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ABSTRACT

The article sets forth an estimator of the parameters of a nonlinear time

series regression when the statistical behavior of the disturbances can be

reasonably approximated by an autoregressive model. The sampling distribution

of the estimator and relavent statistics is investigated both theoretically and

using Monte-Carlo simulations.
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1. INTRODUCTION

This article examines estimation of the unknown parameter 9 of the

nonlinear time series regression model

(t = 1, 2, ••• , n) •

co
The process f u } . generating the realized disturbances

1. t t=+co is

assumed to be a covariance stationary time series. This is to say that the co-

on the position t in time.

of the time series depend only on the gap hvariances

of the disturbance vector

and nov
//

In consequence, the variance-covariance matrix rn

u )'n (n x 1)

will have a banded structure with typical element

the autocovariance function of the process

y .. '!" y(i-j)
J.J

where Y(h) is

(h = 0, ±l, ±2, •••) •

*The appropriate estimater of 9 ,were rn known, is the generalized non-
'1(

linear least squares estimator. Specifically, one would estimate 9 by e
minimizing

[y - f(9)]'r- l [y - f(9)Jn

where

(n x 1)

and

(n x 1) •
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When r is not known, as we aSSume here, the obvious approach is to substituten
an estimator of r n in the formula above.

*Recently, Hannan [6] and Goebel [5J have obtained estimators for e
employing this approach. They use a circular symmetric matrix [4, 1971, Qh. 4J

to approximate r .n The approximating matrix has easily computed eigen vectors

which do not depend on any unknown parameters, This fact considerably reduces

computational difficulties and avoids inversion of a matrix of the same order as

the sample size; see, [3]. The eigen values of the approximating matrix

are proportional to the spectral density of the time series at

appropriate frequencies. Hannan and Goebel estimate the spectral density from

ordinary nonlinear least squares residuals to obtain consistent estimates of

the eigen values of the approximating matrmx. Their estimators differ in choice

of procedures for estimating the spectral density but share the same desirable

asymptotic properties under fairly unrestrictive assumptions on the time series

generating the disturbances. Moreover, the Monte-Carlo by

Goebel indicate that this type of estimater has better efficiency in small

samples than the ordinary nonlinear least squares estimator.

Presently, we shall demonstrate by an example that the approximating matrix

used by Hannan and Goebel can be very inaccurate in small samples. This is not

due to sampling variation but due to the form of a circular symmetric matrix

which, in effect, imposes the unrealistic condition y(h) = (h = 1, 2,
••• , n) on the approximating autocovariances. Often, the serially correlated

disturbances appear to satisfy more assumptions than Hannan and

Goebel were willing to In these cases, it would seem possible to

exploit these assumptions and obtain a better approximating matrix. One would

naturally expect that the use of a better approximating matrix in the
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generalized nonlinear least squares formula would lead to better small sample

efficiency. In view of Hannan and Goebe1s theoretical results, we would not

expect to obtain better large sample efficiency.

An assumption which is frequen,tly satisfied in applications - at least to

within errors which can reasonably be ascribed to sampling variation - is that

To be more specific, the time series

the disturbances can be reduced to a white noise process by using a short linear

CXJ is assumed to satisfyfilter.

the equations

(t = 0, + 1, + 2, ••• )

where is a sequence of independently and identically distributed

random variables each with mean zero and variance 2
C1 • In addition, we assume

the roots of the polynomial

have roots less than one in absolute value. A time series {ut } CXJ which

satisfies these assumptions is called an autoregressive process of order q •

The Wholesale Price Index for the years 1720 through 1973 plotted as

Figure A appears to satisfy these assumptions. To these data we have fitted an

exponential growth model

(t = 1, •• " n = 254)

(

A 254by ordinary nonlinear least squares to obtain residuals u t }t=l.

residuals we have estimated the autocovariances using

From these

(h = 0, 1, •• " 60)

and plotted them as Plot AUTOCOVARIANCg, in Figure B.
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FOOTNO';['E TO FIGURE A

Source: Composite derived from: Wholesale Prices for Philadelphia, 1720 to

1861, Series E82, [14J; Wholesale Prices, All Commodaties, 1749 to 1890,

Series El, [14]; Wholesale Prices, All Commodaties, 1890 to 1951, Series El3,

[14]; Wholesale Prices,. All Commodoties, 1929 - 1971, [12J; Wholesale Prices,

All Commodoties, 1929 - 1973, [131.
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Using the methods set forth in Section 3 and assuming q = 2 we estimate
2(aI' a2 , a ) = (-1.048, 0.1287, 34.09). Using the equations and

these estimates, we obtain the approximating autocovariances shown as Plot

AUTOREGRESSIVE in Figure B.

