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.ANNOUNCEMENTS
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be held at the University of Waterloo, Waterloo, Ontario, Canada, on May 10-11,
1979. For information contact Jane F. Gentleman, Department of Statistics, Univer-
sity of Waterloo, Waterloo, Ontario, Canada N2L 3Gl.

Additional copies of these proceedings can be obtained from The Institute of
Statistics, North Carolina State University, P. O. Box 5457, Raleigh, NC 27650.

The Proceedings of the Tenth Symposium can be obtained from David Hogben, Statis-
tical Engineering Laboratory, Applied Mathematics Division, National Bureau of
Standards, U. S. Department of Commerce, Washington, D. C. 20234.

Proceedings of the Ninth Symposium may be obtained from Prindle, Weber and Schmidt,
Inc., 20 Newbury Street, Boston, Massachusetts 02116.

The Proceedings of the Eighth Interface Symposia can be obtained from Health Sci-
iences Computing Facility, AV-lll, Center for Health Sciences, University of
California, Los Angeles, California 90024.

The Proceedings of the Seventh Interface Symposia can be obtained from Statistical
Numerical Analysis and Data Processing Section, 117 Snedecor Hall, Iowa State Uni-
versity, Ames, Iowa 50010.

The Proceedings of the Fourth, Fifth, and Sixth Symposia can be obtained from
Western Periodicals Company, 13000 Raymer Street, North Holly"wood, California
91605.
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PREFACE

This symposium was the eleventh in a continuing series of symposia organized for
those interested in the intersection of the disciplines and professions of com-
puter science and statistics. This series of symposia has, by now, achieved the
status of a major national meeting within this community.

The customary format of parallel workshops following a plenary session with
keynote address was continued. Each workshop was organized by its chairman and
consists of invited speakers presenting papers on the workshop topic followed by
open discussion of the paper by all participants. Some workshop chairman have
inclUded designated discussants as well. Contributed papers were presented in
poster sessions continuing the successful innovation introduced in the ninth
symposium.

The major departure from previous symposia is the publication of the proceedings
in advance for use by participants during the symposium. Several benefits were
anticipated from pre-publication. Much of the distraction of distribution of
handouts and note taking during workshop presentations is eliminated. Workshop
participants, having read the paper, can eliminate much of the discussion related
to clarification of the invited speakers ideas and can focus their comments on
the ideas themselves. Parallel workshops unavoidably require the participants
to be unable to attend some workshops but, having the papers from these work-
shops in hand, they may read them and recapture many of the benefits of attendance
by discussing the papers with speakers and attendees of the missed workshop during
the session breaks, at lunch, and in the evening. Incidentally, one is also
assured that invited speakers have adequately prepared their presentations.

Pre-publication entails a rigid and compressed pUblication schedule. The task
of arranging so many papers into a camera ready manuscript in such a short time
appeared impossible. Mrs. Margaret Rice single-handedly accomplished the impossi-
ble. There are no words adequate to express our debt to her.

e It is fitting at the end of a decade to review and record the history of the
symposium series. Thus, we were fortunate to have Nancy Mann who is with the

x



Science Center at Rockwell International as our keynote speaker. She is well-
known in the profession for her many professional accomplishments and among them
is that she was one of the founders of this series of symposia. In her keynote
address she recounts the growth of her progeny. There were nine workshops:

2.

3.

4.

5·

6.

7·

Statistical Computing Languages. Organized by Lawrence C. Rafsky. Dr. Rafsky
is statistician, Chase Manhattan Bank, and is teaching in the Department of
Computer Science, Stevens Institute of Technology. His teaching is in numeri-
cal analysis and his primary research interests are in the interface.
Computing Methods for Variance Components. Organized by William J. Hemmerle.
Professor Hemmerle is Chairman of the Department of Computer Science and
Experimental Statistics at the University of Rhode Island. He is a recognized
authority on statistical computing for linear models (including variance com-
ponents) and has published extensively on the topic.
Computing for Econometrics. Organized by Warren Dent. Professor Dent is
wi th the Institute for Economic Research, The University of Iowa. He is pre-
sently editing a special volume on computing in econometrics for the Journal
of Econometrics.
Graphics. Organized by Ronald K. Lohrding. Dr. Lohrding, a statistician, is
the Group Leader of the Energy Systems and Statistics Group in the Energy
Division at the Los Alamos Scientific Laboratory in Los Alamos, New Mexico.
Dr. Lohrding and his staff have been doing extensive research into graphic
displays of statistical information and data.
Statistical Computing in Adversary Proceedings. Organized by John S. deCani.
Professor deCani is Chairman, Department of Statistics, The Wharton School,
University of Pennsylvania. He has much experience in the preparation of
statistical testimony for judicial proceedings.
Computing for Bayesian Statistical Methods. Organized by Joseph B. Kadane.
Professor Kadane is Head of the Department of Statistics at Carnegie-Mellon
Universi ty. He is well-known for his research in Bayesian statistical
theory and methods and is a major participant in the development of a
Bayesian regression procedure in the NBER TROLL system.
Numerical Algori throB. Organized by William J. Kennedy. Professor Kennedy is
Head of the Numerical Analysis Section of the Statistical Laboratory at Iowa
State University and Chairman of the Committee for Evaluation of Numerical
Algorithms in the Statistical Computing Section of the American Statistical
Association. He was general chairman for the seventh symposium.

xi



8. Large Data Files. Organized by Frank M. Stitt. Dr. Stitt is Director of
Clinical Sciences, ALZA Research, and is associated with the Health Sciences
Computing Facility, University of California at Los Angeles. He has much
experience in data base management and is responsible for new therapeutic
clinical trials activity at ALZA. His research interest is in the develop-
ment of information systems in cli.rrlcal research.

9. Combinatorial Computing in Statistics. Organized by Joseph. B. Kadane.
Professor Kadane's professional activities are summarized above.

A. Ronald Gallant
Thomas M. Gerig
Symposium Chairmen

./
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KEYNOTE ADDRESS
EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT THE HISTORY
OF COMPUTER SCIENCE AND STATISTICS: ANNUAL SYMPOSIA

ON THE INTERFACE--AND MORE
Nancy R. Mann

Science Center, Rockwell International
Thousand Oaks, California 91360

INTRODUCTION

This morning I'm going to talk about the history of
Computer Science and Statietias: Symposia on the
Interface and related events applying particularly to
the American Statistical Association. This is something
that I haven't spoken about before in front of a 1aroe
audience and, in fact. that I hadn't
about for a good number of years at the time Sob r1onroe
phoned and invited Me to speak. I'm since
are beginning what would be the second decade of

Interface symposia, except for aoproximate1y half-year
slippages betl'leen the third and fourth and the sevl!nth
and eighth meetings, that the conference orQanizers
felt this is an appropriate time to look back to see
how it all began and what has happened since its
beginning.

I wish that on this occasion I could tell you that
reflection upon this history has enabled me to glean
some universal truths to PASS on to you, such as, for
example, those in the three-pronged ecological maxim:
evel'1!,:hing is tJonnect:ed to ..vezndthir-{1 eZee, evezn,/thing
is dyr.amia(l ZZy changing and there's 1".0 such ':IS a
freeZunch. Unfortunately I haven't been able to find
any.

Before I started writing. I read over the keynote
addresses of Frank ftnscombe, Dick HamminQ, H. O. Hartley,
r·lartin \'li Ik, Edwin Kuh, John Rice, and Tonv Ralston
appearing in the Proceedings of previous Interface
symposia. I felt much like Charlie Brown on the
occasion when Lucy commented to Charlie ann to Linus
that she had read that if one stared at clouds. it was
possible to see various familiar objects in them.
"\4hat do you see in those clouds overhead, Linus?" she
asked. Linus resoonded. "1 see in the configuration
of that cloud over there the outline of British
Honduras. And I see in that second cloud a sculPture
made by the r.;ost outstanding sculptor in contemporary
America. The aesthetics are indesc:oibable and very
moving! And then in that third cloud I see Saul who
became the great Apostle Paul, standing watchina those
who were stoning to death the first ehdstian martyr,
Stephen."
"':low, Linus." said Lucy, "that's fantastic! "Ihat do
you see, Charl ie Brown?"

And Charlie Brown said I was qOlno to say I see
a horsey and a ducky. but ! changed my mi nd. "

Since it's a bit too late now to change my mind about
delivering this keynote address, I'll beain DY notino
that i was surprised to discover during my reflection
that I was present at a substantial number of significant
events in the early part of the history of I·..hich· I shall
speak. Let me !Jegin at the beginninQ.

2

THE BIRTH OF INTERFft.CE I

The person whom we oldtimers all know to be the oriainal
guru of the Interface is Arnie r,ooaman, known to his
parents as Arnold Frank r,oodman. Arnie spent his
graduate years here at North f4rolina State where he
worked two surrmers with. "l':urlv" Lucas. Followino his
graduation he to Stanford, where, in 1961 he
received his PhD in Statistics under the direction of
Herman Chernoff. He then settlea down in Southern
California to work in industry, where he soon became
interested in and comouter systems.
By the time I met Arnie in he had become convinced
that mankind (personkind?) was huncerina. thouoh oer-
haps unconsciously, for a syrr.nosium on the interface of
computer science and statistics. Sometime in late 19€5
after he took office as President-Elect of the
Southern California ASA chaoter, seized upon the
opportunity afforded by this office to assemble a
symposium committee, and he attempted to galvanize us
into action.

The committee included representatives frOM the ASA
Chapter, from a loosely-knit Southern California
organization called SPEC (Statistical Proaram Evalua-
tion Committee), to which Arnie had been delivering
his Interface propaQanda, and from the Los Angeles
Chaoter of Sol Pollack, the Chairman of the Ar.M
chapter, near Arnie at the Space of
Rockwell. and he had been converted early on to
Interface consciousness.

The cOrmtittee activities got off to a slow start
because we initially made contact with officials (If
a Business School of a local university who seemed
to view this as an opportunity for a large prooortion
of their staff to participate and to receive
honoraria. Since our working budget was what might
euphemistically be called "zero based" and since I'le
wanted more freedom in choosing our format and
soeakers, we declined the honor and looked elsewhere.
Committee member Mitchell Locks contacted his second
cousin (or maybe it was his wife's second cousin), a
man named Larry Emanuel, who was associated with
University of California Extension at UCLA. Larry
thought the Interface premise was a good one for
UC Extension sponsorship and was more than
to let us have a free hand in planning the nrogram.
So we were off and running, and it turned out to be
a pleasant alliance. 8y the time got
with UC Extension, Arnie was looking to
being President of the ASA Chapter and decided that
it would be inapprooriate for to continue to
chair the symoosium committee. For reasons known
only to him and his maker, he saw me as his most
likely successor and managed to convince me that
Interface chairmanship was my destiny.



Following the initiation of My chairmanshio, tl'ie
committee met and set down tne pur,ose of the Sym-
posium, the essence of which can be found in
Mike Tarter's Preface in the Proceedings of the
sixth meeting:

To faaii-ita<:e '.:he dssign and improveMent of
a071l!'uting systems and softr.lal'e by use of
s'.:atistias.

To <:he impLementation of statisticaL
methods by making the most efficient use Of
oomputation maahinery.

To "enlzt:uo.ae the aombined uses of sta#,;rtias
a",.d aomr:uta'tion a;r adJunats to '.:he basia
and app'Ued scienaes.

(A somewhat more succinct version of this purpose is
given in the Preface by David Hoaglin and
Roy Welsch in the Proceedings of the ninth meetinq.)

made decisions about the date and format of the
symposium (one day, February 1, 1967, with no
parallel sessions). also discussed poss1ble
topics and decided on OiO that continue to r-e addressed
(aomr:uter and on '.:he inter-

and that have apparently faded into Interface
oblivion (aomvutationaZ and

And we decided to have a luncheon
speaker:

After some deliberation, we aqreed on a title for the
meeting. It was to ce "Computer Science and Statistics:
A SyMposium on the Interface." we gave computer
science top billina, I can't remember. I suppose it
sounded more euphonious. The title l,'as selected durinq
the period in which colons appeared somewhere in all of
Arnie's titles. In his later titlinq, he replaced the
colons by pairs of dashes. If the interface symposium
had been originated this year, it would dOUbtless be
called "Computer Science and Statistics--A Symoosiul'l
on the Interface." "

MORE PLANNING AND iHE BIG EVENT

It was following my first conmittee meeting as chairman
that I was struck with what turned out to be one of ny
all-time great ideas. It occurred to me during an
inspired moment that Ed Thorp who had written "Beat the
Dealer," the classic on blackjack strategy, had fairly
recently joined the faculty at nearby U.C. Irvine.
Certainly, his simulation of blackjack hands and subse-
quent determination of a nearly optimal strategy for
play was an application on the interface that was made
for an Interface symposium luncheon talk. Since we
had no money to offer for honoraria or anything else,
for that matter, I decided on a two-stage procedure
for contacting Thorp and inviting him to speak. Some-
how, since he had authored a best seller, I viewed him
differently from the way I viewed ordinary statisticians
and the 1ike.

1 drove to Pasadena to a meeting of the Society of
Industrial and Applied Mathematics (SIAM) where I had
arranged to meet a good friend, Bernie Geldbaum, of a
mutual good friend. Bernie was at that time Chairman
of the U.C. Irvine Mathematics Department with which
Thorp was and still is associated. I told Bernie about
the symposium, our lack of resources and my plans for
the luncheon talk; and he agreed to relay the plan to
Thorp ana let him that I "fou1d he contactina him.
In the end my daughter ana I vi sited Thorp, his wi fe
and two little girls at their home for morning tea one
Sunday on our way to Netlport BeaCh. He had a deligl,t-
ful visit, and he to drive UQ to our
from Irvine and describe the events leading to the
writing of his book. He later gave me a title for his
talk. which didn't seem to me to give any hint of what
it concerned; so I changed it to "Adventures on the
Interface in Beating the Dealer." I thought this would
insure attendance of all blackjack addicts on our
mailing list. And as it turned out. there were quite
a few.

I asked \o1il1 Di xon to introduce Ed and contacted
Arthur Samuel, then recently retired from I.B.M. and

3

more recently affiliated with Stanford, and asked him
to describe some of his pioneering work in

It vias this vlork of Samuel's
incidentally, that had originally inspired Arnie to
Interface guruship. Sy the time the committee met
again to choose potential to fill out the
program, we had distinguished chairmen for all of
tne sessions and some potentially exciting presenta-
tions on tap. The program inclUded a talk on

anaZusis of brain 1JJa.ves and one on
testing "of theories.

After the program was set, we dealt with problems of
publicity, including the symposium announcements. I
recall spending a lot of time on the phone with
Larry Emanuel, a great deal of it in convincing him
to keep the price of attendance at five dollars. (As
I recall, I felt that a modest price would encourage
attendance by those who didn't want to bother with
company Just before the announcements
were to be printed, however, we found that a new
stUdent ruling would prevent us from holding the
meetingat the location we had selected on the UCLA
campus. ihus, the Miramar Hotel in Santa Monica was
to become the site of the first Interface Symposium,
and larry therefore raised the price of admission to
six dollars. Since luncheon was included, it was
nevertheles.s, I felt, a bargain not to be !1issed.
By the day before the meeting was to be held, about
one hundred people had registered; but on the morning
of the event, an additional hundred people waited in
line at tne Miramar Hotel to pay the registration fee.
In the line I saw Merv Muller for the first time since
a number of earlier when we had sat together as
undergraduates in Paul Hoel's statistics classes at
UCLA. He was on his way home to Wisconsin from some-
where in the Southwest. More people arrived later in
the morning, hoping to get into the luncheon by
registering for the symposium. By then, however, we
were cheek to .lowl in our assianed room and there '."as
no more space for devotees of the Interface, black-
jack aficionados or otherwise.

The crowded conditions added to the general air of
excitement, and it seemed clear by early in the day
that the symposium was a success. Thorp's oresenta-
tion ranked in excitement with watching Evel Knievel
hurling over 35 station wagons and a Greyhound bus
in one fell swoop. The only croblem "Ias that !'/e had
to terminate the discussion period with a few dozen
people on the verge of cardiac arrest because they had
no opportunity to ask Questions burnino inside ofthem. " -

All of the expenses of the mailinq lists,
printing of the announcements, coffee, meals, handout
ma teri aI s for the meeti ng, and cuffl inks I bought for
the speakers and session chairmen at the last minute
were undeno/ritten by U.C. Extension an.ainst notential
income from registrationS. Arnie and I each advanced
thirty dollars to pay the air fare and hotel bill of
one speaker whose plight was described to us at the
meeting by one of his colleagues. After actions by
the executive committees of the sponsorina chapters
of ASA and ACM, we were (I'm happy to say) reimbursed.

THE ANNUAL SYMPOSIA
It seemed evident after Interface I that ther:e shaul d
be an Interface II so we optimistically began planning
for CO/lTOUter Saienae a:J"A Stat:istias: Seaond AnnuaZ
SY1f100siUm on the Intezoj'a.ae. More than half of the
committee for the second was made up of stalwarts left
over from the first. Again I was chairman and again
there was Arnie, along with statisticians :'!ally Blischke
and Liz King, and once more Bob represented
ACM. The American Society for Information Science
joined in with the other sponsOring organizations which
again included U.C. Extension. Larry Emanuel agreed
this time to provide honoraria for some of the speakers.
Larry was, in fact, a'most agreeable sort and one of
our early assets. It seems strange that the first
time I saw him in person, after two years of interac-
tion on the telephone, was at the second meeting. (On
the day of the first he had had another



The second Interface symposium was held January 25-26. 1968
at the International Hotel. near the Los Angeles airport.
The third. Chaired by Ed Robison (then of TRW Systems
and now at Union College) was held January 30-31, 1969
at the same spot. For both meetings the format remained
the same as for Interface I, except for a time-frame
expansion to two days. This is in contrast to written
information you may have seen describing all of the first
three symposia as one-day meetings. We added an addi-
tional sponsor, the Los Angeles Chapter of IEEE Systems
Science and Cybernetics Group. for the third conference.
Otherwise. sponsorshlp remained unchanged.

The topics treated at the second and third meetings
were varied. ranging from SociaZ .4ppEaations and
I!/r?ZicatiOM••'lationaZ IrtlO1'rrr:r:t:ion Systems, Jw-I-metrics
and ComputeI' Aids to Statistical to .'1andom
,'lurr;,.bel' Genezoa.tion. ComputeI' ':echnoZog',j. and 11'!lOmation

Two well-known personalities who are no longer
with us participated in these two symposia.
George Forsythe of Stanford spoke about r.umezoiaaZ. aZco-
zoithms at the second. and "Curly" Lucas of State
discussed "The Role of Statistics and the ComputQr in
Biomathematics" at the third. -

The tradition of scintillating luncheon addresses con-
tinUed. At the second. Ross Adey of the UCLA Brain
Research Institute told us on the first day about "The
Use of Computers in the Search for Memory Traces in
the Living Brain"; and Frank Proschan. then still at
Boeing Research Labs. regaled us on the second with
"Some Effects Computer Science Has Had on Statistics."
If the latter topic seems to you an unlikely one to
evoke Chuckles. it's only because you haven't heard
Frank Proschan at his best. This was the first of
what has turned out to be many times I've introduced
Frank. It's a privilege not meant for the faint-
hearted.

At lunchtime on the first day of the third meeting.
Jack roloshman gave us a "Retrospective View of Projected
Election Returns: 1968 Version." and Ed Davis. the
recently-retired Los Angeles Chief or' POlice. who is
beginning the process of running for Governor of
California. told us on the second day about "Law.
Order, Data and Computers." You may be surpri sed.
if you've read about.Ed Davis lately, to learn that
he. has been a part-tlme facul tv member at the
Unlversity of Southern California.

The fourth symposium. which was chaired by
Mitchell Locks and held at U.C. Irvine, marked a
departure from the original format. The most radi-
cal change, aside from tne use of campus facilities,
was in the organization of the meeting into
a structure that has been continued since. The work-
shops for the fourth symposium dealt
statistics and computation. secondazood education, hard-
Y:aZOelaoft;-.xczoe assign and evaLuation by statisr:icaL
r:-:ethocis, and aomputer Zanguages [01' statistia-:.ans.
For the first time there was financial support from a
government agency, the Army Research Office. Durnam.
and for the first time a Proceedings was written and
distributed to attendees in microfiche. form. For
subsequent symposia there have been hard copy ?rc-
ceedings.
The fourth symposium also saw the demise of the luncheon
talk and the birth of the keynote address. There were,
in fact, two keynote addresses at that meeting.
Frank Anscombe spoke of the need for flexibility in
statistical computing and DicK Hamming discussed tne
response of statisticians to the computer and computer
science and the of computer scientists to
statistics. 80th responses were discussed in terms of
what had been done contrasted with what Hamming believed

kave "een Aone. Tt "as tw qa"""iM 1:"at
introduced the concect of ccmoumetrias. the measurement
of computi ng systems·, to the Interface. A si gni fi cant
consequence of this presentation was the formation of
SICr1ETRICS, a special-interest group on Compurnetrics
within the Los Angeles Chapter of ACM.
Hamming gave versions of his talK to a meeting of the
Southern California chapter of A.S.A and as the General
Methodology Lecture at the 1971 Annual Meeting of ASA
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in Fort Collins, Colorado. The part of it that r recall
most Vividly from the various cresentations I heard
pointed aut the waste of talent involved in "fillinc1 in
chinks" by extendin!! or general izing al ready croven·
theorems in statistics. "If you do this. he said, "you
wi 11 read the. paper, and the referee wi 11 read it." He
observed that the probability that anyone else will wade
through it is small. He also noted that one way to
become a famous statistician is to find a nethod of
attacking and solVing an statis-
tical The solution need not be elegant,
only useful and easy to apply. He discussed several
such problems in computer science.

THE INTERFACE AND ASA
Hamming's talk at the ASA Annual Meeting tOOk place
during the birth of the ASA Statistical Comouting
Section, following submittal to the Board of Direc-
tors and Council of a petition by members of the
Association.

You may not recall that ASA's first advertised
advocacy of tne interface of computer science and
statistics took place at its Annual meeting in
December of 1967 in Washington. D.C. And I'm
fairly certain that you're unaware that Arnie Goodman
was behind it from the beginning.

It happened as it did because I made a trio to
wasnington. in the early summer of 1977. Shortly
before the event, Arnie wrote to Don Riley, then
ASA Executive Director, that I was planning to be
in Washington for a few days and would be available
for a lunch-time d1scussion on two of those days.
The implication seemed to be that it was an oppor-
tunity not to be missed.

I had been a member of ASA only a short time in
1967. was not at all active and had never heard of
Don Riley. I'm fairly certain that, likewise,
Don Riley had never heard of me. Nevertheless.

wrote me a letter graciously inviting me to meet
hlm and other ASA representatives inside the ladies'
entrance of the Cosmos Club during one of my avail-
able lunch times. Since my consciousness of male
chauvinism was languishing comfortably, yet to be
raised. I entered the ladies' entrance of the
Cosmos Club at the time with no more than
mild amusement. There I met Don, Ed then
Business Manager and now Managing Director of ASA.
and Joe Daly. then Chief Mathematical and Statis-
tical Advisor for tne of tne Census.

The main remembrance I have of the early part of our
luncheon is that Don and I discovered we were ?e110w
Ohioans and consequently hit it off extremely well.
This was not so long a time before Don passed away,
and it turned out to be tne only time I ever saw or
interacted "lith him. On this occasion, hOI'lever, he
was enthusiastic and ebuliient. Arnie had aiven me
an Interface message to deliver and before we
finished our coffee. I managed to sur.mon it to mind.
I can remember now very little of the details of the
message or even the point of it all. I can only
recall that as I listened to myself I was terriblv
impressed by my eloquence, a quaiity I had never·
felt I'd exhibited on a single previous occasion.
On the contrary, comments about my oral presentations
usually indicated a discernable lack of eloquence.
I do remember that the finish of this impassioned
speech concerned the need for a seSSlon on computer
science and statistics at future national ASA
meetings.
Don. while perhaos not so awed as I bv the e10auence
of my remarks. was sufficiently moved to ooundon
the table a couple of times and declare that there
would be such a session at the next Annual Meeting
and that I should organize and chair it. This would
entail Ed Bisgyer's contacting Carl Bennett. the
Program Chairman for 1967, and having him provide a
timeslot.
While organizing the session seemed appropriate enough
to me, I wasn't sure that l shoula be the person to
chair it. I remember checking with Ed because he



seemd not to be partlcular1y carried away by the emo-
tion of the moment. But he assured me that it would
be most proper. I can't remember Joe Daly's reaction
to the proceedings, but presumably he was in general
agreement.

Once everything was cleared with Carl Bennett, I con-
tacted John Tukey to be a speaker for the session
(which my title consultant and I called "Computer
Science and Statistics: A VieW of the Bridge").
Thus, even though the session began at 8:30 a.m.
and the room we were assigned held about 500 people,
we had a capacity audience. The next year at the ASA
Annual Meeting in Pittsburgh, there were four sessions
on the Interface. A COM'Ili ttee on Comr;uters in
Statistics had also been organized, with membership
inclUding Joe Daly and Will Dixon.

In 1972, just after the StatistiaaZ
replaced the ASA Comrr.'it7:se on Ccrrrcut;el's in St;at;istias,
Will Dixon, its first Chairman, phoned and aSked me to
dr.aft its Charter. I thought this sounded about as
onerous a task to ask anyone to perform as I could
imagine, about as much fun as watching paint dry--and
said so. I found, however, tnatit l'lasn' t too d·i ffi -
cult to accomplish by simply selecting pieces I liked
from existing Section charters. And, of course, the
major part of the Scope of the Section was borrowed
from the purpose of the Interface Symposia that we had
set down in 1966. You might note that the name Section
on StatistiaaZ ComDUting really doesn't reflect all
aspects of this Scope. However, the name was cnanged
from Sea1;icn on Statistias c:nd Computers, gi ven in my
original draft.

THE MOVE INTERFACE INDEPENDENCE

In 1971 the Interface conference was held outside of
Southern California for the first time. The Executive
Committee of the Southern California Chapter of ASA
voted to allow Mitchell Locks to organize the fifth
annual Interface symposium at Oklahoma State University,
where he had become affiliated upon leaving Southern
California himself. The next year, Mike Tarter, who
had acted as an Associate Chairman when the symposium
was held at U.C. Irvine asked the Chapter for permission
to host the meeting at U.C. Berkeley, where he had
moved from U.C. Irvine. Before the organization of
the meeting 1n Berkeley got well underway, i1ike, Arnie
and I met with l'li 11 Oi xon, in 01 s offi ce, and put
together a veraal agreement that has given the Interface
Symposium an identity of its own, independent of potential
sponsors. ?'e decided, with later blessings from the ,4$."
Chapter and all pioneer Interfacers, that there
a committee made up of ex-chairMen of Interface symposia
and headed by the most recent Chairman. This committee
would have the power to decide who would be given the
privilege of organizing a next symposium the one
currently being organized. The agreement extends now
to people who may nave oeen unaware of the Interface
sjo'l:lposia at the time it 'lias made. Ultimately, it could
extend to people who weren't yet born when it was made.

DIRECTION OF THE INTERFACE
Since the time of our meeting in Yill Dixon's office.
the Seation en Sta7:istiaaZ has oeen listed
among the sponsors of the Interface"symposia. One can
note, too, a large overlao of recent officers of the
Section and recent organizers of the Interface symposia.
Following 11ike Tarter's sixth symposium at Berkeley came
Sill Kennedy's Iowa State meeting and .Jim Frane's at
UCLA (back in Southern California), David Hoaglin and
Roy !'/elsch chaired the ninth at Harvard and and
Davi d Hogben and Denni s Fi fe organi zed the tenth at
the Bureau of Standards.

It is notable that the Statistical Computing Section
has seemed to remain true to its name and to have
become a section devoted almost entirely to statisti-
cal computing. The Interface symposia, on the other
hand, nave genera11y continueo to treat a11 three
aspects of computer science and statistics set down
in 1966 in the origlnal purpose. The sixth, seventh,
eighth, ninth, and tenth meetings have offered work-
shops or papers on, for example, aomputer system ,er-
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fozwrrna'3 evaZuation, robust so.f"::t».re, ra:r.dom number
generation, of a management info!"!lat:ion
system, high-reveZ program l.a:nguages and statistias,
and pattel'n reaognition. And Tony Ralston's keynote
address for the tenth dealt with the mathematizing
of computer science.

One could, I believe, describe the published program
for the meeting we're presently attending as one for
a symposium on s'tatisticaZ aomputing. The topics
are many and varied, and some sound fascinating to
me. Still, it seems evident that the organizers of
this meeting were not brainwashed in the early tradi-
tions we oldtimers were taught to hold near and
dear. The chairman of symposium number twelve,
Jane Gentleman, can feel free to consider this
comment an implicit suggestion carried from the guru.
Arnold Goodman, by me, Nancy (just plain) Mann.



WORKSHOP l

COMPUTING LANGUAGES

Chair: Lawrence C. Rafsky, Chase Manhattan Bank
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RIGHTS AND RESPONSIBILITIES OF STATISTICAL LANGUAGE USERS
LANGUAGE STANDARDS FOR STATISTICAL COMPUTING

by
John Brode, Cambridge, MA

The fundamental concept presented in this paper is that of the non-procedural
language. The us er should only be concerned wi th what needs to be done; the computer
should work out the how. Recent advances in computer science (extension of the pro-
perties of context free languages to subsets of context sensi tive languages, Petri
nets, etc.) can be joined recent work in mathematics (fuzzy sub-sets, theory of
categories, etc.) leading to useful new ideas for statistical computing languages.
Standards are proposed for statistical computing languages.

A)
B)

C)

Introduction
Junction of recent advances in linguistic theory and mathematics
a) Recent advances in linguistic theory
b) Recent advances in mathematics
c) Applications of the junction

1) Non-procedural programming; 2) Backtracking; 3) Petri nets;
4) Fuzzy set theory; 5) Theory of categories

d) Suromary
Lang-llage standards for statistical computing

A) Introduction
It is the right of every user of a sta-

tistical language to ask that such a language
be as useful as the current state of
science will allow. To get this right, 1t
must be responsibility of each user to
know enough about computer science to dis-
tinguish what is known or possible from the
indiVidual opinions of practitioners 0:
programming. .

ThE! interface between computer science/
linguistics and statistics has been
lacking in the past. Far too often, this
interface has been between a highly trained
statistician and a programmer who is, per-
haps, experienced in the writing of some
computer language but who is seldom trained
in computer science. Too many statistical
computing languages seem to have been im-
posed on statisticians by programmers of
very narrow acquaintance with computer
science.

The purpose of this paper will not
be to present a tutorial in any language,
be that language implemented or just pro-
posed. (See the Bibliography for a list
of references to more than thirty languages
of interest.) I shall try to pre-
sent in this paper an outline of what is
needed by computing and what
can be supplied by computer science.

The fundamental concept contained
in this paper is that of a non-procedural
program or language. RA non-procedural
program is a prescription for solving a
problem without regard to details of
it is solved. R (Leavenworth & Sammet
('74) p. 2)
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·one wants to deal in so far as
possible with the behavior which
the program and its parts are to
exhibit--and to suppress the dE!tail
of just how this is
demanding-of course that the how'
be consistent with (that is, cor-
rectly implement) the desired be-
havior. a (Cheatham & ('75)
p. 4)

This is what Sammet ('i2) has called a
problem defining language. (See also
Kassels (177) and Klinkhamer ('72).)

The :undamental taken in
':his paper is that of ia: precise algebraic
language (see Loos ('74)). This is the
approach of APL (Iverson ('62)) but While

lanquage is not the answer for everv
problem, especially those tending to the-
non-numeric:

NThere is an important lesson to
be learned from APL, however, and
that is the importance of structural
simplicity and a.'1. excellent-smooth
and surrounding
the (Cheatham & Townley
('75) p. 10)

I shall try in this paper to extend this
simplicity to handle a wider range of
problems that may not be deterministic.
To do this, we shall need programs that
can by themselves deduce the how of solving
a problem.



B. Junction of recent advances in lincuistic
theorv and
a. Recent advances in linguistic theory

Modern linguistic theory starts with
the work of Chomsky ('56 & '59). He defined
a series of language types of which type 1
(context sensitive) and type 2 (context
free) are of interest here. If there is a
grammar rule that changes a token 'A' into
a grammatical structure 'w', then these two
types may be defined as follows:

type 1: ¢t <:P,! wCP2 ' ¢t'¢2
are
tokens

type 2: A --;> w
Linguistic work done on type 2 languages
has been more rigorous, since they are more
amenable to precise mathematical treatment.
Central to this work is the emptiness pro-
blem. Essentially, this problem pertains to
the proof that the application of the rules
of a grammar a finite number of times to
an input stream of tokens from the language
generated by grammar, will not produce
an empty (See Aho & Ullman ('73)
for a somewhat general survey; Hopcroft &
Ullman ('69), Hoare & Lauer ('74), or
Salomaa ('73) for more precise surveys.)

Unfortunately, too much attention has
been given to the neatness of these proofs.
Chomsky, in his original work, finds that
neither type 1 nor type 2 languages are

what is required for the complete
of immediate constituent

analysis. I. (Chomsky (I S9) p. 148}
Furthermore, in some cases, inadequate

attention has been paid to the rigorous
meaning (in the mathematical sense) of
what has been proven. The emptiness problem
is solvable fer context free grammars
(type 2), but is not solvable for context
sensitive grammars (type 1). (Th. 14.2
Hopcroft & Ullman ('69) p. 219) Such a proof
assures us that the application of the rules
of the grammar by an automatic
Will, in a finite number of steps, reduce
the input stream to a meaningful statement.
This theorem, h.::wever, does not prove that

context sensitive (and not context free)
grammar exists for which the emptiness
problem is solvable.

In particular, starting with the work
of Knuth ('65), a form or parsing ( a
reduction of the input stream according
to grammatical rules) called LR(k) has been

Which is coterminus with the
set languages (essentially

for which the grammatical rules
are unambiguous (Th. 12.1 & Prop. 12.1
Salomaa ('73) p 224 & P 2Z8). The set of
det.er:.u..... S1:l.C lanq..:agos, ilowever, is net
contained in the set of context free lang-
uages nor does it Contain the set of con-
text free languages.

It can be shown, that some context
sensitive languages are deterministic and
that, therefore, the LR(k) approa::;l is
applicable. 1 (see Walters ('7l)) Thus it

'k' in LRlk} refers basically to the
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number of symbols that, at most, are to
be examined on either side of the current
symbol before a decision can be as
to the interpretation of sy:wol. It a.
can be shown, however, that for any de- .
terministic language, there exists an LR(O)
grammar. (See Th. 12.9 Hopcroft & Ullman
('69) p. 185 for the precise statement)
For various reasons, LR(O) grammars are
most readily handled as LR(l) grammars.
(see Aho & Johnson (174»

is not true that LR(l) parsers need be
confined to context free languages.

BNF (Backus-Naur Form,2 see Naur

ZBNFis often given as Backus Normal Form
instead of Backus-Naur Form. I prefer the
latter, reserving the term "normal form"
for the mOst elementary formal structure
such as the Chomsky Normal Form or the
Greibach Normal Form. BNF is more properly
a meta-language-Le., a language to des-
cribe languages.

('63 & '60) and Backus ('59)} is often
touted as the best way to write out the
formal description of a grammar. BNF is
coterminus with the context free grammars.
(see Aho & Ullman ('73» But since it can
describe ambiguous3 grammars, not all BNF

3A grammar is ambiguous if the application
of its rules toa word in the language it
generates can give two different meanings.
(see Salomaa ('73) p. 54 for a more precise
definition)

describable grammars are LR(l} parsable.
On the contrary, some grammars not des-
cribable in BNF are LR(l} parsable. (see
Aho Johnson & Ullman for a statement
on the of BNF. ··ote. that Aho &
Johnson l'74) seem to be mistaken in asserting
that LR(l) parsing is useful only for con-
text free languages)

It is not possible to snow whether
an arbitrary context free grammar is
ambiguous or not. (Th. 14.7 Hopcroft &
Ullman ('69) p. 222) Some context f=ee
grammars (and, therefore, their BNF des-
criptions) can be made ambiguous. (see
Earley ('75» Some recent work has been
done en the parsing of generated
bv such ambiguous grammars. (see Aho,
Johnson, & Ullman ('75); Aho & Johnsen
('74)' Earley ('7S); Sheil ('76); and

('76}) The approach taken in these
works is to apply "disambiguating rules"
whenever there is more than one possible
interpretation of an input

An example can be taken from operator
precedence. Standard FORTRAN precedence
is for the operator '*' (multiplication)
to take orecedence over '+' (addition).
In this is:
<expression'): :=<.term, \<expression>+<term>

4<term>: :=<identifier;.l<term>*<identifier>



4.rhese two lines are to be read as: "an
arbitrary expression is defined either as
an arbitrary term or as an arbitrary ex-
pression 'plus' an arbitrary term" and "an
arbitrary term is defined either as an
arbitrary identifying symbol or as an
arbitrary term 'times' an arbitrary identi-
fying symbol."

This could be written, ambiguously, as:
<expression>::=<identifier>!<expression>+
<expression> I<expression>*<expression>

Disambiguation would then follow according
to a table of operator precedence.

A language can be deterministic even
if it has an ambiguous grammar provided
that such ambiguity is resolved (from out-
side the grammar) in a deterministic
fashion. 5

ssee Sheil ('76) for a more rigorous ex-
position of this point. Sheil limits am-
biguity away from "direct ambiguity" (i.e.,
ambiguity that is preserved through reduction).

The disambiguating rules discussed above
(essentially a table lookup) are
tic. Therefore, such a grammar can be
LR(l) parsed. (see de Remer ('71»

The importance of ambiguity lies in the
virtual impossibility of avoiding it. The
languages generated by unambiguous grammars
tend to be uninteresting and inflexible.
(see Hamlet ('77» ALGOL 60, probably the
most rigorous high level language written
(and for that reason replaced in actual
use by the less rigorous ALGOL 68) is known
to be ambiguous (Wharton ('76» and, ap-
parently, cannot be precisely in
English. (Hamlet ('77) p. 87-8)

6ALGOL.iS not even a context free language
due largely to :'ts "semantic" rules for
handling declarations and the like. (see
Arbib ('69) p. 172) Nor does it have a
"phrase structure grammar" be that context
sensitive or context free. (see Floy ('62»

Of equal importance, is the practical
result that oarsers constructed for certain
ambiguous grammars are, in some sense, more
efficient thpn those for unambiguous grammars.
(Aho & Johnson ('74» Sheil ('76) shows that
"boundedly ambiguous grammars" can have at
most a polynomial bound on the number of
steps needed :'n parsing an input stream if
use is made of a "well formed substring
table" for disambiguating.

In I have tried to show that
recent work on parsing favors deterministic
languages and that such languages are
not necessarily generated by context free
grammars. It has been shown that such a
language can be made with an
ambiguous grammar. Such ambiguous grammars
are certainly more interesting than unam-
biguous ones. Finally, it would appear
that certain ambiguous grammars can be
more easily parsed than unambiguous ones.
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We should return now to considera-
tion of whether the emptiness problem can
be solved for some subset of context sensitive
grammars. A partial answer is prOVided by
the nature of LR(l) grammars which may be
context sensitive. For such grammars, the
emptiness problem can be solved. (see
Walters ('71»

Some recent works have shown the empti-
ness problem to be solvable for certain sub-
sets of context sensitive grammars. The
technique used in these proofs is to extend
the class of context free grammars to cover
special subsets of the context sensitive
grammars. Cannon ('76) derives context sen-
sitive grammars by the use of "state
generators" <i.e., the interpretation of a
given input stream will depend on the "en-
vironment" it is placed in.) For such
context sensitive grammars, the algebraic
(i.e., finite) techniques of the context
free grammars are valid.

Chen & Hu ('77) prove that a finite
state orobabilistic automaton can handle a
language that is context sensitive and not
context free. This corresponds to proving,
essentially, that the successful parsing of
a non-deterministic context sensitive grammar
is possible in a finite number of steps.
This represents a wider extension of the
context free grammars than that from either
LR(l) parsing or the Cannon results. 7

7The approach used by Chen & Hu (i.e.,
limiting the initial states to those having
a probability of at least 0.5) is related
to that of "level" fuzzy sets proposed by
Radecki (' 77) .An alternate approach to
essentially the same problem is to be found
in Honda, Nasu, & Hirose ('77) as is
described below.

Several authors have shown that divisions
can be made between type 2 (context free)
and type 1 (context sensitive) languages.
Wand ('75) uses algebraic theory to show
that type 2 is properly contained in the
class of "indexed set" languages Which,
in turn, are preperly contained in the type 1
languages. Gorun ('76) shows that several
proper divisions between types 2 and lean
be made. Essentially, these new divisions
are formed by combining parts or all of
context free These in turn are
properly contained in the class of languages
that are generated by (handled by) determin-
istic linear bounded automata (such as LR(l)
parsers). It is as yet unproven whether
this latter class is equivalent to or is
properly contained in the type 1 languages.

Schuler ('74 & 'is) has generalized
this extension procedure to what he calls
"weakly context sensitive" grammars or
languages. He defines weakly context sensi-
tive to mean that the context sensitive
elements are from a finite number of context
free sets. (see Schuler ('74» Such a
language type includes ALGOL 60 thus
underlining the virtual non-existence of
context free languages of more than trivial



interest. Schuler ('75) warns, however,
of the enormous complexity of context
sensitivity. He would prefer that gram-
mars stuck to the weakly context sensitive.
The extensions above are all in this set of
the weakly context sensitive.

The most promising extension of the
context free grammars is through the concept
of what are called Petri Nets. This concept
originated with the work of Petri in the
early 1970 t s. (see Petri (t 73 & '75»
A Petri Net is a network relating "places"
to each other by means of "transitions"
over arcs. Movement from one "place" to
another is referred to as "firing" the arc.
Such a network can be diagrammed as follows:

t:.....w4 r /I'"
1'l.l.ce

.....c pl. ....«

Defining a node as either a "place"
or a "transition", a Petri Net language
is the labeling of the nodes of a Petri
Net. Such languages can be classified as
follows with regard to the labeling of the
nodes (from Peterson ('77»:
1) free i.e., no two nodes have the

same label and no node is
without a label.

2) A-free i.e., no node is without a
label but node labels are
not' necessarily unicp e.

3) ).. i.e., some nodes may not
have a label and not all
nodes have unique labels.

Of these, A-free is the most interesting
sub-set. The set of Net languages
corresponds to the A-free set with the
unlabeled nodes telescoced into labeled
nodes (which could be considered as black
boxes from a category as aefined below).
The set of free Petri Net languages is
trivial since every path through a net
would be unique and, therefore,
amenable to generalization within the
network.

Petri Net languages can be further
defined as regards the labels that constitute
the terminal state or final markings of the
network. (see Peterson ('77» Of most
interest are those Petri Net languages
that have labeled terminal states that
are, essentially, distinct from the tran-
sition states.

It has been shown that all
Petri Net languages are ccntext sensitive.
(Hack (176) or Peterson ('77» Hack proves
that the emptiness problem for terminal Petri
Net languages (both A-free and free) is
recursively equivalent to the reaChability
or finiteness problems. (Th. 9.4 & 9.6
Hack ('76) pp. 150 & 151) He further
proves that it is undecidable whether the
addition, removal, or changing of any
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place, transition, arc, or label modifies
a Petri net language. (Th. 10.3 Hack ('76)
p. 159) In Short, it will not be possible
to generalize from a specific Petri net
language to any subset of these languages
defined as an extension of the former. S

SHowever, Berthelot & Roucairol ('76) have
shown that a Petri net can be reduced in a
finite number of steps to an irreducible
net with specific properties (the Church-
Rosser property, see b,low). Such a reduc-
tion could be used to prove correctness
of the nets resulting from a Petri net
language. (see & Schmid ('74»

The reachability problem 'is defined
for Petri nets as the question of whether,
given an initial set of conditions (or
markings) on the Petri net, a terminal
state will be reached. The finiteness prob-
lem is defined as the question of whether
a Petri net will come to a halt after a
finite number of firings. Peterson shows
that a general algorithm exists for proving
reachability in a Petri net language.
(PetersoR ('77» As shown in Hack, this
will be a recursive problem. (Hack ('76)
pp. lSO-l)

Peterson briefly touches on generalized
Petri nets in which there may be multiple '
arcs or inhibitor arcs. To wit:

The inhibitor arc 'i.a.' prevents 'B' from
firing unless 'A' is set. Such generaliza-
tions, while highly desirable for the
description of complex networkS, are as
yet theoretically unmanageable. Neverthe-
less, as a practical matter, they may be
usable. (They relate to both the theory
of categories and the of fuzzy
sub-sets below.)

The development and extension of Petri
Net languages seems capable of releasing
the full power of the non-procedural ap-
proach to programming. They have the
potential of permitting the clear develop-
ment of a total approach to a problem.
In the introduction to the SIGPI.. Sym-
posium on Very High Level

& Sammet define non-procedural
to mean that any sequencing needed is done
logically by the computer.
& Sammet·('74» The logic is set by the
environment defined in a manner that is,
in fact, equivalent to a A-free Petri
Net language. I expect the full develop-
ment of non-procedural languages to come
with that of the Petri Net languages or
their equivalent.



a class lei of objects A,B,C, •••
for each ordered pair of objects
(A,B) of a (possibly empty) set
[A,BJe called the set of morphisms
from A to EI,

iii) for each ordered triple (A,EI,C)
of objects in e, a mao

(B,cle X [A,CJe
called composition of morphisms."

(Schubert ('72) p. 1)

applicable to multi-linear processing
where each process is executed with a
probability that is less than one.

Starting in· the early 1940's, Eilen-
bery &MacLane ('42) & ('45) proposed
what has come to be called the theory of
categories. Categories are, essentially,
classes of objects that are related to 9
each other through some kind of process.

9A precise definition is: .
"A Categoryeconsists of the follOWing
data:
i)
ii)

Machines, languages, systems can all be viewed
as categories. (A good introduction is
MacLane ('72); more rigorous works are Herr-
lich & Strecher ('73) and Schubert ('72)
who is especially clear although
precise; Makkai & Reyes ('77) cover cate-
gorical logic in a strictly mathematical
way; Arbib & Manes ('74 & '75) and Goguen
('73 & '76) have done introductory wOTk as
well. The reader should be aware, however,
that the simpler introductions often lose
in clarity what hey have gained in simplicity.)
B)c) Aoolication of the iunction:
1) Non-procedural Proarammina:

Leavenworth & Sammet ('74) write of five
major features of programming
languages:
1) associative referencing--L e., much of

what is referred to as r.iational data
base management but extended to auto-
matic referencing (retrieval) of data.

2) aggregate operators--i.e., iterators
over sets, matrices etc.

3) elimination of arbitrary sequencing--
i.e., mainly thatthe user supplied
input sequence is passed over in favor
of logical sequencing.

4) non-deterministic programming and
parallel processing.

5) pattern directed structures--i.e.,
recognition of similar patterns and
their replasement by a standard
expression or procedure.

(see Kessels ('77) for further discussion
of non-procedural programming)

Earley ('74) outlines various basic
data types that he feels should be handled
in non-procedural programming:
1) tuples--i.e., relational data (e.g.,

entities, cases, observations, or the
like) •

2) sequences-- i •e., such things a·s
times series and the like that are
ordered by their position m the set.

As will be made clearer below, a non-
procedural approach best suits those problems
that require a multi-lateral or parallel
attack on the solution. Petri Nets allow
a clear definition of both the non-linearity
and the multi-linearity of a problem to be
made. The computer can then determine the
extent of parallel processing that can be
used. (see Lautenbach & Schmid ('74»

There remains one further approach to
be examined: namely that of pruning dead
ends or impossible branches from a network.
This involves backtracking from the current
node to a prior junction and recursively
descending alternate branches. This will
be discussed below.
B)b) Recent Advances in Mathematics:

It is not· my intent to deal with the
advances in mathematics in any detail.
The interested reader can pursue these
sUbjects in the references that I shall
cite below.
. Starting with the work of Zadeh

('65), a great deal has been done on
what have come to be called "fuzzy" sets
or sub-sets. In somewhat loose terms, a
fuzzy sub-set, F, is a set of ordered
pairs:

F == {<X.,JJ.F (x. ).>} for x. € U & )6:1J. .J.
where xi is a of some universal
set, U, andPr(xi) is the measure of member-
ship of xi in the SUb-set F. (see Gaines
('77) for an introduction from the stand-
point of logic; Ragade & Gupta ('77) for a
moderate mathematical introduction; but
especially Kaufmann ('75) for a mathematical
text; Gaines & Kohout ('7i) is an extensive,
annotated bibliography)

The greater part of the work on fuzzi-
ness has been algebraic. Topics covered
include graphs, logic, as well
as extensions to lattices and categories.
However, some recent studies have dealt
with fuzzy measure theory, thus introducing
integration. (Sugeno & Terano J'77» In
particular, this can be extended to feedback
systems through the use of convolutions.
(Jain (, 77»

FU3ziness has been introduced into the
rJ.gor of so as to open new
frontiers in our ability to understand the
essentially fuzzy world. In the words of
Zadeh (forward to Kaufmann S'75) p. ix):

"We have been s low in l::9ming to the
realization that p.l:!rhaps most,
of human cognition and interaction
with the outside world. involves
constraints which are not sets in
the classical sense, but rather
"fuzzy sets" (or sUbse.ts), that is,
classes with unsharp boundaries in
which the transition from membership
to non-membership is gradual rather
than a::>rupt."

A practical orientation oredominates in the
studies of fuzziness as be seen below.
In computer science, fuzziness is most
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3) sets--i.e., variables, attributes, etc
4) relations--i.e., sets of tuples ( a
relational data base).

S) functions--i.e., transformations of
data or expressions•.

Fagin ('76) shows the equivalence of logical
implications derived from data and the data
base structure of the data. Codd ('72) and
McLeod ('77) discuss the language implications
of data bases. In summary, it seems impor-
tant to treat data types and the relations
between them with the care and precision
of the appropriate'algebra.

