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Some notatibn which is used throughout is set forth here for convenient reference .

Notation:

(nxl)

(nxl) ,

o •• , h(x ,w)J'n (nxl) ,

(nxl) ,

•

G(Y) = the n by u matrix with typical element (e/bY j ) g(xt , y) where t is

the row index,

z = the n by w matrix with rows ,

*g = g('¥ ) ,

*h = h(w )

*G = G(Y ) ,

(nxn) ,

(nxn) ,

\.1n (A) = the proportion of (xt , Zt) in A for t S n

The following regularity conditions govern throughout.

Assumptions: The seCluence of inputs {(xt ,Zt))nt=l are chosen from X x Z , where
X and Z are compact, such that the measure defined on the Borel subsets of X x Z. n

• .rbY

converges weakly to a measure defined on the Borel subsets of X x Z; see [2J. The
setsY and t:. are compact. The functions g(x,Y), (e/eyi ) g(x,Y), and
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notation, etc. may be resolved by to [4J.

·This tech."lical note serves as an appendix to (4). .Ambiquities as to objectives,•

•

testing

against

using the likelihood ratio test, assuming normal errors with variance unknown. The

true model is, hm1ever,

A: Yt = g(xt , '1') + 'I' h(Xt , w) + et
An asymptotic the power the test against A, not A#, is required.

In the above expressions, Yt is univariate, xt is k-dimensional, Zt is w-

dimensional, and the index t = 1,2, ••• , n. The Y is u-dimensional, 'l' is

univariate, w is v-dimensional, and 6 is w-dimensional. The asterisk is used in

* * * •connection with parameters - '1' , 'I' , and w - to emphasize that it is the true but .

·unknown value which is meant. The omission the. asterisk does not necessarily

denote the contrary. The parameter '1' is contained in a compact set For

convenience, 6 is constrained to lie in a cOmpact set but this assumption may be

eliminated desired; see [lJ.

The test statistic, is

r! = 'fl(rll
where: y minimizes 'f »)2, and 7! = (lin) ;':l[Yt -g(xt , y)J2;

fl) minimizes t':l[yt-g(xt ) 'f) - Zt'oJ2 , and (rl)# = (lin)

One rejects when is larger.than

*c =1 + wF I(n-u-w)rx
where F denotes the upper rx.100 percentage point of an F random variable with ·w

rx
numerator degrees freedom and n-u-w denominator degrees freedom.
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Proof:
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4IIt g(x, are continuous in (x, on I The function hex, w*) is
*continuous on I. The true value is contained in an open set which is, in turn,

contained in ; 6 contains an open neigliliorhood of the zero vector. If g(x,

* *= g(x, ) except on a set of \.L measure zero, it is assumed that = likewise,

* *g(x, + z'6 = g(x, ) a.e. implies = 1 and 0 = 0 .
I

is non-singular. (The limit exists by Lemma 1 of [3).).

to a finite limit. The errors (et ) are independently and normally distributed each

with mean zero and unknown var.iance i
Lemma 1: The random variables r;; and 1# converge almost surely to The

random variable 0# converges almost surely to the zero vector. The random variables

cf2 and (ell converge almost surely to r:l .
* *Denote T by T to emphasize the assumed variation with n •n

Consider the sequence of random variables

= e'e/n + 2e'[g + Th - g(1)J/n + [g + + Th-g(1)J/n •

Note that yminimizes Qn(1, 1:) for each realization of e • Qn(1, T) converges

almost surely to

2 * * 2= a + JCg(x, ) + Th(x, til ) - g(x, 1)J d\.L(x, z)

*Qn(1, Tn) corresponding to this realization.

uniformly in T) over '¥ x [-i, iJ by the Strong Law of Large Numbers and Lemma 1

of [3J, Parts 1 and 2. Consider a realization of the errors [etl;=l which does not

belong to the exceptional set. Let 0f 1 be the sequence of points minimizing
n

Since is compact, there is at least
- f"'tJ -one limit point 1 and at least one subsequence } such that lim = 1 • Asn nm m

a direct consequence of the uniform convergence of the continuous functions Q (1, ,.)n

to Q (1, ,.), we have
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* )= lim Q , 'l'nnm m m

('J:'* * )S lim Q , "I'nnm m
- * 0)= Q('J:' ,

2= a

This implies
* * 2S[g(x, 'J:' ) + '1'h(x, ..(1)) - g(x, 'J:') J d1J.(x, z) = 0

- *which implies 'J:' = 'J:' . by assumption.

*point y J moreover, this implies

Thus, the (¥ ) has one limitn

* - * 2lim a = lim Q(y, '1' ) = Q(y , 0) = a
:rHCIO n J:HCO n n

Next, consider the of random variables
2Qn('J:',6,'l') = (l/n)\le + g + '1'h - g('J:') - Z611 .

Note that (y#,6#) minimizes Q (y,6,'1'*) for each realization of e. Qn(y,O,'1') converges. n n
almost surely to

uniformly in (y,5,'1') x x as above. The remainder of the proof is

entirely analagous to the above with (Y#,6#) replacing throughout.Q

*Lemma 2: The random vector [G:Z]'(e + '1' h) converges in distribution to

a u + w - variate normal.