As we mentioned earlier, the entries on the diagonal bands of the variance-

covariance matrix r n are the autocovariances y(h) of the process; that is,

y(h) = Yij where Thus, the approximating circular symmetric matrix

squares residuals

used by Hannan and Goebel implicity defines an estimator of the autocovariance

function; see Box and Jenkins [2, p. 3lJ for a schematic illustration. Due to

the nature of a circular symmetric matrix, the autocovariance function

implicitly defined will vary with the sample size n and with the choice of an

estimator for the spectral density. We used n = 60 and estimated the spectral

density using a Tukey-Iag window [9, p. 243 ff.] with M= 25 to obtain the

approximating autocovariances shown as Plot HANNAN-GOEBEL in Figure B.

As can be seen from Figure B, the approximation of the autocovariance

function obtained using the autoregressive assumption is considerably more

realistic than the approximation implied by the Hannan-Goebel procedure.

Correspondingly, for these data we would expect that a generalized nonlinear

least squares estimator using the autoregress ive assumption to obtain the

approximating variance-covariance matrix would perform better in small samples

than a Hannan- Goebel estimator. In general, when the ordinary nonlinear
A n(Ut}t=l appear to satisfy the assumption that they were

generated by a low order autoregressive process we would expect that a

generalized nonlinear least squares estimator which exploits this assumption

would have better efficiency in small samples than a Hannan-Goebel estimator.
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This article investigates this hypothesis. In Section 2 we describe an

estimation procedure. In Section 3 we summarize the consequences of the auto-

regressive assumption which motivate the procedure. In Section 4 we set

,£orth the asymptotic properties of the estimator. In Section 5 we investigate

the small sample properties of the estimator using a Monte-Carlo simulation and

compare them with Goebel's results.

We conclude, on the basis of the Monte-Carlo evidence, that the estimator

suggested here will have better efficiency in small samples than the Hannan-

Goebel estimator when the autoregressive assumption is at least approximately

satisfied. Gains in efficiency relative to ordinary least squares can be

dramatic when the autoregressive assumption is exactly satisfied and q is

correctly identified.

2. ESTIMATION PROCEDURE

*Our is to estimate the unknown parameter e appearing in the

nonlinear regression equations

(t = 1, 2, ••• , n)

when we assume that the disturbance terms are an autoregressive process of order

q • A detailed description of such a process is deferred to the next section

where methods of estimating q from the: data are discussed. The inputs are
oJ(

known k by 1 vectors and the unknown parameter e is a p by 1 vector

known to be contained in the parameter space ®. The regression equations may

be written in vector form as

y = f(8) + u

using the notation of the previous section.



The first step of the procedure is to compute the ordinary least squares
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estimator Ae which minimizes

over ® using, for example, Hartley's [7J modified Gauss-Newton method or

Marquardt's [llJ algorithm. A program implementing at least one of these

algorithms is usually found at computing centers with a statistical program

library.

The second step is to compute the ordinary least squares residuals

u = y - f(8)

and from these estimate the autocovariances up to lag q of the disturbances

using

For the third step, let

(h = 0, 1, "" q) •

Y(O) y(l)
A

y (q-l)
A

y(O) y(q-2)y(l) ...
A

f q
::; (q x q)

•··
y(q-l) y(q-2)

A

t) iii" y(O)

yq = [y(l) , y(2), ••• , y(q)J'

and compute

(q x 1)

A '. A A

a = - f yq q

0.2 = y(Q) + 'yq •

(q x 1) ,
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using, Cholesky's method [8, p. l58J and set

'aq-l

1

...

o

1

1

}q rows

u·- q rows

A

Note that to perform the multiplication Pw on a digital computer it is not

necessary to store only Pq and aI' a2, ... , aq are needed.

Define:

(1 x p)

-The fourth step is to compute e minimizing

F(e) = the b . h th ... .n y p matr1x w ose t-= .r.ow. 1S

and from this value obtain

and

If -As shown in Section 4, vn (6 - e ) is asymptotically normally distributed with

-2 "'"a variance-covariance matrix for which a C is a strongly consistent estimator.