Earley (, 76 & '74) discusses iterators
at some length. Iterators can be classified
as operators that determine the domain within
which an eXtlressiori or command is to operate.
Most commoniy, this will be inclusion or
exclusion from the set of data to be analysed
or otherwise treated. words,
iterators are functionals that relate one
data base to another or one type of data to
another (e.g. tuples to sequences). (see
SChwarz ('75, "74, & '73) for implementations
of iterators in the set oriented language
SETL' and Loos ('76) for their implementation
in AiDES) This is what Tennent ('76 & '77)
refers to as "referential transparancy" by
which he means that the program itself
derives the functionals necessary to execute
the user's Such functionals will
determine the environment (domain of action),
its content, and its continuation.

Much of what has been said above can
be implemented in algebra. A property of
algebraic languages is that they are com-
plete. 10 This implies that expressions

lOI.e. that have the extended Church-
Rosser'property by which is meant that "any
sequence of reductions of an expression 'e'
will convercre to the same constant
provided 'e<.; , is defined", (Loos (I 74! ) .
where is an appropriate factor of
i ty or scale.
can be reoeatedly reduced without changing
their meaning. I.e., if

«A+B)**2)
then

(A**Z+2*A*B+B**2) A**2+2*A*B+B**2
This is an useful property in its implication
of infinite nesting. However, it is not
dxtendable to the complex domain. E.g.,

-1=i**2=i*i=\'-1 *-v::l = II -1*-1=1/1=1
Several non-procedural algebraic

guages have been written. (see Moses ('71)
and Sundblad ('74) for surveys; Kobayashi
('72), Korpela ('76), and Janks ('74) for
descriptions of some of these) SCRATCHPAD,
besides being non-procedural, is of parti-
cular interest in that it is an extensible
language. (see Proc Int.Symp on Extensible
Lang ('71» The user can add or modify
both its syntax and its semantics--i.e.,
add and define operators. It also will
recognize and reduce some
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reduce O+X to just x. (see JenkS ('74»
2) Backtracking: ..

A particularly interesting new applica- ,.,
tion is presented in Stellman & Sussman
('77). They describ7 a for. the
analysis of
such circuits can not usually be repre-
sented bv tractable functions, there is
inevitabiy a certain amount of
error in determining the
of a circuit or in finding a circuit with
certain characteristics. Their program
works by a synchronous search for success.
or failure on different branches of a
tree representing the fundamentals of the
circuit. The program keeps a trace of its
progress and can back track from a failed
branch to a higher node that presents an
untried (see also Stallings ('76)
and Golomb & Baumert ('65) for other
examples; but see Montanegro et al. ('77)
for an extlosition of the authors' pre-
ference for heuristic, non-deterministic
programming than backtraCking)

Hamlet ('77) shows that a language
accepted by a Turing maching (i.e., tYl?e
o or reccursively ennumerable--see
('36) will leave a context senstivie trace
that will not always be context free.
For a simpl.e language (low level), he is
able to show that the trace language must
not be more restrictive (i.e., of a lang-
uage with a higher index in the Chomsky
hierarchy) than the programming language
if the flow of the program is to be proper- ,.,
ly identified. This would seem to
the need for further use of context
tive trace languages since all high-level
languages are context sensitive.

Implicit in backtracking, as well as.
much of what follows, is parallel
(see Grief ('75» For the moment, this
kind of approach is hardware
Still, programming languages
able to produce executable code that
amenable to such processing.
3) Petri Nets:

Barthelot & Roucairol ('76) have shown
that Petri Nets have the Church-Rosser prop-
erty (see footnote 10) unde= chs following

for reduction:
1) substitution,
2) elimination of redundant places,
3) elimination of irrelevant firing

expr!!!ssions.
Because of the Church-Rosser property, re-
duction can be used to prove the correctness
of parallel processing systems. (see
Lautenbach & Schmid ('74»)
4) Fuzzy Set Theorv:

At the most general level, Santos ('77)
has proven the computability on a Turing
machine of SUitably defined fuzzy programs.
He has further shown that a language accepted
by a stochastic fuzzy automaton will be
regular in the sense of being up
to the regUlarity. Honda, Nasu, &



('77) have proven that a fUzzy is
recognized by an automaton appropriate to
the type of languagell if and only if a

IlFor a context sensitive language, this
will be a linear bounded automaton; for a
context free language this will be a push-
down autOmaton.

cutoff representation of it on a lattice can
be recognized by the same automaton. 12 They

12(see Honda, Nasu, & Hirose ('77) pp. 154-
5) A cutoff representation is defined as
follows: '"
1) an L-fuzzy f, over L is a

mapping from L* to L
where L is a lattice with minimal

element 0,L is a finite set of symbols,
[- is the set of all strings
and symbols in '[.uA,A is the null stnng. .

and f(x) for x € [* is the measure of
membership.

2) a A-cutoff representation is mapping
onto L of the set {xcP I f(x)

3) an isolated in the sense
that every measure f(x) of membership
satisfies tpe following: !f(x)-Al> f >0.

(see Radecki ('77) who argues on practical
grounds for the use of A-level fuzzy sets for
which the measure of membershio is set to 0
if it is less than A,) •
have further shown essentially, that any
'rational probabilistic event' is recognized
by a deterministic linear bounded automaton.
(Honda, Nasu, & Hirose ('77) p. 163) A
'rational probabilistic event' is defined
as an event realized by some rational
probabilistic automaton. 13 This is a further

135ee an equivalent result in the work of
Chen & Hu ('77) mentioned above. Their cut-
off point is 0.5 but is used only to show
that a language exists that is context
sensitive and not context free that is
accepted by a finite state probabilistic
automaton. Thus, the results of Chen &
Hu are not as general as that of Honda,
Nasu, & Hirose. Note that the 'rational
probabilistic event' above is essentially
equivalent to a context sensitive language
in the sense that both the interpretation
of a context sensitive and the
result of a 'rational probabilistic event'
depend on finitely close elements.

proof of the computability of dependent
constructs such as context sensitive lang-
uages.

Several applications using fuzzy sets
have been made in the planning and control
of industrial processes. (see Mamdani
('76) & ('77) for general surveys; and King
& Mamdani ('77) for a specific application)
Kling ('74) describes the language, PLANNER,e which has been modified to deal with fUZZy
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concepts such as high, low, etc. To
date, these applications deal only with
those concepts in logical expressions of
the form: If the water is low, turn the
furnace off.
5) Theory of Cateaories:

Benson ('75) uses category theory to
analyse syntax categories and parsing. He
proves that minimal machines14 can parse

here means, essentially, that there
is, at least, a path of a fini te number of
steps that will accomplish the task.

context free languages and, which is new,
that these machines are simple error detect-
ing. Burstall & Thatcher deal with a form
of parallel processing using category theory.
Bainbridge ('76) distinguishes linear
structures which use linear flowcharts and
multi-linear structures which use netWorks
He applies category theory to these latter,
prOVing that feedback systems have a
minimal representation. Arbib & Manes ('75)
show the same for non-deteIrli.nistic machines.
B)d) Summary:

At one level of linguistic research,
there is a movement towards semantics or
meaning as opposed to the strJcture or form
of languages. (see Mayne ('75» Meaning
can be fuzzy, categorized, or faulty but
needs to be dealt with. (see Hecht ('76»
It has been (Hobbs ('77) that
very high level programming languages
should follow the lead of natural languages.
By this, Hobbs means redundancy, contextual
interpretations, inter-sentence relations,
and the like. In short, a context sensitive
grammar at the least.

At another level, there is a push
towards a realization of a more formal
logic. "Semantics and realization are
aspects of the same situation: semantics
is" the system analysis; while
realization is the problem of system svn-
thesis." (Goguen (, 75) p. 1511 For-
Goguen, category theory is the answer since
it deals with the formal structure of
realization. He would have us work to
achieve artificial intelligence defined
as "the scientific study (both experi-
mental and theoretical) of the represen-
tation, manipUlation, utilization, and
acqUisition of concepts and conceptual
systems." (Goguen (, 74) p. 547)

Cherniavsky ('78) in a very recent
paper would remind us at this point that
algorithms and humans can be distinguished
by their handling of truth. Humans are
always able to adapt to "rule of
the excluded third". Or, if I may so
conclUde, to cite Heidegger:

"Wahrhei t ist nicht ursprJnglich
im Satz beheimatet."

M. Heidegger, Vom Wesen . der
Wahrheit. p. 12.

(Truth is by nature foreign to the
sentence. )



C) Lanquacre Standards for Statistical
Comoutinq
a) Introduction:

What are the standards that, by right,
the statistician should ask for in statis-
tical computing languages? We have by now
covered a considerable amount of ground.
What we have seen is, I think, typical of
the cutting edge of any discipline--far
more questions have been raised than
answers returned.

Theory is clearly and naturally fur-
ther along than the practice of the art.
It is precisely into where theory
has broken new ground and presented new
approaches which are of interest to sta-
tisticians, that we should insist that
programmers venture. Such experimental
work will prepare us to match the abilities
of computer hardware developments.

I shall outline below a number of
standards that, I feel, statisticians
should insist be encoded in statistical
computing programs. Some of the standards
are quite general but some relate to my
personal preference for algebra. Without
succumbing to the pervasive use of AFL,
I feel that since written work on the
theory of statistics is invariably cast
in algebraic notation, a statistical
computing language should do likewise.
It is my contention that the rigor accom-
panying such an approach will make the use
of such programs in fact easier for the
novice than would languages closer to a

language. (see Francis et ale
('76) for an orientation more towards an
English like syntax; Salton ('75) warns
that natural language needs to be refined
for effective computer use by enhancing
the level of disambiguity (sharpen the
meaning) ).

Following Tucker ('75), I shall first
outline the qualities a very high level
language should havel5 :
, 5
• Statistical computing languages are very
high level; FORTRAN is high level; and
assembly language is low level.

1) easy to learn by a non-programmer,
2} functionally extensible,
3} minimal writing (i.e., abbreviations),
4) permit algorithmic specification,
5) natural to use,
6} portable (to another machine),
7) run-time efficient,
8) capabilities for both batch and
interactive,

9) modular,
10) access to system functions
(see also Balzar et ale ('76) Point 4 corres-
ponds, more or less, to my interest in an
algebraic approach. This conflicts to
some extent with point S.

A further extension of very high level
language is to be seen in the work of
Kessels ('77) following on that of Klink-
hamer ('72). They stress non-procedural-
ness and contrast this with the presently
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more prevalent sequential programming.
Kessals' non-procedural language deals with
blocks of commands. The components of these
blocks are then exectued in an order deter-
mined by the computer--according to need
or logic.

Earley ('74) and Goldsmith ('74) intro-
duce automatic operators over sets (iterators)
Datasets would be referenced by association
with a name or function. The domain of the
set (number of elements, their nature or
form, etc.) would be determined by the com-
puter. Operations would then be performed
over all of the elements (or some subset
thereof) as determined by the environment
of the problem. .

Loos ('74) shows that an algebraic
language can be extended to higher levels
of language. Kanoui ('76) describes an
implementation of such a higher level
algebraic language that is, basically,
non-procedural. This language, PROLOG,
uses predicate logic over· a non-deter-
ministic tree to integrate the symbolic
representation of an algebraic expression.
(see Sundblad ('74) and Moses ('71) for
surveys of algebraic computer languaqes.)

In the outline below, I shall attempt
to apply the four overall tendencies
described above in this paper--Non-proce-
duralness, extended algebra (Petri nets,
categories, etc.,), fuzziness, and arti-
ficial intelligence. The four are not
really separable. Realizations of Petri
nets and categories are not likely to be
obvious. Therefore, they can not be
expressed at once in the proper sequential
order (or only inconveniently so) but
require that the computer think of
to proceed.
C)b) Theobvious--or whv do we out uo
ill
l} Nothing would be fixed.

There is no need to require that
starting in column 16 means something, as
is the case in SPSS, for instance.
2) The user should not have to count

for the computer.
The computer is capable of counting

the number of cases in a dataset or of fig-
uring out the number of variables in a
regression.
3) No contrived conventions.

E.g., in IBM JCL, the '=' is used to
terminate and begin keyword fields since
blanks are used in a very special way
(separation of certain major fields). In
this case, the computer is not capable
of recogniZing phrases and needs the
contrived convention II keyword
keyword " to recognize one.
4) All programs should be interactive,

at least.
A system that runs on batch alone

is somewhat comparable to the Model T.

C)c) The not so obvious:
1) Capability for user defined semantics,

syntax, and lexics.



All of these should be table driven
defined by matching with a table)

so that it is trivial for a user to change
the set of terminal symbols, add a new
abbreviation, define a composite operator,
or the like.
2) Capability for user defined algorithms.

The program should be sufficiently
modularized so that a user could rearrange
these modules to create a new algorithm.
The user should be required only to specify
the new arrangement. The actual rearrange-
ment of machine control should be handled
internally by the program.
3) Capability for continuation by means of

some other program.
The user should be able to transfer

control, data, and whatever else to another
program. Again, the actual transfering
should be done internally.
4) Abbreviations should be derived al-

gorithmically from the "natural" name.
Thus an user need remember only the

fUll, normal name plus the algorithm,
rather than a long series of not always
obvious character strings.
C)d) The immediate future or what should
be done in the next version:
1) Capability to' handle sets and matrices.
Databases should be definable and

usable as such (e.g., the database auto-
matically defines the number of entities
or attributes to be considered). Matrices
should be automatically recognized once
defined and handled properly.

,., 2) Capability to operate over sets.
The user should be able to unite or

intersect sets; to sub-set by criteria
of arbitrary compleXity; to relate datasets.
3) Capability to operate over sequences of

ordered sets. .
The program should distinguish un-

ordered and ordered attributes (such as
time series or convergent series) and
handle each appropriately. This can
range from the trivial level of first
differences to the not so trivial ability
to loop (iterate) until an arbitrary
series converges to some value.
4) Capability to define the environment

or to set state descriptors.
The user should be able to set the

domain of operations, the extent or form
of interaction, output etc. The user should
be able to do this on both the global level
and on the level of the single operation.
5) Capability to imbed procedure3.

Any process that handles information
can be treated as a function that may return
a single value or multiple values. As such,
the user should be able to nest them within
other processes or expressions of processes.
6) Capability to recognize patterns.

The program Should be able to recognize
patterns such as a description of a process
and substitute a call to that process for
the extended description. The user should
be able to specify patterns and to use them
as appropriate.e
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7) Surroundability.
The user should be able to imbed the

entire program or just parts of it into some
other program or system.
C)e) On the horizon: (all of these concepts
are treated more extensively in the text of
this paper)
1) Non-proceduralness.

The order of execution of the component
parts of a problem should be determined by
the computer. This should include the
capability of parallel processing where
appropriate.
2) Capability of extended algebra.

The user should be able to describe
complex multi-linear problems (Petri sets,
categorical struc"tures and the like) and
expect the program to be able to manipulate
and transform them as needed.
3) Inclusion of fuzziness.

The ability to deal with fuzzy attri-
butes as well as fuzzy concepts or networks.
4) Artificial intelligence.

This covers automatic error correction;
interactive probing of errors or inconsisten-
cies; determination of how to solve a problem;
the ability to use predicate logic; deter-
mination of reachability; construction and
use of traces for backtracking; etC.
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Language Design and Statistical Systems

John M. Chambers
Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

The purpose of this paper is to consider the evolution (past and future) of statistical computing
systems against the background of some ideas in general language design. The thesis is that some
advances in the latter. which could lead to more effective statistical systems. have so far largely been
ignored by the designers of such systems. The remarks are based ort looking at and using various
languages. and particularly on recent experience in designing an interactive language and system at Bell
Laboratories. However. the intent is much less to evaluate or advocate individual systems than to
consider general developments in the area. Some deliberately strong opinions are presented. in the
hope of stimulating discussions.

1. Evolution of General Programming Languages
Early computer codes or programming languages

were efforts to cope with a radical new facility. The
designers reached for analogies from such diverse sources
as formal logic. the wiring of non-prQgrammable calculating
machines or the layout of computing procedures ("pro-
grams") for human use. An interesting survey of early
efforts is given by Knuth and Pardo [61-

As experience was gained and as the underlying com-
putations became faster and larger in scale. a number of
general concepts began to appear. These may be usefully
grouped under three headings:
1. syntactic structure, the expressions which are recog-

nized in the language;
2. data structure, the organization of numbers or other

forms of information:
3. semantic structure. the effect of executing programs in

the language.
In each of these areas the specialized work on individual
languages has been significantly extended. although not
entirely replaced. by general theoretical and applied work.
Broadly speaking. the contemporary language designer can
and should begin with an understanding of features com-
mon to language design and of the reasons for special
choices in particular languages. To some extent. the
designer can also pick up actual software to provide a start
on the language implementation. (Some examples are
given below.)

Theoretical and practical advances in each of the
three have implications for the design of statistical
systems. to a greater or lesser extent. In my opinion. the
designers of statistical software have largely failed to take
advantage of developments in language design. With a few
exceptions. statistical systems have been based on ad-hoc
and unnecessarily restrictive concepts of language. This is
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in spite of considerable interest in the form of user
language provided. The interest. however. has gone more
in the directions of specific phraseology (particularly the
issue of using so-called natural language phrases) rather
than towards a general syntactic structure. In particular cir-
cumstances. a natural-language approach may be for
example. it may help to reduce initial trepidation about
using a statistical system. However. the overall result has
been to make statistical systems more restrictive than they
should be. This in tum encourages a "black-box" approach
to analyzing data: the user is led to invoke a few high-level
operations to produce summaries or fit models, but is often
inhibited from looking deeply and critically at the results of
these operations. This is ironic since modem computing.
particularly in an interactive mode. has far more potential
for deep analysis than was previously available. High-speed
numerical computation plus graphical give the sta-
tistician enormous power. The rest of this paper studies
some ways in which work in language design can make this
power more available.

2. Syntactic Structure
The design of ALGOL60, about twenty years ago.

represented 3 major development in programming
ianguages. One of the most influential aspects was the for-
mal definition of the syntax of the language. using what has
come to be :alled Backus- Nallr Form. Earlier languages.
like FORTRAN. had simply been implemented and then
described in a relatively informal way. The formal
definition of the syntax in ALGOL60 made considerably
more precise what was legal in the language.

Once the syntax has been defined formally. the pro-
cess of matching a particular piece of user-written program
to that syntax becomes mechanical. It is natural then to
look for an algorithm which will do this matching. given a
suitable description of the language. A number of such
algorithms (usually called compiler-genp.rarors or compiler.



compilers) have been developed. The output of such an
algorithm is generally another program, which will do the
actual analysis of the particular language. Early compiler
generators gave substantially less efficient output than a
hand-coded compiler for the same language. Later work
has resulted in quite efficient .compiler-generators for a
large class of languages [5]. While the generators are not
as portable or as widely available as one would like, they
make language design so much more powerful that con-
sideration of them is essential to good system design.

We examine next a few characteristics of syntactic
definitions. A fragmentary example will focus our discus-
sion. Suppose we wish to define the class of legal arith-
metic expressions, using the operators +, ., ., I and f. Let
arith stand for a general arithmetic expression. All valid
instances of arith must be produced by a set of alternative
rules or productlollS. somewhat as follows (read r as mean-
ing "or" and ":' as meaning 'is').

arith: constantlvariable!
arithoperatorarith!
"-'arithi (arith):
,+','- "1'·'1'/'1' t",operator:

Everything enclosed in matching quotes is a literal, and all
other terms must be defined somewhere in the syntax. Our
fragment does not define constant or variable: for a language
like ALGOL60 the iatter would be a variable name or sub-
scripted array name.

This simple example illustrates a number of typical
features. The definition is recursive in that arilh appears on
the right side of its own definition. Without this, all possi-
ble rules with two, three, four, etc. operators would have to
be described separately. (Some statistical languages, such
as BMD {3], still do not allow recursive arithmetic expres-
sions.> Second, notice that some expressions are ambiguous
according to the rules given. For example, "3 + x .. 5" can
be matched by two different paths, depending on whether
we first match '3 + x' or 'x '" 5'. In this case, and with the
ordinary meaning for "+" and ""', the expressions is also
semantically ambiguous (it gives different numerical
values). This and similar ambiguities can be removed by
specifying a different binding strength or precedence for
different operators. For example. if the language definition
specifies that ".' binds tighter than'+" the above expression
will always be interpreted as "3+ (x'"SY, as one presumably
intended.

This example suggests that minimal faciiities for
powerful syntactic definition should include recursive
definition with variable precedence. Unnecessarily restric-
tive syntactic forms, such as the variant on Polish notation
used in APL, enforce an unconventional algebraic form
which makes programs harder to read and write.

the success of a syntactic definition depends upon
subsuming a wide range of useful expressions in a compact
set of rules. Otherwise, this is just a rather inefficient way
of writing a table of the commands in the language. Simi-
larly, a language which is easy to learn and pleasant to use
should have a simple, consistent syntax. In my opinion.
many statistical systems aie clumsy to use and unattractive
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CALI. MUI.TR(N.K.XBAR.STDERR.D.RX.RY.ISAVE.
B,SB.T.ANS)

'IB.ll SSP. I'''''' e
CALL MLREGl(X,N.NDIM.K,Y.B.RESSTD.RSQUAR)

:Bt'll LaD,. til

FIT COL 4. WEIGHTS IN COl. 6.
VECTORS IN

fOmlllftJb. jVfI,'O

REGRESS rITLE IS 'RELATION OF ....
DE!'ENDENT IS PRESSURE
ENOl

f8J1DP.

REGRESSION OF Y ON Xl X2 X3

Figure 1:
Examples of Regression Commands

'in appearance because they give statistical command a e
separate syntax. A difficulty with a naturallanguage form
such as

REGRESS DEPENDENT IS EARNINGS
INDEPENDENT ARE BOOK AND DOW

even when one gets it correct, is that it does not help in
learning, say, how to do plotting in the same language.

A better approach, I believe, is to take traditional
mathematical notation with operators and function calls,
and adapt it to modern interactive computing. Much of the
bias against this form arises from the rigidity which algo-
rithmic languages like FORTRAN impose.

For example, Figure 1 shows a regression command,
via two FORTRAN subroutines and in several st:ltistical
systems. The systems show a wide variety of formats,
some more reasonable than others, but al! exhibiting l
preference for an English-like command rather than a sin-
gle syntactic form. The main problems with the FOR-
TRAN examples are that the user is forced to provide too
much information and that a rigid, positional form of argu-
ment list is imposed. All these problems can be alleviated
while retaining the power of algebraic notation. T:"e use of
self-defining, general data structures eliminates the need for
many arguments. Allowing optional arguments and
"name-value" format further simplifies the calls. By
defining a general data structure (below) one can arrange .
that all operators and functions return a single result. Thise
opens the way for a very powerful. consistent syntax for
statistical operations. Recent experience at Bell Labora-
tories suggests Ihat both statisticians and others will adapt
easily and enthusiastically to this form of language.



abline «myreg - regress (x.y»$ coe£)
line):

We use expression S name to define a component of a struc-
ture. The example illustrates the power in a uniform syn-
tax and data structure: expressions. including assignments,
can appear essentially anywhere that they make sense, and
all functions return a single structure as result. These are
ideas which have arisen in various areas of computing, and
which have powerful applications in statistical systems.

Finally, we note (hat a general approach does not pre·
elude having the statistical data structures built into the sys-
tem. Data matrices, arrays and time·series can be defined
easily as multi· level structures (Figure 2>'

3. Data Structure
A general approach to data structures in statistical

systems parallels and interacts with the question of general
syntax. Programming languages have moved towards a
broader and somewhat more unified concept of the permis-
sible data structures. Statistical systems have again lagged
in the application of these ideas. largely because we have
tried to predefine the set of permitted structures rather than
looking for a simple. general grammar on which to build in
an open-ended way.

For data structures, the key abiiity is the creation of
hierarchicial or multi-level data structures [1, Section 3.cl.
Given the definition of some basic data structures, an arbi-
trary multilevel data structure is defined as a list of com-
ponents. each being either a basic structure or another
multi-level structure. This concept has been used in one 4. Semantic Structure
form or another for diverse applications (list processing. Formal syntax describes the legal expressions in a
business data management, general programming language. Formal semantics defines the meaning of these
languages). With suitable interpretation. it provides a con- expressions. It gives a model. often a mathematical model.
venient basis for statistical data structure as well. for the effect of programs in a language. The area of for-

Instead of a general approach, however, most statisti- mal semantics is newer, more ambitious and much more
cal systems have attacked data structures piecemeal, or not difficult than formal syntax. So far. its impact on statistical
at all. Looking for common trends. we find three data systems has been effectively nil. This is to be expected,
structures recurring frequently: the data matrix, the multi- given the currently rather abstract state of most work in the
way array and the time-series. For example, BMD [3] area, and the relative difficulty of most papers on the topic.
bases most of its analyses on a data matrix, read from the A good introduction is the recent. readable survey by
input stream. APL [4] does all its analysis on multi·way Sethi[8].
arrays. The TROLL system [j] uses a time-series as its One can foresee, in general if not in detail, the appli-
basic structure. Somewhat the exception are languages for cation of formal semantics to statistical languages. One
survey anaiysis, which are naturally drawn to a hierarchical approach to formal semantics uses the concept of the store,

structure (e.g., [2]) but have tended to treat it as a the currently defined s:orage locations and their contents
fixed, special type of structure corresponding to collecting "[8]. Then the semantics corresponding to expressions in
data in a hierarchical form. the language syntax, such as discussed in section 2, are

The problem with an ad-hoc approach is again that it built. up from formally defined functions. whose arguments
does not help us to grow. While the specific structures are the store and the expression. Given some
mentioned are useful, they are not universal. If no general predefined semantic operations (for example. arithmetic
grammar exists, one either cannot represent more general operators like add) one can stare semantic definitions for
results at all or is forced to contortions in order to get by. expressions. For example, the syntax which allows expr 1
For example. a data matrix is fine for input to a regression + expr 2 would be paraileied by the semantic construction
routine, but does nol. help much in representing the output. which appiied the add fun::tion to the formal value of expr I
Significantly, most statistical systems do not think of the and expr 2, given the current contents of the store.
result of a regression as a structure at all. In most cases. These ideas. like the syntactic and data structure con-
there is no regression data structure to represent the out- cepts. should be applicable to statistical languages, with
put. suitable adjustments. For example, the store in most

models consists of scalar locations in memory. Application
to statistical systems suggests that the store would better be
the set of currently defined data structures in the data base.
The formal definition of add would then be generated for
some subset of all legal data structures. In fact. we have
implemented a similar idea, defining a class of hierarchical
structures (called numerical structures) to which arithmetic
operations can be applied. (See Figure 2.) Formal seman-
tics would make this an abstract. more precise and more
portable concept. How to extend the ideas to general ana-
lyses. such as regression. is more challenging.

In the (ong run, there are exciting possibilities here
for precise definition of statistical operations. One must
expect. however. many years of further work before the
possibilities can be realized.

General data structures interact with general syntax.
If the expressions in a statistical language are to be open-
ended and consistent. as suggested in the previous section,
the result of an analysis must be a valid expression, both
syntactically and as a data structure. Only then can one
build new analyses freely. using existing ones.

Without attempting to expand on this idea in detail, a
brief example will illustrate the point. Suppose regress is a
function which returns a hierarchical regression structure.
The components of the structure include residuals,
coefficients and whatever else is useful for further analysis.
Then the foHowing expression does a regression, assigns it
the name myl'eg and then extracts the coefficients. called
coej; and passes them to a function. abline. which plots a
line from the y .... a + bx definition (here the regression
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vector:

array:

time-series:

numeric-
structure:

( name:
mode:
length:
value:
]

( dim:

data:
** )

(tsp:
1* start,
data:
**)

( data:

.* )

NAME.
LGL IINT IREAL ICHAR.
>0
I*pointer to data values*/

. vector( DIM , INT , length, value ] ,
I*dimension vector*/
vector{ DATA, mode, length, value] ,

vector( TSP , REAL • 3 , value ] ,
end, periodicity */

vector{ DATA, mode, length, value] .

vector[ DATA, LGL i INT IREAL,
length , value ],

Fig'.1re 2: Semi-formal Definition
of Data Structures

Notes:

• Square brackets enclose contiguous items.
- Round brackets enclose components of hIerarchical
structures.

• Capitalized names are literal.
- '..., means any additional components are permitted
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What is a language for statistical computing?
Richard L. Wexelblat

Sperry Univac
Blue Bell, Pa. 19424

ABSTRACT

The computer user is all too often at the mercy of the computer programmer.
Lacking knowledge of the fUll power of what could be done to make the computer
easy to use, users have been satisfied with systems that force them to become
programmers. Users have accepted inconvenient and hard to learn programs that
never quite do what is wanted. The remedy begins with making users aware of what
well-designed systems can do. Here is an attempt at such a remedy.
Although this particular paper is directed toward an audience of statisticians
and the examples are taken from statistics applications, the moral is general. The
person who will eventually use an applications program must be aware of how a
properly designed, properly human-engineered system can work and must demand proper
behavior, proper documentation, and proper performance.

Most statisticians realize that if the com-
p11ter vanished, present-day practical sta-
tistics (both practice and theory) would be
left high and drr. that we would have to
make drastic changes in IIlUch of what we
do•.•'.Silently. almost covertly. the com-
puter has become deeply and irretrievably
embedded in almost all of statistics. To-
day this embedding goel! ,on fasterHand
fa.ster.

-'- J olm Tuker

It didn't take IIlUch insight, even in the early days
of computers to see that statistics would be greatly
affected by computers. Only a few had the insight,
however. to see how prot"oUIldly statisticians '..auld
be int"luenced by computers. Ideally statistical
computation should be part ot" statistics. In prac-
tice it isn't. Trained statisticians should be able
to work with computers without formal study of Com-
puter Science. They can It.

iTe are faced with time-sharing systems where the com-
puter seems to want to share the human Is time. rather
than vice versa. We possess nicely packaged sub-
routines that take days to learn to use. iTe are
hosted by operating systems whose primitive operations
seem to bear no resemblance to whst we want to do.
Furthermore, we are afflicted with programming coun-
sellors who, when asked, "how do I do thus-md-so,"
reply not "here is how," but rather: "why on earth
do you want to do that?"

Now I IIlUSt admit the truth: I am no statistician. I
have always thought a Gaussian distribution to be
abnormal. a Poisson distribution to refer to place-
ment of sardines in a sandwich. I am a Com'Cuter
Scientist: I speak FORTRAN like a native; i: write
PL/I Programs for amusement. What do I liave to offer
to those interested in languages for Statistical
Computing? Perhaps a bit of insight that will help in
understanding. in solving some of the problems of
vorking with a computer in a way that is naturally
the yay statistical problems are normally stated.

In the jargon of- rrt1 chosen field. what is needed is a
very-high-level nonprocedural problem-oriented lang-
uage • Somewhere close to the end of this paper. I'll
give a few hints on what such a language for statis-
tics might look like. First, it will be necessary
to define a few terns and give a few examples (and
cOunter-examples).

What is a computer la..'lguage?

The indulgence of the reader is requested to permi
me to start at the lowest level. The bas1.c language

• of almost all current computers is binary which for
convenience is often represented in octal or hexa-
decimal.

Although the computer can be programmed in its native
language (as indeed it was in the bad-old-days),
those programmers who still desire to speak to the
mach:lJle in its nativEl language '.lSually' do so through
m Assembler. On small (mini- md !!licro-computers)
assembly language is usually translated by a 1: 1 map-
ping onto machine code. On large computers - or
those with versatile operating systems, a.ssembly
language instructions are often :napped 1 :many to
machine code.

Programming in machine code is sufficient (but not
realistic) for any statistical problem - or any
other computable problem for that matter. Assembly
language is sufficient but recommended only to maso-
chists. Although a great deal of assembly coded
statistical software has been written in the past, the
age of the assemb17 language programmer has passed.
The largest part of applications software is :lOW being
'..rritten in high-level languages.

The new Vocabulary on Information
(ANSI. 19TI) defines a high-level language as a pro-

language that does not reflect the
of anyone computer or that of any given class of
computers. Thus, languages like ALGOL, APL, BASIC,
COBOL, !ORTRAN, LISP, PL/I. SNOBOL. etc. may be con-
sidered high-level. Of course. as is so ot"ten the

*Paper, How Computi:lg and Statistics Affect Each Other. prepu9d for the Baggage Memorial Meeting, London,
England, October 18. 1911.

25



TALLY MAS THE MEAN AND V AS THE VARIANCE OF X

Using TROLL online, a user cm enter md edit data
files, enter and edit models and apply models to data.
The following is m example of the commands to achieve
a time series plot:

PERIOD 4 ;
SEARCH SYSLIB-DATA-NBER ;
OUTOPT PLT'.mJTIi 5 FULEGEND j
PLTIME 1950 1 TO 1953 1, GO, GDO ;

A = B+C
:WC (A,B,C)
EDIT (A,B,C)(F(6),X(12»;

LET
CALL
PUT

SIMSCRIPT is tmlikelY' to have all of the faoilities
a statistician will need and sadly', 70U still have
to be a programmer to use SIMSCRIPT• Despite its
attempt to look like English, SIMSCRIPT structure
uses what has become the most oommon programming
lmguage statement format:

collllll&l:1d
label kej"Word opermds or options

Some languages - primarilY' in the Simulation and
Modellng applioations areas - have gone beY'ond
general purpose languages and included pr:l.m::.tives
for oerta1n statistical £unctions. SIMSCRIPT, for
example has built-in rmdom number generators for
various distributions such as beta, binomial, log
normal, normal, etc. For analY'zing data, such things
as mem, SUlll of squares, md stmdard
deviation are available. The following are (out of
oontext) examples from Snr.sCRIPT (Kiviat, Villanueva,
and Markowitz, 1973).

SCHEDULE AN ARRIVAL AT TIME.V + EXPONENTIAL. F(MEAN' , 1 )
(The first argument of EIPONENTIAL.F is the
mem of' the distribution; the second is an
integer identifT'..ng one of a group ot in-
dependent generators).

TROLL (NBER, 1975) is a lmguage/system for data
analy'sis, simulation, etc. which uses the olassic
kej"Word format although the kej"Words often bear little
resemblance to English (PRTMOD, BINOVAL):

REG 1955 TO 1970 (regression on Slmual data)
BEG 1955 1 TO 1970 4 (regression on quarterly- data)

e.g.
BASIC 123
FORTRAN 10
PL/I

• Data Structures - Man does not compute on homo-
genious arraY's alone. ManY' current lmguages
(FORTRAN md BASIC ditto) give the programmer
the means to desoribe the structure of
cated data aggregates.

APL, bT the waY', is a language that has been recom-
mended for statistios (Rosenkrands, 1974). While APL
is' splendid for expresslng mathematioal li1nctions

(+/OBS)+pOBS

• Control Structures - IIl&I:17 Cln'%'ent high level
languages (FORTRAN and BASIC be:l.ng notable ez-
ceptions ) give the programmer means to
express the sequence of of a
iterative prooess clearly' and conoisely'.

is the mem of a set of' observations some formu-
lae can get rather complex as

(+(02)*+2)x*-O.5 xXxX

maps onto (i.e. can be trmslated :l.nto) m&I:lY' instruc-
tions :l.n machine lmguage. Furthermore, algebraic
lmguages -- those designed to express computations -
save a good deal ot time md eftort for the
programmer;

• Inpl1t and Output - m&I:lY' high lev.l languages
proVide means for getting data in and
results out of the computer.

• Subrout:l.ne Libraries - the basic mathematical
functions needed in statistical computation are
usuallY' available as m lntrinsic part of the
lmguage •

a(i+1) := b(i) + c(i-1)

case with lexicon definitions, it msses the po:l.nt
entirely'. Mach:l.ne imiependence is 1.rrelevant to our
concerns. The sign:l.1'icance of "high-level" is that
one can mean a lot bT saying a llttle. The
statement

T..rhich is the Gaussim Distribution function. (A
:-eader of a draft of th5.s paper objected to the waY'
Rosenkrmds the Ga.ussian distribution and
suggested that

'lould be clearer.)

Statistical Software

If the statistician is (or cm hire) a good program-
mer, every-thing that needs to be done on the computer
can be done in one of the existing high level lmg-
uages. For manY' 79&rs this is the T..ray it was done --

that m&I:lY' frequently' used ±\mctions were com-
bined together in packages of subroutines. Sometimes
these subroutines were copiously documented, some-
times the user had to take a sketchY' description and
hope for the best. 1 contains m example of
a rather complete description, a program from the
Sperrr Univac Stat-Pack (Sperrr Univac, 1973).

Extending FORTRAN or PL/I with statistical subroutines,
still leaves the problem of having to write, compile,
link, and run FORTRAN or PL/I programs. Whether done
in batch or on a time-sharing sj"Stem it I s still pro-
gramming and not statistics.

-Uthough the basic operations in TROLL are those
needed for data analysis, the notation and syntax are
prim:l.tive and ur.gainlY' in the enreme. And again,
although the language used is far from FORTRA.'l, the
user must still worry- about writing programs.

One way to remove the programming is to add input and
output to the subroutines and let them stand alone as
complete programs. Now the user will still have to
worr;r about job control lmguage but the details, the
"guts" of' the programs, will not be of concern. At
leas"C in 1972, the BMD program set from UCLA (Dixon,
1975) was the best kno'm and most widely used "stand
alone" package (SchucanY', Shannon, and Minton, 1972).
JOY'ce (1972) described BMO as one of the first success-
ful attempts to produce a trul7 user-oriented system.
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•••A s,-stem of well tried and tested batch pro-
grams covering an extremely' wide range of sta-
tistical applications, freely' available and
written to a consistent set ot progr&lllllling and
documentation standards. It can be used by
anal7sts who need to know little more about the
lll1Steries of computing than how to place a job
in the batch stream.

Joyce went on to point out, however, that BMD still
places the user at the mercy of turnaround time and
sUbject to the vag,aries of job control languages.

The next step is to take a BMD-like s,-stem and put
it on-line•. Making the (perhaps rash) assumption
that on-line response time is better than batch
turnaround, the user can at least improve conveni-
ence. Furthermore, where an error in a control card
or in data would probably' waste an entire batch Nn,
an on-line system be able to let the user see
the error diagnosis immediately' and take on-the-spot
corrective action.

On-line access to BMD has been achieved in a way by
the BMDP program control language that assists in the
sequencing ot options and data cards. Below is an
example ot a BMDP "program" adapted from an unpub-
lished memorandum by J. T. Tama (1977).

2 contains a sample of an interaction with such a
conversational package. Some ot the aspects ot con-
versationaJ. aystelllS are pointed out in the i:1tro-
duction to the appendix, but a detailed discussion
of the human factors aspects of conversationaJ. s,-s-
tems is beyond the scope of the present paper.

The Nut Step

What then .!! a language for statistical computing?
Based on the discussion above, FORTRAN is •••a:ui so
are SIMSCRIPT J PL/I, ALGOL, and a host of others.
Indeed if we define language for statistical com-
puting as that which one uses to tell the computer
to do some statistical computation, then the system
job control language, mirabile dictu, is a statistical
language I But statisticians should not be afflicted
with all the heart-ache and the thousand naturaJ.
shocks that programmers are heir to.

I seek for the statistician a notation, a language 1£
you will, a way to state the problem that is Il&tural,
eas,- to learn. a:ui easy to use. In particular, I
want the user to say what the problem is, not what
the method ot solution is to be (what, not
This· elass of programming language is usually' re-
ferred to in Computer Science as "very-high level"
or "nonproceduraJ.."

Once the programs are adding conversationaJ.
interaction is a simple step. Below is a sample
dialog adapted from an example in the manuaJ. for a
Test of Hypothesis series of programs (Sperry Univac,
1975). In the following uppercase is typed by the
computer and lower case following a question mark is
user response. I have added three parenthetic notes.

Extension from on-line batch to true conversationaJ.
time-sharing is simple in conception but apparently'
not in implementation. In 1972 Joyce expressed sur-
prise that there were so few successful interactive
statisticaJ. systelllS. Schucany, aJ. list only 4
(of Tn packages capable of on-line use and of those
only 2 appeared to approach a generaJ. purpose
capability.

PROBLEM
DlPOT

PLOT

REGRESSION

ENDI

TITLE = 'ENGnrEERnlG MANPOWER'·I
VARIAl3LES = 6.
FORZ-!AT = I (2F;.O.F8•.0.F10.0,2F7.0) '·1
ADD = 1.
NAMES = TIME,DATAENGP,DATATIA,DATATP.sA,
'DATAG-RE', 'DATACE/I'
XVAR = TmE.
YVAR = RESIDUAL.I
LMSA = LOG (DATATP.sA).1
DEPENDENT = DAUENGP.
INDZl'ENDENT =

(data eards)

In an overview of nonprocedural languages, Leavenworth
and Sammet (1974) quote the following example of a
"programll in a hypothetical nonprocedural language:

FIND INTEGEBS A. B, C. AND:l SUCH
THAT n>2 AND An + BZ1 =Cn.

The problem is clearly and completely stated and says
what and not how. The following is adapted from an .
elementary probability text (Parzen, 1960).

Consider a sequence of independent repeated
Bernoulli trials in which the probability
of success on a:JI7 triaJ. is p : 5/16. Let
Tn be the number ot failures encountered
·be£ore the nth success is achieved. Find
E(Tn) and Var(Tn).

Barring problelllS of ambiguity in English text, there
is enough information in both ot these examples for
an automatic program generator to translate the prob-
lem into an executable computer program. It doesn't
matter whether the problem is solvable or not.

In a briet paper it is not possible to go deeply into
all of the criteria for good programming languages.
Let us look at a few examples of existing nonproce-
duraJ. languages and see what we can learn from them.

llonprocedural Languages

So far as I have been able to discover, there is no
description of a very high level language for statis-
tics in the literature. Perhaps the diversity or
what statisticians do is overwhelming. In some areas
where the problem space is more restricted, nonpro-
cedural languages permit a great deal to be done with
very little said. Consider linear programming.
Given the following problem:

WOULD YOU LIKE DETAILED INSTRUCTIONS? no
TEE NUMBER OF OBSERVATIONS IS? 12
WOULD YOU LIKE TO SEE THE DATA? yes

(tabular listing ot data is printed)
IS TEE DATA yes

(if no, the user could correct bad entries)
THE VALUE OF RHO IS .925928
S.D. : .301511

(some more output)
ALPHA: .1 0973E-02

E H'IPOTHESIS OF UNRELATED VAlUABLES CAN
T BE REJECTED FOR ALPHA <.10973E-02
OTHER PROBLEMr. noBn
It is also possible to combine an entire statistics
package into a single interactive program. Appendix
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A production is considering the
manufacture of three products each of which
needs work on a lathe, a grinder, and a
drill. Product 2 will sell a lIlaXimum of
25 and it is assumed that every unit
of oroducts 1 and 3 can be sold. Profits
are·$17.00, $6.90, and $7.50 respectively.
Available machine time and machine hours are



<90;
<50;
<160;

time for
avl 1:1 P2 13

Lathe 90 3·5 4.6
Grinder 50 4·3 1.0 2.8
Drill 160 7·5 2.0 3·0

The "program" in UHELP (University of Houston Easy
Linear Programming, Donaghey, Dewan, and Singh, 1970)
is

LATHE: 3.5 P1 + 4.6 P2
GRINDER: 4.3 P1 + 1.0 P2 + 2.8 P3
DRILL: 7.5 P1 + 2.0 P2 + 3.0 P3
SALES: P2 < 25;
OBJECTIVE PROFIT: 17 P1 + 6.9 P2 + 7.5 P3;
MAXIMIZE: PROF!T;

UHELP permits the user to specify constraints and
objective functions and then to maJdmize or minimize
an objective !'Unction. After seeing the solution it
is possible to add, delete, or change any equation
and to try agab.

Cenversational systems can be carried beyond the
Yes-No-numerics level to provide high level systems.
Here .is a sample dialog from a simulation generation
system: the user talks with the computer, defining a
simulation problem. The result of the dialog is the
generatien of a GPSS program that can then be executed
(Heidorn 1974) • In the dialog, user input is lower
case while computer responses are upper case.

1ihen a vehicle arrives at a station, it there
immediately if the length of the li."le at a pump in
the station is not less than 2.

75 percent of the vehicles are cars and a fourth are
trucks.

There is just 1 pump.

A stimulation -:n time of 8 hours is desired.

Ask questions for further info.

HOW 0Fl'EN DO THE VEHICLES ARRIVE AT THE STATION?

The arrivals of vehicles are normally distributed
with a mean of 8 minutes.

WHAT IS THE STANDARD DEVIATION OF THE NORMAL
DISTRIBUTION?

1 minute.

OTHERWISE, WHAT DO THE VEHICLES DO?

What?

AFTER ARRIVING AT THE STATION, IF THE LENGTH OF THE
LINE AT THE PUMP IN THE S'::'ATION IS NOT LESS THAN 2,
THE VEHICLE WILL LEAVE THE STATION. OTHERWISE, WHAT
DO THE VElIICLES DO?

They are serviced.

HOW LONG ARE THE VEHICLES SERVICED AT THE PUMP IN
THE STATION?

Vehicle service times are exponential.

THE TIME FOR THE VEHICLES TO BE SERVICED AT THE PUMP
IN THE ST.Il.TION IS EXPONENTIALLY DISTRIBUTED. WHAT IS
THE MEAN OF THE EXPONENTIAL DISTRIBUTION?

5 minutes for cars and 9 minutes for trucks.

AFl'ER BEING SERVICED AT THE PUMP IN THE STATION, 'WHAT
DO THE VEHICLES DO?

Leave the station.

WHAT IS THE BASIC TIME UNIT TO BE USED IN THE MODEL?

30 seconds.

THE PROBLEM STATEMENT IS COMPLETE.

How often does a vehicle arrive at the station?

·THE TIME BETWEEN ARRIVALS OF THE VEHICLES AT THE
STATION IS NORMALLY DISTRIBUTED, WITH A MEAN OF 8
MINUTES AND A STANDAP..D DEVIATION OF 1 MINUTE.

The standard deviation of the between arrivals
should be 2 minutes.

YES, THE VEHICLES ARE SERVICED AT THE PUMP IN THE
STATION.

Those who have not kept up with the state of the art
of computer processing of English language text might
be surprised by this example. While the problems of
complexity and ambiguity of natural language, make it
unlikely that full natural language interaction will
soon be possible, in areas where the subject matter,
vocabulary and syntax are restricted, amazing progress
has been made. (Schank, 1977). For a description of
some of the problems in using English with computers,
see Hill (1972).

Attributes of a Statistics Language

What are criteria for a good language for statistical
computing? Perhaps the following:

Should have all of the common distributions
Should be able to do hypothesis testing
Should have analysis of variance

Well, yes they are, but to my mind far from the most
important. Of course the language must have sufficient
statistics built in or it's worthless. Illl leave the
decision on what is necessary and sufficient to the
practicing statistician. My criteria discussed below
are not tied to statistics applications; they relate
to the general problem of special purpose software
for the user who is not a full time programmer.

Criteria for a Good Language

It is better to know some of the questions
than all of the answers.

-- James Thurber

Caveat lector: The opinions in this section are my
own, based on many years of programming and using
computers, teaching and counseling computer users. I
have also spent time describing what I feel to be flaws
in existing (Wexelblat 1976). I do not ask
the reader to agree with all of my conclusions, I
merely ask that they be read with an open mind. Here
are some attributes that I would consider important
for a good language and system.

Accurate and Precise
Easily accessible
Easy to learn and use
Friendly
Functionally Complete
Functionally Modular
ltatural
Understandable
Well Documented
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And here are some e=tplanations, examples, and counter-
examples of these attributes.

Accu.racy and Precisione For a:ny mathematical application, both accuracy and
precision are important. A watch that tells time to
the 100th of a second is quite precise. If the watch
is 5 minutes off, the accuracy is nil. Precision is
the number of decimal places, accuracy is the correct-
ness. I have actual1y seen a system that used 3.14159
for pi in single precision and 3.14159000000 for pi
in double precision.

Accuracy is the responsibility of the implementor and
user, precision depends on the hardware (and how it
is used). Some computers can do arithmetic all day
and never lose a digit precision, some are quite
dangerous. A first-time user would do well to check
carefully the results of some computations. Of course,
the system should provide the means to assist the
user to perform. the checks.

Ease of Accessibility

How much of the surrounding environment (operating
system, control language, file structure, etc.) is
the user going to have to learn to use the applica-
tions package? Very- little, I would hope. Yet
there are still systems beautif'ul1y self' contained
in execution that require a user to learn all about
the control language, file system, and text editor of
the host in order to prepare data. Of course, the
implementor is usually at the mercy of the facilities
of the host operating system.

A Some operating 'systems are Suf".f'iciently oriented
.toward the non-programmer user (UNIX, for example,

Ritchie and Thompson, 1974) that an applications
package need not hide the host from the user, while
others (names suppressed to protect the guilty) are
so inhospitahle that it takes days of training just
to get started. .

Accessibility applies also to operating environment.
The best functionality in the world is of no practical
use if batch turnaround is 24 hours or if' you can't
get an access port or if' system response time is
measured in tens of seconds.

Ease of Learning and Use

Just as one should not have to know all of FORTRAN
to be able to write a simple program, a user should
not have to learn all of an applications package to
use it. Whether a system is easy to learn and use is
highly subjective and dependent on the complexity,
modularity, and level of documentation as well as on
the user's background. Someone who knows statistics
should be able to learn and use a statistical sub-
routine package readily and rapid1y.

It is usual1y within the power of the designer and
implementor to make a system hospitable. They should
be willing to expend the time and effort to do a good
job. The following example of how to design a
language is from GENSTAT a.system for statistical
analysis (Nelder).

'REFERENCE' CIRCLE
'SCALAR' AREA,R
'VALUE' R=3.7
'CALCULATE' AREA =3.14159*R**2
I PRINT' AREA
'RUN'
I CLOSE' ,STOP'

In GENSTAT, all keywords must be in quotes and only
the first four letters are used. Thus, the second
statement could just as well have been written
'SCALAWAG' AREA,R. Data names in GENSTAT are sig-
nificant only in the first eight letters, thus
ANNUAL-MEAN, ANNUAL-MODE, and ANNUAL-MEDIAN all refer·
to the same variable.

