ON THE ASYMPTOTIC POWER OF THE LACK OF FIT TEST IN NONLINEAR REGRESSION

Ъy

A. Ronald Gallant

Institute of Statistics Mimeo Series No. 1083 Raleigh - August 1976 Some notation which is used throughout is set forth here for convenient reference.

$$\begin{array}{ll} \underline{\mathrm{Notation}}:\\ \mathbf{y} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)' & (\mathrm{nxl}),\\ g(\mathbf{y}) = [g(\mathbf{x}_1, \mathbf{y}), g(\mathbf{x}_2, \mathbf{y}), \dots, g(\mathbf{x}_n, \mathbf{y})]' & (\mathrm{nxl}),\\ \mathbf{h}(\mathbf{w}) = [\mathbf{h}(\mathbf{x}_1, \mathbf{w}), \dots, \mathbf{h}(\mathbf{x}_n, \mathbf{w})]' & (\mathrm{nxl}),\\ \mathbf{e} = (\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n) & (\mathrm{nxl}),\\ G(\mathbf{y}) = \mathrm{the } \mathbf{n} \mathrm{ \ by \ u} \mathrm{ \ matrix \ with \ typical \ element} \ (\mathbf{b}/\mathbf{b}\mathbf{y}_i) \ g(\mathbf{x}_i, \mathbf{y}) \end{array}$$

$$\begin{split} G(\Psi) &= \text{ the } n \text{ by } u \text{ matrix with typical element } (\delta/\delta\Psi_j) \ g(x_t, \Psi) \text{ where } t \text{ is} \\ & \text{ the row index,} \\ Z &= \text{ the } n \text{ by } w \text{ matrix with rows } z_t', \\ g &= g(\Psi^*) , \end{split}$$

(nxn),

(nxn),

$$h = h(\omega^{*}) ,$$

$$G = G(\psi^{*}) ,$$

$$P_{G} = G(G'G)^{-1}G$$

P_{GZ}= [G:Z]{[G:Z]'[G:Z]}⁻¹[G:Z]

$$Q_G = I - P_G$$
,

 $Q_{GZ} = I - P_{GZ}$.

The following regularity conditions govern throughout.

<u>Assumptions</u>: The sequence of inputs $\{(x_t, z_t)\}_{t=1}^n$ are chosen from $l \ge Z$, where l and Z are compact, such that the measure μ_n defined on the Borel subsets of $l \ge Z$.

 $\mu_n(A) =$ the proportion of (x_t, z_t) in A for $t \le n$

converges weakly to a measure μ defined on the Borel subsets of $\chi \ge 2$; see [2]. The sets Ψ and Δ are compact. The functions $g(x, \Psi)$, $(\partial/\partial \Psi_i) g(x, \Psi)$, and

This technical note serves as an appendix to [4]. Ambiguities as to objectives, iefinitions, notation, etc. may be resolved by reference to [4].

Consider testing

H:
$$y_t = g(x_t, \Psi) + e_t$$

against

$$A^{\text{#}} \quad y_t = g(x_t, \Psi) + z'_t \delta + e_t$$

using the likelihood ratio test, assuming normal errors with variance unknown. The true model is, however,

A:
$$y_t = g(x_t, \Psi) + \tau h(x_t, \omega) + e_t$$

An asymptotic approximation of the power of the test against A, not $A^{\#}$, is required.

In the above expressions, y_t is univariate, x_t is k-dimensional, z_t is wdimensional, and the index t = 1, 2, ..., n. The parameter Ψ is u-dimensional, τ is univariate, ω is v-dimensional, and δ is ω -dimensional. The asterisk is used in connection with parameters $-\Psi^*$, τ^* , and ω^* - to emphasize that it is the true but unknown value which is meant. The omission of the asterisk does not necessarily denote the contrary. The parameter Ψ is contained in a compact set Ψ . For convenience, δ is constrained to lie in a compact set Δ but this assumption may be eliminated if desired; see [1].

