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Abstract

The possibility of employing explicitly defined functions of the

observations as estimators of parametric functions in nonlinear

regression analysis is explored. A general theory of best average mean

square error estimation leading to an explicit' estimator is set forth.

The estimator is shown to be a truncated Fourier series expansion of

the Bayes rule which minimizes expected posterior square error loss

(equivalent to average mean square error). Sufficient conditions are

given for a polynomial estimator to converge in probability to the Bayes

rule and for its average mean square error to converge to the minimum

achievable as degree increases. In an example it is found that a.· linear

function of the observations outperforms the maximum. likelihood estimator

and performs nearly as well as the Bayes rule.
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1. Introduction
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according to the criterion of average mean square error. A procedure for

finding an exact confidence interval for a parametric function which uses

the linear estimator is given in Section 6. The article concludes with some

comments.

2. Structure of the ProbJ.em

--,

observed, data :rt.t xt (t =1" 2, ••• , n)ar.e assumed to have been:

generated ,accord.ing' to' the sta.tistical..

(t =' 1" 2, ... , n)

'rhe fo:rm ot the response function t(x, e) is known, the' unknown parameter

e is a p-vector known to be contained in the parameter spa.ce e , the inputs
Xt are known k.-vectors, the univariate responses Y't are observed, and the

. .. ..
errors et are assumed to have mean zero. The distribution function of the errors

is denoted as NeCeIO') where e = (e1 , e2 , ... , en)', an n-vectoI'. A typical

assumption is that the errors are independent normal in which case 0' is univariate,

but in general 0' is an r-vector contained in t. The' problem of interest is

*the estimation of a (possibly) nonlinear parametric function g (y) where y = (e', 0") '.

As an example, the relative yield at time x of an intermediate substance in

a chemical reaction is given as

-xe2 -xs
f(x} e) - A1',,(e - e l l/ (s - a )l' 2

under specified conditions. It maybe of interest to know the time at which the

maximum yield of the substance occurs. This time is given by the parametric

function
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which depends on.ly trivia.1J¥ on a. The approach taken here shall be to

es-timate this parametric function dj,rectly by an estimator of the form., sa:y,

where Yt is the observed at time:let . Note that this approach differs

from the procedure of estimation of the parameters 82 , IS and sUbsequent

*eva.J.uation of the parametric function g a) a-t the es-timated parameter

The es-tima-tors considered are

observed Y't ' denoted as the n-vector

l' = (1'1' Y'2' ••• , Y'n)' ,
are transtormed ac'cordiIlg to

obtained as. follows. The

z =z(y) •

The ttmc:tion Z may' be U!9'" vector-vaJ.ued mapping. ot n-space to m-space but

the convenient choice in applications is to take a basis for the poquomia.ls

in Y' ot, sa::r, second degree as the componen-ts ot Z (1') • The class of
AIes-timators g otthe torm.

g= a'z
where a. is an m-vector restricted to a liz:1ear spaceu are consid.ered.

Est:ima.tors ot this torm. ·are explicit f'unctions of the observations,

viz. g(y) =a'Z(Y)-
'nle estimator g to be chosen from this class .' is that

which minimizes average mean square error with respect to a weigh-ting

measure p defined on r = e Xi:.. ...
tom g =: a'z minimizing

That is, one seeks to find g of the

JUtS! (S) = eyE g - l(y)]2 d P(Y )

where ais restricted to u •
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The notation e. (.) refers to expectation with, respect to the distribution of
y

y; that is, with respect to the distribution function

where

It shall be assumed throughout that the components of Z(y) are measurabJ.e

and square integrabJ.e with respect to NyCyIf( a) ,0'] and that the functions
g*(y), t'J, e./Z i (y)}, and the like are measurabJ.e and square W'ith

respect to p •

3. A Sampling Theoretic Derivaticn of the Estimator i

Let b2 , ... , br be m-vectors constituting a basis for a and a.rra.Dge
them a.s' coJ.umn vectors in the m )( r matrix

mean square error with, respect to p is

a. = ey(zz/) dp(y)]Br B/[f g*(Y) ey(z) dp(y)J •

The notation ey.(ZZ/) dp(Y) 'denotes the m X mmatrix with'typica.J. element

J e.y (ZiZj) dp(y)r
'*Simila.rJ¥ r g (y) e (z) dp(y) denotesthem-vecto1," with typical. eJ.ementr y
! g*(y)eY(Zi) dp(Y) •
r

" ..
The<notationA-d.enotesa.t2;V'genera.1:i.zedinverse of' A • If there are no

rest:rd.Ctions ,OD. the choice ofathenB ,may-.beta.k.en as the identitymatrixe

and. the fOrmula simpJ..;Uiesto
- -

[jey(zz/) dp(y}f fg*(yJ ey(z} dp(y)r ' r
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Often, in applications, the error distribution Dr (e I0') is taken thee
n-variate normal with mea.l:l zero and variance-covariance matrix a2..r. If
the functions Zi (y) are taken as p.o1;ynomials in y then the elements of

e (z) and e (ZZ/) T!JJ3.Y' be obtained as the. moments about zero of a spherical. y y

normal distribution centered at f(e) ; these will be poJ..ynomials in f(xi , B)

and 0'. A natural ordering of the functions Z. (y) is such that if m = 1 + n
J.

the components. of Z(y)area basis for the poJ.;rnomials in y of first degree,

if m = 1 + n + n(n + 1)/2 the components of Z(y) are a basis for the po1;ynomials

in y of second degree, and so on. The degree of the po1;ynomial may be varied

by varyiJ,g mol' by choice of B ; also, a su:f':f'i.ciency reduction may be accomplished

by choice of columns for B. The use of B for these purposes may permit some

flexibility in writing code to implement the estimator.

4.. Bayesian Interpretation of the Estimator

*The problem of estima.ting g (y) may be recast in a Bayesian setting by

regarding p as the prior distribution on r and Dr (ylf(e), 0') as the conditionaly
distribution ofy given y with density n(ylf(s), 0']. Take for the Bayes rule

* '"the mean of g (y) with respect to the posterior density, denoted by g(y).

This choice minimizes expected posterior loss for a square error loss function.

Under the previous integrability 'assumptions, the expected posterior square

error loss of an estimator is numerically the same as average mean square

error; the different terminology c.orresponds to the nomenclature of Bayesian

or sampling-theoretic inference , respectively" Thus, g(y) is the optimal
(unrestricted) choice under either criterion.

