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ABSTRACT

The article considers a statistical test of whether or not a non-

linear regression specification should contain an additional additive non-

linear term in the response function. The regularity conditions used to

obtain the asymptotic distributions of the usual test statistics for

parameters of nonlinear regression models are violated when the null

hypothesis - that this additional term is not present - is true. Moreover,

standard iterative algorithms are likely to perform poorly when, in fact,

the data support the null hypothesis. Methods designed to circumvent these

mathematical and computational difficulties are described in the article

and are illustrated with examples.
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1. INTRODUCTION

In nonlinear regression analysis it is helpful to be able to choose

between two model specifications:

and

on the basis of sample data: observed responses Yt to k-dimensional in-

puts x t (t = 1, 2, •.• , n) • The unknown parameters are 'f, u-

dimenS iona1, .,., univaria te, and til which is v-d imens iona 1 • The

functional forms g(x,'f) and h(x,w) are known and h(x,w) does, in

fact, vary with til. The errors e t are assumed to be normally and

independently distributed with mean zero and unknown variance (;]2

Parametrically, the situation described is equivalent to testing:

H: .,. = a against A: .,.:f= 0

regarding w , and 2a as nuisance parameters.

A natural impulse is to employ one of the nonlinear regression

analogues of the tests used in linear regression, either the Likelihood

Ratio Test or the test based on the asymptotic normality of the least

squares estimator [8J. Both of these tests - they are not equivalent in

nonlinear regression - depend on the unconstrained least squares estimator
A A A Ae = ('f,W,.,.) • When the null hypotheses is true, this dependence causes two

difficulties:

1. Likely, the attempt to fit the full model

Yt = g(xt,'f) + .,.h(xt,w) + e t
using one of the standard first derivative iteritive alogirthms [la, 141

will failor, at best, converge very slowly.
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2. The regularity conditions [12,13,4J used to obtain the asymptotic

properties of the unconstrained least squares estimator e are violated;

these asymptotic properties are needed to derive the asymptotic null

distribution of these two test statistics [8l.

The first difficulty can be illustrated using the model

ConSider an attempt to determine from the data whether the exponential term

should be included; the correspondences with the notation above are:

·xw3
h(x,w) = e

Table 1 illustrates how the performance of the modified Gauss-Newton method

deteriorates as H becomes more nearly true.

Table 1 was constructed as follows. A sample of thirty normally

distributed errors with mean zero and variance .001 was generated. To

this sample (fixed throughout) was added the response function

using the parameter choices shown in Table 1 and the design points, x t '
"'-

given in the Appendix of [7l. The least squares estimator e was

determined by grid search. From the start value

(0)8i = 9i ... 1 (i = 1, 2, 3, 4) ,
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an attempt was made to recompute the least squares estimator using the

modified Gauss-Newton method and the stopping rule: Stop when two

successive iterations, and (i+1)8 , do not differ in the fifth

significant digit (properly rounded) of any component.

In each case considered in Table 1, all factors are held fixed save

, the true value of 1/ , and the computational task is the same. The

performance of the algorithm is seen to deteriorate as (= le4 \)
becomes smaller. The inference to be drawn from Table 1 is: If a non-

linear regression specification is not supported by the data one can

expect problems with iterative nonlinear least squares algorithms. This

inference is also supported by Tables 1 and 2 of [51.

The mathematical difficulties are caused by the violation of two

standard [6,4,12J regularity conditions; the first, that the (almost sure)

limit

has a unique minimum at the true value e* of e and, the second, that the

(almost sure) limit matrix with typical element

is non-singular. The consequence of these violations is that it does not

appear possible to derive the .asymptotic properties of Wwhen H is true

under assumptions having sufficient generality to be useful in applications.

Specifically, W will not converge in probability to a constant so that as

n becomes large the responses are not constrained to lie in the linear space

defined by the gradient of the response function evaluated at e* As a

result, the methods of proof employed in, [4,6,8,12J cannot be used to

deduce that, under H, test statistics depending on e will eventually

behave as their linear regression analogs.
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"While it may be possible to discover the asymptotic properties of e

usi.ng other methods of proof, it would seem a fruitless task in view of the

computational problems noted previously. For this reason, this article

does not consider tests for H against A which depend on the computation
A

of e • The approach, rather, shall be to extend Hartley's method [7, Sec. 4J

to .this problem.

It is instructive to consider when the situation of testing H

against A using data which support H is likely to arise. This is the

situation which causes computational difficulties and is the situation where

the methods suggested here will be the most useful.