Either Hartley's [7] or Marquardt's [1lJ algorithm may be used for the

final minimization to obtain e. Put z = Py and g(e) =:; Pf(S) • The problem



n 2is then to minimize [z - g (e)J"t=l t t

the program may be obtained as the tth

13

The derivatives W'gt(e) needed by

row of PF(e) • As mentioned above,

this matrix multiplication does not require the storage by the n by n matrix

"P. The matrix printed by the program

'" -1will satisfy C "" n(A'A) •

The estimation procedure may be iterated by returning to the second step

'"with e replacing l. The asymptotic properties of this two-stage estimator

do not differ from those of the one-stage estimator e. Intuitively, it would

seem that the two-stage estimator would be more efficient but the Monte-Carlo

eVidence, Section 5, suggests otherwise. The only case we find improved

perfo'l;:lmance is when the l;1utoregressive assumption is exactly satisfied.,';··

3. AUTOREGRESS IVE PROCESSl):S

The autoregressive process co
tUt}t=_co of order q is defined implicitly

as a sequence of random variables which satisfies the difference equation

+atl ""eq t-q t

where the process {et1 co is a sequence of independently and identically. . t=- co
d ' t 'b d d ' bl h 'th f' 't ' 2 dLS rL ute ran om varLa es WL mean zero, LnL e varLance a ,an

finite The parameters a,
L
(i = 1, ••• , q) of the defining equation

are assumed to satisfy the condition that the roots of the polynomial

••• + aq

are less than one in absolute value.



The process rUt} can be given an explicit moving average representation
roin terms of weights (w} defined by the equationsj. j=O

14

w 1q-

and

- a wq j-q

for j = q, q+1, 0... These weights are absolutely summablE) 1< 0)
and

almost surely [4J.

The autocovariances of the process (ut } are defined by

(h= 0, + 1, ± 2, 0 0 .) •

From the moving average representation we have that the autocovariances are

given by

(h = 0, + l, + 2, .0.)

and satisfy the Yule-Walker equations



2w.a j sO
J

y(j) + a1y (j-1) + ••• + aqy(j-q) =

OJ> 0

15

In addition, the autocovariances are absolutely summab1e I<co) •

The Yule-Walker equation may be used to compute the parameters a 1, a2 ,
2 defining the rUt} from knowledge of the first... , aq' a process q auto-

covariances y(h) (h = 0, 1, ' .. " q) • Define

y(O) y(l) Y(s-l)

Y(1) y(O) ... Y(s-2)
r = (s x s)s ,

•.
y(s-l) Y(s-2) ... y(O)

and

= [y(l), y(2), n., y(s)] (s x 1) ,

(q x 1) •

The parameters are computed from the equations

a ==
-1-rq yq

The observed portion
n .

{Utlt=l . of a realization of the process

has variance-covariance matrix r n • For n larger than q a matrix P

which diagona1izes may be obtained as follows. Factor as

= pIp
q q and set;
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\fa2 p i ° q rowsq _1-- - -
a aq-l a l 1q

aq a ... a l 1
p = q-l n-q rows

aq-l 1

Using the Yule-Walker equations and the equations defining the weights

-Dne can verify that PI" p' == I .n n
....This fact motivates the use of P

(w.} ,
J

in the

estimation procedure described in the previous section.

Estimators of the autocovariances may· be obtained from (u' n astrt=l

(h = 0, + 1, ••• , ± (n-q» •

In the nonlinear regression context we cannot observe (ut}t:l directly and
....

must substitute the estimators y(h) computed from the ordinary nonlinear

least squares residuals

....y(h)estimators and

rUt} • We will show in the next section that the

y(h) are asymptotically equivalent under apprdpriate

regularity conditions.

We have [4] that

lim n Cov[y(h),y(£)]n... co

4 . 4 .
= [e(et)/a - 3]Y(h)y(£)

+ L::x' [y(j)y(j-h+£) + y(j+£)y(j-h»)J=-CO

and [5J that Y(h) converges almost surely to y(h) Using Chebischev's in-

equality the covariance formula implies that \fn [Y(k) - y(h)J is bounded in

probability; that is, given 8 > ° there is a finite bound B and an N such
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that for all n > N

P[\[nIY(h) - y(h) I> B] < 0 •

If estimate the 2 by substituting Y(h)we parameters al' ... , aq' a
(h ... 0, 1, ... , q) in the equations

a ... -1-rq yq

2a ... y(O) + a 'yq

to obtain.

