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ABSTRACT

The prohlern of testing for the location of a slibset of the para-

meters entering the response function of a nonlinear regression model

is considered. Two test statistics--the Likelihood Ratio Test statistic

and a test derived from the asymptotic normality of the least squares

estimator- -fO.I' this problem are discuqsed and compared. The large

sample distributions of these statistics are derived and Monte-Carlo

.!JGv,7cr PC3tima t;es are compared "i'Tith power com:puted l1;:;in8 the large

sample distributions.



1. INTRODUCTION

This study is a continuation of the work reported in [4] which oon-

tains a brief review 0:(' the literature. Here testing for the location

of a subset of the parameters entering the response function of a non-

linear regression model is considered rather than a joint test of all

the parameters. This problem is more useful in applications but more

tedious to deal with analytically.

'Two test statj stjr.'s are f.'onsidered for this problem--the Likelihood

Ratio Test statistic and a test statistic derived from the asymptotic

normality of the least squares estimator. The tests based on these

statistics are equivalent in linear regression but differ in nonlinear

regression. Two approximating random variables with known small sample

distributions are derived; they are asymptotically equivalent to these

test statistics. (The mathematical detail is deferred to the Appendix,)

A Monte-Carlo study is employed to verify that estimates of the power

of these tests computed using the distribution function of the approxi-

mating random variables are sUfficiently accurate for use in

tions. Lastly, considerations governing a choice between the two

tests are discussed.

A more formal description of the problem studied in this article

is the following. We consider testing the hypothesis of location

H: against A: .,. f .,.o

at the ex level of significance when the data are responses Yt to

inputs xt generated according to the nonlinear regression model

(t - 1, 2, ... , n)
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where the parameter A has been partitioned according to

s' (p', '1") •

The form of the response function f(xt , e) is known. The unknown

parameter e is known to be contained in the parameter space (1 which

is a subset of the p-dimensional rea1s and the first I' coordinates p

of the parameter eI == (p', ,.') are regarded as nuisance parameters.

The inputs xt are contained in l. which is a subset of the k-

dllllensional reals. The errors et are assumed independent and normally

distributed with mean zero ano. unknown variance 2
(j

An example of a problem fitting this description is that of testing

whether selected treatment contrasts are zero in a completely randomized

experimental design where some covariate w such as agEr is kr).own to

affect the experimental material by shifting its expectation exponentially.

Such a model would be written

I3w ..
z . j == U + t. + ct e lJ + e ..
l l lJ

1,2, ... , I; j == 1, 2, ... , J)

following the qsual conventions. Assume for simplicity of exposition

that 1=2 and the hypothes is of interest is H: t l = t 2 against

A: t 1 I t 2 . This hypothesis suggests a reparameterization to the

model

A1xlt + 82X2t +
A3x3t + (t 1, 2, n)Yt 84e et == .... ,

where

Yt Zlt' x' ::;; (1, 1, w1t ) , et €lt (t - 1, 2, ... , , J) ,t

Yt Z2t' x' == (0, 1, w2t ), et = €2t (t .- J+1, .,., 2J) ,t
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and

eI = (t1 - t 2 , u + t 2 , t 0

With this parameterization the hypothesis of interest becomes H: e = 01

against A: Al I 0 0 The is 61 and the remaining

meters p (" e e) ar.e the nuisanoe poY'ameters. This eXanJ.ple\'12' 3' 4 ...,... .
is used for the Monte-Carlo simulations,

2. NOTATION, ASSUMPTIOWS, AND A PRELJJv1.INARY THEOREM

The following notation will be useful in the remainder of the paper.

