Y TR P

NONLINEAR REGRESSION WITH AUTOREGRESSIVE. ERRORS

by

A. R. GALIANT and J. J. GOEBEL

Institute of Statistics

- Mimeograph Series #986

Raleigh - March 1975



ABSTRACT

The article sets forth an estimator of the parameters of a nonlinear time
series regression when the statistical behavior of the disturbances can be
reasonably approximated by an autoregressive model. The sampling distribution
of the estimator and relavent statistics is investigated both theoretically and

using Monte~Carlo simulations.
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1. INTRODUCTION

*
This article examines estimation of the unknown parameter 6 of the

nonlinear time series regression model-

%
Ve = f(Xt,e ) +u, (t =1, 2, ¢eu, n) .

s n .
generating the realized disturbances {ut}t is

The process {ut} -1

t=+ 00
assumed to be a covariance stationary time series., This is to say that the co-

variances Cov(ut,u ) of the time series depend only on the gap h and ng;f

-

t+h

on the position t in time. In consequence, the variance=-covariance matrix Fn

of the disturbance vector

W= (o, Uy, e ) (D)

will have a banded structure with typical element Yij = yv(i-j) where Y(h) 1is

the autocovariance function of the process

vy(h) = Cov(ut,u ) (h =0, #1, +2, ...) .

t+h

%
The appropriate estimater of § , were Pn known, is the generalized non=

*
linear least squares estimator. Specifically, one would estimate 8 by 6

minimizing
-1
[y - £@)]1'T "y - £(8)]
where
Y = (I g5 eees ¥ )F (nx 1)
and

f(e) = [f(xlae)’ L) f(an \e)]' (n X 1) °
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When Fn is not known, as we assume here, the obvious approach is to substitute
an estimator of rn in the formula above.

Recently, Hannan [67] and Goebel [5] have obtained estimators for :e
enploying this approach. They use a circular symmetric matrix [4, 1971, Ch. 4]
to approximate Fn .« The approximating matrix has easily computed eigen vectors
which do not depend on any unknown parameters, This fact considerably reduces
computational difficulties and avoids inversion of a matrix of the same order as
the sample size; see, e.g., [37. The eigen values of the approximating matrix
_are proportional to the spectral density of the time series [ut}éflcn) at
appropriate frequencies, Hannan and Goebel estimate the spectral density from
ordinary nonlinear least squares residuals to obtain consistent estimates of
the eigen values of the approximating matrix. Their estimators differ in choice
of procedures for estimating the spectral density but share the same desirable
asymptotic properties under fairly unrestrictive assumptions on the time series
generating the disturbances. Moreover, the Monte=Carlo simulations reported by
Goebel indicate that this type of estimater has better efficiency in small
samples than the ordinary nonlinear least squares estimator.

. Presently, we shall demonstrate by an example that the approximating matrix
used by Hannan and Goebel can be very inaccurate in small samples. This is not
due to sampling variation but due to the form of a circular symmetric matrix
which, in effect, imposes the unrealistic condition vy(h) = y(n=h) ¢h =1, 2,
s, N) on the approximating autocovariances. Often, the serially correlated
disturbances appear to satisfy more restrictiwe assumptions than Hannan and
Goebel were willing to assume., In theseycases, it would seem possible to
exploit these assumptions and obtain a better approximating matrix, One would

naturally expect that the use of a better approximating matrix in the



generalized nonlinear least squares formula would lead to better small ;ample
efficiency. In view of Hannan and Goebels théoretical results, we would not
expect to obtain better large sample efficiency.

An assumption which is frequently satisfied in applications = at least to
within errors which can reasonably be ascribed to sampling variation = is that
the disturbances can be reduced to a white noise process by using a short linear
filter, To be more specific, the time series {ut}giico is assumed to satisfy

the equations

u, + a.u +.n¢+

£ ¥ 2% ¥ 2% (E=0, +1, 2, ...)

aqut-q =e,
where {et}éf:co is a sequence of independently and identically distributed

, , , 2 ,
random variables each with mean zero and variance ¢~ . In addition, we assume

the roots of the polynomial

q=2
m- + alm + a2m + cee F aq

have roots less than one in absolute value. A time series {ut}éﬁict) which

satisfies these assumptions is called an autoregressive process of-order q .
The Wholesale Price Index for the years 1720 through 1973 plotted as