GENSTAT programs are processed by a translator or
interpreter. Putting the keywords in quotes and
abbreviating words certainly makes the implementor's
job easier -- at the expense of aggravation for the
user. If' GENSTAT was devised in the last decade (my
manual is undated), there is no excuse for such re-
strictions. As I said earlier, time-sharing is for
the human to share the computer's time, not vice-versa.

The language should be reasonable. GENSTAT' s default
output format is "scientific" notation -- the result
of the print statement above is not 43.008, but

AREA 4.3008 El

Friendliness

A friend is someone fun to be with, who does things
for you and is understanding when you make mistakes.
A friend1y computer system is one that will detect
and perhaps correct mistakes, will detect when you
are in trouhle and will offer help, will permit you
to ask for instructions, and talk to using your own
terms.

An outstanding example of friendliness is the DWIM,
do-what-I-mean, function of the INTERLISP system
(Teitelman, 1974) that assists the user by correcting
spelling and syntax errors. The user may disable DWIM,
but when enabled, it will catch many errors (e.g. SINE
will be "corrected" to SIN - unless there exists a
function called SINE) and let the user know. If·DWIM
is enabled·in "cautious" mode, the user will be shown
each error and each suggested correction which may
then be accepted or rejected. In "trusting" mode, the
user will be of corrections after they are
made.

Friendly systems don't make you respond 0 or 1 instead
of yes or no. They accept Y, YES, Yes, y, and Yes,
etc. for yes and N, NO, No, n, and no for no. If a
yes or no answer is not yes, they don't assume it was
no and go merrily on their way.

Friendly systems are not verbose. They give brief
error messages and let you ask for more details. Mes-
sages tell what happened to not to the program.
Not "TABLE OVERFLOW," but rather "TOO MANY
OBSERVATIONS."

Friend17 systems are not cute or coy. At 3 a.m. after
a hard night.' s computing, is can be extremely exasper-
ating to see "THAT'S A NO-NO. RE-ENTER THE NtOOlER AND
DO IT RIGHT THIS TIME, DUMMY" for the 123rd time.

functional Modularity and Completeness

The user should be ahle to use parts (modules in the
computerists jargon) of the system that are logically
complete unto themselves. If a system contains
Analysis of Var.iance and Hypothesis Testing it should
be possible to do one function without even knowing
about the other.

The system should be complete in the sense that any-
thing reasonable to do should be doable. For example,
if the Kruskal-Wallace H Test is not a built-in primi-
tive part of the Hypothesis Testing facility then the
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REGRESSION

Documentation

FILE NAME
VAllIAJilLE LIST
INPUT FOBMAT
N OF CASES
INPUT MEDIUM
VAR LABELS

user should be able to achieve the Kruskal-Wallace
test b,y combining other functions.

Naturalness

A system is natural to use when you talk to it in the
same vocabulary and notation that you use when solving
problems without the system - or when the new notation
is a straightforward extension to current notation.

Some people who have learned mathematics feel that
mathematical notation is the way to express
scientific problems. Those who know FORTRAN feel
FORTRAN is natural. Others are of the opinion that
only English is natural. Lawrence Peter commented
that competence, like truth, beauty, and contact
lenses, is in the eye of the beholder. Similarly,
naturalness is in the IlIind of the beholder. For
example, suppose that A and B are names of vectors of
numbers and I wish to set A to the vector of square
roots of the members of B and then print A. In PL/I
I would say

a =sqrt(b);
put (a);

The square root function being mathematical in nature
uses math notation; the output function is separated.
TROLL, the system for data analysis mentioned earlier
carries math notation too far. While

DO A = SQRT(B);
sets A as desired

DO A =PRINT (SQRT(B»;

prints the vaJ.ues at the same time. Thus PRINT is a
math function that returns its argument and, as a side
effect, prints the argument: in 11rY opinion an opera-
tion unnatural to programmer or human alike.

APt, the mathematical progr-....dng notation par excel-
lence separates the computation and print functions
while still permitting a single statement:

In APL, the rectangle ("quad") is an output function
and the asterisk (llstar") is the power operation (2*3
is 8 9*.5 is 3).

What is natural for a statistician? That which you,
the statistician, can use or learn to use easily and
one that permits others to understand what you have
written.

Understandability

Programming languages are not only for communication
between humans and computers but also for communica-
tion among humans. It is necessary that others be
able to read and understand what you have written. My
primary objections to COBOL and APL are based upon
this criterion: COBOL leads to a sense of false com-
placency and APt seems to encourage a IlIind-searing
complexity. Consider the following example of a pro-
gram from a proprietary statistical package (SPSS
1976) :

DEM02
PEOPLE, INCOME,SAVINGS,SALES
FREEFIELD
9
DISK
PEOPLE,POPULATION IN THE LOCALITY IN THOUSANDS/
INCOME,AVERAGE FAMrLY INCOME m HUNDREDS/
SAVINGS, PERCENTAGE OF INCOME SAVED?
SALES,SALES IN TEE LOCALITY IN THOUSAND DOLLARS
VAllIAJilLES = SALES WITH PEOPLE, INCOME,
SAVINGS(2)

READ INPUT DATA
SAVE FILE
FINISH

Despite the somewhat cryptic abbreviations in a few
places, chances are very good that someone who under-
stands regression will immediately understand what
the above example is trying to do.

Documentation should be available on-line. It should
contain examples, be clear, complete, and short and
to the point.

Conclusion

The problems of designing a language or system for
statistical computation are to a large extent the
same as the problems of designing languages for any
special purpose application.

.The designer must concentrate on letting the user say
what is to be done without having to go into the de-
tails of how it is to be done.

Design is a human endeavor. The ambitious system
designer would do well to look first at the user's
requirements, next at how to design computer systems,
and then at how to design in general. At the end of
the reference list, I have included a brief biblio-
graphy of six books that are l!lUst-reading for the
creative designer.

Remember that function and usability are the keys,
not· flallling originality. The user is a human and the
cost of using humans is not on the same scale of using
computers. The designer must work as if he or she will
be forced to share a very small office with the user.
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A SIMPLE 'SYNTHESIS' -BASED METHOD OF VARIANCE COMPONENT ESTIMATION
by

* + IIH. o. Hartley, J. N. K. Rao and Lynn LaMOtte

ABSTRACT

This paper develops a new algorithm for the estimation of components of a
variance in the mixed AllOVA model. This algorithm is "efficient" since the
computational effort (measured by the number of products) is proportional to n,
the number of observations. The method of estimation on which the algorithm is
based can be identified with special cases of both MINQUE (for V = I) and with the
1st iterate for the solution of the REML equations. Other optimality properties
are established, and simple conditions for estimability of the variance components
are derived. The consistency of the estimators is proved, and they are therefore
effective starting points for a single cycle of M.L. iterations leading to fully
efficient estimates.

*+H. o. Hartley, Institute of Statistics, Texas University
#J. N. K. Rao, Carleton University, Ottawa
Lynn LaMotte, Quantitative Management Science, University of Houston

It is also identical (Communication by S. R. Searle)

1.

Two of us (HCR and JNKR) have had

sion (see Hartley and Rao (1977» to consider compo-

nents of estimation techniques in data banks

arising from smnple surveys. Such data banks differ

from those encountered in experimental designs in

that the "nl.llllber of observations", n (in our case the

number of elementary sampling units), is exceedingly

large. We have therefore been prompted to search for

computationally efficient methods for the estimation

of components of variance when n is large and the

algOrithm here described involves a computational

effort (as measured by the number of products) which

is a linear function of n and this is generally

regarded as hi2hly efficient.

_our algorithm is new the statistical method of esti-

mation we employ is not. In it represents a

special case of C. R. Rao's (1971) MINQUE (with V.. I).

39

with a special case of the first iterate solution of

the equations of Corbeil and Searle (1976) whose

algorithms appear to involve much larger cOlll?utational

efforts (proportional to n2). The computational

effort is also considerably less than that involved

in the M.L. estimation by Hartley and Rao (1967)

which is still fairly laborious in spite of the

improvements through the W-transformation by Hemmerle

and Hartley (1973).

Inspite of its computational simplicity the

estimation procedure has numerous "optimality pro-

perties". Apart from being a special case of MINQUE

other properties are established in Section 6 and the

consistency is proved in the Appendix

under fairly general conditions. The consistency of

our estimator makes it convenient as a starting point

for a single M.L. cycle to obtain asymptotically

fully efficient estimates.



Finally we establish simple conditions for the 3. The Present Method

estimability of all variance components by our method

(see Section 6). In this context we observe that

with other methods (such as the Henderson 3 method

The essence of the present method is to

(a) Select c + 1 quadratic forms Qj(Y) in the

elements of y.

(3)

(Henderson (1953» or the Abbreviated Doolittle and

square root method (see e.g. Ga.ylor, Lucas and

Anderson (1970» estimability depends on the 5ubjec-

tive ordering of the components (such as with the

Forward Doolittle procedure) and if the ordering is

unfortunate the method may fail to yield estimates for

certain components while with a different ordering

(not attempted) all components may well be estiQable.

2. The Mixed A.,'qOVA Model

(b) Use the method of synthesis (Hartley (1967),

Rao (1968) to obtain the coefficients kji in

the formulas for E(Qj) in the form

c+l 2
E(Qj) - t k .. ai •i-l J:L

(c) Estimate a: by the computed Qj to

their expectations by inverting the

system (3) to compute the vector &2 with
A2elements (ji

Employing the currently used notation we write (4)

the mixed ANOVA model in the form

c+l
y - Xc + t Uib ii-1

(1)

from the vector Q(y) with elements Qj(Y)

where K - (kji) with rank to be discussed

in Section 6 and 7.

where y is an n x 1 vector of observations, (d) Replace: any negative elements of &2 by 0,

X is an n x k matrix of known coefficients, with consequences to be discussed in

a is a k x 1 vector of unknown constants, Section 7.

Ui is an n x mi matrix of 0, 1 coefficients, and

0i is an mi x 1 vector of normal variables from

tHO,

Specifically Uc+l - In and bC+l is an n-vector of
"error variables", }loreover the design matrices Ui
have precisely one value of 1 in of their rows

c
and all other coefficients O. We denote by m = t mii-l
the total number of random levels.

We now give more details for (a), (b) and (c).

(a) The Q.(Y) will be based on contrasts which
J

do not depend on any elements of a. Accord-

ingly we orthogonalize all Ui matrices on X

and construct matrices Vi orthogonal on X

as follows: Denote by u(t,i) the tth

column vector of Ui and by x(r) the rth

column vector of X then the columns v(t,i)

We may assume without loss of generality that of Vi are given by

a Gram Schmidt orthogonalization process with a con-

sequential reparameteriza.tion of a omitting any

linearly dependent col=s in the Gram Schmid t process.

for if (2) is not satisfied we may orthogonalize X by
(5)

k
x(r){x'(r)u(t,i)}

r-l

Vi· Ui-XX 'ui ..

or

v(t,i) u(t,i) -

We now choose the c + 1 quadratic forms

(2)X'X - I

Usually the first column of X is the column vector

with all elements • l/In. Ir. is the objective of the

method to compute estimates of the variance components
2ai and the vector a.

Qj (y) as

Qj (y) - y'VjVjY • 'V!y
J J

(6)
j • 1, ••• , c + 1•
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the bulk of the work consists of the formation of the

(b) It follows from the method f synthesis

(see Hartley (1967), S.N.R Rao (1968» that

c+l
!Q (y) - t k aZ
j i-l ji i

with (7)

kji - I (Vju( i»

Now sine. is orthog al on any x(p)

(!.!.. since v'(or,j)x(p) - we can write

SimUarly we find that

kC+l,i" tr{(I - XX') (ViVi)}

.. trNiVi - XX'ViVP .. trViVi,

Further we note the form of V ! ..!.
.. y - XX'y,

Defining now the adjoined matrices

V" (V1 [... i V)c

(13)

(14)

(15)

the kji in the alternative Jrm

(8)

'- tt{v' (or,j)v(t.1)}
tT

showing that kij .. kj1 ,

An alternative form of kj i

kji " tr{(VjVj)(VjVj)}. (9)

We shall show in Section 6 14t the symme-

trical matrix It .. (kj i) wi. have full rank

c + 1 if the n x n matrice: 'iVi are not

linearly dependent,

elements of the symmetrical matrix V'V - V'U .. U'V.

The elements of this matrix are assembled in sub-

matrices in accordance with the partition (15) as

shown in the Schedule 1 below where it must be reme:n-

bered that the range of the column index t depends on

i and is t .. 1, .,., mi and the range of or .. 1, .•.•

mj so that the submatrix VjUi has dimensions mj x mi'

The kj i for i j .. 1, , •• , c are then obtained by

forming the sums of squares of the elements in each

submatrix in accordance with (7).

Finally, we recite the formulas for "the remaining

(c) We shall also show in Sect: 1 6 that the

system of equations
Q _ Ka2.

is consistent even if the

degenerate. Solving (10)

(10)

lk of It is

the form

coefficients in the equation (10). The .kc+l • c+l and

kc+I,i are computed from. (12) and (13) respectively

and the right hand sides of Qj(Y) from the second form

in (6) for j .. 1, ••• , c while Qc+l (y) is given in

accordance with (14) by

(11) Qc+l(y) .. 1'Y - (X'y)'(X'y). (16)

we shall, of course, be pa. .cularly inter-

ested in the full rank caSl Then It - • K-l .
Schedule 1: Submatrices of V'U

4. The Computational L(

It may be helpful to give an idE of the compu-

tational efficiency of the present mE .od by tabulating

the number of products involved in t1 main operations

Ul

Vl v("l)'u(t,l) v("l)'u(t,2)

Vz v(::,2) 'u(t,2)

uc
v(or ,1) 'u(t,c)

v(, ,2) 'u(t,c)

of the algorithm. To this end we fiI note simpLl- vc v(, ,c) 'u(t,c)

fied versions for the kC+l,i:

we have from (5) that Vc+l .. I - XX'

we find that .. I - XX' and f

_that

kc+1 ,c+1 .. tr(I - XX') (I - XX')

.. tr(1 - XX') .. n - k.

g that Uc+l .. I

d since X'X .. r

.ally from (9)

(12)

41

We can now summarize the approximate number of

products involved in the various operations of the

algorithms.

We list the algorithms arA show the associated

numbers of products in ( ).



1. + +Orthogonallzation of X'X (k (k - 1)n, where

k+ denotes the number of in the

original matrix X)

The orthogonalization of X (original) and X (new)

follows the standard Gram Schmidt procedure and
+reduces the k .. 3 dependent columas to k .. 2 columns

2. Computation of X'Ui for i .. 1, ••• , c,

(0, subtotals of X)

which are orthogonal and standardized. Note that

x(2)new" x(2)old - (1/2)x(1)01d and

schedule 2 below.

Schedule 1, (0 products since the elements

(16). «m + k + l)(n + 1».

The important point is that the number of products

This yields the matrix Vt in schedule 2 has only

v(1/2) .. u(2,l) + (1/2)x(2).

and hence

x'(l)u(2.l) .. (3/2); x'(2)u(2.1)" -(1/2)

v(l.l) .. u(1.1) - (1/2)x(1) - (1/2)x{2)

x(3)01d .. x(l)new - x(2)new must be eliminated.

likewise

Usmg now x(r) .. x(r)new we orthogonalize U1 on X and

compute (see (S»

x'(l)u(l.l) .. +(1/2); x' (2)u(1,1) .. +(1/2)

v(2.1)'u(2.1) .. (1/2)

and

and hence

v(l.l)'u(l.l) .. (1/2);

v(1,l)'u(2.l) .. v(2.l)'u(1,1) .. -(1/2)

the computation of

one independent column. The elements of ViU\ require

with sum of squares of k1l .. 4(1/2)2 .. 1. Further

(equation (12» k22 .. 4 - 2 .. 2 and (equation (13»

.. k2l .. 4(1/2)2 + 4(0)2 .. 1 so that the K matrix

is given by K .. (i . Finally, (equation (16»

are subtotals of the elements v(t.i»

Computation of kij for i.j .. 1••••• c frOlll

equation (7). (1/2 (m) (Ill + 1»

4. Computation of U'V .. V'V in accordance with

3. Computation of X(X'Ui ) for i" 1, •••• c

frOlll equation (S), (nmk)

7. Computation of kc+l. C+l from equation (12).

(0 products)

8. Computation of the Qj (y) for j .. 1•••• , c + 1

from 2nd form of equation (6) and equation

6. Computation of kc+l,i for i .. 1••••• c from

equation (13), (m)

S• A NUIIlerical EXamtlle

A small nUlllerical example with n ,. 4. It .. 3.

S.

is only a linear function of the number of data lines

k .. 2. c ,. 1. 1111 .. 2. m .. 2. 1112 ,. n .. 4 is shown in

n. An approximate formula for the total number of

products is n{k+(k+ - 1) + (m + l)(k + 1)}.

Schedule 2: A HumedcalExample of a Model

y X original U1 U2

4 1 1 0 1 0 1 0 0 0
2 1 1 0 0 1 0 1 0 0
1 1 0 1 0 1 0 0 1 0
2 1 0 1 0 1 0 0 0 1

X new V1

(1/2) (1/2) +(1/2) -(1/2)
(1/2) (1/2) -(1/2) +(1/2)
(1/2) -(1/2) 0 0
(1/2) -(1/2) 0 0

Qz(y) .. 42 + 22 + 12 + 22 - «1/2)9)2 - «1/2)3)2

.. 25 - (90/4) .. 2S - 22.5 .. 2.5

and (equation (6»

Q1 (y) .. «1/2)2)2 + «1/2) (_2»2 .. 2.

The solution of .. therefore yields .. 1/2.
A2
0'1 .. 1.5.

6. Ol)timality Protlerties and the

Consistency of the Equations

The estimators described in Section 3 may be

seen to be "best at O'l .. o. i .. 1, .••• c, .. 1"

as defined by L. R. (1973). Therefore, the
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(17)

consistency of equaticm (10). regardless of the rank

of K. is established as Lemma 4 by LaMOtte (1973).

That the estimators defined by (11) are ''best'' among

invariant quadratic unbiased estimators guarantees

that they are admissible in that class; that is. no

other invariant quadratic unbiased estimators have

uniformly less variance for all a. Further. as noted

by LaMOtte (1973). the estimators (11) have the

property that in any model for which a uniformly best

estimator exists. (U) will be uniformly best.

Finally. it may be seen that the "synthesis" estima-

tors (11) are also MINQUE as in Rao (1971, Secticm 6)

with V I. No claim is made that this choice of the

norm has any particular merits among the rather

general family of the norms covered by MINQUE fomulas.

However. it appears to be reasonable to us that in the

absence of any theoretical criteria for selection of

norms a norm leading to simple estimators may

be regarded as meritorious.

FoUowing Section AS in. LaMOtte (1973), it may be

seen that the rank of K is equal to of

linearly independent matrices among ViVi, ... 1. ...•
c + 1. Thus a singular K may occur if the Ui Ui

lllatrices are not all linearly independent or if there

exists (see (5» a linear combination of the UiUi

matrices whose columns are contained in the linear

subspace spanned by the columns of X. In the first

case the singu1ari ty is caused by the design leading

to the Ui matrices, while in the second the singular-

ity is caused by confounding fixed and random effects.

In either case, (10) is consistent but some linear

APPENDIX

The Asymptodc Consistency of a2
In discussing the asymptotic behavior of ;2 it

is of course necessary to specify the limiting

process under which such properties are supposed to

hold. Clearly it is necessary for the consistent

estimation of the variances af • Var bi that the

number of elements mi in the vectors bi all tend to

.... For the identity matrix Uc+1 we have mc+l • n

the overall sample size. For the remaining mi we

assume that their limiting behavior is related to

n by

1-.:£ 1-.:£ .
Ln i l11i Un 1

where 0 a i < 1 and L,U are universal constants.

More specifically we assume that ac+l 0 but a i > 0

for i- 1, •••• c. Generalizations to situations in

which a i = 0 for several components are under

consideration. Denote now by

vet. i) .. number of elements
(18)

in u(t, i) Which are 1

and

vet, i; t, j) = number of rows

in which both u(t, i) and

u(t, j) have elements 1. (19)

Using these concepts we introduce the following

conditions of 'pseudo orthogonality' of the u(t, i)

vectors. We assume that

(20)

(where i. u a-:e universal constants) and that

v(t, i; t, j) = o(v(t, j»)

combinations of the variance components can not then

be unbiasedly estimated. We should stress however

i j with i 1,

and j • 1, ••• , c

... , c + 1 (21)

that other special cases of MINQUE (not necessarily

invariant to Cl) may also deserve particular attention.
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The relationship between (17) and (20) is obvious
misince 1: v(t, i) .. n so that (20) implies (17) ,..ith
t-1

U .. +and L .. 1 and the stronger condition (20)
" u

implies a uniform order of magnitude for all v(t, i)

in a given Ui . Since the columns of the Ui matrices



12

are orthogonal we have vet. i; T. i) - 0 for all
From (8), (17), (19), (21) and (24) we have for

pairs t T. For columns u(t. i). U(T. j) with
i j; i a 1, ••• , c + 1; j - 1, •••• c

mi mj
_ E Ev(t, i; T. j)2

t T

mi mj
kij - E E fu' (t, i) VeT. j)}2

tal T-l

(26)
2ai +2a j -2O(n )

mj
t vet. i; T, j)

mi mj
+ E t

t Tmi
a t o(v(t. i»

t

a +a -1 mi mj
+ O(n i j ) E E vet, i; T, j)

t T

i j condition (21) is satisfied if there is an

rows for which u(t. i) has elements lover a fraction

qmj of the mj columas of Uj where 0 '< q < 1 since the

fraction of vet. i) which gives rise to vet. i; T. j)
-1 -1 a j -1will be O(q mj ) - O(n ) and will tend to zero.

Next we must introduce conditions on the

asymptotically uniform distribution of the vet. i)

orthogonal standardized matrix X with elements xsr '

Denote by E x2 the sum of x2 over those rows
s(t.i) sr sr

for which u(t. i) has a 1 element then we assume

that
0..-1

E x2 - 0 (n 1. ) (23)
s(t.i) sr

Since E X;r - 1 and the number of terms in E is
s s (t, i)a ivet, i) - O(n ) condition (23) implies that

asymptotically the x2 have a uniform densitysr
X;r a O(n-1).

+ o(nQi+aj-\n+O(Q2-ai -aj ) O(n2ai +2a j -Z,
l+ai ai+aj l+a i.. o(n ) + O(n ) a o(n )

since a j < 1. Similarly we prove by symmetry that
l+a.

k a o(n J) for i .;. j c. From (25) and (26)ij
it is clear that for all large n the c x c matrix

Finally we place on record a consequence of

conditions (18) to (23): it follows from (3) using

(18), (19), (23) and Schwartz's inequality that

u'(t, i) VeT, j) -

kij for i. j a 1•••• , c is diagonal
lTaiwith diagonal coefficients cn while the

coefficients kC+1 • j are asymptotically equal to

o(n). Moreover it is obvious from (12) that

for all i-I, ••• , c + 1.

mi
+ E {u'(t, i) VeT, i)}2
t';''t'

(30)

(27)

(28)c -a .
+ E Q.(y) o(n 1.)
i-I 1.

1-'3
"2 {. min } (0c+1 en + o(n ) .. QC+1 y) +

-a -1
.. O(n i ){Ql.'(y) - }c+1

for i .. 1, ... , c •

or

Substituting (27) in the last equation we obtain

kc+l,c+l Cn. Using therefore the first c equations

of K&2 .. Q(y) we obtain that

"2 -1 c -ae1
0e+l .. O(n )Qc+l(y) + E Q.(Y) o(n ). (29)

i-I J.

Substituting (29) back in (27) we obtain
(25)

2-20..+40. -2
O(n 1. i)

, 20..-1r<' 1) + 0(. ' )
for t = 1', i a j

o + o(n2ai- 1) for t l' T, i .. j (24)
a +a -1

vet. i; 't. j) + O(n i j ) for i .;. j

1-o.i+2aiConst n +
1+o. i

mi
.. E {u'(t, i) vet, i)}2
tal

mi :llj
kii - E E (u'(t. i) VeT, i»2

t-1 T-1

We now turn to the asymptotic behavior of the kii
and kij • From (8), (17), (20), and (25) we have

that
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Equations (29) and (30) show that ;2 is estimable
from the Qi (y). They also show that ;2 is consistente provided we can show that

2a +2
Val' Qr(Y) - o(n I' )

m1
··t t {l: (v(t. i; s. r) vet, i; s. r)
t<T s

2a4 +2a -2 a +a -1
+ O(a. - I' ) + O(n 1 I' )(v(t. i; s, t)

2+ VeT. 1; s. r»}

orders of magnitude of

for I' - 1••••• c (31)

• lI1i
cii - 2hi .. t t {Qr(u(t. i) + U(T, i»

t<T=l

1Il.1
• t t {o(v(s. r» t VeT, i; s, r)
t<T s

2ai +ar-l (1i+ar -l+ O(n .. ) + O(n )(\J(t, i)

+ VeT. i»}2

mi a +a 2a +a -1
.. t t {o(n r i) + O(n i r )}2 (34)
t<T

2+2<1
.. o(n r)

as (34) except that a r .. 0 and that vet, i; s, c + 1)

VeT. i; s, c + 1) .. 0 since u(s, r) has a 1 only in

the sth row and either u(t. i) or U(T. i) have a

The case I' .;. i. r .. c ... 1 follows on the same lines

The treatment of the cij in J.N.K. Rao's

formula [33] follows on similar lines to the above

zero in that row. The order of magnitude of {} will
2a -1

therefore be 0 (n i ) and Cii will be2ai 2
O(n ) - o(n ).

proof for the cii if of the two alternatives i < j,

j < i in (21) the smaller ai' a j is selected for

majorisaeions. It remains to the terms

(32)

.,
- Qr(u(t, i» - Qr(U(T.
1111 1111'

.. 1: t { t 2(u(t. 1) I VeSt 1'»
t<1'=l 5-1

use formulas [221.· [321, [331 and [341 of J.N.K. Ra.o

(1968) with slightly altered notation. Formula [221

E Q;(Y) in the form

c+l
E(Qr(y)2) - 2 t t cijatai

i<j-l

Val' Qc+l(Y) - 0(n2)

since Cov Qi(Y)Qj(Y) • O(Var Var

In order to prove the first result in (31) we

c+l c+l
+ t ciiai + t
i-l i-l

1+ thwhere lJ4i .. E are the 4 lIIOments of the

elements bU of bi • Noting that

Var Qr (y)2 = E Qr (y)2 - the leading termse of c11 and c1j• given by J.N.K. Rao's equations [331

and [32] cancel and we are left to consider the

(35)

(36)

aI
I'

{ t (u' (t. 1) VeSt r»2}2
5-1

:Ill
h1 " t Q;(U(t. i»

t,.l

lIl.i
h1 " t {(u'(t, i) vet, 1»2

tool
ali

+ 1: (u'(t, i) v(s, 1»2}2
s';'t
1Il.. 2 1 1J. a1 .a.- 2

• 1: {O(n ) + O(n )}
t .. l

1+3ai 4a 5a -1
.. O(n ) + O(n i) + O( i )

For the case I' .. i we have using (24)

(33)

is of the

and hence
2ai +2• o(n )

x (U(T. i)' VeSt r»}2

of terms
6a.-2

so that {t}2 is O(n J. )
6al -2 4<liO(n ) - O(n )

(u(t. i)' v(s, i) J (uCT. i)' v(s. 1» is from (24)
a1 2a1-1 3a1-1of the order of magnitude O(n ) 0 (n ) • O(n ).

111
l'

For the remaining terms in t the product is of the
4a -2 s-l

O(n 1 ) but the number
l-aiorder O(n )
2-2a.• J.c11 .. O(n )

_Since ai < 1.

Consider first the case I' = i. We distinguish two

terms when s = t and s .. 1'. For those terms

Consider next the case I' ,. 1 and I' .;. c + 1.

We have froll1 (33) and (24)



a i +2a +1 2ai+2a 3ai +2a -1_ o(n r) + o(n r) + O(n r)

2+2a
.. o(n r).

Finally for r - c + 1, i + r we have

a -+u -1
+ O(n i r )t vet. i; s. r)

s
1-(1 2a +2 -2

+ O(n r) O(n i r )}2

mi ai-+u 2ai -+u -1_ t {o(n r) + O(n r )}2
tal

(40)
; _ (X'R-lx)-l (X'R-ly)

c aZ
where R - I + UiUi

D. i-l 0c+1

carried to convergence solutions of the ML equations are

reached. If no ML are performed a consistent e
estimator a of a can be computed from the generalized

efficient estimators of a2 and a. If the iteration is

Viy required in the computation of Qi(y).

The variance covariance matrix of a can likewise

least squares (MI.) equations.

It has been shown by Hemmerle and Hartley (1973) that (40)

can be computed directly from the Ui Ui and X'Ui matrices

without the inversion of the n lC n matrix H using their

so called W transformation. In fact the Wo matrix

(their equation (19» is essentially given by the Vi,Vi

matrices (see the above Scheiule 1) and by the contrasts

(.37)

for i - r + c + 1.

a -+u -1
(,,(t i· -) + O(n 1 r »2}2v , • lao

m
t r
s-l
m
t r o(v(s. r»v(t. i; s. r)
s-l

2a1+2 2I:'r+2
- o(n ) - o(n )

h -i

For the case i + r and r +c + 1

h -i
a -1 2

(v(t, i; s, r) + O(n i »2} (38)
be computed through the W transformation.

m. ai-1
- t 1 { t vet. i; s. r)2 + t vet, i; s, r) O(n )
tal S S

Now since vet, i; s, c + 1) is either 0 or 1 we have

that t vet, i; s, c + 1)2 .. t vet, i; s, c + 1)
s s

Acknowledgement

One of us (H.O.H.) wishes to acknowledge support

from the Army Research Office •

h ..
i

.. vet, i) so that
m..:: 2a -1
t 1 {O(n i) + O(n i )}2
t-l
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l-'.X 2a
.. O(n i) O(n i)

Since ;2 is unbiassed and Cov (;2) .. 0 as !1 ....

it follows that ;2 is consistent. Moreover if we replace

any negative ;1 by 0 the resulting statistic say ;1 has

a smaller mean square error and hence is also consistent.

The consistent estimator ;2 may serve as a starting

value for the iterative maximum likelihood estimation

procedure described by Hemmerle and Hartley (1973). Under

certain regularity conditions (not diseussed here) one

single cycle of the iteration will result in asymptotically
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MIXED MODEL ALGORITHMS FOR ESTIMATING
NON-HOMOGENEOUS VARIANCES

William J. Hemmerle and Brian W. Downs
University of Rhode Island

Abstract
The mixed analysis of variance model with non-homogeneous error vari-
ances is studied with respect to maximum likelihood and restricted
maximum likelihood estimation. Algorithms which obtain estimators of
the variance components and error variances are described.

e i - MVN(o.si I ), i = 1. "', k
and that the random vectors b,. b2' "', bc •el. e2' ,ek are mutually Independent.
vie let

e=

is an nxmi matrix of known fixed
numbers. mi n;

is a p vector of unknown con-
stants;

is an mi vector of independent
variables from N(O.a!).

Cl

I'
XlY1

Y2 X2
(2.2) y= X=

Yk Xk Uik ek
k

where is an ni vector with Z n = n.
- i=l i

We then assume that ei has the multivariate
normal distribution

2. THE MIXED A.O.V. MODEL WITH
UNEQUAL ERROR VARIANCES

1. INTRODUCTION

This paper considers the problem of
obtaining estimates of the parameters in the

mixed analysis of variance model when
the variances associated with the random
errors are unequal between groups of observa-
tions. Attention is focused uoon maximum
likelihood (ML) and restricted"maximum likeli-
hood (REML) estimators. We initially relate
the computations for the case of non-homoge-
neous variances to that of equal variances
through introducing a dummy parameter into the
computations. General implementation of ML
or REML mixed model algorithms is then con-
sidered briefly in section 4. The remainder
of the paper deals with special manifestations
of the non-homogeneous case--measuring in-
struments models in particular. It summarizes
algorithms which have been developed for these
special cases which are much more efficient
than the general approach given initially.

Following Hartley and Rao (6] and subse-
quent authors we write the general mixed
A.O.V. model as

(2.1)

where Y is an n vector of observations;

X is an nxp matrix of known fixed
numbers. p n;

(2.4)
c
Z m. = m
i=l ...
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and we maximize the log-likelihood A given
by

and also make certain rank assumotions with
respect to X and the Ui's. These rank as-
sumptions are discussed in Miller 112J and
also in Hemmerle and Downs [9] as they relate
to the non-homogeneous variance case.

From the model (2.1) and the assump-
tions related to it, the n vector y must
have the multivariate normal distribution
or likelihood function

<3.10 )
(3.11)

C3 .12)

i • 1,2, .. ·,k,

i • 1,2,"',c,

2A • - nln2T - nlnO' z - InlHI
- (y-Xa)'H-l(y-Xa)/O' z

C3 .1)

with variance-covariance matrix t given by

(2.6)
where D* is the diagonal matrix whose ith
diagonal block, DIi' is given by

(2.7) = SfIni , i = 1, 2, ... , k.

3. INTRODUCING A DUMMY PARAro1ETER

The matrix t given by (2.6) may be rep-
resented as

t = (siEIEi + .•• +

+ 2U U' + ••. + a 2U U')a l 1 1 c c c
where Ei is the nxni matrix

<3.2) = (0 I ... 10 IIn 101'" 10) ,
- 1

SUbject to these constraints. Hemmerle and
Hartley's W transformation [7) may be applied
to obtain the necessary partials or their ex-
pected values for the optimization method
used.

Clearly, we have overparametrized in in-
troducing the dummy parameter 0'2 and there is
an infinite number of solutions that yield
the same maximum value for A given by (3.12);
however, we need only find one of these solu-
tions in order to the
unique solution for the sl's and ai's via the
transformations (3.5) and (3.6).

In the cases we have examined, we have
found that different starting values for the
maximization algorithm produce different
final values for the 3i 's, Yi'S, and &7 The
latter, however, yielded the same value for
the log-likelihood (3.12) and transformed
into the same values for the and ai's.
Although.we have had success wIth this proce-
dure, we do not claim it is foolproof.
If of ,the sirs wants to converge to zero,
then 0'2 should also approach zero since the
constraint (3.10) implies

such that In 1s the ith sub-matrix and
i

i = 1,2, .. ·,k.

and factor out 0'2 (3.4) we obtain

I'le now introduce a "dummy" parameter 0'2 and
writ e (3.1) as

(3.4) ...

+O' 2U U'+"'+cr 2U U']111 c c c
If 'I'le then let

C3 .5)
C3 .6)

°4 = (s 7-a 2 ) / 0'2 , i = 1, 2 , ... ,k;
J.

Yi = ai/O'2, i 1,2,"',c;

The estimates of the variance components, theat, may of course converge to zero without& approaching zero. Several numerical ex-
amples using this procedure are given [9).

In order to obtain restricted maximum
likelihood (REML) estimators we would maxi-
mize Al where
(3.14) 2A l = -(n-p)ln2rr - (n-p)lnO' 2

-lnITHT' l-y'T' (THT' )-lTy/O' 2

and T is the same transformation
by Corbeil and Searle [2]. These authors
have shown how to obtain REML estimators for
the mixed model through use of the Wtrans-
formation. With the exception of matrix
initialization, the basic computations for
ML and REML are equivalent.

where 4. GENERAL IMPLEMENTATION

, ']+YIUIU1+"'+YcUcUc .
The structure of (3.7) and (3.8) in terms
of the new variables 0'2, 01, "', Ok, Yl,
"', Yc now conforms to the structure of the

for the general
model with eaual variances. The maxi-

mum likelihood estimators of these new varia-
bles are then constrained such that

C3. 8)

(3.9) &2 > 0,

We have seen that ML (or REML) esti-
mates for the model (2.1) unequal group
variances may be computed using an algorithm
constructed for the equal variance case. In
latter sections of this paper, we will con-
sider for important special mixed
models with non-homogeneous group variances
which are substantially more efficient than
the general treatment. At this point, how-
ever, we will highlight some of the studies
that have been conducted into the different
optimization options available for the gen-
. eral case. The data and computations which



for given values of the parameters, we first
form the matrix

.]VV V X IV y
x'v X'X X'y

ytV y'X y'y

W = [*0BOJ'o Bt Co 0

[O"'HO Eo1(4.6) 'if =0 B' Co)0

where

Let us partition Wo as

estimates. Similar saVings are apparently
not realized by BMDQ3V because of its par-
ticular formulation of the W transformation.

where Ao is the mxm matrix V'Vo Suppose
that the matrix W is similarly partitioned
such that

We conclude this section with a brief
review of the Cholesky W transformation
algorithm.

In computing the elements of the
(m+p+l)x(m+p+l) matrix

,
V'H-lV V'H-lX V'H-ly

W= XtH-lV XtH-lX X'H-ly

where Wll is an mxm matrix. We add D-l to
the upper left-hand corner of Wo to form

(4.1)

(4.2)

and then perform m sequential Cholesky steps
on (4.6) operating upon all of the m+p+l
rows and columns of this matriX. This re-
sults in the decomposition of Wo as

(4.4)

where Tll is upper triangular of order I:l;
Tll. Tl2' and Z WOUld overwrite (D-l+Ao ),
Bo ' and Co respectively in storage. The
following relationships may then be obtained.
(4.8) W'l = _ (D-lT-1'(D-IT-l ),·11' 11

support our conclusions are given in the M.S.
thesis of Downs [3].

All of these options utilize the W
transformation of Hemmerle and Hartley [7]
in computing 1st order partials and 2nd order
partials or expected values of 2nd order par-
tials. Jennrich and Sampson [lq have already
presented evidence that use of the full set
of partials (for the fixed effects and a Z as
well as the variance components) is apt to be
more efficient than the two-stage procedure
used in [7] to obtain estimates. We also
concluded that a one-stage process, with the
full partials, is usually more effective;
however, in the non-homogeneous variance case
we had fewer convergence related to
constraining the dummy variable a to being
non-negati1fe, using the two-stage procedure.
This quantity is then always evaluated as a
quadratic form which is non-negative.

The initial steps suggested in
(7] and implemented in seem to be a very
effective combination with ultimate Newton-
Raphson steps. Of particular interest to us
were different computational options With
resp.ect to non-negative constraints for the
variance estimators. During this researCh,
we were provided an initial version,BMDQ3V,
of Jennrich and Sampson's program BMDP3V
Which we used as a benchmark. Significantly,
the square root transformation suggested in
(6] and used in (7] produced disappointing
results for several examples Which were han-
dled very effectively with Jennrich and
Sampson's constraining procedures.

Basically, our studies were a testimo-
nial to the optimization method and con-
straining procedures used in the BMDP3V pro-
gram; however, it seems that the efficiency
of the latter program could be increased
were it to incorporate the Cholesky algo-
rithm for the W transformation developed by
Hemmerle and Lorens [8]. We have used this
algorithm along with the optimization method
and constraining procedures used in BMDP3V
and get equivalent results in essentially
the same number of iterations but do each
iteration faster. Forming the Wmatrix con-
sumes the lion's share of the computations
at each iterative step of maximiZing the
log-likelihood. The Cholesky algorithm ,iill
reduce the number of operations (multiplica-
tions/divisions) required to form Wby a
factor of 4 when m is large with respect to
p.

To confirm this in efficiency,
we conducted a few benchmark runs of the
maximization computations obtaining the exe-
cution times required solely for the itera-
tive steps; these times did not include the
time necessary for input, set-up, computa-
tion of ancillary statistics and output.
Table 1 summarizes the results and charac-
teristics of the three data sets used. The
times represent an average of 8 runs for
each data set. We allowed BMDQ3V to termi-
nate and then ran our program for the same
number of iterations. Comouted estimates
agreed to at least 6 digits. Our prograI:l
performs very well on data set 3 where 3
components are quickly estimated as being
near zero since sequential Cholesky steps
are not performed for near zero component
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5. PROPORTIONAL VARIANCES

When the variances proportional such

i = 1, 2, "', M.

(6.1) Yij = a i + + e ij
where: i = 1, 2, 3 and j - 1, 2, , N;
ai is fixed; Bj is with 2variancecomponent O{; and Var(eij) = si. We will
consider the for the more general
case when

6. SPECIAL MODELS: BALANCED DATA

In the remaining sections of this paper
we will concentrate on special cases of the
model (2.1) with non-homogeneous variances
that have received attention in the litera-
ture. In particular, we consider those
models studied by Grubbs [4J, [5J and others
for assessing the imprecision of measuring
instruments. We will summarize algorithms
which have been develooed in Hemmerle and
Downs [9 J and Downs [3 J: for both balanced
and unbalanced data, which capitalize upon
the structure of these models to provide
more efficient computation than the general
algorithm discussed in previous sections.

The model considered by Grubbs [5] in
using 3 instruments to make simultaneous
measurements on each of a series of N items
is the mixed model

where, in this case, ID-l+V'L-lVI would be a
of the W transformation.

In essence what this says is that if we
weight the observations, the rows of X, and
the rows of indicator variables in V by the
reciprocal of the square root of the corre-
sponding 2i before we process the data, we
will obtain the maximum likelihood
estimators for a and the Yits as well as for
the a vector. Later in the sequel, we will
use the relationships given in this section
in developing for cases when the
ti's are unknown.

(6.2)

form the
and then
iteration

i = 1, 2, "', k

W = Z22

(4.9)

that

(4.10)

(5.1)

In the eoual variance case we
matrix Wo given by (4.2) initially
apply the W transformation at each
to compute the forms

(5.2)

where V is given by (4.3) and 0 and L are
diagonal matrices whose ith diagonal blocks,
Dii and Lii, respectively, are given by

All of the calculations, including those for
(4.8), (4.9), and (4.10), may be done »in
place» using only the storage required for
the upper (or lower) triangular portion of

This algorithm to form Wis of the order
m /2 when m is large with respect to p. It
extends in a simple manner to handle non-
negative constraints, zero or near zero com-
ponents.

and the 2i's are known, the variance-covari-
ance matrix for the model (2.1) becomes

(5.5)

(5.3) Dii = Y;Im ' i = 1, 2, c,
- i

(5.4) Lit = 2i I n ' i = 1, 2, k,
ie with Yi defined as in C3. 6).

needed in the calculation of first order
partials, second order partials, or ex-
pected values of second order for
the optimization step. For the proportional
variance case we first form the matrix

and then proceed exactly as in the equal
variance case in applying the Wtransforma-
tion to obtain the forms (5.5) required for
the partials. In order to evaluate the log-
likelihood in the equal variance case, IHI
is evaluated as

(5.7) IHI = Inl·ID-l +7'·'1
IO-l+v'vl is a by-product of the W

In the orocortional
ance case we must compute IHI as

Application of the general non-homo-
geneous variances described in
sections 2 and 3 consists essentially of
augmenting the design matrix for the vari-
ance components with a partitioned identity
matrix. As a consequence, the nxn inverse
matrix H-l is in fact computed explicitly
even though the W transformation is applied.
Since n is the number of observations (n =
M'N for the model (6.1)), the computational
reauirements can become excessive. We in-
tend to exploit the balanced data structure
of the model (6.1), with the generalization
specified by (6.2), to aVvid explicit calcu-
lation of H-l for both balanced and un-
balanced data. Towards this end, we present
some relationships for the model (6.1) which
are easily confirmed.

Using the same as (5.1) and
(5.2), the variance-covariance matrix H may
be '....ritten as

J

V'L-lV V'r..-1X J.. y

X'L-lV X'L-IX X'L-1y
'T -lV -IX y'L-lyY '-' Y J..

• [(5.6)

(5.8)
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(6.12)

o

w* ..o
,

where

=

d- (y-Xa),

(SYMMETRIC)

(6.13)

a (N M M )li a 2 _:!1 l: l: d a l: d a
2 ij a2 k""l 1=1 ik tim=l mk mj

The concept of the balanced algorithm is very
simple. We appeal to the case of proportional
variances treated in section 5 and consider
the ,ti's alj! fixed ...in obtaining new approxima-
tions for and Yl (in the unbalanced case
to follow we must also obtain new approxima-
tions for a). The matrix given by (6.12)
is easily formed for a given set of ti's and
the W transformation may then be utilized,

in obtaining the new values for
and Yl' AIn order to obtain new approximations
for the ii's, for use in the next iteration,
we initially compute the aii's of H-l given
by (6.6) and store these coefficients.
These coefficients are then utilized in com-
puting the 1st order ii partials as well as
the 2nd order partials (or expected values
of these 2nd order partials) for a Newton-
Raphson step (or Fisher scoring steR) to im-
prove the ii approximations. Soth and 91
are included in the 1i partials.

Due to the structure of H-l given by
(6.4), these partials are easily computed.
If we let -

for ML estimation we have that:

(6.14) - • tt dkj • ki) '}-

(6.15)

1;'( a 2 ).) N 2aiiaR. J = - 2 aij

where aij is given by (6.6) .

As an example of the balanced algo-
rithm, we use the data given in Grubbs [5J,
in which he records the measurements taken
by three velocity chronographs on each of
twelve successive rounds fired from a 155
gun. The model is (6.1) with M=3 and N=12.
Using his estimation procedure, Grubbs ob-
tains the values .0065, .2186, and
2.0164 as estimates of sl' S2, 53' and ai,
respectively. A summary of our computa-
tions to obtain the maximum likelihood

(6.16)

i=1,2,'" ,M.

u =

A 1 N
(Xi = iT l:.. j=l -

(6.11)

(6.9) H-1 ""

r
\

-y1,t3IN I

. -y1i 3IN -Y1R.1Ix J;l -y1'2"" -Y,'1r" (y,','Y,'2",'2)r"
where

q = U(l+VY1).
.J.

For example, when M = 3 the variance-
covariance matrix (6.3) has as its inverse

(6.5)

The inverse of (6.3), H-l , 1s similarly com-
posed of blocks of NxN diagonal matrices.
Let us denote the ijth block of H-l corre-
sponding to the ijth block of H by

(6.4) (ijth block of H-l ) = aijIN•

Then if we let

(6.8)

the aij's in (6.4) are given by

(6.6) a ij " 0ij/,ti-Yl/(l+V'Yl),ti,tj'

where 013 1s the Kronecker delta, and the
determinant of (6.3) may be obtained as

(6.7) IHI = qN

An additional relationship which we will use
in what follows is the explicit determina-
tion of W6 given by (5.6) for the model (6.1).
This matrix is given by

(6.10) q = YIR.IR.2+YlilZ3+Yl12i3+ilR.2J.3

Using the solution given by (6.4)
through (6.6) for H-l, one can show that the
maximum likelihood estimators for the ai's
in (6.1) are the analysis of variance esti-
mators
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(6.17)

The maximum likelihood 1i partials, for the
observed data are then given by

y •

x •

H • ,

where Yl is a q vector corresponding to q
missing observations and Y2 is an (n-q)
vector of observed data. In a similar
ner we partition

REML estimators were also computed for
the same set of data used for the ML example.
The values .0144, .0438,
were obtained as estimates or." sl, s2' s3' andof respectively.
7. SPECIAL MODELS: UNBALANCED DATA

Although the examples of the model (6.1)
appearing in the literature normally deal
with balanced data. some provision should
realistically be made for missing data values.
Suppose that, for notational simplicity, we
partition the y vector for the model (6.1)
such that

(7.1)

(7.2)

(7.4)

We have also had success in modifying
the balanced li algorithm to efficiently
compute REML estimators. The estimates
for the li's are calculated by using equa-
tions analogous to (6.14) to (6.16). With
Al given by (3.14) these equations are

(N 1) 1 { N ( M ) 2}- -5- E t dk,aki •
- - 20 2 j=l k=l

estimators for these quantities is given in
Table 2 for the set of starting values tl=l,
12=1, 13=1, and Yl=lOO.

Notice that we work with the ii's and
0 2 in doing the calculations and have the
same overparametrization here as in the
general algorithm.
verged to the same values for sl. s2. s3.
and a variety of different starting
values. We also used the general computer
algorithm discussed earlier to confirm the
final values given in Table 2 to 12 signifi-
cant digits of agreement in the log-likeli-
hood. T6 improve the precision of our compu-
tations we subtracted the mean from each of
the Yij values prior to processing the data.
The computations were then performed using
double precision arithmetic (as were all of
the computations for this paper).

For this example, the balanced 1i algo-
rithm when carefully implemented requires
less than 3% of the amount of array storage
used by the general algorithm. Furthermore,
it reqUires less than 2% of the amount of
computer time used by the general algoritam
to achieve the same degree of precision in
the results.

(6.18)

(6.19) I a2 Al ) (N-l) 2
E \<H.

i
;Hj =- -r a ij ,

where d is again given by (6.13) with a re-
placed by (6.11).

Also, the determinant ITHT'I which is
found in Al can be evaluated via

(6.20) ITHT'I =

IN" } (TLT' )-'10, 1

where the determinant on the right-hand side
of (6.20) is a by-product of the W transforma-

• tion.

!.1-1and it is well known that we may
in (7.4) in terms of elements of H-L as-

For we use
the relationshio (7.5) to obtain from
the balanced H-l which we but,
we do this in a way that ties in nicely with
the balanced 1.i algorithm and, for a small
amount of missing data, reqUires
ly (l/N)th of the storage reqUired by the
general algorithm in containing Fur-
thermore, the amount of computation is re-
duced substantially.

we store the N diagonal ele-
ments of the ijth diagonal blocks of H-l in
row major ordering for i j, in a linear

as
N N N

I " • r---.
a... l ,··· ,all' a'2"" ,a'2"" ..'"
11 block 12 bleck block
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TAELE 1

Summary of Maximization Execution Times1 and Data Set Characteristics.

Execution Time (sees.) No. of
Data Set p m c Steps

BMDQ3V Cholesky WTrans.

1 3 8 2 1.63 .77 9
2 3 44 4 59.57 19.19 9
3 1 61 8 173.94 33.69 10

Data 1: Oven Data, Bowker and Lieberman [I]. p. 362.
Data 2: Turnip Green Data, Snedecor [131. p. 365.
Data 3: Swine Data, Snedecor U3l, p. 360.

