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e x. A Continuous Time Model of Electricity Consumption Which Incorporates
Time of Day Pricing, a Demand Charge, and Other Commodities

Over an interval of time [O,T], say, a month, a consumer chooses

a path of electricity consumption c(t) with units in kilowatts per hour

and, under conventional pricing, is billed proportionally to the total kilowatt

hours consumed over the period, computed as J: c(t)dt. Time of day pricing

usea, instead, the billing formula J: ret) c(t) dt where ret) is the

rate schedule with units in dollars per kilowatt hour.

The method of computing a demand charge varies from utility to utility.

The method described here is that used in the North Carolina Time of Day Rate

Demonstration Project. At selected times during [O,T] denoted as

the average kilowatts per hour that a customer consumes over the next

fifteen minutes is computed,

J
t.+6

(1/6) d( t) dt.
t i
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The maximum of these as i ranges from 1 to K is,. say, D. An amount

d • D is added to the customer's bill where d has units in dollars

per kilowatt per month. Fo·r no·tational. convenience, set

whence

__ [101D.I. (t)
t. < t <. t. + D._. -
otherwise

JT I.(t)c(t)dt = (l/l!)o J
t.+D.

c(t)dt.
t'i

Let q denote an N-vector of conventional commodities, let p be

an N-vector of corresponding prices, and let Y denote a consumer's total

expenditures over the period (O,T]. The consumer is constrained to choices

e of electricity consumption paths c,(t) and quantities of other commoditi'es

q which satisfy

qO·( c,q,D) = r(t)c(t)dt +p'q+dD-Y < 0

q.(c,D) = I. (t)c(t)dt - D < 0

i = l,2, ••• ,K.

These equations define the income constraint set.

The consumer is presumed to choose an electricity consumption path

(t) and other commodities q by maximizing a functional u(c,q) over

the income constraint set. The functional u(c,q) maps a square integrable

function c(t) 8 L2 (0, T] and a commodity vector q 8 RN into the real
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e line. One has in mind, possibly, an analogy to the Generalized Leontief

functional form

u(c,q) N fT=Li 1 a. In q. + aCt) In [c(t)]dt= 1 1 0

N 1 JT fT 1+ \'N \' (3 •• (q .q . ) + s(s , t)[ c ( t) c (s) 1 ds dt
1J 1 J 0 0

Electricity is an input into household production so that this objective

function is to be regarded as a composition of household production functions

and a utility function. There is no mathematical impediment to the construction

of a household production type of model but since electricity consumption is

not measured by end use in the available data there is little point to the

exercise.

To solve this optimization problem, a notion of differentiation of a

functional such as u(c,q) with respect to a square integrable function c(t)

is required. To do this, suppose that K(t,x), (a/ax)K(t,x), and (a 2/ax2)K(t,x)

are continuous with bounded over 0 < t < T, _00 < x < 00 and

that a functional fCc) is defined by

f(c) s f: K[t,c(t)]dt.
It follows that, for c,h E L2 [O,T],

f(c+h) - f(c) = f: (a/ax)K[t,c(t)]h(t)dt + 0(11 hill

where This equation suggests a definition of a

derivative 'iJ f (c)c and a of a differential 'iJ f(c)h.c



The square integrable function

7 f(c)(t) = (d/dx)K[t,c(t)]c

may be regarded as the derivative of f(c) evaluated at c and

Vf(c)h =fT 7f(c)(t)h(t)dt
c 0 c

may be regarded as the differential approximation to the difference

f(c+h) - f(c)
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•

In general, if one can find a square integrable function F(t) which satisfies

the equation

£(C+h) - ftc) • f: F(t)o(t)dt + o( II h II )

for square integrable c,h then

7 f(c)(t) = F(t).c

Differentiation with respect to q E RN retains its conventional meaning

(3 a a)v f(q) = aq f(q), aq f(q), ••• , aQNf(q)·.
q 1 2 •

Thus

f(q+h) - f(q) = + a (11h II)

where II h II



As shown in detail later il.n this section, the Kuhn-Tucker first order

conditions for the consumers optimization problem are

iT u(c,q} - AOP = 0q

- AOd - A. (-1) = 0
J.
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JO

T
r(t)c(t)dt + p'q + dD = y

= 0

"for i = O,l, ••• ,K. Assume that exactly one constraint i is binding;

this is approximately the same as assuming that the consumers chosen con-

e sumption path c(t) has a single maximum. In this case the first order

conditions are

iJcu(c,q)(t) - AOr(t) - = 0
J. J.

iJ u(c,q) - AOP = 0q

AOd + A'" = 0
i

f: r(t)c(t)dt + p'q + dD = y

JT = D° J.