Figure A appeafs to satisfy these assumptions. To these data we have fitted an

exponential growth model

Yo =648 +u (=1, eoe, n = 254)

254

R es
=1 From these

by ordinary nonlinear least squares to obtain residuals {ﬁt}

residuals we have estimated the autocovariances using

h

~ il A A
Y(b) = (1/n) £y WA . (B =0, 1, ..., 60)

and plotted them as Plot AUTOCOVARIANCH in Figure B.
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FOOTNOTE TO FIGURE A

Source: Composite derived from: Wholesale Prices for Philadelphia, 1720 to
1861, Series E82, [14]; Wholesale Prices, All Commodaties, 1749 to 1890,

Series. E1, [14]; Wholesale Prices, All Commodaties, 1890 to 1951, Series E13,
[14];‘Wholesa1e Prices, All Commodoties, 1929 - 1971, [12]; Wholesale Prices,

All Commodoties, 1929 =~ 1973, [13].
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Using the methods set forth in Section 3 and assuming q = 2 we estiﬁéte
(al, ays cz) = (~1.048, 0,1287, 34.09), Using the Yule-Walker equations and
these estimates, we obtain the approximating autocovariances shown as Plot
AUTOREGRESSIVE in Figure B.

. As we mentioned earlier, the entries on the diagonal bands of the variancé-
covariance matrix Fn are the autocovariances +vy(h) of the process; that is,
v(h) = Yij where h = |i-j| . Thus, the approximating circular symmetric matrix
used by Hannan and Goebel implicity defines an estimator of the autocovariance
function; see Box and Jenkins [2, p. 31] for a schematic illustration. Due to
the nature of a circular symmetric matrix, the autocovariance function
implicitly defined will vary with the sample size n and with the choice of an
estimator for the spectral density. We used n = 60 and estimated the spectral
density using a Tukey-lag window [9, p. 243 £ff,] with M = 25 to obtain the
approximating autocovariances shown aé Plot HANNAN-GOEBEL in Figure B.

. As can be seen from Figure B, the approximation of the autocovariance
function obtained using the autoregressive assumption is considerably more
realistic than the approximation implied by the Hannan~Goebel procedure.
Correspondingly, for these data we would expect that a generalized nonlinear
"least squares estimatof using the autoregressive assumption to obtain the
approximating variance~covariance matrix would perform better in small samples
than a Hannan=~ Goebel estimator. In general, when the ordinary nonlinear
squares residuals {ﬁt}tzl appear to satisfy the assumption that they were
generated by a low order autoregressive process we would expect that a
generalized nonlinear least squares estimator which exploits this assumption

would have better efficiéncy in small samples than a Hannan-Goebel estimator.
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This article.investigates this hypothesis, In Section 2 we describe an
estimation procedure. In Section 3 we summarize the consequences of the auto=-
regressive assumption which motivate the procedure. In Section 4 we set
#Forth the asymptotic properties of the estimator. In Section 5 we investigate
the small sample properties of the estimator using a Monte=Carlo simulation and
compare them with Goebel's results.

We conclude, on the basis of the Monte-Cario evidence, that the estimator
suggested here will have better efficiency in small samples than the Hannan-
Goebel estimator when the autoregressive assumption is at least approximately
satisfied. Gains in efficiency relative to ordinary least squares can be
dramatic when the autoregressive assumption is exactly satisfied and q is

correctly identified.

2, ESTIMATION. PROCEDURE

%
Our objective is to estimate the unknown parameter § appearing in the

nonlinear regression equations
*
Ve = f(xtae ) + U (=1, 2, cov, n)

when we assume that the distyrbance terms are an autoregressive process of order
q . A detailed description of such a process is deferred to the next section

where methods of estimating q from the:data are discussed. The inputs X, are

*
known k by 1 vectors and the unknown parameter @ is a p by 1 wvector

known to be econtained in the parameter space ® . The regression equations may

be written in vector form as
y=£(0) +u

using the notation of the previous section.



