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Abstract

The possibility of employing explicitly defined functions of the
observations as estimators of parametric functions in nonlinear
regression analysis is explored. A general theory of best average mean
square error estimation leading to an explicit estimator is set forth.
The estimator is shown to be a truncated Fourier series expansion of
the Bayes rule which minimizes expected posterior square error lcss‘
(equivalent to average mean square error). Sufficient conditions are
given for a polynomial estimator to converge in probability to the Bayes
rule and for. its average mean square error'to converge to the minimumr
achievable as degree increases. In an example it is found that a. linear
function of the observations outperforms the maximum likelihood estimator

and performs nearly as well as the Bayes rule.
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1. Introduction

’ The fundamental difference between linear and nonlinear fegression
analysis 1s that the statistics customarily employed in linear regression
analysis are explicit functions of the observations while those'employed

. in nonlinear regression analysis are implicitly defined fﬁﬁctions of the

observations. As an instance, the maximum likelihood estimator of the
parameters of a linear model with normal errors is a linear function of the
dbservedvresponses but? when the model is nonlinéar in the parameters, it is
defined as the solution of a nonlinear quadratic programming problem and
cannot be given an explicit representation. In consequence, there are two
sources of error in nonlinear analysis over and above those encountered in
linear analysis. The first, a statistic may be incorrectly computed due to
the inherent unreliability of iterative nonlinear optimizaﬁion algorithms.

The second, the sampling distribution of a statistic must be approximated

using an asymptotic theory which leads, for example, to errors in computing

the moments of a statistic or in computing thevprdbébility statement associated

with an inference. If statistics with explicit representations were available
for use in nonlinear analysis some progress might be made in eliminating these
sources of error.

An attempt‘tO'find such statistics in an estimation context is reported
here. A general theory of best average mean square error estimation leading
to explicit'éstimatdrs is set forth in the next two sections. Such estimators
are given a Bayesian interpretation as Fourier expansions of the estimator
which minimizes expected posterior square error loss in Section 4. In the
-example of Section 5, a linear function of the observations performs better than

the maximum likelihood estimator and nearly as well as the Bayes estimator
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according to the criterion of average mean square error. A procedure for

finding an exact confidence interval for a parametric function which uses ' .

the linear estimator is given in Section 6. The article concludes with some

comments.

2. The Structure of the Problem . -

The cbserved data y,, X, (t =1, 2, «.sy n)are agsumed to have been
generated according to the statistical model

Yt = f(xt:' 6) + et’ : (t =1y, 2, ceey n')

The form of the résponse function £(x, §) is known, :bhe; unknown paremeter

8 is a p-vector kncwﬁ to be contained in the parameter space @ , the inputs

x, are known k-vectors, the univariate responses ¥y, are cbserved, and the

errors ey are assumed to have mean zero. The distribution function of the errors |

is denoted as Ne(e|c) where e = (el, e , en)’r, an n-vector. A typical ‘

assumption is that the errors are independent normal in w}hich. cage ¢ is univariate,

but in general ¢ is an r-vector contained in ¥ . The problem of interest is

the estimation of a (possibly) nonlinear parametric function g*(y) where vy = (8', o’)’.
As an example, the rélati'vé yield at time x of an intermediate substance in

a chemical reaction is given as

8, xg,
2x, 8) = 0y(e 2o 1)/(8,- 8,)

under specified conditions. It may be of interest to know the time at which the
‘maximum yield of the substance occurs. This time is given by the parametric
function

g (815 8y, @) = (Ay- 8,)7 4n(8,/6;)




which dep.encis only trivially on ¢ . The approach taken here shall be to

estimate this parametric function directly by an estimator of the form, say,

B = g * Ty 2y

where Vg is the yield observed at time Xy - Note that this approach differs
from the procedure of estimation of the parameters el, 62 s d‘ and subsequent
evaluation of the parametric function g*(el, 85> g) at the estimated parameter
values.
The estimators consideréd are | obtained as. follov}s . The
cbserved Ty s denoted as the n-vector .
7= (Fy5 7o cees v s
are transformed according to
z=2(y) . |
The finction Z may be any vector-valued mapping of n-space to m-space but
the convenient choice m applications is to take a basis for the polynomials
» in y of, say, second degree as the components of Z(y) . The class of
estimators g of the form
g=a'z
where a is an m-vector restricted tb a linear space O are considered.
Es'bima.toré of this fbm are explicit functions of the observations,
‘viz. gly) = a'z(y) . |
The estimator § to be chosen from this class . .. . is that
which minimizes average mean square error with respect to a weighting
measure p- defined on T ='®. X T . VTha‘b is, one seeks to find g of the
form g = a’z minimizing |
e () = [ e.[& - &) a p(v)

where a is restricted to. QG .



The notation € (+) refers to expectation with respect to the distribution of
Y .

¥; that is, with respect to the distribution function

M Ly|2(8), o1 = N[y - 2(a)lo]

where

f(e) =/,Ef(x1:’ 9)3 f(xaa. e): ey f(xn:- 9)]'

It shall be assumed throughout that the components of Z(y) are measurable
and sq,uare'integra.ble with respect to l\Ty_Ey{f(e), ¢] and that the functions
g*(‘(), g, 8yfzi(y)], and the like are measurable and square integrable with
respect to p

3. A Samphng Theoretic Derivatim of the Estimator

Let bl’ ba, ceey b be m-vec'hors constituting a basis for G and arrange

them as column vectors in the m X r matrix

W
]
[ |
o
-
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o
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The following result is derived in the Appendix: in the class of estimators
of the form a’z with a in G , that choice of a which minimizes the average

mean square error with respect to p is
8=30'T[ e, (z2") (BY B[ (V) &(2) BT .
.The notation ;_ EY(zz’ ) do(Y¥) denotes the’ m X m matrix with typical element
J‘l" eY(zizj) dp(y) . |
Similarly f '\ g*(Y)Vey(z») .dp (y) denotes the m-vector with typical element
, r
[ g e(z) (1) -

~ The notation A” denctes any generalized inverse of A . If there are no
restrictions on the choice of a then B may be taken as the identity matrix

and the formula simplifies to
| | as= Ej‘ e (zz") dp(v)] J' g (v) g, (z) dp(Y)
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Often, in applications, the error distribution N_(e|g) is taken the
n-variate normal with mean zero and variance-covariance matrix O'ZI . If
the functions Zi(y) are taken as polynomials in y then the elements of
| 8'\{(z) and &Y(zz’ ) may be cbtained as the.moments about zero of a spherical
normal distribution centered at £(9) ; these will be polynomials in £(x, , a)
and ¢ . A natural ordering of the functions Zi(y) is such that ifm= 1+ n
the éomponen’cs_of Z(y) are a basis for the polynomials in y of first degree,
ifm=1l+n+ n(,n‘ + 1)/2 the components of Z(y) are a basis for the polynomials
in y of second degree, and so on. The degree of the polynomial may be varied
by varyiag m or by choice of B ; also, a sufficiency reduction may Ee accomplished
by choice of columﬁs for B . The use of B for these purposes may permit socme
flexibility in writing code to implement the estimator.