-a· ... ...-1-..rq Yq

we have as consequences of the facts set forth in the previous paragraph that

each ai converges almost surely to a i and that \[n (a i - a i ) is bO\lnded in
-2probability. The same is true for a • These equations may be solved subject

to priori restrictions that some of the a .... 0 •
J,.

This will not disturb the

properties of the estimators

true.

-a i provided that the are, in fact,

To determine the order q of the process from the data, we consider a test

of

H: a ... 0q against A: a :if: 0q

at the a-level of significance. We may use a two-sided "t-test" by comparing



where -s2 = [y-(O) -,- J/( )+ a Yq n-q

18
th --1is the q-- diagonal element of f q

to the critical point c of a t-variate with n-q degrees of

freedom. We have [1, Sec. 5.6.3J that

lim pet > clHJ =
tHCO

and

lim P[ t > c IA1 = 1 •
tHCO

This test is employed to determine the order q of an autoregressive

process using procedures analogous to those used to determine the appropriate

degree of a polynomial uSed in polynomial regression analysis. One may, for

example, test sequentially upward or} alternativelYJ start from a very high order

and USe Anderson's [1, Sec. 3.2.2J downward selection procedure.

For a sequence of weights depending on a p.dimensional

parameter e e ® there is a Uniform Strong Law [5, 61 which, in the present

context,states that

converges almost surely to zero uniformly for e in ® provided that:

(i) The process· (u 1 is as described above.t-

(ii) Each ct(e) is a continuous function ;for e in ® •

(iii) The set ® is compact.

(iv) The Sum converges uniformly for

and a in ® as n tends to infinity.
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4. ASYMPTOTIC PROPERTIES OF THE ESTIMATOR

The assumptions used by Goebel [5J to show that e converges almost surely

* *to e and that Vn (8 - 9) is bounded in probability may be stated in the

present context as:

Assumptions: The errors rUt} are an autoregressive process of order q
,/(

as described in the previous section. The true parameter value 9 is contained

in an open sphere S , which is, in turn,. contained in ® ; the parameter space

® is a compact set. The response function f(x,e) and its first and second

partial derivatives in 9 are continuous over the parameter space. The

sequence of inputs tXt} are chosen so that the functions

(h = 0, + 1, ••• , + q)

gl(x,9) and g2(x,e)
2(0 /o9 i oe j )f(x,e) •

converge uniformly for all 01 ,S in ® as n tends to infinity where

may variously be f(x,9), (%9 i )f(x,e), or
n 2The function limn-+ co (l/n) !:t=l 5 (Xt'9) where

5(x,e) *= f(x,9 ) - f(x,e)

is assumed to be non-zero on ®

V(h) with typical element

except at the point *e • The p x p matrix

(h = 0, + 1, ••• , ± q)

is assumed to be non-singular when h = 0 •

These assumptions are sufficient to prove that the autocovariance estimators

y(h) computed from ordinary nonlinear least squares residuals are asymptotically

equivalent to the estimators y(h) computed from the unobservable disturbance terms.
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Theorem 1. Under the assumptions above,

y(h) = y(h) + 01n (h =0, + 1, ••• , ± q)

where 01 converges almost surely to zero and 01 converges in probabilityn n

to zero.

Proof. Let e = e when @ is in S and let = e when e is not in

S. Since, by Goebel's results,
A •e = e almost surely for n sufficiently large

it will suffice to prove the theorem with e replacing e . This allows the use

of Taylor's theorem in the proof •

The estimator with
.e replacing Ae may be written as

y(h)

Using Taylor's theorem we may write

+ 01 •n

o -Ie(e - e )

-where the e indicate points on the line segment joining e '1(
to e The term

in braces converges almost surely to zero by the Uniform Strong Law, the

assumption that S(xt'OI)V'f(xt+lh\'S)
•

almost sure convergence of e to e Thus,

converges uniformly, and the

01 cQnverges' almost su,rely' to zero by then . . ..
almost sure convergence of e ; OIn converges in probability to zero because