Notation: Given the regression model

(t = 1, 2, 00', n)

*where e denotes the true but unknown value of e , the observations

and the hypothesis of location

(t = 1,2, "0' n)

'l' = "'0 against A; .,. I 1'0

where e has been partitioned according to

e' (p /, 'i f) ,

we define:

(n X 1) ,

f(6) = (f(xl , 6), f(x2, e), ... , f(xn, 8))' (n )( 1) ,
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(n X 1) ,

nxp matrix with typical element e),
b8 j

F1 (A) == the n X r matrix formed by deleting t lE last p-r columns

of F(A) ,

(n X n) ,

(n X n)

p.l. == I-P (n X n) ,

e == the p 1 vector minimizing - f(xt , 6))2 over 0 ,

2 A A

S == (y - f(e))'(y - f(e))/(n-p) ,

p == the r)( 1 vector minimizing (yt ..,. f(Xt , (p, "0)))2 for

(p, "0) in n ,

A

(y - f(e))'(y - f(e))/n ,

*() (p) == f (e ) - f(p, 'r )a a (n X 1) ,

C22 == the q X q matrix formed by deleting the first r rows and

columns of (F'(e*)F(e*))-l,



== the q X q matrix formed by deleting the first r
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rows and

the q X 1 vector obta-ined by deleting the first r rows of

[F'(e*)F(e*)]-lF/(e*)e .

* *For simplicity we will write F for F(e), F1 for Fl (e ), and

6
0
for 6

0
(po). Also, the following vectors and subvector::> are related

" A"
according to the equalities e == (p, * * *e == (p ,'i ), and

In the remainder of the paper it will be convenient to use the

following conventions to refer to distribution and density

functions.

Densities and Distributions. Let g(t; v, A) denote the non-
i

central chi-squared density function with v and non-

centrality A [5, p. 74J and let G(t; v, A) denote the

ing distribution Let ( 2 ) denote the normal density
2 2function with mean IJo and variance 0 and let N(t; 1Jo, (]) denote

the corresponding distribution function. Let F'(t; VI' denote

the non-central F-distri,bution function with vl numerator

freedom, v2 denominator and non-centrality A [5,

pp. 77-78]. The central with c0rresponding degrees-

freedom is denoted by F(t; VI' v2)· Define H(x; vl ' v2 ' AI' ),,2) to

be the distribution function given by

0,

)I: < 1, Ai> 0,
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It is shown in [4J that

The following regularity conditions are taken from [4J and are
repeated here for the readers' convenience.

Definition. Let 0. be the Borel subsets of 1 and be

the sequence of inputs chosen from 1 . Let IA(x) be the ind;i.cator

function of a subset A

by

of 1 The measure on (1,0. ) is defined

== the proportion of XL with t $ n which are in A

for each A € 0. .

A sequence of measures on (1,0.) is said to

converge weakly to a measure on (1,0.) if for every real valued,

pounded, continuous function g with domain 1

as n ... co •
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Assumvtions. The parameter space n and the set 1 are compact

subsets of the p-dimensional and k..dimensional reals, respectively, The

response function f(x,S) and the partial derivatives f(x,e) and

f(x, e) are continuous on 1)( O. The sequence of inputs
ee ·be·J

are chosen such that the sequence of measures f 11.)00 con-u-n n=l

verges weakly to a measure I.J. defined over (1,eL) . The true value of

*e , denoted bye, is contained in an open set which, in turn, is

cUlltaincri in 0 *If c f(x,8) except on a set of I.J. measure

*zero, it is assumed that e - e The p X P matrix

't' ;::: [.!' e ( *) l ( *) () ],.. be. f x,8 be. f x,e dI.J. x
J

is non-singular. As mentioned earlier, the errors ret} are independent

with density 2n[x; 0, a } where 2a is non-zero, finite, and unknown.

An additional assumption is used to obtain the characterizations

of the test statistics studied in this paper. See [7, p. 305) for

its motivation and justification.

Assumptions (continued). As n increases, tends to '; * at

a rate such that In (To - T*) In (po" p*) converge to finite

limits.

Theorem 1 gives the properties of 8, "2a , ",,2
and a

which are used to characterize the two test statistics studied in this

paper. This theorem is proved in the appendix.