Algebraic manipulation yields
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Ao = [J: cu(c,q}(t)c(t)dt + ly

A" = A di· 0

whence the first order conditions become

v u(c,q) = AOP'q

JT "o r(t)c(t)dt + p'q = Y

r(t) = r(t) +

Marginal utility is proportional to price at each instant of time. The

result generalizes; conditional on

fTo c(t)I. (t)dt
the first order conditions are as above but with

r(t) = r ( t) + d max [I" (t) , (t) ] •
i i

Another implication of the first order conditions is that consumption

is homogeneous in prices and income. That is, the electricity consumption

path is of the form

,..
c(t) = c[(r,p)/y](t)

and the consumption of other commodities is given by a function of the form

q = q[(r,p)/y].
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Typically, the price path !(t) is periodic over < t <

that is

r(t+kT) = r(t), k = 0, =1, :2,

It also seems natural to impose periodicity on marginal utility

v a(c,q)(t+kT) = V u(c,q)(t).c c

The optimal consumption path

A

c[(r,p)/y](t)

will, as a consequence, be periodic.

A stocastic specification of an observed demand path ci(t) is

where - f(T),i ° < T < T, represents small errors in knowledge of

the time of day, and e. - g(e) represents an additive error of observation.

The expected demand path is, then,

c[(r,p)/y](t) = E[c.(t)]

f
T

o
= f(T) dT

-f: f(t-s)
where f(T) has been extended to a periodic function. If f(T) is bounded

and continuous then

lim c
t+to



=

=

fa
T
[limt + t f(t-s)]c[(t,p)!y](s}ds

a

8

whence the expected demand path is continuous regardless of whether or not

the optimal demand path is continuous.

The path c[(r,p)ly] is a convolution. Thus, if fer) and c[(r,p)!Y'](t)

have Fourier expansions with absolutely summable coefficients

c[(r,p)!y](t) = "':' S. (1!IT)ei (2'IT!T)jt
J

then

= ,,"" (a.S.) (1!IT)e i (2'IT!T)jt.
J J

Thus, the Fourier coefficients of the expected demand path are attenuated

by those of the timing error distribution f(L); they decrease to zero

faster than those of the optimal demand path.

When fitting this demand system to data, i '"or (i, i) as the case

may be is found by inspecting the consumption path c(t) which obtains

in the data. This introduces an errors in variables problem as, due to
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error, the i which obtains may differ from the optimal i

is addressed in a later section.

This problem

9

Another problem in empirical work with the demand system is that con-

sumption is defined as an implicit function of price. Consumption expressed

as an explicit function of price is preferable. A form of Roy's identity

is available to address this problem. An indirect utility functional

has income normalized prices as its arguments

=

x = p/ y.

One has in mind as a choice of a generalization of a flexible

functional form along the lines described earlier. ROy's identity is

Next, a detailed verification of the first order conditions is presented.

The reference for notation, definitions, manipulative results such as the chain

rule, and the Kuhn-Tucker first order conditions is Wouk (1979, Ch. 12).

The fact that both L2 [0,T] and RN are self dual is exp10itled repeatedly

in the development. Thus, a bounded linear operator <·,r'> on 12 [0,T]

must be of the form

<c,.'> - J: .(t).'(t)dt
where r' itself is in L2 [O,T]. This being the case, the notation r' to
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indicate membership in the dual space is dropped in favor of the notation r

since r' is, in fact, in 12[0,T]. This gives rise to another fact which

is exploited repeatedly

<c,r' « - <r,c',

= <p,q>.

The Frechet partial derivative with respect to c evaluated at (c,q)

of a mapping f(c,q) from to, say, is a bounded linear

operator denoted as 'i/ f(c,q)c which maps h E 12 [0,T], its domain, into

RN, its range, and satisfies

f(c+h,q) - f(c,q) = 'i/ f(c,q)h + o(llhll).c .

