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Abstract

An expenditure system is derived from a Fourier series expansion of

the indirect utility function. This system has the property that the pre-

diction bias averaged over the values of the independent variables may be

made as small as desired by increasing the number of terms of the Fourier

series expansion. Two consequences of this fact are that the theory of

demand may.be tested essentially independently of the choice of functional

form and that the asymptotic distribution of other flexib·le form parameter

est:iJnates and test statistics may be obtained in terms of the parameters of

the Fourier expenditure system. Some aspects of the bias in Translog

expenditure systems are examined using these results.



1. Introduction

Much recent work on the specification of empirical expenditure systems

has focused on an attempt to find an( indirect ) utility function whose

derived expenditure system will adequately approximate systems resulting

from a broad class of utility functions. More precisely , One seeks an

(indirect) utility function which yields an expenditure system whose

parameters may be adjusted so that the discrepancy between the true expendi-

ture and the approximating expenditure system is small relative to the noise

in the data. Examples of this approach are in Diewert (1974), Christensen,

Jorgenson and Lau (1975), and Simmons and Weiserbs (1979).

There are two methods for approximating a function that are used

frequently in applications. These are Taylor's series approximations and

the general class of Fourier series approximations. As examples of the

latter, there is the familiar sine/cosine expansion and the possibly less

familiar Jacob i, Laguerre, and Hermite expansions. The work in flexible

functional forms appearing to date has used a Taylor's expansion as the

approximating mechanism.

Taylor IS theorem only locally. It· applies on a neighborhood

of unspecified size conta.ining a specified value of the argument of the

function being approximated .. the commodity vector of a direct utility

function or income normalized prices of an indirect utility function. The

local applicability of the approximation suffices to translate propositions

from the theory·oi' demand into restrictions on the parameters of the

approximating expenditure system; see especially Christensen, Jorgenson, and

tau (1975) and SL"llRlons and Weiserbs (1979) in this connection. However,

Taylor I s theorem fails rather miserably as a means of understanding the

statistical behavior of parameter estimates and test statistics; see
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especially Section IV of Simmons and Weiserbs (1979).

The !'eason for this failure is that statistical regression methods

essentially expand the true function in a (general) Fourier series -not

in a Taylor's series. As the sample size tends to infinity, a regression

estimator eof the typical sort converges to that parameter value e* which
minimizes a mea.sureofaveragedistance 6(e) of the form

6(e) =J p[f*(x), f(x,e)J w(x) dx
I.

wherep(y,y) is a meaSUre of the distance between the true and predicted

values of dependent variable determined by the estimation procedure, I.

is a set containing all possible values of the independent variable, and

w(x) is a density function defined onI. giVing the relative frequency with

which values of the independent variable occur as sample size tends to

infinity (Souza and Gallant, 1979). This is precisely the defining property

of a (general) Fourier apprOXimation of f(x) by f(x,S) A Fourier approxi-

mation attempts to minimize the average prediction bias6(e) .

Due to this fact, Fourier se1'iesmethods permit a natural transition

from demand theory to statistical theory. The classical multivariate sine/

cosine expansion of the indirect utility function leads directly to an

expenditure system with the property that the average prediction bias may

be made arbitrarily small by increasing the number of terms in the expansion.

Thek:ey fact which permits this transition is that the classical Fourier

sine/cosine series expansion approximates not only the indirect utility

function to within arbitrary accuracy in terms of the nonn but also its

first derivatives. Interestingly, a restriction that the Hessian of the

approximating indirect utility function be positive definite is easy to

impose on the Fourier flexible form; positive definiteness is not easy to
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impose on most other flexible forms.

The Fourier expenditure system . is used as a vehicle to study potential

biases resulting from the use of the Translog expenditure system. The

Translog test of the theory of demand based on the equality and symmetry of

coefficients as reported in Christensen, Jorgenson, and La1.l (1975) is

repeated using the Fourier expendittlr€ system. Their result is confirmed.

The asymptotic power ctlrve of the Translog test of additivity is derived in

terms of Fou.rierparameters. Parameter settings compatible with the data of

Christensen, Jorgenson, and La1.lare used to obtain tab1.l1ar values for the

power ctlrveof.' the Translogadditivity test. Substantial bias is found.

