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The purpose of this report is to prove in detail a central limit
theorem useful in nonlinear time series regression. The main ideas
of the proof are due to Goebel (1974). The contribution here is to
obtain a stronger conclusion than his Theorem 3 and correct some

minor errors in his proof.
Lemme, 1. Let

sn(e)=zkn(e)+xkn(e) (k=1,2, ..., n=1,2, ...)

Assume that for every & > O
lim |, JBL|x  (8)] >81=0
uniformly in n and 6 . Assume
: , 2
lim _, Mz, (6) =z]=N(z; 0, o, (6))
and
. 2 2
lim _ , o.(8) = 77(8)
uniformly in 6 where 0< 4 S_T?(G) <p<o for all @ . Then
. 2
Lim | H8,(8) = 2] =1(z; 0, 7(8))

uniformly in @ .

Proof: Given e > O there is a & > O depending on ¢ but

not 8§ or n such that
2 2
N<Z + 63 0, 7 (6))‘< N(Z5 O, 7 (9)) + e

because Tg(e> is suitably bounded from above and below. There is a



k which depends on & but not on 6§ or n such that

N(z + 83 0, 02(8)) < N(z + 83 0, 1°(8)) + ¢

H|x (8)] >8]<e

by hypothesis and the uniform convergence of Gi(e) to 72(6). Then

*
there is an n depending on k and & but not on 8§ such that

*
for all n>n
P[an(e) <z+ 8]<N(z+ &; O, °12§(9)> + e .

*
Consequently, given e > 0 there is an n which does not depend

on @ such that

Ps (8) =z]=Hz (6)+ x(8) = z]
<Hz (0) sz+3s, [x (8)]=<6]+ HIx (8)] >8]
<Hz (8)sz+ 8]+
<N(z + 65 0, 0o(8)) + 2e
<N(z+ 83 0, 12(8)) + 3e

<N(z; 0, 1°(8)) + ke
*
for all n>n . Similar arguments can be used to show that
2
Fs (8) = z] > N(z; 0, 7°(8)) - ke

for n>n’ where n’ does not depend on 9 . [J



cg(e)<°° for each t and

L 2. If su
emma, spe L

Lim nt g B(e) = (o)

7 - © t
uniformly in § where 0<fZ <c(g) Ep <o for all § then

p

. -1 _
lim o, 0 7SUP) o<y supect(e) =0 .

Proof: There is a sequence m, such that

2 2
SUP| < 4 < g supect(e) = supecmn(e)

The lemms would be true trivially if m ~were bounded for all n
*
we assume the contrary. Given ¢ > O there is an n  which does

*
not depend on 6 such that for n>n we have

-1 2( )
n suplS t< l’lsu.pec,G 8

-1 m -1
= supd ( n)i Sy €58 - () =gl i)
n
mo m -1l _
< sup [ (2)(3(0) + &) - (E-)(3(8) - ¢)]

supe[E(e)/n + om e/n+ ¢/n)
<p/n+ 2 -¢/n. [
Theorem. Let {Z‘t] be the generalized linear process

oo
Ze= By L 885 (5=0,11, ...)



L
where Z',O? - lajl < ® and the e, are independently and identically
distributed with mean zero and finite variance 52 > 0. Let {ct(e)}

s}
be a sequence for which supec;(e) < ® for each t and for which

||

. -1l n = —_
Um 0" 5] cg(8ley 4 |y (8) = c(n,8)
uniformly in 6 where 0< 4 < Ek Zk a.a E(j_-j g) < p<®
= Tl = =k T = 2k 717 ? -

for ‘a,ll g and all k . Then
s,(8) = (L/wn) = _; e, (0)z,

converges in distribution to the normal distribution with mean zero

and variance

aia,'E(i-j, 8) = Z(;; _ o c(k,8)y(k)

2 _ 2 0
T(8) = O, | _Z, ;

-0 J = 00
uniformly in 6 .

Proofs The proof consists of verifying the agsumptions of Lemma

1. We split sn(e) as

n
Il

[~
(l/'\/n>22___l cy Zj = - %583

zEcl=:L Z? = -k(ctaj/"/n)et-j " zﬁ:l 5] > k(ctaj/"/n)et-j

where we have suppressed the argument 6 for simplicity.

Let & >0 be given. Since H Ianl >8] < Vc‘:\.r(an)/é2 by

Chebysheff's inequality, the first assumption of Lemma 1 may be



verified by showing lim_ _ . Var(an) = 0 uniformly in n and 8 .

For given ¢ > 0 there is a ko depending only on ¢ such that

(%, Iail)z +

2
o la,[)" <e for all k>k . Then

(% «

3 Var(an) < Var[Eth > k(cta’j/“/met_j] + Var[ZtZJ, < »-k(ctaj/"/n)et-j]

2

= (d /n)21> k ZJ >k a‘lag Z‘b e T s t-3+1
2

+ (6/n) &. T, a.a, &

1< -k %5 < -k P1% B e T Sty
where

T={t: 1Sst<n, 1<t -j+ i<n]

1 1
B 2 5
< (¢/n)z (Zy ¢ ¢ Cpoges)

2
1>k J>k|a’ I(‘Z'te:Tc‘l:)

1
1 2
+ (oz/n)2i< x5y <k la a, |(2t e T t 25y ¢ 1 ct-j+i)

ol

< 02(21> K Ia (n-lzg‘lct) + i < ok Ia |) (n "'LG

< o°c(0, OL(5, o, o )®+ (5 o . 1oy DP]

2 2
<gpe a,

This establishes the first condition of Lemma 1.
For n larger than 2k + 1 we may split an(e) as (see

Figure 1)



Figure 1.
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is obtained by multiplying each aj

by the corresponding terms on the horizontal and vertical axes and

summing.