Computational problems of the nature discussed above are unlikely to

arise, in the author's experience, when plots of the data visually suggest

the nonlinear model. For example, in the cases considered in Table 1,

plots of the observed response Yt against the input x3t fail to reveal

any visual impression of exponential growth for values of ITI smaller than

.1. It is improbable, therefore, that one would attempt to fit a nonlinear

model which is not supported visually if one is merely attempting to

represent data parametrically without reference to the substantive

discipline(s);involved. Consequently, substantive considerations will

likely have suggested A rather than data analytic considerations; moreover,

a statistical test of H against A will likely have substantive relavance.

As we shall see, it will be helpful if these same substantive considerations

also imply values for w

2. AN EXTENSION OF HARTLEY'S TEST

Hartley's test [7, Sec. 4l would serve for testing H against A if

the model were linear in the remaining parameters once T was specified.
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Cne linearity requirement may be eli.minated, as is below, when

g(x,') satisfies regularity conditions sufficient to obtain, asymptotically,

the linear regression results on which Hartley's test is based. With these

results in hand, Hartley's idea may be applied: Replace the original pro-

blem, testing H against A , with a new problem, testing H against A#

where Aift is chosen so that the test statistic for the new problem will be

analytically and computationally tractable when H is true yet good

power when A is true.

Consider, then, the nonlinear regression model

where the additional regressors Zt (w x 1) do not depend on any unknown

parameters. The function is assumed to be such that, and the

regressors Zt are chosen to be such that, the regularity conditi.ons of

[6, Sec. 2J are satisfied by the model A#; see [7, Sec. 2J for a less

formal statement of the regularity conditions. Notice that satisfaction

of the regularity conditions is not affected by whether or not 0 = 0
since the additional regressors do not depend on unknown parameters.

The Likelihood Ratio Test statistic TIt for testing

H: Yt = + e t
against A# may be derived as follows. Define to be the least

squares estimator obtained by minimizing
n 2[Yt - -

and set
2 n 2

(cr )# = (lin) [Yt - - •

Define to be the least squares estimator obtained by minimizing
n 2

[Yt -
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and set
...... 2 n .... 2
cr = (lIn) [Yt - •

The test statistic is

and H is rejected when is larger than the appropriate size

critical point.

The asymptotic critical point is

c# = 1 + wF I(n - u - w)

where F denotes the upper a.lOO percentage point of an F random

variable with w numerator degrees freedom and n - u - w denominator

degrees freedom. If the regularity conditions of [6, Sec. 2] are

satisfied by the model A# then the additional assumption of [8, Sec. 2J

will automatically be satisfied when H is true with the consequence that

lim > IH] = a •n.... oo
Thus, the test - reject H when > c# - is, asymptotically, a size

test of H against A •

It remains to consider how the additional regressors should be

chosen. Relevant are two restrictions implied by the regularity conditions:

1. Every component of the w-vector which is a random variable

must be distributed independently of the errors e t •

2. Let be the n by u matrix with element

is the row index and

let Z be the

limit matrix

where

n by

t

w matrix with row

j is the column index;

The (almost sure)

must have full rank. Thus, the columns of Z should not be exact linear

combinations of the 'columns of for admissible values of J:./ •



-7-

The objective governing the choice of the additional regressors i.st-

l:1".d those which will maximize the power of the test when A is true. One

should attempt to find those Zt which best approximate - in the

sense of maximizing the ratio

h'(W*)Z(Z'Z)-IZ'h(w*)/h'(W*)h(W*)

where

(n x 1)

- while attempting, simultaneously, to keep the number of columns in Z as

small as possible; see Hartley [9J. We consider, next, how this might be

done in applications.

In a situation where substantive considerations or previous

experimental evidence suggest a single point estimate for w the

natural choice is Zt = •

If, instead of a point estimate, ranges of plausible values for the

components of ware available then a representative selection of values for

w

(W'lE : i = I, 2, ••• , K}
1.

whose components fall within these ranges can be chosen - either dete,-

ministically or by random sampling from a distribution defined on the

plausible values - and the vectors made the columns of Z. If,
1.

following this procedure, the number of columns of Z would be un-

reasonably large, their number may be reduced as follows.

matrix

H = ..• ;

Decompose the

into its principal component vectors and choose the first few of these to

make up Z ; equivalently, obtain the singular value decomposition [1]
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H - USV' and choose the first few columns of U to make up Z •

A portion of the sample data may be used to refine this procedure,

if des ired. Select, by inspecting the inputs x a representative subset
t '

(j = 1, 2, ... , n*)

+ I
of the sample - u + vi observations will suffice. If the data consist of

replicates of a designed experiment one of the replicates may be chosen

randomly and used as the subsamp1e. Attempt to fit the model

y = g(x + Th(x
t
,w) + et. t. t.