The first step of the procedure is to compute the ordinary least squares

. A . . e
estimator 6 which minimizes

[y - £(®)1°[y - £(8)]

over @ wusing, for example, Hartley's [7] modified Gauss=-Newton method or
Marquardt's [11] algorithm. A program implementing at least one of these
algorithms is usually found at computing centers with a statistical program
library,

The second step is to compute the ordimary least squares residuals
u=y~ £(8)

and from these estimate the autocovariances up to lag q of the disturbances

using

v = am sl g @m0 L Lo

For the third step, let

pre

YO F@W ... y(g-1)

Y R0 . Y(a-2)

Ty = . : (¢ x q)
V@1 Y(@=2) ... v(0)
Yo = VD, 72, ens V(@D CIES
and compute
%=;/1:|qu (qx 1) 3

11
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Factor f;l = %&?q using, e.g., Cholesky's method [8, p. 158] and set
e et
2 » !
Vo™ P i 0 }q rows
L e e e e e o m— — - i e em o — — -
aq aq-l LI al ].

N 1 a 2 - vee a 1
b: = 4 . -1 1 n'= ¢ rows

- -
. Note that to perform the multiplication Pw on a digital computer it is not

N

necessary to store P; only’ %q and ays %2, roes %q _are needed.

Define:
TE,0) = (/8 )EM), waes (/20 )EGOT] (Lx ),
F(p) = the n by p matrix whose tEE rYow. is v'f(xt,e) .
The fourth step is to compute E minimizing
Q (8) = (1/m)[Py ~ B£(8)1'[By - P£(0)]
and from this value obtain
&% = [y - B[Py - PE®) Y (@-p)
and
T = r(u/mE @@ 1t

N
As shown in Section 4, \n (§ - e») is asymptotically normally distributed with
a variance=covariance matrix for which 82 T is a strongly consistent estimator.
Either Hartley's [7] or Marquardt's [11] algorithm may be used for the

final minimization to obtain 6 ., Put z = %y and g(g) = Pf(6) . The problem
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~is then torminimize thl [zt,- gt(e)jz « The derivatives v'gt(e) needed by
the programvﬁay be obtained as the t-Eh row of  PF(6) . As mentioned above,
this matrix multiplication does not require the storage by the n by n matrix

? . The matrix printed by the program
wml =52 ve,®v'e @)1
t=1 "t t

will satisfy E = n(A'A).‘1 .

The estimation procedure may be iterated by returning to the second step
with 3 replacing & . The asymptotic properties of this two-stage estimator
do not differ from those of the one-stage estimator E . Intuitively, it would
seem tha; the two-stage estimator would be more efficient but the Monte-Carlo
evidence, Section 5, suggests otherwiSe. The only case we find impfoved

2

perfoymance is when the autoregressive assumption is exactly satisfied.:::’

3., AUTOREGRESSIVE PROCESSES

The autoregressive process {ut}éficc> of order q is defined implicitly

as a sequence of random variables which satisfies the difference equation

u +oon u =
Ut au g et e ta U T8

where the process {et}éf . is a sequence of independently and identically

. . . . - . 2
distributed random variables each with mean zero, finite variance ¢~ , and

]

finiteAéﬁfmmmﬂm.The parameters a; (i 1, «e., q) of the defining equation

are assumed to satisfy the condition that the roots of the polynomial

mg + a mq-1 + a mq'z + e + a
1 2 q

are less than one in absolute value,



The process {ut} can be given an explicit moving average representation

in terms of weights {wj};iz defined by the equations

W, ¥ =a.w

1 10

W2 = -alwl - a2w0

Wq-l = alwq-z - azwq-s = aes ™ aq-]_wo
and

Wj = "ale-l - aZWj.-z ™ cee ™

aw,
q 1=9
~for j=g4q, g*+l, ... . These weights are absolutely summable (z;ﬁ;|wj|< 0)

and

u, = ZZCO Wre
t 23=0 "3 t=j

almost surely [4].

The autocovariances of the process {u.} are defined by

vy(h) = Cov(u ) (h=0, +1, +2, ...) &

—

u
£’ Tt+h

From the moving average representation we have that the autocovariances are

given by

I+
N

'Y(h) =g Ej=0 ijj-l'-lh! (h - 0’ i 1, otn)

and satisfy the Yule~Walker equations

14
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vy(j) + aiv(j-l) + oeee aqv(j-q) =

In addition, the autocovariances are absolutely summable (2£§i1IJY(h)|<cx>) .

The Yule~Walker equation may be used to compute the parameters ays 8y,

N 02 defining the process {ut} from knowledge of the first q auto~-

q

covariances vy(h) (h =0, 1, ..., q9). Define

Y (0) v (1) o y(s=1)

Y (1) v (0) vos v (s=2)
ry = . (s x s) ,
- 8 B ) . )

y(s=1)  y(s=2) eee . v(0)
Iy, ¥, e (] (sx D),

and
a' = (al, azv, R aq) . (q_ p:9 1) .