'rheorem 1. Let the assumptions listed above be satisfied.
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*The random variable A converges almost surely to e and may be

characterized as

where In a converges in probability to zerQ.n

The random va.riable converges surely to 2a and its

reciprocal ma,y be characterized as

where n a converges iq probability to zero.n
The random variable "'2a may be characterized as

(e + to ) I Pl.L (e + to )/ n + bo 0 n

where n b converges in probability to zero.n

3. THE LIKELIHOOD RATIO TEST AND ITS LAR.GE SAMPLE DISTRIBUTJON

The Likelihood of the sample y is

2L(y; 8, (J )

The maximum of the Likelihood subject to H is

L(H) N'2 -n/2(2na ) exp[-n/2]

and its maximwn over the entire parameter space is

Thus, the Likelihood Ratio is L(H)/L(O)::: and the Likelihood
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Ratio Test has the form: Reject the null hypothesis H when the

statistic

""2 '" 2T ::= 0 /0

is larger than c where F{T > c IHJ ::= Ci

The computation of the statistic requires that two nonlinear models

be fitted to the data using, say, either Hartley's [6] Or Marquardt's [9J

algorithm. The constrained model

must be fit to obtain and the unconstrained model

to obta.l.n

The statistical behavior of T is given by Theorem 2 which is

proved in the Appendix.

Theorem 2. Under the assumptions listed in Section 2, the Likeli-

hood Ratio Test sta,tistic rna;y be cha,.racterized as

T X + Cn

where n c converges in probe,.bility to zero andn

X :.= (e + 0 ) Ip1.l(e + 0 )/e'p.leo. 0

The random variable X has the distrilmtion function H(x; q, n-p, AI'

where Al ::= o'(P-Pl)o /(202 )o . 0



10

A relationship between the distribution function of the approximat-

ing random variable X and the non-central F-distribution was mentioned

in the section. Using this relationship, the critical point

* *c of X (pCX:> c IAl == >"2 ::: OJ ::: 0') can be obtained fran the formula

*c 1 + q F /(n-p)
()I

where F' denotes the upper 0' • 100 percentage point of an F-ex
distribution with q numerator degrees of freedom and n-p denominator

*degrees of' f'reedom. This critical point c may be used to approxi-

mate the cl,iticaJ,. point c of T -- in appl.ications one rejects

*H: 'T ==,. when the calculated value of T exceeds ca
The calculation of the non-centralities Al and A2 for trial

values of *a and 2a requires the minimization of the sum of squares

to obtain for computing

This ma,y be done using either Hartley 's [6J or Marquardt's [ 9] algorithm
*with f( A) replacing y. The remaining computations are straight-

forward matrix algebra..

A series expansion of the distribution function H(x; vI' v2 , AI'

*is given in [4J which ma,y be used to compute F[X> c J once Al

and A2 have been obtained. However, in most applications A2 will

be small « .1) *and F[x > c ] can be adequately approximated by

chliLrts of' the non-central F-distribution [1, 10J. The correspondence

for the use of these charts is

That is, the charts are entered at the 0' level of significance with q
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nWDerator degrees of freedom, denaninator degrees or ffeedan, mld

non-centrality ).,1 == .

A Monte-Carlo study reported in [4J for an exponentia,l model with

q p == 2 and n:::: 30 suggests that the approximation

* .*P(T > c J == P[X > C J

will be fairly accurate in applications. Additional evidence is given

in Table L Using the example of Section 1, five thousand trials were

generated with the parameters set at n == 30, 82 :::: 1, 64:::: -.5 and

2o :::: .001 with 81 and 83 varied a$ shown in the table. The

sta.qdard errors shown in the table refer to the fact that the

*Carlo estimator of pC T > c) is binom;t.ally distributed with variance

* *estimated by P[X > c J . P(X:S c J/5000.

Table 1 about here

4. A TEST STATISTIC DERIVED F'ROM THE ASYMPrOTIC NORMALITY OF THE

LEAST SQUARES ESTIMATOR AND ITS LARGE SAMPLE DISTRIBUTION

The least squares estimator e is normally distributed

*with mean e mid a variance-covarimice matrix estimated consistently

by [F'(S)F(e)J-1 g2 under the assumptions of Section 2 [2, 3)}/ This

suggests the use of the test statistic

s ;:::
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The test has the form: Reject the null hypothesis H when S exceeds

d where pCS > dlH] = Ci

The program used to compute the least squares estimator will usua.:j..ly

print 8, [F'(S)F(S)]-l, and 2s . If q=l, the test statistic can

be computed from the printed results. However, if is to

be maintained, some programming effort will be required to: recover 9,

and 2s, and perform the necessary matrix algebra.