I The times for data set 1 are from an IBM 370/155. The times for data
sets 2 and 3 are from an ITEL Advanced System/5.

TAELE 2

Summary of Calculations for the Balanced Velocity Chronograph Data

Fixed Effects
" " "c£1 (1,2 "3

792.4583333 793.0666666 792.3416666

Step &2 ... l i !Yl 1 2 3

0 .0628182294 100.00000000 1.0000000000 1.0000000000 1.000000000

** , .0465849312 42.02936857 .2895803462 .6992443331 4.621304986.1.

* 2 .0466757995 37.30136948 .3228890941 .8360312287 4.279427970

3 .0467126746 37.88541045 .2879708705 .8592276851 4.262282065

6 .0467163814 37.96310735 .2843958388 .8612274862 4.260314670

8 .0467163814 37.96311035 .2843958G36 .8612274782 4.260314499

10 .0467163814 37.96311035 .2843958036 .3612274782 4.260314499

Step

0 6.281822936 .0628182294 .0628182294 .0628182294 -35.509269302009

** 1 1. 957133243 .0134845548 .0325609062 .2151949916 -27.712724236744

* 2 1. 741071242 .0150711066 .0390224258 .1997457213 -27.595715027062

3 1. 769728850 .0134518896 .0401368232 .1991025951 -27.593245080587

6 1. 773499000 .0132859445 .0402334317 .1990264848 -27.593217095291

8 1. 773499142 .0132859428 .0402334313 .1990264770 -27.593217095291 e10 1.773499142 .0132859428 .0402334313 .1990264770 -27.593217095291

(**' (*) Fisher scoring: (** ) for Y1 and the l1's; (*) for the Zl's only) ,
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where the aij'S are given by (6.6). We then
modify these values in accordance with the
missing data in the following manner.

Consider first o.ne value, say
Yij' In order to obtain H22 we need only
perform an in place Gauss-Jordan reduction
or sweep of H-1 given by (6.4), pivoting on
the jth diagonal element in the ith diagonal
block of H-1 (iith block of (1.6». Only
those elements in the jth position in each
diagonal block are affected (changed) by
this reduction. If we then zero out the jth
diagonal element in the ikth and kith blocks
of (1.6) for kml,"',i and kmi+l ···,M,
respectively, what remains is arrayed in
storage corresponding to the observed data;
that is, the row and column corresponding
to the missing observation have been re-
placed by zeroes. This process may be re-
peated for each additional missing value,
which results in the formation of Com-
puted in the positions corresponding to the
observed data and zeroes elsewhere.

We also store zerOeS in the y vector
corresponding to the missing data and modi-
fy the appropriate elements of to reflect
the different frequencies. That is, if Yij
is the only missing value, would be modi-
fied so that the value of the jth diagonal
element of uiL-lUI is t the jith ele-

, k#i
ment of UIL-IX is 0, and the ith diagonal
element of X'L-IX is Using the
above configurations of H22 and the y vec-
tor, the 2i partials or their expected
values can then be easily computed in an
orde11y manner. For example, the quantity

in (7.4) is obtained by sum-
ming fhe N elements which have overwritten
the iith block of (7.6); the quantity

applicable to 2nd
order t i partlals or their expected values,is obtained by summing the squares of the N
elements which have overwritten the ijth
block of (7.6). An example of this ML miss-
ing data algorithm is given in [9].

For unbalanced data, the variance-
covariance matrix of the REML estimators no
longer has the sparse structure of H22 that
allowed for its compacted storage and logi-
cal manipUlation. We have been unsuccess-
fUl in designing an efficient missing data
algorithm these estimators.
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Some ProbJ.ems Faced in Making a" Variance Component
" *Algorithm into a General Mixed Model Program

Robert I. Jennrich and PauJ. F. Sampson

University of California at Los Angeles

ABSTRACT

Three algorithmic problems encountered in producing a general mixed model anal-
ysis of variance and covariance program EMDP3Vfrom a general Newton-Raphson algor-
ithm for estimating mean and variance components are discussed. The first concerns
the .implementation of a simple switch to allow the program to perform both maximum
likelihood and restricted maximum likelihood a.naJ.yses. The second involves a. resolu-
tion of the sum to zero problem for interaction terms in the mixed model. The third
involves a method of dealing explicitly with boundary constraints for the variance
components and more generally with constrained optimiza.tion.
* .This research was supported in part by NationaJ. Institutes of Health Grant RR-3.

pra.ctica.l advantage to program. developers who are weU
1. mTRODUC'rION

Severa.l years ago the authors proposed a. Newton-

Eaphson aJ.gorithm (6] for estimating mean and variance

cClllPonents for a genera.l a.na.lysis of variance

model. Since then the a.lgorithm has been developed in-

to a statisticaJ. program. EMDP3V whicil is part of the

EMDP series (7]. We will discuss some of the aJ.gorith-

mic problems encountered in making a ba.sic a.lgorithm

into a program..

Xhe first of these involves the ML (maxilllUm

likelihood) versus RE!<1t (restricted ma.xilllUm. likelihood

(1]) deba.te. On the one hand asymptotiC considerations

and some silllUlation studies (2] and (10 J seem to suggest
that 1<1t estimates, particul.arly of variance cOlllPon-

ents, may be superior to REML estimates. There are ar-

guments on the other side, however, perhaps the most

persuasive being Searle I s conjecture (1 J that in the
baJ.anced case REl·1L and &'fOyA (a.naJ.ysis of 'Tariance)

estimates are identicaJ.. This represents a distinct
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aliare of the problems that arise when results vary frcm

program. to program.. Eather than attempti::lg ;,... resolve

the ML-BEML issue, we did what software developers

usually do when they don 't know what to do. We made

the choice a user option. .Ugorithmically this is qUite

easy to do by means of switch which converts

a. Newton-Eaphson ML algorithm. into a

REML algorithm. To our "nowledge a !{ewton-Raphson al-

gorithm for REM!. estimation has not been discussed else-

where.

The second problem we will discuss is the "mixed

model sum to zero" problem. :.1any authors (3], (4 J, [6],
e .g ., have been willing to model the interaction com-

ponents in a two-way mi."'<:ed model as a set of uncorre-

lated variables with constant vuiance while others,

particularly Kempthcrne [8], argue rather convincingly

that from sampling ccnsiderations these cOlllPonents

should sum to zero over the fixed imex and hence i:le

correlated. the deba.te here llla¥ be greater



interest than the issue, it neverthe.less poses a prob-

lem to the program deve.loper. TIle "make it a user op-e tion" solution works again a.s soon as one fims a con-

venient parameterization for the "sum to zero" model in

where

terms of the fixed a.lld random coefficients model. We Let

propose such a parameterization.
A = log fey) (4)

TIle third a.lld final problem addressed concerns the

handling of boundary constraints. In the present con-

text, this is the constraint that proper variance com-

ponents are non-negative. In deve.loping algorithms we

aDd others have been a little cavalier about this prob-

lem; more or less setting it aside whlle more basic

denote the log-likelihood, let

denote the entire set of variance components, let

( 5)

(6)

issues were addressed. In a production program we lleed be the design matrices for all of the raDdom components

except e in the basic model (1), and finally letto be more ca.re:fUl.. Some (e.g., Hemmerle a.lld Hartley J

(4]) have dealt '/lith boum&r'J constraints by choosing

a. parameterization which elimina.tes them. others, like

ourselves (6], have dealt with them explicitly. The
C=

y'X y'U

X,y)
U'y
y'y

(7)

latter approach which we ',o/ill discuss here is fairlye simple aDd seems to be preferable. Moreover, the

techniques generalize easily to other of

constrained optimiza.tion in sta.tistical computing.

2. THE ML-mlL SWITCH

Consider the staDdard fixed aDd random coerfi-

cients model

denote a partitioned matrix containing the indicated sums of

cross products. The log-likelihood A is clearly a.

function or y, x, U, a, aDd 9. ActuallY, however,

its dependence on the "data." U,X, and Y is omy

through C. More precis.ely we have the

ML Sufficiency TIleorem: The log-likelihood A. is a
function of a, S, C, and n.

(1) From (2) and (4)

where 6.2 is a diagonal matrix with diagonal elements

where

Y is a vector of n observations

X is a known n by p matri."l:

a is a p-vector of unknown parameters

Ui is a known n by qi matrix

b i is a qi-vector or random values from

h( 0

e is an n-vector of random values from
2h(O,O" ).

The random vectors bl , ... ,bc ' aDd e are assumed

eindepemeIIt. It !ollows at once that y has a multi-

variate normal density
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A = - %log 21T - log Iz: I
_;h (y _ _ •
2

From (3) and (6)

2 2O"l'''''O"c' From- (9) and the Bartlett identity,

= 0"-21 _ (j-4u6. (I +6.U'U6.fl6. U'.

From (5), (7), and (10) it is clear that

(:I - Xa)'I;-l(y - Xa)

is a function of a, 9, and C. From (9)

(8)

(10 )

(ll)



(12)

which is clearly a function of e, c, and n. From

This gua.ramees that its inverse is def1ned aJld

its deterlllina.nt is differeIIt from zero.

(8), (11), and (12), A is a function of a, e, c, Letting

and n. t .. log feY), (18)

We may sUlllllla.rize the ML Slfficiency Theorem by

writing

A.. L(a,e,C,n).

RD!L Sufficiency Theorem: The REML log-likelihood t
is a function of e, 0, and n given by

One consequence of the theorem in the preseIIt context

is that algoritbms, like NR which

llIAXimize A with respect to a and e mst have an

implemeIItation which computE!s the length n inner

products found 1n C once and for all; not requL"'ing

we have the

c.. (20)

recomputa.tion t'rom iteration to iteration. Our NR

The function L does not accidently have a tilda miss-

algorithm uses such an implemeIItation, which is better

known as the W-transform technology of Hemmerle and

t .. L(o,e,O,n). (21)

Hartley [4 J. A similar theorem a.pplies to REML esti- ing. It is precisely the same function whose existence

mation to which we now turn.

Let y.X denote the vector of residuals result-

iDg trom least squares regression of y on X. A

simple definition of REML estimation is that it :8

is asserted in the ML Sufficiency Theorem. Since a

proof of the REML theorem is almost line for line thee

same as that for the H1 theorem, it will not be given

here. The illlPortance of the REML theorem in the

maximum. likelihood estimation based on present context is that algorithms which one has pro-

y .. y.X
ra.ther than on y itself. The REML model is

(14) duced to compute A and its derivatives may al.so be

used to compute t and its derivatives by simply re-

placing a, 0, and n by 0, 0, and n. Since 0 a.s

where u .. U • X for r" 1,. •• ,cr r and

(15)

e .. e.X.

given by (20) can be obtained from C as gi'ren by (7)

by Gauss-Jordan pivoting [5 J on the diagonal elements of
The covariance matrix for Y is in general. singular X'X and then setting the corresponding rows and col-

and has the form UIlInS to zero, it is a ver,[ simple matter to implement

ML algorithm.

iance component estimation. A program developer, of

This completes the storJ with regard to REML va,r-

(22)

if one has al.ready implemented the corresponding NR-

the NR-REML algorithm:
-1

(.. - cia de de

(16)

where I is the perpendicular projection onto the
J.orthogc:aaJ. complemeIIt, (X) , of the column space of

X. While y does not in general. have a density on

Euclidean n-space, it dces have a well defined density

with respect to Lebesgue measure on given by

course, also needs to consider REML estimation of a

where Xl.. n'" p and t is to be viewed as a non-

singular linear transformation from onto
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and the estimation of standard errors for aJ.l. estima.tes •

These considerations require further theorems, but only



minor program lIlOdti'ications given that one is be-

gillniIlg with So complete NR - ML pro g I' am.e Without goiIlg into details we will simply summarize

the lIlCIdti'ications required for a complete Mr.-REM!.

switch:

(i) Replace (a,C,n) by (O,e,n) and Nli iterate

-to convergence. This gives e.

(11) Make one Fisher scoriIlg step starticg at

(a,e) = (O,e). This gives

for performance reasons, prefer to work directly with
2the variance components (1i rather than the relative

2variances 'Yi. When the REML or ML estimate o£

(12 is small, the relative variance formulation seems

to work poorJ.y'.

3. .THE MIXED MODEL SU·! TO ZERO oFrION

An example should be sufficient here. Consider

a cla.ssicaJ. mixed model of the form

,.." - .",..,..-a, cova, cove. (24)

/'., -and cove denote iJ:l1'ormation theory estimates o£

their sampliIlg covariance matrices.

Ignore the scoriIlg update for e.

Here a and a denote REML estimates and ......... -cova

where i =l,. .. ,I; j =1,. .. ,.1; and It =1, ... ,Kij •
Here the ifijk denote observations , v and the a i
denote fixed components, and the b j 1 Cij , and eijk
denote random components. It is customary to assume

Since there is to our knowledge only one pubJ.ished

algorithm for REML estima.tion in the context of the

general model (1), tha.t of Corbeil and Searle (1] 1 we

should point out how the algorithm just discussed ise related to theirs. The Corbeil and Searle algorithm

is based on a. slightly different parameterization. They

use a and (12 a: we have, but in place of the var-

iance components (1; they use relative variance com-

that

(25)

for all i, j, and It. As mentioned earlier it is

also frequently assumed that the

for all i, j, and It, and that quantities

have homogeneous variances, i.e.,

ponents 2
var e:' jk = rr (27)

i=l, ••• ,c. for all i, j, and It. The U sum to zero U debate is

Their algorithm has two phases,
2phase and So rr phase. During

2
So 'Y =

the 'Y2

focused on the interaction term cij • Proponents of

the sum to zero position, the authors,

held fixed s.nd a 1m step is applied to t viewed as argue that sampling considera.tions it is natural

fixed and t is maximized with respect to

a function of 2
'Y' 1ltring the (J'- phase, l is held

2(1. This

to assume that

(28)

produces a. see-sa.w algorithm similar to that used by

Hemmerle and Hartley [4 j for ML estimation. U'Ilf'or-

tunately, the see-saw destroys the quadratic converg-

ence rate one would have obtained if Nli steps were

applied to all of the parameters in t as we have

done. The choice of parameterizing in terms of var-e iance components or relative variance components

seems to be of seconda.r'J importance. We have tried
J.

both and, primarilY for conceptual reasons and partly
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Le., that the cij sum to zero over the ufi.."'l:ed U

index i. The hOlllOgeneity of variance assumption for

the cij then takes the form

(30 )

for all i, i', and j. All other lIlOdel assumptions

are a.s before. The only algorithmic problem with the



sum to zero is that under it (24) cannot be for i =1, .. . ,c. One resolution of this is

directly. In our experience both a.pproaches work,

constraints (33) are automatical.ly satisfied. Since

the log-likelihoods A and t are functions of i
2and the 0"i ' however, i t natural. to write al.-

in terms of these reduced parameters, i.e.,

the squares, and deal with the constraints (33')

as simply formulated as a fixed and coefficients

model of the (1) as it can when the, cij are

assumed uncorrelated. This is because correlated cij
cannot play the role of random coefficients in (1). A

simple chaIlge of variable, however, will do the trick.

Let

(1)

to choose 0" and the O"i

rather than 0"2 the

as the basic parameters

When this is done the

(1,2, • .. ,I}, 5 jS is the

c are uncorrelatedrs

no!llial. of degree r on

Kronecker delta., and the

theoretical. reason is depicted in the following
where p(I) is the vaJ.ue a.trs s of the orthogonal poly- but the latter approach works better.

figure:

One possible

"J'ariables sa:t:l.sf'ying

E c 0,rs

for al.l r and s. Under these conditions it is easy
I

to show that the cij defined by (31) satisfy the

to zero conditions (28), (29), and (30). Moreover, the

'. ([2
2. A=C.

crs may be used as when forrnuJ..at-

ing (24) in ot' the general. fixed and co-

efficients model (1). The orthogonal. polynolllial.s

may be replaced by any orthonormal set of functions on

the- index vaJ.ues (1, .•• ,I} which sum to zero over

these val.ues. CJ.early, straightfor'>lard generalizations

of ( 31) may be used to deal. '>lith mere complex manifesta-

tiona of the to zero In a general. setting

When the unconstrained maxilllA of A or lie exact-

1:y on a boundary and these leg-likelihoods are viewed

as functions of the J., their Hessians and informs.-...
tion IllAtrices llIUst be singular. As the figure sug-

gests, however, these matrices may be well behaved

this involves analysis of variance terms with when A and ;\ are viewed as functions of the

crossed and nested which may be fixed or ran-

The should sum to zero over all indices

which are fL"i:ed and crossed and s h 0 u 1 d satisfy

homcgeneity of variance assumptions analogous to (.29)

and (30). All of this may be acccmplished through

parameterizations similar to (31).

4. EOUlIDARY cONsrRAnlTS

As observed in the introduction, the boundary

constraint in the pre sent context concerns the

CJ.early Hessians and matrices

can cause al.gorithmic problems as can nearly siIl€;ular

Hessians and matrices un-

constrained maxima which lie near boundsries.

Independent of these issues, the ability to deal.

explicitly with constraints, particularly coordinate

inequality constraints, clearly represents an import-

ant and fundamental. technology in statistical ccmput-

ihg which probably has received less attention than

it deserves statistical programmers.
that

2
O"i 0 and 20" 0
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The ba.sic problem here is



We have stated it as a lIlinimization rather than a

min: Q( e)

giwn: 9:: o.

llIB.Ximization problem because this is customary in the

programming literature as well as IIIOst of the statist-

ical literature outside of maximum likelihood estima-

tion. The basic idea of the algorithm .we are about

to discuss is depicted in the figure below:

One prove that such an algorithm will converge to

a local constrained lIlinimum e if the initial value
is close enough to if the Hessian of Q,(e) exists

and is positive definite at § and if the quadratic

programming and partial step sub-algorithms have

appropriate properties (see, e.g., [9]). Of the

QUadratic programing algorithm we will demand that

9+68 be feasible, that (dQ/da)6.9<O when 8 is

contiIlUous function of 9 • Of the partial step algor-

i tbm we demand tha.t it reduce Q( 9) by at least

5 • (dQ/da)6 e for some fixed 5 > 0 whenever

(dQ/da)6 9 7" O. Here 5 may depend on the function

Q(a) but not on 9 itself.

(iii) Replace 9 by e+cx6. 9 and go to (i).

not a local constrained lIlinimUlll, and that t; 9 be aAeQ=c

The ,difficult part is producing continuous feas-

ible directions 6. 9. For this we introdl:ce an asseci-

The algorithm will begin with a feasible value aO'
When active constraints are involved it will typically

move to a boundary and then search along the boundary

untu a constrained llIiIlimUlll a is found. Simple

boundary projection (replacing negative components of

e by zero whenever they occur) wUl not work

here. We mention this oIlly because there exist examples·

in the variance components literature where it has

been used and has led to .the publication of results

which do not represent constrained maxima. While ".-lith

ated qUadratic function

*' l'Q (6.9)

where b = dQ/de and A is positive dei'inite. The

choice of A depends on the basic algorithm employed.

In our previous discussion, e.g., A lIlight be minus

the Hessian of A when working with the NR algor-

ithm, or the infcrmation :natrix J(9) when implement-

ing the Fisher scoring algorithm. Given the associ-

ated qUadra.tic :'unction (35), one me.y produce a. feas-

more ce.reful formulation boUndary projection can be ible c e by solving the associated quadratic 1'1"0-

made to work, it does not seem to lead to algorithms gramming problem

as simple as those of the form we will discuss. *mn: Q (6. 9)
We begin with the follOWing (36)

given: 6 e - 9.

Basic Algorithm:

(i) Given a feasible value 9 use the Quadratic

Programmi.::g Algorithm below to find So feas-

This will give a Co 9 with all of the properties de-

manded aboYe provided dQ/d9 and A are continu·ous

functions of 9.
ible direction 6 e• If 6 e = 0, stop.

(ii) Use the Pe.rtial step Algorithai below to find
The natural tabloid to consider in conjunction

with the associated quadratic programming problem

an cx € [0,1] such that the step e leads
to a reduction in Q(e).

(36) is displayed on the left below:
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One can show that it a is feasible and A is

positive definite,the Programming Algorithm

will converge to a solution e. a of the associated

vector u be diVided into parts ul and u2
correspoIlding to the pivoted and unpivoted aiagonals

Let the tabloia on the right be the result of a.ppJ.ying

Gauss-Jordan pivots [5] to the aiagonal elements of A

correspoIlding to those components ai of a which

are not critical, Le., not equal to zero. Let the

of A respectively.

It follows f'rolll the El.1hI:1-Tucker theory [9 J that
if = 0 and u2 =:. 0, then e. a = O' is a solution

to the associated quadratic problem. The following
-.J

algorithm fiIlds a e. a such that e. a = 0 is such a

solution to the problem

... ,-j '*' -..JlII:!.n: a) ,. Q (e. a +e. a)
"..,j

given: e.a:::. -(e +e.e).
( 38)

quadratic programming problem (36) in a finite number

of steps. WhiLe the a.l8orithlll at first look a

little complicated it really represents a fairly minor

lIlOdif1cation to the pivoting operations one woula per-

fOrlll in the unconstrainea case. UIlder normal opera-

tion, after the first few steps of the Easic Algorithlll

a will generalJ.y lie on the appropriate boundary and

the steps of the QUadratic Programming Algorithlll will

be executea only OIlCe. Returns to step (11) are m.ade

only when a bouIldary chaz:ge is required.

The partial stepping a.l8orithlll will require the

quantity e.Q = (dQ/da)e.a. This be obtained frolll

the lower right hand corner of the tabloid used in the

Programming Algorithm at the time of exit

This implies that e. a itself is a solution to the

original associated qUadratic programming problem

frolll the algorithm.

The Partial stet) .Ugcr:!.thm :

(36) • (i) Find the largest a in the sequeIlCe

a = l, 1/2, 1/4,... . such that

(a) Find the largest a e [0,1 J such that

The Quadratic Progre.mmiIlll Algonthm:

(i) Fom the tabloid on the left in (37). Let

C be the set of subscripts i for which ai = O.

For all i i C perforlll a Gauss-Jordan pivot on the

correspoIldir.g diagonal elelllent of the tabloid. Set
Tha.t such an ct exists follows from the fact that the

Q( e + ae. a) < Q( e) + at:, QAo

(ii) stop.

it is sufficient to assume that the A used in the

'*' *and minimizes Q (e. a) and frolll the fact that Q (60 a)

and have the same gradient a.t 60a = O.

In order to guarantee that the a produced by the

Partial step Algorithm are bouIlded below by sOllle a> 0,

Quadratic Programming Algorithlll are bounded awa:y from

6 a in the call from the l3asic Algorithm is nonzero

singularity; to. ass u me , e.;., t hat the

smallest eigen-value of A is greater than some fixed

positive value which depend on the fUnction Q(9)

but not on e itself.

Clearly the number 10 in the Partial step Al-

gorithm is arbitrary. Any value greater than or
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where ui denotes the i-th element in the last

column of the tabloid.

(iii) For each i C, replace e. ai by e. ai +(lUi
and u. by u. -011i and pivot all newly critical diagonalsl J.

of the tabloid, Le., all for which ai +e.ei =0, i i. C.
add the correspoIlding i:ldices to C.

(iv) If ui 0 for sOllle i C, go to (ii).

(v) If u. > 0 for some i e C pivot one
J.

correspoIlding diagonal dement of the tabloid a.Ild go to

(ii). Otherwise stop.



to 1 wID do. A large value like 10 increases

the chances that one wID use the complete step t. e
in the Basic Algorithlll and thus elilll:inate the expense

of computiIlg Q(e + at. e) for more than one value of

a. Clearly the step-halviIlg sequence of values

a = 1,1/2,1/4, ... , is also arbitrary. It lIlaiY' be re-

placed by some other sequence, or a se-

quence based on an analytic, e.g., qUadratic, search.

This completes our discussion of handliIlg boundary

cormtraints of the form e z: O. The techniques lIlaiY' be

easily generalized to handle coordinate inequality con-

straints of the form

.(40)

and ·,.,ith some lIl.Odif'ication of the tabloid (37), to

handle equality and inequality constraints of the form
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A SUMMARY OF RECENTLY DEVEIJ:):E'ED METHODS OF
ESTJ:MA'l!ING VARIANCE COMPONENTS*

S. R.
Biometrics Unit, Cornell University

Ithaca., New York

Abstra.ct

The recently methods of estimating variance components, namely ML,
BEML, KmQUE, I-MINQUE and MtVQUE are presented in S'l1.lIIIlla.l"'J form in a. unii'orm no-
tation. Relationships between the methods are show"D.. The "mixed model equations If
and the dispersion-mean are also given. .

* Pa.per No; BU'-338 in the Biometrics Unit, Cornell University.

1. !1lTB.OroCTION

Variance components est1l:aatlcn 'I/'as, for several
decades, the poor stel)-chUd of analysis of variance,
but in recent yee.r:s the subject has generated qUite
'I/'idespread intOerest. Un"!:il ten years age, methods of·
estimation were. based on equating sums of squares to
their expected values, as first proposed by Daniels
[l939j and Winsor and Clarke [1.940J. For balanced
data (having equal. numbers of observatioIl,S in the sub-
classes), this method sums of squares associ-
ated with traditional. analysis of variance; its use in
3. variety of :zr:)dels was given in .'l.nde:-son and Bancroft
[1952], and usei'u.l minilllUllI vari3.nce properties were
derived by Graybill and co-woIil:ers in the late 1950 's
and early 1960's, e.g., Graybill and Wortham [1956J
and Graybill and HUltquist [1961J. For unbalanced
data (having unequal numbers or observations in the
subclasses, possibly with SOllIe or !ji2lly empty sub-
classes), Henderson (1953] is a landJl:erk paper with
its three methods or estiJl:a.tion based on the same
principle, equating quadratic foI'lllS to their
values. SUcceed1J::l,g :rears saw e:cpansion and expla-
nation of these methods together with of
tl::.ei:' properties, but were no really new de-
velopments until E:er"C1ey and Bao [1967] described

likelihood procedures - based, as is so often
the case, on norms.l.i.ty assumptions. Since then there
has been a whole host of new methods, not only MI., but
BEML, MINQUE, I-MINQUE, and MIVQ.UE - and doubtless
some other alphabetic horrors also. In addition there
are peripheral topics tangential compu"Ci:lg tech-
niques - such as Henderson I s MME 's (mjxed :zr:)del equa-
tions) and the Dispersion-mean JlX)del suggested by

[1976J. AI; foundation for all this there
is a large corpus or !llatri-'"( algebra, there a:-e
numerous notations t1:a.t look sur!'iciently a.1.ike to add
the traditional amJunt of cO!l.i.""'Usion and, hanging li.lte
a thunder cloud over everythillg, are nu:r.erical and
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computing prC'blems involved ·I/'ith very large data sets,
sparse matrices, and the solving of llOn-linear equa.-
tiotlS subject to non-linear (non-llegativit"or) ;:on-
straints.

it would take a tome: to deal thoroUgh-
ly with all three aspects of the SUbject: description
of each method, details of the underlying a.lgebra, and
the computing a.lgorithms. Attention is confilled here
to just one th1ng: description of the methods; and to
avoid excessive length, the is given
somewhat in note :t'or.n. Tole prime purpose is to give,
i:l SUIII:Iar"] for.n, the casic rationale and methodology
for each of the estiIt!atio::l procedures considered; and
to do this ,vith a nota.tion alld to show :.:-e-
lationships between the :nethods. Tolere are vol.mt:izlous
details ot underlying algebra, and equ;'\'8J.en"C
sions for each method, ·Nhich ·I/';'ll all be available in
Searle Quaas [1978J; and cotIiputillg algorithms are
left to others.

2. TIlE I<DDEL

2.1. Eq,uation of the ::lodel

The general linear model is represented as

c
·_Y = __ + Zb_ + _e = Xd_ + E Z,b; + e (1)

i=l-.....- -

where

lNXl is a vector of N observations,

lSrxp is a known matrix, of ran.1t p* :S: P < N,
::pX1 is So vector of p tixed efi'ects parameters,



is a know. ma.trt.'t,

is a vector of random. e1'f'ects, and

:iixl is a vector of residual errors.

The second equality in (1) comes from. the partitioning

3.2. Method

Maximizing L with reS];lect to and to the a2' s
y.. -

implicit in ! leads to equations in § and y:
(12)

'b' ,. [b r b I ... b'] and Z = Z ... Z] (2) and- :J. :.a -c _ _.I. ::2 -c

where has order qi x 1 and is the vector of qi

effects corresponding to Q.i levels of the i' h random.

factor (ma.in effect or interaction factor) in the
c

lIXldel, with Q. = 1: •
i=l

2.2. Distributional :properties

for i = 0, 1, "', c.

Solutions restricted by > 0 and af 0 for i = 1,

•• " c are ML esti:!lators.

Equivalent equations, given by Rartley and Bao

var(b i ) = , cov(b.,Oj') = 0, i j,- .....;.q1 _:I. __

and

and

var(y) = V = ZDZ' + R- - --- -
It is customary to have : =

2. 3. Ancil1a.ry notation

= (l/O'6)! and = [O'f .•• 0';]

(4 )

(5)

(6)

(14)

a2 = (y _ xa) 'E-l(y - xa)/No - _ _ _ _

for i = 1, 2, "', c.

An .alternative form. of (13) is

for i,j = 0, 1, "', c.

4. REML: Restricted Likelihood

b_O = _e, a =N, Z = L_, and 02 ' = [0'2 0'2 ••• 0'2] (7)'"0 - 01 c

D=diag{O'2 r . ... }; Z=rZ z ... Z; (8)
- 0--10 ",..qc - -::;v -1 ..c"

V = ZDZ' (9)

3. "lL: J:.bx1wJ.m Likelihood

3.1. Bationale

ASSU!:le normality of the random. effects (the b 's

4.1. F.a.tionale

Assume nor:na1ity, as with MI., but only

that portion of the log likelihood which is i.=l.variant

to Z(y). (See 'r-lompson [1962], Patterson and Thompson

[1971J, and Cor':Jeil and Searle [1976a, bJ.) This is

equivalent to maximiz.ing

for t' being any p* (rank of !) linearly independent
columns of X.

4.2. Method

MaXimizing with respect to the O'2 ,s implicit
in V (and hence in also) leads to equations

and e's) with first and second ::oments as in (3), (4)

and (5), and :l!BXimize the 10gari thm of theeOf ;c:

L = log 2TT - tlog IVI - i(y - xa) .,,-l(y - xa) (11)
j'" - ----- tr(PZ Z,) =y'PZ z'ihJ for i =0,-1.=i - --1_1_ c (19)



equivalent to

for 1,J = 0, 1, ••• , c.

where, for arbitrary' weights Wi and for r i l!

i .. 0, 1, .•• , c,

D .. diag{woI_w ..qo

W1th de:t'ined by x'v-lxS: .. X'v-ly, equation (19) also- -- - ---
.
A .. diag{r I • •• r! }.O;;q,o c-i.. .

4.3. An equivalent procedure

Ma.ximize the log likelihood of I r 0Nhere I 1s

any matrix of t"ull row rSIlk N - p* such tha.t '! .. 0:

5.2. Method

V.1nim1zing (23) can be sb.own equivalent to

(25)

Were the elements of actually known, a "lla:tural

estimator" of ptCJ2 would be (Ea.o [1972])--(2J.)aa ..
,0

leads to

Solutions for and restricted to > °and
af :t ° for 1 .. 1, ••• , c are REML est1mtors.

and this leads to sol\'1ng the equations
.. -,(N - p*)log 2rT -

- (22)
{tr(P Z Z'P Z z')}a2 = (y'PZ Z'P v}_w-i:i-w-J_J _ - _w_i:i:.w:.

for i,J .. 0, ••• , c,

(26)

where
COllllllents

as the for a succeeding set of equations, which are

then solved for $2 _ and .30 on.

The occurrence of Wi in of (27) is exactly the

same as that of of in ! of (9). This :prompts the idea
"of using the MrNQTJE equations iterati'fely _ using

e
(28)

for i,j = 0, 1, ' •• , c.

6. Itera:tive

(b) Wo = 1, Wi = 1 for i 1: Yw = !,
p. = I - X(X'X)-X '-* - - - - -

Solve, iteratively,

(i) No distributional llroperties assumed.

(11) No iteration: for given:;, solve (26).

(l1i) Special cases
c

(a) ....i = 1, for all i: :Yw"

6.1. Ra.tionale

COllllllents

6.2. Method

5.1. Rationale

5. MmQUE: Mini.l:llaL Norm Quadratic Unbiased Esti::nation

(1) Elements of !S'r are called "error contrasts",
Harville [1m].

(ii) = .
(ill) 'r) - Ll = constant not dependent on Ct or iJ2,

(iv) Corbeil and Searle [1.976a] use a special form
of A I : define the efi'ects part of the
model as the vector OJ:' cell :Ileans of those sub-
most cells of the e:f':f'ects factors that
contain data, k such cells, say, with til' ' •. ,
Ilk observations. Then delete the til \ll,
(nl + n2)\1l, .•• , (nl + tl2 + , .• + nk)th rows
f::-om !N - diag{iG

1
, ••• , :!n\c}, and the matrix

remaining is a I, It is called 'E by Searle
and CorbeiL

Estimate a linear function of the q2'S by a

quadratic form choosing ::: so that the est1mator

(i) 1s translation invariant: ex - Ct + 5 does not
alter Z'&, = = 2·

(11) 1s unbie.sed: = £ ',<;2,
(iii) minimizes the ....eighted tlorm:

-



7. MIVQUE: M1l1in:!um Variance Qya.d.ratic Unbiased Esti-
mation

7.1. Rationa.J.e

The same as MINQUE, except that instead of mini-

m:l.zing a norm, one m:l.nimizes the variance of the esti-
These bave also been 'mtten by Harville [l977J as

maOOr t Combined with translation invar:ia.r:l.ce and

unbiasedness this involves minimizing

with b .. DV
for

\ .. sum of sQ.uares of diagonaJ. elements of

and where Yi is the kurtosis para:r.eter for (see,

e.g., Anderson [1977]). trnder normality this

is equivaJ.ent to

m:l.nim1zing tr(AV)2-
sim:l.lar to (25).

(30)

COllllllents

(i) (i of (33) and (34) equals the Aitkin a
(ii) of (33) is the BIIlP (best linear unbiased

predictor) of b .

(iii) .. - xa), md wi4;;h normality assump-
tions this is the MJ:, estiJJ:a.tor of E(b Iy) . In- --genetics is used for estimating gene"Cic
vaJJJ.es.

7.2. Method

Solve the equations
" .. (tpz2iPy}

(iv) In equations (33) partitioned matr1:c on
the 1. h. s. is sYtUlletric md p. s •d. whereas
that in (34) is not.

(v) Equat:L.Jns (34) can be used with non-singular
,.heres.s (33) '.:.an:J.ot.

for i" 0, "', c. ('T.!.) Define

8. 14M!!:: Mixed Model Eouations

In the mixed liIlear model (1), eQ.uations designed

for estimating -che fixed effects 0: and for predicting

the random effects also have uses in calculating

es-cimates of variance components. They have computa-

.. fr.i· J for i,J 1, .. c.
- .J

(vii) Define t.i.e 10Yler right sub-matrix of the
generalized inverse of the partitioned matrix
on the 1.11.5. cf (34) as T-l . Then

(Viii) :: and cm be used in computiIlg MI., P.EML,
and I-MJljQUE estimators of &2.

tional uses, but provide no new estimation procedure.

The ge:J.eralized least squares (Aitkin) equations
., " -1

for are .. ;S'! instead of repre-

sent1:lg random effects, were to represent fixed e:f':t'ects

the nor::la.1 equa"Cions tor :: and that would be

.. tor i,j .. 1, "', c. (36)

The MME's developed by Henderson [1959J md

tIIIIa] -1....., Henderson [1963 are (32) adapted by adding E to

z'R-lz:

9. THE DISPEF..3rON-MEAN "DDEL

9.1. Rationale

Estimate crf unbiasedly by for being

error contrasts. This leads to the :wdel (see

(37)B(_H) .. v' v'
;3 ......... for t" - =

Pukelsheim [1976J)

(32)

and
Z = (K' * K')B with B = .••



Also,

for

10.3. EEML and MINQUE

Choosing an initial arbitrary value for r:: in P
of (20), makes (20) the same as (26) when that same

arbitrary value is used for in (26). Hence any

first iterate of REML is a MmQUE.

(see, for Anderson !!. C1977] ) • 10.4. REML, I-MINQUE, and MIVQUE under normality

Since (20), (28) and (31) are the same equations,

9.2. Methods

(a) Ordinary least squares est1:Dation is

REML, !-!omrQUE and MIVQUE under normality estimtors

are the same.

and this becomes

(tr(KK'Z Z'KK'Z Z')}b2 = (y'XX'Z Z'AK'y} (39)- _i::i,;:_ -J-J _ - - -

10.5. MIa and MME

Using § and from the MME (33)

= t (! - - zb )/N

(b)

for i,J = 0, "', c.

"Generalized least squares" est1:Dation is

(40)

and with T* of (35)

(b'b )(r) +a2 (r+1) = _iZi _ii
i

Under norma.lity, Yi = 0, which reduces to

= * + !(m,m))
with m 5! N - p* and

(42)

(41)
The second expre$sion in (42) always yields
positive estimates.

10. gIA..'T'IONSHIPS A..'4:lNG TEE M:ETEODS 10.6. m«. and MHE

10.1. REML and ANOVA, for balanced data

In most, if not cases of data, and

solutions to the REML equations are identical to PJ10VA

(43)
(b 'b )(r)cr2 (r+l) = ;;,;;i;;._.:;i _

i _( (r))
:Ii - t. !ii

T'ne second expression 1l:L (43) always yields
positi-;e estimates. Equations (43) are the
same as (42) with Tii in place of .•-

Note:-
(17)

(20)
_J._""-- -eJ -

ML and PZML

m«.:

sums of squares to their expected values).

est1:Dators (obtained by equating analysis of 'nariance

10.2.

Degrees of :'reedom for fi."'l:ed effects are ta.1ten
account of in REML.

--1 A
V in the l.b.s. for is replaced by in

EEML.

1«': '02 = (! - 'rl(;C - ;:fi)/N (15)0

02 = (;C - _ - p*) (21)0
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10.7. MINQUE and MME

Equations (20), (26), (28) and (31), for

MINQUE, !-MINQU'E and 1,trVQUE under nor:r.ality, respec- tit'
tive1y, are essenti.a1ly of the for:n

= (44)

for i,j =0, 1, "', c.



for i = 1, "', c
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IlX)de1. Technometrics 18: 31-38.

(4) Corbell, R. R. and Searle, S. ·R. [1976b J. A
comparison of Yariance components esti-
mators. Biometrics 32:779-791.

(5) Daniels, H. E. (1939]. The estimation of com-
ponents of Yariance.

6:186-197.
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c.

1 c
-- E --

i=l "f
y_'P_2.y_ = (y'y-a:'X'y-b'Z'y)/,,4________ 0

These are equivalent to

tr(PZ.Z;PZ.Z;) = % - tr(Tii ) + 1;. )2
4 4 - 4 - -
"0 . "i "i

tr(p2Zi Z:) =2- [tr(T. i ) -- - -. j=l - u-v

for i = 1, "', c

c c
= li...:2: + 1;. E' E 1;r(T T )a; i=l -ij_ji

tions of sub-matrices of of (36) as fOllows:

The ;terms in this equation can be expressed as func-

for i,j 1, "', c.

10.8. Dispersion-Mean model and

The "generalized least squares" equations (40) of

the dispersion-mean model, -"hen assuming cormality and

using :!- of (41), to (44). Vlhen an assigned

value, :: say, is "J.sed for iJ:l (44) is the same as

(26) for MINQUE; 1£ equations (44) are solved itera-

tiYe1y, then they are equivalent to (20), (28) and (31)

for BEML, I-MINQUE, and MIVQUE under normaJ.ity, re-

(13) Patterson, 3:. D. and Thompson, R. [1971J. Re-
coverJ of interblock i!lfor=tion '"hen block
sizes are unequal. Biometrika 58: 545-554.

(14) Pukelshei::l, F. [1976J. Estimating 'fariance
ponents iJ:l linear models. J. I'llltiYa!'.

6:626-629.

(15) Rao, C. R. [1972J. Esti:ration of Yariance and
covariance components in linear mde.l.\3. J.

Assoc. 67:112-115.

spectively.
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COMPUTATION OF THE :E:(ACT LIKELIHOOD
FOR AN AEMA PROCESS

Cra.ig F. Ansley
University of Chicago

ABSTRACT

The likelihood function for an .AR..'!A process is derived in a torm which alloW's more
efficient computation than other e.."(act methods proposed in the literature.

Exact maximum. likelihood estimators for the parameters ot an ARMA process are often.
better than least squares estimators, particularly for a seasonal process. More-
over, a sum-of-squares approximation to the exact likelihood cannot be used for a
noninvertible moving average. process. Even in the calculation of the sum-of-sqUares
function there can be loss of accuracy or numerical convergence problems close to
the boundaries of stationarity or invertibilitj.

The algorithm described here suffers no loss of accuracy near a boundary, and
be used for both invertible and noninvertible moving' average representations.
nature of the likelihood surface over the entire parameter space is discussed
this regard.e

can
The
in

1 n 2,,'0- v • 1: [at]-nn-il __

s =

_.-f -1 2}=JiI\ for large 'ralues 01' n, Eox aM
Jenkins (2, p. 213] suggest disregarding the
nant for llIexi::lu.m likelihood esti::latioll; tl:l.is is
done in prac'tice. The remaining e.:<:pr'!ssion em be
for.:tU1ated as So least squar'!s ':lroblem..

it has otten been OJ
Ka.tlg [6] and Box, :!1.ll:ler and Taio [1], tha"C disre-
garding tl:l.is dete=inant can lead 'to inferior es"Ci-
::aters. :·lin (10] and Dent and :·1in [4J have So n=ber
of Monte Carlo findings suppor'ting t!:lis 'riew.

McLeod (7J has :?r"posed a llIe'thod ·..hereby the dete.l"llli!lant
10n i is replaced by its asY'lllp"Cetic li::1it, and. has con-
ducted Carlo experilllents shoWiI:g illlprovements in
estilllation fer the cases he examined. :Us approach,
ilowever, does :lot avoid the problem of efficient eOlll-

1 .
putation of the exponent

1"...0 procedures !'or ca.lculation of ohe exponent are
suggested by Box and. Jenkins. One is to approxi=:ate
it by the su.m of sque.:es:

where at is calculated f'r0lll the equations (1.1) under
the aSSUlllption that the q starting values ap ' ••• ,
ap-q+l are all zero. Tilis is called the "conditional"
llIethod .following its derivation froC! a cQIlditionaJ.
likelihood function. Box and Jenkins also show that
in the unconditional likelihood (1.2):

(1.1)

L(41, 9, = (2tra2 )-n/2In rl/2 expt
-- - It t 2a

(1.2)
is the 'Tariance of tile ramiOlll shocks at
is tl:1e n x n covariance lllatrix of

i.e.,

we:oe ::a is the bacltshitt operator. Given n obse...·va-
tions = ("1' ••• , vn ) on the series, one seeks the

likelil:.ood esti:na.tes of the parameters
l' = •••• and !' = (91, "" eq ) in (l.l).
The likelihood I'unction for the obse.""'Vations is:

SUppose that, using the :lctation ot Box aM Jenkins
(2J, the stationary process {w.} . is generated by the

t
llIl.toregressive-moving average scheme of order (p. q):

l. Introduction

where (J'
and. a2nn
In computing the likelihood (1.2), one encounters t-...o
l%oblems: (i) calculation of the exponent 1"0-1....-no n -n
and. (11) calcula.tion of the IOn i. iecause
.the -:eo Inno I is do::.ina:tecl by the teo

7l



n 2
v'n v .. I: e-:-n n-l1 1

and by comparison with (2.3) 'Ie see that Dent's approach
is identical to Newbold'e. Dent goes on to sugges't
details of: comtlUta.tion using transfo=a-
tions and obtains a. different expression inlll = IB: I 'for
the determinan't, butcsrries out essentially same
operations as a sUlgulIl1' value approach to :.ewbold' s
formulation.

a-l = I _ X T-1(I + ('l'-1) 'X ':( T-1HT-1 )
n n r nn

I - X T-1'Z'Z)-1(T-1 ) 'x'n n \ n

'rl:1us

It ."In + J.i1& I:

-1:.hltiplying (2.4) by A:a we have:.

where

_ Aa!: - &!.,* • 0 •

Dct [3J independently developed. an sJ.goritll:ll tor exact
IIl&ltim.um. likelihood based. on direct algebra.:l.c manipu-
lation ot Using the a.bove notation where
4pplicable, ve can rellrite the equation (1.1) tor
t • 1, ••• , n in the form:

1s a solution to the equations (2.2),
which can be obta.:l.ned et'nciel1'tly by s1ngular value
decomposition ot Z. (See, tor example, Golub Il%ld
Reinsch [51.) The determinant is g1ven by IOn' '" Iz'z I.
Prothero [15] has developed. a program tor =t maximulll
likellb.ooa estilllStion ba.sed. on Newold's approach.

3. A Nev .u.;oritil:ll f·:;.:!:, Calc\1l:lting the :i:.ikelihood.

We nov describe a simnle method tor calculating ••• \1-1....
and. Innl in (1.2). -3ecause 0J:l is positive II -u

n 11 n -1
12:atiol1. Writing .. LJ:l wn 'Ie obta.1n:

Cov(s) .. .. 02!

so that e I = ••• , en) is a. set ot i:ldependent
110rmal ra:rJdom variables wi-:h lIlell%l ::ero a:rJd variance
t'urther

1:, 'Ie Cll%l find
wnere l' =P +

Yo = L.!n + Z!.1t

If the covariance matrix of a lt is
a uiatrix T such that T 1: T' = I rand rl!lllrite (2.1) as:

i.e.,

Y'n-1V = Lv (I - Z(Z'Z)·lz'v'L'
-0. n -n -n n+r -n

• :. v (I _ XT-l(Z 'Z);'1(T-1 ) 'X' hr 'L'"n-c 11 r. n -n n
(2.3)

Pierce [14J has shown that the asymptotic properties
of least squares are indepa:rJdent ot the particular
startins values sllo_ and, therefore, tl:l&t the col1<1i-
tion&1 ud back:t'orecutins least squares est:imators
have the same properties for large n. Rovever, for
seasonal series Box and Jenkins [2, p. 2llJ litate that
"the col1ditional approxi:a.tiOI1 is not very
and the Ul1col1<1itional calcula'tion becQllles evel1 1lI0re
necessary." [lOJ, Den't cd M1l1 [4J, &I1dNelson
[llJ have :.ronte Carlo results dispu'tins this a.l1d shcnr-
ins that the col1<1itional llle'thod often performs as vell
as, or better tb.a.l1, the back:t'orecastins m.etllod, espe-
cia.ll:r for pure movil:lg average models, although the
evidel1Ce tor seasol1a.l models is SCaA't. •

where [at]. t(a.tlv , $, 5]. They approxwte the- -
:l.z1tinite SUIIl by a SUlll:rQlll 4 to 11 for a suitably
larse Q &!1d obta.1n values ot [at] through their
iterative "backi'orecuting" procedure [po 213].
lievbold [12] points out that should a root of either
the movins or autoregressive operator lie
close to the Imit circle, it lllay' be necess&r7 to
choo::c a very larse Q a:rJd/or to iterate lllIl.l1y times
to reach coavergence.

We present here a computa'tiol1a.l alsoritbm tor calculat-
il:Ig the exac't likelihood tha't appears illore et'ficien't
tb.a.l1 other methods described in 'the literature. 'rl:1e
speed of the alsoritl:m depends lllS1!1ly on the order ot
'the moving average operator, the autoregressive order
being eltcep't in short series. For pure
autoregressive' a.nd pure lllOving average processes,
retine!llet:ts are possible tha.t greatly improve ef'fi-
Cbl1CY. the a.lgoritl:m is exact a:rJd numeri-
cally stable outside the region invertibility of
the m.ovil1g average operator.

2. ExilittM Procedures fer !!:xact Likelihoods

"9fore describil:lg our algorit!:llll, we discuss briefly
t'l/O existing .,rocedures tel' calcula.ting exact likeli-
hoods.

Newbold [12J has deriVed. the exac't likelihood for a.
mixed. process using a of the approach
'.!.Sed by Sox a:rJd Je11k1ns [2J to obta.il1 'the exact likeli-
hoed for a. pure m.oving average precess. It ·"e \/rite

.. ••• , an) a.lld !.,II' " (lilt-p-q' ••• , sO) where

= j '" 1, ••• , q, a;1d =·"l-J'
j =:, ... , p, then we can ·.rr1te equations (1.1)
for .t = 1, ... , c. as:

vtere ':.,*" '!:!.,* and. !::t"!n' and the det'1ni-:ions of
L and Z tollov from "he previous line. 1rewbold shOW's
by a probabilistic .a.rg'J.Iltent that the eXjlonent in (2.1)
is given by:
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converge to the random shocks :in the Wold representa-
tion'. or, in the case S(E) 1s i:1vert1ble, to the
random shoc"· at in (1).

4. S"Oecial Cases

We consider tl:lree simplifications in special
cases that grea'tly increase the ccaputa'tional effi-
ciencY' ot tile algorithm.

1. Pure All Processes

!:1 the pure All case, (3.1) reduces to:

is the autocovariance f'unction of' {vt} .

Consider f'irll1: the MA( q) process:

Yt '" 9(2)&t •

The (iJ )th alelllel1t of' nn is given by:

t • P + t, ...• n •

t • 1•• ; •• p

t·p+l·••••• n.

Zt ""t
Zt •

e • L-1z
-p p-p
et = :l:t ·

'rhematrix liZ has the f'om:
II

nZ ..n

and thus LZ has the form:n

L
Z
• kP jn 0

2where II =L L I and where a lip 1s the p x pp p p
covoz1ance matrix of' zl' •••• Zp. In tllis case it
1s lIIQre ef'ficient to ob'tain Lp by using the general
deccmposition algorithm of' Hartin. Peters and
Wilkinson [81. 'rb,is algorit= uses p square roots
ll.Ild approximately p3/6 lllUltiplicat10ns. The values
el • .... ell can then be obtained t'rCl;1:

The el:J!1ations LA = can be solVed recursively.
Without inverting Lp exJ;Ilicitly.