The parameters are computed from the equations

Y
a Fq Yq
2 _ '
o” =v(0) +aly_ .

9

. n o o v co
The observed portion {u.},_, of a realization of the process {ut}t=-cc

has variance-covariance matrix Fn « For n larger than q a matrix P

which diagonalizes rn may be obtained as follows. Factor F&l as
-1

rq = P('lPq and set
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™ . T
2 , , :
o P i 0 q rows
I S
aq aq-l evs al 1
a a ces a 1
P = 4 a-1 ! n-q rows
aq aq_1 ceo 8y 1
L .

Using the Yule-Walker equations and the equations defining the weights {wj} ’
one can verify that PFnP' =1 . This fact motivates the use of P in the

estimation procedure described in the previous section.

n

s
t=1 2

Estimators of the autocovariances may be obtained from [ut}

7w = u/m 2o (h =0, %1, wury # (2-0))

u
“t"t-|n]
In the nonlinear regression context we cannot observe {ut}tzl directly and
must substitute the estimators Q(h) computed from the ordinary nonlinear
least squares residuals {ﬁt} + We will show in the next section that the
estimators %Y(h) and Q(h) are asymptotically equivalent under appropriate

regularity conditions.

We have [4] that

lim = Cov[y (h),y(4)]

= L'f:(ei)/cr4 - 3Ty (h)y ()

co

* e

Ly (v (3-bte) + v(3+0v(i-h)]

and [5] that v(h) converges almost surely to y(h) . Using Chebischev's in-
equality the covariance formula implies that |\ n [Q(k) - v(h)] 4is bounded in

probability; that is, given § > 0 therxe is a finite bound B and an N such
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that for all n >N

Pl\n|¥(h) - y(h)|>B] <6 .

2 -
If we estimate the parameters 815 sesy 8,5 O by substituting Y(h)

q’
(h =0, 1, ve., q) in the equations

-1
a=-"Tq"q

cz = v(0) + a’vq

to obtain

- --l-
&= "TqgYq

¢° = y(0) + é'vq

we have as consequences of the facts set forth in the previous paragraph that
each ai converges almost surely to a, and that \n (Ei - ai) is bounded in
probability. The same is true for 52 + These equations may be solved subject
to a priorirestrictions that some of the ay = 0 , This will not disturb the
properties of the estimators Ei provided that the restrictions are, in fact,
true.

To determine the order q of the process from the data, we consider a test
of

H: =0 against A: a_ # 0
2 gai . #

at the g=-level of significapce., We may use a two-sided '"t-test'" by comparing

RGN
o
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- - - - - t -

where 82 = [y(0) + a'yq]/(n-q) and qu is the q—h diagonal element of rql
to the two-sided g=~level critical point c of a t-variate with n~q degrees of

freedom. We have [1, Sec. 5.6.3] that
1imn->ooP[E >cl|i] =a

and
11mmooP[t >claT=1.

This test is employed to determine the order q of an autoregressive
process using procedures analogous to those used to determine the appropriate
degree of a polynomial used in polynomial regression analysis, One may, for
example, test sequentially upward or, alternatively, start from a very high order
and use Anderson's [1, Sec. 3.2.2] downward selection procedure,.

For a sequence of weights {ct(e)}éil depending on a p-dimensional
parameter 0 ¢ ® there is a Uniform Strong Law [5, 6] which, in the present

context, states that
5 (8) = (1/m) 5,2, c,(8)
n n) Zpap CplOvg
converges almost‘surely to zero uniformly for @ in .@ provided that:

(i) The process -[ut} is as described above.
(ii) Each ct(e) is a continuous fupction for 6 in @ .

(iii) The set @ is compact.

e
t=l 't
and B in ® as n tends to infinity.