The test statistic, itself, is

 $\mathbf{T}^{\#} = \tilde{\sigma}^2 / (\sigma^2)^{\#}$

where: $\widetilde{\Psi}$ minimizes $\Sigma_{t=1}^{n} [y_{t}-g(x_{t}, \Psi)]^{2}$, and $\widetilde{\sigma}^{2} = (1/n) \Sigma_{t=1}^{n} [y_{t}-g(x_{t}, \widetilde{\Psi})]^{2}$; $(\Psi^{\#}, \delta^{\#})$ minimizes $\Sigma_{t=1}^{n} [y_{t}-g(x_{t}, \Psi) - z_{t}'\delta]^{2}$, and $(\sigma^{2})^{\#} = (1/n) \Sigma_{t=1}^{n} [y_{t}-g(x_{t}, \Psi^{\#}) - z_{t}'\delta^{\#}]^{2}$ One rejects when $T^{\#}$ is larger than

 $c^* = 1 + w F_{o}/(n-u-w)$

where F denotes the upper α .100 percentage point of an F random variable with w α numerator degrees freedom and n-u-w denominator degrees freedom.

 $(\delta^2/\delta \Psi_i \delta \Psi_j) g(x, \Psi)$ are continuous in (x, Ψ) on $\chi \times \Psi$. The function $h(x, \omega^*)$ is continuous on χ . The true value Ψ^* is contained in an open set which is, in turn, contained in Ψ ; Δ contains an open neighborhood of the zero vector. If $g(x, \Psi)$ = $g(x, \Psi^*)$ except on a set of μ measure zero, it is assumed that $\Psi = \Psi^*$; likewise, $g(x, \Psi) + z'\delta = g(x, \Psi^*)$ a.e. implies $\Psi = \Psi^*$ and $\delta = 0$. The matrix $\lim_{n\to\infty} [G;Z]'[G;Z]$ is non-singular. (The limit exists by Lemma 1 of [3].). As n increases, $\sqrt{n} \tau^*$ tends to a finite limit. The errors $\{e_t\}$ are independently and normally distributed each with mean zero and unknown variance σ^2 .

Lemma 1: The random variables $\tilde{\Psi}$ and $\psi^{\#}$ converge almost surely to ψ^{*} . The random variable $\delta^{\#}$ converges almost surely to the zero vector. The random variables $\tilde{\sigma}^{2}$ and $(\sigma^{2})^{\#}$ converge almost surely to σ^{2} .

<u>Proof</u>: Denote τ by τ_n^* to emphasize the assumed variation with n . Consider the sequence of random variables

 $Q_n(\Psi, \tau) = (1/n) \| e + g + \tau h - g(\Psi) \|^2$

 $= e'e/n + 2e'[g + \tau h - g(\Psi)]/n + [g + \tau h - g(\Psi)]'[g + \tau h - g(\Psi)]/n .$ Note that $\widetilde{\Psi}$ minimizes $Q_n(\Psi, \tau_n^*)$ for each realization of e . $Q_n(\Psi, \tau)$ converges almost surely to

$$\overline{Q}(\Psi, \tau) = \sigma^2 + \int [g(x, \Psi^*) + \tau h(x, \omega^*) - g(x, \Psi)]^2 d\mu(x, z)$$

uniformly in (Ψ, τ) over $\Psi \propto [-\frac{1}{2}, \frac{1}{2}]$ by the Strong Law of Large Numbers and Lemma 1 of [3], Parts 1 and 2. Consider a realization of the errors $\{e_t\}_{t=1}^{\infty}$ which does not belong to the exceptional set. Let $\{\widetilde{\Psi}_n\}$ be the sequence of points minimizing $Q_n(\Psi, \tau_n^*)$ corresponding to this realization. Since Ψ is compact, there is at least one limit point $\overline{\Psi}$ and at least one subsequence $\{\widetilde{\Psi}_n\}$ such that $\lim_{m\to\infty} \widetilde{\Psi}_{n_m} = \overline{\Psi}$. As a direct consequence of the uniform convergence of the continuous functions $Q_n(\Psi, \tau)$ to \overline{Q} (Ψ, τ) , we have

$$\sigma^{2} \leq \overline{Q}(\overline{\Psi}, 0)$$

$$= \lim_{m \to \infty} Q_{n_{m}} (\widetilde{\Psi}_{n_{m}}, \tau_{n_{m}}^{*})$$

$$\leq \lim_{m \to \infty} Q_{n_{m}} (\Psi^{*}, \tau_{n_{m}}^{*})$$

$$= \overline{Q}(\Psi^{*}, 0)$$

$$= \sigma^{2} \cdot \cdot$$

This implies

$$\int \left[g(x, \Psi^*) + \tau h(x, \omega^*) - g(x, \Psi)\right]^2 d\mu(x, z) = 0$$

which implies $\overline{\Psi} = \Psi^*$ by assumption. Thus, the sequence $\{\widetilde{\Psi}_n\}$ has only one limit point Ψ^* ; moreover, this implies