It is interesting to note that a similar s:in"Olitica-
tion can be made to the Newold/Dent approach f'or ;n.u-e
All processes also.

1:1 - Jl q

li-JI>q
nn(i. J! = Yli-JI

• 0

where {a2y }k
The nn is a symmetric positive def'inite band
matrix With band width qj i.e•• all the elements outside
the qth co-iiagonals are zero. The matrix Ln is tllus
also II. band ma'trix with band width q.

A computationally efficient algorith: for
of' Gn to obtain Ln in this case has ben published
by Martin and ''villtinson [91. The requires
approximately n(q + l)(q + 2)/2 ::>ultiplications and
n square roots. In addition, the deter:t:inant IL I
can be obtained with n multiplications. n

-1!:1 general tile matrix Ln is not II. band matrix.

However. the linear equations Ln.!:l =:!"1 can be solved
recursively '.litll a.pproximately n( q + 1) l:IlUtiplica-
tions. and L;l need not be calcula'ted e:<:plicitl:r •

Consider nov tile general ARIK.J\(p, q) modal (1.1). It
is convenient to define a. z = (Zl' •••• z )
by: -:1 n

The above approach is exact and efficient; a discu.s-
sion of' its computational properties is given balov.
It also has a of' other interesti:g properties,A some of' which are described in tile f'ollowing sectio.ns •

• !:1 particular. because et is obtained by a linear
combination of' W'l' •••• vt for all t' tllis a.pproach
is equivalent to tile Gram-5cll:llidt or'tllogonalization
process except for the c.=aJ.izi:g COl1st=t a. :::t
is th:1s ap:paren't that for large !l tile et I s vill

(4.1)

... ,i =rs + k r =0, 1, 2,
k =1, 2, •••• s _

1 - J = Ils + t h =O. 1, 2, •.• ;
t .. + 1, •••• S

J > i

1 - J > q + sQ

2. Seasonal lolA Processes

The ll1II.trix nO. tor the seasonal lIIQving average ;rceess

consists of' nonzero bands of' constant vidth
trom the principal diagonal, with zeros elsewhere.
The algoritb:1 could be a.pp11ed directly usi::g a total
band width of' q + sQ, ..mere s ts the length of the
seasonal cycle and Q 'the seasonal l:lovi:1g average
order. l!oW'ever, it is possible to reduce the nW!:ber
of' calculaJ:10ns by recognizing tllat the ::1a.trix 1
has the form: n

providing q < s/2. To shoW' this. \7e need the folloW'-
ing lemma.

t = 1•.••• III

t • III + 1••••• n

z.... = v....

where III = = (p, q). It is clear that
Cov( z... z... ) = a tor s > Ill. The covariance :lII.trix
Cov( z) = a-O" is thus a positive definite s:i=etric

- n
beJ:ld matrix, and. '.e can use the /olartin and
elgoritbl:l 'to obtab the decomoosition· nz = LZtz' and

z- 1 n n n
sol'/"e the eqU3.'tions = (Ln )- !no

the Jacobian of' the transformation (3,1) is 1,
we have:
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Lemma.

Let be the autocovaria.nees ot the MA.(q)
process:

a.l1d let (y(2)} be the autocoveriances of thek
MA.(Q) process:

Taking covariances With vrs+k tor 0 r 111 ·.e
have. using the

III
(2» 1: b YCov(v • wrs+k .. Y(m+l-r)s - .laQ .1 (j-r)s

. (1)[(2)- b .,<2>1
• YO L:m+l-r .1=0 j j-:!
• 0

fl·.l.a because a.nC. '''rs+k ere orthogonal. Thus:

Then U q < s/2, the autecovarbnees {Yk} ,01' (4.1)
!lZ'e given by:

£he proot tollovs immediately by noting tha.t the
genera.ting t't:nction tor the {Y,} is given by:

it

We now show that ,,(2) is orthogonal to the
H(W'.l; .1 = 1 •••• , lIlS + k + q*) ',;here
q* • S - q - 1 > O. Choose a value of t in tl1e
range 1 < t < iiis + k + q* aI1d write
t .. rs + 1'; r-"" 0, "', 1II; 1 .. 1 ..... s - 1 (r < ml;
t.l••••• q* + k (r ..

Consider :first the case 1 < 1 < k - /l,.

r .. O..... m. (4.2)11 y(2) .. 0
.1=0 j j-r

(2)
Ym+l-r

r .. O. 1. 2..... !k!

As noted above, the randolll veriables el , .'... en
are obtai:led by the Gram-Scbtidt orthogonalization
01' vl ' •••• vl1 ' :t that the iUbe:t space
i(vl , "', vt ) is by e1 •.•• , et • With
t!:lis in m.ind, ",Ie esn prove the tollowi:1g theorem,
vi:lich is equivalent to our statement concerning
the fom of Ln'

The HUbe..--e space E(vk ' "k+s' ••• , vrs+k )
generated 'by vl;' v s+k ' .... vrs+k is a subspace
01' h" 0, •••• r; j =O••••• q;
hs + k - j 1) provided 1 < k < S - q.

We proceed 'by inductiol1. 'The covariance ::latrix
is II. sy=etric band matrix ·.nth q subdiagonals up
to and including roll' s - q. T!:le correspol1ding

factorization is a lever triangular bal1d
=tru, With band '.;idth q, oiving:

m
Cov(..,c2). '''t) .. Y(lll:Pl-r)+k-1 - .1:0 b.lY(j_r)s+k-l .. 0

becau..;e each covariance on the right-l:land sid.e is
zero providi.I:g only tha10 It s - q.

A. simUar argument holds for the cs.se
k + q < 1 < min (q;J, S _ l)(r < ::);
It + q .t ",* (r .. 111), Wit.hou"l: restriction on It.

Consider nov It - q 1 It + q, i,.e.. lit - 11 q.

m (2)
cov(v(2), v t ) .. - .1:0 b j Y(j_r)s+k-1

.. 0

by (4.2)

lllin(q.t-l)
1:
J-O

(t.)c
j

e
t
_
j t = 1 •.••• s - q •

Finally, consider the case 2. .. q,'" + 1 ••••• s - 1.
i.e•• 2 _ k > S - q,. Note that this case is a
possi'bilit:r only ir r < ::.

.. 0

by (4.2) because r < 1II.

'l'b.us •.,(2) is an el=e%1t in the subspace
li(e(m+1)s+k_J; .. 0, ... , q). :fov

. (1) [(1)
.. Y t-k+sLll1- r

Assume nov the result holds tor r < l:l. ;rrite
Ii' • =.'<1) ;. .)2) 'Where is the pro-(:ll+l)s+Jl:
jaction ot w( 1) ,. onto the subspace

lIt+ 5+... (2)
H(w. ,v , ••• , 'W ,.) and v is the corre-k s+k ...
sponding per.,el1dicular. 1o.'e can -.n-ite.

The result is thus for r" O.

m
v(2) = - .1:0 bjWjs+k

c
v - .}2} + 1:(m+1)s+k. - j"O

and by the induction hypothesis v(:l+l)S+k
element of n(ehs+k_j ; h" C, .•• , ll1 + 1;
j .. 0, .••• q; hs + It - J 1).

is an



It rOllovs :rOlll the OXt'0of that •...e om obtain the
b (m) h b C 1factors J tor t e lIlth oyele y. ho esr.l

fa.ctorbation of the b8l:1d matr:ix generated by the
oovariances {Yrs " In this _y, b8l:1ds
for successive cycles C8l:1 be obtained :r0lll previously
calculated 8l:1d onlt the factors
(l:lS+k)
cJ • J • 0, "" q for <::rcle III calculated &:lev.

3. Mixed Processes

It w replace the transt'o=atioll (3.2) by the trans-
fo=ation:

BecllWle at least one root of ,(B) lies u.side the
circle, it is clear that tor su:f'f'iciently large

n Iynl > YO a.:ad the resulting matrix •.till :lot be
positive de!inite.

Bowver. for any fixed value ot n, it is possible
that the process is nonstationary but the implied.
matrix is :leve.-theless tlOsitive def1c.ite. The
folleving example this. Consider the
ARMA(l, 1) process:

The covariance function is given by:

2
- ..p

L:J.O<a< '11-

these i'unctions take the
(It' ¢ > (1 + .;,)/2, (¢2_ 1)/$

=1.)

Yo • - 26¢ + 62)/(1 - ,2)
Y1 • (, - 6)(1-6,)/(1 _ <jl2)

'Y
k
.. ,k-1Y1 •

Suppose no.... tha.t {·...t} is r.onsta1:ionar".1 ....ith
=ameter </l > 1. We '.till shoW' that for fixed.
it is tlOssible to choose 6 30 that the ::l8.1:rix
is positive !f •..e wri1:ee .. , _ a. for a. > 0 w have:

For 1 < '< (1 + 15')/2,
form ShcllU i::l 1.
will fall to the right of

t .. 1••••• n- max(P. q)
.. n - max(p, q) + 1, •••• n

This has special for processes V1th a
seasonal MA opera.tor, because we can take advlUltage
01' the special form ot' Lc. discussed. above.
The matrix for our earlier fo=ulation does not have
this propertj. ',fe note1:ha1: the or::hogonalizatioll
of the series z. defined. by (4.3) no longer corre-
sponds to the Grrm-Schlllidt orthogonalizatioll.

5. Stationarity Conditions

We asSUllled. in deriVing the above algoritbm that the'
process (1.1) ....as statiollll.."j". However, in sane
situations arising in =i:llum likelihood esti::lation,
it is possible that &:l may be made to
evaluate the t'unc1:ion (1.2) outside- the region of
stationarity. ',fe examine SOllIe of the ilIlplica.tions
of this possibility in this section.

it is clear that the firS'l: n-max(p, q) revs of
the matrix a Z '.till be identical to those of a.n
:IlQving average Slrocess vith oSlerator 6(B). It'
q < SI, this means that all rovs up the n-max (p. q)
wil: have a Cholesk;r factoriza;tion tor band vidth
q, a.:ad the ba.:ad vidth need !lOt be used except
for the 1'1c.al p revs.

First, note that a pure :IlQving a.verage process is
al....ays statioc.a.r"/, aJlci ow: asSUlllption cannot 1;e
violated.

Consider no.... a pure autoregressi're process. ',fe
assUllle the :natrix is calculated as it' the process
....ere stationa.r'/. !t has been by P!lJZ!lIlO [13]
1:ha.1: n is ':X)sitive definite if and only if thep -
tlI'ocess is stationary. Ho....ever, the Cholesky
tactorization exiS1:S if and if is positive
def1c.ite. Thus the fails qU1:side the
sta1:ionarity region.

!n practice, the :.!artin and >;ilkinson algorith: for
decomposing no '.till er.coun1:er the square root of
a c.egati're number or a division by zero if np is
not nositi",e The prcgram can be

to give an error message an
error :nessaga will be if a.nd o:lly if 9-"1
a1;tem-01: is made to evaluate a likelihood ouuide
the region of s1:ationarit,.

t1ntortu."l.atel" this does not hold ::or a mued
First, note that the transformations (3.1) and"{4.3)
are c.onsi:gular a.:ad, thus, the matrix a Z lthich enters. n
the decomposition algorithm is positive definite
aZld only if the matrix an is posi1:.ive def1c.ite.

NoW' for su:f'ticiently large k the mtoco1fariances
folloW' the difference equation:

I
I

" 1t IYkl1
1. I

1
I
I
1
t
1
1
t
I
1
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For It 1. the h'lt' 's form an il1creasing sequence
with sum:

It 1s clear !rom Figure 1 that given any value of n
we can choose C1 sufficiently SlllalJ. and positive
tha.t:

An imlIledia.te consequence of' the iJ1·taria.nce is that
it there is a local max:i::lum at (61 , .... SQ.)
inside the inve."'tible region. there are local
=1ma. at each of' the i:lverse points (6i.' •• ,
defined by (6.3). There are up to 2'1 - 1 such
inverse poiJ1ts. the =ber being smaller 1£ equal or
complex roots are

We aan show t!::lis more e."tpliaitly considering our
algorithm tor calculating the likelihood. Corre-
sponding to (3.1) we can write:

where ket • The maximum likelihood estil:ta.tors
tor a; and a;* are .

5. Invertibility and Likelihood

C • -,F1 .; 1n{21r In) 1

SubsUtuting i:1l:0 (1.2) a.nd (5.4) respectively 1le

obtail1 the log likelihoods over and
2
aa'"

Because n* = k-2n we have In*1 = It-2n lnl a.nd
l:I n n

trOll! (5.5) a.nd (5.G) 1= =L:ax I.:::. practice,
it is convenient to define:

where

(5.1)e(B) • (1 - BlB)(l - ••••• (1 -

where 1!1t1 1, k =1, ••• , q. It 1s '.re!.l known
{see. example. cOX a.nd Jenkil1s (2. p. 195J)
that there are up to 2'1 - 1 corresl;oading non-
inve."'l:ible rell1'esentations:

We sholl' in this section tha.t the likelihood is invar-
iant under a ahange of represental:ion in the moving
average operator. This leads to a set of' equivalent
maxima at a number of points on the likelihood sur-
face. each such point being the inverse in a sense o£'
a unique ma.'l:imum inside the invertible region. The
sum of squares fw:lction, however, may not· have minima
outside the invertible region. It' such minima do
exist. they are not inverse to the least-squares
point inside the invertible region.

Suppose that the codel (1.1) is invertible. i.e.,
the roots of 6(B) lie outside the unit circle.
We have:

It is well known that such a matrix is positive de£'-
i:1ite.

obtained by inverting one or more of' the roots of'
6(:a). It is understood tha" it: any of the roots
are cOll!plex they must be inverted in COl:lplex
conJuga;l;e pairs. Suppose such a represe!lta1:ion is
ohta.:i.ned by invertir.g tile first m:' q roots. i. e. ,

n n_2r: • c - -2 1.n l: e..
l:l&:lI: 1

T'Ae variance of at in (5.2) 1;;; related to the vari-
ance of at' in (1.1) by 02• =k2a2 where k2 =
2 2 a· a
• ••••• < 1. The likelihood (1.2) can be_ m

restated as:

This is a suitable £'0= for ::linimization by!!. non-
linear least-squares algorit:m.

To the invariance of' the likelihood. ·..e
show the surface for an :.1A.( 1) ll1'0cess
in Figure 2 and. an :1A(2) process in 3.

(5.4)

where a2 n* = a 21l 'e n* = n Ik2 Thea* n n'·· ., QQ.
liltel!Jlood is invariant under the of
representation; this can be checked direc1:
substitution.
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we have

S*(Gl , ... , Gq )
-2 G-1 Gm+1, Gp )• Gl ' ••• t III l' ... , III '

... .,

For J. J

as*aG
J
..

If there is a minimum at •• " IIq inside the
invertibilit;r ::-egion, it is clear tllat as*/aGJ ., 0
and there is no corresponding :ninimum at a.n inverse
point outside the invertibility region.
there Clm be a minimum outside the inver1:ibUit7
region oc.l;r it:

at a l)Oint inside the invertibility region. Such
a. l)Oint not exist. This is illustra1:ed by
Figure 4. vhich shovs the S'JlI1 of squares fu.o.ction
for 1m :·lA(l) process; there is no minimum outside
the region.

Poin"t A the min1mum; I, C a.a4 D a.re
euni:l.&.

'Ne turn nov to the Su;:l of sc>us.res fuIlct:'on.
It ve write:

where
-J .. 1 ••••• lit

J .. :I + 1 ••••• q
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Aside from the above considerations, the numerical.
properties of existing methods Clue the:l unsa1:is-
factorj for a noninver<:ible representa:::ion. It
can easily be shoml 1:hat the backZorecas'Cing and
conditional methods for expected
residuals diverge outside the invertible region.
'Hhilst the Nevbold/Dent approach' is tb.eoret:'cal.17
valid for a noninver1:ib1e representation, t=.e
nature of the matrix Z in (2.2) is such that it
vill become nu:nerica.ll;r unstable for long series.

16

-I .150 I
I I
I 1
I I
I I
I I

I
I
I
I
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I
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I
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7. Comwtational

llecause both the matrix LI1 and the vector !n
in sectiOI1 3 are calculated recursiorely, it is
possible to combine the two phases of the calcula-
tiol1. A suitable modification of the alld
IiUkinsol1 algorithm has beel1 developed by the author.
10r the low-order series usually encountered in
pz:sctice, it has 110t been considered ·..rort!l'.rhile
to make use ot: all the structure in the matrix L

a seasonal moving average pt'ocess. l!owever, 11
the zeroes in Ln have proved to be a maJor t:actor
in :1lnproving efficiency.

To compare relative efficiencies, computer programs
were also writte:l for eacll of tile three :lethcds
discussed earlier: conditional likelillood, tile
backtorecasting approxi:lation and the Newbold/Dent
approach. For the back:'orecasting metllad, a. single
series of 100' bacld'orecasts was calculated without
further iteratiol1. The Newbold/Dent method was
programmed. tile Golub and Reinsch [5] algorithm
for sine;1.llar ...-alue d.ecomposition, and the Man;in,
Peters and '.Ukinson [a] algorithm for triangular
resolution of tile =trix 1:.

Tue comparisor.s fer a llUIllber of model configurations
ntll series lengl:h 100 ...ere carried. out on tile DEC 20
computer at the University of Chicago Graduate School
of 3usiness. The results are shown in Table 1.

The relative advantage for the algorithm dO!velolled
in this paper lllay be subj eo1; to :ninor change through
re!'inecents in coding, Also, the Golub-<leir.sch
algorithm involves iteration, and =y therefore be
dependent to some e.'ttent on paremeter ·ralues.
Nevertheless, the new metllcd appears to Ilave a
clear advantage in efficiency over the other exac1;
:letllods, especially for seasonal models.

--- ....
_.t ee.ctU1ona.1 tor"u'UZ& :Jevbo141:leoac AJ.corl.t.b:s

.IllMo\l:l•• o) T 20 '. a

.IllMo\(o.11 , 23- " 2ll

_12,01 , 2' 12 11

_10.21 , 2T "
_Il.ll , 30 111

jIlKAC1. 0).11. O):z 39 1111 111

.IIlKo\lo. 1).11. Ol:z 1.O 3Z T,J.30 132

.Il!HAC1. 0).(0. 11:z 12 3Z 1.»0

.Il!HACO. 1).10. 1)::2 l' l"oa l30
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SOFIWARE FOR RANK DEGENERACY
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ABSTRACT

We describe mathematical software that can be used to select a set of indepen-

dent col1JIIlI'l.S of a matrix when munerical rank can be determined, and we associate the

uncertainty of the data with rank selection. The software is written in Fortran and

is usable on a variety of computing machines.

This research was supported by the National Science FO\.U1dation \.U1der Grant

MCS76-11989.

Tne software that we describe was designed

initially to deal with problems of oollinearity in data

matrices associated with econometric m::xielling. Subse-

Rank detennination in. t..'1e presence of ine."<act arith-

rr.etic and unce..""tain data is far from triv:..a.J.. Unce..""tail1ty

in the data in the I:'atrix, X, ms.y :ead to in

que."1tiy the software was used, in part, in the iteratively rank. If t.l-J.e data in, say, t..'1e t.'rird <bcimal place is

reweighted least squares problems in robust statis-..ics

and in the linear and nonlinear regression problems of

mown to be unce..""tain, "that digit and all that follow

0.-"r'E arbitrary. The mat:rix

da'ta analysis. The need to determine numerical ra"lk is

prese."1t wherever row or colurm deletion is performad on

data or design matrices, that is to say, whenever obser-

flo 02
Ll.OS

vations are deleted or when variable selections are if uncertain in the thLnj figure could lead to

rrade. NUII'e,..""i.ca1 rank is inhe..""ent in the problems of

ridge and is i.'Ilplicit in the study of projec-

ticn matrices, freque."1tly referred to as ''hat'' natrices.

fl.oa
•

Dete.."!lli.."1ation of nUllle..'"'ical rank is also related to ccn-

dition nUlIlbers associated with the solution of linear

systems of equations, overdetenr.i.ned or underdete..""mi.ned

_Systems of equations, and the iterations ()f linear

sys'tems that tend toward the solution of nonlinear least

squares problems.
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Fur"'"..hemcre, t..".e computational represe."1ta1:ion of X nay

be defective b :-anl<: whe."1 t1,e exact representation of

X has full rank, and conversely. One is the..rafore reduced

to determi."ung whether X is a rra1::"ix -:1".at is defec-

tive in rar-':'I:. That;.;e I:!USt l".ave precise and ql.lant:"ta1:ive

inf.:>rr.ation on t.'1e "nearness" of or.e to ar.cther



obviously influences our choice of matrix factoriza:tion

In!thods. rank deficient, the above factorization cannot be corn-

Throughout this discussion we are assUllling a linear pleted, and a reliable subroutine implementing the e
rrodel of the form y = X6 + e where y is an n-vector,

and X is an n by p matrix. Cla.ssicially, if the data

matrix X a.'1d the vector y are exact (that is to say,

Householder factorization will indicate the nUlllber of

columns of the X matrix that have been processed before

rank deficiency CCCl..lI'red. If the Subroutine is resis-

there is no uncertainty in t.ie data X and y and both X tent to the side effects of underflow, and if column

and y can be represented exactly in the machine), if pivoting has been done, the number of columns of X that

the precision of the arithmetic of the machine is such have been processed before termination indicates the

that xTx (where XT is the transpose of X) can be fonned number of independent (in som= s.:nse) columns of X.

and stored exactly, and if XTX is of full rank, the However tr.e above detennined number of indicated columns

solution aco'Jld be obtained from (XTX) IxTy . Cholesk'J does not necessarily de1:ennine nlJll'erical rank in the

factorization should t.loten be used followed by "':he solu- sense that the r:UlIlber of columns obtained are stron2:ly

ticn of t."le upper trianguJ.ar SYS1:e.'IlS of equations. independent, r,7hich is to say that 6 may not be well

However, these three conditions are unattain- defined by the transfonnation XS =y.
able in practice, and we "tUrn to other In!thods of matrix Unless X is exactly singular the of t:.lote

factorization, Le., t.lote norm-preserving orthogonal QR factorization of X provides the upper triangular

factorizations. factor R whose column le.I'l<;"t'1s and sir.gu.lar values are

matrix is one of the mst elegant algoritr.rns in numeri-

cal algebra for expOSi"lg quantitative il1..fcnnation about

the structure of a matrix. P.owever t:.":.e si..,gW.ar value

decomposition of Y. when: n is IlllX:h greater tr.an p is

In. the sequel we use the te.."1'Il "numerical rank" as

in [6J, and if the n by p matrix X has numer-,
ieal rank k < p, we seek k ir.dependent columns of X and

identify (p - k) dependent columns that are linear

ccmbinations of the k independent columns. Since the

t."1ose of X. The singular value decc:nposition [5] ef a e

process we describe identifies relations arong equations, computationally expe.'1si-,e when compared to the House-

a user Iray wish to specify initially that particular

columns of X a..-re esse.'1tial for his llOdel, and our so£:-

",olare permits suc-'1 an initial specifica1:ion.

;.Je begin t":.e detection of rank degeneracy of t'le

X mat"ix by fonning t.lote orr.hogonal factorization of X

by Householder transfcnnations as described i.."1 [:;.J and

[9J. Pony nby p matr'...x X can be factored in the fonn

X = QR

whe..""e the colurms of Qare ortlotonornal, QTQ = I, and R
is p by P and upper t"iangular. This factorization is

l.l!'.ique to withi."1 signs of the II::WS of R and tile corres-

ponding col1.mins of Q. For t:he lIOdel problem y = XS + e,

QTy = c =QTxe = RS, and S is tlote solution of t'le tri-

angular system R6 = c. FLlt""'..he.."mJn:, t.l;e inverse matrix
80

holder factorization. The sin",aular values of X a..-re tr.e

singular v-o.lues of R, a.'1d if we need tile si.."1g'..uar val'.:.e

decClIlpOsition of the X I:'a.trix, we firs1: do the Eouse-

holder fa.ctorization and t.'lel1 CClI:pute tli.e sir.;ular value

dece....1pCsitiOl'1 of R.

Since we are concerned about rank degeneracy, and

since frequently t:.'J.e Ga1:a rra1:r'ix X has scrne variables

(col1.mins) that are close in the nur.erical sense to being

linear combinations of other colunms we lID..lSt detecttr.is

sin.ation before we proceed "'"it.lot computations t,11at ccu:.d

give e..'Tatic results that are less than In!anmgful.

The nUlIleI"ical rank should be detennined by t.'le user or

the origir.a'tor of the proble.'Il, and t.":.i.s de1:er.ni.."1a'dcn

should be done w"itr. respec-.: 'to the certain"t'J of t'1e

data in t11e col1.minS of X. inexact arhr.rr.etic



is used one is really solving a slightly perturbed prob-

leJll involving t..'1e matrix (X + E) and t.1;e vectory y + a.
Numerical rank determination is definitely scale-

dependent, and scaling should re.-FJ.ect the user I s best

information about his problem. We propose multiplica-

tive scaling of the columns of X and y such that t.1;e

errors or perturbations induced in the representation

of the elements of X and Y are nearly t.1;e same. John

Chambers has suggested such scaling strategy in (2J.

Such scaling is also described in (5J.

Before proceeding to compute t.'1e s:ingular value

deCOlIp:)sition we feel tr.a:t it is important to get some

additional information. Given t.'1e upper triangular

matri."< R, we knew that its singular values are those of

X, and the COl".d.ition of R is that of X with respeC'C to

the solution of linear systems of equations or the

solution of the least: squares problem. Cline, Moler,

Stewart, a.'1d Wilkinson (3 J have provided a cendition

estimator involvi.""lg the selection of a particular

vector and tr.e solution of two tria?1gU.lar systems of

equations that gives a 'leI") good estimate of the lar'gest

and smalleS1: values of R and hence of X. Sil"lCe

t.'rls condi1:ion estimator is CClllputed in 0 (p2) opera-

tions we always compute the eg-t:JIlates for R before decid-

ing Whether we should proceed 'Hith the singular value

If t."J.e condition estimate exceeds tile

cert:ai.'1 digits of the data, or the reciprocal of 1:he square

root of t"'.e rrachi.'1e r s precision. wi'Jic."J.ever is la."'ger, 1.-le

continue with tr.a sir.g1.l1ar '''alue decomposition.

The singu,lar value decomposition of a reatrix is a

factorization of t'1e matrix that exposes rank dete..",ni'1a-

tion of X from i"l1e diagonal reat:!:"'i-x l: whose colUJm

lengths are those of X and R, the 1..'Pper triangular

factor of X. Frcm the problem y = XS t."J.e singular value

decomposition gives

and the ma.trix X is explicitly ur.VT, '....he..""e the columns
m

• '."v'" and .,.heof U are the or..hon.::rmal ....... "" , _,.
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columns of V are the orthononral eigenvectors of X·X.

'!he diagor.al elelIle.'1ts of r, (il.':: 0'2 .:: 0'3'" .:: 0'1". .:: 0,
are the singu.l.ar values of X.

We new have exposed the struC'tu:t'e of the rratrix so

that the determination of rank can· be made by i.."'lspect-

ing the elements of the diagonal matrix r. '!he nurr.ber

of independent coluzms of X is the number of independe.'1t

columns of r, ti>.at is. the number of non-zero singular
values of X. Given t1"le uncertain digits in data matrices

and computation with inexact aritJounetic we still have

the problem of determi.ning whic."'. of the singular values

are small and '..;hic.1; are large. !n practice we often

see a well-defined gap i."'l the sin",oular values, and when

such a gap occurs the choice of Sll'all sir.gular values is

obvious. The infon:mtion contained i."l (S] gives a firm

th..<>oretical foundation for such a choice and gives

additional information on choosing a stable set of inde-

pendent columns of X. If there is no well-defined gap

in 1:,"J.e singular' values it is awk"....ard to judge

effective rank. but an example at t."J.e end of 'tl"lis Ciscus-

sion shows that some infonnation 15 still obtai.."lable.
Given rarJ<:. k, of l: ar,d. hence, of X, 0'1 ? cr2 ..?: 0'3

> cr =cr = 0' =0, and the solution Scrk - k+l k+2'" P
obtC!i,"'led from the si."'lg1.llcIr value tion i:,;

where l:+ is t."J.e pseUdo-inverse of l: and is the diagonaL

1

o

o

where t.1.e colurrns of X are lli.ea.:- cer:.bi."'la:tions of -::he
1



columns of X2, i.e., the columns of 'S. represe."'It
(p - k) near dependencies, and the columns of X2 are

the k independent columns of X.

v.Te take advantage of the fact that in associating

the columns ofVl (Vk+l ,Vk+2, .. ., Vp) = Vnull correspond-
ing to (l1k+l , Cfk+2"'" I1p )

and a penm.ztation of the rows of Vnull corresponds to a

of the columns of X. This technique is not

new - it is referred to in (7] and is theoretically and

computationally justified in [6]. It has been used also

to fi."lCl the bases of free Joroan algebras [8].

To compute t.1;e indices of the colUlIl!'1S of we

form the QR factorization with colUlIl!'1 pivoting of the

rows of Vnull ' Explicitly we factor Vnull as

Vl is now upper triangular, nonsingular, and well-

conditioned. 'The:row indices deter.nined identify

column indices of the columns of X that belong in

Alte..'"'natively, one could use stabilized ele:r.entary trans-

fo::nations to obtain the above

The information in t..1;e above factorization can be

explored fur'ther to see whether the certainty of the

data has been violated by t."le choice of rank of X.

T -Let G = -V2 Vl - a."ld G be the m:ldificaticn cf G to

ele.'l"ents that are negligably small. Then

whe..""B Xl' X2 , and Gare give."'l cS."'ld ill and il2 are unknown

and represent perturbations induced in Xl and ;{2 by

rank selection. Now

ill - il2G= -(Xl - :<2 G)

- ( I )+(ill' il2) = -(Xl - X2 G) -G

and (1)is of full rank.
In conclusion we show a small example that dees

not have a gap in singular values but, even so, one can

get information on near-depe."'ldency am:>ng its colUlIl!'1s.

The data matrix

1.0101 1.0097 ·"11.0098 1.0104 .98

.98 .97 1.02
I

.97 .96
.SOJ

.96 .95 .93

has singular values 3.7915, .007122, and .053328. We do

not 1".ave a weU-defined gap but there is some infomation

to be gained the vector, (-.732009, .678807,

.058176), associated with t:'.s smalles"t singular val·.!e.

The largest cOll;lOnent i."'I t.l'le vector would bdicate that

the first: colUlIl!'1 should be deleted. The QR faetoriza-

tion with co11.ll11n pivoti."'lg of I!'atrix X ra (-2.2052,

.062485, and -0.01045) as the diagonal of R

and has pivoted column 3 into the position of col1.ll11n 2.

I-le believe above example is a "worst case" of

problem from which we can still expose SOire infOIll'aticn

about nUlI'.erical rark.
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TEST PROBLEMS AND TEST PROCEDUBES FOR LEAST SQUARES ALGORITHMS

Roy H. Wampler
National Bureau of Standards

Washington, D. C. 202;4

Abstract

Numerous test problems have been introduced in the past twenty years for the
purpose of studYing and comparing least squares algorithms and computer programs.
This paper discusses and classifies same of the useful test problems which have
appeared in the literature. A recent large-scale test procedure is briefly sum-
marized. Several neat, mathematical examples are A new example is
presented, and. results from several computer programs in solving this problem
are given.

1. I1rrRODUCTION
In the past twenty years. numerous test pro-

blems have been introduced for the purpose of
testing and comparing linear least squares algo-
rithms and computer programs. Such test problems
have proved to be useful in comparing two or more
algorithms with respect to numerical accuracy and
computationaJ. efficiency. They have sometimes been
used in compara.tive evaluations of least squares
regression programs. '!'hey can be used to stud:r
the properties of a particular al60rithm or to
compare the performance of a particular program on
tve or more types of computers.

In this paper. many of the least squares test
problems which ha're appeared in the literature
are classified in several ways. Tl'...ree problems of
the neat. l:Ia.thematical type are displayed. A
new test problem is given. and the performance of
several algorithms in solving this problem is dis-
cussed.

For recent accounts of the state of the art in
solving least squares problems, the reader is
referred to Linear Rellression Analysis by Seber
. (1977), especiaJ.ly Chapter 11 on computationaJ.

to Ccmnutational Methodstcr Data
Analysis by Chambers (1977), Chapter 5
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on linear models and the appendix -,;hich lists
some available algorithms, and to Solving Least
Squares Problems by Lawson and Hanson (19;4).

Gregory and Karney (1969) gave a collection
of numerical examples related to matrix inversion.
systems of linear equations, eigenValues and
eigenvectors.

2. FORMU!.ATrON OF THE LEAST SQUARES ?ROBLiN
:he simplest form of the linear least squares

problem can be stated as fellows: Given a matrix
X (n x p) and a vector of obser'rations J(n x 1),
find a vector of coefficients S (1' x 1) which
minimizes the sum of squares of the resid.ual
vector 0 = y - XS. When X is of rank p, the
unique can be expressed as

B=
Other of ir.terest are y =XS, the
7ector ef predicted values, and (X'X)-l, the un-
scaled covariance matrix of the coefficients.

A method frequer.tly used in 70rk
tor obtaining the solution vector and related
q,uantities requires tl:e forming a.."ld inverting of
a matrix of correlation coefficients. In this



the desired'coefficients can be obtained from

method it is assumed that one column of X, sa7 the
first, has each element equal to one. Let

6. Problems constructed from

lll&trix, observes that this method is well adapted
to updating, as in stepwise regression.

decomposition. Examples: Velle$an, Seaman
Allen (1977); Seaman (1977).

3. CLASSIFICATION OF TEST PROBLEMS
Least squares test problems can be classified

in a variety of ways. Below are give!1 several
categories of test problems with examples of
these types which have appeared in the literature.
In most cases, either the data for the test problems
were published or an algorithm was given for genera-
ting the data. In a few instances, however, the
data were not published.

1. (a) Problems arising from real data.
Examples: Freund (1963); Zell:ler and Thornber
(1966); Longley (1967); Krane (1970, 1971);
(1971); Mullet and Murray (1971); Chambers (1973);
Gentleman (1975); Beaton, Rubin and Barone (1976);
Longley (1976); Chambers (1977).

(b) Problems constructed from contrived
data. Examples: (1961); Bauer (1965);
Golub and Reinsch (1970); Stewart (1973); Lawson
and Hanson (1974); Kenkel (1976); etc.

2. (a) Polynomial problems.
Examples: Cameron (1957); Ascher and Forsythe
(1958); Macdonald (1964); Bright and Dawkins
(1965); Jordan (1968); Muhonen (1968); Wampler
(1969, 1970); Jennings and Osborne (1974 ); Fletcher
(1975); Shampine (1975); Boehm, and Penn
(1976); Longle7 (1976); (":78).

(b) regression problems. Examples:
Bauer (1965); Golub (1965); Zellner and Thornber
(1966); Longley (1967); etc.

3. Problems having known condition number, or
known to be ill-conditioned. Segcents of the F.il-
bert matrix or of its inverse have been used by
Golub (1965); Businger and Golub (1965); Golub

(1966); Bjorck and Golub (1967);
Bjorck (1968); Peters and Wilkinson (1970);
Abdelmalek (1971); ?le=ons (1974); Daniel et all
(1976); Bjorck (1978). Bjorck and Golub (1973)
used Vandermonde matrices.

4. :?roblems '.hi-:h are mathematically rao..'''-
deficient. Examples: i.a.wson and :!anson (1974),
p. 277 and p. 311, using a Fortran =unction to
generate data; Velleman, Seaman and Allen (1977).

5. Problems constructed from a set of
orthogonal vectors. Example: Eastings (1972).

s = (tu
'1 i'

r =iZijui ,
Jy s s

J '1

known as a correlation

'1- -- 1...:.,
n

r =x:r

and S =

ap

a =R -lr =xx x:r

Ii' we let

r jk = IZijZik.
SjSk

Rxx = (rJk) for. J=2, 3, ••• ,p; k=2,3, ... ,p;

r py
The (p-1)x(p-l) lIlatrL-<: Rxx is
catrix.

formulas
b = ajsy for j=2.3, ••••p,
j s

j

and bl = Y- b2X2 - b3X3 - ••. - bpXp '

Formulas fOr expressing the diagonals of (X'X)-l
-1 -in terms of Rxx ' xj and Sj are given in Seber

(1977) and Horiba (1971).
Maindonald (1977), in his article discussing

least squares computations based on the correlation

e _ tx",x j - 1. 1. ,
n

Zij = xij - x j '

Sj = (IZij2)\
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as an exercise in computing an upper bound on the
condition number of X as a function of

Lawson and Hanson (1974), p. 127. u3ea the
ma.trix

if n is the largest number en the computer such
that 1.0 + n =1 in floating point arithmetic, then
whenever e: < 1Ti/2 the rank of the computed matrix
X'X will be one. No matter how accurate the linear
equation solver, it is impossible to solve the
normal equations X'XS = X'y.

This problem (sometimes with variations) has
been widely used by later authors - e.g., Bjorck
(1967), Dahlquist and Bjorck (1974).

Stewart (1973), p. 228, gave the matrix

1 1 1 1 1 e:
e: 0 0 0 0 0

0 e: 0 0 0 -5
X .. 0 0 e: 0 0 y .. 5

0 0 0 e: 0 -5
0 0 0 0 e: 0

In the matrix X'X all diagonal terlllS equal 1 + 2e:
and all off-diagonal terlllS equal 1. For e: :p 0 the
rank of X'X is five since the eigenvalues are

2 2 2 2 2 Golub (196;) noted that5 + e: , e: , e: , e: , e:

]
1 - e:

1
1
1[x =

in the accuracy obtainable from Chclesky
decomposition 'Nith trAt obtainable from
transformations. They obse!"'Ted that when one '.l'Orks
with a fixed precision, a larger class of problems
can be solved usir.g Householder tra..."lsI'or:ns.tions than
can be solved by :'orming the normal equations and
using the CholesrJ decomposition.

The three examples displayed above are quite
useful pedagogically, but they are not suitable :'or
comparing the correlation matrix method with other
methods for obtaining squares solutions.
(This is because example lacks a constant
column vector a..."ld the other two examples lead to
a correlation matrix having but one element,
Exx = [1].)

7. Problell1S having special features, such as:
(a) Solution vector is sUbject to linear con-

straints. Examples: Bjorck and Golub (1967);
Bjorck (1968); Stoer (1971). Hastings (1972);
Gerig and Gallant (1975).

(b) Observations have unequal variances.
Examples: Shampine (1975); Bjorck (1978); Wampler
(submitted) •

(c) Data matrix X is sparse. Example:
Gentleman (1975).

(d) Solutions are known for several regression
methods, as least squares, least absolute residuals,
and other robust methods. Example: Rolland (1976).

4. A RECEN'l' LARGE-5CALE STUDY
Velleman, Seaman and Allen (1977) recently

reported the results of a large-scale evaluation of
least squares regression routines available in
widely distributed statistical packages. Velleman
and co-workers (1975, 1977) devised'a test
procedure which considered five factors that can
lead to computational difficulties:

(1) The col'.1lllns of X can become highly
collinear.

(2) A column of X can have a coefficien1: of
variation which approaches zero.

(3) H2, the coefficient of determination,
can approach zero, indicating failure of
the statistical model.

(4) The absolute magnitude of the nUI:lbers in
X can become large, defeating absolute
checks for rank-deficiency.

( 5) The ratio of the =gnitude of y to that
of X can vary widely.

The procedure which was developed by Velleman
et fer probing these five generated
sets of data through use of the singular value
decomposition of the matrix X. Some the
generated data sets were mathematically rank-
ieficient. The seven statistical package regression
routines which evaluated displayed considerable
variation in the accuracy obtained as well as in
the protection given to users against computational
disasters.

5. NEAT, MATSEMATICAL '!'EST PROBLEI-!s
Lauchli (1961) introduced the following test

problem:
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=a
=d6 =

for all values of e. The diagonals dj of' (X'X)-l
which one needs for obtaining standard deviations
of the coefficients, are dl = 5/2,

10 + 4d = d = •
2 3 16

I have carried out numerical experiments on
this problem using computer programs based on the
following four methods:

(1) Inversion of the :natri."!: of correlation
coefficients using the subroutines SYML.'lV and CHOL
of Healy (1968) for inverting symmetric semi-
definite matrix via Cholesky decomposition.

(2) Householder transformation algorit1".m
using TIJY' Fortran version of the Bjorck-Golub (1967)
ugorithm, with iterative refinement of the solution
omitted.

( 3) Modified Gram-5chmidt ugorithm using L2A
subroutine of Wampler (submit'ted), ,n.th i terative
refinement of the solution omitted.

(4) Like (3), but with iterative refinement
included.

The computing ;,"&s done on a Univac 1106. All
computations were done in single precision arith-
metic (approximately 8 digits) except that
program (4) a.ccumulated inner products in double
precision.

1 t d ul· f '0-2 10-4 d 10-5Qe ec e res 'ts, or £ = an ,
are given in Table 1 for computed ccefficients
in Table 2 for compu'ted diagonal terms of (x'X)-l.

We note that as e: becomes smaller, the
of cer'tain computed results de'teriorates. All four
programs found the i:lput matrix to 1::e of full
for e > 10-7 but reported deficiency fer
e: = 10=8.

The accuracy of programs (1), (2) and (3) is
abou't the same for coefficients b2 and b3• In the
case of b1 , the "intercept". term, program (1) which
used the correlation matrix obtained
accuracy compared with programs (2) and (3). Pro-
gram (4), which uses iterative refinement, gives
information on the behavior of the refinement pro-
cedure. The fact that the initial solutions for
e: = 10-4 and 10-5 were estimated to have less
one correct digit is a clear indication of the i21-
conditioning of the Frob1ec.

-1 + :':]
1 + .&

1 ,
-4 + 16&2

1

3-'4

°4
2

2

Y' =

1 1
'Ii _ l6e:2

1 + &

2 + e:

2 - e:
1 - e:

3-,...
L+

= 10-k , k=O,1,2, ••• and

=R -1
;cc

Taking e:

ft
( , )-1 l3X X =;

4

and

one obtains

R =xx:

where & > 0 and the Y'. are any reu numbers. The,
matrices R -1 and for this example are:

AA. xx:

6. A NEW TEST PROBLEM
It is sometimes claimed that when one obtains

least squares solutions via the correlation matrix,
in which the raw data are centered about their
means and divided by their standard deviations,
the numerical instability which can arise in solving
the normaJ. equations is eliminated. One may ask:
How does the correlation matrix method compare with
orthogonalization methods (such as Householder
transformations or modified Gram-8chmidt) which work
directly with the data matrix X?

Consider the following example. Let

1



TABLE 1. CCMl?UTED SOLUTION VECTORS FHCM FOUR PROORAMS
-2 _4 -5

It .. 10 It .. 10 It .. 10

PRCGRAM 1. c1 -0.99998595 -0.65165032 -1.1819804
Inversion of c2 0.99999532 1.0606601 0.70710677Correlation
Matrix c3 0.99999532 0.70710677 1.4142135

PRCGRAM 2. c1 -0.99999997 -0.99999993 -0.99999916
!ouseholder c2 1.0000200 o. '74929179 -17.810433Transformations

c; Q.99998ooo 1.2507082 19.810433

PROORAM 3. c1 -1.0000000 -1.0000000 -0.99999999
Modified c2 0.99999954 0.90688419 28.936355Gram-Schmidt

c3 1.0000005 1.0931158 -26.936357

PROORAM 4. °1 -1.0000000 -1.0000000 -0.99999998
Modified c2 0.99999070 0.81372793 19.617495Gram-Schmidt
rith Iterative c3 1.0000093 1.1862721 -17.61'7495
Refinement

Number of iterations 2 3 4
Est. correct digits
in initial 5.l 0.8 0.3

TABLE 2. COMPUTED DIAGONALS OF (X IX)-l FRCM T!REE PRCGRAMS
-2 -4

It =10-5t: =10 It =10
PRCGRA."1 1. d1 2.5000000 2.3750000 2.0000000Inversion of d2 625.25195 7456540.1 13421772.Correlation
Matrix d3 625.25195 7456540.1 13421772.

PRCGRAM 2. d1 2.5000000 2.;000001 2.500001;Householder d2 625.25026 6249792.2 623761330.Trat:sfcI""...ations
d3 625.25024 6249792.3 623761;40.

PRCGEI.M ;. d1 2.5000001 2.4999999 2.;000000Modified d2 625.24962 6250486.1 624926620.Gram-Sci:lllidt
d3 625.24959 6250486.6 624926670.

Exact Solution d1 2.5000000 2.;000000 2.;000000
d2 625.25000 6250000.25 625000000.25
d3 625.25000 62;0000.25 62;000000.2;
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In the case of the diagonal terms of (X'X)-l,
i.e., the quantities needed for obtaining standard
deviations of the computed coefficients, the accuracy
of program (1) was noticeably poorer than that of
programs (2) and (3) for the smaller values of e:.
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Portable Graphical Software for Data Analysis

Richard A. Becker

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

Three distinct problems arise in providing a library of portable graphical routines for data
analysis. First, the language used must be widely available and standardized. Second, the routines
must deal with a wide variety of graphics devices. Finally, operating system considerations will
affect overall portability.

These problems may be dealt with by using a language such as FORTRAN, by providing a stan-
dard device interface, and by isolating operating system dependencies in small primitive mojules.
This approach has been implemented at Bell Laboratories in the GR-Z graphical system. which is
currently running on a number of different computing systems.

1. Background
Graphicai techniques are an integral part of the field

of data analysis, and new forms of graphical displays are an
important product of current statistical research. Much of
this new work utilizes computer graphics. Portable graphi-
cal software (which is easily moved from. one computing
environment to another), provides an excellent means of
communicating the details of the plotting technique.

Unlike most algorithms, graphical routines operate
with specialized output devices that are not fully supported
by the operating system. In addition, the rapid growth of
the hardware end of the graphics field makes it important
for graphical routines to be moved from one device to
another without rewriting. Since the computing environ-
ment encompasses the output device. graphical routines
have extra problems of portability.

Three basic approaches to providing graphical
software use either: (l) an existing programming language
which inco.rporates graphical operations, (2) a preprocessor
to add graphics to a non-graphic language, or (3) a subrou-
tine library in conjunction with an existing language. The
first approach is limited; there are few languages with
bvilt-in graphical primitives, and they often provide only
limited facilities [Luehrmannl. Provision of software useful
for data analysis within the context of such a language still
requires a subroutine library to provide high-level data-
analytic operations.

The second approach can provide improved syntax,
but must eventually rely on support routines. Therefore, it
too is dependent on the subroutine library approach.

The third method, using an existing general-purpose
language augmented by a subroutine library of graphical
operations, provides the advantages of flexibility and.. gen-
eral ease of implementation, and allows a choice of
currently available and familiar languages. Since the other
two approaches require support libraries, this method
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appears to be the most basic. Consequently, the remainder
of this paper will assume a subroutine library approach to
providing portable graphical software.

Run-time device support routines are required for
any graphical system, and these routines often require _
interaction with the operating system. With a language, ..
run-time routines are normally provided on each machine
to support specific graphics devices. The interface with the
operating system is provided by the compiler writer (often
the manufacturer of the hardware.)·

With a subroutine library, it is often difficult to pro-
vide appropriate operating system interactions. One way
this may be accomplished is by postulating a basic set of
graphical subroutines to be implemented on each machine
[SIGGRAPHl. Another approach assumes a small set of
primitive system-related routines, and tries to provide
machine independent !'Outines for the rest of the system.
This method will be explored further in the foHowing sec-
tions.

2, Portable Graphical Subroutines
There are several dimensions to the problem of pro-

viding portabie graphical subroutines. Perhaps most obvi-
ous (and best understood) is the problem of writing in a
computer language .hat is readily available on different
machines and is sufficiently standardized to give predictable
reSUlts.

Another problem of portability involves moving of
graphical software from one device to another. The prob-
lems of accomplishing this are less-well understood than for
language portabiiity.

• This sounds ideal, but note, however. the need to rely on
the manufacturer to provide support for new devices, etc.



Finally, since subroutine libraries have no special
ability to interface with the operating system, certain prob<-
iems arise. from interactions with the operating system.
Portable subroutines must still go through machine-
dependent processes such as library set-up and search. In
addition, device control and character set problems may
also manifest themselves.

The next three sections will discuss these three areas
in more detail.

2.1. Language Aspects 01 Portability
The merits of choosing one programming language

over another for the purpose of graphics could be debated
endlessly. However, FORTRAN seems to be a reasonable
choice due to' its wide availability, its ability to have
separately compiled routines, and a fairly wide body of
experience regarding the ponability of FORTRAN.

One important feature of FORTRAN is the existance
of a well-defined portable subset of the language along with
a software tool to ensure adherence to the subset. The
por..able subset of Standard FORTRAN [ANSI} is known as
PFORT [Ryderl. The PFORT Verifier is a (portable) FOR-
TRAN program which checks for adherence to this rather
restrictive language. Not only can the PFORT Verifier be
used to check the portability of the graphics system rou·
tines, but it can also check the portability of applications
routines that use the graphics system.e An would be well on the language front if it were
possible to stick strictly to PFORT, but, unfortunately, this
is impossible if a useful graphical system is to result. The
problem arises because of FORTRAN's limited treatment
of character strings. The best user interface to FORTRAN
based subroutines is probably based on character strings
with a form of delimiter or end-of-string marker. As an
example, suppose the routine TEXT displays a text suing
on a plot Then, typically, the user would like to include a
statement of the form

CALL TEXT(X,Y."THIS IS A STRING'")
in his program to cause the characters to appear on the
plot.·· Character strings are typically stored in packed form
by a compiler. Since the graphics system needs to find the
terminator (and perhaps other graphics control characters in
the string), it needs to be able to access individual charac-
ters in the string. FORTRAN has no facility to access indi-
vidual characters.

