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Often, data which have actually been generated according to a (nonlinear)

regression model

are approximated by a polynomial regression, say,

and the fitted function

is regarded as an approximation of the true response function f(x,S) .

Some unresolved issues are:

l. In what sense does !'(x) approximate f(x,8)? Is it a local approxi-

mation at a point or a uniform approximation over an interval?

2. How do the coefficients aO' al , a2 , .•. , am of the approximation

ma xm

Fitted:

relate to the true response function f(x,S) ?

3. Can the function f(x,e) be approximated arbitrarily closely by taking

the degree m of the polynomial suitably large?

A Fourier series approach seems to be a useful conceptual framework with

which to address these issues. Also, a consideration of the problem in large

samples rather than finite samples seems to contribute more to understanding.

For the moment, consider the single variable case

= + + 2 + + a xm +Yt aO alxt a2xt ... m et

True:

Let the sequence Xl' x2 ' x3 ' ... of independent variables be stationary in
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the sense that the empirical distribution function

Fn(X) = number xt n for t = 1, 2, ••. , n)

converges to some distribution function F(x) at every point where F(x) is

continuous; that is, .tim F (x) = F(x) if F is continuous at x. Subjectn-oeo n
to regularity conditions stated later, it is shown that

1. The least squares estimator

"a = ("" "a ) IaO' aI' ... , m

n [ m CtJ2which minimizes ;=1 Yt - l:et=O aCtx

a point

converges almost to

which minimizes

t'c f(X, e) - acvxCtJ2 dF(x) •
_00

2. The point a(e) is computed as a(e)

of Hare

and those of h(e) are

hCt(e) = xCt f(x,e) dF(x)
-00

-1= H h(e) where the elements

3. If the measure of the error of approximation is taken to be

SO:> m a2
[ f (x, e) - i 0 a x ] dF (x)et= Ct-00

then it may be made arbitrarily small by taking m large.
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These facts may be related to a Fourier series expansion of f(x,e) as

be a of polynomials, the

first of degree 0, the second of degree 1, and so on, which are orthonormal

with respect to F(x). For example, if F(x) were the exponential distribution

are essentially the Laguerre polynomials;

if F(x) were the unit normal distribution on (_00, 00) then QO(x), Ql(x), .•.

are essentially the Hermite polynomials. Let f(x,e) have the Fourier series

expansion

where

b (e) = Joo f(x,8) Q (x) dF(x)
0{ 0{

_00

If this expansion is truncated at m terms, viz.,

r(x) = fl 0 b (e) Q (x)
O{= 0{ 0{

then

Thus, if one approximates the true regression model

by a polynomial regression

the fitted function

,. mAO{
f(x) = t Oa x

O{= 0{

is estimating the truncated Fourier series expansion

f(x) = ZU ob (e) Q (x)
O{= 0{ 0{
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mwhere [Qa(x)}a=O is a system of orthonormal polynomials with respect to

the limiting distribution F(x) of the independent variables.

These results are proved with somewhat more generality as x is permitted

to be multivariate. The function f(x,e) is taken to be continuous on a compact

set X and the independent variables xt are restricted to X to permit applica-

tion of the more familiar ideas of convergence in distribution in the proofs.

If desired, unbounded X may be accommodated by applying the notion of Cesaro

summable sequences (Gallant and Holly, 1980). A few very elementary facts

about Hilbert spaces are used; a concise reference is Section 16 of Hewit

and Stromberg (1965).

Assumptions. Let [Xt};=l be a sequence of k-vectors from a compact set

X such that the empirical distribution function rn(x) of converges to

a distribution function F(x) at each x e I where F(x) is continuous. Let F(x)

possess a moment generating function in a neighborhood of zero and let f(x,8)
( }CXlbe a continuous function of x. Let the sequence of random variables l..Yt t==l

be generated according to the regression model Yt = f(xt,e) + et where the

errors [etJ;=l are a sequence of independent and identically distributed random

variables each with mean zero and finite variance.

Notation. Let x be a k-vector and let the sequence [z (X)}CXl 0 consist ofa a=
terms of the form

z (x)a

ordered such that the degree of the terms is non-decreasing in a. The

collection of measurable functions g(x) that are square integrable with respect

to the distribution F(x) is denoted by .£2 (I, dF)

(m + 1) X (m + 1) with typical element

h Q = r z (x) zQ(x) dF(x)
"X a I"

The matrix of order

= 0,1, ... , m
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is denoted by H; h(e) denotes the (m+ 1) - vector with tYJ?ical element

h (e) =S z (x) f(x,e) dF(x)
ct 1 ct

I

ct = 0,1, ... , m

Let [Q °be the sequence generated from [z (x)}oo °by the Gram-Schmidt
ct ct= ct ct=

-1 -1orthonormalization process. If H is factored as H = P'P where P is lower
triangular then Qct(x) = (x) for ct = 0,1, ... , m. Let

b (e) =SQ (x) f(x,e) dF(x) ct = 0,1, ... , m which are the Fourier coefficients
ct 1 ct

of f(x,e) .

Theorem 1. Let the assumptions listed above hold and be linearly

independent a.e. F(x) Then H is positive definite, a(e) = is the

unique minimum of

S(a) = S[f(x,e) - 0 a z (x)]2 dF(x)
1 ct= ct ct

and

0 a (e) z (x) = ?" °b (e)Q (x)
ct= ct ct ct= ct ct

Proof. Now [z 0 s l2(1,dF) because F(x) has a moment generating
ct ct=

function in a neighborhood of zero. Thus Hand h(e) are well defined. Since

t'Ht =S[zn 0 t z (x)]2 dF(x) 0 and [z (x)}m 0 are linearly independent,
1 ct= ct ct ct ct=

H is positive definite. Now

S(a) = S [f(x,e) - zm ° a (e) z (x)]2 dF(x)1 ct= ct ct

+ [a - a(e)]'H [a - a(e)]

The last term may be rewritten as

- -

= 2[ h ( e) - H a(e)] '[ a - a(e)J
which is zero since 8:(e) = H-lh(e) . Thus S(a) is a constant plus a positive definite
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form in a - aCe) and has minimum at a - aCe) = 0 •

Now

= t:=o

= 0 chace) p z (x)'l'- y- y

= 0 a (e) z (x) 0y= y y

Theorem 2. Let the assumptions listed above hold and let [z (x)}m 0 be

linearly independent a.e. F(x) . Then the least estimator

a = (A A a )'n aO' al , ••• , m

which minimizes

converges almost surely to aCe) as n tends to infinity.

Proof. Let

Then

By the Helly-Bray theorem we have

and by Theorem 3 of Jennrich (1969)

Theorem 3. Let the assumptions listed above hold. Then

tim foo [f(x,e) - 0 a z (x)J2 dF(x) = 0
m-co _00
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Proof. A direct consequence of Theorem 3 of Gallant (1980) which shows

that the polynomials in Rk are complete with respect to provided

F(x) possesses a moment generating function. 0
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