4

$$\lim_{n\to\infty} \widetilde{\sigma}_n^2 = \lim_{n\to\infty} Q(\widetilde{\Psi}_n, \tau_n^*) = \overline{Q}(\Psi^*, 0) = \sigma^2$$

Next, consider the sequence of random variables

 $\begin{aligned} & \mathbb{Q}_{n}(\Psi,\delta,\tau) = (1/n) ||e + g + \tau h - g(\Psi) - Z\delta||^{2} \\ & \text{Note that } (\Psi^{\#},\delta^{\#}) \text{ minimizes } \mathbb{Q}_{n}(\Psi,\delta,\tau_{n}^{*}) \text{ for each realization of e. } \mathbb{Q}_{n}(\Psi,\delta,\tau) \text{ converges almost surely to} \end{aligned}$

$$\overline{Q}(\Psi,\delta,\tau) = \sigma^2 + \int [g(x,\Psi^*) + \tau h(x,W^*) - g(x,\Psi) - z'\delta]^2 d\mu(x,z)$$

uniformly in (Ψ, δ, τ) over $\Psi \times \Delta \times [-\frac{1}{2}, \frac{1}{2}]$ as above. The remainder of the proof is entirely analagous to the above with $(\Psi^{\#}, \delta^{\#})$ replacing Ψ throughout.

Lemma 2: The random vector $(1/\sqrt{n})$ [GZ]'(e + τ^* h) converges in distribution to a u + w - variate normal.

<u>Proof</u>: By Lemma 3.5 of [1], $(1/\sqrt{n})$ [G!Z]'e converges in distribution to a u + w - variate normal. By Part 1 of Lemma 1 of [3],

$$\lim_{n \to \infty} (1/\sqrt{n}) [G;Z]'(\tau^*h)$$

= $(\lim_{n \to \infty} \sqrt{n\tau^*}) [\lim_{n \to \infty} (1/n)[G;Z]'h].$

<u>Theorem 1</u>. The random variable $(\sigma^2)^{\#}$ may be characterized as

$$(\sigma^2)^{\#} = (e + \tau^* h)' Q_{GZ}(e + \tau^* h)/n + a_n$$

where n a converges in probability to zero.

The random variable $\widetilde{\sigma}^2$ may be characterized as

$$\tilde{\sigma}^2 = (e + \tau^* h)' Q_Z(e + \tau^* h)/n + b_n$$

where n b converges in probability to zero.

<u>Proof</u>: Recall that τ^* varies with n. By Lemma 1, $(\Psi^{\#}, \delta^{\#})$ will almost surely be contained in an open subset of $\Psi \propto \Delta$ containing $(\Psi^*, 0)$, allowing the use of Taylor's expansions in the proof and causing $(\Psi^{\#}, \delta^{\#})$ to eventually become a stationary point of

$$Q_n(\Psi, \delta, \tau^*) = (1/n) || y-g(\Psi) - Z\delta ||^2$$

We will now obtain intermediate results based on Taylor's expansions which will be used later in the proof. By Taylor's theorem,

$$g(\psi^{\#}) + Z\delta^{\#} = g + G(\psi^{\#}-\psi^{*}) + Z\delta^{\#} + D(\psi^{\#}-\psi^{*})$$

where D is the n by u matrix with typical row

$$\frac{1}{2}(\boldsymbol{\psi}^{\#}\boldsymbol{-}\boldsymbol{\psi}^{*})^{\prime}\nabla_{\boldsymbol{\psi}}^{2} g(\boldsymbol{x}_{t}, \, \boldsymbol{\overline{\psi}})$$

and $\overline{\Psi}$ is on the line segment joining $\psi^{\#}$ to ψ^{*} .