4. Bayesian Interpretation of the Estimator

The problem of estimating g*(y) may be recast in a Bayesian setting by
regarding 0 as the prior distribution on I' and Ny('srlf(e), ¢) as the conditional
distribution of y given y with density oly|f(8), ¢]. Take for the Bayes rule
the mean of g%(y) with respect to the posterior density, denoted by g(y).

This choice minimizes expected posterior loss for a square error loss functicn.
Under the previous integrability -assumptions, the expected posterior square
errér loss of an estimator is numerically the same as average mean square
éiroz‘; the different terminology cbrresponds to the nomenclature of Bayesian
or sampling-theoretic inference, respeétively.' Thus, E(y) is the optimael

3 (upr_esﬁr_i_cted) choj':g:e under either criterion.

For a"wAr'arie.ty of purposes it may be convenient to approximate ther Bayes’®
rule by ’cruncating a series expa.néion of 20y . Cbnsider a Fou.rier series
'mion in terms. §f a set of basis ﬁmé‘tions'{zi(y)}ai.:l . The most natural
choice of a weight functio_n,: in At»he Dresent context, is the marginal distribution -
~ of the c‘bseﬁaticns |

lacy = P L MalaAN % a2



Let {cpi(x)}‘;.=l, be & sequence of crthonormal basis functions with respect to .

p(y) generated from the sequence {Z.i(y)'}m%l by the Grem-Schmidt process (with .
linear dependencies in the Zi r'accanod.a.ted. by deletion). The Fourier series

expansion of the Bayes rule is
~ [-- 2 .
with Fourier coefficients

=j‘ e3)e (v) oy) & -
Corollary 1 of the Apprendix states that if this expansion is truncated at.
‘m theny
| a'2(y) = 2 &% ()
provided G = .

This result suggests that the choice of a class of functions to which

attention is to be restricted in the construction of an explicit estimator .
may be regarded as a choice of basis functions for a Fourier series approxi-
mation of the Bayesv rule/. A common choice of basis functions f‘oz_' the
approximation of a non-periodic function is the collection of polynomials;

eg., the Hermite polynomials. Corollary 2 .of the Appendix states that if

the predictive Vdensity function possesses a moment generating function and

if {Zi(y‘)}: 1 ise basis for the polynomials then

4im f &) - g(y)] p(y) dy =0 .

m ==

Thus,-if the explicit estimator is a polynomial and the predictive density
possesses a moment generatmg function then the expected poster:.or square o

error loss (average mean sq_uare error) of the explicit estimator may be made -as nea:

the achieveble minimim as desired by taking the. degree of the polynomlal;-sultabb
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large. This would seem to serfre as further justification for the choice
of low order polynomials for the consﬁz:uc’tion -of the explicit estimator.

A sampling theorist is interested in the extent to which the explicit
estimator constructed froma polynomial inherits the sampling properties of
the Bayes rule. Theorems L4 and 5 of the Appendix show that if the errors
e, are independent normal with common variance 02 and if £(g) is continuous
then

2
gim _m.fgté(y) -8(¥)] p(y) dy =0

implies that g(y) converges in probability to g(y) for any vq = (66,’ c‘o)' for
which p(l‘"o) > 0 for all open sets Pb containing Yo 5 convergence in probability
for such v, implies convergence in distribution. In this sense, the effect
upon the sampling distribution of the explicit estimator corresponding to

some choice of a weighing measure p may be anticipated from the sampling be-

havior of the Bayes estimator corresponding to that choice of p .
5. Example
Consider the statistical model
Ty = £z, 8) * ey

with response ﬁmétion

6 (€% - ¢0)/(g,- 8,) I X
2(x, 8) = -x§ '
le e L - ) Gl = 92 ?

Pparameter | space
® = {(8, 8): 8, 2 8}
and design

C{=x}=1{.25, .5, 1, 1.5, 2, &, .25, .5, 1, 1.5, 2, 4k} .



This model has appeared several times in the nonlinear regression literature

(Box and Lucas 19593 Guttman and Meeter 1964; Gallamt 1976) and its use here (@
will fa,cilitate comparison with standaz;d. methods of nonlinear regression.
analysis. |

As noted earlier, the response function £(x, §) describes the relative
yield at time x of an intermediate substance in a chemical reaction; consider
estimation of the time at which the meximum yield occurs:

)-l

Some additional notation required is: let F(§) be the n X. p matrix with
typical element (b/be ) f(x,c, §),where t is the row index and j is the column index;
¢ = [F(e)F(a) ] . |
To obtain the explicit estimator of the time € maximum yield, the
weighting measure p is taken as the product measure comprised. of a uniform .
distribution on the ellipsoid (g - 7)'C (g - r) < r° with C evaluated at v
and the inverted gamms distribution (Zellner 1971, p. 371) with pa;zjame'beré
v and 32 « Or, Ifp is viewed as a ﬁrior- u;eé:su:ée fhen 8 héé the u.nlform
distribution on the ellipsoid {g: (8§ - T)'C-l(e - )< T } and ¢ is
independently Adis‘cz'i‘outed'asr the inver‘bed. gamma distribution. - APPT°P1'late
o tra.nsfom.ati"ms- yiéld.,an? erpreSSiop which is com}eniént for use with’quadra.turé

" formulse: |
 e(es @) doly)
Errrzr(a)l'l f" “'l{j‘ stR 7+ 1, )]y} e an

where o = v/2 R y = 2/(vsz) , and R is obta:.ned 'by factoring C as ¢ -'R R .

o - The- izrtegral within braces may be eva.luated by mea.ns of a 12-poin'b quadra‘buz:e .

formuls (Stroud 1971, D 281)-2-/ which integrates polynom.a.ls in y up to degree
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seven exactly; the outer integral may;beeevaluated'using a b-point quadrature
formula (IEM 1968, DQIk) which integ:ateﬁf polynomials in u up to degree seven
‘exactly. In terms of the argmments of g(g, d), if g is a polynomial of degree
less than or equal to seven in § and < .. of degree less than or equal to
v-2 in ¢ it will be integrated exactly.