The power curve exceeds the nominal significance level of the test when

the null hypothesis is true and is relatively flat with tespectto departures

from the null case.
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2. The Fourier Flexible Form: An, Expenditure

System with Arbitrarily Small Average Prediction Bias

In this section a Fourier series expansion of the indirect utility

function Isused to derive an expenditure system with a feature which dis-

tinguishes it from other flexible form expenditure systems. When estimated,

it will approximate 'the true expenditure system to within an average prediction

bias which maybe made' arbitrarily small by increasing the number of terms in

the Fourier

Let q denote an N..dimensional vector of commodities, let x =p/y be the

vector of normalized prices, and let g*(x) denote the consurner'strue indirect

utility function. The consumers utility is maximized when expenditures are

allocated according to the expenditure system'

p.q.;Y = l'x. (%x. )g*(x)rl x. (a/ox,,)g*(x)
, 1. 1. , 1.=1.,' 1. ' 1. 1.

i=1,2, ... ,N

provided certain regularity conditions are satisfied (niewert, 1974). No

formal use is made here of these regularity conditions but it is required that

the fOrmula for the expenditure system make sense. Therefore, it is assumed

*that g (x) has continuous partial derivatives and that

* '(a/ox.)g (x.)< 0
, 1. 1.

"for all x c'I where I is the region of approximation; the overbar denotes

closure of a set.

The region of approximation is an open cube I constructed as follows. Let

(Y£"Yu) with Y£, >Obethe interval of incomes over which an approximation is

desired and let (Pn," ,1' . ,) with Pn," >0 be the> price intervals. Having made
)(11. U1. ')(11.

these choices, rescale the units of thecomrnodities and the prices per unit
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such that the rescaled prices satisfY

The region of approximation is, then,

I =Y!-'! pOily.,P ./Y.0)J.- $J u .. UJ. $J

Let A= (A1'A,2"'" "-N)' and k = k2 , ... , I be multi-indexes,

Le. N-vectors with integral components, the components of Abeing non-

nega.tive. Define

Partial differentiation is denoted by
olAI*

f(x)

Differentiation is. taken in the generalized sense (Rudin, 1973,§6 .13) in

the literature cited in this section. However ,there is no need for such

complexity here. If fhas continuous partial derivatives of all orders up

to lAl* in the classical sense tben the classical notion of differentiation

and tbe generalized notion are essentially coincident. The classical notion

is therefore imposed on the symbol DAf here.

Let denote the collection of all complex valued functions I' with

IDAfl P integrable over I for all Awith IA1* S m, a Sobolov space. Let

the Sobolovnorm. The result which motivates the Fourier eXpenditure system

follows directly from Corollary 1 of Edm.onds and Moscatelli (1977).

Theorem 1.

(Sk(X)

. .

Let 2, and for each multi-index k set
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where i denotes the ima.gina.ry unit. If f e wn,p(I.) then there is a sequence

of coefficients ak such that

Observe· that. when f isreal valued the restriction ak = a.;kwill cause
tl k* to be real valued without affecting the validity of Theorem 1;

the overbar denotes the cOlIlplex conjugate of ak .

A more convenient form for empirical work results when the sum

is ree:xpressed as a double sum

J.. J
'E_ lI:· Jaj eOt= J=- Ol

The requis itesequenceof multi-indexes

[k :ex = 1, 2, •.. ,'A}ex

may be constructed from the set

. *
;X; = [k:1 kl S K}

as follows . First,. delete from Jt the zero vector and any k whose first non-

zero element is negative; Le. (O,-l,l} would be deleted but (0,1,-1) would

remain. Second, delete any kwhose components have a common integral divisor;

Le. (0,2,4) would be deleted but (0,2,3) would remain. Third, arrange the k

which remain into·' a sequence

[k: ex = 1, 2, ... , A}ex

*such that I\ I is non-deCreasing in ex and such that kl' ... , ,the

elementary vectors.
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Assume that the observed expenditures and normalized prices are

generated according to the stochastic specification

where

*fH (x)

t = 1,2, •.. , n

.