Proof: By Lemma 3.5 of [1), (l/JE) converges in disttibution to a

u + w - variate normal. By Part 1 of Lemma 1 of [3 J,

= (limJt) 'h]. 0
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Theorem 1. The random variable (02 )# be characterized as

2 # * *(0) :::;: (e + ,. h) 1QGz(e + ,. h)/n + an

where n a converges in probability to zero.n

The random variable of may be characterized as

where n b converges in probability to zero.n .

Froof: Recall that ,.* varies with n. By Lemma 1, ("f#,Fl) will almost surely

be contained in an open subset x 8 containing ("f*,O), allowing the use of Taylor's

expansions in the proof and causing ("f#,O#) to eventually become a stationary point of

We will now obtain intermediate results based on expansions which will

be used later in the proof'. By theorem,

where D is the n by u matrix with' typical row

l( # *)h 2 ( ;)"2 "f -"f \i'y g xt ' 1:

and "f is on the line segment joining "f# to "f*

Using Lemma 1 and Lemma 1 of' [3J, one can show that (lin) G/("f#)D, (1/n)G.J'D,

(l/n)z/D, and (lin) DID converge almost S:UJrely, Again'15yTaylbr IS=,
theorem,

[G / ('!'#) - G/J(e + ,.*h) = E("f#-"f*)

where E is the u by u matrix with typical element

n 2 - * *e .. = t (b [et+ ,. h(xt,w)J
J.J t:::;:l J J. .

*Using Lemma 1 of [3J and the assumed convergence of '1'" to zero, one can show thate (lin) E converges almost surely to the zero matrix.
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We will obtain the probability order of '¥# and fl. As mentioned earlier, for

almost every realization of the errors £et 1, (..l, rl) is eventually a stationary

point of (,.J;;72) Q (,¥, 5, t) so that the random vectorn

(-In/2) 'V'¥5Qn(vl, 5#, t)
= Z]'(y-g('¥#)- Z 5#)

converges almost to the zero vector. Substituting the expansions of the

previous paragraph, we have that

imply that the matrix in braces converges almost surely to a non-singular matrix.

*Lemma 2 implies that (lj,Jii)[G;Z]'(e + 'i h) converges in distribution to a u + w -

variate normal. These facts allow the conclusion that

converges in probability to zero and that

are bounded in probability.

The sum of squares

\ly - g('¥#) - Z 5# 112 = II e + g + th - g ('¥#) - Z 5# 11
2

= \.1QGZ (e + t h) + P (e + t h) - G('¥#- '¥*) - Z rl- D( '¥#_ '¥*)112

* 2 *, # *= UQ,az (e + 'i h)l\ - 2(e + 'i h) Qaz D(,¥ - '¥ )

+ II P (e + ,.*h) - G('¥#- '¥*) - Z 5#- D( '¥#_ '¥*) 11 2 •GZ

•
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The cross product term may be written as
* # *(e + 't' h) QGZD ('i' - 'i' )

== ((lin) t n [et + th(Xt , w"*)J ,,2g(xt ,n tel

- [(l/Ji)(e + 't'*h)/[G:ZJl wn

Both terms converge almost surely to zero by Lemmas 1 and 2, Lemma 1 of [3J, and our

previous results. (Some care must be taken with the argument concerning the first

term; see [1, p. l4a-14b] for details.) By the triangle inequality

\IPGZ (e + 't'*h) - G('i'#- If* ) - Z fl- D(If#- If*) \I

S \I [G; Z](([G;Z]/[G;Z])-l[G:Z]/(e + th)

+ \I D(IIj#- 1Ij*) 1\:
1.

==

e The two terms on the right converge almost surely to zero by our previous results.

The proof for is analogous and, therefore, omitted. 0
Theorem 2. The statistic T# may be characterized as T# =X + c wheren

* * * -1(-X = (e + 't' h) IQG(e + 't' h)I (e + 't' h) I QGZ (e + 't' h)

and n c converges in probability to zero.n

*The probability p(X > c ) is given by the doubly non-central F distribution as

defined in [5; p.75] with: numerator degrees freedom w, and non-centrality parameter

Xl = ('t'*)2 h/(PGZ- PG)h/(2fi)

and denominator degrees freedom n - u - w, and non-centrality parameter
.* 2 2

== ('t') h' QGZh/ (2a ).

Proof: The proof of Lemma 1 of [2 J may be used almost word for word to prove that
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where n d converges in probability to zero. Thus, = X + c wheren n

the term b is as defined in Theorem 1. By Lemma 1 and Theorem 1, each term of ncn n
converges in probability to zero.

*Set z = (l/o)e, Y = T h, and R = PGZ - PG •

The random variables zl' z2' ••• , zn are independent normal random variables each

with mean zero and variance one. Thus, the random variable (z + Y)'R(z + y) is a

noncentral chi-squared with w degrees freedom and noncentrality parameter

Similarly, (z + Y)'Qaz(z + y) is a noncentral chi-squared random variable with n - u - w

degrees freedom and noncentrality parameter

These two random variables are independent because R QGZ

Now,

*p(X :> c )

e
= 0 (see [Graybill 5, p.79ff]).