For a variety at purposes it 'may be convenient to approximate the Bayes I

1'I1J.e bY' trunca.ting >a series expansion of i6r). Consider a. Fourier series
CI:I'

expansion in teDlS ot a set of basis flmctions (Zi (y )J 1=1 !he most natural

e choice ota weight t'unC'tion, in the present context, is the marginald.istribution

of the observations

p(y);: J n(yl fCe), 1 dp (y) •. r
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Let (Cl'i.(Y) be a sequence ot orthonormal basis f'w:l.ctions with respect to

p(y) generated from the sequence' [Zi by the Gram-Schmidt process (with e
linear dependencies in the Zi accomoda.ted by deJ.etion) • The Fourier series.
expansion of ,the Bayes rule is

with Fourier coeft1cienta

°1,=- fitv )l'iIi (y) p(y)
1t

Corollary 1 of the Appendix states that if this expansion is truncated at

m thenY
t: 1 c. qJ. )
J.= 1. 1. "

provided a= .
This result suggests that the choice of a class of functions to which

attention is to be restricted in the construction of an explicit estimator

may be regarded asa choice of basis functions for a Fourier series approxi-

mation of the Bayes rule. A common choice of basis functions for the

approximation of a non-periodic function is the collection of polynomials;

e.g., the Hermite polynomials. Corollary 2 of the Appendix states that if

the predictive density function possesses a moment generating function and

if [Zi (y) isa basis for the polynomials then
2

Lim . r [g(y) -- g(y ) ] pCy) dy = 0m - 0:1 ,Ill

Thus, if the e:lq)licit estimator is a polynomial and the predictive density

possesses a moment· generating functio'nthen the expected posterior square

error loss (average mean square error) of the explicit estimator may be made as near

the' achievable.ra;n;jmlJm.a.sdesiI'edby tak.ing the .. d..egree of the >pOlyncmia.J-_SUii;ab.
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large. This woulO. seem to serve as further justification for the choice

of low order polynomials for the of the explicit estimator.

A sampling theorist is interested in the extent to which the :explicit

estimator constructed from a polynomial inherits the sampling properties of

the Bayes rule. Theorems 4 and 5 of the Appendix show that if the errors

et . are independent normaJ. with common variance (l and if f(8) is continuous
then

2
.eimm._ co .r [g(y) - i(y)] p{y) dy = 0.1l

A

implies that g(y) converges in probability to g(y) for arry YO = (60;' 0'0) I for

which p (fo) > 0 for all open sets rO containing YO ; convergence in probability

for such YO implies convergence in distribution. In this sense, the effect

upon the sampling distribution of the explicit estimator corresponding to

some choice of a weighing measure p may be anticipated from the sampling be-

havior of the Bayes estimator corresponding to that choice of p •

5- ExampJ.e

Consider the statistica.l model

with response t'unction

f(X, e) =

parameter space

and design
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As noted earlier, the response function f(x, 8) describes the relative

at time x of an intermediate substance in a reaction; consider

estimation of the time at which the maximum yieJ.d. occurs:

Some additionaJ. notation required. is: let F(e) be the n K p matrix with

typicaJ. f(Xt , a),where t is the row index and j is the column index;

C = [F'(e)F(a)rl

To obtain the expJ.icit estimator' of the time c£ maximum, yieJ.d., the

weighting is. taken as the product. measure canprised, of a unit'orm.. e
distribution on the elllI>soid (e - ,r) 'c·lCe • 1')S r 2 with C eva.lua.ted at l'

and the inverted gamma. distribution (Zellner 19'7J.,I>. 371) with parameters

v and s2. Or, if p is viewed as a prior measure then e has the uniform
distribution on the ellipsoid [8: (e - .,.)'C-1 (8 - ,.) < r 2}and a is

independent.l:1· distributed as the inverted gamma .. distribution. Appropria.te

tra.nsfom.a.ticns yie.1dan'sxpressionwhicll is convenient usewithquadra.ture
--

forniu.lae:

j gfe,a)dp(y)

= J:uct...1tr .. 2g[R'y+ l' ,1!J(Yu)] d;rJe-udu
Oy'ilS,

Wherea,= v/2, y=2!(v-s2.) , a.:o.dR is C asC=R'a •

. Tbe·· i1'3.tegraJ.,withinbra.cesmay be .eva.luatedby·means·,· of·a 12-point quadratuxe e
form.ula ,28J.).glwhiChintegra.tes pol;ynomia.ls in Y' up to degree
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seven the outer integral be evaluated using a 4-pointQuadrature

tit formUla. (IBM tQ,L4) which integ:a.tes ]?ol¥ncm1als in u up to degree sewn

exactly'• In te:rms of the arguments of g( e, 0'), if g is a of degree

less than or equal to seven in e and \2 .... of degree less than or equal. to

v-2 in (1 it will be integrated exa.ct,q•.

]?arametric choices empJ.oyed here are .,. == .•4) , s == .025 ,

v == , andr2 == 8 s2 • These choices were motivated by the st'l1d7 of the

ssmpllDg distribution of the squares; estimator re]?orted. in (Ga" axr!:'

• With these choices, the numerica.l integrati.on ]?rocedure above is

equivalent to the substitution of' a discrete prior measure p ,

for the measure p.. This discrete measure is dis]?lqed. in In
A..

fact, it may be best to regard p as the prior in the

_... -
_.... - .. - Table .. here

_. - - _. -----.-. _. _. - -- . --
As a referee points out, the idea behind the choice of parameter

points for Table 1 (and later Table 2) becomes lost in the details. The idea

is that a numerical formula approximates an integral by a weighted

average; viz.
N

Jrg(y) Ei=lPi g(Yi)

The choice of points Yi = (Ai' O'i) and weights Pi are determined according to

numerical ana..lytic considerations so as to achieve an accurate approximation.

Table 1 displays the choice of Yi and Pi implied by the use the two

formulas cited above. It seems useful later in the discussion (Table 2) toe display the bias and mean error surfaces of the Bayes estimator, the
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explicit estimator, and the maximum likelihood estimator. Since the

moments of the Bayes estimator and the maximum likelihood estimator are

somewhat costJ¥ to compute and since they must be computed at the 49 points

y. displayed in Table 1 to obtain average mean square error .itthen becomes
J.

convenient to use these 49 points of the quadrature formula for the purpose

of display. This is the reason for the choice of' the 49 points YJ.· = (e.,J. J.
used in Tables 1 and 2.

