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Some notation whiech is used throughcout is set forth here for convenient reference.

Notation:

Y= (Fys Vo eoesyy)’ (nxl) ,
g(v) = [a(z.¥), e(xs¥)s ooy alx, )] (nx1) ,
n{w) = [n(xw)s <oy Bz Hw)]’ (nx1) ,
e = (el, €5 vees en) ‘ (nx1) ,

G(¥) = the n by W matrix with typical element (b/b‘yj) g(xt, ¥) where t is

the row index,

7 = +the n by w matrix with rows z-é R

*
g=g(¥y ),

9 *

h = h(U.) ) ’

*
G = G’(‘i’ ) s

4 -l1l . .

B, = a(e¢’c) G (nxn) ,
p,= [6iz){{eiz) [6iz]) 6z | (nxn)

The following regularity conditions govern throughout.

Assumptions: The sequence of inputs {(Xt’zt)}ntﬂ are chosen from X x Z , where
X and Z are compact, such that the measure By defined on the Borel subsets of X x Z
( Tby |
‘ _ un(A) = the proportion of (xt,zt) in A for t € n
converges weakly to a measure p defined on the Borel subsets of X x Z; see [2]. The

sets ¥ and A are compact. The functions g(x,¥), (b/b\yi) g(x,v), and



-This technical note serves as an appendix +o [h]. Ambiguities as to objectives,
lefinitions, notation, etc. may be resolved by reference to [L4].
Consider testing

Hi oy = al=xg, y) + ey

against
it - ,
ATy ma(xg, ¥) tzl 8t e
using the likelihood ratio test, assuiing normal errors with variance unknown. The
true model is, however,
An asymptotic approximation of the power of the test against A, not A#, is required.
In the above expressions, Ve is univariate, Xy is k~=dimensional, z, is w-
dimensional, and the index t+ = 1,2,..., N. The pargmeter ¥ is u-dimensional, «+ is
univariate, w is v-dimensional, and § is w-dimensional. The asterisk is used in

) * % *
connection with parameters -¢ , 7, andw - to emphasize that it is the true but

@
‘unknown &aiue which is meant. The omission of the asterisk does not necessarily
denote the contrary. The parameter ¥ is contained in a compact set ¥ . For
convenience, § is constrained to lie in a compact set A but this assumption may be
eliminated if desired; see [17. |

The btest statistic, itself, is

7 = R/(E)

where: ¥ minimizes z%_lﬁyt-g(xt, Y)] s and = (1/n) :%-1Lyt'g(kt’ Y)]
(v! ¢%) minimizes T lVy8(xys ¥) - 2 o617 and (0 2y - (l/n) zt;l[yt-s(*ct, ¥ #)- zté#'.\e

One rejects when T# is larger_thén _
% .
e =1l+w Fd/(n-u-w)
where Fa denotes the upper o.l00 percentage point of an ¥ random varisble with w

<&

" numerator degrees freedom and n-u-w dencminator degrees freedom.
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(62/b\yib\rj) g(x, ¥) are continuous in (x, ¥) on ¥ x¥. The function h(x, w*) is
continuous on X . The true value \P* 1s contained in an open set which is, in turn,
contained in ¥ ; A contains an open neighborhood of the zero vector. If g(x, v)

= g(x, \y*) except on a set of p measure zero, it is assumed that v = Y*; likewise,
glx, v) + 2’8 = g(x, ¥') a.e. implies ¥ = ¥ and 5 =0 . The matrix limn_m[G':Zj'[G':Z]
is non~-singular. (The limit exists by Lemma l/of .‘[3].). As n increases, /o 'r* tends
to a finite limit. The errors {et} are independently and normally distributed each
with mean zero and unknown variance 02 .

Lemma l: The random variables "17 and \1'# converge almost surely to \y* « The

random varisble 6# converges almost surely to the zero vector. The random variebles

?:7/2 and (02)# converge almost surely to 02 .

* * ' '
Proof: Denote v+ by 7 n to emphasize the assumed variation with n .

Consider the sequence of random variasbles

(1/n) fl'e+ g+ 7 ~ g(¥)|®

Q.n(\l” 'T)

ee/n+ 2e'[g+ rh - g(¥))/n+ [g+ th-g(¥)]'[g+ h-g(¥)]/n .