The parametric choices employed here are r = (1.4; &) , s = .25 ,
v=10, and r2 =8 sg'} _Ihese choices were motivated by the study of the
sampling distribufion of the least sqnareg5estimator reported. in (Gallant
1976). With these choiées, the mmerical integration procedure above is

equivalent to the substitution of a discrete prior measure 5v,
J‘g(ey ¢) da(Y) 221 PiS(ai: O'i) )

for the measure p . This discrete measure is displayed in Table 1. In

fact, it may»be.best'to~regard'p'as'the prior in the sequel.

Table 1 here

As a referee points out, the central idea behind the choice of parameter
points for Table 1 (and later Table 2) becomes lost in the details. The idea
~is that a nuamerical gquadrature formula approximates an integral by a weighted

average; viz.
: ¥ |
frg(v) do(v) = 5,_; 2 glv,)

The choice of poinfs.yi = (Qi, ci) and weights p; are determined according to

numericai_analytic considerations so as to achieve an accurate approximation.

Table 1 displays the choice of yi'andrpi implied by the use the two guadrature
formulas cited sbove. It seems useful later in the discussion (Table 2) to

"display the bias. and mean.s@uare error surfaces of the Bayes estﬁnator;'the



explicit estimator, and the maximum likelihood estimator. Since the

moments of the Bayes estimator and the maximum likelihood estimator are

somewhat costly to compute and since they must be computed at the 49 points
Yy displayed in Table l to obtain average mean square error.it then becomes
convenient to use theée 49 points of the quadrature formula for the purpose
of display. This is the reason for the choice of the 49 points v i = (ei" ci‘)
used in Tables l and 2.

Two- explic:.t es'b:.mators are considered, a linear func'tiony in y

g () = ag + zﬁi 8;75

-and é. quadratic function iny

5,(v) = ay + T2y a7, + T

1= 1<j 2157175

The performance of the,se estimators relative to the Bayes estimator and the

maximm likelihood estimator is shown in Table 2. The table gives the value
of the parametric function, the bias a.nd."the root mean sq_ua.rer error for each
estimator at each parameter value of the quadratic formula together with the

Toot average mean sgquare error for each estimator.

These ccmclusions cbtain frem Table 2 according to the criterion of
'avei-age' meen sq_ﬁa.re error. The slight improvement in the performence of thé-
- explicit quadra.t:.c estima’tor gz rela.tive t0 the expl:.c:.t linear estimator gl
is not worth the a.dded canplexity entan.led.- The explicit linear estimator
'gl is a sericusr compe_‘bitor ofy’the Bayes' ‘estimator in v:\.ew of its simplicity.

- The explicit linear estimator is improvement over the maximum likelihood ; .

estimator.



The de'bails_ of the canputa‘bions are as follows. The moments of the

. explicit estimators weré cbtained exé.ctly-using the usual foz'nmlae. for the
noments of linear aﬁd. quadratic functions _of' normally iistributed. randcm
variables. The moments of the Bayes' estimator were cbtained from 2000
Monte~Carlo trials using the comtrol vari:ate method of variance reduc-'tion’
(Hammersly and Handscomb 1964, p. 59-60). The randam mumber generator employed -
was GGNOF (IMSL 1975); the explicit linear estimator was used as the comtrol
variate. The estimated standard error of A/AMSE for the Bayes estimator was
.000034695. The maments of the maximm likelihood estimator were approximated
using the moments of the asymptotic distribution. As a partial check ‘on
accuracy the moments of g(B) were estimated for ¥ = (1.hk, .4, .025) fram an
existing set of 4000 ‘simula'bed values of the least squares estimator § (Gallant
1976); the results were Est {€{g(8)]} = 1.25283 and Est[Vang('é)j’} = .00135907
yielding Est {JMSE(g(8)]} = .03687 which compares favorsbly with .03670 , the

. velue reported in Table 2. All code was writtem in double precision, save the

use of GGNOF, using an IEM 370/165 .

" 6. Confidence Intervals

Any procedure for finding an exact confidence region for v may be used to
_ : . .
find an exact confidence region for g (Y). Let ' be a random set function

depending on y such that
?Y({Fw inf'}) 21-q
Let & =v{g'*(v): 'Y n.T} ; since
| g (y)ind) > o yin )

it follows that



PY({.'Y‘: s*(*f") inGg))z1l-a .

Thus E; is an exact confidence interval for g*(y) - exact in the sense that
the probability statement is correct, not approximate.

% .
When g does not depend on ¢ , as in the example, consider
U= 2y + Ay

the:re ag is a gq-vector of known constants and A is an n by g matrix of known

constants. Then, following Hartley (1964),

8= (8 :[U-~ay-ae(e)](a’ A)7U - oy - a’2() /e P()1 S B )

where

2(8) = [y - 21T - AD "Ly - 2(6))/(na)

is an exact confidence region for §; Fd denotes the upper « percentage point of E '

the F distribution with ¢ degrees freedam for the numerator and n-q degrees

*
freedom for the denominator. An exact confidence interval for g (g) is
Py * : a
G={g (8):-9in®} .