The statistical behavior of the statistic S is given by Theorem

3 w-hich is proved. in the Appendix.

Theorerp. 3. Under the assumptions listed in Section 2, the test

statistic based on the asymptotic normality of the least squares estimator

may be characteriped as

where Yn converges in probability to zero and

*(U
2
+ ,.

which is distributed as 1"'(y; q, X) where X

* *The oritical point d of Y(P[Y> d I>'=OJ = 0') is obtained

directly from a table of the F-distribution by setting *d := F where
0'

F' denotes the upper O! • 100 percentage point with q numeratorex
degrees of freedom and n-p denominator degrees of freedam. This

critical point may be used to approximate the critical point d of

s - - applications one rejects

of S exceeds F
0'

H: when the calculated value
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Monte-Carlo evidence, Table 2, suggests that, under the alternative,

the approximation

*" *p[S > d J . P[X > d J

is not as accurate as the approximation of T by X. However, the

approximation appears to be sUfficiently accurate for use in applications.

Table 2 was constructed in the same manner as Table 1.

Table 2 about here

5. COMPARISON

Tests based on S and T are equivalent in linear regression;

they are not in nonl1.near regress1.on. This raises the question of'

which should be used in applications.

Approaching this question on the basis of power, the analytical

and Monte·-Carlo evidence suggests that when a component of the parl;l1lleter

e enters the model nonlinearly the Likl;lihood Ratio Test with respect

to a hypothesis concerning it has better power than the test based on

the asymptotic normality of the least squares estimator. When a compo-

nent enters the model linearly the two tests have the same power. How-

ever, the evidence presented here is too limited to place much reliance

on this generalization. If the question is of critical importance in an

application, the non-centralities ).,1 and )., can be computed and com-

pared. Provided A2 is small « .1) the Likelihood Ratio Test will
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have better power than the test based on the asymptotic normality of

the least squares estimator when Al is larger than A It is not

*necessary to evaluate P[X > c ] or FLY:> d J if relative pm.,er is

the only matter of concern; the comparison of non-centralities will

suffice.

As regards computational convenim ce, we have seen previously that

qC"'l the test based on the asymptotic nonnality is more convenient j

for q > 1 the Likelihood Ratio Test is more convenient. One qualifica-

tion is flee'-=,ssary. Hartley's [6J and Marquardt's [9J algorithms do not

always clinverge in practice. Thus , it is possible that A can be

successfully computed but not '" yp . In such situations, p must be

computed by other means, grid search, or the test based on the

asymptotic normality of the least squares estimator employed by default.

In most applications, a hypothesis involves only a single component

of e and, therefore, q=l. The author's practice is to use the test

based on the asymptotic normality of the least squares estimator for

computational convenience when the purpose is to assist a judgment as

to whether the model employed adequately represents the data. He uses

the Likelihood Ratio Test when the hypothesis is an important aspect of

the study.



FOOTNOTES
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and a.s. t -1 2cr •

;;:.. P is usually a good start va,J..ue for computing p
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APPENDIX. PROOFS OF TBEOREMS

'rhree technical lemmas are needed in the proofs of the theorems.

Lerruna 1. Let g(x,),) be a real valued continuous function defined

on r X A where A is a compact set. Under the assumptions listed in

Sectiun 2:

ii)

1 nThe series nEt==l g(xt ,),) converges to the integral

Sg(x} ),)d\-L(x) uniformly in ),.

The random variable * g(xt , ),)et converges almost surely

*converges ip probability to S g(x, ). .