and

Plql!Y

P2q2!Y

.
I'm-1QN-1IY

Note that y and f* are (N-l) - dimensional; the expenditures on the Nth

commodity are obtained from 1 - Yi for the observed expenditure and from

1- for the predicted expenditure. Let the errors et be independent

and identically distributed each with zero mean vector and variance-covariance

matrix .i:. Assume that, as n becomes large, the empirical distribution function

of the normalized prices x t converges to the uniform distribution over the

cube X. •

Consider as an approximation of g* the Fourier in.direct utility function
ijk/x

g(x) = a + b IX + + rfli:{ Ja .. e eto . ct= J=- Jet
where

-a. = a .Jet -Jet

C = - if. la k k I
ct= Oet et et

and ao·' a , and b are real valued):J The derivatives of g(x) are
Oct



8
ijk'x

(02joxox' )g(x) = -r! l(a
O
+ J j2 a. e ex)k k'or- ... ex J= - Jexex ex

The Fourier expenditure system is

x.b.. + rf l[-a x'k + Jj
fi(x,e) = or-.Q(X ex J=-

b 'x+-t .1L ..a . x 'k + ....iOt= Q(X ex

.
a. e ex ]k. x.Jex
ijk'x

a.e ex ]k'xJex ex

, i=1,2, ..• ,N-l

The system is homogeneous of degree zero in its parameters and is therefore

not identified without normalization; setting bN=- 1 i-s--a-convenient normaliza-

tion rule. Let

ex = 1,2, ..• , A .

The parameters of the system are

') ,••• ,exA

a vector of length N-l + A(l+ J). There are N -1 + A(1+2J) free parameters

in the vector since the complex parameters have both a real and an imaginary

part.

LetS be a random matrix of order (N - 1) x (N - 1) with;i(s - S*) bounded

*in probability for some positive definite matrix S The nonlinear

seemingly unrelated regressions estimator of e (Gallant, 1975) is ewhich
maximizes

where

Subject to regularity conditions stated in Souza and Gallant (1979), e converges
almost surely to that value e* which minimizes the average prediction bias

aCe) =S[f*(x) - f(x.,e)]'(S*r1:f*(x) - f(x,S)] dx .
I

Theorem 1 and Theorem 2, below; taken together imply that the average
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prediction bias B(8*) of the nonlinear seemingly unrelated regressions

estimator of the Fourier expenditure system. may be made as small as desired

by taking A and J sUfficiently large.

Theorem 2. Let g*e w2,2(1) with continuous (a/ox. )g*(x) < 0 for all

x e i and let f*(X) be the corresponding expenditure system. Let

gK(X' 81 ,82 , ... ,SK) be a sequence of functions with continuous partial

derivatives in x and letfK(x,el , 82 , ... , 8K) be the corresponding expenditure

system. Let the triangular array

*811,
*81 ,2 '
*81 ,3 '

minimize

for K = 1,2, ...

triangular array

*; note 9i ,K need not

£81 ,K: i=1,2, ... ,K;
*equal 8i ,K+l' If there exists a

K=1,2, ... } such that

then

Proof. First it is shown that

By hy'pothes is, (%xjg*(x) S {) < 0 for all x e :r. Continuity on :r ,...
J-im\\g*..gK\\1,2,1 = 0 , and
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imply (%Xi)gK(x) < '11 < 0 for all xe i and for all K sUfficiently large.

Then for large (x) -f.. K(x) I <2 for all x ei . Further ,.. .. 3. 1,

timS· Ix. (a/ox. )g*(x) - x. (%x.)gu:.(x)l. dx.x.. 1 J.. J. 1. n.

2 J.. * -2 J..S .tim (S· Ix. I dx)2(S.• · I (%x.)g ;.. (a/ox. )gKI dx)2x. J. X. J. J.

S tim (2Tr) Ilg*- gKII 1,2,X.

= 0
Now (X.,dx) is a finite measure spaCe so that convergence in£l(X.,dx) implies

convergence in measure. Thus, x. (%x. )g.·K(X) converges in--ineasure to
1 3.

*X. (%x.)g ex) as for i = 1, 2, ... , N. It follows immediately that the
1 1.

- ) *.\ *- 12expenditure shares fiK(x converge in measure to fi(x). S3.nce .fi - f iK
is dominated by 4, the dominated convergence theorem for convergence in

measure implies

. -N'-l J I * -1 2.t l.IIl.L:i _l . f i - f iK· dx = 0 .
x.