To illustrate with the example, consider the sample
- 0.31753
0.42208
0.62973
0.56630
0.54830
v = | 026603
T = | 0.2947h
- 0.49830
0.58632
0.63670
0.56983
L0..26299

-

generated a.c'corc:iing}to the model with 8 = (1.4, .4) and g = .025 (corresponding .
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%0 L =19 in Tables 1 and 2). For ayand A, take: 2/

- oo = [rszg]
| 10.19376

r . —
-0.27126 0.45343
-0.33201 ' 0.58293
-0.18570 Q.k2717

0.035484 _ 0.14643
0.21061 <0.07TTT8

A =] 0.38468 ~ =0.30496
«0.27126 - 0.45343
-0.33201 ' 0.58293
-0.18570 0.b2717

_ 0.03548L 0.14653
0.21061 -0.07TT78

© 0.38468 =0.30496

Wi‘l')h these choices, the firs£ element of U = ay + A’y is the best linear
average mean square error estimator of g.*( 8) and the eecond element of U is
the best linear average mean square error of el .

The estimate of g*(e) is the value 1.2255 cbserved for U, and the exact

confidence interval is
G = (1.0730 , 1.3138) .

By way of comparison, the maximnn likelihood estimate of g*(e) is 1.2077 and a
confidence interval obtained from the a.symptot:.c theory of the least squares
estimator is

(1.3206 , 1.2948)

which is approximate, not exact. Thetro.e value of g*(e)' is 1.2528 .

This procedure for f:.ndi.ng a confidence interva.l is entirely analagous to |
Scheffe s me‘bhod. for ﬁ.nd.ing mult:.ple conf:.dence intervals which are simultaneously
va.lid. The pa.rame'tric con:t‘idence statement "g in @" may be used for several
. different functions of 8 yield.ing a systan of confidence intervals which are

simultaneously valid. 7 "As w:.th Scheffé's method, the procedure is conservative.



In this instance, the interval was 38% longér than -that found using the

asymptotic theory of the maximum likelihood estimator of g (g) - " ®
The first attempt to £find an exact confidence interval for this samplé-

used the statistic [U; - ay; - A"lf(e)]'(A 'J.A:.)-.IEUJ. -ag - A]: g(e)]/si'(e)' to

find the preliminary region & . However, the region was constrained on the

left only by the parametric constraint 92, < el and appeared to c‘onﬁinue-

indefinitely to the right. The addition of the best linear sverage mean square

error estimator of 93., as a second componant of U remedied the problem and produced |

a small elliptically shaped region foré . | |

7. Discussion

It is seen that linear estimators for use in nonlinear regregsion analysis
may be found by truncating a Fourier series expansion of a Bayes. rule. .And

that the linearly of these estimators may be exploited to find exact confidence

intervals for a parametric function of interest. Subject to the regularity .
conditions ,2/ it is seen that the average mean square error of a polynomial '
explicit estimator bmay be made as near the minimum achievable as is desired by
taking the degree of the polynomial suitably large. And that the polynomial
explicit estimator éonverges, in probability to the Bayes rule as degree increases.
The most seﬁ.ous de‘berrenf to use of the explicit estimator in appncatiéns

is the -requiranen'b;that’ ;the' user produce a pfior. chever‘, in nonlinear regression
aimlysis one must usually Bave some knowledge of the situation in order to find
starting values for computing ‘bher least squares estimator . But the fact that

5 differenxt‘- investiga.trors will obtain different results depending on the

subjective choice of a prior when a..‘Llr:elsé,. remains the same ié disturbing .

"On'»'hhe' other hand, one can envisage an industrial -application involving

 repetitive estimations for the purpose of calibration where the simplicity of .
& linear ,es’timafcor would be an overwhelming advantage. The e‘stima.to: nay

£ind use in such comtexts.
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It is possible to d.evelop a formal theory of unbiased estimation by
' borrowing the ideas of estimability from linear regression and proceeding along
lines roughly analogous to those used here. In examples, there was the problem
that unbiased estimators of the form a’z usually did not exist and another that ,.‘
when they did, they depended on only cne or two of the n observatioms. This

did. not appear to be a fru::b:ful line of" J.nq_m.r,y’ and was abandoned.

A A It is of m'terest to a referee, and perhaps of general J.m:erest tc obtaa.n
the explicit estimator for a model which is linear in the parameters. The
classical problem is the estimation of \‘g for a model of the formy = X8 + e
where attention 1s restricted to estimators of the form {’\9 = a4 + al'y . Rather

than find the best linear unbiased estimator, consider the Xinear -explicit estimstion

which is obtained by solving the system of equations
/
fe(*7) - [ wee, t1 e
r Y\rw’ al ¥

Upon evaluation of the :.ntegrals these equations obtain

1 8'x’ ag\ - [ 8’ A
- - e -2 B - )
X8 xvex' + X8e'Y'+ &1 aq xve + X88 ')

- - 2 - - - .
where § = ‘f 8d , o‘.2 = fc 4 , and Vg = j‘(e-e)(e-e)'dp . This system is
equivalent to the system

=yt -7
Lo Mfa) LBy
0 xv.X'+ 1/ \a A XV
8 1
' which has solution
S - AN L 2fin
ay =8 X 8% 2, |
3, = X(X'X + 27 "Hta
, .
The estimator becomes

Mo = MR+ ST Ty + P



An estimator of § itself may be inferred from this expression.

By virtue of the discussion in Section 4, this estimator is coincident

with the Bayes rule whenever the Bayes rule is linear in the cbservations.
As an example, let the likelihood be the n-variate normal with mean X8 and
variance-covariance matrix 021; let the prior be the natural conjugate prior.
The natural conjugate prior is comprised of a conditional distribution of 6

R 2 . . R s - . v .
given ¢~ which is a p-variate normal with mean § -and variance-covariance matrix

022 -and a marginal distribution for ¢ which is the inverted gamma with para-

meters s and v>2 . wawp=afg®=v£ﬂw@,md
AN\
I(e-é)(e-é)’ap = [vsz/(v - 2)] £ . Substituting into the formula for \’6 one

-obtains

A

Ao = MK+ z'l)

“Lxy + £718)

which is immediately recognized as the Bayes rule.

The class of estimators of the form
-\
=1 D ] —
Ag=AX'x+ o H iy + cave 9) .

is quite rich. It includes the Bayes rule with normal likelihood and natural
conjugate prior and any Bayes rule which is linear in the cbservations. It

includes both the least squares estimator and the ridge regression estimator.