J J j J

by least squares to obtain a point estimate for use as described above.

The average W of the (i = 1, 2, .0., K) may be used as the start

value for the iterations; convergence may be checked by trying a few of the

w# as start values to see if convergence to the same solution obtains. As

seen previously, the least squares estimator probably can be found without

difficulty when the data support A ; if the computations prove troublesome,

find the minima

with respect to ,'r) and retain as the point estimate that wit

associated with the smallest M. 0

1.
One may, if desired, retain those

whose associated M. are very near the smallest of the M. and proceed as
1.

above with this smaller set (w4t: i = 1, •• 0' Ki'1 replacing

( . = 1 2 n*)J " ••• ,

i = 1, 2, •.• , K} 0 To Jr eserve independence, the da. ta points

(y t ,x t )
j j

used to acquire information concerning W should be deleted prior to the

computation of T# 0
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The reason that it is eas ier to compute ('¥4ft, oiF) for

NF: Yt = g(x t ,,¥) + + c t
than it is to compute for

from data which support

is that S enters the model MF linearly and Zt does not depend on aD.)'

unknown parameters. The length l1sll of 8 can move toward zero in the

iterations without causing other parameters to become indeterminate or the

matrix [G('¥):Z]'[G('¥):Z] to become nearly singular.

The Likelihood Ratio Test statistic T4ft was selected to test H

against A4ft rather than a test statistic 84ft based on the asymptotic

normality of S4ft because the MOnte-Carlo evidence in Tables land 2 of [8]

support this choice; we are acting on the presumption that, for well chosen

A4ft, the more powerful test of H against A4ft will be the more powerful

test of H against A. If deSired, a test using 84ft may be substituted

and the considerations above remain valid.

One proceeds as follows. Let (,¥4ft,8#) be the least squares

for

and let
2 n 2(s )# = [Yt - g(x t ,'¥#) - z'84ftl I(n - u - w) •t=l t .

Evaluate the matrix G('¥) at '¥ = '¥# and put

C# = ([G('¥4ft):Z]'[G('¥4ft):Zll- l •. .
Let be the matrix formed by deleting the first u rows and columns

of C ; then



.H is rejected when S# exceeds the upper percentage point F of

an F random variable with w numerator degrees freedom and n - u - w

denominator degrees freedom.

3. EXAMPLES

The first example is a reconsideration of the testing problem described

in [5, See. 5l. The data shown in Figure A are preschool boy's weight/

height ratios plotted against age and were obtained from [2]; the tabular

values are given in the Appendix. The question to be decided is whether

the data support the choice of a three segment quadratic-quadratic-linear

polynomial response function as opposed to a two segment quadratic-linear

response function. In both cases, the response function is required to be

continuous in x (= age) and to have a continuous first derivative in x •

Formally,

and

where

see [5, Sec. 2].

when

when

z 0

z < 0

The correspondences with the notation of Section 1 are:

= + + - x)

h(x,w) = T2(W - x) ,

= (81' 82 , 83 , 84) ,
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Choosing as plausible values for w the points wit = 4 , ... 8 , w := 12

the matrix H of Section 2 has typical row

The first principal component vector of H, with elements

Zt = [(2.08)T2(4 - x t ) + (14.07)T2(8 - x t ) + (39.9)T/12 - x t ) l
-4x 10 ,

was chosen as the additional regressor to obtain:
.....2cr = .0005264 ,

(cr 2 )4F = .0005235 ,

llF = 1.006 ,

P[llF > 1.006\H] =.485 •

These data give little support to A •

The model
I

Yt = + + - x t ) + 5Z t + e t
does not satisfy the regularity conditions of [6, Sec. 2J because the

second derivative is not continuous in

; we are relying on the asymptotic theory in [4l to justify the use of

TIF in this instance.

The second example illustrates how the ideas in Section 2 may be

extended in a natural way to a situation studied by Feder [3J. The data

shown in Figure B are from [llJ and were obtained to study the specific

retention volume of the organic liquid methylene chloride in the polymer

polyethylene terephthalate at selected temperatures; the tabular values

are given in the Appendix. The question is whether the data support a

single quadratic polynomial model
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2

H: Yt =81 + 82Xt + 83Xt + e t
or a segmented quadratic-quadratic polynomial model

A:

where the latter response function is restricted to be continuous in x

but is E£! restricted to have continuous first derivitive in x - there

will be a jump discontinuity in the first derivative of gap 184 1 at

x = 86 • The answer to the question is visllally obvious from Figure B but,

nonetheless, we shall confirm it by means of a statistical test.

