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ABSTRACT

The article considers a statistical test of whether or not a non-
linear regression specification should contain an additional additive non-
linear term in the response function. The regularity conditions used to
obtain the asymptotic distributions of the usual test statistics for
parameters of nonlinear regression models are violated when the null
hypothesis = that this additional term is not present - is true. Moreover,
standard iterative algorithms are likely to perform poorly when, in fact,
the data support the null hypothesis. Methods designed to circumvent these
mathematical and computational difficulties are described in the article

and are illustrated with examples.
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1. INTRODUCTION
In nonlinear regression analysis it is helpful to be able to choose
between two model specifications:
H: Y, = g(xt,Y) + et

and

A: Y, g(xt,Y) + Th(xtgu) +e,
on the basis of sample data: observed responses Y. to k-dimensional in=-
puts X, (t=1, 2, ..., n) . The unknown parameters are V¢ , u-
dimensional, T , univariate, and 1w which is v~dimensional. The
functional forms g(x,¥) and h(x,w are known and h(x,yw does, in
fact, vary with ¢ . The errors e, are assumed to be normally and
independently distributed with mean zero and unknown variance 02 .
Parametrically, the situation described is equivalent to testing:

H: =0 against A: T #0
regarding Vv , ® , and 02 as nuisance parameters.

A natural impulse is to employ one of the nonlinear regression
analogues of the tests used in linear regression, either the Likelihood
Ratio Test or the test based on the asymptotic normality of the least
squares estimator [87]. Both of these tests - they are not equivalent in
nonlinear regression -~ depend on the unconstrained least squares estimator
6 = (@,Z&?) . When the null hypotheses is true, this dependence causes two
difficulties: |

1. Likely, the attempt to fit the full model

Ve = 8(x¥) + rh(x,0) + e

using one of the standard first derivative iteritive alogirthms [10, 147

will fail or, at best, converge very slowly.
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2. The regularity conditions [12,13,4] used to obtain the asymptotic
properties of the unconstrained least squares estimator 8 are violated;
these asymptotic properties are needed to derive the asymptotic null
distribution of these two test statistics [8].

The first difficulty can be illustrated using the model

0,X
373¢
4e + et .

Consider an attempt to determine from the data whether the exponential term
should be included; the correspondences with the notation above are:
8(X,‘1’) = lel + YZXZ ’

wx
h(x,w) = e 3 s

= 1
Y= (8,,0,)"

T=e4s

w 93'
Table 1 illustrates how the performance of the modified Gauss~Newton method
deteriorates as H becomes more nearly true,

Table 1 was constructed as follows. A sample of thirty normally
distributed errors with mean zero and variance .00l was generated. To

this sample (fixed throughout) was added the response function

4%

3
f(x,0) = 91x1 + ezxz + e4e

using the parameter choices shown in Table 1 and the design points, x_ ,

given in the Appendix of [7]. The least squares estimator 5 was

determined by grid search. From the start value

~

% =8 -l @=1,23 4,
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an attempt was made to recompute the least squares estimator using the
modified Gauss-Newton method and the stopping rule: Stop when two
do not differ in the fifth

successive iterations, and

(1)® (i+1)® >
significant digit (properly rounded) of any component.

In each case considered in Table 1, all factors are held fixed save
7% , the true value of Tl/ , and the computational task is the same. The
performance of the algorithm is seen to deteriorate as |r| (= |94‘)
becomes smaller. The inference to be drawn from Table 1 is: 1If a non-
linear regression specification is not supported by the data one can
expect problems with iterative nonlinear least squares algorithms., This
inference is also supported by Tables 1 and 2 of [5].