Parameter Value

814

Weight

R ————

i 824 9y Py
1 1e82972 0.,40788 0.01824 001297
2 1.27028 0.39212 0.01824 0.01297
3 140000 0.4333% 0.01824 0.01297
a 1400090 0e 36661 0.01824 0e01297
] 144837 0.4153% 0.01824 0.02157
& 135163 0e40951 0.01824 002157
7 144837 039049 C.01824 002157
8 1351863 Qe38461 0.01824 0.02157
9 1049649 0.43070 0.01824 0+00923
10 1.30351 0s41897 0.01824 000923
11 1. 49649 0+ 38103 0.01824 000923
12 1.30351 036930 0.0182¢ 0.00523
13 1.52972 0.40788 002625 0.0S084
1s 1.27028 039212 0. 02625 0.05084
18 140000 0.43339% 0.0262S 0.05084
16 1.40000 0+366861 0.02625 0.05C84
17 1.44837 041538 ' 0.02625 0« 08456
18 1.35163 0440951 0.02625 0408456
19 1.44837 0.39049 0.02€62S5 De 08454
20 1.35163 0.38461 002625 008456
21 149649 C.43070 0«0262S 0.03618
22 1.303S81 0.41897 Ne 02625 0.03618
23 1.49649 0.38103 0e02628 0403618
24 1.30351 Qe36S30 0e028625 0.03618
25 1e 52972 0e40788 0.04231 0.01025
26 1.27028 0.39212 0.048231 0.0102S
27 1. 40000 0.4333¢ 0.04231 0.01025
28 1440000 0.36661 0. 04231 0.01025
29 1.44837 0.4153% 0.04231 . 001704
30 1.35163 0640951 0«04231 0.01704
31 1,44837 0.390456 0e 042321 0+01704
32 1.35163 0438461 0.04231 001704
33 1e¢ 49649 0+43070 0e04231 - 0e0Q729
34 1+ 30351 041897 0604231 0400729
3s 1.49645 0.38103 0.04231 0+00729
36 _ 1e303S1 0436930 0. 04231 000729
37 14852972 0.40788 0.09843 0+00002
38 1.27028 039212 0.09843 000002
39 140000 0.43339 0.09843 000002
49 1440000 - 0.36661 0.09843 0.00002
a1 1044837 0441539 0.09843 0.00003
42 1635163  0,40951 0.09843 0.00003
432 14844837  0.39049 0.09843 000003
44 10435163 0438461  0.09843 0.00003
aS 1449649 0443070  0,09843 0400001
a6 1.30351 0441897 0.09843 0.00001
a7 1. 49649 0e38103 0.09843 0.00001
a8 1.30351 0636930 = 0.09843"  0e00001
49 140000 030000 - 0.02500 Ce0



2. Blas and Root Mean Square Errbr of the 'Explicit Estimator, Bayes' Estimator ,'
and the Maximum Likelihocd Estimator of the Time of Maximum Yield

Zxplicit Escimacors: : )
Linesr Quadracie Baves’' Fssimscor ME
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3 le26787 ~Qs0039% Qe 02413 =Qe 30440 Ce Q2487 ~G.00321 Ca 2928 Qe Q" 0.03936 -
19 123907 Q80678 CaQ2477 Q4300640 Qa02628. Q00489 0s0279Q Qe 0eCI??
20- 1429970 =Qed1686: 0ed2918. | =Q.01721 Qe 02982 -Qq.01212 Q202989 Qe QsCs0Q13
23 1416898 0403204 032993 0e03258 Qe Q3973 G«83121 02387 " Ge8 T 0,03I57M :
22 le2817 «0.01000 Qe 02584 “Qe«009486: 032649 =%.Q0313 Qe 32649 Qa8 CeCaga”> .
23 1e422¢40 Ce01183 Qel26a7 Q01174 Q402386 CeQ116S e N2DAT Ge 0 0.83712 y
24 1435002 003789 Qe 0aaTSs = «©0,03727 Qe 0as8s 0403478 Qela8018 Te0 Cel813”
s 1e17830: CeQ2820 Qe 04768 Ce32934 Qe Q4677 Qs 04Q%0 Q44787 [ 2%-2 Q485734
26 le33aS1 =Q+03340 Q05289 «0+033218 008172 =Qedaaal Qe05237 PN 206754
a7 1<21310 3.0170s. 0.04201 CeQ1687 QedH159 Oe3228S 04Q3I57S Qa0 J«06082
28 1.29683 ~Qes0131s Qela128 -Q.01529 [ EY-LRY-1 =8.82139 Qe 33400 Qe 0 Qed6382
29 120910 Ced178S 0eQa23S QeQ1780 Ged4alas 0.02272 Ce 23912 [ 2%-1 7.08597%
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31 1423907 Q.00978 Q<03299 ' 0e00643 G.03821 0.00851 Q.03272 Q.0 N+08092
32 1+29970 © =Qed1586 Q34190 =Q+0Q01697 Ge0427Y «0.02180 Ge 23849 [+ Y] 0.043649
33 1156889 Q03204 0+08001 Ge03281 Ge Q4921 Q30606 C. 0885255 Ge O Ca087%8
3a 128317 «~04Q1000. G Q3968 *Q+30963 Qe 08080 «CeQ1437 0403233 Qe 0 QoQ4a91
3s le226a0 Ce01153 Q0e04010 001197 04Q39504a T Qe01640 0403301 QaQ 3o 0%980
36 = 1.35002 ~Q+03789 Ca05198 -Ca0370e Qe 05470 «0.08238 G 05734 Ga 0 Qel6&7A9
37 1417830 | Ge02820 Q409388 Ca03103 C40504s QeQa31 1 1406893 Qe l Ce1338%
s l.338%1 =0 C3340 0409338 «Q,03047 0« 09924 ‘=0 06961 Qe 07975 Ced Qe1573%
3% 128310 C01704 0o 39093 Q013568 Ce 09087 . Q+03653 0e0a54e - P Oelaloa
AQ 1:29€63 Q. .3181a 009961 -0«01360 Ce 39138 “Q0.03539 Qe 04129 © Qe Cel1a862
At 1e20910 0.0178S 0e 09110 Ge31948 Ge 38953 0.03933 Q.04856 0ed  0.13903
T 1426727 =0+0039% Q408943 =Q.00248 Qe 09092 *0400640 - Q2.02791 2¢0 Delarag
a3 1e23907 Qe00878 Qe Q8989 G«002831 Q.08838 Qe0120¢ Q202662 - Qe0Q Qelal?2
Lo 129970 =Q0+01686 Ge 39091 «G.018529  0.09292 «0.03781 0404393 0.0 Jel15051
A 14166889 ° - 0.03204 . 0.09491 0403449 009222 Ge07a78 Ce0767S Qa0 O0e12392.
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Appendix: Theorems and Proofs

