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ABSTRACT

Three methods in common use for finding confidence veglons for the
parvameters of a nonlinear rvegression model ave studied. These ave the
lack of fit method, the linearization method, and the maximum 1ikelil-
hood method. The objective is to determine which of the three methods

T

preferred choice in applications. The conclusion is rthat the

fd
wn
IRy
b
1]

linearization method has the best structural charscteristics buif its

ig gapt to be inaccurate, A choice of the

Tikelihood ratio method is a compromise between structural charscteristics
and accuracy. The lack of £it method would only be chesen 1f accuracy

was of extreme concern.



Attention will be confined to the latter ca
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1. INTRODUCTION

Three mathods in common use for finding confidence regions for

the parvameters of a2 nenlinesr regrassion model

H

Ve = f(xt,G y+oe, (&

L, 4, «ovy m)

are gtudied. They ave the lack of f£it method, the linsarizacion method,

applications. For this purpose, it is assumed

of the response function f(x,8) is known and

i

e (t

[

and the maximum likelihood method. The objective of the study is to

etermine which of the three metheds is the prefevred choice in

that the functional form

that the errors

2
mean zero and unknown variance ¢ , The unknown parameter

pedimensicnal vector known to be contained in
parameter space @ . The astevrisk is used to

but unknown, value of the parameter is meant;

I, 2, ..., n} ave independently and normally distributed with

e

ig a

the convex, compact

indicate that the true,

its cmission means that

6 1is to be regavrded as s variable for the purpose of; e.g.,

differentiation. The foputs =x_ {(t =1, 2, ..., 1)

L

vectors whose values avre known.

are kedimensional

There 1s a considerable difference in the burden of the notation

between the more general case of finding confidence regions for a sub-

set of the parvameters of the model and the restricted case of a joint

confidence vegion for all the parameters; see,

73]
%

-
-

Lot

obscurity due to & complicated notation. Li

le

9}

£

e

5, 8acs,

4 oand 57,

mest part to avoid

B

ubnstance

ig affected

by this vestriction, excepting those cases where the lack of it methad

cannot be applied,



vy denste the observed values of ¥, (o o=

as an n~dimensional column vector:

Consider a family of (Borelemeasurable) test funciinns
by
LT wha
Ll reject H: § = 8
o(.8) =
e accept Hi 5 - g .

jee

As ip well-known, a confidaence procedura
pondence with such & family of tests,
observed vy

put in the confidence regilon RV those 3

which H: § =6 is accepted; viz,,

i

Ry {6 ¢ @ @ly,0) = 0} .

The probability that R dncludes g dis given by

B(p ¢ Ry} = Plop(y,g) = 07 .

The nonlinear vegression models considered here are

satisfy the vegularily conditions of [4, 67,

v .
P ;\e,,ﬁ, WeTe

conceptually, range over @ Some values of o

satisfaction of these regularily conditions, For example,
on the boundary of & will noty Cypically, thoss g wh

be a set of Lebesque measure zero, For thosze

which do permit the satisfaction of the

This correspondenc

3 In a one~Lo=-0ne Correge

iy

ig:

1]

or

in & for

presumed to

3

¥

3] Lo,

b

will not permit the

¥

those @
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three families of tests consldered will have the property that

e
iy

- i L, T B
lim yi}_@(yse } = ’Uie 11 E @ gy
Tibon

whare ¢ 18 a preassigned number betwean zaro and one., The potation
W

P(eﬁ@ & ) indicates probabilicy computed according o the m-dimensional

multivariate normal distribution with mean vector

£(8) = [£(x;,8), £(x;,8), ..., E(x ,8)7" {n x 1)

2.

and variance-covariance meivrix o 1 .
The procedure for finding confidence intervals associated with
such a family of tests will achieve the nominal (lew) = 100%
confidence level In the limit if the true wvalue permits satisfaction
of the regularily conditions,.
An approximate (l-~y} x 100% counfidence procedure is defined to
be a procedure with this property for all a* in ® excepting a subset
of ®& with Lebesque measure zero. On the other hand, an exact

{l=z} = 100% confidence procedure is a procedure for which the equality

% %2 .
Ploly,e ) = GIG 25 1= Ly

1,

kY

holds for all g in © , ali U2 >0 , and all n large enough for
the test to be defined, typically for =n larger than p . Lack of
fit methods, defined later, wusually have this property. Obviously, an
exact confidence procedure i8 included within the defindtion of an

approxzimate procadura,

o

Approximate confidence procedures, adjusting the definition
sultably for context, ave in common use in a wide varisty of situations.