Let be the largest eigenvalue of (S*)-l Then

. . (- _.). )"'1'\1'-1 J \. * - 12- 0 S .tun. BK 8l ,K"" ,8K,K S tun. '1.=1 X. f i - fiE: dx = 0 •

* *The theorem follows from the fact thatC8l ,K' ... , 8K,K) minimizes

BK(81' .. ; ,8K) whence

o
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3. A Test of the Theory of Demand

There have been many studies that have tested the theory of demand

statistically. A consice account of these studies is found in the

in'troduction of Christensen,Jorgenson, and Lau (l975). Settingaside

the well known problems with the use of aggregate data for such tests, there

remains the problem of bias induced by the choice of a functional form for

the expenditure system. Rejection of the null hypothesis implies rejection

of either the choice ofa functional form or rejection of the theory of

demand or both. The implication of a significant test statistic is unclear;

rejection of the theory of demand is_ not necessarily implied.

Tests based on the Fourier expenditure system permit clearer implications

by virtue of the foregoing. Following along the same lines as Christensen,

Jorgensen, an<1Lau (1975), a test of the theory of demand may be constructed

as follows. Let

£'1(x,61 )

f 2(x,e2 )

where f.(x,e) is the Fourier expenditure share of the i th commodity as defined

in the preceding section. Note that if

then

Following previous usage, the restriction

is termed the hypothesis of e(luality and symmetry here.



A test statistic for the hypothesis

,.
maybe constructed from> the· seemingJ.:y unrelated estimator. Let S be the

random matrix of the preceding section. The unconstrained estimator is

C81 , A2,···,eN_1} which maximizes

where

s(y,x,S ,81' e2 , ..• ,

= - f(x,e1 ,e2 ,· .. ,eN_l )J's-\y - •

The corlstrainedestimator is eWhich maximizes s (e) as defined in then
preceding section. The test statistic for equality and symmetry is

One rejects the null hypothesis when L exceeds the upper Ct x 100 percentage

point of a chi-square randODi variable with (N-2)(N-l + A(l +2J)) degrees of

freedom.

The Fourier expenditure system was :fitted to the data o:fGhristensen,

Jorgenson, and Lau (1975). These data were obtained from Tibibian (1980)

.A = 7 and J =·1. These choices result in an estimate of i: which is one

half the magnitude of i:estimated from T1i'ans1og nonlinear least squares

residuals; equality and sYmmetry constraints having been imposed in both cases;

Fourier scaling as discussed in the previous section is used to estimate 2:

with the Fourier expenditure system; with the Trans1og, prices are scaled so
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that each series xi = Pi/! has a mean of one. There is a singularity with

these data which is accommodated by fixing a07 at zero throughout the

computations; the degrees of the test statistic' are 22.

The computed value of the test statistic for equality and symmetry is

L = -2(44)(-.89053 + .12783) = 67.117

which is significant at a level of 1%. After a correction for serial

correlation the statistic is

L = ..2(44)(-.91160 + .18207) = 64.198

which is significant at a level of 1% •

One concludes that the rejection of the theory of demand reported in

Christensen, Jorgenson and tau cannot be shown to reSUlt from a bias in favor

of rejection induced by a choice of the Translog functional form. One is

not permitted to conclude that the Translog expenditure system is free of

bias from these tests, only that a bias has not been demonstrated in this

instance with these data. In fact, a test of the theory of demand against

an unspecified alternative is not a convenient setting in which to deal with

the'luestion of bias. The number of parameters is large, computations are

therefore and there is no convincing means to parameterize

the alternative. The Translogtest for an additive indirect utility function

is a much more tractable setting for an examination of bias. In the next

secti.on, a substantial bias is discovered.
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4. The Power Curve of the Translog Additivity Test

If the true indirect utility function is additive then additivity may

be imposed on the Fourier flexible form without affecting the ability of the

Fourier expenditure system to approximate the true expenditure system. This

. fact allows the determination of an analytic expression for the power curve

*of the Translog test of additivity in terms of the parameter e . of the
expenditure system. This power curve turns out to be shallow and biased in

favor of rejection. The details follow.

Suppose that the indirect utility function is additive,

The same expenditure system will result regardless of the choice of strict1;y

increasing function F so it Is impossible to distinguish between additivity

and explicit additivity

from expenditure data.. Therefore, only the stronger hypothesis of explicit

additivity is considered here. (The same is, of course, true of homotheticity

and homogeneity ; the same expenditure system. results in either case.)