Using Lemma 1 and Lemma 1 of [3], one can show that (1/n) $G'(\psi^{\#})D$, (1/n)G'D,

(1/n)Z'D, and (1/n) D'D converge almost surely to the zero matrix. Again by Taylor's and theorem,

$$[G'(\Psi^{\#}) - G'](e + {\tau}^{*}h) = E(\Psi^{\#} - \Psi^{*})$$

where E is the u by u matrix with typical element

$$\mathbf{e}_{ij} = \sum_{t=1}^{n} (\delta^2 / \delta \Psi_j \delta \Psi_i) g(\mathbf{x}_t, \overline{\Psi}) \left[\mathbf{e}_t^+ \tau^* \mathbf{h}(\mathbf{x}_t, \overline{\psi}) \right]$$

Using Lemma 1 of [3] and the assumed convergence of τ^* to zero, one can show that (1/n) E converges almost surely to the zero matrix.

5

We will obtain the probability order of $\psi^{\#}$ and $\delta^{\#}$. As mentioned earlier, for almost every realization of the errors $\{e_t\}$, $(\psi^{\#}, \delta^{\#})$ is eventually a stationary point of $(-\sqrt{n/2}) Q_n(\psi, \delta, \tau^*)$ so that the random vector

$$(-\sqrt{n/2}) \nabla_{\Psi \delta} Q_n(\Psi^{\#}, \delta^{\#}, \tau^*)$$

= $(1/\sqrt{n})[G(\Psi^{\#}); Z]'(y-g(\Psi^{\#})- Z \delta^{\#})$

converges almost surely to the zero vector. Substituting the expansions of the previous paragraph, we have that

$$(1/\sqrt{n}) [G;Z]'(e + \tau^{*}h) - \{(1/n) [G(\psi^{\#});Z]'[G + D;Z] + (1/n) \begin{bmatrix} e & 0 \\ 0 & 0 \end{bmatrix} \sqrt{n} \begin{bmatrix} \psi^{\#} - \psi^{*} \\ \delta^{\#} \end{bmatrix}$$

converges almost surely to the zero vector.Lemma 1 of [3] and our previous results imply that the matrix in braces converges almost surely to a non-singular matrix. Lemma 2 implies that $(1/\sqrt{n})[G:Z]'(e + \tau^*h)$ converges in distribution to a u + w - variate normal. These facts allow the conclusion that

$$u_{n} = \sqrt{n} \left\{ \begin{bmatrix} \Psi^{\#} - \Psi^{*} \\ \delta^{\#} \end{bmatrix} - ([G;Z]'[G;Z])^{-1}[G;Z]'(e + \tau^{*}h) \right\}$$

converges in probability to zero and that

$$v_{n} = \sqrt{n} \left[\frac{\psi^{\#} - \psi^{*}}{\delta^{\#}} \right]$$
$$w_{n} = \sqrt{n} (\psi^{\#} - \psi^{*})$$

are bounded in probability.

The sum of squares

$$\begin{split} \|y - g(\psi^{\#}) - Z \,\delta^{\#} \|^{2} &= \|e + g + \tau^{*}h - g(\psi^{\#}) - Z \,\delta^{\#} \|^{2} \\ &= \|Q_{GZ}(e + \tau^{*}h) + P_{GZ}(e + \tau^{*}h) - G(\psi^{\#} - \psi^{*}) - Z \,\delta^{\#} - D(\psi^{\#} - \psi^{*})\|^{2} \\ &= \|Q_{GZ}(e + \tau^{*}h)\|^{2} - 2(e + \tau^{*}h)'Q_{GZ} D(\psi^{\#} - \psi^{*}) \\ &+ \|P_{-}(e + \tau^{*}h) - G(\psi^{\#} - \psi^{*}) - Z \,\delta^{\#} - D(\psi^{\#} - \psi^{*})\|^{2} . \end{split}$$

The cross product term may be written as

$$(e + \tau^{*}h) Q_{GZ} D(\Psi^{\#} - \Psi^{*})$$

$$= \frac{1}{2} w_{n} \{ (1/n) \sum_{t=1}^{n} [e_{t} + \tau^{*}h(x_{t}, w^{*})] \nabla^{2}g(x_{t}, \overline{\Psi}) \} w_{n}$$

$$- \{ (1/\sqrt{n})(e + \tau^{*}h)'[GZ] \} \{ (1/n)[GZ]'[GZ] \}^{-1} \{ (1/n)[GZ]'D \} w_{n}$$