*
Note that ¥ minimizes Qn(‘i’ s 'n‘n) for each realization of e . Qn(qf , T) converges

almost surely to
A, 1) = o+ [Tl v )+ mlx, w) - glx, VT aulx, 2)

uniformly in (v, ) over\y x [=3, 3] by the Strong Law of Large Numbers and Lemma 1

of [3], Parts 1 and 2. Consider a realization of the errors {et}:__:l which does not
belong to the excepblonal set. Let {?y'n} be the sequence of points minimizing

*
Qn(Y, q'n) corregponding to this realization. Since? is compact, there is at least

one limit point ¥ and at least one subsequence {?fn } such that 1lim ’\Fn =y . As
m pul

a direct consequence of the uniform convergence of the continuous functions Qn(\y s 7)

to Q (¥, 1), we have



o s a(y, 0)
» ) *
= llmmeoan (n ’Tn)
m m m .
P
< lim @ (0, w )
m m
- %
= Q(Yao)
2
= g

This implies

J.[g(xa ‘1’*) + rh(x, aje) - g(x, ‘1’)]2 du(x, z) = 0

—_ *
which implies ¥ = ¥ by assumption. Thus, the sequence Wn} has only one limit

point ¥ 3 moreover, this implies

. ~N2 s Ky oo K _ 2
lim o =lim Q¥ , r) =0y, 0)=d
Next, consider the sequence of random variebles .

2
Q,(¥,6,7) = (I/n)lle + g+ 7h - g(y) - Z8|" .
*
Note that (v#, #) minimizes Qn(w,b,rrn) for each realization of e. Q,n(\y,b,»r) converges

almost surely to
3(v,6,7) = o + [Le(x,¥) + mx,w) - glx,¥) - 26T aulx,z)

wniformly in (v,8,1) over'¥ x A x [-3,3] as above. The remainder of the proof is

#

entirely analagous to the above with (¥ ,6#) replacing "17 throughout. {)
. *
Lemma 2: The random vector (1/,/h) [G3Z]/(e + 7 h) converges in distribution to
a u+ w - variate normal.

Proof: By Lemma 3.5 of [1), (1//h) [G!Z]'e converges in distiibution to a

u+ w - variate normal. By Part 1 of Lemma 1 of [3], -
. ' 11 ¥
lim  (1/k) [@12]' (7 )

= (Un_ Br") [Lim__(1/n)(¢:2]'0). [




. Theorem 1. The random variable (02)# may be characterized as

(P = (e + 1) g (e + TH)/n+ o

where n a, converges in probability to zero.

The random variable '&2 may be characterized as
* *
'E:Q = (e+ ¢ h)'QZ(e + rh)/n+ b,

where n bn converges in probability to zero.
*
Proof: Recall that ¢ varies with n. By Lemma 1, (\y#, #) will almost surely

* ,
be contained in an open subset of\y x A containing (¥ ,0), allowing the use of Taylor's

#

expansions in the proof and causing (¥", #) to eventually become a stationary point of

a (¥,8,r) = (1/n)ll y-g(¥) - z8l® .

We will now obtain intermediate results based on Taylor's expansions which will

be used later in the proof. By Taylor's theorem,

® ’

g(y") + za# - g+ G(‘if#-‘f*) + zs# + n(v#-v*)

where D is the n by u matrix with typical row

3P 4") 2 e, T)

- *
and ¥ is on the line segment joining Y# toy .

Using Lemma 1 and Lemma 1 of [3], one can show that (1/n) G'(Y#)D, (1/n)G"D,

(1/n)Z’D, and (1/n) D'D converge almost surely to:the zero matrix. Again:by Taylor's:
theorem,

* *
[ () - 63 + o) = (v

where E 1s the u by u matrix with typical element

. 2 — * *
&5y = zt:l(b /bwj'owi)g(xt,‘i') eyt rh(xyg )]

: * ,
Using Lemma 1 of [3] and the assumed convergence of ~- to zero, one can show that

. (l/n.) E converges almost surely to the zero matrix.
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#

We will obtain the probability order of w# and 8" . As mentioned earlier, for

#

almost every realization of the errors {et], (v, 6#) is eventually a stationary

point of (~-/n/2) Qn(w, 5, {*) so that the random vector
("N/II/_E) vaQl’l(Y#’ 6#9 T*)
= QAR 2] (r-e(dh)- 2 &)

converges almost surely to the zero vector. Substituting the expansions of the

previous paragraph, we have that

(1/JR) [GiZ] (e + 7 h)

- {(1/n) EG(Y#)E z1’[e+ Diz)+ (1/n) [E O]} A v v
0 0 5#

converges almost surely to the zero vector.Lemma 1 of [37] and our previous results

imply that the matrix in braces converges almost surely to a non-singular matrix.

