Fl’_Fl)'lFi(ew) - (5-p) I

+

llH(fg—pO)H

= (ur(t o 5
= (un(n FlFl)un)

1
’ ) 2
H H)vn)

(

+(v

S

'
n
The two terms on the right converge in probability to zero by our

previous results. ]

Proof of Theorem 2. Applying Theorem 1 we have

T L i 1 1y ) 1+
T = X + dnbn + (n/e’P e)bn + an(e+§o) Pl(e+6o)/n .

By Theorem 1, n ab = and n(n/e'PLe)bn converge in probability to

zero. Now an(e+6o)’(e+6o)/n bounds the last term from above as Pi
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is idempotent. As in the proof of Lemma 2, (e+60)/(e+60)/n converges
almost surely to 02 and n a  ~converges almost surely to zero by
Theorem 1.

set z=(/gle, ¥ =(/0l6_, and R = P- . The random variables

(Zl, Zys e Zn) are independent with density n(t; 0, 1). For an

arbitrary constant b, the random variable (z + bY)‘R(z + by) is a

non-central Chi-squared with ¢ degrees freedom and non-centrality

[¢4]

de'R Y/2 gince R 1g idempotent with rank q . Similarly,
(z + bY)‘P*(z + bY) is a non-central Chi-squared with n-p degrees
freedom and non-centrality baY’PlY/Q . These two random variables are

independent because RP* - 0; see Graybill {5, p. 79 ff].

Let a > 0 .

HX>a+ 1]= H(z+y) Pzt Y)>(at 1)z'Ph2]

H(z+ Y)'R{z+ ¥) >a 2Ptz - 2Y Py

- Y'PY]

B (z+ Y)'R(z + ¥) > a(z - a 1Y) P (z - aly) - (1+a D)Y/PHY]

S [ ¥t alz - a7 Pz - &7TY) - (1 aTYPY)

x g(t; q, Y'R Y/2)dt

S PO H(z - aT) PRz - 7)< (6 (L 2 TDY/PY)/a)
x g(t; g, Y'R Y/2)dt

- [ 2 alt/a+ ()Y /PY/a%5 nop, Y'PY/(2 650

x g(t; q, Y'R ¥/2)dt
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By substituting x = a-1, Ay = Y'RY/2, and A, = Y‘P'Y/2 one obtains
the form of the distribution function for x> 1
The derivations for the remaining cases are anslogous and are

omitted. [

Proof of Theorem 3. The random variable S may be written

L n-p l 4 o p _ S N "2
8 === (r-1.) Con (= )/O (7 ) ( on = Cop)lr=1.)/0
The secund term on the right will be denoted by un; un converges in
*
probability to zero because Vh T - 7 is bounded in probability by
Theorem 1 and Lemma 3, V@T(TO -7 ) converges to a finite limit by
"2 2 . =151 -1
( )

assumption, @ converges almost surely to g, and n 022 - C22

converges almost surely to the zero matrix by Lemma 1, 1ii.

Using the expression for @ given in Theorem 1

. n-p s + B-p A1 + ot -1 "2 .
5 Thq 2263022/ ng L2 @ Coplp * ol )/0” + vy

-1

%
where Z, and ¢, are formed from (F'F) "F'e+ g - g, and a by

2 2

deleting the first r rows. Denote the second term on the right by
vy As noted previously Vﬁ'zg is bounded in probability, .n @, con-

verges in probability to the zero vector as stated in Theorem 1, and by

Lemma 1, i the matrix n_lng converges. Consequently v converges

in probability to zero.

We now use the expression for 1/02 given in Theorem 1 to obtain

%5 aQLB/q . (n-p) 7o -1
e/P e/(ﬂ_p) ng 2 22

Z a + v + u
21 n n

where a, is as in Theorem 1. For the reasons noted previously,

zéc;ézg is bounded in probability while a, converges almost surely
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to zero. Thus S =Y + Yn where Yr converges in probablility to zerc
and Y has the familiar form of the test statistic used in linear

regression [ 5, pp. 77-787. ]