Two explicit est_tors are cOXlSidered, a linear'tunctionJI in yo

and a quadratic function'in y

The pert'ormance- of these estimators' relative to the Bayes estimator and the

maximum likelihood estimator is shown in Table 2. The table- gives the value

of the parametric function, the bias and the root mean square error for ee.ch

estimator at each parameter value of the quadratic together with the

root average m.ean square error for each estimator.

_.'4It ... ---\ - - .. ---- - - - ------_...
Table 2 here.-. -- .- -- -- _. - _. -

These c:onc1usioXlS obtain fraJl Table 2 according ,to the criterion of

average mean 'square error • The slight improvement in the performance of the
A, A

expJ.icitquadra.tic to the explicit linear estima:l:iorgl
is not worth the a.dded ccmplexity entailed. The explicit linear estimator
A'

glisa seriouscOlnl'etitorOf'tbe Bayes' esti:alatorinview of' its sJ,mplicity.

Theexpl1cit'linea.restimator>ls improvement over the maximum. likelihoOd.

estimator.

I



11

'rhe detail4 ot the canputat10%13 are as .follows. The mallem.ts of the

tit explicit estimators. were obtained exa.ctJ\y· using the usual fomulae for the
manents of linear and quadratic functions of norma.J.:l¥ distributed randan

variables. The. moments of the Bayes I estimator were obtained from 2000

Monte-Carlo trials usiDg method; of variance reduction

(RammersJ\y and Handscomb 1964, p., 59-60). The randail number generator' employed

was: GGNOF (ooL 1975); the exp.1:.i.cit li..nea.r estimator was used as the con-trol

variate. The estimated standard error of JAMSE. for the es1:imator was

.000034695. The mc:ments of the. ma ;xjmrmt· l jkeJ ihood. estimator'were approT;mated

using the moments of the distribution.. As a.. partial check on

accuracy the mc:ments of were estimated for Y = (1.4, .4, .025) frOD. aD,;

existiJlg set of 4000 simulated values of the least squares estimator § (Ga' 'ant

1976); the results were Est (e.[g{a)]) = 1.25283 and. 31 = .00l.359lD7
A

yielding Est (,J!SE[g{e)}}= .03687 which Call1'SZes favorabJ\y with .03670 , thee value reported in Table, 2. All code was written indoub.le save the

use of GGNOF, usiDg an. IBM 370/165 .

6. Confidence Intervals

Any procedure for finding an exact confidence region for Y used to
. '* Afind an exact confidence' region for g (y). Let r be a random. set function

depenrling on such that

. A

P ((;r:yinr}) 1 - Ct
Y

... * ALet G = (g (y): y jn,r}; since

*'" A{;r:g(y)in Gl;::) (y:. yinr}

e .
it follows·tha.t



y=

·12

Thus Gis an exact confidence intervaJ. for· g*(y) - exact in the sense that
the probability statement· is correct, not approximate •.

*When g does not depend on a' ,as in the example, consider

where 800 is a q-vector of known constants and A is an n by q matrix of known

constants. Then, foJ.J..owi.I1gHartley(1964),

where

is an, exact confidence region for 9; F denotes the up.per Cl l'ercentage point. of
Ct

the F distribution with q degrees freedCIIL for the numerator aDdn-q degrees

*treedcm for the denominator. An exact confidence interval for g (e) is

... * ...
G = (g(e):'einej

To illustra.tewith the example, .consider' the' sampJ.e

0·31753
0.42208
0.62973
0.56630
0.54830
0.26603
0.29474
0.49830
0.58632
0.63670
0.56983
0.•26299

geners.teda.ccordingto the model withe = (1.4,.4) and a = .025

e·



. A=

-0.27126
-0.3320J.
":0.l8570
0.035484
0.2106J.
0.38468
-0.27126
-0.3320l
-0.18570
0.035484
0.2106l
0.38468

0.45343
0.;8293
0.427J.7
0.l4643
-0.C'J('('t'18
-0·30496
0.45343
0.58293
0.427J.7
0.l4653
-0.077778
-0.3.0496

With these choices, the first element of U = aO + A'y is the best linear

"*average mean. square estimator of g' (e) and the secoILd element of U is

the bef3t linear ave::a.ge mean square error of 81 •

*The of g. (e) is the value J..2255 observed. for UJ.. and the exact

conf'1d.ence.· interval. is

*ar of com];)arison, the ma.x;nrom likelihood. estimate of g (e) is L2077 and a

eonfidenceinterval obtained from. the asymptotic theory' of the least squa.res

est:1Jlia.tor is
(J..1206 , 1.2948)

* .which is approxiJIlate, not exact. The true value of g ( a) is 1.2528 •

This procedure for finding a confidence interval analagous to

s method for finding mldtipJ.e con:eid,ence intervals whicha.re s.imu.ltaneous4r

va.l1d.The ua ine" may be used for several'
. .

•• of confidence intervals which ',are

siinuJ.taneous4rvaJ.id,. As with s method, the procedure is conservativa.
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In this instance, the intervaJ. was longer than that found using' the

*asymptotic theOliT of the maximum likelihood estimator of g (8) •

The first attempt to find an exact con:fidence interval f'or this sample

used the statistic [U1 - aOl - A11f( a) I' (A ' lA1 UJ. - am - t( a) ]/si< a) to
find. the preHminar.r region a '. However, the region was constrained on the
left onJ¥ by the parametric constraint 8a S 61 and appeared to cottjjinue

indef'1n1telir to the right. The addition of the best linear ayera.ge mean square

error estimator of SJ. as, a second canponazrt of U remedied the problem and. produced
...

a small, elliptically shaped region for'S

7. Discussion

It is' seen that linear estimators for use in nonlinear regression analysis

may be found by truncating a Fourier series expansion of a Bayes. rule. And

that the linearly of these estimators may be exploited to find exact confidence

intervals for a parametric function of interest. Subject to the regularity e
conditions,21 it is seen that the average mean square error of a

explicit estimator may be made as near the minimum achievable as is desired by

taking the degree of the polynomial sUitably large . And that the poJ..ynomial

explicit estimator converges in probability to the Bayes rule as degree increases.