. . L4 1 * . . ) . Y
Lemma 2 implies that (1/yh)[GiZ]}'(e + 7 h) converges in distribution to a u+ w -
variate normal. These facts allow the conclusion that

u, = W8 { v#-#w* - ([6i2]T6:2]) 7 [6i2) (e + 1 h))
6

converges in probability to zero and that

# %
wo=yh (Y- )
are bounded in probability.
The sum of squares

lly-g(_w#)-za#u2=||e+ g+ h-g (F) -2 8 |

lagg (e + 0) + By(e + o'0) - alf-y") - 2 8- p(y- ¥

gz (e + 7 WP = 2(e + ' h)ay (¢~ ¥%)

FUP (e + 0) - atv— v = 7 Ao piv- v W2 .



The cross product term may be written as

(e + 1) QD(¥"- ")

- b, l/n) 2P ey ¢ rh(xg, w )] Voalx, Vv,
- (AR (e + +0)T6 2]} {(1/n)Gi2]Te2]) 1 (1/n)[Gi2]/D) W,

Both terms converge almost surely to zero by Lemmas 1 and 2, Lemma 1 of [3], and our
previous results. (Some care must be taken with the argument concerning the first

term; see [1, p. lha=-1hb] for details.) By the triangle inequality

By (e + ) - a(¥'- v) -z 8% D vy

< || (6 2 ([G:Z) T z]) e 2] (e + 'n) - [¥- ¥*|} )

e 8
+ | Dl )

(w/{(1/a)6i21 T6i2z )2 + () ((1/n) D'DY w ) .

The two terms on the right converge almost surely to zero by our previous results.
The proof for EE is analogous and, therefore, omitted. [|

#

Theorem 2. The statistic T# mey be characterized as T = X + cn where
* * * *
X=(e+ vh)'qule+ rh)/(e+ +h) Qy(e+ vh)
and n ¢, converges in probebility to zero.

*
The probability P(X > ¢ ) is given by the doubly non-central F distribution as

defined in {53 p.75) with: numerator degrees freedom w, and non-centrality parameter
A = ()2 h!(Byy PG)h/(Qo‘z)

and denominator degrees freedom n - u - w, and non-centrality parameter
Ay = (107 1 aggn/(2d).

Proof: The proof of Lemma 1 of [2] may be used almost word for word to prove that

V(P = n/(e + 1) aggle + 7'n) + q



where n dn converges in probability to zero. Thus, 'I# = X + ch where .

ne =n bn[n/(e + T*h)l QGZ(e + T#h)}+ ndh£@5+ T%h)lzbz(e + T*h)/n]+ mb 8

the term bn is as defined in Theorem 1. By Lemma 1 and Theorem 1, each term of ne

converges in probability to zero.

*
Set z = (1/0)e, y = (1/6) v h, and R = PGZ - PG .

The random variables Zis Zgs sess Z, BT independent normal random variables each
with mean zero and variance one. Thus, the random variable (z + Y)'R(z + v) is a

noncentral chi-squared with w degrees freedom and noncentrality parameter
_ 7 : _ *2 7 2
Similarly, (z + y)'QGZ(Z + v ) is a noncentral chi-squared random variable withn - u - w

degrees freedom and noncentrality parameter

o V- AN 2
These two random variables are independent because R QGZ = 0 (see [Graybill 5, p.79ff])°
Now,
C*
PX>c )

P (e + T*h)’QG(e + T*h)/(e + T*h)IQGZ(e + T*h) > 1+ wFa/(n-u-w)]

I

1

B (z + Y)'(QG‘ QGZ)(Z + V)/(Z + Y)'QGZ(Z ty) >w Fa/(n-u—w)]

PL(z +v)'R(z + v)/w)/l(z + v)'Qyy(z + y)/(n-u-w)] > F_} . [

Alternative expressions for the noncentrality parameters are useful in the
context of an attempt to maximize xl and minimize xz via cholce of Z.
_ .2 . ' =1 2
M = (r)7n'e2(z'a42) 72, b/(20")