To do this, primitive routines can be defined which
retrieve and store a single character in a string. Alterna-
tively, primitive routines can pack and unpack entire char·
acter strings. Either of these approaches provides enough
power for the necessary character manipulation. On any
given machine it is normally trivial to implement these

•• A Hollerith cor.stant could be used in place of the quoteda string in this call. The termination character (') could be ad-
., ded by a preprocesso. Alternatively, the length of the charac-

ter string could be given as another argument: however, since
computers count better than people. the string terminator
seems preferable.
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functions, either in assembly language or at times in non-
portable FORTRAN.

The portable software package may also need to know
something about its environment. To handle this, one
other machine-dependent function can be assumed, which
will provide information describing such characteristics of
the local system as the number of characters that fit in an
integer variable, the string terminator, and the output unit
number. This technique is used in [PORT]. This infonna-
tion could also be supplied by a preprocessor.

2.2. Adaptability to Various Output Devic:es
To a large extent the device-to-device portability of

graphi.cs routines depends on the existence of a hierarchical
Structure of routines that make up the system. This concept
is illustrated by Figure 1, which shows how high-level rou-
tines, such as those designed to produce scatter plots, etc.,
are built upon a succession of intermediate and low-level
routines. Eventually all of the graphical operations carried
out within the system are mapped into the operations of
drawing lines, plotting points and text, and scaling. Scaling
encompasses the operations necessary to transform the
various plotting coordinates into physical coordinates
needed by the plotting device.

Routines at this level are typical of those supported
by vendor-supplied software for graphics terminals [Tel<,
HPJ. At a level somewhat more primitive, operations are
provided that deal in physical (device) coordinates, and per-
form such simple tasks as positioning the device at a
specified point, plotting a single character at the current
position, and drawing a line segment. These operations are
characteristic of the actual hardware interface to graphics
terminais.

When faced with the problem of interfacing a new
graphics device to the portable system. it is only necessary
to decide what ievel of routines is most like the operations
required by the terminal. Primitive devices (line printers,
Diablo terminals) operate at the lowest level, whiie newer
microprocessor based devices often can handle some of the
scaling operations, generation of text strings, etc.·

The critical point is that if the system is organized
imo a wei! defined set of routines that provide a number of
levels of support, it is normally easy to construct a device
interface. The operations that any new device can carry out
usuany each correspond to a routine at one of the levels of
the system.

2.3. Operating S}'stem Considerations
Just because the code to support a particular device

fits in well with the hierarchy mentioned in Section 2.2. it
does not mean that overall device support is easy. Charac-
ter codes can complicate matters. For example, on many

• There are, in addition. some terminalS with operations more
complex than ordinarily required for most data analytic appli·
cations. A more comprehensive graphics package is required
to adequateiy utiiize hardware features such as dynamic rota·
tion and 3-dimensional transformations [SIGGRAPHl.
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terminals, certain ASCII characters perform specific
device-control functions, sucb as erasing the screen. It is
easy for the software supporting the device to determine
the .appropriate ASCII characters to send to tbe terminal.
However, operating systems often make it difficult to get
the control characters to tbe terminal. For example, stan-
dard output routines may assume that any characters going
to tbe terminal must be transliterated from the machine's
own internal character set to ASCII, and there may be no
internal characters that transliterate to ASCII control char-
acters. Because of this, it is necessary to assume a primi-
tive routine which will take a set of ASCII characters and
get them transmitted to the device. This routine is nor-
mally easy to write for any particular installation.

Another operating system c!,nsideration that crops
up early in the subroutine library approach concerns the
exact way that libraries are created and searched on tbe tar-
get machine. One possible organization of a subroutine-
based graphics system consists of one library for the

device-independent code, and then a number of device
libraries for the device-dependent routines. The local
operating system can conspire against this approach in
several ways.

It may be necessary to organize the routines in a
specific order on the libraries. Sequential libraries
often assume that the routines are ordered so that
any routine appears on the library before all routines
that it calls. In a hierarchically structured set of rou-
tines this ordering can be determined, but it is incon-
venient.
It may be difficult or expensive to create libraries,
e.g., on IBM systems, separate compile/link-edit
steps are necessary for each routine on the library. ..
Either of these problems can mean the difference •

between the easy installation of the portable graphics sys-
tem and installation that requires a substantial amount of
work and programming talent.



Even more mundane, but still not easy to solve, are
the problems of transmission of the original source of the
system to the target machine. The conspiracy of character
sets and tape formats often leads to relatively difficult
operations on the receiving end.

3. ExperienCe with GR-Z
GR-Z is the name of a portable set of algorithms

designed at Bell Laboratories. The features of the system
which make it especially suitable to graphics for data
analysis have been described in [GR-ZL MOat of the con-
siderations of portability mentioned earlier are reflected in
the design of the GR-Z system.

The portability of GR-Z has been tested by installa-
tion on a number of different computing systems, including
Honeywell 6000, IBM 370, CDC 6600, Harris 7, and
DEC 10. Installation of GR-Z on a new machine typically
takes one day, with the majority of that time occupied in
initial reading of the source tape and creation of the p,!imi-
tive routines needed for the target machine.

GR-Z supports a number of different graphical dev-
ices. ranging from line printers to storage scopes and
interactive pen plotters. The device driver code for the
printer is written in portable FORTRAN. A number of
off-line devices have been supported by connections to
another low-level graphics system. Creation of a GR-Z
device driver routine is generally easy, so that useful graph-
ics can be produced in several hours.

A master copy of the source code for GR-Z is kept in
a machine independent form. When a version of GR-Z is
produced for a new machine, a special system generation
procedure is used to produce code with character strings
tailored to the specific characteristics of the target machine.

In addition to source code for a number of devices
and the relatively large amount of device-independent code,
there is also an extensive set of test routines which is sup-
plied to test both GR-Z and the locally written primitive
routines.

4. Conclusion
It is possible to design portable graphical software.

Through the use of software tools to verify the portability
of the source code, it is possible to provide routines that
will compile correctly at first try on a new machine. A suit-
able hierarchical structure of routines can make it easy to
support many different devices. Properly chosen primitive
routines can iSOlate operating system dependencies. How-
ever, in spite of these considerations, the operating system
can provide problems that are difficult and not soluble in
general.
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ABSTRACT

The scatterplot is one of the most powerful and most used statistical tools. With only a small
amount of additional effort, the visual information can be greatly increased by plotting another set of
points whose purpose is to summarize some aspect of the scatterplot.

1. INTRODUCTION
Figure 1 shows a scatterplot of points (Xi'Yi) , for

i '"" l, ... ,n, where n == 50. In Figure 2 the same scatter-
plot is summarized by another set of points (x;,Y) , for
i '"" l, ... ,n, which are plotted by joining successive values
by straight lines. The point (Xi'Yi) portrays the middle of
the distribution of the variable on the vertical axis, Y,
given the value of the variable on the horizontal axis,
X == Xi' The formation of the new points will be referred
to as "smoothing" the scatterplot. The point (Xi'Y) is
called the smooth at Xi andYi is called the fitted value at Xi'

The example in Figure 1 was generated by taking
Xi'"" i, for i == 1,... ,50 and

Yi == .02 Xi + Ei ,

where the E; are a random sample from a normal distribu-
tion with mean 0 and variance 1. The linear effect is not
easily perceived from the scatterplot alone, but is revealed
when the smooth is superimposed.

In this paper we shall discuss a method for smoothing
scatterplots called robust locally weighted regression. The
details of the method are given in Section 2. Various visual
considerations and alternative plotting procedures are dis-
cussed in Section 3 and computational matters are discussed
in Section 4. References [11. [2], [3, p. 225], [4], [5,
Chapters 8 and 9], and [6] describe other methods for
smoothing scatterplots.

2. ROBUST LOCALLY WEIGHTED REGRESSION
The method of smoothing used in Figure 2, which is

called robust locally weighted regression, is defined by the
following sequence:

(1) Let

where 1(;d == 1 if Ixi 1 and lex) == 0 if Ixi > 1.
Let

B(x) == O-x2)21(x) .
(2) For each i let hi be the distance from Xi to the,- e

th nearest neighbor of Xi' That is h; is the roth smallest
number among Ix; -xjl. for j == l, ... ,n. For k == 1, ... ,n
let

Wk(X) == w(hi-1(Xk-X)),

(3) For each i compute and the inter-
cept and slope respectively, of a linear regression 'of Yk on
Xk using weighted

A
least squa{es with weight Wk(X) at

(Xk,Yk)' That is. (3o(x) and {3\ (x) are the values of {3o
and (31 which minimize

"L Wk(X;) (Y-k -(30-{31XkJ2 .
k=l

Let

Y; == +
be the fitted value of the line at x;.

(4) Let

ei ==Yi - Y;
be the residuals from the current fitted values. Let s be the
median of the Iei I. Define robustness weights by

e·
5k == B .

(5) Recompute Y; for each i by fitting a line using e
weighted least squares with weight 5kWk(X;) at (Xk,Yk)'

(6) Repeatedly carry out steps (4) and (5) a total of
one, two, or three times or until convergence occurs. The



final Yi are robust locally weighted regression fitted values.
The weights Wk(X) decrease as the distance of Xk

from Xi increases. Thus points whose abscissas are close to
Xi playa large role in the determination of Yi while points
far away play little or no role. Increasing r, the number of
nearest neighbors, tends to increase the smoothness of the
smoothed points (Xi,Y), Choosing f to be 20 to 80 of n
should serve most purposes. A practical default value,
used in the example of Figures 1 and 2 is .5 n. The "tri-
cube" weight function, W(x), is used to weight neighbors
since it results in certain desirable statistical properties [7].

The iterative fitting in steps (4) to (6) is carried out
to achieve a robust smooth in which a small fraction of
deviant points does not distort the results. Deviant points
tend to have small robustness weights, 8k> and therefore do
not play a large role in the determination of the smoothed
values. The "bisquare" weight function, B (x), is used
since other investigations have shown it to perform well for
robust estimation of location [8] and for robust regression
[9]. Two iterations of steps (4) and (5) are generally quite
sufficient; this is the number used in the example of Fig-
ures 1 and 2.

3. VISUAL CONSIDERATIONS

3.1 Plotting the Smooth
The smoothed points can be plotted by joining suc-

cessive points by straight lines as in Figure 2 or by symbols
at the points (XiS). When the smooth is superimposed on
the scatterplot the first method provides greater visual
discrimination with the points of the scatterplot. But using
lines raises the danger of an inappropriate interpolation.
One possible approach is to use symbols initially when
analyzing the data; then if a particular plot is needed for
further use, such as presentation to others, the lines can be
used if the initial plot indicates that linear interpolation
would not lead to a distortion of the results.

The smoothed values also can be plotted on a
separate grid with the same scales as the original scatterplot.
This is particulariy attractive for low resolution plots such
as printer plots.

3.2 Symmetric Summaries
The method of summarizing the scatterplot in Section

2 is appropriate when Y is the response or dependent vari-
able and X is the independent variable. In cases where nei-
ther variable can be designated as the response, the scatter-
plot can be summarized by plotting the smooth of Y given
X and the smooth of X given Y.

3.3 Summarizing Scale and Choosing a Scale Stabilizing
Transformation

The smoothed points in Figure I portray the location
of the distribution of Y given X = Xi' It is often useful to
have, in addition, a summary of the scale. This can be
done by plotting IYi-Yil against Xi and computing and
plotting a smooth, (Xi,Si), of this scatterplot.

If the scale of Yi is a function, 0' (IJ.), of the location
ofYi then the transformation of Yi which stabilizes the scale
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[10, p. 425] is

t = J1..
0'

Suppose t is a power transformation

1
£::1.

()_ p p.=O
t Il - log p. p = 0 .

Tukey [5, p. 103] has suggested a procedure for choosing a
scale stabilizing power transformation for batches of
numbers, which can be extended to choosing one for scat-
terplots. From the above equations we have

log u(lJ.) = -log t'(p.) == -(p -1)log IJ. •

A plot of Si vs. Yi describes the function O'(p.). Thus a
plot of log Si vs. -log Yi will, apart from sampling fluctua-
tions, follow a line with slope p -1. Thus p can be chosen
by fitting a line to the plot, either by eye or by some
numerical method.

3.4 Judging the Amount of Smoothing
The most practical method for choosing f, the

number of nearest neighbors, is to study the visual display.
The objective is to choose f as large as possible without dis-
torting the underlying pattern in the scatterplot.

The fitted value, Yi' in step (3) of Section 2 can be
written as

n
Yi == L fk(Xi)Yk,

k=1

where fk(Xi) depends only on XI" •. ,xn• The equivalent
number of parameters

II II

enp = 2 !: r;Cx;J - !: fk2(x)
i-I i.k-I

also can be used to judge the relative amounts of smooth-
ing for different values of f. An interpretation of enp arises
from considering the variability in the residuals, ej, of the
fitted values in (3). Suppose the Yi are independent and
have common variance 0'2 then

IIE!: e/
i=1enp = n - _...:.-=---
0'2

Suppose the ei were the residuals from a linear least
squares regression of Yi on Xi using q parameters, then enp
would be equal to q. Thus enp for locally weighted regres-
sion can be interpreted as an equivalent number of parame-
ters.

In [7] it is shown that enp can be approximated
(when the weight function is tricube) by

2(1 + .!!.) .
f

Thus for the default value of .!... ....5 described in Section
n

2, the approximate equivalent number of parameters is 6.
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3.5 Nearest Neighbor vs. Equal Resolution
An alternative to choosing hi through nearest neigh-

bors is to use a constant value h for the computation of all
fitted values. This provides equal resolution over all
regions of the scatterplot but leads to appreciable increases
in the variance at isolated points and at the ends of the
scatterplot. The selection of the nearest neighbor routine is
based on its more satisfactory performance, particularly at
the ends of the scatterplot, for the applications which I
have encountered. However, other users may find equal
resolution more satisfactory in other applications.

4. COMPUTATIONAL CONSIDERATIONS

4.1 Reducing the Computations
Suppose the Xi are ordered from smallest to largest

and let x a(;), ••• ,xb(;) be the ordered r nearest neighbors
of Xi' The values of a (i+ 1) and b(i+ 1) can be found
from a (i) and b (i) using the following scheme:

(l) Let A = a (i) and B = b(i).
(2) Let dA = x i+l - XA and dB = x8+1 - Xi+!'

(4) a. If dA dB then a (i+1) = A and
b(i+l) = B.
b. If dA > dB replace A by A +1 and B by
B+1 and return to (2).

(4) h i+1 is the maximum of Xi+l - XA and
xB - Xi+l'

Thus this scheme can be used to save computations by
computing the fitted values at xl> then x2, etc. Only
Xa(i), ••• ,Xb(;) need be considered in the weighted least
squares computation of Yi since W(x) = 0 for Ixi 1.
This saving would not be achieved by using a weight func-
tion which becomes small but not zero for large x, such as
the normal probability density.

4.2 Computation Time
An experiment was run to determine the run time of

the smooth using the scheme in Section 4.1 for the nearest
neighbor algorithm in Section 2 with one iteration. (The
portable FORTRAN routine is available from the author.)
Each additional iteration would increase the time by slightly
less than 50 of the time required for one iteration. Con-
sideration of the algorithm shows that the run time is
independent of the configuration of the Xi' (This would
not be true for the equal resolution algorithm.) The experi-
ment was run for all 20 combinations of 5 values of
f = r / n <.2, .4, .6, .8, 1.0) and 4 values of n (25, 50, 100, .
and 200). A least squares fit to the log (base 10) run time
(cpu milleseconds) resulted in the fitted equation

log lime = -.49 + 1.98 log n + .87 log f .
The estimate of the residual standard error is the standard
error of the log times is .718 log milleseconds. Thus the
equation provides a very close fit to the data.
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4.3 Thinning
The computations for the nearest neighbor algorithm

are, as shown in the previous section, approximately of the
order /'9 n2• For scatterplots with fewer than 50 to 100
points the computations present no problems. Plots with
more points generally need not incur the cost of using all
the points since computing the smooth at a subset of the
points will generally perform satisfactorily. (The smooth
can, of course, still be superimposed on the full scatter-
plot.>

Two possible methods of thinning are to select every
loth value of the ordered Xi or to form a grid of equally
spaced points on the horizontal axis and select, for each
grid value, the Xi which is closest to the value.

4.4 Locally Weighted Regression of Order d
Steps (3) and (5) of the procedure in Section 2 can

be generalized by fitting a polynomial of degree d, where d
is a non-negative integer. Choosing d = 1 appears to
strike a good balance between computational ease and the
need for flexibility to reproduce patterns in the data. The
case d = 0 is the simplest, computationally, but in the
practical situation an assumption of local linearity seems to
serve far better than an assumption of local constancy since
the practice is to plot variables which are related to one
another. For d = 2, however, computational considera-
tions begin to override the need for having flexibility.
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COMPUTER-GENERATED MOVIES AS AN ANALYTIC TOOL

by

Raymond L. Elliott
Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87545

ABSTRACT

One of the problems faced by the users of large, sophisticated
modeling programs at the Los Alamos Scientific Laboratory (LASL) is
the analysis of the results of their calculations. One of the more
productive and frequently spectacular methods is the production of
computer-generated movies. This paper presents an overview of the
generation of computer movies at LASL. The hardware, software, and
generation techniques are briefly discussed.

A number of programs at the Los Alamos
Scientific Laboratory (LASL) are concerned
with the modeling of physical phenomena as a
function of time. The applications vary
tremendously from the collision of atoms to
the depletion of an oil reservoir; from the
modeling of an ion accelerator to cooling of
a metal mold; from the detonation of high
explosives to the emergency cooling of a
reactor vessel. These activities, plus many
others, have several things in common. They
all are modeled on large computers, are time
dependent, and use computer graphics to
interpret the results.

The people involved with these programs
make extensive use of comnuters and are faced
with the continuing problem of interpreting
the results of their calculations. A common
method is to generate volumes of computer
listings. These are not readily assimilated
and are of limited use (other than to serve
notice to superVisors that people are produc-
ing results, i.e., something that can be
touched). Another common method to is gen-
erate graphic plots of parameters. These can
be on microfiche, microfilm, paper, or graph-
ics terminals. for interpreting computer
results, a picture is worth much more than a
thousand numbers. Frequently, the user is
able to understand his calculations with a
few plots since a large amount of information
is presented jn a concise, easy-to-understand
form. This is sufficient for many applica-
tions. For others, another technique is used
(and, in many cases, required), Le., the
production of computer-generated movies,
which typically show the modeling of physical
phenomena as a function of time. .

lOl

Computer-generated movies are used ori-
marily in two ways. They are used as an'ana-
lytic tool in the interpretation of computer
calculations. They are also used to report
results of the computer calculations to
management and other interested people.
These reports are typically much better
received than a pile of paper. The content
of the movie varies depending on its intended
use. In general, movies used as analytic
tools contain a large amount of information
and must be viewed repeatedly to gather that
information. A movie used to show results to
others should be simple enough to be under-
stood at a single showing.

Computer-generated movies. are made bv
producing each frame separately. Any ?lot-
ting utility may be used to specify the lines
and symbols that are used to draw each frame.
The computer ?rogram that generates the data
for the movie writes the information for
every line and symbol for every frame on a
file or set of files. For a como lex movie
the files may contain tens of millions of '
computer words. files are processed on a
microfilm recorder that reads the data from
the file, draws the picture on a cathode-ray
tube (CRT), and exposes the film. The movies
are generally produced on 16-mm film, how-
ever, it is possible to generate 35-mm film.
Color is produced by placing computer-
controlled color filters in the optic path
between the CRT and the film.

Computer-generated movies are exoensive.
They require significant amounts of computer
time, microfilm recorder time, special



viewing equipment, and people time. Is it
worth the cost? Most users find the benefits
are substantial and are worth far more than
the cost. Some have made the generation of
movies an integral part of their research
process.

There are many techniques currently in
use to minimize the cost, while retaining all
the desired information. One technique is to
process only as many frames as needed to
describe the problem. Many processes can be
sufficiently described in about one or two
hundred frames. At a projection rate of 16
frames/second, the movie will be 6 to 12
seconds long. However, this is insufficient
viewing time to interpret the results. One
solution to this problem is to generate mul-
tiple copies of each frame or to generate
interpolated frames to make the movie any
length desired. A far simpler and less
expensive solution is to view the movie on a
variable speed, reversible projector--slowing
down to one frame per second if needed or
stopping and reversing to examine an
interesting segment of the movie. A variable
speed, reversible projector is a wise invest-
ment if one is generating computer movies
regularly.

Another technique used on some of the
longer running production programs is the
generation of a data file and postprocessing
this file to make a moYie. The file contains
data sets saved at various times the
execution of the parent problem. Each-data
set contains those parameters the user needs
to his results. Thus, the file
contains enough information to describe the
complete computer calculation of a given
problem. The problem times of the data sets
need not be on a fixed interval. This
enables one to save little data when the
aCtion is smooth and much data when the
action is turbulent. The postprocessing
movie program generates frames on a fixed
interval using interpolation when needed.
Many versions may be generated from the same
data file using different problem parameters
and plotting techniques, thus giving the user
many ways to look at his data. Also, data
from different computer runs may be combined
to give problem comparisons. As a side bene-
fit, the user can take advantage of an
interactive graphics system to lOOk at and
modify pictures made from this data prior to
making the movies.

Some users take advantage of another
technique in their movie generation. They
simply put as much information as possible on
each fraMe. This results in movies with many
distinct plots on separate areas of the
frame. Each plot may become very complex.
This naturally results in a movie that con-
tains a very large amount of information and
must be viewed many times to assimilate the
information. This technique provides another
way to correlate the interaction many
parameters during the course of a computer
run.

Most computer-generated movies use
color; the incremental cost over black and
white is small. Color provides an easy way
to present more information per frame. It is
used to highlight areas of interest and to
show more features, such as material
differences. contour line identification, and
problem conditions. The uses of color are as
varied as the applications and have become an
essential tool in those applications.

The Los Alamos Scientific Labora-tory has
a number of movies containing computer-
generated segments that as reports
on various activities. Most of these seg-
ments were initially generated as a part of
the analysis of computer output. These
movies demonstrate a variety of techniques
for problem analysis. The films may be bor-
rowed for short periods for educational,
nonprofit, and noncommercial screening.
Computer-generated movies such as these are
playing an ever increasing role in the
interpretation of the results of computer
calculations and are becoming one of the more
powerful tools available to scientists at the
Los Alamos Scientific Laboratory.

REFERENCES

COMPUTER-GENERATED MOVIES

FILM-Y-264 THREE-DIMENS:OMAL COMPUTER
STUDIES. 1973

Color, sound, showing time 3 1/2
minutes.

This demonstrates the use of
computer-generated movies as an aid in
the interpretation of computer calcula-
tions.

FILH-Y-269 PHYSICAL WITH
COMPUTER COLOR CiENERATIONS.
1975

Color, sound, showing time 5
minutes.

This film demonstrates the computer
display of the same problem in three
different ways: Mesh Plot, Contour
Plot, and 3D Isometric Plot.

FILM-Y-271 SOLAR ARCHITECTURE. 1973
Color, sound, showing time 4 1/2

. minutes.
This film demonstrates the use of

three-dimensional computer graphics to
achieve the best solar collector orien-
tation during architectural planning.
The National Security and Resources
Study Center at Los Alamos is the exam-
ple used.
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FILM-Y-281 COMPUTER MOVIES AID TO ENERGY
RESEARCH. 1975

Color, sound, showing time 10
minutes.

This film shows four areas of
energy research where computer-generated
motion pictures are used in design con-
siderations. The four areas are: High
Powered Laser Pulses, Solar Heating and
Cooling, Laser Fusion Power Plants, and
Pollution Studies of Power Plant Stacks.

FILM-Y-285 MATRICES AND THEIR SINGULAR
VALUES. , 976

Color, sound, showing time 6 1/2
minutes.

Using computer graphics, a visual
as well as oral explanation made con-
cerning the importance of matrices in
the solution of certain types of prob-
lems. The actual solution procedure is
discussed and visually demonstrated.

FILM-Y-360 THERMAL ANALYSIS IN. MOLD
DESIGN. , 917

Color, sound, showing time 4
minutes.

All of the visuals in this short
film were produced by computer. These
graphics represent the mathematical
modeling of experiments in mold design.
The developmental history of a specific
mold is used to the process.

e To borrow these films write to:
Los Alamos Scientific Laboratory
Attention: Report Librarian
P.O. Sox 1663, MS 364
Los Alamos, New Mexico 87545
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Computer Graphics Standards
. and

Statistical Data Plotting

James D. Foley
Department of Electrical Engineering and Computer Science

The George Washington University
Washington, D.C. 20052

Computer-generated plots are important for statistical data analysis, yet many
plot programs cannot be shared because there are no generally-accepted graphics
package si;andards. This paper discusses the advantages and disadvantages of
graphics standardization, describes the various ways in which graphics standardi-
zation might be approached, and presents the proposed standard graphics subroutine
package known as the Core System.

1. Introduction

graphs and plots have gained
an important place in the world of statistics for use
in data analysis and presentation. Over the years
numerous computer programs have been developed for
either passive plotting on output-oriented devices,
or for interactive :plotting and of sta-
tistics. some cases the programs can be moved
from one computer system to another and thus be
shared, while in other cases this is not possible.

Broad, general sharing of statistics progams
which use graphics requires at least three types of
standardization:

- programming language standardization
- operating system standardization
- graphics standardization.

In this paper we focus on gratlhics standardization,
nth three purposes:

- to explore the advantages and disadvantages of
graphics standardization.

- to describe the range of possible -.;ays in which
graphics standardization can be effee'ted.

- to describe a proposed etandard graphics sub-
routine package.

2. Advantalles and Disadvantages of Standardization

- Three adv3.."ltages are genera.lly ascribed to the
standardization of computer functions (l,2J.
They are device indetlendence, prog:reJ:l 'Oortabilitv
(that is, machine independence), and 'Orosrra.=er ":lcr-
tability.

By device inde'Oelndence we mean the ability, at
a particular compute::" ins-::a.lla.tion, to use a graphics
application interchangeably with several different
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plotting or display devices. This is of course bene- e
ficial for easing the replacement of old equipment
".nth different new equipment, per-:':'ts sharing of sev-
eral disparate types of equipment. and siJnplifies the
process of making hard copy of created inter-
actively.

For interactive graphics applications, we extend
the definition of device to include the
interchangability of intera.ction devices such as key-
boards, light pens, and tablets. This allows an
application pr'Jgram to be used from interactive ter-
minals with dissimilar devices, or if a
particular interaction device is root operational.

this type of device expedites
the human factors fine-tuning needed to o?timize the.
man-machine interface for use with specific devices l3].

The significant of standardization
is nortability, or machine This
is the ability to move a graphtcs application one
computer insta.llation to another. Thus a program r..tn-
ning on a PDP-10 with a GT-44 display might be moved
to a CDC 7600 with a.n Imla.c display. Doing this
implies not only that the actual program be portable
(hence 'HTitten in a "standard" dialect of FORTRJUi or
other language), but graphids device indepen-
dence as well.

The difficulties of achieving program
are we::il known and are not -:0 be miniJnized, even if an
Ai'lSI standard language is used. Similarly, graphics
device independence is not without its problems. One
must fully expect to invest
some parts of the application. Indeed, in many circun-
stances a program can be called portable if

- the cost (in progremmer effort, etc.) of movir.g ..
the program is less than the cost of re'<riting-
the program, and

- the required reprogramming is at
clearly specified pla.ces in relatively few
routines, and thus does not affect (or require



understanding) the program I s structure and con-
.t'rol flow.

The final advantage of standardization is the
possibility of nrogr=er -oortabllity, if "the stan-
dardization is at the programming level (which usually
implies a standard subroutine package). Programmers
moving from the use of one graphics package to another
are forced to learn new conventions, techniques, and
concepts. Graphics programming is even worse in this
regard than regular programming, because there is less
commonality of terminology and concepts among graphics
packages than there is among programming languages.
A widely used standard graphid s ?ackage would, in the
long-term, eliminate much of this enensive and time-
consuming relearning. -

Against these many advantages must be weighed and
balanced the disadvantages, which are very similar to
the disadvantages of using standard programming lan-
guages. Just as 10 computers, plotters and interactive
displays exhibit a wide range of architectural and
performance characteristics. It is therefore diffi-
cult to optimize the use of a s'Oecific device with a
standard general-purpose system. (This is
more of a problem with interactive displays than with
plotters, which tend to ha·...e many generic similarities.)

If the standard does not include enough features,
then there is the danger of not being able to effectively
use some capabilities of high-performance displays
such as those of Evans and Sutherland, Adage, and Vec-
tor General. On the other hand, if the standard includes
too many features, will be required
with less capable systems. This situation, shown in
Figure 1, requires a compromise solution.

standardizing at each of these levels, and report on
what formal or in£ormal standards e."l:ist at each
level.

APPLICATION
PROGRAM

1

APPT...ICATION-ORIENTED
GRAPHICS SUPPORT

2

APPL:CATION-InDEPENDENT,
HIGH-LEVEr. GRAPHICS

SUPPORT

3

Some capabilities
must be
so:'tware simulated

Some capabilities
not
available

BASIC GP.APHICS
SUPPORT

- ----
Small,
low-res olution
plotters r

I

"Standard"
System

Figure 1

High-performance
Interactive
Displays

4

DI:_..AY CODE
GENERATOR

5

Another disadvantage attributed -:0 the use of a
graphics s-candard or any high-le'rel graphics package
is the loss of efficiency occasioned
by removing the application programmer :'roI:1 the details
of the display system. But this is exactly the argu-
ment once ad·...anced against the use of FORTRA17 and other
high-level programming languag.es. Just as '"e have come
to recognize the nrogrammer of higher level
programming languages, so too will happen with higher
level graphics packages.

3. Atl'Oroaches to Standar!iization

Figure 2 shows a useful vie'" of how a complete
graphics application system is organized. The
"application program" itself is what gives any such
system its individuality and uniqueness. All other
parts of the system are in some sense "standard",

AtypicallY' existing prior to the time the ap]llication
""program itself is developed.

This then suggests that each betNeen
]lrogram in 2 has the potential for being
formally (or informally) standardized. In the

of this section, we examine the possibility for
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Interface Levell

At interface 1, there exist 7arious standard or
co=only-used application-oriented systems. The sta-
tistical packages which do data plotting, even in
simple forms such as scatter plots and regression

fits, are at this level, as are various sub-
routine packages for statistical data plotting.
Standardization at this level nicely addresses the
needs of specific application areas, and has been
successful ·.rith unsophisticated graphics devices such
as line printers, plotters, and TektronL"l: displays
because standards exist at lower interface



A standard package at interface le'fel
3, Basic Graphics Support, has recently been
by a subgroup of the Graphics Standards ?lal'Uling
Ccmcittee (GSpe) of Special Interest Group for
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levels for dealing vith these devices (FORTRAN WRITE
statements, CalCOIllP subroutine call.s for plotters,
TCS/PLOT-lO for Tektronix). Achieving a vider degree
of device-independence and portability at this level
is in general quite difficult, unJ.ess standards exist
at a lower level.

Interface Level 2

Interface level 2 is
but with a wide variety of rich Some
of the capabilities appeal more to certain application
areas than to For the DISS?tA sub-

package [4J has quite sophisticated
capabilities for producing graphics-arts quality
chans (piecharts, barcharts, etc.), and can produce
many different cartographic projections. On the
other hand, the General Purpose Graphics System sub-
routine package [5J is toward geometric man-
ipulation and hierarchical modelling of objects and

and has very limited plotting capabilities.
Both these packages are gevice- and indepen-
dent, as are the GINO-F L6J and GCS l 7 J subroutine·
packages. All four systE!ll1s are widely-used, in some
cases at well over one hundred locations, and there-
fore represent four different ad. hoc "standards".
Users of one of these "standardS" Ciiii' pro-
grams with another user, but cross-standard program
portability is difficult and expensive.

Ti/hy' not adopt one of these four as a standard, or
develop a new standard. in the image of these systems?
The problem is in the high level of the packages I

capabilities in areas such as data plotting, carto-
graphic projections, and hierarchical modelling.
Obtaining the predecessor of standardization, &
consensus of opinion for necessary features in each
of these areas, appears difficult, if not impossible.
Even if a consensus could be found, a single stan-
dard addressing these (and other) areas ·OOuld be a
monstrous system, prohibitively expensive to :!.:mle-
ment and use. •

Interface Level 3

At interface leveL 3 we ha"te a simpler, more
fUndamental set of graphics capabilities than at
higher levels. The sorts of found here
can usuall.y be divided into seven basic categories:

1. Describing a 2D or 3D object for display in
terms of simple output primitives, such as
points, lines, and cnaracter strings, defined
in application coordinates.

2. Controlling output primitives I attributes,
such as color, intensity, line style, and
text font.

3. Partitioning objects being displayed into
segments, which for:n the units of !llodifi-
ca.tion in an interactive application. Seg-
ments can usually be created, deleted,
renamed, andsomet1mes extended.

4. Controlling segment attributes, such as 'fis-
ibility and light-pen detectability.

5. the viewing viewing
direction, field of view, and type of pro-
Jection to be used in displaying objects
in a viewport on a display surface.

6. Operator interaction using physical devices
or their logical equivalent: PICK (light pen),
LOCATOR (tablet), CHOICE (PFIC), TEXT (key-
board), and VALUATOR (potentiometer).

7. Controlling the operational environment by
default values, selecting view

surfaces, setting defaults and enabling or
disabling clipping.

The proposed Core subroutines
package: 1 J is at this level, as are other subroutine
packages such as Ocmigra'Ch r8J. The Network
Protocol C9 J, developed for the ARPA cOIaputer network,

is a data stream protocol rather than a subroutine
package, but its semantics are at the basic graphics
support level. Similarly, Bown and 0 IBrien's Graph-
ical Task Instructions, or GT!'s CI01, define sem-
antics and a data stream protocol. Of these two
approaches (subroutine package, data protocol), the a
subroutine package is more attractive because it .,
represents a more concrete and visible standard, and
because it is easier to move a graphics program from
one system to another if the standard interface is
subroutine calls. Data stream protocols need to have
the "syntactic sugar" of ·subroutine call.s over
the details of bits and bytes. Unless the subroutines
are themselves stand.ard, they must be moved with a'Cpli-
cations which use the data stream protocol. *

This level of standardization is very attractive,
because of its capabilities -.nll be used by Iaany
applications. Thus it is not too high-level. Sim-
ilarly, many graphics applications can be implemented
directly at this level, without the interposing levels
shown in Figure 2. Thus it is not too low-level.
However, higher-level graphics support can be built
"on top" of the basic graphics support. The possibil-
ity of building on top suggests types of program por-
tability as shown in Figure 3 (The style of this figure
is attributable to James Michener).

In ease (a), the application program inter:'aces
directly to the Basic Graphics, and is portable in toto.
In case (b), the application interfaces to High-Level
Graphics through an interface which is standard within
some sphere of endeavor. The application itself is
movable to other computers which have the High-Level
Graphics. If this is n:t so, then the High-Level Graph-
ics can itseli" be moved. In case (c), ·..rhich does not
have a standard Basic Graphics interface, the High-
Level Graphics cannot be easily mOved. Case (d) ::,e"O-
resents a situation, quite likely to be found in
tice, where the Application and High-Le-rel A

bel:lOved together at the same til:le. - .,

Interface !,e"tel 4

This level, often called the device driver level,
is ::IUch more at a hardware-oriented leYel than the
basic application -oriented level 3. It typically
reflects the capabilities of specific display systems
dealing -.nth clipped and transformed 2D device coordi-
nates, internal system names for segments, and the
actual attributes and interaction devices
by the display. Thus the device driver is no· longer
device-independent, as it typically does not
extensive soi't';l'a,Z'e support for unavailable hai-dware
features. There are no standard device drivers for
interactive graphics. DISS?tA, on the othe%" hand, being
an output-oriented system, !ta.3 a -fer!' simple s'Candard
device driver interface - the basic COlllIlL!lnd is "draw
a line from here -:;0 there",

Interface Level 5

This is the hardware level - a standard here would
define an instruction set for a display or plot'Cer.
There are not and ne'rer -.nll be a standard &'C this
level - manufacturers have (properly) shown no interest
in this area.. The most that ....ill happen (and has ha'tl-
pened in some cases) is that a microprocessor will
used to transla.te frClll one instruction set to another,
IllUch as some IBM compute::,s can emulate older obsolete
computers.

4. The Core System - A Pronosed Standard



Graphics - SIGGRAPH. Published in 'the GSPC report [1J
in August 1977, the package is already being imple-
mented at several Universities and Government Lab-
oratories, and is being studied by an American National
Standards Institute (.<\NSI) Standards Planning and
Recommendation Coll!ll1ittee (SPARC). The SPARC, as well
as national groups in Ger:nany and The Netherlands and
international ISO and IFIP subgroups, are using the
Core System as a departure point for refi:1ement and
ulticate adoption as a national and international stan-
dard.

The Core is oriented toward graphics devices
ranging trom simple plotters, through storage tube dis-
plays, up through medium-perfor:nance line-drawing
interactiYe displays. Raster displays, currently in
a rapidly changing state, were not included as a design
target. Howeyer, they can be effectively used by
adding a few additional fa.cilities to the Core System.

The Core System t s I"'unctional capabilities can be
outlined according to the categories descrioed earlier.
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Gra-ohics Out-out Primitives

Objects in 2D or 3D world (application) coordin-
ates are described to the Core System as eombinations
of moves, lines, line sequences (called -polylines),
markers (a of points), and text.
!!at "Oosition is used as the starting point for lines
and text strings. The output primitives can be speci-
fied in a.bsolute coordinates, or relative to the cu..-rent
position.

Output Primitiye Attributes
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Attributes affect the appearance of output prim..
itives. Once an output primitive is created, its
attributes can be changed only by deleting the prim-
itive (using segments, described below), and then re-
specifying the primitive to the Core System. Primi-
tive attributes are: (dot, dash, solid,
etc.), linewidth, intensity, color, character font,
character size, character spacing, orienta-
tion, and character quality. This last attribute is
used to indicate how closely the other character attri-
butes I:lust be followed. With low character quality,
hardware character generators can always be used; with
medium quality, sometimes; ·.lith hi!1;h qualit;r, nearly
neyer.

Grou'Oir:g! :Taming, and Modification

NON-STANDARD

APPLICATION

PROGRAM

STANDP.RD
nlTERFACE

HIGH-
L:.--vEL
GRAPHICS

Figure 3

output primitives are placed into eamed seg-
ments for:n the unit of modification. A segment
can be created with two different statuses: with one,
the segnent is displayed once and no record is kept
of the seg!llent or its contents; with the other, the
segment is retained"until explicitly deleted. Such
retained segments can be deleted, renamed, and have
their I:lodified. In addition to the grouping
provided by segments, output primitives within a seg-
ment ma.y be placed in named groups. Segments can ::2!.
contain references to other segments. The segment and.
group names are used for pick (light pen) identification.

Segment Attritutes

Seg::1ents have dynamic attributes, -which can be
changed while a segment is being created or a.fter it
has been created. These attributes are visibility
(whether the segnent is actually dispia.yed), detec-
tability (-.hether the seg:nent can be "seen" by a light
pen or other pick device), and highlight (calling the
operator I s a.ttention to the segment by blinking or
intensifying it).
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Viewins

Viewing of 2D objects is specified with the tra-
ditional viewport and ·rlndow. The window may be inclined
with respect to the principal axes. The object can be
clipped against the window. In 3D, a vie·.rer is imagined
to be at an arbitrary point in three-space, lookiDg
toward any other point. The field of view is deter::dned
by specifying a rectangle in the projection plane, with
the rectangle then mapped into the viewport. If the
viewport is infinitely far away, an orthographic pro-
Jection results; otherwise, a perspective projection
results. The 3D object can be clipped against a. 3D
solid volume: a pyramid for perspective projections ,
and a solid. rectangle for projections. The
image of a viewed object, be it 2D or 3D, can be trans-
lated, scaled, and rotated atter the image has been
created. 2D viewing is a proper subset of 3D viewing,
with all 2D objects on the Z = 0 plane.

Interac.tion

Five classes of devices for operator input are
supported. provide the segment and group names
of output primitives. Locators provide a position,
while Valuators provide a scalar ·l'&lue. input
devices provide character strings, and. Choice devices
provide a selection frOllt several alternatives. The
common physical prototypes for picks are light pens;
for locators, Joysticks and tablets; for valuators,
dials; for text, alphanumeric keyboards; and tor choice,
programmed keyboards. Each device class has
a system-defined feedback, which can be turned on or
off. Picks, text, and choice, when enabled, can place
event reports on an iz:put queue, which can be inter-
rogated by the application program. Locators and
valuators, when enabled, can be sampled by the appli-
cation program, and can also have their input infor-
mation placed on the queue in conjunction with
the occurrence of an event.

Control

The general operating envirolJlllent of the Core
System can be controlled 1:'y turning clipping on or
off, selecting one of several display devices for out-
put, setting the standard initial values for segment
and output primitive attribute values, and esta.blishing
error handling procedures. Inquirj of Core System and
device capabilities is also provided.

Segments must be used, but are displayed once and
discarded. Since segments are no't retained, their
a.1:.,!:r1butes cannot be changed, nor is it meaningIUl
to delete or rename segmellts. No interactive capa-
bilities are provided.

Buffered Leyel (2)

This second leVlUl is again intended for "output
only" applications. The Buffered level allows sel-
ected segments to be retained frOllt one output plo't to
another, allowing some seg:nents to be UIEd as fixed
backgrounds on otherwise chaJ:lging plots. The segment
attributes of detectability and highlight are not pro-
vided, while Yisibllity is. All operations on segments
are meaningful. Named g:ooups of primitives within a
segment may 'be used, but are memingless, and no inter-
active capabilities are provided.

Lenl (3)

This is the first level of the Core System which
Qan utilize the full capabilities of DVST or refreshed
displays to provide interactiye capabilities. All
functional capabilities for Grouping,
cation, and Interaction are provided. The only capa-
bility lacking is that of transforming the image of
a viewed object.

Comnlete Leyel (4)

The outermost level of the Core System prondes
the complete set of functional capabilities, including
transfon::ting the image of a. viewed object. This capa- A
bility can be uaed to improve the effectiveness of,! •
many graphics sa.tellite systems, and to access the dy-
namic transfor:!lation features of scme high-perfor:nance
display processors. Dragging an object with a pen or
ta.blet is a simple example of an bage transfon::ta.tion.

6. Summary

Graphics standardization, desirable for device
independence, program portability, and programmer
portability, can be effected in many ways. The Core
System is meant to be a standard Basic Graphics
usable directly by some applications and as the basis
ior higher-level or application-oriented support pack-
ages for other applications.

5. Levels of the Core System .,.
I·

Because the Core System is itself' meant to be
used in diverse environments with equipment ranging
from plotters to higlUy-in1:eracti-re refresh displays,
four upward-ecmpatible levels have been defined. An
installation can choose the level best suited to its
needs, thereby avoiding the space and/or time penal-
ties vhich would accrue were unneeded capabilities
included:>. The four leYels in the Core System are
called Basic, Buffered, InteractiYe, and COIItplete.
They are also cOlllll1only called leYels one to four.

Basic Leyel (1)

The Core System, which benefitted from critical
reYiews by seyeral dozen members of the graphics com-
munity, ·.;as deYeloped by the following c=ittee:

Daniel Bergeron, UniYersity of Ne''; Hampshire
Peter Bono, Na.val Underwater Systems Center
Ingrid Carlbom, Erown UniYersity
Timothy Dreisbach, SotTech, Inc.
James Foley, George Washington UniYersity
James Michener, Inter:netrics, Inc.
Elaine Thomas Sonderregger, Information Sciences
Institute, USC

Andries yan Dam, Brown UniYersity.

This simplest leYel is intended for "output
only" applciations using plotters, microfilm units,
or display terminals. F\maticns provided at this
:eyel are Viewing Transformations (except for trans-
forming the image of a Yiewed object), Graphics
Output Primitives and their Attributes, and ControL
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The importance of the distinction between Basic
Graphics and High-Le-rel Graphics became clear at
the IF!? W.G.5.2. Workshop on Graphics Methodology-,
held in April 1976. Had this distinction not been
made, there might not be a Core System.
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Using a Low-Cost Digitizer to Capture Questionnaire Responses

J. Michael Hewitt
Chief, Computer Methods Laboratory

International Statistical Programs Center
Bureau of the Census

Washington, D. C. 20233

This paper discusses the use of a low-cost
digitizer as a data entry device for statistical
Questionnaires. A possible production device is
described, and its programming and use are
discussed. Certain advantages gained by using a
digitzer for data entry are cited.

This material has been prepared with appropriated
funds and is not covered by copyright.

Throughout the world today the prevailing
of data entry for questionnaire

responses is a key dev Ice, whet'her cardpunch,
key to tape or key to disk. Keying
questionnaire responses presents an array of
difficulties which the data processor would
like to overcome. Keying requires trained
and Increasingly expensive operators; It Is
highly prone to human error; it Is relatively
slow; finally, in most applications, it must
be followed by key verification of the data.

Past attempts to eliminate the keying of
Questionnaire responses by using d1rect
optical or magnetic mark-sensing of the
Questionnaire usually either have failed or
have met wJth only qualified success.
Typical problems have been related to the
physical condition of the document and the
difficulty of passing It through the document
transport equipment. Paper reflectivity,
size control, printing Quality, unreadable
questionnaire formats, and the care required
when marki ng answers, or changi ng answers,
also contribute to the difficulties with
these mark-sensing techniques. All such
problems can contribute to creating a
document rejection rate of 10 to 20 percent,
an unacceptable level particularly when
dealing with large volumes of questionnaires.

The recent announcement of digitizer
at very moderate costLJi --

purchase price of less than $500 per unit on
Quantity orders -- prompts speculation that
the digitizer could be the basis for a new
approach to statistical data entry, a tool
which is simultaneously cost-effective,

requires less-skilled labor, can achieve
gains In speed of data entry, and can reduce
human error by incorporating some visual
verification into the data entry device.

A digitizer is a device used to convert
material which Is provided in graphic form
into numerical data suitable for computer
processing. It does this by referring to a
specific set of two-dimensional coordinates
assigned to every point on its "active
surface." The digitizer is able to determine
the coordinate pair defining the current
location of its pen-like "stylus. 1I

The technology actually used to determine
the location of the stylus varies among
different digitizer manufacturers. It
appears that the particular technology is not
important to the theoretical application
described in this paper, other than that some
methods may be more cost Iy than others. It
should be noted that this application seems
to make very little demand on the digitizer
in terms of the quality ranking factors of
resolution, environmental stability,
repeatability, slew rate, accuracy, and
sampling rate.tTl Physical durability and
general reliabfTlty and ruggedness will
probably be more Important. For example, it
is possible that stylus wear may well be a
probtem.Q]

Is tittle doubt that a digitizer can
be used for transferring statistical
information from the questionnaire to
computer-readable form. Similar types of
data are being entered in conjunction with
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the use of the digitizer as a graphical data
entry tool -- often this Is referred to as
"menu" data entry. Known major appl icatlons
using the digitizer In this manner Include
capturing real property information (along
with the outline of the piece of property)L[i
and preparing Insurance proposals.!I7 A
Questionnaire makes a particularly attractive
target for the menu because the
range of possible responses Is usually
limited. Relationship," sex, age or year of
birth, and marital status are typical
examples from a demographic survey
questionnaire.

4.

the mainframe computer. This device
may also be used for passing special
Input programming to the
mi croprocessor.

A tone generator to give the operator
an audible signal that the digitizer
Input stroke has been detected by the
device. Thi s element" may also give
an audible signal when an Input error
has been detected. The tone could
be transmitted through a small
earphone so that It provides a
private notification to the operator.

In addition, the digitizer offers a new
technique for capturing responses to
questions that have a continuous, rather than
discrete, set of responses. Typically, in an
opinion survey, a respondent might be asked
to mark the place along a "response line"
where an opinion Is to be recorded. In a
taste test the responses might range from
"too sweet" at one end of the line to "too
sOtlr" at the other.i6i The digitizer device
can be used to direCtly record the position
that Is marked on the line, and this can be
expressed in some. proportional value relevant
to the Item measured. A wider usage of this
type of response 1 i ne may resu I tin
easler-to-use forms and more accurate
determinations of the real situation.

Because of a lack of experience with the
digitizer, a number of Questions need to be
resolved before the device can see wide
application as a data entry tool. Among
these are: (a) whether a complete production
data entry device can be constructed at a
price competitive with other data entry tools
(less than $1200, exclusive of developmentai
costs, in a minimum quantity of 100), (n)
whether an unskilled operator can be trained
to a reasonable level of production speed and
accuracy in one day, or less, and (c) whether
an operator can maintain speed and accuracy
throughout a workday. A speed of one stroke
per second on a well-designed form should be
satisfactory, since some digitizer "touches"
can be worth a number of keystrokes. A
current user claims to exceed this rate by a
factor of 2 to 3.

A complete production data entry device
Involving a digitizer can be projected to
include five functional elements:

1. The digitizer board, stylus, cables,
and associated electronics. Certain
points on the digitizer board,
outside of the form area, will be
preprinted with a legend, and will
have standard predefined values.
These will Include the digits 0 to 9
and certain necessary control
functions.

2. An 8 bit microprocessor with
sufficient RAM, I/O ports, and
programming capability to manage the
digItizer, provide some Interactive
dialogue with the operator, and save
the data on some external device.

3. A digital cassette drive to save the
input data for later processing by

5. Some type of display panel,
preferably alphanumeric. However,
cost considerations may force a
7-segment numeric If
alphanumeric, this should be 6-8
positions in length, enough for a
brief message. If numeric, 3 digits
should suffice. This display will be
used by the microprocessor to
communicate with the operator.

In addition, a conversion device will be
required to transfer data from the cassettes
prepared by the data input stations to a
medium readable by the mainframe computer
system. The conversion system could also be
used to prepare special software for the
Input devices, if properly configured.