* * / * )' * /= p[(e + Th)'QG(e + T h) (e + .,. h QGZ(e + T h) > 1 + wFCt' (n-u-w)]

= pC (z + y)' (QG- QGZ)( z + Y) / (z + y)'QGZ (z + Y) :> w FCt'/ (n-u-w ) ]

= P[[(z +y)'R(z + y)/w]/[(z + y)'QGZ(z + y)/(n-u-w)] > FCt'} ·0

Alternative expressions for the parameters are useful in the

context of an attempt to maximize hl and minimize h2 via choice of Z.

hl = (T*)2h 'QGZ(Z'QGZ)-lZ'QG h/(202 )

h2 = (/)2h 'QGh/(2cf) - Al

These expressions may be verified as follows. The vectors

b =
a =

(Z 'QGZ) 'QGh

(G'G)-lG'(h - Zb)
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solve the equations

fG'G Q'Zl
LZ'G Z'ZJ

as may be verified by substitution. Thus,

h'p h = [h'G h'z1GZ . fG'G
I:'G

G'Zl-l fG'hl

Z'zJ 'hl
= [h'G h'Z] r(G'GflG' (h - zb0

(Z 'Q Z) -lZ 'Q h .I
_ G G J

= h'PG(h - Zb) + h'Z(Z'QGZ)-lz'QGh

= h'PQh - h'PGZ(Z'QaZ)-lZ'QGh + h'Z(Z'QGZ)-lz'QGh

e The formulas for hl and a:t'e obtained by substitution of this expression for

h'PGZh in the formulas given in Theorem 2.

As mentioned in [4J, one may use the statistic S# instead of T# to test H

against A. For convenience, the definition of S# is repeated here. Let

(s2l = t n [Yt - g(xt , '1#) - 5#f/(n-u-w) •
tel

Evaluate the matrix G('¥) at '1 = y# and put

Let c:2 be the matrix formed by deleting the first u rows and columns of C; then
(6#) '(C# )-16#/Ws# _ 22

- (s2/#

H is rejected when S# exceeds the upper • 100 percentage point F of an F random

variable with w numerator degrees freedom and n-u-w denominator degrees freedom.
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The tests based on S# and T# are asymptoticall;y equivalent in the sense of the

following theorem.

'l'he statistic s# may be characterized as s# !':: Y -I- dn where* oX-(e -I- '1' h)' (pGZ - PG) (e + '1' h) /w
Y =: * . *

(e + '1' h) 'QGz(e + '1' h)/(n-u-w)

*and d converges in probability to zero. The probabilities p(Y > F ) and p(X > c )n
are equal where X is as in Theorem 2.

Eoo,f. On page as an intermediate step in the proof of Theorem 1, a characterize-
r# *\

tion of Jii l'f ",#'f I was obtained. Rearranging terms, we have
,5 )

5# I:': (C21G' -I- C22Z')(e + /h) -I- Zn

where

has been partitioned as

c =

and ,In z converges in probability to zero. Also, recall that Jii ri is bounded inn
probability as is ,jnW2 •

On page 7, as an intermed.iate step in the proof of Theorem 2, a characterization

of (rll was obtained. From this , it follows that

2 # * -*1/(8 ) = (n-u-w)/(e + '1' h) 'QGz(e + '1' h) + wn

where n w converges in probability to zero.n
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The random variable s# may be written

The second term converges in probability to zero because: Jii 6# is bounded in
probability, (s2)# converges almost surely to 02 , and -

converges almost surely to the zero matrix by Part 3 of Lemma 1 of [3 J.
Denote this second term by u . Nown

(6#) rl = W2 + 2(,JnW2) '[ zn)

+ (In zn) '[ (l/n) zn)

where the latter two terms converge in probability to zero. Denote these latter

terms by v •n

We have, now, that

u +n
< 2 #

vil![w(s ) J

= W2/[w(e + th) I QGZ(e + th)/(n-u-w)]

+ (n wn ) (l/n) w2/w" + un + vn!Cw(s
2l J.

The remainder term d of the theorem to be proved the last three terms ofn
this expression; and, converges in probability to zero. It remains to show that

Yis the first,term.--O£ this expression.



Now,
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( )-1 -1using the fact that G'G =Cll - C12 C22 C21 •

as req,uired. 0

It follows tha.t



References

[lJ Gallant, A. Ronald., "Inference for Nonlinear Models," Institute of statistics
'"

Mimeograph Series, No. 875 (revised), Raleigh: North Carolina State University,

1975.

[3J , "Testing a Subset of the Parameters of a Nonlinear Regression-------
Model," Journal of the American Statistical Association, 70 (December 19'75),

927-932.

[4] , "Testing a Nonlinear Regression Specificationi A Nonregular

Case," Institute of Statistics Mimeograph Series, No. 1017, Raleigh:

North Carolina State University, 1975.

[5J Graybill, Franklin A. An Introduction to Linear Statistical Models, Vol. I,

New York: McGraw-Hill Book Co., 1961•

..