The mathematical difficulties are caused by the violation of two
standard [6,4,127] regularity conditions; the first, that the (almost sure)
limit

11

m, oo () 52 [£Ge,,0) = £Ge,,00)7°

has a unique minimum at the true value g% of @ and, the second, that the
(almost sure) limit matrix with typical element

Lim | o (1) 7.0 [(3/08)£0x,,6%)1[(3/36 ) £(x,6%)]

is non=-singular. The consequence of these violations is that it does not
appear possible to derive the .asymptotic properties of & when H dis true
under assumptions having sufficient generality to be useful in applications.
Specifically, a will not converge in probability to a constant so that as

n becomes large the responses are not constrained to lie in the linear space
defined by the gradient of the response function evaluated at g% . As a
result, the methods of proof employed in, e.g., [4,6,8,12] cannot be used to
deduce that, under H , test statistics depending on 8 will eventually

behave as their linear regression analogs.
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While it may be possible to discover the asymptotic properties of %
using other methods of proof, it would seem a fruitless task in view of the
computational problems noted previously. For this reason, this article
does not consider tests for H against A which depend on the computation
of 8 . The approach, rather, shall be to extend Hartley's method [7, Sec. 4]
to this problem.

It is instructive to consider when the situation of testing H
against A using data which support H is likely to arise. This is the
situation which causes computational difficulties and is the situation where
the methods suggested here will be the most useful,

Computational problems of the nature discussed above are unlikely to
arise, in the author's experience, when plots of the data visually suggest
the nonlinear model, For example, in the cases considered in Table 1,
plots of the observed response Ye against the input X3¢ fail to reveal
any visual impression of exponmential growth for values of |7| smaller than
.1 . It is improbable, therefore, that one would attempt to fit a nonlinear
model which is not supported visually if one is merely attempting to
represent data parametrically without reference to the substantive
discipline(s) involved. Consequently, substantive considerations will
likely have suggested A rather than data analytic considerations; moreover,
a statistical test of H against A will likely have substantive relavance,
As we shall see, it will be helpful if these same substantive considerations

also imply probable values for w .

2. AN EXTENSION OF HARTLEY'S TEST
Hartley's test [7, Sec. 4] would serve for testing H against A if

the model were linear in the remaining parameters once T was specified.
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ine linearity requirement may be eliminated, as is seen below, when
g(x,¥) satisfies regularity conditions sufficient to obtain, asymptotically,
the linear regression results on which Hartley's test is based., With these
results in hand, Hartley's idea may be applied: Replace the original pro-
blem, testing H against A , with a new problem, testing H against A# ,
wheve Aff 1is chosen so that the test statistic for the new problem will be
analytically and computationally tractable when H is true yet retain good
power when A 1is true,

Consider, then, the nonlinear regression model

A Ve = g(xt,v) + Zéé + e,

where the additional regressors z, (w x 1) do not depend on any unknown
parameters. The function g(x,¥) is assumed to be such that, and the
regressors z, are chosen to be such that, the regularity conditicns of
[6, Sec. 2] are satisfied by the model A#; see [7, Sec. 2] for a less
formal statement of the regularity conditions, Notice that satisfaction
of the regularity conditions is not affected by whether or not § = 0
gince the additional regressors do not depend on unknown parameters,

The Likelihood Ratio Test statistic T# for testing

H: y, = g(xt,Y) + e

against A# may be derived as follows. Define (¥#,8#) to be the least

squares estimator obtained by minimizing

n

Zes1

2
[Yt - 8(Xt,‘¥) - Z'té-]
and set
2% = (1/n) .2 Ty, - g(x_,¥#) = z'6#]°
(@)# = (I/n) £ _; [y, - sxy¥ zy .

Define ? to be the least squares estimator obtained by minimizing

n 2
Timq (Ve = 8]
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and set

5% = (Um 2,2 [y, - 8017

The test statistic is
# =5/ (00)
and H is rejected when T# is larger than the appropriate size g
critical point.
The asymptotic critical point is
ct =1 + wﬁw/(n -u =W
where E} denotes the upper +100 percentage point of an F random
variable with w numerator degrees freedom and n = u ~ w denominator
degrees freedom, If the regularity conditions of [6, Sec, 2] are
satisfied by the model A# then the additional assumption of [8, Sec. 2]
will automatically be satisfied when # is true with the consequence that
limn_'oo P[TF > c#|H] = o .
Thus, the test - reject H when T# > c# - is, asymptotically, a size «
test of H against A ,
It remains to consider how the additional regressors z should be
chosen. Relevant are two restrictions implied by the regularity conditions:
1. Every component of the w=~vector z. which is a random variable
must be distributed independently of the errors e -
2, let G(Y¥) be the n by u matrix with typical element
(a/an)g(xt,Y) where t is the row index and j is the column index;
let Z be the n by w matrix with CEE row zé . The (almost sure)
limit matrix _
limn»co (l/n)[G(Y*)EZ]'[G(Y*)EZ]
must have full rank, Thus, the columns of Z should not be exact linear