The most serious deterrent to use of the explicit estimator in applications

is the requirement that the' user produce a prior.. However, ·innonlinear regression

a.nal\rsisone'· kust usuaJ.J¥ D.a.ve someknowJ.edge of the situation in order to find

sta.rt1IlgvaltJ.es for canputing thelea.st. squares estimator. But. the fact that

different investigators will obta.iI1different resuJ.ts dependiI1gon the

subjeCtive choice of<a prior whena.lle.lserema1ns the same is distm:bing •

On the other hand,onecan envisage an industriaJ.application·.1nvolving

repet1tiveestimationsfortheptttposeot c:a.J.ibration where the simPlicitY of e
e.linear estima.tor wOUld be anoverwheJm;ng advantage. The

tindusein such contexts. (
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It is possible to develop a forma,l the0J.7 of unbiased estiml!tion by

borrowing the ideas of estiJDabillty fran linear regression and. proceeding a.J.ong

lines analogous to those used here In examples, there was the probJ.em

that unbiased estimators of the fom. a,' z usua.lJ.;r did not exist and another that,

when they' did, they depended on onl;r one or two of the n observations. This

did. not appear to be a. line of inquir,r and was abandoned.

It is of interest to a referee', and perhaps of general interest, to obtain

the explicit estimator for a model which is linear in the parameters. .The

classical problem is the estimation of A.' e for a model of the form y .= xe + e
A

where a.ttention is restricted. to estimators of the form A.' e= aO + a.l 'y. Rather

than find the best linear unbiased. estimator, cons.ider- the linear :explicit estimation

which is obtained by solVing the system of equations

r e (.1 y ') dp (ao) = r A' a e ( 1.) dpr Y y IT I al r Y y

Upon evaluation of the integrals th-.;se equations obtain

a/x'
x.V Xl + xaa/x/+a

where a=Se dp , and Va =S(8-a)(e-e)'dp This system is

equivalent to the system

_ a'x' .. ) (ao). =.( A
rJ X' + as .a . rJe 1 8

which has· solution

8.0 = .. ,;1
al· = X(X/X+ -1)-1 A.•. . 'oJ 9 .

The estimator 'beccmes
A .
. '( I -l.(X 'y. + ;:.2--.-..

8
1 .-9 )A. 'e= A. X X + \,j-V 'oJ-V:
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An estimator of S itself may be inferred from this expression.

By virtue of the discussion in Section 4, this estimator is coincident
with the Bayes rule whenever the Bayes rule is linear in the observations.

As an example, let the likelihood be the n-variate normal with mean Xe and

variance-covariance matrix IiI; let the prior be the natural conjugate prior.

The natural conjugate prior is comprised of a conditional distribution of e

given (J2 which is a p-variate normal with meanij"'and variance-covariance matrix
- - _. -- - .. ..

0'2t .and a marginal distribution for (J which is the inverted gamm.a with para-

meters s and v > 2. Then J Sdp = 8, J (J2ap = vs2/ ev-2), and
A

Jee-e)ee-6)'dp = [vs2/ev - 2)] t. SUbstituting into the formula fOr x'e one

obtains

which is imm.ediately recognized as the Bayes rule.

The class of estimators of the form
r..
X'e = x'eX'X + ;ev-l)-lex'y +

is quite rich. It :includes the Bayes rule with normal likelihood and natural

conjugate prior and any Bayes rule which is linear in the observations. It

includes both the least squares estimator and the riqge regression estimator.



1. Quadrature Formula

Parameter Value Weight

1. ali 92i 0'1 Pi

1 1.52972 0.40788 0.01824 0.01297
2" 1.27028 0.39212 0.01824 0.01297
:3 1.40000 0.4333Q 0.01824· 0.01297
4- 1.40000 0.36661 0.01824 0.01 a97
5 1.4483'7. 0.41539 0.01824 0.·02157
6 1.·33163 0.40951 0.01824 0.02157'
7' 1.44837 0.39049: 0'.0>1824 0.02157'
4, 1.33163 0.38461 0.01824 0.02157
«; 1 •.49649 0.43070 0.01824 0.00923

'10 1.30351 0.41897 0.01824 0.00923
11 1.49649 0.38103 0.01824- 0.00923
12 1.30351 0.36930 0.01824 0.00923
13 1.52972 0.40788 0.02625 0.05084
14 1.27028 0.39212 0.02625 0.05084
15 1.40000 0.43339 0.02625 0.05084
16 1.40000 0.36661 0.02625 0.·05084
17 1.44837 0.41539 0.02625 0.08456
18 1.35163 0.40951 0.02625 0.08456
19 1.44837 0.39049 0.02'625 0.08450
20 1.35163 0.38461 0.02625 0.08456 ..'.
21 1.49649 0.4301'0 0.02625 0.03618
22 1.30351 0.41897 0.02625 0.03618
23 1.'49649 0.38103 0.02625 0.03618
24 1.30351 0.36930 0.02623 0.03618
25 t.52972 0.40788 0.04231 0.01025
26 1.27028 0.39212 0.04231 0.01025
27 1.40000 0.43339 0.04231 0.01025
26 1.40000 0.36661 0.04231 0.01025
29 1.44837 0.04231 0.01704
30 1.35163 0.40951 0.04231 0.01704
31 1.44837 0.39049 0.04231 0.01704
32 1.35163 0.38461 0.042:31 0.Ot704
33 1.49649 0.43070 0.04231 0.00729
34 1.30351 0.418'97 0.04231 0.00729
3S 1.49649 0.38103 0.04231 0.00729
36 1.30351 0.369.30 0.04231 0.·00729
37 1.5291'2 0.40788 0.09843 0.00002
38 1.27026 0.39212 0.09843 0.00002
39 1.40000 0.43339 0.09a43 0.00002
40 1.40000 0.36661 0'.09843 0.00002
_41 1._44837 0.41539 0.09843 0.00003
42 1.35163 0.40951 0.09843 0.00003
43 1.44837 0.39049 0.09843 0.00003
44 1.35163 0.·38461 0.09843 0.00003
43 1.49649 0 •.43070 0.09843 0.00001
46 1.30331 0.41897 0.09843 0.00001
47 1.49649 0.38103 0.09843 0.00001
4a 1.30331 0.36930 0.09843 0.00001
49 1.40000 0.40000 0.02500 0.0



2•. Bias and. Root Mean Square Error of the Expllcit Estimator, Ba'Y'es' Estimator,
and the Maximum Likelihood E.stimator of the Time of Maximum Yie.ld.