Honetheless, some have avgued that the use of such procedures is



wlpo
invalid; see the discussion and refarences in [ 1, p. 3057, The thrust
. . K3 Z .
argument is that, since § and g are unknown, a confidence statew
ment should ke simultanecusly correct for all § in ® and all

2 . PR . g & w7
¢~ > 0 ; the asserted probability should bound Ple{v,8 ) = 018 N
from below, £ an approximate procedure 1s to meat this requirement

it must be & uniform approximate procedure, That iz, it must be true

for the family of tests defining it that

Lim inf Plo(y,8 ) = 0l ;o7 & e

The objection to approximate confidence procedurss can, perhaps, be
made more forcefully by poting that if the equation above 18 not true

then there does not exist any sample size such that

& % 2
s ¢ Ryl@ L6 ) > leg=g

Fa

. * 2
simultaneocusly for all 8 ¢ ® and o =0 .
- * £ £ T ::‘f
The response to this objection is the argument that § and o
are fixed in any given application, If is not pscasgsary to be able to
make confidence statements which are simultapescusly covreet for all

values of the pavameters whatever they might be; it is only necessary

that they be correct for the pavameters which obtain, When an

approzimate confidence procedure is usaed in an application thers will,
in fact, be s sample size such that
% 2
Po e Ry‘w &) > legeg
Thig is all that is required for validicy.
One may not accept the counter argument. In the present context

this would require that lack of it confidenc duras be emnloyed

fle
=]
IR
o]
K
O]



by default. A uniform asymptotic theory ig mot available for the

Lipearization and maximum likelihood familises of tests, DMorseovew, it

which has sufficient generality to be useful

difficulty is that many nonlinear regression models obtai
stantive considevations have singularviries over vegions of the parameler
space @ mnatural to the problem; see, e.g., [3, 8, 97.

Expected length, avea, or volume, according as to dimension of § ,

is 2 tyacitable

to compare confidence

criterion here, The criterion will be termed expected wvolume regardless

of dimension and is defined by

3 ~ 5 ,!'}?‘7 2
J n iR dm(8)4P{yi0 ,o 3
R ¥

#

Expected volume

n ol | t e k *:CI 2
= [ o g [l-o(y,8)Jdm(e)d2(y]e 0™
R t

whare m{p)} denotes Lebesque measurs on the pedimansional real

numbers, Reczll that @ 18 compact so ewmistence of the integral is

assured., @Given two approximate confidence procedures with the same
nominal {l-g) x 100% confidence level, the one with the smaller
expected volume is judged the better of the two, As Fratt [197 sho

by interchanging the order of integration,

. o . - N T - S,
Expected volume = I” . =y, 0) 1dE(yle o dm{s)
[ LS & S
R
nin
- | P rer AN e f1 1 EIE T
s Ploly,s) = 048 ,o TJdn{s) .



¢ (&) = Blp(v.8) = 0ls "7,

and is analgous to the operating charvacteristic curve of 3 test, The
essential differance between the coverage probabilitv fupction ¢ (6)

and the operating characteristic functien lies in the treatment of the

hypothesized value § and the true value of the pavameter 8 Fer

afa

the coverage functiom, § ig held fixed and 5 waries; the converse

e

¢ true for the operating characteristic funciion.

ing to the two families of tests @{(v,8) aod ¥{y,8) <¢an be effected
by comparing their coverage. functions. If it csn be shown that aw{e)
is amaller than c?(e} for all 8§ then the confidence procadure
corresponding to the family o{y,8) is the better of the two. TFailing
to show this, the integrals of the coverage functions over § must be
compared,

Some notation which is used throughout the discussion is set

forth here for convenient refevence.

Notation: Given the regression model

the obssrvations

]

(yt’}:t) {E 3“5 2} “® -‘{}‘} a

and the hypothesis

wln
¥

ot
=
o]
#
feas

Cha
T
Bty
=
b
B
0]
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the

Lf<xgsg}a £{X236)3 vews L{
Boy coas eﬁ)’ {n = 1)

' - 1

= [y=£(a) T [v=£(6)T = T,
the o ® p mabrix with Ly
where ©  ds the vow index

p =l ec

o minimizning

1
- ~ ] . - %
X 3671 inx 1),
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2

2
g a0y T
Ty =f= 807
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pical element [(B/fuy JF(x_.8)

and
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Distributions. Let p(i,}) denctzs the Pnisson density funciion

with mean ) . Let g(t;v,)) denote the non=central chiesquared
dengity function with v degrees freedom and noncentrality parameter
A as defined in [10, p. 747, Let G{t;v,n) be the corresponding
distribution function.