combinations of thg‘columnsvof G(Y) for admissible values of ¥ 2/ .
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The objective governing the choice of the additional regressors is to
find those which will maximize the power of the test when A is true. One
should attempt to find those Z, which best approximate h(xt,w*) - in the
sense of maximizing the ratio

B! (W9)Z(2'2) 7 2 h(w*) /b () h ()
where

h(w®) = [h(x; W), wou, h(x ,u®)]" (n x 1)
- while attempting, simultaneously, to keep the number of columns in Z as
small as possible; see Hartley [9]. We consider, next, how this might be
done in applications.

In a situation where substantive considerations or previous
experimental evidence suggest a single point estimate y# for  the
natural choice is z = h(xt,w#) .

1f, instead of a point estimate, ranges of plausible values for the
components of ¢y are available then a representative selection of values for
w

{wﬁ: i=1, 2, ..., K}
whose components fall within these ranges can be chosen - either detey-
ministically or by random sampling from a distribution defined on the
plausible values - and the vectors h(wﬁ) made the columns of 2 . If,
following this procedure, the number of columns of Z would be un-
reasonably large, their number may be reduced as follows. Decompose the
matrix

Ho=[h(uf)! oo o hlwp)]
into its principal component vectors and choose the first few of these to

make up Z ; equivalently, obtain the singular value decomposition [1]
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H = USV' and choose the first few columns of U to make up Z .
A portion of the sample data may be used to refine this procedure,
if desired. Select, by inspecting the inputs X, > @ representative subset

3, %) (=1, 2, .., %)

+1
of the sample = u + v/ observations will suffice. If the data consist of

replicates of a designed experiment one of the replicates may be chosen

randomly and used as the subsample, Attempt to fit the model

= o : )
Ve g(xt',\&') + Th(xt_:w, te,
3 h| j hj

by least squares to obtain a point estimate (# for use as described above,

t

The average @ of the wﬁ (=1, 2, .v., K) may be used as the start
value for the iterations; convergence may be checked by trying a few of the
wﬁ as start values to see if convergence to the same solution obtains., As
seen previously, the least squares estimator probably can be found without
difficulty when the data support A ; if the computations prove troublesome,
find the minima

%
M, =3 "

2
i J=1 [yt, = 8(Xt.,‘¥) - Th(xtjawi{)]

J 3
with respect to (¥,7) and retain as the point estimate that wﬁ
associated with the smallest Mi . One may, if desired, retain those Wﬁ
whose associated Mi are very near the smallest of the Mi and proceed as
above with this smaller set [wﬁ: i=1, «es, K¥1 replacing &»ﬁ‘
i=1, 2, ..., K} . To meserve independence, the data points
(yt‘,xt.) (3 =1, 2, «uv, 0¥)
J ]
used to acquire information concerning ¢ should be deleted prior to the

computation of T# .
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The reason that it is easier to compute (V#,8#) for
. = y : .
A : Ye g(xt,w) + 5t6 + e,
than it is to compute (@,&,?) for
A: Ve = g(thY) + Th(Xtﬁu) + e,
from data which support
Hi y, =8(x,,¥) +e,
is that § enters the model A# 1linearly and z, does not depend on any
unknown parameters. The length Ha” of 8§ can move toward zero in the
iterations without causing other parameters to become indeterminate or the
matrix [G(¥):Z]'[G(¥):2] to become nearly singular.

The Likelihood Ratio Test statistic T# was selected to test H
against A# rather than a test statistic S# based on the asymptotic
normality of &# because the Monte-Carlo evidence in Tables 1 and 2 of [8]
support this choice; we are acting on the presumption that, for well chosen
A#, the more powerful test of H against A# will be the more powerful
test of H against A ., 1If desired, a test using S# may be substituted
and the considerations above remain valid.