•
b"l1dt !IC1C1l1CClrt·

Up•• 9uacirar:1c Sa..... ' XLi
So 1·<9;' Ui. ";Mll Bla.' ·1. lla. Sla. .JMlt

I 1.1'1830- 0.4a820 0.0-32'10 0.02903 0.03300 0.oa040 0.OZ.46 0.0- o.ez• .,o-
a 1.33851 -0.03340. 0.0r12T ..0.0324,. 0.036416 "0.0223'9· 0.02901 0.0
;S. 1.21310 0.0170&- 0.02376 0.41656 0.02329. 0.OS151 0.02161 0.0' o. OZS 1:1
• 1 • .29663 -o.0151&." 0.022&3 "0.01559 0.022S5 "0.0IS4c4c 0.02163 0.0·
S &.20910 0.cn7"5 0.0243& 0.01749 0.02380 0.00704 0.020''7' 0.0·
6 1.26"&.7 0.jU702 ..0.00_. 0.OS'13'· -0.00194 0.022•• 0.0., 1.2390"1 0.C06". 0.41"89 0.017•• 0.00263 0.n212'1 <1. o· ".OZ62!• 1.29."0' ..0.01686· 0.42363 "0.017'9 0.02"19 ..O.OO".. 0.02199 0.0 0.C2·""·
9 1.16859' 0.03204 0.03607 0.03250 0.43614<· 0-.02··.. 0.02741 0.0. o.ea• .,1
10' 1.28317 ..0.·01000 0.0193. ..0.00"6. 0.019'1'1' "0.00"11) 0.0200a o. a 0.02....'!·
11 1.22..0 0.OU53 0.02017 0.01.166' 0.01981 0.008•• 0.OS908 0.0 0.C257'9
12 1 • .35002 -0.037"•. 0.0&135 "0.03735 0.0411S -0.02753 0.03112 o. a
13 1.17830 0.02.20 0.03692 0.02911 0.0366& 0.02"'9& 0.C:l309 0.0' 0.03'5'64
1. -0.033&0 0.0&102 "0.03239 0.0·099· -0.03CC7 0.036'35 c.o
15 1.2.1310 0.01'10&· 0.02929 0.0166. 0.028!!5 0.01520 o.oas.! 0.0 1).03"'61
16 1.29663 -0.0151. 0.0:%822' "0.01552 0.02861 -0.01471 0.02110! 0.0 o .C3';6a
IT 1.20910 0.01785· 0.02977 0.01""56' 0.02913 0.01259 0.0
18 1.26".'1' "0.00395 0.02.15 -0.00_0 0.02.5'1 -0.00321 0.02"26 o. o· 0.03936' .
19 ..23.07 0.00678 0.02.77 0.006.0 0.02"26- 0.0.0••• 0.OZ'7'90 o• .,
20' 1.29'970 ..0.01686, 0.02918 "0.011'21 0.0291!12 "0.01211 0.OZ969· 0'.0 0.0.013
at 1.16.59- 0.0.320&' 0.03"'" 0.0325. 0.03'9'1''!· 0.031 al 0.0 0.03571
22 1.2831., ..0.0100" 0.02584· "0.00956,· 0.026&9 ""'.00914 0.0264" 0.0 0.04027' e23· 0.01153 0.026.7 0.01174· 0.oa51l16' 0.01165 lI.il2""'3 0.0 0.03"'2
24 I.J5002 "0.03789 0.0·476 ..0.031'!"· 0.04.86 ..0.03.". 0.040\8 ".0 O.".S.B7'
2S· 1.1'1830 0.02820 0'.0."65 0.0293'" 0.0"77 0.. 04050 0.04787" 0.0- 0.05"'5.
26 1.33851 "0.033.0 0.0508. ..0.03216 0.05172 "0.0."3 0.0523'7' 0.0'
2'7 1.21310 0.01"'0. 0.0.201 0.01681' 0.04t59 0.02285 0.4'3675 0.0
2. 1.209663 -0.0151· 0.0.... ,28 ..0.01528 0.0&166 -0.0218. 0 .. 03600 0.0 0.06'389
29 1.20910 0.01785 0.. 04lo!3S 0.OS7S0 0.0·1.8 0.022'7'3 0.0391% c.o 0.05.7,
30 1.267.7' ..0.OC395 0.03560 "0.00&\7 0.03920. "0.00561 0.C32S0 0.0
31 1.2390'1 0.03899 0.00663 0.03431 0.00851 0.0
U 1.29970 0.0419. -0.0169" O.O.Z'7" "O.OZt!!O 0."3S." 0.0
33 1.16859 0.0:3204 0.05001 0.03281 0.0.921 0.a·tto96 0.05255 0.0 0.O57!6
3. l.a1l317 "0.01000 0.03968 ..0.00963 0.04080 "0.01437 0.0 0."".91
35 1.22f1&O 0.01153 0.0&010 0.01197' 0.0390& 0.016.0 0.03301 0.0
U 1.,)5002 "0.037'9 0.0539' 0.0541070 -0.05235 0.05754 0.0 0.0!1'4Q
31' 1.17830 0.028Z0 0.09'68 0.03103 0.0904. 0.06311 ".06893 0.0
3. I.J38S1 -0.03340 0.09538 -0.030• ., 0.09"2. -0.06"fol 0.0"9'15 0.0 0.15736
39 1.21310 0.01'7'0&. 0.090'95 0.0"05" 0.03653 0.0.'46 0.0 0.14teO.
.0 1.2ge63 -0.•0151. 0 • .,90.1 -0.01360 C.0913" -0.03635 0.0.126 0.0 0.14860
4' 1.20910 0.01785 0.09110 0.019&8 0.oa9S3 0.03.33 0.0.596 0.0 0.13'900
'.2, 1026747 ·0.003.' 0.089&3 "0.00Z48 0-.090912 0.02""'\ 0 .. 0 0.14"61
43 1.2390., 0.006'18 0.08959 0.00831 0.0"8311 0.01261 0.02662 0.0 0.14112.... 1.299'7'0 "0.01646 0.0"0"1 -0.01529 0.0.2'2 -0.03'1'81 0.04'.3 0.0 0.150$1•• 1.16859 0.0320. 0.094.1 0.0.3_" 0.09222 0.Ot.?6 0.0"6'1! 0.0•• 1.2831" ·0.010'00' 0.08.90 -0.00"••. 0.09278 -0.0221" 0.OZ464 0.0 0.15101
4'1 0.011 '3 0.0"00. C.01365 0.oaff3 0.02529 0.03212 0.0 0.13"21
4. 1.35002 "0 .03'189' 0.09704 ·0.03535 0.10029 -0.05.23 0.oe419 0.0
4. 1.:527 • O.C'OU3 . 0.022"" 0.00100 0.01'l"?? 0.02·15 0.0 ,,·.o:!...,.,

0.0323" O.(l3a3. 0.030'" 0.0.122

e'·
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Appendix: lJfueorems and Proofs

A.1. A Sampling Theoretic Derivation of the Estimator

Let the columns b. of B be a basis tor Cl and. define
J. .