Both terms converge almost surely to zero by Lemmas 1 and 2, Lemma 1 of [3], and our previous results. (Some care must be taken with the argument concerning the first term; see [1, p. 14a-14b] for details.) By the triangle inequality

$$\begin{split} |P_{GZ}(e + \tau^* h) - G(\Psi^{\#} - \Psi^*) - Z \delta^{\#} - D(\Psi^{\#} - \Psi^*) || \\ &\leq || [G; Z] \{ ([G; Z]'[G; Z])^{-1} [G; Z]'(e + \tau^* h) - \left[\Psi^{\#} - \Psi^* \right] \} || \\ &+ || D(\Psi^{\#} - \Psi^*) ||^{-1} \\ &= (u_n' \{ (1/n) [G; Z]'[G; Z] \} u_n)^{\frac{1}{2}} + (w_n' \{ (1/n) D'D \} w_n)^{\frac{1}{2}} . \end{split}$$

The two terms on the right converge almost surely to zero by our previous results. The proof for σ^2 is analogous and, therefore, omitted. [] <u>Theorem 2</u>. The statistic $T^{\#}$ may be characterized as $T^{\#} = X + c_n$ where $X = (e + \tau^*h)'Q_G(e + \tau^*h)/(e + \tau^*h)'Q_{GZ}(e + \tau^*h)$

and n c_n converges in probability to zero.

The probability $P(X > c^*)$ is given by the doubly non-central F distribution as defined in [5; p.75] with: numerator degrees freedom w, and non-centrality parameter

$$\lambda_{l} = (\tau^{*})^{2} h' (P_{GZ} - P_{G})h/(2\sigma^{2})$$

and denominator degrees freedom n - u - w, and non-centrality parameter

$$\lambda_2 = (\tau^*)^2 h' Q_{GZ} h/(2\sigma^2).$$

Proof: The proof of Lemma 1 of [2] may be used almost word for word to prove that

$$1/(\sigma^2)^{\#} = n/(e + \tau^* h)' Q_{GZ}(e + \tau^* h) + d_n$$

7

where n d_n converges in probability to zero. Thus, $T^{\#} = X + c_n$ where

$$nc_{n} = nb_{n}[n/(e + \tau^{*}h)'Q_{GZ}(e + \tau^{\#}h)] + nd_{n}[(e + \tau^{*}h)'P_{GZ}(e + \tau^{*}h)/n] + nb_{n}d_{n};$$

the term b is as defined in Theorem 1. By Lemma 1 and Theorem 1, each term of nc n converges in probability to zero.

Set
$$z = (1/\sigma)e$$
, $\gamma = (1/\sigma) \tau^*h$, and $R = P_{GZ} - P_{G}$

The random variables z_1, z_2, \ldots, z_n are independent normal random variables each with mean zero and variance one. Thus, the random variable $(z + \gamma)'R(z + \gamma)$ is a noncentral chi-squared with w degrees freedom and noncentrality parameter

$$\lambda_{1} = \gamma' R \gamma/2 = (\tau^{*})^{2} h' (P_{GZ} - P_{G}) h/(2\sigma^{2})$$

Similarly, $(z + \gamma)'Q_{GZ}(z + \gamma)$ is a noncentral chi-squared random variable with n - u - w degrees freedom and noncentrality parameter

$$\lambda_2 = \gamma' Q_{GZ} \gamma / 2 = (\tau^*)^2 h' Q_{GZ} h / (2\sigma^2).$$

These two random variables are independent because R Q_{GZ} = 0 (see [Graybill 5, p.79ff]). Now,

$$P(X > c^{*})$$

$$= P[(e + \tau^{*}h)'Q_{G}(e + \tau^{*}h)/(e + \tau^{*}h)'Q_{GZ}(e + \tau^{*}h) > 1 + wF_{\alpha}/(n-u-w)]$$

$$= P[(z + \gamma)'(Q_{G} - Q_{GZ})(z + \gamma)/(z + \gamma)'Q_{GZ}(z + \gamma) > wF_{\alpha}/(n-u-w)]$$

$$= P\{[(z + \gamma)'R(z + \gamma)/w]/[(z + \gamma)'Q_{GZ}(z + \gamma)/(n-u-w)] > F_{\alpha}\} . []$$