An explicitly additive form of the Fourier indirect utility function

results when A is set to A = N; recall that the first N multi-indixes kare
et

the elementary vectors. With A = N the Fourier indirect utility function may

be rewritten as

-! 2 J ijxet= lla + b x - 4.." x + '" a e }1. 20.""',,.., ..... J. • ..et=. et et et· VI..< "" J=- Jet

Theorem 1 may be applied successively to conclude that there are coefficients

such that
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Ct = 1,2, ... , N.

By the triangle inequality,

Thus, the hypotheses of Theorem 2 are satisfied and the Fourier system is

seen to retain the ability to approximate the true utility system with arbi-

trarily small average prediction bias.

The Translog utility function yields expenditure shares

i = 1,2, ... , N-l

There are N.:.l + N(N+l) /2 free pa.rameters

The dependent parameters are
J-l

O(N = -1 ,

11 ..= 11.. fori < j

=

The hypothesis of explicit additivity for the Translog expenditure system

takes the form l1ij = 0 for i* j. This hypotheses may be represented as

h().) = H A = 0

where H is of order [N(N-l)!2] x [N-l + N(N+l)/2] and is obtained from the

identity of order N-l + N(N+l)/2 by deleting the N-l + N rows corresponding to

al , ••. , and 1111"" ,11'NN of A. •

As before , let Ji"(S - S*) be bounded in probability. The nonlinear
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seemingly-unrelated regressions estimator of >" is >..which maximizes

where

s (y ,x,S, >,,) = ... -f(x,>,,) ] 's-leY - f(x,),,) ] .

Then, as for '8, converges almost surely to that value }"O which minimizes

To approximate a 0,,) , one may use a(;."e*) where

a(;",e) = r [f(x,S) - f(x,>")]'(S*)-Jrf(x,A) - f(x.,;")] dx
1

The argument runs as follows. Restrict attention to those values of >..

that yield reasonable expenditure shares f. (x.,>..) over 1; say

A= [;":-e < fi(x,A) <1+ e, xef, i= 1,2, ... ,N}

tor some fixed c :> O. Note that

* 1 * 1\a ( ;.,) - a ( ;., , e*) I saCe ) + 2 a 2 (e ) 82C,,)

anda{ >,,) is bounded over A by \Jo(N-l) (2+c)2 where \Jo is the largest eigenvalue

of (S*)-l. As seen in the previous section, 8(8*) may be made arbitrarily

small by taking A andJ sUfficiently large independently of the value of

A. cA. Thus,;"o can be computed as that value of A. which minimizes IS.{ A., e*)

and the error of approximation may be made arbitrarily small by taking A and

J sufficiently large.

The Wald test and the Lagrange multiplier test for the hypothesis

are distributed asymptotically as non-central chi squared random variables
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each with N(N-l)/2 degrees of freedom (Souza and Gallant, 1979), the

non-cen.trality parameter· is

cl = n /..,0 'H' (EVH') /2

where

JO = (%/..,')f(Xt,AO)] '(s*)-J.c!: + O(xt,/..,o ,e*)o/(xt,)..O ,e*)J(s*fl

[ (0/0)..') f(Xt , /..,0) J

= (0/0)..' )f(Xt ,).,0 )J '(S*) -J.c (0/0/"") f(xt , /..,0) J

( / ) n ...N-l...N-l ( ° *). *ij ( 2/ . ').( 0')-1 n!:t=l 0i xt,i\,A . S 0 oAo).. fjXt,i\

6(xt ,Xo,A*) = f(xt,e*) - f(Xt,)..O)

*.. *-1and S denotes the elements of S The asymptotic non-null distribution

of the analog of the likelihood ratio test is also given in Souza and Gallant

(l979) but it does not have a tabled null distribution in this case. Thus, it

is of no practical importance. The arguments supporting the substitution of

. * *f(x,S ) forf (x) in these formulas are similar to those supporting the use of

SeA, e*)forB(A) .