Proof. Part i is proved in [8, p, 967]0 Part ii is proved as Lemma

3.4 in [3]. Parts iii and i v follow from the uniform convergenoe given

in Part i. 0

Lemma 2. Under the assumptions listed in Section 2, the random

variable *p converges almost surely to p

Let Qn(e) = (y - r(e))'(y - r(e))/n = e'e/n +

* * *2e'(r(e) - f(e))/n + (f(A ) - f(e))'(r(e ) - f(e))/n which converges

2 * 2almost surely to Q(e):.:: a t S(f(x, e ) - f(x, uniformly

j n e by the Strong Law of Large Numb ers and Lerriilla 1 i, ii. Let



be a sequence of points minimizing (p,.,. )n 0
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corresponding to a

r'e\ilization of the errors [et }. Since (1 is compact there is at least

cneUmit point p# and at least one subsequence ) such thatnrn
pl. Unless the realization ret) belongs to the excep-} ' N

Ufr Prn .... c:o n
m

tional set,
2 - # .j(a $; Q(p , ,. ) = limm .... ClO

*80 that S [f(x, e ) - f(x,
Q(""p ,,.) $; limn 0 m .... ClO

In

# * 2(p , ,. ))} ::.: 0 which

Implies # *p ::.: p by assumption. Thus, excepting realizations in the
I

*c"eeptL:u:'..l set, Pn haB only one lim.it point which is p • 0

LeIfillla 3. Under the assumptions listed in Section 2, the random

vect0r (11In) F" e converges in distribution to a p-variate normal and

(lIJn)F"o conver'ges to a fi.nite limit.o

Proof. By Lemma 3.5 of [3 J or Lemma 4.2 of [2 J (11In) F' ' e converges

in distribution to a p-variate normal. By Taylor's theorem, (1/Jn)F'6 =o
- *- (lIJn)F'F(S)(So - e) where e is on the line segment joining 8

0
to

**e" The asswnption that Jii (8 - e) tends to a finite l.imit ando
Lemma 1, i applied to 1 F'F(A') imply the result. 0n

Proof' of Theorem 1. The first conclusion is proved as 3

of [3J or as Proposition 6.1 of [2J. The second conclusion is proved

as Lemma 1 of [4 J.
By Lemma 2, (p, "0) will almost surely be contained in the open

*subset of (1 containing e allowing the use of Taylor's expansions
f'Jin the proof and causing p to eventually become a stationary point of
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Tn this paragraph we will obtain intermediate results ba.sed on

Taylor r S expansions which will be used later in the proof. Using

Taylor I s the0rem,

whc're H 1s the matrix with typical row v If(X a)-
P t' 0

V;f(Xt ,
A*) 1",

P ) Iv2f( x t ' (p,+ 2"(p - o p

joining '" Us lng Lemmas 1P to Po'
Ii-.

Jil"(A -8)o
and ! F'Hn 1 '

'1"0» and p is on the line segment

and 2 and the assumption that

. .1 II'" )converges to I;t finite llmit one can show that nFl\p, To H,

and ! H'H converge almost surely to the zero matrix.n

Applying Ta.ylor I s theorem twice one oan write

where E is the r X p matrix with typical element

e ..lJ

illld n is the r r matrix with tyvical element

d ..lJ
n
tt==l

t>2 _ *
;;::-;:-- f(xt , (p, T »[e t. + f(xt , e ) - f(x t , )J .vp .up. 0, aJ 1

We will write Eo when this matrix depends on Po and will write E
and D when the dependence is on p. Using Lemma 1 and the assumed

convergence of to *e one can show that 1 E ,n 0
and !'D

n

converge almost surely to the zero matrix.

In this paragraph we will obtain the probability order of

mentioned earlier, for almost ever.'Y realization of the errors

As

'"p
is eventually a stationary point of (-,In /2)Q(p, 'To) so that the



20

random vector (- Jii /2)'V Q(p, or ) ;:: (l/Jn) Fl/(p, 'l" )(y - f(P, ,. ))p. 0 0 0

verges almost surely to the zero vector. SUbstituting the expansions

in the previous paragraph we have that

[! F / (""p 'T) F +! Fl' (""'p, 'T' ) H - D) JD (p'-p ) - L E(e -e*) - L F / ( e+ 0 )
n 1 ' 0 1 non 0 In 0 In 1 0

converges almost surely to ze,ro. Lemma 1 and our previous results imply

that the matrix in brackets converges almost surely to a positive

definite E'ub:r.lG.trix of t" Lemma 3 implies that (l/Jn) F{( e + 0
0
)

verges in distribution to a r-variate normal; (!'E) J?l (e - e*)n 0

con-

con-

verges almost surely to the zero vector. These facts allow us to con-

elude that

converges in probability to zero and that

in probability.