AL, A Sampiing Theoretic Derivation of the Estimator

Let the columns bi of B be a bagis for G and define

sbi(v) = %(‘ni z) (L1=21, 2, vees T) .
Let H be the r £ r matrix with typical element

h.=[ g (e (v) ) (1, 3=1,2, weep 7).
- 13 I %, V5, |
and let h be the r-vector with typical element

. %
by = [ & (g (1) &) (1=1,2 cees 1) -
‘ r i
- The matrix H is positive semi-definite since, for an arbitrary r-vector « ,

: 2
’ =, 7 ;
| a’'Ba = j‘ {;L‘;l aigb.(y)] dply) =z0.
‘ r i
Moreover, the equations Hy = h are consistent with a solution
«=Hh
where B~ denotes any generalized inverse of H . Set
B e )
Lemma 1. Let o be an arbitrary r-vector. Then

| frcg*(w - £ aisb.i<‘f>12 g (v)

e (a-3) Ele-a)+ y-rcg*m -TF @) .



Proof: Add and subtract E and expand the integrand to obtain

[(&" - 5ye, ) @
h S
= [ D% e+ [(& - ziaig;f &
*2[ -0 GE-5o8,) % -

By substituting g = ziE'igb in the last two terms one cbtains
. R ) .

= [ e [ (LG g Pe
. . L

+2 [ g(e-a) sbi(g*- szj;bj) dp

Substitution, using the equations defining H and h , yields

= j'(s*- 2)° dp + (@ -a)H(a - a) + 2(x -a) (b -Hr) .

. The cross product term is zero because a is a solution of He = h . g

Let V(y) be the variance-covariance matrix of z with typical element
Vi t‘()-' | Le‘brv ‘ﬁe. the m; n matr:.x ﬁi‘bh .ty"pica.l element B
vi5® j'rvij(v) o) .
Note that 7 is positive semi-defi;iite since, for an arbitrary m-vector a,
aa = J aver) o o) =0
' Vi Lema 2. Le‘l'. é. ‘be' éh;a'.rﬁi'trary éhoice'rrof Aa.n'm-\'réct'or. from G ‘and let

the,r'r-vet:toria satisfy a = Ba . Then

#8B(a'z) = a%e + (o - D' - D + [ {80 - T F a0 -



Proof: : .
AMSE(a’z) = j' Var(a‘z) + Bias (a’z) dp

(ORI CUORELHCEN )
By integrating the first term and 2pplying Lemma 1 to ;l:he .second., ong obtains
aTat - DE@-D D O
Theorem 1. In the cié.ss: of estimators- oi.;‘ the :f:.'cm ar"z ﬁth ainG ,

that choice of a which minimizes
¥* 2
AMSE(a’z) = j'rﬁa'z -g (¥)T dly)

" is
a=BEB"B+H 1 .

An alternative form, for camputations, is
o - o,
a= BC_B'j'rey(zz’) P (y)BI" B’ [ g (v) EY(Z) o (y)
r ,

Proof: Rearrangé the terms of the expression in Lemma 2,
AMSE(a’B’z) = o’(BVB + H) ¢ - 2a'Hy + const.
This is a quadratic equation in o with stationsry point

o &= (8T8 + H) Ha :
and positive semi-definite Hessian matrix B'VB+ H . Note that Hx = h
-to obtain the first form given in the theorem. The second form is obtained by

verifying these equalities algebraicly:
H= B'j‘e(z)e’(z) B ,
BB = B'I&(zz') -2(z)e’(z) B ,

and
h =.1-’t'rn-*?,{'z\ an . N



A.2. Bayesian Interpretation of the Estimator

The reference for notation, terminology, and general results is Hewitt

and Stromberg (1965, Ch. IV, Sec. 16).

Define the measure p on the Lebesgue subsets of Y x I by

pla) = j'j'I (v, v) olyleCe), o 1 &y doly)

where § is n-dimensional Euclideen space a.nd. I (y, v) denctes the indica.tor"‘

function of the set. A . Consider the collection of measurable, square integrable
functions with respect to this (proba.hilit'y) measure a}nd dénpte- this _. 'collec;‘cion

-fD?iT:g‘(u T, p-j The inner product be’lmeen 8q» g2m£ (U xT, w) is
<a; 8> =‘j' j‘ &, (¥, Y)gz(y, Y) aw(y, v)

and the corresponding norm is-

i Y
2

lgll = [<g, 1% = Ej'rj' E@, v) aly, VE .
'}

These «definitions comprise a Hilbert space on the conéétion of measursble,
square integrable functions with argument v(y, v) (Hewlitt and Strcmberg 1965,
Eg. 16.8).

An estimator, é(y) is a measurable, square integrable function ofry only,
that'is a member of _32(‘&'3 r,' W) which is constant with respect to variadion
in'Y“. The average mean square error of an estimator is

CMSE (B))= -8 IF

~the square of the distance between the estimator &(y) and the parsmetric

function g (v )» . ‘The mean of g (v) with respect to ’ohe posterior demsity

s(y) j' g (Y) n[:rif(e), o ] dp(v)/p(y) ,




_— . : . : *
‘the Bayes rule, is the orthogomal projection of the parametric function. g (v)
‘into the collection of estimators with respect to the inner product <, >.

That is, the Bayés rule satisfies the Py'hhagoréan identity
%2 R B
lg-ell° = lg-al°+e-¢ ? .