&r... (y) =e. (bi
l z)-01. y.

Let 11 be the·· r :t r matrix with typical element

(1 =1, 2, ••• , r) •

(1, j - 1, 2, •• , r)

a.nd let h. be the r-vector with typicaJ. eJ.ement·

(1 =1, 2, u., r)
...;,:

The matrix 11 is positive semi-de:f'i.nite s.ince, for an arb1trar,r r-vector Ct ,

Moreover, the equa.tions. Ha = h.: are consistent with So solution

where 11- denotes a:rr:l genera.lizedinverse of 11. Set

g(y) = Ii=l

Lemma 1.. Let a be an arbitra.ryr..vector. Then

* _. 2 ()= (a - all H (a - ;)+ j Cg(y) -g(y)] dp y
r
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Proof: Add a.nd subtract g: and expand the integrand to obtaiIl

*: --.-+ 2,[ (g - g) (g ... ) 'd9 •
i

By substituting g= in the last: two terms one obtains
J.

Substitution, using the equations deti ning H and h , yields.

The c:rossproducttexm is zero because; is a soJ.ution ot Her = h • a
Let V(y) be the variance-covariance matrix of z with typicaJ. el.ement

vij ('() . tet·>V be the mx mmatrixwithtypicaJ.element

v.. =J .v,';j',(Y)dp (y )J.J r ...
Note that Vis positive semi-def'initesince, form arbitrary' m-vector a,

a'Va. =l a'V(YYa dp (y) 2: 0
r

Lemma .2. Let<a be a.narbitrary'choiceof an 'm-vectorfrcm(Land let'

the.:r-vectorasa.tisfy'a.,'=<Ba. Then



== Ja'V(y )130 + Cg*(y) - Cl 'e (:B I z) ]2· dp (y )
r Y""

By integrating the first term and Lemma. 1 to the second., one' obtains

Theorem 1. In the class of estimators of the form. a I Z with a. in a ,
that choice of a which minimizes

AMSE(a ' z.) == S[a'z - g* (y)}2 dp(Y)
r "

is

An alterIJative tom;, for· cc:m.putationS, is

Proof: Rearrange the terms of the expression iIl Ienma 2,

AMSE(a'B/z) == a'(B'V'B+ H) a ... 2t:r'Ib+.const.

This is a quadratic equation· in Cl with stationary' point

a == (B'VB + !l)-rra
and positive semi-definite Hessian matrix B'VB + H • Note that ga" == h

to obtain the first .fom; givan in the theorem. The second fom; is obtained by

verifying these equalities algebraicJ¥:

H == B'Se(z)e'(z)dp B ,

and

B'iiB == B'St(zz') _. e(z)e'(z) dp B

*h= B'Sg e(z) dp. 0

,
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A.2. Bayesian Interpretation of the Estimator

The reference for notation, terminology, and general results is Hewitt

and Stromberg (1965, eh. Dr, Sec. 16).

Def"l..ne the mea.sure 1Jo' on the Lebes'gue subsets of'l1 x r by

:fr IA(Y, y) D(y\f(e), 1 dp(y)
r

where is n-dimensiona.l. Euclidean' space' and. IACy y) denates the indica.tor ..

:f."I:1nction of the set A • Consider the collection of' measurable, square

ftmctions with respect to this (probability) measure S:lia denote this .. collection
. _.. . .

<gJ.' =J J gl(Y' Y y) y)
f1l

and. the'corresponding norm is

r 2 "Ilg11 = (<g, = LJ f g (y, y) y )]2
I'"l;

These definitions comprise a. HiIbertspace on the collection of

squareintegra.b1e functions with <argument (y, y) (Hewlitt and, Strcmberg 1965,

Eg. 16.8).

An estimator, g(y) ,is a. square 'of y

that is a member :2(lt· x which is eonstant with respect to variation

in y • Theave1"a.ge mean square error of an estimator is
. - - . -

the>squa.re of the dista.n.cebetween the estimator g(y) a.nd.theparametric

ttmction g*(Y) • The mean of g*(y )witll respect to the> posterior density
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. . .' *
the J3qes rule, is the. orthogonal. projection of the parametric ftmctioI1. g (y)
- -e .i.nto the collection est:i:ma:tors with respect to the in:l:ler product· < , > •

- .-
That is, the Bayes rule satisfies the Pythagorean identit'y'

.... *2 .. -2 r::!. *.2UBi. gJJ =o' IIg gn + hg - g \I' •.
ApP.I;ying tlli -identity -to functions of the fom a. 'Z(y) with a in u the-

equation

9pta.ined•. Since the second term does. not vs:ry' with a i-t. follows.that an

attempt to mi nim; ze AMSE Ca 'z(y) 1 by var.ring a represents an attempt to
m; n;mi ze 11a.'z - ill '.

N- ,. .

Note that neither a'Z (y) nor g (y ) . depend on y • The dimension of the

latter m.:in;mjzation prob.lemm.q, therefore, be reduced and attention. may' be

e restricted to :f'Imctions on 1l.' which are square integrab.le with

respect to the measure \J defined on the JAbesque subsets of J.d.. by

'*'That is, tom;njmi ze lla' z - g II with respect to the norm on :2 x r,\oI- ) it
. ,

suffices to find, ainu which minimizes lIa'z - gil with respect to the nom
\J) • We have, by Theorem that the choice

miTlim;zes AMBE [a'Z(y)Jwhence this choice is the solution of both of these

mi D:tm; zation problems.: For canPUtations, we have by Fubi3:ri.'s theorem that

for gCy)



d.'U{y) = rrJiJ.g(y) n(ylf(S), rs ) d:3' dp(y)
. _.