= F*(t;vgsvzgk} denote the noncentral Fe

distribution function with numerator degrees-freadom, Vo

Y1
denominatoy degrees-fraedom and noncentrality parameter ) as defined
in [10, p. 777. The central Fedistribution function with corresponding
degrees freedom is dencted by F(t;vl,vz) . The upper g percentage
cf the central Fedistribution is denoted by ﬁy(ul,vz) H Ey wiil

denote g}(p,nnp) throughout. The critical point of the likeliihood

ratio test is denoted by

4. THREE COMMON METHODS FOR FINDING CONFIDENCE REGIONS

The three methods considered are obtained from families of Lests

for the hypothesis of location

rha T
iy ¢

H: 5 =28 against Ar 8 #0p

4

. 2 . s .
regarding ¢ as a nuisance pavameter. The confidence regions
asgsoclated with these families would be identical 1f the response
function £(x,8) were linear in the parameters. Thusz, the problam

of deciding which to employ in an spplication arizes solely from the



L T
nonlinearity of the regression model,
If interest centers in some subvector + of the paramster §

partioned according to
o = (o'

then the requisite families of tests would be generated from the

hypothesis

H: v = 7 against A: 7 # 7

3
regarding p and ¢ as nuisance parvameters, Of the three methods,

the lack of fit procedure is affected the most substantially in the

shift to ghe general case, The details ave given in [5, Secs. 4 and

57.

2.1 Lack of Fit Method

1f the hypothesis H: ex = g is true then the components of the

nevector
e =y -~ £{8)
constitute a random sample from the normal distribution with mean
. 2 .o . ,
zaro and unknown variance ¢ . In principle, any test of the null

hypothesis

Hi: %t (e = 1, 2, veu, n) & r.8, from a n(O,azj

k3

is a test of H: g = ¢ againsc A: § # 6 . In practice, one is

interested in a test which is sensitive to departurss from H' due to



T

changes in locatiom of the form 5(%} = §€B) rather than a test which
is extremely seﬁsitive to, e.g., non~normality. A test which is
sensitive to what are, in the present context, irrelevant departures
from the null hypothesis HE' can have the undesirable property of
generating empty confidence regions with positive probability, even
ware the assumptions true. It would seem desirable to avoid confidance
procedures with this property 1f possible.

These are the essential ideas in the articles by Williams [237
and Halpexrin

127, Turner et al. 227 and Hartley [157 exploit the

same idea but do not necessarily guarantee by the method of construction
that their confidence regions cannot be empty with positive probability.
These citations are not exhaustive; applications of similar ideas can
be traced back further through the references in these articles.

The family of tests recommended by Halperin for finding an exact

fa

{1wey) x 100% confidence region for 6  is based on the Festatistic

R(9) = [[y=-£(8)1'Pe)[y=£(@) )/ pt/{Ty=£(8) T'QLa) [y=£(8) )/ (n=p)?

It may be computed using a linear regression program by vegressing
v=f{g) on F(g) with zero intercept; the numerator is the regression
mean square with p degreas freedom and the denominator is the error
mean square with n - p degrees freedom, The test rejects when

R{p) > Ey(p,nnp} 8o that the family of teszts defining the confidence

procedure is

@R(yﬁg}

0 R{gy = F .
o
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The probability that the procedure covers & 1s

Pl - .';\: - . “
e (8) = 1 - [, Gle/ (e ~1) P sk o 18 (3 Pk T0E

. .. ' 2\
Ag1 = §P(a3v(a)s(sY/ (o)

>
[
i

51 (6)Q(8)s (8 /(2 .

This exprassion 16

nopceniral F-distribution with noncentrality paramelers

hgz *

B

Assuming that the least squares estimate § is pot a boundary

i
£

i

point c¢f the parameter space @ , the test statistic R(g) takes

o the value zero at 8 - mote that v SSE(9) = =2F'(8)[y-£{8)7] . Con~-
saquently, the lack of fit confidence region will contain @ and be
nonempty.