Applying this identity to functions of the form a’Z(y) wi.th a in G the
~ equation | S ' |

B8E [a'2(7)] = lla’z - 8P + IE - &"1?
is g'ptg.ined.., Si.p.ce' the second term does not vary with a it follows .that an.

attempt to minimize AMSE ta'Z‘(y) 1 by varying a represents an atiempt to
minimize ||a‘z - 8|

Note that neither a’Z(y) nor g(y). de_pem:i ony . The dimension of the
latter minimization problem may, therefore, be reduced and é.ttention may be
restricted to measurable functions on Y which are square integrable with

respect to the measure v defined on the Lebesque subsets of § by

v(a) = [ [ 1,() auly, v)
* ,

That is, to minimize |la‘z - g || with respect to the norm on .1:2(,”: T, w) it

suffices to find a in G which minimizes |la‘z - El,l with respect to the norm

on .:2(14., v) . We have, by Theorem 1, that the choice
. . | - - .o -, - * IR
a=B(B'l & (zz') do(y) BI'B' [ g (v)e, (z) ap(¥)
_ Y r M
ninimizes AMSE [a’z(y)] whence this choice is the solution of both of these

minimization problems.’ For computations, we have by Fubinik theorem that

for integrable g(y) 7



1‘s(:,r) afy) = II &(y) n(y{f(e), c) dy dp(‘{)

= j‘ elr) j' n(ylf(e), o )dp(Y) &y

.

=[ely)oy) &v -
"

The forego:.ng discussion is sumzna.rized as Thecrem 2 .
_ Theorem 2. et e(y) be the Bayes rule which minimizes expec'bed posterior
square error loss when es‘tmat:mg g (Y) w:.th prior measure p on [ Let p(y)

be ‘che ma.rgmal d.ens:Lty of the observa:b:.ons,

p(y-) J‘ntylf(e), o] dp(v)

The  estimator Z(y) of Theorem 1 is the best appreximation of the fayes’ rule
in the class of estimators of the form a’Z(y) with a in G in the sense of .

minimizing the distance

\a z -3l = %[a’z(y) - TP p(y) dy ]2 .

Consider the sequence of functions {cp (y)} l generated by the Gram—Schmld‘t
orthonormalization process from {Z (y)} =1 5 the orthonormalization is with
respect to Sz(y? v); m - d refers to the fact that there may have been linear
dependencies a.e. among the V{Zi(y)}".::l which were eliminated by deletion prior
to-orthonormalization. Note that it is a property of the Gram-Schmidt process
~that ‘bo‘fwithin a null set the collection of functions of the form Zl;;l a; Zi(y)
is the same as ‘the collection,bf functions of the form ﬁ:;i‘ c; 9y (y) provided

that G -=—Rm . By Theorem 16'.16 4'0fv-Hewit‘t and Strombei'g (1965) the choice

::.=~ j‘u g(y) cp (y) p(y) &y m:.n:.mizes e - Zm- e, cp'H»rVeiga"rdedjas a-function ‘

- of (cl, Cos wens ) and that this choice is unigue. But 21;'1:1 a; Zi(y) :



. -4 -d.

is of the form Z'Ll ; @5 (¥) to within a il set and minimizes || g- o ;¢ &l
o . -4 ‘

by Theorem 2 whence it follows that 2?=1~°i cpi(y) = z‘f_l 2, Zi(y) a.e.

Note that the ;:hoice, of ‘(cl, Chs eees c;n_ d) is unique but the choice of 3 may
not be.

Wev may summarize this discussion as Corollary l.

Corollary 1. Let g(y) be the Bayes rule which minimizes expected posterior
square error loss when estimating g*(Y) with prior measure pon'l . Let ply)
be the marginal density of the ;:bservations and let {Z’i(y)}z?’ be a subset
of £,(y, v) where v is defined by v(4) = J’u I,(¥) 2(y) &y . Let {o (y)}pl

be an orthonormal sequence generated from {Z (y } =1 DY the Gram—Schmn.d‘b process.

Then the estimator g(y) of Theorem 1 with G = R° satisfies

g(.V) Zmi c; @ (y) a.e. v

where c; = fu () CPJ-_(.V) p(y) dy .

It is.0f in‘be:éest to have a sufficient condition such that the distance
I é - g || vetween the Bayes rule ¥ and the explicit estimator g may be made
arbitrarily small by taking é to be a polynomial of sufficiently high degree.
Theorem 3 states such a conditien.

Theorem 3. Let v be a probability measure definéd on Y, the n-dimensional
real numbers, and let (2. (y)}]___l be a basis for the polynomials on Y. If the
moment generating function, 'fl'& exp (u'y) dv(y), exists on an open meighborhood
of the zero vector then {Zi(y)};;lc £2(U?v) and {Zi(y)}:‘;l is complete; that
is, 'f. ) £é(U>V) and < £, Zi >=0fori=1, 2, ... implies £ = 0 a.e. Vv .

In consequence, if {cp.(y)}?_ is a sequence of orthonormal functions generated
from {Z (y)}l_l by the Gram-Schmidt process, iffed (U v), and if |

f (y) = Z?_l CiPs (y) where c:. =< f, cp > then

gim H_ t-tl=
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Proof: Existence of the moment generating function implies all moments

of a distribution exist whence {Z;(y)Jgo; € £,(Usv). Let 8, > O be such that ¢
‘ _ .

‘feu Y av(y) < = for -Gj < uy < 63. ,3J=1,2, «eoyn. Let £ e 32(1},\)) be

given such that < f, Zi >=Qfori=1,2, ... . Consider the function

~

2(z) = [ 2(y) exp (2'y) av(y)
where z is of the formz=u+ i vandu, vel . Now

|exp(z‘y)| = lekp(u’y)tcos(v'y} + 1 sin(v'y)]|
< |exp(uy)|

which shows that £(z) exists if -6J.< < 63 , (3=1,2, «v., n). Decompose

fas f=f - f where £ and £ .are nonnegative. Suppose that it can be shown

O then it follows that

that 2(iv)

[£5(y) exp(iv’y) av(y) = [£7(y) exp(iv’y) av(y) .