Choosing as plausible values for "W = 86 the points wq= 2.8,

= 2.85 , and = 2.9 we construct H (n x 6) with typical row

Ht = [T1(2.8 - xt ), Tl (2.85 - x t ), T1(2.9 - xt ) ,

T2(2.8 - xt ), T2(2.85 - x t ), T2(2.9 - x t )] •

The first two principal component vectors of H, with elements

Zlt =Ht ·(·52, .68, .84, .11, .17, .25)' ,
Z2t = Ht ·(-6.4, -.94, 6.6, -2.7, -3.1, -2.8)'

were chosen as additional regressors to obtain:
,..,,2a = .02381 ,
2(a ):fF = .003001 ,

TIF = 7.935 ,

P[TIF > 7.93S\H] = .0000895 •

These data strongly support A which, as was noted, is visually obvious.

Observe that the model

AiF:

is linear in its parameters so that

P[T# > 7.93SIH] = .0000895

exactly, not asymptotically - granted normally distributed errors.
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For this problem Feder [3J has shown that the Likelihood Ratio Test

statistic

T ,..,.21'::.2=a fa

(normalized as nT) is not asymptotically distributed as a Chi-square

random variable when H holds. Moreover, he argues that the distribution

of T will depend on the particular arrangement of design points xt •

Thus, it would appear impossible to obtain a single set of tables for the use

of T in applications; it would be necessary to find critical points by

Monte-Carlo simulations at each instance. The methodology suggested here

substitutes the statistic TIF allowing the use of tables of F. In

fact, as was noted, for this particular example the model chosen for A#

is linear in the parameters; hence, exact size, not asymptotic size, is

achieved by the test - granted the normality assumption.
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FOOTNOTES

1../The asterisk is used in connection with parameters • ,.'1", W'1'. , and e'l'< -

to emphasize that it is the true, but unknown, value which is meant.

The omission of the asterisk does not necessarily denote the contrary.

is technically correct if one wishes to apply the results of [6,8J

straightforwardly. It appears that the nonlinear theory could be

strengthened to allow Z to have rank less than w. Such a

generalization would have no practical utility in the present context.
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2. BOYS' WEIGHT/HEIGHT VS. AGE

W/H AGE W/H AGE W/H AGE

0.46 0.5 0.88 24.5 0.92 48.5
0.47 1.5 0.81 25.5 0.96 49.5
0.56 2.5 0.83 26.5 0.92 50.5

3.5 0.82 27.5 0.91 51.5
0.61 4.5 0.82 28.5 0.95 52.5
0.67 5.5 0.86 29.5 0.93 53.5
0.68 6.5 0.82 30.5 0.93 54.5
0.78 7.5 0.85 31.5 0.98 55.5
0.69 8.5 0.88 32.5 0.95 56.5
0.74 9.5 0.86 33.5 0.97 57.5
0.77 10.5 0.91 34.5 0.97 58.5
0.78 11.5 0.87 35.5 0.96 59.5
0.75 12.5 0.87 36.5 0.97 60.5
0.80 13.5 0.87 37.5 0.94 61.5
0.78 14.5 0.85 38.5 0.96 62.5
0.82 15.5 .0.90 39.5 1.03 63.5
0.77 16.5 0.87 40.5 0.99 64.5
0.80 17 .5 0.91 41.5 1.01 65.5
0.81. 18.5 0.90 42.5 0.99 66.5
0.18 19.5 0.93 43.5 0.99 67.5
0.87 20.5 0.89 44.5 0.97 68.5
0.80 21.5 0.89 45.5 1.01 69.5
0.83 22.5 0.92 46.5 0.99 70.5
0.81 23.5 0.89 47.5 1.04 71.5

Source; Epprf.ght .!S. .!! (21



3. SPECIFIC· RETENTION VOLUME OF METHYLENE CHLORIDE IN POLY-
ETHYLENE TEREPHTHAIATE

RECIPROCAL X 103 OF
TEMPERATURE IN DEGREES KELVIN

2.54323
2.60960
2.67952
2.75330
2.79173
2.82965
2.87026
2.91120
2.94637
3.00030
3.04228
3.09214
3.13971
3.19081

Source: Hsiung [11]

NATURAL LOGARITHM OF
SPECIFIC VOLUME rn CC. PER GM.

1.16323
1.10458
0.98832
0.87471
0.62060
0.51175
0.35371
0.66954
0.85555
1.07086
1.22272
1.29113
1.38480
1.46728