The statistic R(g) also takes on the value zevo at local minima
and maximz of the sum of scuares function. Thus, in an application
it is possible that a lack of fit confidence region consists of a union
of disjoint subsets of @ . Williams [237 illustrates this situation
with an sxample. This feature may or may not be disconcerting Lo
staristicians but it is, in my experience, disconcerting to clients,

Tn many instances, an attribute of the response function £(x,8)
45 that there is a region A of the p-dimensional real numbers with

infinite volume (m{s

g

= &) such that &'(8)8(e) < & for all @ e A .

Consequently, Cgie} will be bounded away from zero on A and



wl 2w

,
[, cperdn(e) = o =/

-

In these cases, expectad volume is more a

characteristic of the volume of the parameter space @ than an

intrinsic property of the confidence procedure.

If the restrictions embodied in the convex compact set & are

natural to the situation, this is not s problem. It is then useful to

know that one confidence procedure has smaller expected volume than

another, On the other hand, if the bound on HSH implied in the

assumption that ® i8 compact is merely an avtifact of the regularity

condirions rather than intrinsic to the problem, expected wvolume may
P » ! 3

iose meaning as a basis for comparison.

2.2 Ilinearization Method

The least squares estimator is asymptotically mormally distri=
ymp ¥y :

.
i
buted with mean vactor o6 and a variance~covariance matrix estimated

consistently by 52% 3/

. This suggests the use of the statistic

S(8) = (8-0)"2"L(-8)/(ps?)

for testing H: g = g against Az § #6 . The tast

() > F@(p,n-p} 80

2,
s

rejects when
that the Ffamily of tests defining the asssociated
confidence procedurs is

wg(y:e} =

The term linearization test stems from the following obsas

~vation, which
is useful in computations, The test may be computad as the standard
F-test for the hypothes

is H: B = ¢ against A: B # 5 in the linear



wlfm
madal z = XB + e obtained by expanding £(x,8) in a first order
Taylor's series about the least squares estimate §
Z o=y - f(@} +»F{%j% , ardd X = F(%} . The least sguares estimate
itgself, and the statistic = may be computed using either Hartlev's
147 or Marquardt's [187 algorithm,

The probability that the procedure covers may be approximated
3 P PP

* R 2.
hg = (B =8)7C "8 -8)/ (2 .

The converage function may be computed using charts of the non-central
Fedistribution such as in [20, p. 438-4557 ,

Confidence regions obtained from the linearization family of tests
are nonempty and contain the least squares estimate,. Neglecting cases
where {g: @S(y,gj = (31  intersects the boundary of § , a linearization
confidence region is an ellipscid with center at @ and eigen vectors

R
of € as axes. Ino shori, a linearization confidence region has the

familiar features of confidence regioms customarily emploved in linear

regression analysis.
The expected volume of the linearizstion confidence procedurs, come

puted from the approximation, may be bounded indapsndently of the volume

of the parvameter space @ ag follows:

o



by

Thus, the lineavization procedure can not have an expected volume da-

pending primarily on the volume of @ as is possible with the lack of

it procedura, to the extent the approximation of the coverage
probability by <©_{8) is wvalid.
4

2.3 Likelihood Ratio Maethod

The likelihood raiio test for the hypothesis H: ¢ = g against

A: g # ¢ employs the statistic

T(g) = SSE(8)/SSE(D)

i
and rejects when T(8) » ¢ , The family of tests def

agssociated confidence region is

KR

1 T{e) > ¢

P,

0 (7567

W
O T{a)Y = ¢ .,

P ——

i

al
The denominator SS8E{g)

e

T{gy may be computbed usi

Hartley's [ 147 or Marquardc's [187 algorithm, as mentiomed previously.