) .
Ay = (7 )%n%gn/(207) = Ay

These expressions may be verified ag follows. The vectors

b (Z'QGZ)'lz'QGh

a = (m'a\‘l,’(h - 7h)



solve the equations

¢'c @'z al _|G'h
z'a Z'ZJ b Z'n

as may be verified by substitution. Thus,

h'B,,h=[h'e n'z] [e&‘G a'z]™t [a'n
z'c 7'% Z'n

[n'c n'z] (G'c—)'lG’ (b - Zb)-‘
(z'Q.z)"'z'q, h |

I 4 [} -
h PG(h - 7Zb) + n'z(z QGZ) lZ’QGh

]

? ’ ¢ -1 [ / / - [
h'Bsh = h PGZ(Z Q,G‘Z) Z'Qzh + b 7(z QGZ) 1y Qgh

'] 1 ¥/ - 4 ’
h'P.h + h Q,GZ(Z QGZ) 1y Qzh

‘ The formulas for )\l and }‘2 are obtained by substitubtion of this expression for
h' PGZh in the formulas given in Theorem 2.
As mentioned in [47, one may use the statistic S# instead of ‘T# to test H

against A. For convenience, the definition of S# is repeated here. Let

() = 57 Ly b,y ) - 2 877 ()

Evaluate the matrix G(¥) at ¢ = v# and put

o (e iz Tewz Tt .

; Let C# be the matrix formed by deleting the first u rows and columns of C; then
#y 1
‘ (s >#
#

H is rejected when 8" exceeds the upper ¢ * 100 percentage point Foz of an F rendom

. varigble with w numerator degrees freedom and n-u-w denominator degrees freedom.
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The tests based on S# and T# are asympbotically equivalent in the sense of the .

following theorem.

#

Iheorem 3. The statistic S# may be characterized ag 8" =Y + dn where .

(e + q-*h)'(PGZ- PG)(e + 'r*h)/w

Y o=

(e + 7h)Qg(e + 7 1)/ (avu-w)

*
and d  converges in probebility to zero. The probebilities P(Y > Fo:) and P(X > ¢ )

are equal where X is as in Theorem 2.

Proof. On page 6,._‘ as an intermediste step in the proof of Theorem 1, a characteriza-

%
tion of JA U "#‘y | was obtained. Rearrenging terms, we have

O

*
5# = (cefa' + 02! )(e+ o h)+ Z,

22

+ 5
=Wy * o2y

where
¢ = ([eiz)[eiz])"t
has been partitioned as

Cia Cip

Co1 CzaJ

and A/H 2, converges in probebility to zero. Also, recall that ,/a 6# is bounded in

probebility as is A W, .

On page 7, as an intermediste step in the proof of Theorem 2, a characterization

of (0-2)# wes obtained. From this, it follows that

l/(sz)# = (neu~w)/(e + rr*h)'QGZ(e + 'r*h) o

where n w, converges in probebility to zero.
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#

. The random variable 8" may be written

S# = (6#) C-l #/[w(se)#

+ (8 ST/ )™ (/megmlGE SR

The second term converges in probability to zero because: ﬁ 6# is bounded in
probability, (32)# converges almost surely to 02, and [(1/n)(cﬁ2)'l - (l/n)C;;‘]
converges almost surely to the zero matrix by Part 3 of Lemma 1 of [3].

Denote this second term by u, - Now
(6" ey o = wy oy, + 2<ﬁw2)'c<1/n>c;§1<ﬁ 2,)
+ (Wi z)[(1/n) c; ](I’z )

where the latter two terms converge in probability to zero. Denote thege latter

. terms by v, o

We heave, now, that

o = W) 033 W (P ¢ u, eV

W2 22 Wy/[w(e + = “h) ! Quple + = *1)/(n-u-w)]
+ (nw )W[(l/n) C ]W/w tu +v/[w(s )#]
The remainder term dn of the theorem to be proved equals the last three terms of

this expression; and, converges in probability to zero. It remains to show that

- Y is the first-term of this expression.
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Now,
-l ] !
(6 Cpp + Z 022) Con (calg + Copl )
=1 ) . '
= G CyCop CelG + G Cy Z + 2 Cy G+ 2 G0
= [G:Z2] |C ¢ ¢'l -a’fc, .- t e 1a
: 11 “12 11 1L oo Co1
'
Cor Cop| |2
= Pz = %5

using the fact that (G'G)'l = Cq = Cpp c;; €,y + It follows that

t =L *
Wy Con W 5 = = (e+ ¢ h) ( 2" Pb)(e + ¢ h)

as required. [
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