The notation 'i/ fc is used frequently to mean 'i/ f (c ,q) ;c Table 1 is provided

to avoid any confusion caused by this abbreviation.



1_ Freehet Partial Derivatives

Freehet Partial Derivative Evaluated at Domain Range

'i/ u = <. ,'i/ 1.1> (e ,q) L2 Re e
'i/ u = <', 'i/u> (e,q) RN Rq q

'i/Du = <,,0> (e,q) R R

'i/ egO = <', r> (e,q,D) L2 R

'i/ g = <', p> (e,q,D) RN Rq 0

'i/DgO = <-, d> (e,q,D) R R

'i/ egi = <-,I.> (e,D) L2 R1.

'i/qgi -:= <-,0> (e,D) RN R

'i/Dgi = <-,-1> (e,D) R R

'i/ ..v = <·,'i/...v> (r,p) L2 Rr r
'i/ v = <', 'i/ v> (r,p) RN R
P P

'i/... e (r,p) L2r
'i/ e (r,p) RNp L2

'i/ ... q (r,p) L2 RNr
'i/pq (r,p) RN RN

11
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The consumers optimization problem is to

maximize: u(c,q)

subject to: gO(c,q,D) = <c,r> + <q,p> + <D,d> - Y : 0

i = 1,2, ••• ,K.

A unique solution (c,q) of the consumers optimization problem which

satisfies gO(c,q,D) = 0, g. (c,D) = 0 for some i, c(t) > O. all ;·.t e: [0, T],
J.

and qi > 0 for i = 1,2, •••N is presumed to exist for each (r,p,d) with

r(t) > 0 all t e: [O,T], Pi > 0 for i = 1,2, •••N, and d > O. The

Frechet derivative of u(c,q) is presumed to exist at (c,q).

The Kuhn-Tucher first order conditions for this problem are

'i/ u(c,q) AO<., r> A.<·,1.> = 0
C J. J.

'i/ u(c,q) - AO<"P> = 0q

AO<. ,d> A.<·,-l> = 0
J.

<c,r> + <q,p> + <D,d> = y

A. [<c,r.> + <D,-l>] = 0 .
]. ].

'" '"If exactly one constraint i is active, then A. = 0 for i of i,O
].

and the first order conditions may be written as

- AO <., d> - Ai <',-1>

=

=

=

o

o

o



<c,r> + <q,p> + <D,d> = Y
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then

<c, Ii> + <D, -1> = o

[<c,'iJ u> + <:tq,'iJ u> + 0] - AO[<c,r> + <q,p> + <D,d>]
C q

- + <D,-l>] = 0

which simplifies to

[<c,'iJ u> + <q,'iJ u>] - A Y = 0c q 0

using the income constraint and

Thus,

<C,I7> + <D,-l> = O.

Now the equation

may be rewritten as

A d<· -i> - = 00'

whence

The first order conditions become

...<., r> = 0
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....
<c,r> + <q,p> = Y

with

....
r = r +

Ao = [<c,V u> + <q,V u>]/y
C q

Suppose that there is a differentiable mapping (c,q) =

of (r,p)/y into the point (c,q) which solves the consumers

optimization problem. The indirect utility function is, then,

=

By the chain rule

v,.." = V uV"'c + V uV.... q ,r c r q r'

V v = V uV c + V uVpqp c p q

Substitution of the first order conditions derived earlier yields

V,..v
r

....
V v == A <', r>p 0 V c + AO <',p> V q

P P

Differentiation of the income constraint

+ = y

yields the equations



'" '"<• t c[ (r tp) j"y] > + <. t r> 'ilAc + <. t p> 'ilAq = 0r r

<--tq[(rtp)/'y]>
A+ <. t r> 'il C + <. t p> 'ilpq = 0p
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Substitution into the equations for

Then

<rt'ilAv'> + <pt'il v> = -AoGtc[{rtp)/y]> + <ptq[(rtp)/y]>]
r P

= -Ao[3c[(rtp)/yLr> +

Substituting for AO yields Roy's identity

If one writes for the indirect utility function where

x= r/y

x = ply

then Roy'S identity becomes

<. ,c>

<. ,q>
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