• '1(
(e - e) is bounded in probability. IT



21

The following additional assumptions are needed to derive the asymptotic

""properties of· e •

Assumptions. (continued) ·The q x q matrix with typical element

- - n-\hlo(i-j,e) where o(h,e) = limn-+ ro(l/n)L:t =l O<xt'e)O(xt+\hl,e) is to

*be non-singular on ® except at the point e The matrix

C = L.qOL. qo a.a. -2
1 [V(i-j) + V'(i-j)JJ= J .

is non-singular where the a. are the coefficients of the stochastic difference

equation defining (ut } and aO = 1 •

Theorem 2. "" *Under the assumptions above, e converges almost surely to e

and 2converges almost to a

Proof. Let ",-1be a typical element of r .q Then

+ (l/n)Lt :'.+l{L:.
Q
O a.[ut . + o(x t .,e)]}2-,'1. J= J - J - J .

= a (e)/n + b (e)/n •n n

Now a (e)/n converges almost surely to zero uniformly in en
almost surely to and the continuous functions

because

S(x.,6) are

bounded over the compact set ® •

estimator differs from y(i-j) by only a finite number of terms, so they

share asymptotic properties. The second term may be written
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which converges almost surely to

q q q q -
2:'-02:'=0 a.a:y(i-j) + 2:'-02:'-0 a.a,6(i-j,e). J 1 J 1- J- 1 J

uniformly in e by the Uniform Strong Law, the definition of 6(h,e) , and the

almost sure convergence of a.
1

and
"-,'<
Y (h) • Using the ¥ule-Walker equations

we have

whence Qn (e) convergest:o

2 q. q
Q(e) = CT + 2:. 2: a.a ..S(i-J',e)1=0 j=O 1 J

almost surely uniformly in e. The term on the right is the limit of a sum of

squares and is therefore positive or zero. By our non-singularity assumption,

Q(e) 2
=(J only when *e = e

whenceuniformly to

Consider a sequence of points ('9} CO minimizing Qn(e) over ®·nu=l
co

corresponding to a realization of the process rUt} t=- co. Since ® is compact

there is at least one limit point eO and one subsequence re }co such thatm=l
m

Unless, this realization belongs to the exceptional set E.lim ";;; =e o
. ffio+CO on

m
Qn (e) cOIJ,verge s
m

o

. 2 :s; Q(e 0) = lim Q re ):s; lim Q
m-+·CO n n m+ CO nm m m

(e ) 2-a

which implies oe *= e has one limit point *e
except· for realizations of the process rUt} in E, where P(E) = 0

"",2
Since a = we have the almost sure convergence of

"",2 2a to CT 0
Theorem 3.

'1c
Under the assumptions above, <9 - e ) conve rge s in

distribution to a p-variate normal with mean vector zero and variance-covariance



matrix 2 ... 1
(J C 0 The elements of the matrix
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converge almost surely to the corresponding elements of C.

Proof. Let ""e = e if e is in S and let . *9 = 9 f"W

if e is not in S

Since (8 ... i) converges almost surely to the zero vector by it
.

will suffice to prove the theorem for e •
By Taylor's theorem we may write

where e varies with . *t and 9 and lies on the line segment joining 9 to
•e • Similarly, the vector

where the matrix D(r,s) has typical element

As-a consequence of the Uniform Strong Law,

surely to zero.

Using these expressions we can write

(l/n)d .. (r,s) converges almost

q q A A "r:;:: n *+ +lVf(xt .,9 )ut .J- J . =q ... "'J

q q A A •• •... O' L 0 a.a.A (9 ... e )J= J n v..

;"
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where

A (i, j)n

- (l/n)D(j,i) •

Note that if i j then A (i, j)n converges almost surely to V(i-j) and

converges almost surely to VI (i-j) •if i < j A (i, j)n

The vector (-l,fn/2)vQ(8)n converges to the zero vector almost' surely

because e is a stationary point of Q (9)n when 9 is in S • The vector

an converges almost surely to zero because it is a finite sum of random

variables which converge almost surely divided by yn

We may write

q A Ir A n *0 a. vn (a. - +lu t .,9 )J J -q -J

which converges in distribution to a p-variate normal with meGln vector zero and

variance-covariance matrix a2C where

c = a.a.lim A (i,j)... n-+<Xl n
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in consequence of Corollary 1 of Theorem 5 of [lOJ, the Uniform Strong Law, and

the fact that (a. - a.) . *is bounded in probability. Thus, Vn (e - e) is

asymptotically normally distributed with mean vector zero and variance-covariance
2 -1matrix 0' C •