One proceeds as follows. Let (V#,8#) be the least squares estimate
for

i = '

A Ye 8(Xt,Y) +zl8 + e
and let

(=50 [y = glx v#) = 2'6#1%/(n = u - w)

£=1 -7t t? [ *

Evaluate the matrix G(¥) at ¥ =v# and put

of = {[Geh) 2] eyt izt .
Let Cﬁz be the matrix formed by deleting the first u rows and columms

of C ; then
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() ' (0,) "Lt /v

St =
(sz)#

4 is rejected when S# exceeds the upper +100 percentage point F of
o
an F random variable with w numerator degrees freedom and n - u - w

denominator degrees freedom,

3. EXAMPLES
The first example is a reconsideration of the testing problem described

in [5, Sec. 57. The data shown in Figure A are preschool boy's weight/
height ratios plotted against age and were obtained from [27; the tabular
values are given in the Appendix. The question to be decided is whether
the data support the choice of a three segment quadratic-quadratic=-linear
polynomial response function as opposed to a two segment quadratic=linear
response function. In both cases, the response function is required to be
continuous in x (= age) and to have a continuous first derivative in x .
Formally,

Hi y, =0y + 8%+ eBTz(e4 - xt) + e,
and

Ar y =0, te,x + 93'1'2(64 - xt) + 95T2(e6 - %)+ e,

where
Tk(z) = H

see [5, Sec. 27.
The correspondences with the notation of Section 1 are:
g(x,¥) = LI YZX + Y3T2(Y4 - x) ,
h(x,w) = Tz(w - x) ,

Yy = (913 92: 93’ 94) >
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w =9, .
Choosing as plausible values for w the points wﬁ =4 , wg =8 , u)% = 12
the matrix H of Section 2 has typical row

H, = [T2(4 - xt), T2(8 - xt), T2(12 - xt)] .
The first principal component vector of H , with elements

z = [(2.08)T2(4 - xt) + (14.07)T2(8 - xt) + (39.9)T2(12 - xt)j

x 10 s

was chosen as the additional regressor to obtain:

5% = ,0005264 ,

©@®# = 0005235 ,

™ = 1,006 ,

P[T# > 1.006|H] = .485 .
These data give little support to A .

The model

Aty =¥ R X FYT(Y, - x) + 5%t t+e,
does not satisfy the regularity conditions of [6, Sec. 27 because the
second derivative (BZ/BYZ)TZ(\Y4 -x) = 2TO(*¥4 - X) is not continuous in
W4 ; we are relying on the asymptotic theory in [4] to justify the use of
T# in this instance.

The second example illustrates how the ideas in Section 2 may be
extended in a natural way to a situation studied by Feder [3]. The data
shown in Figure B are from [11] and were obtained to study the specific
retention volume of the organic liquid methylene chloride in the polymer
polyethylene terephthalate at selected temperatures; the tabular values

are given in the Appendix, The question is whether the data support a

single quadratic polynomial model
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2
H: yt = el + ezxt + 93xt 4 et

or a segmented quadratic-~quadratic polynomial model

- 2
Aty =0y te,X + 0% +0,T,(6, - x)

+05Ty(0g - %) ey
where the latter response function is restricted to be continuous in x
but is not restricted to have continuous first derivitive in x = there
will be a jump discontinuity in the first derivative of gap |94| at
X = B¢ o The answer to the question is vispally obvious from Figure B but,
nonetheless, we shall confirm it by means of a statistical test,
Choosing as plausible values for w = 96 the points (Dﬁ = 2,8,

w% = 2,85 , and wﬁ = 2,9 we construct H (n x 6) with typical row

Ht = [T1(2.8 - xt), Il(2.85 - xt), T1(2.9 - xt) s

T2(2.8 - xt), T2(2.85 - xt), T2(2.9 - xt)] .