*The choice of S for use in these formulas presents somewhat ofa

*problem. The simplest choice is to take S =!: r,.,hich is equivalent to

assuming that either !: is known or that it may be estimated with

negligible bias. It is, of course, always possible to obtain!: with

negligible bias, one need only fit a polynomial in x of suitably high

degree to each expenditure share yi and compute S from the residuals
A

(Gallant, 1979). The alternative approach is to assume that S "",as

ccmputed from trans log residuals and account for the resulting bias. For
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example, one might compute S from nonlinear least squares residuals subject

to the equality and symmetry across equation constraint. This is

equivalent to taking S == I in the nonlinear seemingly unrelated regressions

met hod whence

s* = r * .*!: + J 5(x,AOO ,e) 0 I (X,AOO ,8 ) dx
I

whereAOO minimizes

Another possibility is to compute S from unconstrained translog residuals.

* .In view of the variety of choices available for S· and the additional

*complexity entailed, it seems that the simplest choice S = t

more to understanding. From the data of the Appendix, a variance-covariance

matrix twas computed from Fourier expenditure system residuals with equality

and imposed on the fit; A = 7 and J= 1. This variance-covariance

matrix was rescaled upward by a factor of two.

A smooth transition between the extremes of additivity an.d its absence

was obtained as follows. The parameter 9*'';13.5 computed by fitting the

Fourier expenditure system to the data of the Appendi;c by nonlinear seemingly

unrelated regressions rlTith this choice of !:, with equality and symmetry

imposed, and with the constraint

\71!: 4!:'- 1 Ia. 1= K• or- J-- JCl

imposed. The choiceK= 0 yields the null case. The remaining lines of

Table 1 correspond to increasingly larger values of K and the last line

corresponds to an unconstrained fit. These parameter choices are realistic

in that they yield expenditure shares in accord with the shares

in the data of the Appendix as revealed.by visual inspection of plots of

observed and predicted shares aga·inst time.
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The Translog test of explicit additivity (with equality and symmetry as

a maintained hypothesis) is seriously flawed as seen in Table 1. The actual

size of the test is much larger than the no:ninalsignificance level of .010

and the power curve is relativelyfJ.a.tcomparedto the power of a test based

on the Fourier expenditure sy-stem. The Translog power curve does increase

locally, as one might expect, but it falls off again as departures from. the

null case become more extreme.

Table 1 about here



Table 1. Tests for an Additive Indirect Utility Function
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Fourier Trans log

K Noncentrality Power Noncentrality Power
.0 .0 .010 8·9439 .872
.00046 .0011935 .010 8.9919 .874
.0021 .029616 .011 9·2014 .884
.0091 .63795 .023 10.287 ·924
.033 4.6689 .260 14.268 ·987
.059 7.8947 .552 15·710 ·933
.084 82.875 1.000 13·875 .984
unco.Q.strained 328.61 1.000 10.230 ·922
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5. Parameter Reduction

As with other flex:ible functional forms , the number of parameters in a

Fourier ex:penditure system becomes unreasonably large as the number of

commodities increases. This problem can be partially alleviated by imposing

a convexity restriction and by deleting selected multi-indexes.

Convexity is imposed on the Fourier indirect utility function rewritten

as

by setting

where the free parameters satisfy

-c. = c.Jot -Jot

C 2: 0
00

ot = 1,2, •.• ,A

ot = 1,2, •.. ,A;

ot = 1 ,2, . • • ,A ;

ot = 1,2, • • . ,A;

j = 1,2, ... ,2J

j = 0,1,2, ... ,J

c. = 0Jot
ot = 1,2, ... ,A; Ij I >J

The restriction is sufficient for g(x) to be a convex function; it is not

necessary save in the case when A:::;; N. Also, the unbiasedness property of

the Fourier system is lost when the restriction is imposed. However, since

the restriction can be tested in an application, the lack of necessity and the

loss of unb iasednessare not serious problems. One would think that any serious

distortion of the fit caused by the convexity restriction would be detected by

testing the restriction. It reduces the number of parameters by roughly one

half, holding the length of 8 constant.

Further parameter reduction may be achieved as follows. Rewrite the



22

Fourier indirect utility function as

g(x) = a +b 'x + r! l·l-L (k'x)o a=aa

where

II. (z.) = 1 2 + .--.2J . ijza z 2J a. ea OCt J=- Ja

Written thus, the Fourier indirect utility function is seen to be additive

not in each of the normalized prices x but rather in price indexes k' x •a . a
The components of the multi-indexes k are the weights which make up thea . .
price index. Thus, either an upward or downward testing sequence may be

employed to determine optimal set of multi-indexes in a given application.