Alternative expressions for the noncentrality parameters are useful in the context of an attempt to maximize λ_1 and minimize λ_2 via choice of Z.

$$\lambda_{l} = (\tau^{*})^{2} h' Q_{G} Z (Z' Q_{G} Z)^{-1} Z' Q_{G} h/(2\sigma^{2})$$
$$\lambda_{2} = (\tau^{*})^{2} h' Q_{G} h/(2\sigma^{2}) - \lambda_{l} \cdot$$

These expressions may be verified as follows. The vectors

$$b = (Z'Q_{G}Z)^{-1}Z'Q_{G}h$$
$$a = (G'G)^{-1}G'(h - Zh)$$

solve the equations

$$\begin{bmatrix} G'G & G'Z \\ Z'G & Z'Z \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} G'h \\ Z'h \end{bmatrix}$$

as may be verified by substitution. Thus,

$$h' P_{GZ} h = [h'G h'Z] \begin{bmatrix} G'G & G'Z \\ Z'G & Z'Z \end{bmatrix}^{-1} \begin{bmatrix} G'h \\ Z'h \end{bmatrix}$$

$$= [h'G h'Z] \begin{bmatrix} (G'G)^{-1}G' (h - Zb) \\ (Z'Q_GZ)^{-1}Z'Q_Gh \end{bmatrix}$$

$$= h' P_G(h - Zb) + h'Z(Z'Q_GZ)^{-1}Z'Q_Gh$$

$$= h' P_Gh - h' P_GZ(Z'Q_GZ)^{-1}Z'Q_Gh + h'Z(Z'Q_GZ)^{-1}Z'Q_Gh$$

$$= h' P_Gh + h' Q_GZ(Z'Q_GZ)^{-1}Z'Q_Gh .$$

The formulas for λ_1 and λ_2 are obtained by substitution of this expression for $h'P_{GZ}h$ in the formulas given in Theorem 2.

As mentioned in [4], one may use the statistic $S^{\#}$ instead of $T^{\#}$ to test H against A. For convenience, the definition of $S^{\#}$ is repeated here. Let

$$(s^2)^{\#} = \sum_{t=1}^{n} [y_t - g(x_t, \psi^{\#}) - z_t' \delta^{\#}]^2 / (n-u-w)$$

Evaluate the matrix $G(\Psi)$ at $\Psi = \Psi^{\#}$ and put

$$C^{\#} = \{ [G(\Psi^{\#}); Z]' [G(\Psi^{\#}); Z] \}^{-1}$$

Let $C_{22}^{\#}$ be the matrix formed by deleting the first u rows and columns of C; then $s^{\#} = \frac{(\delta^{\#})'(C_{22}^{\#})^{-1} \delta^{\#}/w}{(s^2)^{\#}}$.

H is rejected when $S^{\#}$ exceeds the upper $\alpha \cdot 100$ percentage point F_{α} of an F random variable with w numerator degrees freedom and n-u-w denominator degrees freedom.

The tests based on $S^{\#}$ and $T^{\#}$ are asymptotically equivalent in the sense of the following theorem.

<u>Theorem 3</u>. The statistic $S^{\#}$ may be characterized as $S^{\#} = Y + d_n$ where

$$Y = \frac{(e + \tau^{*}h)'(P_{GZ} - P_{G})(e + \tau^{*}h)/w}{(e + \tau^{*}h)'Q_{GZ}(e + \tau^{*}h)/(n-u-w)}$$

and d converges in probability to zero. The probabilities $P(Y > F_{\alpha})$ and $P(X > c^*)$ are equal where X is as in Theorem 2.

<u>Proof.</u> On page 6, as an intermediate step in the proof of Theorem 1, a characterization of $\sqrt{n} \begin{pmatrix} \psi^{\#} & \psi^{*} \\ \delta^{\#} \end{pmatrix}$ was obtained. Rearranging terms, we have $\delta^{\#} = (C_{21}G' + C_{22}Z')(e + \tau'h) + z_{n}$ $= W_{2} + z_{n}$

where

$$c = ([G;Z]'[G;Z])^{-1}$$

has been partitioned as

$$C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$$

and $\sqrt{n} z_n$ converges in probability to zero. Also, recall that $\sqrt{n} \delta^{\#}$ is bounded in probability as is $\sqrt{n} W_2$.