The numerator S3E{(g) may be computed by using ¢ as a starting value

with either of these algorithms and limiting the npumber of itevations

o one,



] 5w
The probabilicv that the likelihood ratlo procedurs covers g
¢ 3

may be appreximated by [47

wha

. L o LE L2 L L2
c?{@} = ] = fz Gl /(e =1y+dc hTzfgc -1} ;ﬁ"p,hfgfﬁﬂ ~137]

it
i
¥
-
N
T
o
v
X
Fant
<
o
Sy
ey
a\
o

gy = & (BIR6(8)/ (207

ey
i3

Thig funclbion is partially tabulated in [47.
Confidence regions obtained using the likelihood vatio family of
tests are nonempty and contain the least squares estimate. The sum of

squares surface S3E(s) may bave local minima. When these minima are

3 o
below ¢ SBE(4) it is pos

ible rhat the likelibood ratic confidence
region will consist of a union of disjoint reglons, Note, however, that
the iikelihood ratio confidence region may include these local minima;
the lack of fit confidence rvegion must include them as well as include
local maxima and saddle points. One would expect that conflidence
regions consisting of disjoint unions will occur with less fregquency
in applications using the likelihood proceduve than using the lack of

fit procedurs.

@
£
[ 151
1%
ey
er
o
i

A Feature which the likelihood ratio preocodure shares

lack of fit procedure is that, for the same reasons, the integral

nite foo

e

¢ .(8)dm{g) may be ini

]
o
[
=
i3]
o
[
w
i
]
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o
&
-
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]
[
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«
T
e
o
3
T
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bafore, expected volume then bacomes more & characterlsti



- e
parameter space @ rChan an intrinsic property of the confidence pro=
cedure, to the extent the approximation of the ccverage probability by

!
c?(g} is vaiidi/,
3. FXAMPLES

The difficulty in attempting a general comparison of the three
confidence procedure is that several factors influence the outcomes:
the form of the respomse function f£(x,8) , the configuration of the

Ly

design points {xt: t=1, 2, vv., n} , the sample size n , the

. . 2 .
magnitude of the errowr variance ¢, and the actual location of the

ki

true parameter & . AL one extreme, these factors may interact such
that the regression model is so nearly like a wodel which is lineav
in the parameters that there ave no essentlal differences between the
three methods: confidence contours will be ellipscidal and nearly
coincident, coverage probabilities computed according to the asymptotic
approximations will be accurate and nearly equal, At the cther
extreme are regression models which are so nonlinear that confidence
contours can be expected to differ markedly among the three methods and
asymptotic approximations will be so inaccurate as to be useless.

Beale [27 has derived measures of nonlinearity which are designed

ave been examined

o

to reflect the influence of these faciors. Examples
by Guttman and Meeter [ 117 to assess the effectiveness of Beale's
measures as a measure of the coincidence of linearization and likelihood
ratio contours. They find that the measures achieve a fair degree of

5/ e C o s .
auccess™ , More so, if attention is restricted to the measures com=
puted from second order partial derivatives in & of the response

-~ . . . . e
fumection f{x,8) . Interestingly, Beale obtained the measure K {N
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in Gubtman and Meeter) in Section 2 of his article by studying the

coincidence of the lack of fiv and likelihood ratio contours in an

afla ala 3
Ei i

effort to approximsie P{¢T(y,9 o= O}e‘,@dj .

The concern here is with the sampling charvacteristics of the three
confidence procedures, 50 an interest in Beale's measures cenlers wore
in their ability to predict the accuracy of thes asymptotic approximations
of the previous section rather than as a measure of coincidence of con=

rours. This use is more in Line with Beale!

s intention. However, coin-
cidence of linearization and likelihood ratio contours and accuracy of
asvmptotic approximations in finlte samples arve not orthogonal
dimensions of statistical behavior. In the Addendum to their avticle,
Sprott and Kalbfleisch [217 discuss the relationship between coincidence
and accuracy and present an example where a tramsformation designed to
improve coincidence also improves accuracy. Thus, it 1s expected that
Guttman and Meeter's examples, which differ markedly in coincidence of
linearization and likelihood ratic contours will display differsuces
hoth inm contours of the coverage functions apd in accuracy of
approximation.

The two models chosen for reexamination are definmed in Table 13
the designations Th arnd ﬁ@ are as in CGuttmen and Mestar. The se
models differ with respect to design polnts and responss function:
variance and sample size are the same Iu both cases, Modal Ha is
the more ponlinear; Beale's nonlinearity measures &va
using anmalytic derivatives arve: ' N_ = 00171 aud ¥ = 00053 for
o and Ne = 87554 and ﬁ@ = 00333 for Ty -

he natural parameley space for thaese models 1

T

(4]
[e5]

achieve compactness, §, and §, must be boundad fyvom above and all



boundary points included,

—
gl
1
o
44

The coverage [unctions for these models sre evaluated over the
vegion 4 5 standard deviations of the least squaves estimstor from
ki3
& and shown ag Tables 2 and 3. Contours, obtained by a quadratic
interpoiation from these tables, are plottsd as ¥

impression of the relative size and location of the tabled regions

with respect to the coriginal scaling of the models may be had by

of the confidence raglong thom=

ves, corresponding to a rvealization of the ervors, ave plovted as
Figure 2.6 of Gutiman and Meeteor [117l; they look much the same as the
75% coverage contours of Figures A and B after allowing for the
differences in scaling.