(iv) The sum (1/n) ¥ (a)ct(B) converges uniformly for all «
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4, ASYMPTOTIC PROPERTIES OF THE ESTIMATOR

The assumptions used by Goebel [5] to show that 8 converges almost surely
to 9* and that \n (§ = e*) is bounded in probability may be stated in the
present context as:

Assumptions: The errors [ut} are an autoregressive process of order g
as described in the previous section. The true parameter value e* is contained
in an open sphere S , which is, in turn, contained in @ ; the parameter space
® 1is a compact set, The response function £(x,6) and its first and second

partial derivatives in 6 are continuous over the parameter space, The

sequence of inputs {xt} are chosen so that the functions

B(ha8) = (U £ 8058y Gy B) (=0, 1, eeny X Q)

converge uniformly for all o , B in ® as n tends to infinity where
g,(x,0) and g,(x,8) may variously be £(x,8), (3/38,)£(x,6), or

2 , , n .2
® /aeiaej)f(x,e) . The function 1lmn+co (1/n) Zt=l S (xt,e) where
%
G(Xae) = f(X:e ) - f(X,e)

%
is assumed to be non=zero on ©® except at the point 8 . The p x p matrix

V(h) with typical element
- = N n—|h| * ‘ e
vis(h) = lim | (/T g (9/264) £(x, 50 )(a/aej)f(xt+|h|,e)
(h=0, £1, «0s, 9

is assumed to be non~singular when h =0 .,
These assumptions are sufficient to prove that the autocovariance estimators
@(h) computed from ordinary nonlinear least squares residuals are asymptotically

equivalent to the estimators Q(h) computed from the unobservable disturbance terms.
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Theorem 1., Under the assumptions above,
Y(B) = y(h) +a (h=0, +1, .o, + Q)

"~ where @, converges almost surely to zero and \'n o, converges in probability
to zero.
Proof. Let § =8 when 8 is in S and let § = 9* when 8§ is not in
S. Since, by Goebel's results, 5 =6 almost surely for n sufficiently 1argev
it will suffice to prove the theorem with é replacing 8 . This allows the use
of Taylor's theorem in the proof.

The estimator with é replacing 8 may be written as

v = /) S + 668l ) * 6y 6)]

1

Y(h) + (1/n) Ez;lh‘f“té(xtﬂhpé) + ut+|h|6(xt’é)

+

6(xt’é)6(xt+|h!’é)] = y(h) + o

Using Taylor's theorem we may write

R
]

{(U/mD Lyl 0" £Gey 28D + Uy 7' £Gr8)

+

JCROUEICHNIEON R

- ° %
where the @ indicate points on the line segment joining 6 to § . The term

in braces converges almost surely to zero by the Uniform Strong Law, the
assumption that (l/n)ztz1 5(xt,a)v'f(xt+lh‘,8) converges uniformly, and the
. % 7
almost sure convergence of § to 6 . Thus, o, converges almost surely to zero by th

almost sure convergence of g ; Vh o, converges in probability to zero because

. 3
Vn (8 - 8 ) is bounded in probability. [



21

The following additional assumptions are needed to derive the asymptotic
properties of. E .

Assumptions. (continued) .The ¢ x q matrix with typical element
B(in3,0) vhere §(n,0) = lim, (1/mZ}_|"160x 0060y ,)50)  is assumed to

be non~singular on ® except at the point 6 ., The matrix

I Q| - -
C = I 0%5=0 21%; [V(i 3) + V' (E=9)]

is non=singular where the a, are the coefficients of the stochastic difference

equation defining {ut} and a; = 1.,

~ *

Theorem 2. Under the assumptions above, ¢ converges almost surely to 8

and © converges almost surely to ¢ .

Proof. Let Q;J be a typical element of ?;1 o Then

Q (o) = & /mz, % yagluy + 80k ,e)]v a4 8(x,0)]

+

(/B et g1 (20 3,fu + 61,007}

a (8)/n +b (8)/n .

Now an(e)/n converges almost surely to zero uniformly in @ because @;J

, - A
conVQEges almost surely. to Y;J and the continuous functions 6(Xi,9) are

bounded over the compact set ® . Let y (1-3) = (1/n)2 ; this

t—q+l t=j Yeai

estimator differs from ;(i-j) by only a finite number of terms, so they

share asymptotic properties., The second term may be written

b (8)/n =%, _02 033 [v "(1-3) + (Umz, S 8 (x £ai 208G 50)]

t—q+1

+ I, _Oz ! (1/n)zt_q+1[ a10Feop0) Fu 80, _4,0)]
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which converges almost surely to

4.9
1=0% §=0

q

y 420

. . q . .
aian(l j) + Ei=02 aiajé(l-J,e)

uniformly in @ by the Uniform Strong Law, the definition of §(h,8) , and the

almost sure convergence of ai and Vx(h) . Using the Yule~Walker equations

we have
q q o 2 _ 2
Zimp 21 Zymp 25Y(i73) = ag¥@ =0

whence Qn(e) converges to

5 - 2 q _ 4 = .
Q) =0 + Zi=0 Zj=0 aiajs(l-J,e)

almost surely uniformly in ¢ . The term on the right is the limit of a sum of
squares and is therefore positive or zero. By our non~singularity assumption,
- 2 % '
Q(8) =¢~ only when g =906 .