On page 7, as an intermediate step in the proof of Theorem 2, a characterization of $(\sigma^2)^{\#}$ was obtained. From this, it follows that

$$1/(s^2)^{\#} = (n-u-w)/(e + \tau^*h)'Q_{GZ}(e + \tau^*h) + w_n$$

where n w, converges in probability to zero.

10

The random variable $s^{\#}$ may be written

$$s^{\#} = (\delta^{\#})' c_{22}^{-1} \delta^{\#} / [w(s^{2})^{\#}]$$

+ $(\sqrt{n} \delta^{\#})' [(1/n)(c_{22}^{\#})^{-1} - (1/n)c_{22}^{-1}](\sqrt{n} \delta^{\#}) / [w(s^{2})^{\#}].$

The second term converges in probability to zero because: $\sqrt{n} \delta^{\#}$ is bounded in probability, $(s^2)^{\#}$ converges almost surely to σ^2 , and $[(1/n)(c_{22}^{\#})^{-1} - (1/n)c_{22}^{-1}]$ converges almost surely to the zero matrix by Part 3 of Lemma 1 of [3]. Denote this second term by u_n . Now

$$(\delta^{\#})' C_{22}^{-1} \delta^{\#} = W_{2}' C_{22}^{-1} W_{2} + 2(\sqrt{n} W_{2})' [(1/n) C_{22}^{-1}](\sqrt{n} z_{n}) + (\sqrt{n} z_{n})' [(1/n) C_{22}^{-1}](\sqrt{n} z_{n})$$

where the latter two terms converge in probability to zero. Denote these latter terms by ${\rm v}_{\rm n}$.

We have, now, that

$$s^{\#} = W_{2}' C_{22}^{-1} W_{2} / [w(s^{2})^{\#}] + u_{n} + v_{n} / [w(s^{2})^{\#}]$$

= $W_{2}' C_{22}^{-1} W_{2} / [w(e + \tau^{*}h)' Q_{GZ}(e + \tau^{*}h) / (n-u-w)]$
+ $(n w_{n}) W_{2}' [(1/n) C_{22}^{-1}] W_{2} / w_{1} + u_{n} + v_{n} / [w(s^{2})^{\#}]$

The remainder term d_n of the theorem to be proved equals the last three terms of this expression; and, converges in probability to zero. It remains to show that Y is the first term of this expression.

Now,

$$(G C_{12} + Z C_{22}) C_{22}^{-1} (C_{21}G' + C_{22}Z')$$

= $G C_{12}C_{22}^{-1} C_{21}G' + G C_{12}Z' + Z C_{21}G' + Z C_{22}Z'$
= $[G;Z] \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \begin{bmatrix} G' \\ Z' \end{bmatrix} - G' [c_{11} - c_{12} & c_{21}^{-1} c_{21}] G$
= $P_{GZ} - P_{G}$

using the fact that $(G'G)^{-1} = C_{11} - C_{12} C_{22}^{-1} C_{21}$. It follows that

$$W_2 C_{22}^{-1} W_2 = (e + \tau^* h)' (P_{GZ} - P_G)(e + \tau^* h)$$

as required.

- Gallant, A. Ronald., "Inference for Nonlinear Models," <u>Institute of Statistics</u> <u>Mimeograph Series</u>, No. 875 (revised), Raleigh: North Carolina State University, 1975.
- [2] _____, "The Power of the Likelihood Ratio Test of Location in Nonlinear Models," Journal of the American Statistical Association, 70 (March 1975), 198-203.
- [3] _____, "Testing a Subset of the Parameters of a Nonlinear Regression Model," Journal of the American Statistical Association, 70 (December 1975), 927-932.
- [4] _____, "Testing a Nonlinear Regression Specification; A Nonregular Case," <u>Institute of Statistics Mimeograph Series</u>, No. 1017, Raleigh: North Carolina State University, 1975.
- [5] Graybill, Franklin A. <u>An Introduction to Linear Statistical Models</u>, Vol. I, New York: McGraw-Hill Book Co., 1961.