·-=:..1 g{y) rn(y If( e.) " a )dp (y) d:3'"
11.'

= Jg(y) p(y) dy •.

foregoing ciiaeussion _summa.rized as Theorem 2. •

._Theorem 2..- Le"t 'g{y) be the Bayes rul.e. which minim; zes expected poa"terior"

*"square error loss when estima"tiDg g (y) with. prior measure p on r .' Let p.(y)

be the marginal dens:ity of the observations,

p(y) =J n(ylf(eL a] dp(y) •
r

'rhe es"timator g(y) of Theorem 1. is the besot approximation of the Bayes 1 rule

in the' cJ.a.ss of estimators of the form. a'Z (y) with a in a in the sense of

minimizing the distance

Consider the sequence of functions [CPi (y) by

orthonormallzation process from CZi (y ; the-orthonormalization is with

respect to .£2 (y '\)); m - d refers to the fact that there .may- have been linear

dependencies a. e. among> the. [Zi(Y) which were eliminated by deletion prior

to orthonormalization. Note that it is a property of the Gram-Bchmidt process

that to within. a null set the collection of.· functions of the form ·!fl·.l a. Z. (y)
1.= 1. 1.

is the same as the collection of functions of the citpi(Y) provided

thatu= Ifl. By Theorem. 16.16 bfHewitt and Stromberg (1965) the choice

... = g{y) q).(y} p(y)dyminimiZes\lg-r;t-d1• c.cp·llregardedasa function1. .. 1. . . . . . . . . 1.= 1. .1.

of (cl ,c2 , ... , cm_d)' aIld.thatthis choice is unique • But ti=l ;i Zi(Y)
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is of the form. ti:1 ci CPi (y) to within a null set and. minimizes It g- ci CPi lle by Theorem 2 whence it follows that ;i CPi(y) = ti=l';i Zi (y) a.e.

Note that the choice of (Cl ' c2 ' .•• , is unique but the choice of a may
not be.

We mJ3:3' summarize this discussion as Corollary 1.

C07:ollary 1. Let g(y) be the Bayes rule which minimizes expected posterior. . .
square error loss when estimating g (y) with prior measure p on r. Let pey)

be the marginal density of the observations and let [Zi be a subset

of S-2(y, \») where \) is defined by \)(A) = Iy I A(y) p(y) dy. Let [cpi,

be an orthonormal sequence generated from [Zi(Y by the Gram...schmidt process.

Then the estimator g(y) of Theorem 1 with a = ffll satisfies
.. ..m-d
g(y) = ci CPi(Y) a.e. \)

where c1 = Iy g(y) CPi (y) p(y) .

e It is. of interest to have a sUfficient condition such that the distance
I'Jt. f'.I

H g - g II between the Bayes ..
rule g and the explicit estimator g,may be made..

arbitrarily small by taking g to be a polynomial of sUfficiently high degree.

Theorem. 3 states such a condition.

Theorem. 3. Let \) be a probability measure defined on 4, the n-dimensional

real numbers, and let [Zi be a basis for the polynomials on y. If the
moment generating function, I y exp(u'y) dv(y),exists on an open neighborhood

of the zero vector then S-2(y,v) and [Zi is complete; that

is, f cS-2(y,'J) and < f, Zi > = 0 for i = 1,2, •.. implies f= 0 a.e. \) •

In consequence, if [CPi (y is a sequence of orthonorm.a.J. functions generated

from [Zi by the Gram...schmidt process, if·f C S-2(-Y'\))' and if

f(y}= 1'· c.cp. (y)where e. :II <I', cp.> thenm = J.J.. J. . J.

.tim. Itf - f It= 0 •m-eo· . m



Let 0. :> 0 be such that
J

Let f c be
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Proof: Existence of the'moment f'u.nction implies all moments

of a distribution whence [Zi(Y) c (ll, 'J ) •
u'y

J e 'd'J(Y') <fR' for -0. < u. < 0. , j = 1,2, .•• , n •. '.' J J J

given such that < f, Zi :> = 0. for i = 1, 2, ..• . Consider the function

fez) = r fey) exp (z'y) dV(y)
where z is of the' form z = u +" i v and u, v Ell ll. Now

Iexp(z'y)\ = lexp(u'y)[cos(v'y) + i sin(v'y))\

s Iexp(u'y) I .
which shows that fez) exists if -OJ< uj < OJ , (j = 1, 2, eo., n). Deccmpose

+ - + - . t·t b hf as f = f - f where' f and fare ,nonnegat:t.ve. Suppose hat J. cane sown

that "f(iv) == 0 then it follows that

+. The same constant multiple will normalize both f and f" so that the measure

defined byP+CA) = CJAf+CY) d'J(y) and P-CA) = cfAf-(Y) d'J(y) are probability

measures. But the equation above implies that these two probability measures

have the same characteristic function. + -ConsequentJ..y, f = f a.e. 'J whence
+ -f = f - f =0 a.e. 'J • Thus, if it can be shown that -r(iv) == 0 then

[Zi (y) is ccmplete.

Now

, c f(Z) = J exp(z 'y )dP+ (y) - f exp{z 'y) dP-(y)

and byappJ..yingTheorem 9, Chapter 2, of (Lehmann,1959, p.52) to each function

on the right <onecari conclude that f(z)-is an analytic function of the single

variablez j = Uj + iVj over the region ''OJ <Uj<Oj ,....at < vj <o:l providede
theremainingva.riables are held fixed at points with -OJ < uj < OJ
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for j' :I: j • BY' Hartogs 'Theorem (Bocmer and Martin, 1948, p. 140) it follows
....e that 'fez) is a.na.l:ytic over the region -OJ< u j < OJ , ..co < v j < = (j :: 1, 2, ••• ,n).

The same inductive argument used by Lehmann in the proof of Theorem 9 to show.
that all derivatives of the form. (om/Ctz. j m.) fez) may be computed under

the integral sign may obviously be used to conclude that any partial
m.

OZj J) fez) may be' computed under theintegra.l sign. Now

m m
£0(0) :: j) fey) exp (z'y) d'J(y) \

z=0

m
:: J "'';::1Y'j j f(Y') d"i.(Y)

:: 0

m.
since yj

J is some finite linea.r combination of the Zi(Y') (i:: 1, 2, .•. ) .