The swm of squares

v ;::In(p-p)
n 0

is bounded

.I. "') "" 2IIPI (e+ 0 ) + PI ( e+ 6 ) - F (p -p - H(p -p ) 1\o 010 0

I

;:: e+ 0
0
) 112 ,.. 2 ( e+ 0

0
) (p-p 0 )

The cross product telm may be written as
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Each of thesE terms converges almost surely to zero by Lemmas 2., 2, and 3 and

our previous results. By the triangle inequality

1
( U Fl' Fl )u )"2n n n

1 .l.+ (v' (:... H'H)v ) 2n n n

The two terms on the right converge in probability to zero by our

previous results. 0

Proof of Theorem 2. Applying Theorem 1 we have

'I' "" X + a b + (n/e'pJ..e)b + a (e+o ) 'pl(e+O )/nn n n n 010

converge in probability toBy Theorem 1, nab and n(n/e'pJ..e)bn n n

zero. Now a(e+o )'(e+o )/n bounds then 0 0
last term from above as pJ..

1
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is idempoLe:nt. As in the proof of Lemma 2, (0°
0
) I(e+0o)/n converges

almost surely to

Theorem 10

2a and n a converges almost surely to zero byn

Set (1/0)e, and R = P-P1. The random variables

(z.l-' ZC)' ••• , z) are independent with densi ty n( t; 0, 1). For an
c n

a.rb itrary cons Lant b, the random variable (z + bY) IR (z + bY) is a

non-central Chi-squared with q degrees freedom and non-·centrality

b 2Y /R Y/2 H is irJem:potent wi.th rank q. SirrLilarly,

(z + bY) 1}'.l.(2, tOY) is a non-central Chi-squared with rt-p degrees

freedom and non-centrality b:; I pJ.Y/ 2 These two random variables are

independent oecause

Let a > 0 .

Rp..l. = o·, see Grayb ill [5, p. 79 ff).

p[X > a + 1) P[ (z +- y) I (z + y) :> (a + 1) z I p..l. Z ]

L..I. -L) ( -1) I .1.F[ (z + y) IR(z + y) > a(z - a--Y) II' (z .- a Y - .1+ a Y I' Y]

S -1 I..I.( 1 -1..1..-". 0 PC t :> a( z - a Y) I' z - a - Y) - (l + a . )y/p y]

x g(t; q, y/R Y/2)dt

x g(t; q, y/R Y/2)dt

2.L., 2S0 G(t/a + (a+l)y/p.ly/a ; n-p, yIp 1/[2 a J)

x g(t; q, y/R Y/2)dt .
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By substituting x:=: a-I, A.1 == y'R Y/2, and ).,2 == one obtains

the form of the distribu.tion function for x > 1

The derivations for the remaining cases are analogous and are

omitted. 0

Proof of 'Theorem 3. The random variable S may bewritten

The secund Lena on the right will -be denoted by u .
n' 11 converges in

n

probability to zero because In - /) is bounded in probability by

Theorem 1 and Lemma 3, Jll- ( 'T - 'T*) converges to a finite limit byo

assumption, converges almost surely to 2a ,

converges almost surely to the zero matrix by Lemma 1, iii.

Using the expression for e given in Theorem 1

S

where and are formed fran and Ci byn
deleting the first r rows. Denote the second term on the right by

convergesvnConsequentlyconverges.

vn ' As noted previously Jii Z2 is bounded in probability, JllCi2 con-

verges in probability to the zero vector as stated in Theorem 1, and by

Lemma 1, i the matrix

in probability to zero.

We now use the expression for 1/;2 given in 'I'heorem 1 to obtain

S
e'p.Le/(n_p)

+ IIn

where a is as in 'Theorem 1. For the reasons noted previously,n

is bounded in probability while a converges almost surelyn



to zero. converges in probability to zero

and Y
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Thus S = Y + Y where Yn n
has the familiar form of the test statistic used in linear

regression [5, pp. 77-713]. 0