Consider a sequence of points {35}:51 minimizing Qn(e) over @

co
corresponding to a realization of the process £ut}t= o ° Since ® 1is compact

there is at least one limit point e° and one subsequence fén };ﬁ} such that
'limm+oo%n. =q° . Unless, this realization belongs to the exceptional set E ,
m .
Qn (6) converges uniformly to 6(9) whence
m
'602’- =, 0 . o~ . * - 2
c-=Qk) = 11“‘m->oanm(9n ) < 1lmmoanm(e ) =¢o

m
° ® ' oY %
which implies ¢ =6 . Thus; the sequence {en} has one limit point @
except for realizations of the process {ut} in E , where P(E) =0 .
Since 32 = [n/(n-p)]ana) we have the almost sure convergence of
~2 2 '
c to o . [

- %
Theorem 3. Under the assumptions above, \n @ -6 ) converges in

distribution to a p-variate normal with mean vector zero and variance-covariance
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matrix czc-l o The elements of the matrix
T = (1/o)F' @)2'Pr @)

converge almost surely to the corresponding elements of C,
° ~ ~ . * ~
Proof. let g =96 4if @ is in S and let © = § if 8 dis not in S .
Since \(n (é - % converges almost surely to the zero vector by Theorem_z, it

will suffice to prove the theorem for é .

By Taylor's theorem we may write

5k, -8) = =v'E(x,8) (6 = 67) =5 € - 0 'V EELEE - 6"
*

where § varies with t and é and lies on the line segment joining 6 to

6 . Similarly, the vector

ST
t=g+l t=r

n

° * [ *
z Vf(xt_sae) = Zt=q+lut-rvf(xt-s’e ) + D(r,S)(G -0 )

where the matrix D(r,s) has typical element

n 2 -
dyy(rs8) = o g0, (7/00,30 DE(x,_»0) .

As.a consequence of the Uniform Strong Law, (l/n)dij(r,s) converges almost
surely to zero,

Using these expressions we can write

(/2% @) = -5@ ARyvn,d 7 L Tuy + 66,6 W I Mu, + 66e,.6)]

9.9 ~ n *
RSN, LN LICUTLID L

q q ~ ~ . . . ES
(2320 Zjmp 252 PAp(HLDWE 6 - 0)

“an + Bn - Yn
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where

A (1,3) = (U/m)z ]

o *
1

+

n . ° % ' 2 -
SV N RTINS E A TON >

(1/m)D(j,1)

Note that if- i = j then An(i,j) converges almost surely to V(i-j) and
if i< j An(i,j) converges almost surely to V' (i-j)

The vector (-V"n/2)in4(é) converges to the zero vector almost surely
bercause é is a stationéry point of Qn(e) when ’5 is in S8 . The vector
o éonverges almost surely to zZero because it is a finite sum of random

variables which converge almost surely divided by V'n .

- We may write

- q n %
(AT g 31T iaqey CeTE®pay:0 )

+ 3. i \n (3 - a, )(1/n)2

%
1=0 t—q+1 t=j vE(x, 428 )

A %*
-+ 21=O a, \n (a; - a, )(1/n)z:t_q_|_1 - vi(x,_;50 )

which converges in distribution to a p~variate normal with mean vector zero and

s \ . 2
variance~covariance matrix ¢ C where

q . .
21=02 =0 3% llmn—»ooAn(l’J)

o
]

21_02J=0 a8, EV(i-3) + V' (i-1]
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in consequence of Corollary 1 of Theorem 5 of [10], the Uniform Strong Law, and
the fact that \(n (%i - ai) is bounded in probability. Thus, \ n (é - e*) is
asymptotically normally distributed with mean vector zero and variance=-covariance
matrix 020-1 o

. The  second conclusion is obtained by writing

q q ~ij Nt ey
'E (O' /n)zl lZJ_l Yq Vf(xi’e)v f(xi’e)

+ 80T 83, D LGB0 G B)

The two terms on the right converge almost surely to the zero matrix and C ,

respectively, using arguments similar to those employed above., |
5, MONTE~CARLO SIMULATIONS

The simulations summarized in Tables 1 and 2 were performed to gain

information on three questions:

1. Does the autoregressive estimation procedure described in Section 3
have better small sample efficiency than the Hannan=Goebel
estimator?’