Since fez) is a.n.a.l;y'tic then fez) == 0 over the region -6.< U., < 6. ,
J J J

..co < v. < = (j :: 1,2, .•• , n) and in particular f(iV) == 0 for ..co < v. < =
J J

(j :: 1, 2, •.• , n) as was to be shown.

The claim that Lim II f - f II :: 0 follows directly from Theorem 16.26m-- m
of Hewitt and Stromberg (1965, p. 2.45). a

The following result followsimmediateJ.y from Corollary 1 and Theorem 3.

Corollary 2. Let g(Y') be the BaY'es i rule which minimizes expected posterior

*square error loss When estimating g (y) with prior measure p on r. Let the

moment generating function of p(y) , the marginal density of the observations,
=exist in' an open neighborhood of the zero vector. Let [Zi (Y')} i=l be a basis

for the polynomials. For each m let

be the estimator given bY' Theorem 1 with a = Jfl .
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Then

'converges in mean square to g with resl'ect to the l'redictive
density l'(y) then converges in both probability and distribution to g
with resl'ect to thel'redictive density l'(Y). From. the saInl'ling theory l'oint

of view it is of more interest to know whether or not converges in l'rob-
,....

lability and distribution to g with resl'ect to the conditional distribution

N.(y If( e) ,(1) • A sufficient condition is given as Theorem 4.

Theorem 4. Let v denote the probability measure on the measurable sl'ace

(lJ, i) determined according to V(E) = IrIll n(ylf(e),O') dy dp(y) and

let v ( ·Iy) denote. the probability measure determined by v (B.!y) = IllI (y)n(yl f( e) ,O'J dy.
, 'tt B

.

Let converge in l'robability to g(y) on (ll, i, v). , If (v(BlY)}Bci is an

equicontinuous family at YO and if for every 0l'en set r 0 containing YO p (r0) > 0

then converges in probability to iCy) on [lJ, i, v(. IYo)] .

Proof: Given 0 > 0 choose an 0l'en set r o Qontainingyosuch that for all

B e i Iv (B Iy 0) - v (B \y) I < 0/2 . Given c > 0 choose M so that m > M iml'lies

V(B ) < p(ro )0/2 for B = [y: Ig (y) - gCy) 1< e} . Thenm m . m

PCBmlYO) < [l/p(ro)] I ro PCBm\Y) dp(Y) + 0/2

S[l/pcro)] I r PCBm\V) dpCy) + 0/2

< 0'. 0

A l'roofthat normal distribution generates an equicontinuous·· family

[v(BIV}}Beiwhenf(6) is continuous is> given below. It is straightforward and

c.auld be al'l'lied to many common distributions. e



Theorem 5. Let fee) be a continuous function on a closed set (8, let

n[ylf(a), O'J be the n-variate normal density function with mean vector fee)

and variance-covariance matrix rlI, and let B denote the Lebesgue subsets
of Rn • Then the family [v'(B Iv)}BcB where V'(B IY) = JBn(y If( 8), (1) dy is

equicontinuous for every y = (a' ,a)' • e x (0, co) •

Proof: Fix Yo C x (0, co). Let S be a bounded open sphere containing

60, let S denote its closure and set ®=enS whence ij is compact; set

- 2/ 2 2/ )E = [a: '10 2 S (j S 30'0 2 •. Given s > 0 there is a radius I' such that each

closed sphere Y
e
with radius I' and center t(e) satisfies v(y Iy) > 1 -s/4 for. a

all a e Then f = U...Ye is compact since the continuous image f[®'J of ae
compact set ® is .compact. Now the normal density function n[y If( e), a] is
continuous in (y,8,O') on the compact set f Xe X hence uniformly continuous.

Then choose 5 such that \(y',e',O') - (y', eO' 0'0)\ = ICa', a) - (eo'O'o)1 < 5

implies In(ylf(e),O'] - n(ylf(80 )'O'o JI < s/(2 J- dy). Now
Y

IV(B!y) - V(B1YO)1

= IV(B n flY) + v(B n (OW flY) - v(B n flYo) - v(B n (OW flY)\

S IV(B n flY) - v(E n fl yo ) I + ./2

S e •

Thus, [v(BIY)}BeB is equicontinuous at YO . n
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Footnotes

If there are deletions then the expansion is truncated at m less the

number of deletions.

gj Read B2 = [(551 + 41 to correct an error in their formula.

;J See the next section for the values of ai .

Note thatUi is a function of the sufficient statistic

21 The predictive' density for the example does not possess a moment generating
function. Nonthe1ess, the computations yield results one would have

anticipated had it existed.



•

•

•

31

References

Bochner, Solomon and Martin, William Ted (1948) Several Complex Variables,

Princeton, New Jersey: Princeton University Press.

Box, G. E. P. and Lucas, H. L. (1959) "Design of Experiments in Non-Linear

Situations," Biometrika, 46, 77-90.

Gallant, A. Ronald (1976) "Confidence Regions for the Parameters of a Nonlinear

Regression Model," Institute of Statistics Mimeograph Series, No. 1077,

Raleigh: North Carolina State University.

Guttman, Irwin and Meeter, Duane A. (1964) "On Beale's Measures of Non-

Linearity," Technometrics, 7, 623-637.

Hammers1¥, J. M. and Handscomb, D. C. (1964) Monte-CarJ:.o Methods, New York:

John Wiley and Sons, Inc.

Hartley, H. O. (1964) "Exact Confidence Regions for the Pa.rameters in Non-

Linear Regression Laws, II Biometrika, 51, 347-353.

Hewitt, Edwin and Stromberg, Karl (1965) Real and Abstract Analysis, New York:

Springer-Verlag Inc.

LB. M. Corporation (1968) System 360 Scientific Subroutine Package, Version

III, White Plains, New York: Technical Publications Department.

LM.S .L. (1975) OOL Libraryl,Fifth Ed., Houston, Texas: International

Mathematical and Statistical Libraries, Inc.

Lehmann, E. L. (1959) Testing Statistical Hypotheses, New York: John Wiley

and Sons •

Stroud, A. H. (l971) Approximate Calculation of Multiple Integrals, Englewood

Cliffs, New Jersey: Prentice-Ha.ll, Inc.

Zellner ,Arnold (1971) An Introduction to Bayesian. Inference In Econometrics,

New York: John Wiley and Sons, Inc.