The first two principal component vectors of H , with elements

Zip = Ht°(.52, .68, .84, .11, .17, .25)"' ,

Zzt = Ht'("‘614‘, -.94, 6.6, -2.7, "'301’ -208)' Py
were chosen as additional regressors to obtain:

~2

5" = .02381 ,
©@*# = .003001 ,

TF = 7.935 ,

PIT > 7.935‘H] .0000895 .
These data strongly support A which, as was noted, is visually obvious,

Observe that the model

2
Afry =¥ F YR H VXD + 892, 8,2y ey

is linear in its parameters so that

P[T# > 7.935|H] = .0000895

exactly, not asymptotically - granted normally distributed errors,
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For this problem Feder [3] has shown that the Likelihood Ratio Test

statistic
T = 5% /62

(normalized as nT) is not asymptotically distributed as a Chi-square
random variable when H holds. Moreover, he argues that the distribution
of T will depend on the particular arrangement of design points Xy oo
Thus, it would appear impossible to obtain a single set of tables for the use
of T 1in applications; it would be necessary to find critical points by
Monte=Carlo simulations at each instance., The methodology suggested here
substitutes the statistic T# allowing the use of tables of F . 1In
fact, as was noted, for this particular example the model chosen for Af

is linear in the parameters; hence, exact size, not asymptotic size, is

achieved by the test - granted the normality assumption.
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FOOTNOTES

1/

~'The asterisk i1s used in connection with parameters - ¥#*, t%, g*, apd g% =
to emphasize that it is the true, but unknown, value which is meant.

The omission of the asterisk does not necessarily denote the contrary.

2/This is technically correct if one wishes to apply the results of [6,8]

straightforwardly. It appears that the nonlinear theory could be
strengthened to allow Z to have rank less than w . Such a

generalization would have no practical utility in the present context,
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2, BOYS' WEIGHT/HEIGHT VS. AGE

W/H AGE W/H AGE W/H AGE

0.46 0.5 0.88 24.5 0.92 48,5
0.47 1.5 0.81 25.5 0.96 49.5
0.56 2.5 0.83 26.5 0.92 50.5
0.61 3.5 0.82 27.5 0.91 51.5
0.61 4.5 0.82 28.5 0.95 52.5
0.67 5.5 0.86 29.5 0.93 53.5
0.68 6.5 0.82 30.5 0.93 54.5
0.78 7.5 0.85 31.5 0.98 55.5
0.69 8.5 0.88 32,5 0.95 56.5
0.74 9.5 0.86  33.5 0.97 57.5
0.77 10.5 0.91 34.5 0.97 58.5
0.78 11.5 0.87 35.5 0.96 39.5
0.75 12,5 0.87 36.5 0.97 60.5
0.80 13.5 0.87 37.5 0.94 61.5
0.78 14.5 0.85 38.5 0.96 62.5
0.82 15.5 . 0.90 39.5 1.03 63.5
0.77 16.5 0.87 40.5 0.99 64.5
0.80 17.5 0.91 41.5 1.01 65.5
0.81. 18,5 0.90 42,5 0.99 . 66.5
0.78 19.5 0.93 43,5 0.99 67.5
0.87 20,5 0.89 44,5 0.97 68.5
0.80 21.5 0.89 45.5 1.01 69.5
0.83 22,5 0.92 46.5 0.99 70.5
0.81 23,5 0.89 47.5 1.04 71.5

Source: Eppright et al [2]



3. SPECIFIC RETENTION VOLUME OF METHYLENE CHLORIDE IN POLY-
ETHYLENE TEREPHTHAIATE

RECIPROCAL X 103 OF NATURAL LOGARITHM OF
TEMPERATURE IN DEGREES KELVIN SPECIFIC VOLUME IN CC. PER GM.
2.54323 1,16323
2.60960 1.10458
2.67952 - - 0,98832
2,75330 0.87471
2.79173 ' 0.62060
2,82965 0.51175
2.87026 0.35371
2,91120 0.66954
2.94637 0.85555
3.00030 1.07086
3.04228 1.22272
3.09214 1.29113
3.13971 1.38480
3.19081 1,46728

Source: Hsiung [11]