There arve three interesting aspects of these computations. The
first comes as no surprise, for the nearly linear Model EQ the con=
tours of the coverage functions are nearly colncident while for the
relatively more nonlinear Model EB the depavtures ars faivly
substantial. The second is the near coincidence of the coverage
functions for the lack of fit and likelihood ratio procedures for both
models; they are not distinguishable within the tolsvances used in

%

the construction of Figures A and B.

is ths ipegquality
G f ¢ (g
T \@} = R(tﬁ)

which holds over the tabled region for both models. This indicates

re

that the Iikelihood ratio procedure is preferable to the lack of fit
procedure as it covers false values of o with equal oy sma

ability in all instances,



4
D« fix,8) « L .

it follows that
67¢818(6) < 12

over the set A = [g: U < 8.5 0 g 6o 93 = 622 ; hence, the integrals

ned

the axpected volume of the linearigation

with the axpected volume of the lack of

it or meximum likelihood procedure is of dubiocus valus when this situstion
obtains; the linearisation procedurs mav, in principle, be shown to

be the best by taking the wvolume of ©® suitable large.

5 gqualification, the expected volume

w'

Déspite th c{g)dm{g)

Jo

over the region
o ={e: o, - L.4] < 50, [8, = 4] = 50,]

has intultive appeal as a summary measure of per

rel@vant subset of the pavametey spsce, his measure i3 the unwelghted

s values gf & owvar the

ﬁ\..
Bt
\”“

average of the probability of covering f:
rectangle @ cepnteved at § . Lis dnterpretation i anslagous to

that of average power of a test with respect o 2 uniform, informatlve

iy

srior, and it mav be used as a numeric aild o the interpretation ©
Figures & and B. Ixpected

cedures sre gilven in Tab

gration from the entriss of Tablss 2 to tha ovigloal



ing, nol stands’

seal
A sean from the table, thave

in expectad wolume among the three

likelihood ratio, and lack of fit with
likelihood ratio and lack of

to discern visually fyom
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b,

Expected Volume of the Lack of Fit, Linearization, and Likelihood Ratio

Confidence Procedures

Model
Expectad Volume ﬂg ﬁS
Lack of Pit Procedure 01857 L0T7287
linearization Procedure 01847 06838
Likelihood Ratio Procedure 01851 07132
Parameter Space OTHLT 69235
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APTENDIX

NUMERECAL METHODS EMPLOYED

The computations were performed on an 1BM 3707168, University
of Chicago, and on IBM 370/165, Triangle Universities Computation
Center, using double precision throughout; the exceptions were the use
of two single precision routines, CDIR [167 and GGNOF [177.

The computations for Tables 2 and 3 were performed using the
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xpansion [ 10, p. 767
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The Poisson weights were computed using DLGAM [167 znd the integral
was evaluated using CDTR [167 and DQLL6 [167. Similar methods were
uzed to compute cR(g) and cs(g} .

Simpson's rule, applied to the entries of Tablaes 2 and 3 (before
rounding), was used to obtain the integrals shown in Table 4, The
necessary adjustment to accomodate the boundary 91 z g, was by means
of a trapazoid rule.

x 2 2

The probabilities P[@S(y,ej = Qi% ,@&] and E{mT(y,@} & ﬂlé 2]
of Table 5 were computed by 4000 Monte Carlo trials using the control
variate method of variance reduction [13, p. 59-607. The control

variate was

gy = [(Fle + 6 = g)'C{F'e + 5 = 8)/]
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TefGe/ (a=p)]
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with corresponding test funciion
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The pseudo-random number generator employed was GGHOF [177. The

41 from a start of §  wag used to

Fal
compute @ for each Monte~Carlo trial; ewxcepting 14 instances when

the algorithm failed to couverge for the computations related to
Model T, . For these 14 cases,

Y
g was computed by grid seavch over

the {@1392} pairs of Table 3.