The basic conversion unit ·...,ould contain at
least two digital cassette drives, a
microprocessor with communications display,
and the conversion unit. A
standard Industry-compatible tape drive Is a
possibility, but the more likely interface
would an RS-232 Interconnection, with the
conversion unit appearing as a very
hi gh-::'\Jeed modem to the target computer. Of
course, other schemes are possible, but the
RS-232 version is probably the least
expensive in hardware costs, if not the
fastest. Note that the conversion hardware
may be an add-on that could be Inserted into
any of the data Input units.

For a digitizer to substitute for a
keyboard in a leneral data entry device, the
intelligence of the microprocessor is
required. The microprocessor is used to
associate the coordinate location of the
digitizer stylus with the proper ASCii code
for the reponse.

If every different questionnaire were to
require a special program written by a
programmer the device would never be a viable
substitute for the key entry of data. We
can, however, envision a generalized program
that will solve this problem. Suppose an
operator is to enter data from a pre-coded

responses having been marked
on the questionnaire form by checking the
boxes associated with response categories. A
lead data-conversion operator can first
"program" the hypothetical data entry device
by placing the unit In a "teach" mode.

The operator might begin by first touching
the stylus to four reference points at the
corners of the questionnaire, thus defining
the rectangle within which Information will
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be found. For example, suppose a particular
question on the page has the allowable
responses: 0, 1 and 2. While In teach mode,
the operator uses the digitizer to program
the microprocessor with the following
operations:

1. The operator touches the premarked
points on the active 'surface that
designate question number.

2. The operator then touches the
premarked controi point that is
designated "enter question number".

3. The operator touches the box that
corresponds to the answer for the "0"
response.

4. The proper ASCII code related to
these coordinates is then signaled to
the device by touching the premarked
point on the active surface labeled
O.

S. Since the corresponding response has
only one digit, the end of the digit
entries Is signaled by touching the
premarked point labeled "enter
responSe ll •

6. This operation (steps 3 to 5 above)
Is cont I nued for the responses of. "1"
and "2".

7. The operator then touches a control
point marked "terminate question" to
go on to the next question.

A similar series of actions would be used
In teaching the device the lergth,
orientation, and relative values to use when
a question Is associated with a response
11 ne •. )

Proceeding with these operations throughout
the questionnaire page, the operator has now
loaded the equivalent of a keypunch "program
card" into the microprocessor. This program
can now be saved or reproduced on the digital
cassette drive for use at another session, or
use by additional operators.

To actually record the data on this
hypothetical data entry device the operator
might go through the foilowing steps:

1. The operator si ts down at the work
station at the beginning of the day
and turns on the device.

2. In some manner (button or digitizer
input) the operator tells the device
that the equivalent of a keypunch
"program card" Is to be loaded. A
cassette Is put Into the reader and
the device reads the Instructions for
the particular form to be processed.
The operator then removes this
"programming cassette."

3. A data output cassette is placed in
the cassette drive, and the operator
begins to enter data. After the
questionnaire Is placed on the
digitizer active surface, the first
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operation might be to touch certain
preprinted points at 3 or 4 corners
of the Input document. This tells
the Input device how the printed
portion of the form Is oriented. The
Input device can then automatically
adjust the subsequent coordinates to
take account of: the sheet being
skewed on the active 'surface, the
sheet being square on the surface but
having poor alignment in printing, or
size variations in the form occurring
after printing. An important
advantage to note here Is that as
long as the form is readable, the
darkness or density of printing Is
unimportant. In addition, marking
the form will be very easy for the
respondent or since a
check mark or "X" will suffice.

4. The fixed Information for a batch
will automatically be continued from
document to document. The operator
actually enters the data by touching
the stylus to the marked response
points. This can be called a
"re-marki ng" mode of data entry. It
should be emphasized that the device
will save on the cassette ASCII codes
that have been "taught" to It, rather
than merely digitizer coordinates.

S. By touching appropriate
predetermined points on the
digitizer active surface, the
operator cari "backspace response,"
"backspace question," or "restart
form." The input device does not
write the data on the cassette until
the form is fully input, so
operator-detected conversion errors
may be easily corrected and
re-entered. The microprocessor code
will (a) detect an error, (b) issue
an audible alarm, and (c) display a
message or error code when the
operator touches the stylus to an
answer out of question number
sequence, touches an unpermitted
point on the form, skips a question
that requires a response, makes more
than one response to a sub-question,
or takes other improper action. The
improper actions will be
by the "edit Input program" initially
read in.

The above sequence of operations may at
first appear to offer little advantage over
keying, but a closer examination suggests
otherwise. In addition to eliminating range
errors, the programmed digitizer will not
make column-shift errors. Sach point on the
active surface is fixed in unique association
with a particular question response. A
single point on the questionnaire surface may
be associated with a mUlti-stroke response.
One touch to one point on the surface may,
for example, enter the four-stroke year
"1977," or an alphanumeric response. In .,
addition, the di$itizer does not require the
operator to move I n I i near progress Ion across
or down a page. If a right-handed operator
begins entry at the bottom of the page and
moves up the page with the stylus, the



operator's eye can travel ahead of the hand
and thus increase operator speed.

Other aspects of this projected device
represent considerable advantages over
existing methods of data entry, such as
keying or the various types of optical data
input:

If the industry-standard 8080A
microprocessor is used, both COBOL and
FORTRAN are available for development
of more sophisticated input and
editing software. In faet, It Is
likely that the CONCOR generalized
editing system can be implemented In
some form on the data input
microprocessor. This would be an
excellent base for the development of
some interactive data cleaning
software.

The interviewer can easily change an
answer by simply circling the wrong
answer and marking the correct one.
The digitizer operator touches only
the uncircled answers.

The physical condition of the forms as
received from the field is not an
important factor in capturing the
data.

Special scanning forms with tight
tolerances, printed only by certain
companies, are not necessary.

If the data input step is combined
with simple manual editing or simple
coding, an entire step in handling the
forms may be eliminated. (This is not
recommended, however, when lengthy or
complex coding is required.)

In order to realize cost savings with
increased speed and accuracy, the
digitizer method does not substitute
large capital expenditures for the
employment of people.

If data can be digitized at least as
quickly as it can be keyed, and if the
hardware costs are roughly equivalent, the
increased accuracy possible with the device
is likely to give the digitizer widespread
usage for converting statistical data. If in
fact there are speed advantages, or smaller
hardware costs, the digitizer will likely
constitute a major step forward for data
entry from statistical questionnaires.

The speculative nature of this paper should
be stressed in that neither the projected
device nor the required program code exists
or is currently under development at the
Census Bureau in January 1978.

LI7 Digitizer Terminology and Comparability,
Science Accessories Corporation,
Southport, Connecticut

!!7 Computer Systems and Services of
Springfield, Springfield, Ohio. Private
communication with the author.

L[7 Computer Systems and Services of
Springfield, cited in an Application

Summagraphics Corporation

L37 Phoenix Mutual Life Insurance Company,
Connecticut, cited in GRAF/PEN

Notes by Accessories Corporation

L]j Pillsbury Corporation, Minneapolis,
Minnesota. Telephone conversation
between the author and Dr. Fred McCarron
of Pillsbury. Pillsbury has constructed
two devices similar to the above design,
involving a digitizer, a microprocessor,
and a digital cassette drive. These are
used in conjunction with their taste
testing operations.

A number of companies manufacture
digitizers suitable to this task in
addition to those referenced above.
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COMPUTER GRAPHICS FOR EXTRACTING
FROM DATA

by

RONALD K. LOHRDING, MYRLE M. JOHNSON, DAVID E. WHITEMAN

Energy Systems and Statistics
Los Alamos Scientific Laboratory

Los Alamos, NM 87545

Abstract

This paper presents computer graphics which are useful for displaying and
analyzing data. Many classical and several newly developed graphical techniques in
statistical data analysis are presented for small univariate and multivariate data
sets. These include histograms, empirical density functions, pie charts, contour
plots, discriminant analysis, cluster analysis, Chernoff "faces", Andrews' sine
curves, three-dimensional plots, and probability plots.

Recent advances in data collection technology and computer data base manage-
ment systems have made it imperative to utilize computer graphics for large data
sets. Several innovative graphical techniques are presented to handle this situa-
tion.

Spatial relationships among the data (particularly geographic data) are
difficult to visualize. Several cartographic techniques are presented which en-
hance the understanding of these spatial relationships within the data.

I • INTRODUcrION TAlILll I

bia. The variables and their means and standard
deviations are listed in Table I. Of particular
interest is the variable household 3TU consumption per
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The Energy and Statistics Group at the
Los Alamos Scientific Laboratory (LASL) is involved
in several projects with energy-related data. Some of
these projects involve small univariate or multivariate
data sets, while others involve large data sets which
require data management systems for efficient

A statistically-oriented graphics
package is presently under development; numerous
modules have been completed. The purpose of this·
package is to provide graphical techniques for the
initial examination of the data. Tnis paper uses
data from several projects to demonstrate some of
these techniques.

Computer graphics ror a preliminary raw data
analysis may include histograms, empirical distribu-
tion function plots and probability plots. The data
used in this section was collected on 17 variables
for each of the 50 states plus the District of Colum-

II. PRELIMINARY DATA ANALYSIS OF SMALL u....UVARIATE
AND MULTIVARIATE DATA SETS

In Section 2, we discuss graphical useful
for a preliminary analysis of small data sets. In
Section 3, graphical techniques which a=e appropriate
for large data sets are presented. Finally, spatial
relationships in geographic data sets are explored in
Section 4. Throughout this paper, examples of com-
puter graphics are used to illustrate the techniques.
(The 3S-mm color slides of computer-generated graphics
shown at the conference are reproduced in black and
white for this paper.)
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capita (HHBTU). The histogram in Fig. I suggests that
the assumption of normality may be questionable. Two
graphical tests of normality are shown in Figures 2
and 3. One test uses Lilliefors' test statistic;13 the
other uses a test statistic developed by Lohrding. 13
In the former, the normality hypothesis is tested by
placing (1-0.)100% confidence bounds on the empirical
distribution. function (edf). The normal cumulative
distribution function (cd£) with mean and variance
estimated by the sample mean and sample variance is
plotted. If the cdf falls outside the bounds placed
on the edf, the hypothesis of normality is rejected
at the level of significance. In the latter test,
the normality hypothesis is tested by placing (1-0.)100%
confidence bounds on the normal cdf with mean and
variance estimated by the sample mean and sample
variance. If the edf falls outside the bounds placed
on the cdf, the hypothesis of normality is rejected
at level of significance. In neither test is nor-
mality rejected at the 5% level of significance. A
normal probability plot and a lognormal probability
plot, two additional graphical techniques which may
give further insight to the structure of the data,
are given in Figures 4 and S. .
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To describe the joint relationship of HHBTU to the
26 other variables (including transformations of some
of the variables), a linear multiple stepwise regres-
, sion procedure is used. Seventy-five percent of the
variance is accounted for by two variables--degree days
(DEGD) and percent urban population (PCURB). The
equation of the fitted linear multiple regression
model is

where

Yi = 22.155 + 8.657 X2,i + 0.328 XS,i

i = 1,2, ... ,51

Yi • HHBTU for the i th state (z axis)

Xz,i = DEGD for the i th state (x axis)

Xs . = PCURB for the i th state (yaXis).,J.
-

Figure 7

Figure 6 shows a three dimensional graphical represen-
tation where the fitted plane and the ,data points are

Lines are drawn 'from the data points to
the surface to give some indication of the deviations.

In a nonlinear regression analysis, the equation
of the fitted model is

2
Y. = 33.835 77.607 (xX2 'i) + 1374.90 (X2'i)
J. • 3 . X3 .

,J. ,J.
where i = 1,2, ••• ,51

In Figure 8, note that HHBTU is positively cor-
related with DEGD, LAT, OLDHS, MEDIN, and AVEIN,
negatively correlated with MAXT, PCAIR, LOWIN, SINGLE,
and NEWHS, and not correlated with POP. FRZR, ONE?,
PCURB, COML and LONG.

Yi = HHBTU for the i th state (z axis}

X2 . = DEGD for i th state (x axis)
,J.

X3 . =MAX! (maximum temperature) for the i th
,J. state (yaxis).

The fit of the data to the surface is shown in Figure
7. The, two largest deviations are Alaska and Hawaii.

Several techniques are available for displaying
multivariate data. We first discuss a graY-level
coded correlation matrix which displays the pair-
wise correlations between variables. The gray level
scale ranges from plus one to minus one. Frequently,
such a display is useful in directing attention to
interesting relationships among the variables.
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Another technique, called Andrews' sine curves.·
displays multivariate data in a univariate plot. For
each state, the 17 standardized variables are mapped
into a trigonometric function on the range to
All 51 functions are then displayed simultaneously.
Functions which form a relatively tight band indicate
a cluster of states. When the original data is used,
it is very difficult to detect any clusters as shown
in Figure 9. However, if a principal components
analysis is performed on the original data and the
transformed data mapped into the same trigonometric
function, it is easier to detect some clusters as
shown in Figure 10.

A well-known technique in analy:ing
data is principal component analysis. As pointed
in Ref. 9. the first few and last few principal
ponents are usually the ones of primary interest.
Figure 11 is the plot of component 1 versus component
3. This plot reveals that Alaska, Hawaii, California,
and New York are possibly aberrant observations.
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Figures 13, 14 and lS show the so-called Chernoff
faces for the SO states plus the District of Columbia. S
Here, a facial characteristic is associated with a
variable as indicated in Table II. FOr example, wide
noses correspond to large singie populations and long
noses correspond to large populations •. The faces for
New York and California are striking because of this
feature. Similarly, Alaska has a wide face because
of the large HHBTU consumption per capita, whereas
Hawaii has a thin face.

..

For each state, the sum of squares of the first few (or
last few) principal components is computed. The first
five principal components are used in this example.
The Sl sum of squares are ordered and plotted against
values of a gamma variable with suitably chosen shape
and scale parameters. As shown in Figure 12, Alaska
and New York--and especially California and Hawaii--
appear to have come from a different population. It
should be noted that these sum of squares are cor-
related regardless of the correlation structure of the
original data. Hence. interpretation of results should
be made very carefully.
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Figure 11

Another use of principal component analysis in lo-
cating possibly anomalous points is presented. 9 ,lO,20,21

TABL£ II

Facial Characteristic Variable

1. Face Width HHaTU

2. Brolt Length SINGL£

3. Face Height

4. Eye Separation LAT

S• Pupil Position AYEIN

6. Nose Length pop

7. Nose ONEP

8. Ear Diameter PClJRS

9. Ear Level CGIL

10. Mouth Length DEGD

11. Eye Slant MEDIN

12• Moutll C!U'vature PCAIR

"13. Level FRZR

14. aye Level LOIHN

IS. Brolt Height OLOOS

16. Eye Eccentricity LONG

17. Eyebrow Angle NEl\'lIS
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Figure 13

The dendrogram, a tree-like graph of non-
overlapping hierarchical partitions, is another visual
technique used in cluster analysis. A computer pro-
gram containing eight clustering techniques (nearest ..
neighbor, furthesl: neighbor, simple average, group •
average, median, centroid, Lance and Williams' flex-
ible strategy, and Ward's method) is used. Initially.
the data are standardized; both classical and robust
standardization techniques are used. Regardless of
the standardization and algorithm used, Alaska,
California, Hawaii, and New York are distinct from
the main cluster.

III. LARGE DATA SETS

In data analysis many of the problems can be
attributed to the data itself, such as perhaps inac-
curate, missing. too little, and recently too much.
These large data sets not only creata a tremendous
storage problem, but challenge computer graphics for
effective display techniques.
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Figure 14

The analyses considered here deal with National
Uranium Resource Evaluation (NURE) data. The objec-
tive of this nationwide airborne and stream sediment
reconnaissance survey is to classify regions with
respect to their potential mineralization. For ex-
ample, in the stream sediment survey, LASL analyzes
the data from five states: Wyoming, Colorado, Montana,
New Mexico and Alaska. In the second year of a five-
year study, LASL data bases already contain seven
million words. Graphical techniques presented here
include scattergrams. 3-D and 2-D density plots, a
linear discriminanl: analysis display. contour maps, A.
and mOVing windows. •

The probability distributions of certain random
variables such as thallium signals over a given geo-
logical formation of a flight line are thought to in-
dicate uranium concentration. Figure 16 is a scatter-
gram of bismuth vs. thallium for all geological forma-
tions on one map line in the Lubbock-Plainview area
in Texas. The data in the lower left-hand corner
represent recent geological formations and most of the
formations follow a linear trend except for the data
on the right-hand side of the plot where TL becomes
constant with B1 increasing. These data belong to two
older formations with known uranium mineralization.
Figure 17 shows data for the QT geologic formation.
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Scattergrams such as this are useful in identifying
clusters representing misclassified geological forma-
tions data.
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A technique for computing an empirical density
function (edf) used to estimate a probability density
function has been developed. As many as 100 of these
densities, each representing a map line or transect,
can be displayed simultaneously as shown in Figure
18. Since some of the edfs may be visually obscured
by other edfs, the 3-D plots have been compressed
into a 2-D grid plane in a lightness-darkness plot
shown in Figure 19.

Figure 20 shows a linear discriminant analysis
displayed as a gray-level matrix useful in delin-
eating favorable and unfavorable regions of uranium
mineralization. Each square represents 100 records
(i.e., 100 seronds of gamma-ray signals on a map
line) in the Lubbock area. The 23 rows represent 23
map lines. 7;,dre are eight gray levels which are lin-
early spaced from light to dark over the interval
[O,l}. The lighter shades represent low probability
of favorable uranium mineralization while darker
shades represent high probability of favorable uranium
mineralization.

Contour maps of the radiometric variables are
also useful in indicating regions of favorable min-
eralization. A contour map of the bismuth-thallium
ratio in the Lubbock-Plainview area is shown in Figure
21.

Figure 20
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Figure 21

Figure 18
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Figure 24

OFFSHORE OIL AND GAS LEASES
ocr. 13. 1954 - NOV. 16. 1976

Figure 2S
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were made for exposure to suspended particulates,
additional restricted activity days due to pollution
and annual morbidity costs per person and per town.
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IV. CARTOGRAPHIC-DATA SETS

Figures 16-22 represent different ways of dis-
playing data analysis techniques. It is interesting
to check whether these disPlays indicate the same
favorable areas of potential mineralization.

Figure 23 summarizes U.S. offshore oil and gas
lease data from October 1954 - November 1976. The
number of leases, the leasing years, the acreage and
the producing acres through 1974 are given for indi-
vidual states and regions as well as totals for all
the leases. Of the total 2,260,000 producing acres,
Louisiana has 2,116,000 acres and Texas has 118,000
acres.

Maps are very useful in displaying and communi-
cating information contained in data with spatial/
geographic relationships. The figures shO\ffi are
applications of cartographic techniques and have been
extracted from various on-going projects.

Figure 22 shows a method for deteet:ing clusters
of bismuth anomalies. The map of the anomalies in the
Lubbock area represents a 2-D Poisson process. A rec-
tangular moving window 6 miles long and 8.5 miles (or
3 map lines) wide is used to identify clusters contain-
ing 5, 6, and 7 or more anomalies at a specified prob-
ability level.

Figures 24 - 26 are for a study of the impacts
of electric power generation in the West. The loca-
tion of existing and proposed power plants by type
for the Western and Rocky Mountain regions are shown
in Figure 24. The letters represent the type of
plant, i.e., coal, oil, gas and nuclear. The size
of the letters indicate three levels of power genera-
tion: small, 500-999 MWe, medium, 1000-1999 MWe, and
large, 2000+ MWe. The Los Angeles and San Francisco
areas have a number of oil-fired plants and these
areas are simply shaded. Figs. 25 and 26 are maps used
to study pollution dispersion patterns. Figure 25
shows S02 concentration in southwest Wyoming §or 1985
with pollution contours drawn every 0.25 •
Figure 26 shows change in length of life due to pollu-
tion in days per person. Similar graphical displays
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Figures 30 - 37 are maps displaying energy-
related data from the Regional Studies Program.
Figure 30 shows five coal export-import regions
and Figure 31 is a flow map for the export of Rocky
Mountain coal. The circle represents the within
region total and the thickness of the arrows repre-
sents relative amounts of export to the other four
regions. Bar charts and pie charts are useful in
displaying energy totals for regions 0: states. Pro-
duction, consumption, export and negatlve export
(import) figures are displayed in Figures 32 and 33
using shaded bars. Figure 34 uses varying sized
circles to indicate production levels by region.
Sections of a circle are shaded differently to indi-
cate coal, oil and natural gas, hydro, nuclear and
other and production. Figure 35 shows county
air quality maintenance area data for the Rocky
Mountain region.

An interactive composite geo-information mapping
system known as provides map data on such
items as wilderness areas, ecosystem trends, loca-
tions of natural resources, etc., for selected re-
gions in the U.S. Figure 36 of
fields and Figure 37 is a composlte ot coal flelds
with oil shale basins in the Rocky Mountain region.
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Figure 27

Heating Degree Days

Figures 27 - 29 are from solar feasibility stud-
ies. 16 The first map shows heating degree days which
is the average of the high and low temperatures sub-
tracted from a 65· base temoerature summed over 365
days for one city in each of the 48 states. Simply
stated, the colder the climate, the higher the num-
ber of heating degree days. Contrast Florida with
214 and Maine with 7511. The second map shows 1977
residential gas prices in dollars per thousand cubic
feet by state. Gas is generally cheaper in the
southern, central and Rocky Mountain regions. Note
that Maine has higher prices than nearby Vermont
and New Hampshire. Figure 29 shows the pattern of
economic feasibility for domestic hot water without
incentives, with incentives provided by the National
Energy Plan of April 1977, and the House MOdifica-
tion of that plan.

Computer-generated images aid in the study of
the effect of various contaminants on Visibility.
Photographs of landscapes have been digitized on a
microdensitometer in wavelengths corresponding to
red, blue and green light. Data on transmitted and
total radiation are calculated and converted to equi-
valent densities using a plume visibility code. The
densities are superimposed on the image to form the
pollution cloud. The color and extent of the cloud
are determined by the type of pollutant, different
control technologies and varying meteorological
conditions.
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V. SUNMARY

The computer-generated graphic products de-
scribed in this paper represent a variety of tech-
niques for displaying and analyzing small univariate
and multivariate data sets, large data sets and car-
tographic data sets. Computer graphics are useful
tools for communicating information efficiently and
effectively.
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AN INTERACTIVE GRAPHICAL DATA SYSTEM
Richard L. Phillips

The University of Michigan, Ann Arbor, .Michigan, 48109
ABSTRACT

ADROIT (Automated Data Retrieval and Operations Involving
Timeseries) is an interactive system which is capable of rapid re-
trieval, statistical processing and graphical display of large data
bases. ADROIT comprises two major subsystems, the computational
subsystem (ACS) and the display subsystem (ADS). heart of ACS
is an interpretive programming language which has been designed to
handle time series data types. Besides the usual data types found
in programming languages like FORTRAN,. ADROIT includes an observa-
tion and a time interval type. These permit proper statistical
operations to be performed and aggregation of data to arbitrary
time periods and intervals. ADS allows the user to design and pro-
duce report-ready graphs of data processed by ACS. Among the dis-
play options available to the user are: point, line, or bar graph
plotting of data; curve smoothing or least squares data fitting;
absolute, relative or cumulative histograms.

e INTRODUCTION
There is no about value of a

graphical display as an aid in discovering
relationships hidden in complex datasets.
Such a discovery process is, however, inher-
ently meaning that interactive
graphics is required. A system has been de-
veloped that an analyst to interac-
tively manipulate and analyze data-
sets and to display the on dynamically
designed graph backgrounds. follows is
a detailed discussion of this system, explain-
ed in context of a particular
one water should be
understood, however, is gen-
eral and can and has been used many

of datasets.

THE COLLECTION OF WATER QUALITY DATA
On a more or less periodic basis, state

governmental agencies responsible for enforce-
ment of water standards in the

take samples of inland waters under
jurisdiction. These' samples are taken.

carefully chosen called
each station has its own unique identifying
code called a station number.

The samples are chemically analyzed to
yield potentially over 2500 different so-
called parameter values, numerical values
describing the goodness'of the water: examples
of parameters are dissolved oxygen level,
nitrate concentration, and mercury concentra-

Each has own unique
identifying code called a parameter number.

Each parameter value has a ntime of
Observation" associated with it, given in a
form known as the EPA date. The EPA date is
a ten digit number composed of five, 2-digit
fields: the last two digits of the year, the
month, the day, the hour, and the of
the data sample. For example, 1:22 pm on
December 30, 1976 is denoted as 7612301322.

THE STORET SYSTEM
Combined with physical parameter

such as stream flow and water
the chemical parameter values from a sampling

are sent to United States
Environmental Protection Agency (EPA) to be
stored in a large computer data bank called
STORET [1]. The in the STORET system
are (parameter value, EPA date) pairs,
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catalogued by station number and parameter
number. In the State of Michigan alone, over
150 parameter values are collected at 718 sta-
tions. In spite of the. fact that inclement
weather frequently prevents sampling at
monthly intervals, STORET now contains about
3-million useful (parameter value, EPA date)
pairs for Michigan. When this number is multi-
plied by the number of states participating in
the program, the amount of data involved be-
comes truly prodigious.

Leaving aside the question of the physical
management of the data bank, the problem re-
mains that there is no sense in collecting all
the data in STORET unless someone analyzes it.
STORET can currently produce preprogrammed
(i.e. "canned") high-level, statistical sum-
mary reports in batch mode, but it has no time
series analysis capabilities, and it has no
interactive information retrieval capabilities
nor any interactive computational capabilities.
The logistics problems of retrieving and work-
ing with STORET data impede exploratory,
qualitative studies which seek to go beyond
the preprogrammed summary reports, and make
rigorous, quantitative studies very difficult.

The development of the ADROIT system [2]
(Automated Data Retrieval and Operations
Involving Timeseries) was undertaken to alle-
viate the shortcomings of the STORET system
for use within the State of Michigan. It was
clear that a water quality investigator could
realize significant gains in his capabilities
and his productivity if he could interactively
pose queries to the data bank using familiar
notation, interactively perform statistical
analyses of the retrieved data, and graph the
results of such analyses on an interactive-
computer-graphics terminal. In addition, it
was recognized that ad-hoc procedures for
handling the large quantities of data in-
volved would likely be doomed to failure. In
short, the highest returns seemed to be in an
interactive, systematic problem-solving
environment specifically tailored to retro-
spective analysis of the water quality time-
series data in STORET. ADROIT attempts to
provide such an environment.

THE ADROIT SYSTEM
ADROIT is a system of integrated computer

programs which have been designed to perform
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rapid and statistical analysis of
water quality time-series data, and to produce
report-ready graphs of selected results.
ADROIT caters both to the casual browser who
is taking a cursory look at a small data set
and to the more serious investigator rigor-
ously studying a large data set. For casual
and exploratory studies, ADROIT is usually
run completely interactively. After an
analysis scheme has been interactively de-
veloped and verified, further analyses and/or
plotting of results may be performed without
user intervention.

Particular attention was paid throughout
the design of ADROIT to human engineering
proble!lIs - e. g. selection of defaults, exten-
siveand early diagnosis of errors, elimina-
tion of error-prone constructions, and produc-
tion of readable error messages. The result
is a system which because of extensive de-
faulting is easy to use for everyday tasks,
but in which it is possible to specify.opera-
tions in very fine detail if the user wishes.

ADROIT is currently implemented as two
intercommunicating interpreters, each of which
communicates with the user through its own
special-purpose programming language. The
interpreters are known as the ADROIT Computa-
tional Subsystem (ACS) and the ADROIT Displaj[
Subsystem (ADS).

THE ADROIT COMPUTATIONAL SUBSYSTEM
A great deal of design effort was expend-

ed in developing a rudimentary but acceptably
complete calculus of time series for the ACS
Language, to provide a focus for the analysis
process. The ACS interpreter in turn imple-
ments this calculus. Thus the user need not
change notations between the step of concep-
tualizing an analysis scheme and the step of
instructing the computer to perform an analy-
sis.

The ACS Language resembles mere common,
general-purpose programming languages, but
error-prone features (such as the GO TO state-
ment and implicit type conversions) are not
present, and new data types and built-in
functions which facilitate the analysis Of, ,
time-series data have been added. The
tions of arithmetic operators have been
extended to the new data types, and vector



arithmetic similar to that available in APL
[3] has been implemented. Thus a few lines
of ACS Language can quite often specify the
computations expressed in several hundred
lines of FORTRAN or ALGOL.

The concept of data typing plays a sig-
nificant role in the ACS Language. Every
constant, variable, and expression always has
a well-defined type. The familiar data types
NUMERIC, LOGICAL and STRING are present, as
well as three new data types: the numeric
interval NUMINT, the time interval TIMEINT,
and the observed time When re-
quested to perform an operation involving one
or more expressions, the interpreter checks
the type of each expression to ensure confor-
mance to the defining rules for that opera-
tion. Thus for example, the interpreter gene-

an error comment when the user tries to
multiply a time interval by a time series
(TIMEINT times OBS) because such an operation
is not defined in the ACS Language. In such
a case, other programming languages often try
to do an automatic type conversion and resume
computation, producing astonishing results in
the process!

Since the users of ADROIT are familiar
with EPA date notation, a constant of type
TIMEINT is given in those terms: for example,

TIME 7507010GO THP.U 7512 BY 2 MO
is a constant of type TIMEINT and denotes the
interval from the first minute of July 1, 1975
through the end of 1975, partitioned into 2-
month intervals. ACS understands abbrevia-
tions in the specification of EPA dates: e.g.
"7512" above. Variables may be declared to
be of type TlMEINT, and as with other pro-
gramming languages, such variables may be used
anywhere in the language where an expression
of type T!MEINT is required.

A datum of type OBS, i.e. a time series,
consists of a 4-tuple of vectors: the sample

the sample variance, the sample weight,
and the time of observation. A time' series
of (parameter value, EPA date) pairs as

from the data bank is expanded bye ADROIT into a constant of type OBS as follows.
Suppose there are N pairs in the retrieved
time series. Then the interpreter allocates
four vectors, each N elements long. (The

user need not prespecify vector length info-
mation as done in FORTRAN: storage allocation
for all data types is done automatically.)
Into the sample-mean vector are put all of
the parameter values for the time series. The
time-of-observation vector holds the EPA dates
corresponding to the parameter values. Each
element in the sample-variance vector is set
to zero to indicate that the corresponding
mean element is known "exactly" (i.e. to with-
in error, which is ignored). Each
element in the sample-weight vector is set to
one indicate that the information from only
one parameter value is reflected in the cor-
responding sample-mean and sample-variance
elements.

Before time-series data can be retrieved
from the data bank, a particular station is
selected by assigning its station number to
the reserved STRING variable CURSTA. Time
series at this particular station may then be
retrieved by a date-retrieval variable, de-
noted by prefixing a parameter number by the
letter "P". For example, P300 denotes dis-
solved oxygen since the parameter number for
dissolved oxygen is 300. A data-retrieval
, variable has the data type OBS and may be
used anywhere in the language where an expres-
sion of type OBS is required.

The ADROIT user manipUlates time series
through built-in functions which operate on
time series to produce new time series. Typ-
ical of such a function is AGG. which is used
to pool data t:o achieve some measure of sta-
tistical reliability. A typical invocation
of AGG. is

AGG. (P300, TIME 64 THRU 74 BY 1 YR)
The operation of this AGG. call 'is as follows.
First, eleven aggregation intervals as speci-
fied by the second argument are computed:
these would be the year of 1964, the year of
1965, and so on. Then for each aggregation
interval, one element of the resultant OBS
value of the AGG. function is computed as
follows. The mean element is the average of
all mean elements in P300 which fall into the
aggregation interval, weighted by their cor-
responding sample weights. The variance ele-
ment is a combination of all the variance
elements in P300 which fall into the aggrega-
tion interval, weighted by their corresponding
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sample weights (the proper statistical formula
is used). The sample-weight element is the
sum of all the sample-weight elements which
fall into the aggregation interval. The time
element is the average of the beginning and
the end' of the time interval. Thus the result
of this AGG. call is a time series of eleven
points and the mean element of each point is
a level of dissolved oxygen, averaged over a
one-year period. Note that the result can be
further aggregated or operated upon by any
other function which operates on data of type
OBS.

Other time-series manipulation functions
in the ACS Language handle problems of simul-
taneitY1 although water quality parameters
change slowly, it is hardly supportable to
multiply an effluent concentration sampled in
the winter by a flow sampled in the summer to
obtain an effluent mass value. Thus all the
time series which are to participate in a
computation are first moved onto a common
time net. The common time net of a set of
time series is an ordered set of time values
such that for any time value in the net, there
is a corresponding time-series value in each
of the time series. The ACS function
COMMTIME. operates on a variable number of

constituents of time series to
produce a NUMERIC VECTOR datum which is the
common net of the time series. This
common time net can then be used by the
function to extract the common points from
time series for further computations. In
actuality, the requirement for strict simul-
taneity is relaxed somewhat1 if two time
points lie within a user-specified number of
minutes of each other, they are adjudged to
be simultaneous as far as COMMTIME. is con-
cerned.

In addition to the time-series manipula-
tion functions, there are type-conversion
functions, standard numerical functions like
square root and logarithm, a function to sum
the elements of a vector, hydrological util-
ity functions, and statistical
which compute the inverse normal, chi-squared,
Fisher'S P, and Student's t distributions.
These functions provide building blocks for
arbitrarily complex analysis procedures which
can be developed by the user.

ACS has the capability of utilizing a li-
brary of user-defined procedures. Thus when
the user finds there are sequences of state-
ments he frequently performs and finds useful,
he can catalog them as a procedure by giving
them a unique name. When the procedure is to
be invoked, the user simply types its name
(and any appropriate arguments), and ACS exe-
cutes the procedure immediately.

A complete set of statements to direct the
flow of control adds tO,the power of user-
defined procedures. In addition to the IF
statement, ACS Language provides FOR and WHILE
statements similar to those of ALGOL to handle
loops. An ABORT statement causes an error
return and procedure traceback to appear on
the user's console. Control can be trans-
ferred from the ACS to the ADS (display sub-
system) by a GRAPH statement, followed option-
ally by a list of arguments.

A pair of examples will perhaps clarify
the above discussion. the task at
hand is to plot the soluble ortho-phospqate
concentration at the mouth. of the Grand River,
aggregated by year, from 1963 through 1974,
with 80% confidence intervals shown on the
plot. The following lines, typed at the
user's interactive graph;cs terminal, will
produce the desired plot.

CURSTA = '700026'
TIMPER = TIME 63 THRU 74 BY 1 YR
GRAPH AGG. (P70507,TIMPER)
AUTO
DATA
LINE
CONF 0.8

The first line specifies the station number
of the station at which time series will be
retrieved. The second line assigns the time
period of interest to the variable TIMPER,
which is gratuitously predeclared in the
interpreter to be of type TIMEINT for just
this use. The third line causes the ADS to
be invoked to graph the time series which is
the result of the aggregation of the soluble
ortho-phosphate concentration P70S07 over
the time period. The remaining lines are
instructions to the ADS which cause AUTOmatic
graph scaling for a plot of (the aggregated)
parameter value versus time, plotting of the
DATA in the sample mean vector, connection
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THE ADROIT DISPLAY SUBSYSTEM
Just as a calculus of time se .es under-

lies the manipulation of STORET d :a in the
ACS, a canonical defini .on of a
graph is a fundamental aspect of :e ADS.
The canonical graph description i maintained
by the ADS in a form called the :ph struc-

The graph structure is an :dered list
of graph elements, each of which ; described
by a number of parameters. The e :ments fall
into either the background group ;sociated
with scaling and labeling or the ,ta group
which is generated from the data lints to be
plotted. The background group of ,raph ele-
ments includes the x-y axis syste the x-
and y-axis tick marks, the x- and '-axis grid
lines, labels for the x- and y-ax tick
marks, and the titles for the x a I y axes.
The data group includes the data lints
plotted on the graph by plotting laracters,
the solid and dashed lines platte on the
graph, the smoothed curve plotted In the
graph, the regression line platte on the
graph, the bar graph plotted on t graph,

of adjacent data points by a straight LINE,
and plotting of the CONFidence limits (assum-
ing Gaussian distributions and based on the
sample variance and Student's t statistic).
The graphical output is shown in Figure 1.

As a second example, consider the follow-
ing problem: plot with 80% confidence limits
the soluble ortho-phosphate mass (called a
Itloading") in pounds per day flowing by the
.same station over the same time period, aggre-
gated by year. The solution will be cast in
terms of a user-defined procedure named
PHOSLOAD. which computes the soluble ortho-
phosphate loading at station CURSTA during
time period TIMPER. To invoke PHOSLOAD. to
solve the problem (assuming control is still
situated' within the ADS from the first
example), the user types:

EXJ:T
GRAPH AGG. (PHOSLOAD. ,TIMPER)
AUTO
DATA
LINE
CONF 0.8

The first causes the ADS to return con-
trol back to the ACS. The second line rein-
vokes the ADS to plot the value of the proce-
dure PHOSLOAD. aggregated over the time peri-
od. Note that the variables CURSTA and
TIMPER retain their old values and need not
be reassigned. The remaining lines are the
same as for the previous example. The graph-
ical output is shown in Figure 2.

The text of the user-defined procedure
PHOSLOAD. is shown in Figure 3. Both re-
served words and built-in functions in the
ACS Language are shown in lower case, and
reserved 'N'ords are underlined. Variable
names are given in upper case. The percent
character "%" is used to start comment lines,
while a trailing dash ,,_It on a line implies
that the statement is continued on the next
line. In statement 1, the procedure name is
declared1 since no arguments are specified
after the procedure name, the interpreter
will check to see that the user supplied no
arguments in the invocation. Statements 2
and 3 declare the temporary variables which
will be used in the computation. Three
variables of type OBS are declared, and one
VECTOR variable of NUMERIC type is declared
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Statement Text of Procedure

1 procedure PHOSLOAD.

, The declarations for local variables follow

2

3

4

5

• 6

7

obs P, F, LOAD

numeric NET
, The executable part of the procedure follows

P • restrict. (P70507,TIMPER)

F. restriet.(P60,TIMPER)

NET. commtime. (time. (p),time(F»

LOAD = 2.204SE-6 * 28.316 * 86400 * -
extr.(P,NET) * extr.(F,NET)

8

9 endproc

Figure 3. The user-defined procedure PHOSLOAD
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Figure 4. Example of graph background
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and general textual annotation applied to the
graph. Each of the graph elements is under
control of the user, and may in fact be
omitted.

The user controls the graph structure
through a simple set of keyword commands. For
example, the user can specify the placement
of the tick marks on the x axis by

TICX • 0.0, 2.0
which indicates that tick marks are to begin
at x = 0.0 and continue thereafter with a
spacing of 2.0, i.e. x-axis tick marks are to
appear at 0, 2, 4, 6, •

If the user wishes, he can avoid specify-
ing graph parameters explicitly by
using the AUTO command. If this command is
issued, the ADS will use the extrema of the
data currently being plotted to compute scal-
ing factors to generate a graph structure
which will produce a visually pleasing graph.
The AUTO command produces axes, tick marks,
tick mark labels, and if appropriate, axis
titles. In most cases, the graph produced by
the AUTO command will be acceptable, but if
not, the user can easily modify it. It is
possible to use the ADS in a semi-automatic
mode wherein the user specifies only those
graph elements over which he wants control and
then issues the AUTO command to let the ADS
determine the rest of the elements.

Once the background group has been estab-
lished, the user can plot his data in a vari-
ety of ways. He can select a plotting char-
acter for discrete data .representation,· or he
can join the data by straight or dashed lines,
or both. A smooth curve can be passed
through the data, as if done by a draftsman,
or a least-squares regression polynomial can
be passed through imprecisely known data.

Data values can also be represented by a
bar graph, with bar width and texture being
under user control. Histograms of the cur-
rent data can also be produced.

If the elements of the background group
are frequently used, the user can name them
and store them in a special file, to be
called up later to plot the same or different
data. Figure 4 is an example of data plotted
on a frequently used graph background.

When the user has finally obtained a
satisfactory graph of his data, he can either
produce a Calcomp plot directly or store the
grph in a so-called "holding file" for later
post-processing by the COMPOSE subsystem.

THE COMPOSE
The ADROIT system includes a graphical

post-processing module called COMPOSE which
is run as a stand-alone program. COMPOSE was
designed to produce report-ready graphs by
selectively combining and annotating individ-
ual graphs produced by the ADS.

COMPOSE is page-oriented. The user ima-
gines he is preparing a figure for a report
and specifies page size, orientation, and
margin width. A composite graph may then be
constructed using from one to six of the ele-
mentary graphs in the holding file. Elemen-
tary graphs may be selected from the holding
file in any order and placed at any available
position on the composite page.

After producing the desired combination
and arrangement of graphs, the user can add
more text and graphical enhancements to the
page. The user may wish to add figure titles
(as has been done with Figures 1 and 2),

text in the body of the graphs,
or that tie the graphs together.
COMPOSE allows full control over character
size, orientation, type font, and italics
angle.

Graphical annotation takes the form of
special symbols such as arrowheads, rectangles,
regular polygons, and straight lines and arcs.
Using the cross-hair cursor on the graphics
terminal, the user can position these graph-
ical enhancements anywhere on the page. To
produce annotation and enhancement of a de-
sired size, the user can zoom in on any part
of the page, add graphics or text, and zoom
out again to full page size.

Finally, a PLOT command can be issued to
produce a Calcomp plot of the finished page.

SUMMARY
ADROIT has been'in use in Michigan for

over two years. During that time, a few
bottlenecks in the design have been found,
but the number (less than half a dozen) has
been gratifyingly small. The system has been
amazingly productive, exceeding everyone's

132



expectations. It is easy to learn (about a
day for people familiar with STORET), and be-
cause it is extremely interactive, it is easy
to use. The elapsed time and computer time
cost to produce Figures 1 and 2, for example,
was about fifteen minutes and $4.00. This
compares favorably to the hours of hand compu-
tation and drafting that would be necessary
using previous methods.

The author strongly feels that the success
of ADROIT can be traced both to its emphasis
on human factors and to the design effort ex-
pended to develop a systematic, coherent
scheme for analyzing time series and producing
graphs.
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ABSTRACT

A variety of methods for the coding of geographical points, lines, areas, and
surfaces are available. These permit the automatic production of geographic maps,
but also permit direct spatial analysis without the use of visual illustrations
(maps). efficiency of the various met
has higher priority.

as the internal geographic representation is "complete". one
can c:onvert from one structure to another. Thus. from one
point of view, it does not which structure is used.
The two difficulties are that (a) it is not entirely clear
when a geographical data set is "comelete", and (b) when the
vol ume of oDservati ons is large it may be impractically
expensive to convert from one organization to another. .
The classical cartographic paradigm separates phenomena lnto
classes representable on maps as points, lines. areas. or
surfaces. Although somewhat hobbling. this categorization
can be used to illustrate the foregoing assertions.

Point phenomena are easily represented by geographical
coordinates. These coordinates art: nlimes attached as labels
to places on the earth's surface. Since the naming of places
is easy one single place r.ay have several different names.
or aliases. in different coordinate Two well
known systems are latitude/longitude. ""d transverse Mercator
coordinates. But a house. for example, also has an identi- .
fication using a ·street name and at least in the
European culture area. Conversion between these various
aliases may be necessary. Early transpor-
tation studies coded as many as slxteen geographlcal aliases _
for each location of interest. But clearly if one knows
the latitude and longitUde of a house then the county which
contains the house could be computed. anc need not be recorded.
Such redundant coding is used when frequent conversions would
otherwise be

In this paper I attemPt to provide an overview of the
subject suggested by the·t1tle.A detailed account of.par-
ticular data not attempted; references are pro-
vided for this purpose; Nor is any particelar data structure
advocated; it is abundantly clear that the appropriate data
structure depends on the application. To the extent that one
can specify the contemplated application so can.one spe-
cify an appropriate data structure. In praCtlCe it lS gener-
ally the lack of knowledge of specific applications which ren-
ders di Hi cuI t the choi ce 0 f data structure. There is no such
thing as an optimal all-purpose geographical data structure.
Some advocates of particular structures would have one believe
in such chimera.

Early attempts at cartography satisfied
to use output equipment as mechanlcal draftsmen. Flgure 1.
for example. is a map of the United States which dates from
1963. Although this map contains state.boundaries the data
set used to create the map, 10400 1atitudell ongi tude pairs
in an orderly sequence. does not in fact recognize the states
as entities. The first stage of these endeavors had as an
objective the ability t.o draw maps automatically. TheSE maps
would then be used in the conventional manner, EffOrts in
this direction continue. with increasingly intricate maps
being produced. The currently available World Oata Bank II.
for example. contains some 6,000,000 points. Color separa-
tion drawings for complete topographical maps. for land use
maps. for atl as sheets, and for nautical have
produced automatically on at 1east an exper1mental basiS.

The next natural step is of course to leave the geogra-
phical information in the and to never actually
produce any illustrative graphH; ,map). but rather to solve
the geographical problem directly. mimicking in the computer
what one would if one had at hand the geographical map.
There are sOme applications in which this objective.ilas been
achieved. But generally we are at a stage tntermed1ate to
these two steps. Thus we have. i nteraI i a. census. data
lected for states. counti es. lind other sma11 area! vi-
sions. We would like to have these data be assoclated the
computer with the set of locations. i.e. lat,-
tudes and longitudes. to which they belong
Thus states, etc. should be recognized as entlt,es In a
boundary polygon file. We can the,. draw maps of the merged
files. as in Figure Z. It is fairly apparent that a data
structure which is convenient for the mechanical drafting
of maps is ackward for the merging of or for tne re-
cognition of geographical entities. It is often not noticed
that the converse propos i t 10n also holds. However. as long

Fi gure l: Map of the United States drawn by computer-controlled
plotter using geographical detail stored on a magnetic
tape released in 1963 by A.V. Hershey.
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Figure 2: Merging of locative (geographic) information and sub-
stantive data for automatic choropleth map production.

In general the data structur.e associated with points
is relatively simple. and "dot" maps are easily produced
automatically. The analysis of point patterns. i.e. the ab-
stract study of the arrangement of dots on a piece of paper.
is of importance in biology. geography. archaeology, and
several other fields. It is mostly a matter of manipulating
the coordinate labels. and should of course be coordinate
invariant. point counting within regions occurs in
marketing studies and oity planning. Often the points have
associated with them some other phenomena. e.g•• the 'point"
may be labelled 'New York City', and has a pooulation. etc.
Or one may have a time series of spatial point arrangements.
These latter data are conveniently represented in the form of
a computer movie; Figure 3 shows a frame from an inexpensive
movie of this type. The comparable statistical analysis,
studying peint patterns in space-time becomes very )ntricate.
The simple structure of point observations also suddenly
becomes very elaborate when one attempts to establish a
relation between the points. If the observational locations
are weather stations for example. one might wish to associate
points through an "adjacency" relation. Establishing sueh a
relation can be quite intricate; depending on the definition
used one may have an NP-complete problem.

Lines are conveniently defined as segments between points
(now often called nodes). A coastline. for example. can be
described as an ordered set of points. defined by coordinates.
But there are additional entities which are recognized
as "lines" • ,4, pattern of streets. geologic faults. a stream'
network. boundaries between regions. and 1evel curves. are all
treated within the ccntext of lines. From a drafting point
of these 1ines have a great deal in cOllJ!lon. From an

point of view the collection is too heterogeneous to
_make any sense at all. The study of abstract line patterns

seems still to be rather primitive. perhaps similar to the
difficulties of studying shapes. Network analysis is perhaps
the most advanced. And there are more subtle difficulties.
A coastline is not really a well defined entity, but we pre-
tend that it is.

One topic which has been given attention,particularly
with respect to lines (al though it appears also for points.
areas. and surfaces),is map generalization. It is closely
akin to the aggregatlon problem in economics. The carto-
graphic motivation stems from the reduction of detail required
when one shrinks a portion of the earth's surface "to postage
stamp size. i.e •• makes a map. Analogies might include the
condensed book (textual generalization). the musical overa-
ture (acoustical generalization). or cartooning (visual gen-
eral i zati on). Yet to be rea11 zed are geographi ca1 edi ti ng
systems comparable to the many text editors now available for
interactive computing. Interactive graphics is a clear move
in this direction.

The "areas" encountered in cartography are bounded
patches of the earth's surface. with which are associated
phenomena of some sort. The phenomena are often categorical
(binary: land versus water; 01" n-ary: land use type. rock
type), occasionally numerical (scaiar: taxes contributed.
number of people. disease rate; or vectorial: table of the
number of interactions with other places; etc.). Generally
the patches exhaust the geographical domain of interest.
Efforts to date have been directed mainly at the elucidation
of methods of coding the boundaries of the patches."" Several
techniques. some extremely ingeneous. are available. Notable
among these systems is one refered to as 9Jla1 Independent
Map Encoding, which has been used to describe the pattern of
streits and enumeration districts for some two hundred U. S.
cities (and versions have been exported). In this scheme
each street segment is treated"as a directed line. with coor-
dinates at tlla end points,"and is associated with an area on
the 1eft and an area on the ri ght hand side. and wi th a street
name and with a range of" house numbers, Figure 4. One advan-
tage of" this scheme is the"quasi-automatic topological error
checki n9 which it permits". Most recently" hi erarclli ca1 methods
and methods permitting nesting of areal phenomena have been
described. The hierarchical schemes allow trivial generali-
zation by upward aggregation. The nested schemes recogni ze.
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IMU.

Figure 3: Frame from a computer movie depicting time varying
geographic phenomena.(Location of traffic accidents
in a city). After Moellering.