~ with those aj between the horizontal lines.

The split is accomplished by segregating terms associated



Zyy = (1/wn) 22—:1};1 p 2? = -k %1%+i
¥ <1/«/n><2§i{12§f ke ©6%3%5 * Fenerd T = nokeies %6%5%0g)
= UV

The variance of an is bounded by

2

2 2k
nleup, _ o o sup, < (O)E(R], zf; B EW I D

n k o)
" 8<Z'L'C“»‘nu-k-*-l EJ = =k IaJI letﬂ_jl) ] .

The term in square brackets doeg not vary with n so we have

-1 2 .
Var(an) <[n SUPy < 4 < 5 SUP, C.t(e)] B

which converges to zero as n tends to infinity uniformly in 6 by

Lemma 2. Consequently, if we show

lim Hu  <z]= N(z; O, oi(e))

n —
uniformly in @ it follows that
. . 2
lim _, , ®2, <z]="N(z; 0, 0, (6))

uniformly in 9 .
Set 4, = Zli ~ _x 8C4i+ BY Theorem 1 of Hertz (1969)

sup, |[FV/a U /s < 2] - N(z; 0, 1)| =4 (6)

where



S
A (8) = Ks3[ Py (a)du

2 0,2 -k dr_‘

[#>]
1

n - t=ktl Tt
k2 2
¥ple) = Ty puy Oy Ildtel > ¢ aF(e),

and K 1is a finite constant. Now
-2 1
Akn(e) = s I 5 ‘i’(snv)dv

2~k 2,1 2
5p Zeow1% d 0 J"|dte| >vs,© a F(e)av

< S-—2an-k d2 ‘r 1

2
n “t=ktl 't dJ o I e? > v2 inf i/di)e d F(e)dv

1<t< nmfe(s

1 2
= 2 2 . . 2,,2e7d F(e)dv .
I 0 I e” > v" inf; o nlnfe(sn/dt)

Thus, if we show that

., , , 2,2,
lim |, inf, o4 o nlnfe(sn/dt) =
we will have lim _ Alm(e) = 0 uniformly in @ by the dominated

® 2 02 ;
convergence theorem and the fact that I_m e“d F(e) = <o , “Now

14 -12
lmn - mn Sn

]

limn R mVa,r(Ukn)
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uniformly in 6 . Moreover, 612{(6) is bounded from below by Z
uniformly in @ whence, for ¢ with 0<ge<u , there is an n

independent of 6 , such that for n > n

. . 2,.2 = -1.2
inf) oy o ginfg(s/ap) > (u-e)/sup) oy o psuPGRdy

- -1, k 2y sk 2
2 (G-
(u-e)/supy o ¢ < SR (2 _ a2 (B & k%
v k 2 -12
= (u-e)/(2&+1)(Z; _ _ ai)supy o 4 < nSUPGR

Thus,
|p(u, < z) - n(z; 0, ci(e))l
< |Mvn U /s <wiz/s ] - NWh z/s 5 0, 1)
+ |NWh z/sn; 0, 1) - N(z/q,(8)3 O, 1)]
S 0, (0) + NG z/5 5 0, 1) - N(z/0, (8); 0, 1)]
-0

uniformly in § as n tends to infinity.

Lastly, we verify that lim__ Oi(e) = TE(G) uniformly in 6 .

|7°(6) - og(®)] = [20" 5 |y T . L. 2yny (5-3, 0]

- -“Iaia';j _C-(l—j, e)l

z, u_,‘m]av,:‘.L{:Lj c(0, @)

[ K
\Y

E3
()
i



because

n—l|2$=i IklACt(e)Ct + “q(e)l <n?t 22=l ci(g)

< 262(E/a§)(f§ - Iajl)(zi > |x| Iail) .

The last term on the right does not depend on 8 and may be made
arbitrarily small by increasing k . []
The result which finds application in nonlinear time series

regression is the following corollary.
Corollary. Let {Zt}: - o be the generslized linear process

4 5 = e 8583 (t=0,+1, ...)

where ﬁ? . Iaj|'< © gnd the e, are independently distributed
with mean zero and finite variance o> >0 . Let {ct}z;l be a

sequence of p-vectors for which the limit
=N as - |n| ; _
c(h) = lim | o 2@=l cpef 4 In]

exists for all h= O, + 1, ... . Assume that for each non-zero
p-vector A ‘there are finite constants £ and u which do not

depend on k such that

0< 4 23 K 2% x 848

5 = s - AMe(i-g)A=s 1w .

1A

J

Then

S = (l//n) Z:=l tht

n



10
converges in distribution to the p-variate normal with mean vector zero

and variance-covariance matrix

<d
|

= (P/2) 8} | o T L agafe(i-0) ¢ (1-9)]

o]

157 y(m)Em) + T )]

Proof: We apply 2c.4 of Rao (1965, p. 103). Let X~ NP(O, V).
By the Theorem, A'Sn converges in distribution to a normal with mean

zero and varlance

ROREE R B

f
g

4 4 .
il 4 Ihlh
o . -1 - |h
=T, . V() lim _ n 2;1;:1 5] % }\'[ctcé + |n] +oeg Ihlcé]?\.
=% _ L, v(m FATem) + /()

AV oa .

1l

Thus )\'Sn converges in distribution to A’X for every non-zero A\ .
(The matrix EZ s v(h)e(h) is positive definite by assumption but
it is not symmetric. This is the reason for the term 2 c(h) + c’(n)]

in V. [
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