2. Is the small sample distribution of the "t-ratios" ti,= Vn (53 : ei)/
d;%cii);/zﬁv(ivﬁ 1,2, .es, p) derived from the asymptotic theory
approximated by .the t-distribution with n-p degrees freedom with
sufficient accuracy for use in applications?

3. Is the two~stage autoregressive estimator an improvement over the one=
stage autoregressive estimator in small samples?

The Monte=Carlo evidence presented here indicates that the answers are:

1. Yes.,
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2, No. On balance, the small sample distributions of the "t-ratios" have
heavier tails than the t-distribution with n-p degrees freedom.
Perhaps a reasonable procedure would be to enter tables of the t-
distribution with n-p~q degrees of freedom in applications.

3. . Ambiguous. Performance improved when the disturbances were, in fact,
autoregressive and deteriorated slightly when they were not.,

The details of the simulations are as follows. So as to be able to compare

our results with Goebel's [5] we used his choice~of a response function,

92x

£(x,8) =0, >

his choice of inputs for n = 60 as shown in Table 3, his choice of parameters,
6 = (.75, 1.15) ,

and his choicg of error structures:

11D , u,_ =e_ ;

MA(%) , u 1(.5et + 1°Oet-1 + °856t-2 + .,33eti_‘3 + .50et_4 ;

AR(1) , u

.735 U 1 = e s

t 1 t

Wheré in each case e, ~ NID(0,.25) . We chose the autoregressive estimator
with q = 2 for the simulations. With this choice, the autoregressive
estimator is not exactly appropriate for any of these cases = IID, MA(4), and
AR(1l) . However, one cannot really hope to exactly satisfy his assumptions in
applications and we expect that a near miss such as used here is a more
realistic imitation of an applied situation., To gain information on what would
happen were our assumptions‘exactly satisfied we included a fourth case not

considered by Goebel:
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AR(2) , u, - 1.04 u_q + 128 u._o = e, 5

Whére e, ~ NID(0,.25) . The gains in mean squaré error efficiency relative to
ordinary least squares are dramatic for this case as seen in Table 2,

Relying on the asymptotic theory for purposes of statistical inference = such
as finding a confidence interval for ei - one would enter tables of the t-

distribution with n~p degrees freedom using the statistic

~ LN g
g, =Vn () - 0/G e,

where Zii is the iEh diagonal element of ¢ as’defined in Section 2. (Set
P =1 in the formulae for 32 and 81 to obtain the appropriate quantities for
ordinary least squares.) We see from Table 2 that if one uses ordinary least
squares formulae when the disturbances are, in fact, autocorrelated his
probability statements can be quite erroneous =~ confidence intervals, e.g.,
would be much too narrow. We tould argue, on the basis of Table 2, that one
should use the formulae of Section 2 not so much as to gain efficiency in non-
linear Eime series regressions, but so as to be able to make reasonably accurate
probability statements in applications,

The standard errows shown in Table 2 refer to the fact that if ti does,

in fact, follow the t=~distribution then the Monte-Carlo estimate of P[ti < c]

has a standard error of {P[t < c]-P[t < c]/ZOOO}l/2 .



3. INPUTS FOR THE SIMUIATIONS

)

b ___ __ - — ___ ___— ———— . ~——— ——

Inputs
1.32040 | 2.12500 2.02300
2.,42100 ' 2,09400 ~2.00200
2,12300 2.98500 - 2,98600
3.00200 | 2.,45300 | 1.33200
2,65200 1.54200 2.00123
1.03300 ~ 2,03600 - 2.54000
1.56300 2.65400 1.30000
2,10300 ~ 2,75400 ~1.65000
1.00330 1.23000 , ~"1.03300
2.45000 2,06680 , ~{ 2.03600
2.40000 ' 2,00300 . 2.65400
1.56000 2.20300 | . 2.75400
1.77000 1.00330 1.23000
1.23068 _ 2,45000 : : 2.06680
2,02000 | 2,40000 2.00300
2,75000 1.56000 1.32100 .
0.99800 1.77000 2,02300
1.65400 1.23068 2.42100
2,56800 2,02000 : 2.12300

- 2.12300 2,75000 . 3.00200
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