The convexity claim is verified as follows. The Hessian of g(x) is

and a sufficient condition for a positive semi-definite Hessian is that for

each a

2; 2(d dz (z) 0a

But, under the restrictions,

0::; z S 2'rT •

J - ijz= 2J(l: _c c . )eJ=- S=-J sa S-J,Ol

J - ipz + isz= l: c c es=-J -2J-s sa-Pet

isz J - ipz
=", c e 2:- c es=-J sa -p=-J-Pet

0
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Footnote

YExperience in other>contexts indicates that the number.of terms in

a Fourier approximation of a function can be reduced considerably if a

linear term b'x is included .. The termx'Cx ismcluded so that the

expression for the Hessian has the form of a weighted sum of rank one

positive semi-definite matrices with scalar Fourier series expansions

of k 'x as weights-. This facilitates the approximation of a convex
Ci

function; see Section 5.



Appendix.

Table 2. Data of Christensen, Jorgenson, and tau (1975)
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NONDUBABLES SERVICES

Year

1929
1930
1931
1932
1933
193q
1935
1936
1937
1938
1939
19QO
19tH
19Q2
1943
19Q4
1945
1946
1947
1948
19 Ll9
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972

28.96LJ5
29.8164
28.9645
26.8821
25.3676
2Ll.6104
22.3381
24. 1311
24.1371
26.6928
26.4088
27.0714
28.4912
29 .. 5325
28.6806
28.8699
28.3966
26.6928
28.3966
31.6149
35.8744
38.9980
43.5414
48.0849
49.8833
53. 1016
55.4680
58.8756
61.6206
65. 3122
65.7854
68.. 6251
70.6129
71. 5594
73.5472
77.2387
81.9715
87.11615
93.8981
99.5774
106.7710
109.1380
115.2900
122.2000

Price

33.9
32.2
31.4
23.9
31 •.3
21.7
28.8
32.9
29.0
28.4
30.5
29.1+
28.9
31.7
38.0
37.7
39.0
44.0
65.3
60.4
50.4
59.2
60.0
6Ll.2
57.5
68.3
63.5
62.2
56.5
66.7
63.3
13. 1
72.1
72.Ll
72.5
76.3
82.3
34.3
81.0
81.0
94.4
85.0
88.5
100.0

98.1
93.5
93.1
85.9
82.9
88.5
93.2
103.8
107.7
109.3
115.1
119.9
127.6
129.9
134.0
139.4
150.3
158.9
154.8
155.0
157.4
161.8
165.3
171.2
175.7
177.0
185.1+
191.5
1911.8
196.8
205.0
208.2
211.9
218.5
223.0
233.3
21+4.0
255.5
259.5
270.2
276.4
282.7
287.5
299.3

Price

38.4-
36. Ll
31.1
26.5
26.8
30.2
31.5
31.6
32.7
31.1
30.5
30.9
33.6
39.1
43.7
Ll6.2
47.8
52.1
58.7
62.3
60.3
60.7
65.8
66.6
66.3
66.6
66.3
67.3
69.4
71.0
71.4
72.6
73.3
73.9
74.9
75.8
77.3
80.1
81.9
85.3
89.4
93.6
96.6
100.0

Q.uanti;tz

96.1
89.5
84.3
77.1
76.8
76.3
79.5
83.8
86.5
8.3.7
86. 1
88.7
91.8
95.5
100.1
102.7
106.3
116.7
120.8

6
126.4
132.8
137. 1
140.8
145.5
150.1+
157.5
164.8
170.3
175.8
184.7
192.3
200.0
208.7
217.6
229.7
240.7
251.6
264.0
275.0
287.2
;297.3
306.3
322.4

P!'ice

31.6
32.1
30.9
28. a
26.1
26.8
26.8
27.2
28.3
29.1
29.2
29.5
30.8
32.4
34.2
36.1
37.3
38.9
1. 7
44.4
46.1

49.9
52.6
55. £+
57.2
58.5
60.2
62.2
64.2
66.0
68.0
69.1
70.4
71.7
72.8
74.3
76.5
78.8
82.0
86. 1
90.5
95.8
100.0

Source: Tibibian (1980)