The second conclusion is obtained by writing

The two terms on the right converge almost surely to the zero matrix and C ,

respectively, using arguments similar to those employed above. n

5. MONTE-CARLO SIMULATIONS

The simulations summarized in Tables 1 and 2 were performed to gain

on three questions:

1. Does the autoregressive estimation procedure described in Section 3

have better small sample efficiency than the Hannan-Goebel

estimato.r'?

2. Is the small sample distribution of the "t-ratios"
"",,2. 1/2
(0' ,cii)· . (L"f 1,: 2, H., p) derived from the asymptotic theory

approximated by ,the t-distribution with n-p degrees freedom with

sufficient accuracy for use in applications'?

3. Is the two-stage autoregressive estimator an improvement over the one-

stage autoregressive estimator in small samples'?

The Monte-Carlo evidence presented here indicates that the answers are:

1. Yes.
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2. No. On balance, the small sample distributions of the "t-ratios" have

heavier tails than the t-distribution with n-p degrees freedom.

Perhaps a reasonable procedure would be to enter tables of the t-

distribution with n-p-q degrees of freedom in applications.

3. . Ambiguous. Performance improved when the disturbances were, in fact,

autoregressive and deteriorated slightly when they were not.

The details of the simulations are as follows. So as to be able to compare

our results with Goebel's [5J we used his choice'of a response function,

his choice of inputs for n = 60 as shown in Table 3, his choice of parameters,

e = (.75, L15) ,

and his choice of error structures:

where in each case e t _ NID(0,.25) • We chose the autoregressive estimator

with q = 2 for the simulations. With this choice, the autoregressive

estimator is not exactly appropriate for any of these cases - lID, and

AR(l). However, one cannot really hope to exactly satisfy his assumptions in

applications and we expect that a near miss such as used here is a more

realistic imitation of an applied situation. To gain information on what would

happen were our assumptions exactly satisfied we included a fourth case not

considered by Goebel:
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where e t "'" NID(O, .25) The gains in mean square error efficiency relative to

ordinary least squares are dramatic for this case as seen in Table 2.

Relying on the asymptotic theory for purposes of statistical inference - such

as finding a confidence interval for e. - one would enter tables of the t-
distribution with n-p degrees freedom using the statistic

.;( '--..2-
t. = \{n (e. - e .)/(a c .. )

where

P = I

"'" . h . th d' 1 1 f ::;: d 8 . 2 (8c .. te e ement 0 as define in et
.....2 "'"in the formulae for 0' and C' to obtain the appropriate quantities for

ordinary least squares.) We see from Table 2 that if one uses ordinary least

squares formulae when the disturbances are, in fact, autocorrelatedhis

probability statements can be quite erroneous - confidence intervals,

would be much too narrow. We c'ould argue, on the basis of Table 2, that one

should use the formulae of Section 2 not so much as to gain efficiency in non-

linear time series regressions, but so as to be able to make reasonably accurate

probability statements in applications.

The standard shown in Table 2 refer to the fact that if t. does,

in fact, follow the t-distribution then the Monte-Carlo estimate of PE t i :S: c]

has a standard error of 1/2{PEt:S: cJ.PEt < c]/2000} •



1.32040
2.42100
2.12300
3.00200
2.65200
1.03300
1.56300
2.10300
1.00330
2.45000
2.40000
1.56000
1.77000
1.23068
2.02000
2.75000
0.99800
1.65400
2.56800
2'.12300

3. INPUTS FOR nIE SlMUIATIONS

Inputs

2.12500
2.09400
2.98500
2.4?300
1.54200
2.03600
2.65400
2.75400
1.23000
2.06680
2.00300
2.20300
1.00330
2.45000
2.40000
1.56000
1.77000
1.23068
2.02000
2.75000

•

2.02300
2.00200
2.98600
1.33200
2.00123
2.54000
1.30000
1.65000

r /-l.033002.03600
2.65400
, 2.75400
1.23000
2.06680
2.00300
1.32100
2.02300
2.42100
2.12300
3.00200
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