*The same constant multiple will normalize both f+ and £~ so that the measure
defined by.'P'*'-(A) = cj‘Af+(y) dv(y) and F (4) = c_J"Af-(y) dv(y) are probability
measures.  But the equation above implies that these two probability measures
have the same'characteristicr ‘function. Consequently, f+'= £ a.e..v whence:-
f=f-f =0a.e.v . Thus, if it can be shown that -2(iv) = O then
{2, (y)}., is complete. |

Now ’ »

e He) = [ exp( 2y) 6B (y) - [ exp(z'y) @ (y)

and by applying Theorem 9, Chapter 2, of (Lehmann’,' 1959, p.52) to-each function

- on the right one can 'conclude_'that‘%(z)' is an analytic function of the single

uj + i 'vj— over the region -65 <-uJ. < 65 | e - < VJ < @ providedr 7 ' '

thef-remaining- variables are held fixed at points - with -9 5 < 1.1:j < éj

: vai'iable z(j )



for j’ # j. . By Hartogs' Theorem (Bochner and Martin, 1948, p. 140) it follows

 that %(z) is analytic over the region -6j< u, < éJ. , = < \f <o (j=1,2, «o., n).

The same inductive argument uséd by Lelmann in the proof of Theorem 9 %o show
that all partial derivatives of the form (am/azjm) T(z) may be computc;d under
the integral sign may obviously be used to conclude that any partial
(am/n?=l az.?j) (z) may be computed under the integral sign. Now

m, m
(/i g22,7) 2(0) = [T 122, 7) 2(3) exp (2'y) av(y)]
z=0

m

= rr?___lyjj £(y) aviy)

(]
O

m,
since ”1}=]_ yj‘] is some finite linear combination of the Zi(y) i=1,2, ...)

Since %’(z) is analytic then f(z) = O over the region -6J.< uj.'< ‘S,j ,

= <v,<e(j=1,2, ..., n) and in particular #(iv) = 0 for =< v, <=

(J=1,2, «..;, n) as was to be shown.
The claim that 4im || £ - £ | = O follows directly from Theorem 16.26
of Hewitt and Stromberg (1965, p. 245). |

The following result follows immediately from Corollary 1 and Theorem 3.

Corollafy 2. Let E(y) be the Bayes' rule which minimizes expected posterior
square error loss when estimating g*(v) with prior measure p on ' .. Let the
moment generating function of ?(y) s the marginal density of the observations,
exist in an open neighborhdod of the zero vector. Let [Zi(y)}:=l be g basvis

for the polynomials. For each m let

g () =21 2 2,@)

hE

be the estim,atorr‘givien by Theorem 1 with G = & .
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Then

s f La ) - @) o) ay = 0

It ém converges in mean square to E with respect to the predictive
density p(y) then ém converges in both probability and diétribu‘bion to E
with respect to the predictive density p(y). From the sampling theory point i
of view it is of more interest to know whether or not %m converges in prob-

yability and distribution to E with respect to the conditional distribution

N(y|£(8),0). A sufficient condition is given as Theorem k.

Theorem 4. Let v. denote the prbbability measure on the measurdble space
(4, B) determined according to v(B) = Irju IB(y) n(y|£(8),0) dy dp(y) and
let v(*|y) denote. the probability measure determined by v(B-|y) = j‘uIB(y)nEyv‘f(e),c] &
Let »ém(y) converge in probability to E(y) on (4, 8, v). If (v(B[v)l; 5 1s an
equicontinuous family at Yo and if for every open set 1"o containing Yo p(l"o) >0

then fgm(.y) converges in probability to z(y) on [Y4, B, v-(*lyo)] . .

Proof: Given & > O choose an open get l"o_contéining Yo ‘such that for all

Bef I\)(B‘yo) - v(Bly)| <8/2 . Given ¢ > O choose M so that m > M implies

v(B,) < p(rg)s/2 for B, = {y: |&,(y) - E)< ¢} . Then
B(Bylve) <[1/p(ry)] Ifo P(B_lv) dply) + 8/2
| S L1p(T)] [ BB, Iv) doly) + 8/2
<v(B )/p(Ty) + 8/2
<& .10

A proof that normal distribution generates an equicontinuous family

'{\)’(B|Y)}Beﬁ when £(g) is continuous is given below. It is straightforward and

could be applied to many common distributions. : ‘



Theorem 5. Let f£(8) be a continuous function on a closed set @, let
n[y|£(8), o] be the n-variate normal density function with mean vector £(9)
and variance-covariance matrix 0'21, and let B denote the Lebesgue subsets

n

of R". Then the family (V(B|y)l g where V(Bly) = [oa(y[£(8), o) dy is

equicontinuous for every v = (8',0)’ ¢ ® x (0, =) .

Proof: PFix Yo ¢ 9 X (0, =»). Let S be a bounded open sphere containing

8., let S denote its closure and set ® = ® N § whence @ is compact; set

0
= 2 2 2 . . .

T=1{0:0y/2<¢ < 300/2}. . Given ¢ > O there is a radius r such that each
closed sphere T, with radius r and center £(g) satisfies v(Yelv) > 1 - ¢/k for

allge L. Then¥ = U@Y is compact since the continuous image f[@] of a

6
compact set ® is compact. Now the normal density function n[y|f£(8), o] is
continuous in (y ,8,0) on the compact set ¥ X @ X T hence uniformly continuous.

Then choose § such that |(y’,8’,0) - (yv/, 84> O'O)l = [(8', o) - (eé,oo)l <5

implies |o[y|£(8),0] - aly|£(8y),051] < e/(2 fi_. dy). Now

[vBly) = v(Bly,)l

VB NTly)+ vBN~Tly) - vENTly,) - VBN~ Ty

< VB NTly) - vE NTlyy)] + e/2

| IBF\T n(yly) - a(ylyy) ay | + ¢/2

< J“an e/(sz dy) dy + ¢/2

<eg .

Thus, {v(B lY)}BeB is equicontinuous at v, . i
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Footnotes

;/ If there are deletions then the expansion is truncated at m less the

number of deletions.

2/ Read B, = [ (551 + 41 ,29)/6264]V to correct an error in their formula.
§/ See the next section for the wvalues of ai'.

E/ Wote thatl 1s a function of the sufficient statistic

6 2
Cyyt g 5 9ot ¥g 5 ¥3* Vg 5 Y Vig o Tt Ty 5 TgF Vo 0 Do (- Vi)

-

2/ The predictive density for the example does not possess a moment generating
functibn. Nontheless; the computations yield results one would have

anticipated had it existed.




-
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