For each' segment

a DIME record contains

Low Node
High Node

Street Name
Street Type
Lt Addresses
Rt Addresses
Left Block
Left Tract

Right Block
Right!ract

123
124
POLK
ST
101-199
100-198
31
9
31
9

Figure 4: Organization of geographical detail in a :lIME file.
U.S. Bureau of the Census.
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Figure 5: ' Population density by state for the USA rendered in
the form of a bivariate histogram. Program prepared
by the author.

that. for a given average resolution. the fit to the data is
poorer. These concepts are rarely given precise definition
in the literature. For'example. one could set up a mean square
departure test. keeping average resolution constant, or.
conversely. chose the resolution to satisfy some such criterion.
At the moment the cho; ces' in this area are terri bly "practical".
that is, atheoretical and ad hoc. There is of course also
an obvious relation'to storage requirements. Curiously. var-
iable sized triangulations; the natural simplex in two dimen-
sions. and much used in finite element analysis. have not been
popular as cells for geographical data storage, probably be-
cause automatic scanners cannot easily the data in this
form. Interconversion between grids using different lattice
sizes requires knowledge of the limitations imposed by the sam-
pling theorem, but otherwise causes no great difficulties. Pro-
grams aiso exist to convert polygonal data to grid formats.
and the converse.

The typical surface treated in cartography is the topography
of the land. Elevations are treated as x,y,z coordinates.
either on a uniform lattice in Which case the x.y coordinates
are implicit, or at critical points. or at randomly sampled
points. In all three cases the entfre surface is recreated
by an interpolation procedure. Tnese interpolation rules are
hypotheses about nature, which mayor may not be true. Inter-
polation invariably requires that orle decide 'lihich observations
are adjacent to each other--all points may be considered neigh-
bors. but then some are more neighborly (have greater influence)
than others. Display formats include block diagrams and
level' curves or contours. 'For some appl ications it is advan-
tageous to store the contours as i ines (strings of coordinates)
and the topoloClical nesting tree. Some difficulties are encoun-
tered when other files, streams, or roads, are combined with
topographical surfaces unl ess the t·"o 'Here call ected sir.1ul-
taneously si nee they otherwise do not exactly r.-.at::h.

for example. that a tree may be ina park ina ci ty in.... These
are probably the most realistic but are not yet widely imple-
mented. All of these schemes describe areas as polygons with
a finite number of vertices. 'nley generally allow disjoint

A pieces and inclusions. They differ mainly in how they arrange
the pointers between nodes, arc s. segments. edges. areas
and adjacencies. Many workable schemes are now available, for
example. to produce maps automatically using the two meters of
magnetic tape required to store the 46. 142 point latitudel
longitude description of the U.S. counties. Point-in-Polygon
routines are commonplace for assigning point phenomena to
regiOnS; e.g. converting street address to census tract name.
Polygon overlay programs are also available to. for example,
convert land use polygons into areal counts' by census tract
polygons. The cost'of this file merging procedure grows as
the product of the number of and also a function
of their complexity. It is thus not an exponential problem
but is sufficiently expensive to cause practical difficulties.
Regional planning often consists of a concatenation of simple
binary decisions which can be caricatured in the following
manner: "i f land slope is not steep and dra inage is good
and a road is nearby... then development is permitted." Here
the logical intersection of three maps (sets of polygons)
is required, and a practical problem might require several
dozen such, often repeated as the criterion shift slightly
in the process of politi':al compromise. Thus polygon overlay
is too expensive in today's primitive computer environment.
For analysis purposes other criteria are important. Fi gure
5. fOr example. shows a bivariate histogram of U.S. population
density by state. It can !:e t11Ou;ht of as a pictorial repre-
sentation of a spati a1 step' function, f(x,j). Now a natura I
way to analyze a function of two space variables is to perform
a bivariate spectral decomposition. Geo;raphical central place
theory, which predicts a spatial pericdicity in the geographical
arrangement of population, also suggests such an approach.
There a:-e two difficulties in performing such an analysis on
these data. Clearly state data are too coarse. A convenient
definition of the average spatial resolution of areal data is
to take tha kth root'of'thenumber of observations divided
by the measure of the size' of the domain. k is the di-
mensicnality of the domain. In the present lnstance the
square root of the number'of contiguous states (48) divided
by the land area of the United States an average re-
solution of 250 miles. From the samp11ng theorem we thus
know that we cannot expect to resolve any features in the data
which are less than SOC miles in size. Thus this data set is
hardly adequate for the study of central places.
if the mean daily activity field of an individual is 20 m11es,
then we would need areal units which are one tenth the sizes
of counties to be able to say anything meaningful about be-
haviour of the average individual. Thus for analysis purposes
the resolution of the data is very important. To my know-
ledge the consequences of uneven resolution in a spatial ,data
set have never been examined analytically. The dlff1-
cuUy in analyzing polygonally defined spatial data 1S topo-
logical. To study the geographical spread of !deas, ,
diseases, one needs to know which areas are nelghbors o. WhlCh
other areas. This is r.ot terribly difficult to ,
Then one models the process as a relation between nelghborlng
areas. It now becomes awkward si nce the number of, nei gh-
bars can vary a great deal. The difficulty is most eas11y
exolained by asking that one devise a set of rules for a chess-
1ike game in ...hich the "squares" on the board have the shape
and the continuity rel.!tions of the counties of North Carolina.
Analysis technioues are usually described in textbooks for spa-
tially homogeneous entities. Thus a question becomes how
cne does sper.tral analysis on data peckaged in census regions?
The natural way to compare scalar
perform a bivariate cross spectral aoalys1s. How can "h1S ue
done when the data for the I1\lPS is given by t'ilO different poly-
conations? . ,
• The obvious answer is to avoid the question, by
the polygons by a set of uniform regions, triangles or unIt
squares. This can be done in either of two ways.
distinction is rarely noticed in practice. ;n-
stance one samples at a lattice ofpoints;
to multiplication by a Dirac brush. the two dlmenS10nai equ1-
valent of tne comb function. Alternatively one aggregates jata
within the cells of a mesh. In the 1iterature these schemes

Aare called "grid" systems. distinguishing them from "polygon"
systems. The advantage of a gri d system is that the .
relation is tooologically constant. a form of spatial s"ationarlty
which II1dkes analysis much easier. It also ltself to
bit plane representation in a computer. The dlsadvantage is

/
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ABSTRACT

The contemporary search for truth and persuasion in adversary legal pro-
ceedings has given birth to a new aspect of the creature known as Jurimetrics.
The melding of the evidential rules methods of the Court with the science and
technology of measurement is the challenge. This marriage has forced to the sur-
face the need for the various professions involved to understand the basic concepts
of the other. The author provides the scientist and technological expert in the
statistical and computer fields with a legal prospective. The need for increased
qualifications of all involved, the necessity to progress toward uniform standards
and the ability to communicate is demonstrated.
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I. "So Help you GOd"

A. The Scene: Law, Science and Technology
in Court.

The gavel goes down, the witness is called
and the first response elicited: "Do you
swear to tell the truth, the whole truth
and nothing but the truth. so help you GOd".
More and more scientific and technological
experts are declaring the affirmative pledge
each judicial day of our contemporary lives.
The significance of the closing phrase."so
help you GOd". can only be totally apprec-
iated by one who has the insight of personal
experience. That is to say--from either the
lawyers or experts This trans-
cendental experience raises each beyond their
prior realm of understanding to a new level
of communication. Hopefully, the result will
be to stimulate the intuition of the decision
maker to the point of being part of the pro-
cess that is occurring. When reaching this
horizon the burden of proof will be carried.

The trial attorney is educated and trained
in an atmosphere of adversariness and persu-
asion. He utilizes a set of rules and their
exceptions as a tool. with this back drop
he steps into a maze of foreign terminology,
concepts. methods and conclusions. On the
other hand. the expert bedded in a world of
testing hypothesis, methodology and measure-
ments of probability is riddled with the ob-
stacles of the judicial course. This merger
can be a confluence process which will en-
lighten and serve as a valuable vehicle of
proof and realization. On the other hand, it
,can be a disasterous collision. The essence
of the former is a matter of qualifications,
striving for uniform standards and an abil-
ity to communicate.

Since trials by ordeal the adversary system
has sought to utilize the impact of science
and technology to prove its case. Richard-
son, James R., Modern Scientific Evidence,
Seetion 1.6, page 7 et seq. (W. H. Anderson
Co., 1961). From the biblical writings to
the present theological rebirth, the applic-
ation of a jurisprudence has seldom been
without the technical expert. This contem-
porary world is maximizing upon the prior
increasing emphasis given and
technological proofs.

In consideration of the countless data, met-
hods and evidence provided by the statistical
and computer fields--in penance and apology
for the misuse and abuse that some have put
them to--the following is an attempt to sen-
sitize scientific and technological expertS
to the legal backdrop. This sensitivity has
progressed from need to an essential element.

It is an invitation to join in an effort to
come closer to a full insight.

B. The Subject: A Matter of Expertise.

Not all subjects are legally open to the
application of the rul,es governing· the ex-
pert testimony. Unlike the layman. the ex-
pert may express opinions relative to mat-
ters not observed. l The essence of expert
testimony is in the form of opinions. How-
ever. throughout the decades various resur-
ictive standards have been first applied
with respect to the subject matter covered
by the experts testimony. It has been deem-
ed to be necessary to be beyond the general
knowledge of the layman. 2 It has been de-
clared that it muatbe necessary that the
expert testimony be helpful to the trier of
fact in determining the truth. 3 Rule 72 of
the Federal Rules of Evidence requires that
the Court determine that the sUbject is a
proper one for expert testimony. Generally
such testimony will not be permitted unless
the matter involves "scientific, technical
or other specialized knowledge" beyond com-
mon knowledge. 4 Much discretion is vested
in the trial judge in this respect. The
sUbject matter must not only be helpful in
understanding the evidence and determining
the fact in question but also must be leg-
ally relevant. 5 An important judicial stan-
dard often not brought to the attention of ,.,
the expert is that of the doctrine of "ac-
ceptability". Ironically. this doctrine re-
quires that the expert evidence "be eval-
uated on the basis of its acceptability to
those of acknowledged expertise in the rele-
vant area".6 It must lie beyond the realm
of untested hypothesis and scientific spec-
ulation. The key legal standard is expres-
sed in Frye v. United states, 293 Fed. 1013,
1014 (CA DC 1923). There the court stated:
"Just when a scientific principal or dis-
covery crosses the line between the exper-
imental and demonstrable stages is diffic-
ult to define. Somewhere in this twilight
zone the evidential force of the principal
must be recognized. and while Courts will
go along way in admitting expert testimony
deduced from a well recognized scientific
principal or discovery, the thing from which
the deduction is made must be sufficiently
established to have gained general accept-
ance in the particular field in which it
rests."

On the other hand. more recent decisions ap-
pear to give more leeway in the admissibility
of such evidence, even if there is disagree-
ment technically regarding its accuracy,
where the conclusions are relevant and sup-
ported by a qualified expert witness. In ,.,
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such instances the objections to its accep-
tance will go to the weight rather than the
admissibility of evidence.'

As the ingeniousness of the world of science
and technology grows, so does the scope of
its impact upon judicial proceedings.

c. The Expert: Qualification and Presen-
tation.

An expert must have "somethinq different to
contribute u • 8 He must have qualification by
"knowledge, skill, experience, training or
education".9 Thus, the academic
background and experience surface as being
elementary to the injection of opinion into
the evidential stream. The rules of qualif-
ication are not solidified in cement and
much is left to the discretion of the court.
In most instances the expert will qualify
"because they have specialized skill' or
training which enables them to perceive and
interpret events in ways that ordinary lay
people cannot * * * courts look at experts
from a functional prospective. If the court
is satisfied that an individual has the abil-
ity to draw inferences which the ordinary
juror could not draw and that these inferen-
ces will aid the jury in rationally evaluat-
ing a fact in issue, the individual may qual-
if'j as an expert" .10

The experts qualifications often go beyond
allowing opinion testimony. They may be
needed to provide valuable specialized in-
formation on a given subject matter. Such
evidence is informational and factual, al-
though requiring expert qualification.

Though an expert may qualify to give test-
imony this does not exempt attack by way of
cross examination as to credibility. Admis-
sible evidence is always subject to the
cross examination aimed at limiting the
weight to be given to it.

The presentation of expert testimony fol-
lows two basic categories:

1. Personal knowledge
2. Hypothetical in nature

The first category follows much the same
procedure as that of lay testimony, excep-
ting it is based upon specialized expert-
ise. An expert may testify to relevant
facts gained through personal observation.
These observations must -- normally be set
forth before exp,ert opinion is allowed to
be elicited observations lay

,., a factual basis. Opinions based on hypo-
thetical facts, on the other hand, are also

commonly utilized. An expert may not have
actual knowledge of some or all of the facts
necessary to support an opinion;- these facts
may be set forth hypothetically provided
there is independent evidence which has been
introduced in trial to support them.

II. The Statistician--Computer Type.

A. General Trend: A I.-egal Prospective.

Jurimetrics is a term that has been coined
to characterize "the scientific investig-
ation of legal problems".ll For more than
a quarter of a century the growing impact
of mathematical measurements and techniq-
ues haa been slowly and continuously in-
vading the legal profession and its call.
The computers invasion of the law practice
has been deemed a "professional revolution
that will be largely complete by 1990".12
In the law office it has established it-
self as being invaluable for word proces-
sing and accounting and legal research.
One of the most recent implications of com-
puter technology is in that of litigation
support and the management of documents and
information for litigation. 13 There has al-
so been much debate regarding the use of
probability theory to help resolve problems
of proof in actual litigative proceedings. 14
To date there is little uniformity regard-·
ing utilization of mathematical evidence,
particularly where used as a probabilistic
proof to establish identification for fact.
Although scientific proofs have been consis-
tently used to identify persons, such as
through fingerprints, photographs and meas-
urements, less attention has been given to
the theory of probabilities as applied to
such questions of identification.15 In the
case of People v. collins, 68 Cal. 2d, 319,
66 cal Rptr. 497, 438 P. 2d 33 (sup. Ct.,
1978) the use of mathematical probability
to establish an identification was condem-
ned as the Court said: "While we discern
no inherent incapability between the dis-
ciplines of law and mathematics and intend
no general disapproval or disparagement of
the latter as a" auxiliary in the fact--
finding process of the former, we cannot
uphold the technique employed in the instant
case * * * the testimony as to mathematic-
al probability infected the case with fatal
error and distorted the jury's traditional
role of determining guilt or innocence ac-
cording to long-settled rules. Mathemat-
ics, veritable sorcerer in our computerized
society, while assisting the trier of fact
in the search for truth, must not cast a
spell over him. We conclude that on the re-
cord before us defendant should not have had



his quilt determined by the odds and that
he is entitled to a new trial."

This was the reaction of one court where a
prosecutor called an instructor of mathe-
matics at a State. College to attempt to
bolster identifications of the defendant.
The facts disclosed a robbery committed by
a Caucasian woman with a blonde ponytail, who
left the scene accompanied by a Negro with
a beard and mustache. Through the "pro-
duct rule", i.e. that the probability of
the joint occu:t:rence of a number of mutu-
ally independent events is equal to the
product of the individual probabilities
that each of the events will occur, the
opinions of the expert were received. The
Court noted that the testimony lacked an
adequate foundation both in evidence and in
statistical theory and that the testimony
and the manner in which the prosecution used
it distracted the jury from its proper and
requisite function of weighing the evidence
on the issue of guilt. The case demonstrat-
ed failure on behalf of the prosecutor to
present any statistical evidence whatsoever
in support of the probabilities for the fac-
tors selected and on the other hand the in-
effectiveness of defense counsel apparently
"unschooled in mathematical refinements".16
The Collins case raises haunting issues and
considerations which underlie many of the
Court decisions involving the statistical--
computer types--degree of reliability and
qualification and the policy issues of usur-
pation and prejudice. Thus, the State of";
the Art appears to be
gaining in its invasion of the legal pro-
fession, however, its progress is somewhat
slower and more cautious when applied to
the legal reception of statistical or com-
puter evidence.

B. Computer Generated Evidence.

The development of the reported cases deal-
ing with the law regarding admissibility of
computer generated evidence stems initially
from the subject of business records kept
by computer. This is to be distinguished
from computer-printouts prepared especially
for litigation. Start with---- Transport
Indem. Co. v. Seib, 178 Neb. 253, 132 N. W.
2d (1965) where, a computer print-out of
accounts 'receivable was admitted as evidence
after testimony by the insurer's director
of accounting established that the computer
records were made in the usual course of bus-
iness, identified the records, explained all
entries on the print-out, and described in
detail the procedure for using the computer.
132 N. W. 2d at 874-75. The Court held that
the fact that this particular print-out was

made specifically for trial was a distinct-
ion without merit. Id.

In v. United States Rubber Co., 7
Adz. App.433, 440 P. 2d 314 (1968), a com-
puter print-out of records of consigned ac-
counts was admitted as evidence. testimony. of
the company's credit officer verified the
normal method of keeping the and
that he was personally familiar with the ac-
count in question. The court found this to
be a sufficient foundation for the reception
of the print-out despite the fact that the
witnesses had no personal knowledge of the
computer's operation. 440 P. 2d at 317.

In King v. State ex re1. Murdock Acceptance
corp., 222 So. 2d 393 ( Miss. 1969) the Court
laid down the following criteria for the ad-
missibility of computerized business records;
"That the electronic computing equipment is
recognized as standard equipment: the ent-
ries are made in the regular course of bus-
iness at or reasonably near the time of the
happening of the event recorded, and the
foundation testimony satisfies the Court that
the sources of information, method and time
of preparation were' such as to indicate its
trustworthiness and justify its admission."
222 So. 2d at 398. See also United States
v. De Georgia, 420 F. 2d 889 (9th Cir. 1969):
D & H Auto Parts, Inc. v. Ford Marketing
Corp., 57 F R D 548 (F.D.N.Y. 1973)1
Electric co •. v. Mansion House Center North
Redev. Co., 494 S. W. 2d 309 (1973) 1 Nel-
son Weaver Mortgage Co. v. Dover Elevator
Co., 283 Ala. 324,216 So. 2d 716 (1968).

Sears Roebuck and Co., v. Merla, 142 N.J.
Super. 205, 361 A. 2d 68 (App. Div. 1976)
was an action on a book account. The trial
court dismissed the complaint inter alia
because. it would not accept a computer
print-out of the transactions in question.
The APpellate Division reversed, holding in
pertinent part: •• as long as a proper
foundation is laid, a computer print-out is
admissible on the same basis as any other
business record. computerized bookkeeping
has become commonplace. Because the busin-
ess records exception is intended to bring
the realities of the business world into the
courtroom, a record kept on computers in the
ordinary course of business qualifies as
competent evidence." Cf. State v. Hibbs,
123 N.J. Super 12, 301 A. 2d 789 (Mercer
Cty. ct. 1972), affirmed, 123 N.J. Super.
124, 301 A. 2d 775 (App. Div. 1973) (com-
puterized electronic telephone tracing equ-
ipment). See generally N.J. R.Evid. 1
(13) and 63 (13) (read together clearly
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allow computerized business records).

Perhaps the most recent decision in point
is United States v. Scholle, 553 F. 2d 1109
(8th Cir. 1977). Therein, the prosecution
int%oduced a computer read-out prepared by
the Drug Enforcement System Administration.

system computerizes the physical char-
acteristics of drugs seized and tested around
the country and is used to alert law enfor-
cement officials of the new trends, new drugs,
etc. This particular print-out showed a
chemical composition of cocaine similar to
that which defendant was charged with having
possessed and sold. In affirming the con-
viction the court held inter alia: "The de-
termination of relevancy concerning the com-
puter evidence was within the broad discr-
etion of the trial jUdge. The complex nat-
ure of computer storage calls for a more
comprehensive foundation. Assuming proper-
ly functioning equipment is used, • • • the
original source of the computer program
must be delineated, and the procedure for
imput control inclUding tests used to as-
sure accuracy and reliability must be pre-
sented." 553 F. 2d at 1124-25 (citations om-
itted) •

As the cases above illustrate, computer gen-
erated evidence should be admissible if a
proper foundation is laid. One commentator
has stated: "Admissibility should depend
on whether the computer generated data is
related to a material issue in the caser
whether the data fits within a chain of
inferences which would connect the data to
an ultimate issue in the case, and whether
the data can and will be presented in such
a manner that it will not unduly confuse
the issues or so confound and overawe the
jury. • • that it would be prejudicial to
the opposing side. Jenkins, Comcuter--Gen-
erated Evidence Speciallv Prepared for Use
at Trial," S2 Chicago-Kent L. Rev. 600,608-
09 (1976).

Another author, speaking of the credibil-
ity of such evidence, has stated: "TO in-
sure the credibility of the information, it
must be demonstrated that the programs are
functioning properly and are free from er-
rors. It must also be shown that no unau-
thorized programs were permitted to control
the computer, since such programs could have
altered the information. It must be demon-
strated that unauthorized persons • • • • •
could not gain access to the computer • • •
Finally, it must be established that the in-
formation actually presented to the trier
of fact is an accurate copy of the computer-

information, and that the information

should not be accepted simply because it is
presented in the form of an authoritative-
looking computer print-out." Sprowl, "Eval-
uating the Credibility of comcuter-Gener:--
ated Evidence," S2 Chicago-Kent L. Rev. 547,
557-58 (1976).

Another commentator has broken down the data
processing system into five stages: 1. gen-
eration and assembly, 2. inputr 3. operationr
4. storage and retrievalr 5. output. Rob-
erts, "A Practitioner's Primer on Comcuter-
Generated Evidence", 41 U. Chi. L. Rev. 254,
264 (1974). For each of these stages, he
proposed a series of questions which counsel
and the'expert should consider in preparing
for the introduction of computer evidence.
Thus, important questions to be asked with
regard to the generation and assembly stage
include:

1. What is the true source of the data?
2. What processes do the original data
pass through in the generation and assembly
stage before arriving at the input stage?
3. What steps are taken to detect error
in the original daz5 and prevent the intro-
duction of error into, or loss of, that
data as it'passes through the generation and
assembly stage?
4. What hearsay or best evidence problems,
if any, are suggested by the unde:lying data?
5. What has been the prior experience with
the data collection and assembly procedures?

Id. at 264-65. As to the second stage
put), the following questions might be con-
sidered:

1. What types of input devises are used?
2. What procedures are used for error de-
tection?
3. Is the input operation performed in mul-
tiple locations?

Id. at 266-67. As to the third stage (oper-
ation), Roberts asks the following:

1. Is the CPU (Central Processing Unit)
and related equipment, and the configurat-
ion in which they are being used, approp-
riate for the application?
2. Are the personnel••• competent to
operate that equipment •••?
3. Is there adequate documentation?
4. Do the programs do what they are sup-
posed to do?

Id. at 267-69. In stage four (storage and
retrieval), the following questions are ask-
ed:
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1. Are the storage and retrieval proced-
ures adequate to insure that data will not
be lost, chanqed, or incompletely retriev-
ed and that erroneous data will not be re-
trieved?
2. Are there adequate safe-quards to pre-
vent tamPering with the data?

7d. at 270. Finally, the following quest-
10ns are asked as to the fifth stage (out-
put) :

1. Does the outputtinq program cause the
computer to generate all relevant inform-
ation in a valid format?
2. Does the out put generated for evident-
iary purposes differ from the output gen-
erated for normal business use?
3. For what purpose is the output used in
the normal course of business?
4. For what period of time has been the
output been relied on and in what form?

at 271-72.

Given this secondary authority, the coun-
sel and expert should experience little dif-
ficulty in having computer-generated evid-
ence admitted, providing that satisfactory
answers to the questions are provided to
the trial court.

The cases dealing with computer generated
data prepared specifically for trial are
scarce indeed.· In United States v. Dio-
guardr 448 F. 2d 1033 (2d. Cir. 1970), de-
fendant was charged with fraudulently con-
cealing assets from the trustee in bank-
ruptcy. The prosecution made a computer
run of the company's inventory, sales and
purchases. Without any discussion as to
"Why", the appellate court followed the
trial court's decision to admit such evid-
ence. Indeed, rather .than commenting on
whether computer evidence prepared for trial
was admissible or not (apparently assuming
that it was), the court took the govern-
ment to task for not supplying copies of the
print-out to the defense.

Despite this lack of direct precedent, one
commentator has expressed the following rat-
ionale for admission of evidence prepared
for trial:

". • • Models • • • may be admissible as
expert opinion evidence. The oral test-
imony of an expert could be based on a com-
puter study or model which had processed
the sort of evidence typically considered
by the expert in his field or it could be
typical for the expert in the particular
field to rely on just such a model as hap-
pens to have been constructed."

Jenkins, "computer-Generated Evidence Scec-
ially Prepared for Usa at Trial." 52 Chic-
ago-Kent L. Rev. 600, 607 (1976). This
would be no problem under Fed. R. Evid. 703:
"If of a type reasonably relied on by ex-
perts in the particular field in forming
opinions or inferences upon the SUbject.
the facts or data need not be admissible in
evidence."

On the other hand, N.J.R. Evid. 56 (2)would
appear to be somewhat more restrictive, by
requiring that expert opinion must be based
on facts or data established by the evidence
at trial. Thus, in New Jersey State Court,
it would appear that the computer print-
outs themselves would have to be admissible
before an expert could---.;.extrapolate the
data and give his opinion thereon.

The precedent, a term of art in the world of
jurisprudence, clearly sets forth certain
basic standards which the attorney and ex-
};?8rts should be aware of. Computer-
generator evidence has established its pre-
cedent in law. HOwever it has not reached
its potential nor full extent of creative
presentation. Utilizing the precedent the
synergistic effect of ccmmunication between
a knowledgeable attorney and qualified ex-
pert leaves a wide span of potential. The A
proper legal foundatiOns laid}7cornbined with
the process of jurimetric preparation, new
horizons in evidential receptions will con-
tinually be reached. The development of
the cases dealing with computer generated
evidence clearly demonstrate a trend in this
area -- progressinq toward better qualific-
ation, closer unification of standards and
improvement of communication. Substantial
progress has been made and continues to be
made.

C. The Statistician: Most Probably Mis-
understood.

Of all of the scientific and technical ex-
perts the statistician is one of the least
understood and most probably feared in the
Courtroom. Until recently he was not an
often visitor there, and perhaps, it is be-
cause the legal mind and training is quite
foreign indeed from that of the statistician.
Anyone having experience "'ith the leqal sys-
tem soon comes to the realization that exact-
ness and accuracy is not necessarily its gra-
vamen. Thus, for lawyers and judges alike,
the statistician is indeed difficult to un-
derstand. The lack of qualification in this
respect from the lawyers and jUdges stand-
point magnifies the element of failure to A
be able to communicate.
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of the statistician is also
ly misunderstood by the court. Putting as-
ide the controversial issue of using this
statistical to establish the
ancy of evidence can
provide extremely valuable direct eviden-
ce to aid the court in determination of the
truth. However, as demonstrated by the
Collins case.his function stimulates a
fear of usurpation of the IOle of the fact
finder. fear is primarily the result
of the three fold pit falls of lack of
qualification. non existence of uniform
standards and inability to communicate.
Statisticians formula and methodologies are
beyond the qualification"': & scope of the
judge. are no legal uniform stand-
ards to be applied. Finally, an inability
of the two diverse fields to communicate
magnifies the problem and in this
apprehension. Statisticians conclusions
tend to go to the core of the issue at
stake. identity, probability of truth or
likelihood of accuracy. However, this
testimony, as any other testimony, should
be viewed as an aid to the Court and not
as a usurpation. is not submit-
ted nor intended to be conclusive as to
the issue in question. Indeed, to exclude
it because of the aforementioned three fold
pitfalls is indeed a misjustice. fear
that it will overwhelm the fact finder is
to emphasize the threefold hazard discussed.

Rather than discuss the role of the statis-
tician in the abstract a particular frame-
work will be helpfUl. Since the essence of
this experts work deals with probability,
discriminations. random sampling and relat-
ed statistical conclusions, the subject of
jury selection and composition would appear
to be of particular relevance. In recent
years the legal profession has become aware
of the inherent importance of jury selection
procedures and composition to the
of due process. 19 It is now axiomatic that
neither a petit or grand jury can be. dis-
criminatorily selected. 20 A litigant is en-
titled toa jury selected from a pool which
is representative o·f a valid cross section
of the cornmunity.21 At the Federal lev 1,
the Jury Selection and Act requires:
"Grand and Petit Juries selected at random
from a cross section of the community". 22
Most states have similar requirements. 23

there is no tolerance for a system
that automatically excludes any identifi-
able class of persons. 24 Further, the Con-
stitution also protects a litigant against
the system that will in an under-

of any such groups, even if
is not the result of an automatic exclu-

sion. 25 It is immaterial whether or not

actual discrimination occurred26; nor is it
relevant that the failure of the existence
of the cross section was the result of good
faith or any improper rnotive. 27

the role of the statistician in this
type Of litigation can be clearly seen from
the outset. He can serve as a valuable tool
for the Court to determine whether or not
discrimination exists, whether a represent-
ative cross section exists and whether or
not the procedures utilized constituted a
random sampling. initial role can be
performed by no other profession as com-
petently and qualifiedly as that of the
statistician.

A role for the statistician exists
due to-- the develOPment of the law on this
subject. A key phrase with great legal
significance provides the key, i.e. "cog-
nizable class·'. For example, the law read-
ily recognizes race28 , sex29 and economic
status30 as some of these classifications.
Likewise, certain cogniZable groups have
been permitted to be exempt specifically
by statute and upheld as necessary and re-
asonable. 31 Various tests have been for-
mulated to set forth legal criteria for
establishing a cogniZable class. Some of
these tests have been yielding varying and
non uniform standards because of the lack
of qualification of the lawyers and the
Courts and a failure to communicate with
the statistician. of these tests
is that set forth in the case of United
States v. Gusman, 337, Fed. Sup. 140,143-
144 (1972): "A group to be cognizable for
present purposes must have a definite com-
position. is, there must be some fac-
tor which defines and limits the group. A
cognizable group is not one whose member-
ship shifts from day to day or whose mem-
bers can be arbitrarily selected. Secondly,
the group must have cohesion. There must
be a common thread which runs through the
group, a basic similiarity in attitudes or
ideas or experience which is present in mem-
bers of the group and which cannot be ade-
quately represented if the group is exclu-
ded from the jury selection process. Fin-
ally, there must be a possibility that ex-
clusion of the group will result in partial-
ity or bias on the part elf juries hearing
cases in which group members are involved.

is, the group must have a community of
interests which cannot be adequately protec-
ted by the rest of the populace." Under
such a criteria Courts in New York State,
where the test, gave birth have recognized
"students" as a cognizable group.32 Although



other States have ended up with the same :e-
has- manaqed to end up with dif-

fe:inq results within the same State utiliz-
inq this same c:ite:ia. 34 The application
of such criteria should be uniform and has
been modified and criticized. 3S The mathe-
matical method of does provide the
Court with an accurate and reasonable unif-
orm standard for determininq such coqniz-
able q:oups as a matter of law. 36 However,
the need for qualification of lawyers and
judqes to be able to comprehend is essent-
ial and the ability of both the expert and
the leqal type to be able to communicate is
the next step.

A third area in which the statisician can
be of invaluable aid to the Court in jury
selection and composition is that of pro-
vidinq evidence of a statistical "siqnif-
icance" between the resultinq composition
of the jury pool and a coqnizable qroup in
the population. Such proof can establish a
prima facia showinq of disc:iminatiun. 37
In both the Turner and Sim cases the United
States Supreme Court struck down selection
processes wherein the showinq by a defend-
ant was that a statistical disparity exis-
ted. Thus, once a party is able to make a
showinq that there is ,a statistical "siq-
nificance" between the jury wheel or pool
and the population, even in just one cat-
eqory, a prima facia showinq of discrim-
ination is made. In some instances the
statistician may want to qo further and show
why: HOwever, that is not essential for pur-
poses of establishing a.prima facia case.
It is recon:mended.strong Ja' where such a pos-
sibility exists.. Por eXample ,failure of the
jury selector to keep updated voter req-

roles be ·a. cause
of the discrepaoCy1 this is powerful evid-
ence and shOUld be presented.

The three major areas of testimony of the
statistician in this type of case require
extensive preparation. In order for his
product to be admissible and credible it
must be rooted in a solid foundation,--stat-
istically and leqally.38 Such studies in-
volve a number of crucial steps. Initially,
accurate data must be compiled relative to
the characteristics of the population of
the area--demoqraphic data. The datum must
be reliably and accurately collected. Sec-
ondly, data as to the demoqraphic charact-
eristics of the persons appearinq on the
qualified jury list must be selected. This
information most often can be obtained from
the juror qualification forms that have been

returned to the Court by the persons. From
the aata supplied, percentaqes are computed.
Fiqures and the percentaqesare then put in- C
to a formula which has been computerized.
The computer will supply the results of the
computations which then must be interpret-
ed by the expert. A formula often utiliz-
ed to analyze the data is set forth in de-
tail on paqe 83 of Docto: Sperich's artic-
le entitled "Statistical Deci&i.on Theox.jI: in
the Selection of Grand Jurors':sap-J:a". This
formula has acceptance in the scientific
community for purposes of computinq probab-
ilities, includinq the probability of dis-
crimination in jury selection. The result
of usinq such a formula to analyze the data
is to produce computations to enable the
statistician to testify whether or not there
was discrimination in the jury selection
process. The information collected is re-
lated to statistical samplinq theory. If a
true random selection procedw:e was utiliz-
ed to constitute the jury pool, this would
mean that each relevant individual in the
population from which the pool is to be
drawn would have exactly the same chance
of beinq selected as any other person in
the No one would have a qreat-
er chance. No one would be favored with
either a qreater or lesser chance. Thus,
there would be no leqal or statistical
discrimination. Depending on the.Court's
qualification and subjective influences,
combined with the experts ability to com-
municate,a valuable aid is provided to the
Court in de%ivinq at its decision. No
usurpation occurs. The statistical dis-
parity may discover an under representation
of students, yOunqer people between the
aqes of 18-34, women, blue collar workers
or the like.

Next, the statistician can be of inval-
uable aid to the Court in determininq
whether 0% not the under representative
class is a coqnizable group. In this re-
spect particular statistical aid can be
given on the identity issue. Statistical
proof reqa:ding the existence of the group
as beinq identifiable by some demographic
characteristic is helpful. Social psych-
oloqy testimony is normally helpfUl to lay
a solid foundation regardinq characteristics, or
common sets of attitudes. Statistically, it
is not essential to prove that everyone in
the class has the same attitude but on the
averaqe their attitudes should be shown to
be different from other cognizable qroups
and that they have an interest in society
which is diffex:ent from other coqnizable
qroups in society. The statistician can be
extremely helpful in this reqard. Impres-
sive studies and literature39 in social sci-
ence model demonstrating
discrimination and coqnizability of educat-
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ion, age, race, sex, occupation and income, was
,a utilized in Johnson v. Durante, U.S. Di.atr-
,., ict Court •. E.D. New York, Docket No. 73Cl159.

It emphaszedthe coqnizability of the class of
persons aged 18-30 years. Also see related
work of Mcconahay, John B., Experimental De-
sign in Political Science, In D. Leeqe (Ed.)
Standards for Design and Measurement in Pol-
itical Science, New York: Academic Press,
1976, The Uses of Social Science in Trials
with political and Racial overtones: The
Case of Joan Little, Law and contemporirY
Problems, 19777 on education and student
issues see Yankelovitch, Daniel, The New
Morality, A Profile of American Youth in
the Seventies (New York: McGraw-Hill),
Yamamoto, Kaoru, The College Student and
His culture: An Analvsis (Boston, Houghton
1968). Also see numerous articles regard-
ing uniqueness of attitudes of students-
and/or young people, too numerous to cite.

Lastly, depending on style of the
presentation, the statistician can testify
relative to the significance of the dis-
crepancy found. Based on the data collec-
ted he can either testify that the differ-
ences found in anyone or many of the
various cogniZable classes investigated
were or were not "statistically signific-
ant". This, again, is not a usurpation ofe the judicial fact finding function. The
conclusion of whether the result was the
product of chance or discrimination re-
quires the determination of the "signific-.
ancelevel". At this point the Court must
decide at what point the deviation was
greater than would be by normal fluctu-
ation7 essentially this refers to the set-
ting of the significance level. It is es-
sential the statistician make clear
to the Court what a significance level is
and those that are set by statisticians.
In such cases the significance level of
.05 is normally set statistically. It is
important that the Court be aware and the
communication from the statistician is ef-
fective to explain simply that if an event
has only five chances in one hundred or
fewer of occurring it is deemed "signific-
ant". At this stage a prima facia case has
been established. The statistician in some
instances may be able to go the next step,
i.e. that the results can be tied to a spec-
ific cause, such as lack of random selection,
outdated and inaccurate voter registration
lists being used as the prime source or a
personal selection process involving non un-
iform standards of exclusion. In aQY event,
it is the statistician's function to make
the Court aware that once is finding

Ao. f a significance level the "eye brow goes
Wup".40 At this point a prima facia case has

been proven.

The end product of such a contribution by
the expert statistician is the establish-
ment of a more uniform and reasonable sta-
ndard in jury selection and composition.
However, regardless of how well prepared
and statistically accurateacontribution is
it must be effectively communicated to
qualified and open ears. unfortunately,
this is not always the case. This demon-
stration of utilization of statistical
testimony and work product in jury selec-
tion is only one small area of a contin-
uing unfolding horizon of opportunities
to use the talent of the statistician
in the Court.

D. A Model Case: Crossroads of Law, Sci-
ence and Technology

As the days go by more and more of an awak-
ening occurs with regard to the crossroad
which the Courtroom provides for the inter-
secting of law, science and technology. In
a contemporary society that continues to .
speculate about the leqal, scientific and
technological problems of outer the
reality of the presence of science and tech-
nology in law is no better appreciated than
a visit to a Courtroom in 1978. our present
society has become so .sophisticated with
the advances of the worlds of sQience and
technology that there is a tendency for
the weaknesses to surface in a Courtroom
rather than in a laboratory. This presence
now surfaces both in administrative proceed-
ings as well as in the Courtroom itself.42
The difference between scientific and tech-
nical disagreement and chall.enge in the lab-
oratory as compared to that which occurs in
the Courtroom is the additional factor of
the law.43 The increasing presence of sci-
ence and technology in the Courtroom, whet-
her it be to resolve a dispute left unset-
tled in the laboratory or whether it be in
response to an invitation from the law to
decide a legal principal,clearly demonst-
rates the need for development of uniform
standards which all participants may be
sufficiently schooled in and able to com-
municate.

A fine example of the confusion, conflict
and principals discussed can be simply dem-
onstrated by the use of a legal model:
Jersey Sports and Exoosition Authoritv v.
The Borough of East Rutherford, superior
Court of New Jersey, Law Division, consol-
idated with the City of Newark, et also v.
Natural Resource Council, et als., Superior
court of New Jersey, Appellate Division,
Docket NO. A-33ll-72. Here the epitome
of the cross roads of science and technol-
ogy in a courtroom is demonstrated. Legal



issue was simple: the location of the mean
biqh water line on a piece of property adjoin-
inq watereourse.44 Althouqh the law is.
simple and clear, the standards and applic-
ation of the proofs is a tidy mess. 4S The
law called upon major scientific and tech-

fields, includinq but not limit-
ed i3:>surveyinq and mappinq, photoqrammetry,
hydroloqy, enqineerinq, bioloqy, botany,
qeology, computer modelinq and statistics.
Remote Sensinq made its pitch.46 Hydraulic
modelinq of the river basin was presented.
The end result of the cumulative testimony
was extremely diver se. The experts for the
State of New Jersey contended that:throuqh
their methodoloqy and technique 90 percent
of 25 acres of the property in question
could be deemed to be below the mean hiqh
water line and therefore in sovereiqh owner-
ship. On the other hand, the team of sci-
entists and technicians for the record own-
er emphatically declared that throuqh their
methodology 90 percent of the same property
was above the mean hiqh water line. The
difference--not the law--science and tech-
noloqy: The State, conductinq an experim-
ent, utilized aerial infra-red photoqraphy
and interpretation in an attempt to estab-
lish a botanical mean hiqh water line.
Other Courts have found this approach "in-
tellectually fascinatinq" however, scien-
tifically unacceptable and leqally re-
jected.47 An attempt to set siqnature
tones related to plants fiqure wasmaGer a try
correlate the same to relative title
dation was presented. A barraqe of reput-
able scientists criticized the methodoloqy
as beinq insufficient and unreliable scien-
tifically. A representative of the Nation-
al Ocean Survey testified as to their lack
of success with veqetation approaches in
establishinq mean hiqh water lines. On
the other hand, an affirmative approach of
delineatinq the line 'was put forth by the
property owner utilizinq conventional aur-
veyinq techniques with various up to date
refinements and verification from other
fields of expertise includinq the ecoloqic-
al, aerial photoqraphy, and interpretation,
hydroloqy and computer modelinq. The
phenomena of the tide and its intersection
of the land was presented inadetailed scien-
tific and technical. by a team of re-
lated experts. A was in-
curred relative to the tolerances in tide
qauqes, aurveyinq equipment and varyinq
tidal epochs.

the midst of this atmosphere a qualified
and reputable st.atistician, John O. Rawlinqs
Ph.D. was called on to do a statistical
analysis of both approaches utilized, Le.
botanical v. conventional surveyinq. Dr.
Rawlinqs educated the court relative to the

to the various acceptable statistical ap-
proaches used to test a scientific hypoth-
esis: a special emphasis was qiven to bot-
anical statistical analysis. He then pro-
ceeded,usinq qraphs and charts,to demonst-
rate a twofold presentation: disprovinq
the accuracy of the State's botanical line
and substantiat1ns the line.
A stronq foundation was laid. The opp-
osinq procedures used by the parties in
qatherinq the relevant status was reviewed.
The State's methodoloqy was attached from
a statistical point of view: the alleqed
correlation of elevation and siqnature was
based on incorrect and insufficient eleva-
tion datar it was based on no quantitative
measurements. Rawlinqs concluded that the
probability of a qreen phraqmities beinq
above mean hiqh water, at an elevation of
3.1 was between 1 and 90 percent was
between 16 percent and 53 percent and red
between 37 and 100 percent). He stated
that they were unacceptable scientifically:
these "confidence intervals are very btoad
and not at all that definitive."48 There
was insuf£icient data to lead to the conclu-
sion "that elevation and siqnature are re-
lated.,,49 The report was also fatally de-
fective relative to it's attempt to trans-
fer data from a southern to a northern New
Jersey marsh. Finally, it was concluded that
the statistical data. presented "in this re-
port * * * is not sufficient evidence to
indicate that phraqmities siqnature types
are valid indicators of relative siqnature
innundation or such a relationship
exists."SO -

The State attempted to show in a non-
statistical manner comparison between it's
botanical line and a mean hiqh water line
drawn by the N.O.S. in other areas of the
river basin. The expert's statistical an-
alysis proved no consistency between the two
lines and no inference that could be
drawn. 51 Certainly there was no transfer-
ability of the attempted comparison stUdy to
the property in question. (xrr: 37-6-6).
This expert fortified his conclusion bv
three different kinds of analysiS and
hibits for demonstrative purposes.

On the other hand, statistics prove to be
an tool in"verifyinq the accuracy
of the line delineated by the coventional
technique. Dr. Rawlinqs analyzed the
precision of the spot elevations taken by
the surveyor on the property. The survey-
or had previously testified that they were
accurate to .05 feet. The Rawlinq's anal-
ysis found the probable error to be .051.
The expert also stUdied the distribution of
elevations relative to the Borouqh's mean
hiqh water line and the state's phraqmities
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green line from the stand point of cumul-
ative frequency of the elevations, both land-
ward and seaward, of the respective lines.
The conventionally drawn line was far super-
ior. Eighty-nine percent of the surveyed
points which were seaward of the Borough's
line were less than 3.2, the mean high water
line elevation. A distinct pattern was
shown of a shortage of elevations less than
3.2 feet in the first 50 feet landward of (
the line. Field observations proved the
existence of a berm in this area. J---_..__.•.....

More and is br-
ought to life in the Courtroom by the ex-
pert. Although deep, complicated and,to
a great extent, beyond the the
lawyers and Court, the testimony can be 'ably
communicated and clearly demonstrated by eJt-
hibits. This testimony proves to be an
extremely valuable tool in clarifying the
differences and the reliability of one meth-
od as against the other. No usurpation of
the Court's function occurs.

III. Guidelines for the Statistical--
com-outer Expert.

A. General Overview.

Before journeying from preparation to the
witness stand, it is that the
statistical--computer expert witness have
a thorough overview of his position in the
Courtroom. In this respect the areas
discussed relative to the subject at issue.
being a matter of expertise, as set forth
in Section I, should-------be thoroughly re-
flected upon. It is also important that
the expert review and reflect upon the dif-
ferences between expert and lay witnesses
relative to opinion testimony, together
with the sections dealing with qualific-

and presentation of expert testimony.
Next, it is important that the discussion
regarding the laying of proper foundations
to preparation for statistical-computer ev-
idence, as discussed in Section II B be
studied.

Thus, the sequence is subject matter, ex-
pert and foundation. Preliminarily, det-
ermination must be made whether or not the
case is a proper one for expert testimony
and secondly that the proposedexpert is
properly qualified. Then the foundational
considerations can be initially analyzed.

B. Preparation

1. Preliminary Stage

a. Knew the Problem

As a conservative estimate, preparation is
three-fourths of the challenge in presen-
ting effective and' persuasive statistical-
computer evidence. Contrary to C9urtroom
mythology, there are few surprises- for the
well prepared adversary team. Preparation
is the prime means to the communication of
the facts and opinions. It is the path to
the truth.

At the preliminary stage of preparation,
the \"itness and attorney must become

thoroughly acquainted with the problem at
issue. Too often this basic principle is
overlooked. EVeryone concerned should be
informed as to the general and specific
factual and legal issues at question. All
should be acquainted with the technical, .
scientific or specialized field of know-
ledge required by way of probative expert
evidence. This very basic familiarization
is the fir:;st stone in the foundation.

b. Attorney-Witness Communication

Too often there is little communication be-
tween the pote'ntial witness and the attorney
at the preliminary stages. This is the per-
iod of basic understanding and communication
between the two. As both will constitute a
team Ultimately before the administrative
or judicial body, it is crucial that frank,
truthful and unrestricted chan-
nels be set up initially. As time passes .
the two should establish a well tuned and
harmonized It will be necessary
for both to educate the other in their re-

fields (i.e. Law, statistical or
computer science). As a result the
should become a "quasi expert" and the ex-
pert a "quasi attorney". But remember:
neither should ever attempt to usurp the
true expertise of the other or embark on
an ego trip.

c. Know vour Expertise

The scope of the expertise of the witness
in question is basic but too often abused.
Both the attorney and the witness should
be well acquainted with the witness's
qualifications from the outset. This will
aid in avoiding the overflow into areas
beyond the scope of the expertise in ques-
tion. Ultimately, before an expert will
be permitted to testify regarding opinions'
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of any nature, the trier must be satisfied
that the witness is competent and qualified
to testify on the sUbject matter in question.
Thus, at a preliminary stage, the followinq
basic areaS of qualification must be estab-
lished: (1) academics - education and
training; (2) professional and technical
experience; (3) present position and func-
tion; (4) recognition of expertise by other
administrative, judicial or legislative
bodies; (5) teaching or governmental pos-
itions; (6) publications, books or artic-
les written on the particUlar subject; (7)
licenses or registrations held; (8) mem-
berships held in professional societies;
(9) accomplishments.

After the basic qualification the expert
should prepare for more detailed questions
concerning the type of work done in his
profession. This will help to establish
specific qualifications in the area at
issue. As part of this foundational prep-
aration-the expert must weave into the qu-
alifications expressed the particular fam-
iliarity with the essential elements of the
facts in question as they relate to the
expertise involved.

d. Know The Site Specific Facts

When the subject matter involves a partic-
ular site or location, failure to visit
that site is an invitation to instant des-
truction. A complete familiarization with
the site established from the first hand
knowledge of visitation, inspection and in-
vestigation thereof is a prime value. An
acquaintance with every aspect of the loc-
ation is never too large an order. Like-
wise, when the expertise will relate to a
subject matter the same type of familiar-
ization with that SUbject matter, instrum-
entality or object is important.

2. Specific Studies and Reports

The middle stage of preparation is expended
in the time consumming studying, analyzing
and formulating conclusions relative to the
field of expertise in that particular case.
This calls for hours of field, laboratory or
computer time. Particularly relevant here
is the discussion appearing in Section II
B supra, regarding the five foundational
stages in cases involving computer type ev-
idence (generation and assembly, input, op-
erations, storage and retrieval and output).
Detailed and thorough records should be kept

regarding time involved, work done, pre-
sence of others and certainly dates and
times. If photographs are used, they
should be labeled by date, time and dir-
ection of the view. A specific record of
the equipment and type of film utilized
is advisable.

The final report should be preceded·by
preliminary reports from the expert and
input from the attorney and other collat-
eral expert witnesses working on the case.

3. Final Lat)

a. preparation of Questions and Answers
The final stretch of preparation will occur
at the most immediate point prior to the
hearing. At this stage most of the polish-
ing is done. Of prime concern is the ex-
change of potential questions and answers
between the attorney and witness. Absol-
utely nB question and, more importantly no
answer should be a surprise to the other at
the ultimate hearing. Each and every
question should be carefully framed; each
answer should be expressed particularly.
Revision, alteration and reversal is per-
missible now for the last time.

b. cross-Examination Prep The preparation
for cross-examination should consist of an
attempt to assimilate what can be anticip-
ated under adversary cicrumstances. Poten-
tial areas of weakness, uncertainty or con-
fusion must be pinned down now. The approach
or type of answers to be given must be re-
viewed. It is beneficial for the attorney and
witness to prepare by way o·f drilling of
actual cross-examination questions and an-
swers. This enactment, with its attend-
ant pressure, will help both to handle the
crucial moments which will follow in the
court or hearing room. However, bear in
mind that the witnesses testimony should
sound natural and unrehearsed. Do not mem-
orize testimony!

c. Demonstrative Evidence Preparation of
demonstrative evidence lends visual appeal
and makes verbal testimony more vivid.
such visual aids are extremely effective,
particularly when used to support the test-
imony.of the statistician or computer 5ci-'
entist. Such evidence usually must be accom-
panied by oral testimony, since visual aids
normally are not admissible into evidence
in and of itself. Accordingly, the prepar-'
ation stage with regard to such evidence be-
comes very crucial. Eventually, demonstrat-
ive evidence must be authenticated by the
witness who testifies to the facts, shOWing
the relevancy of the aid to the case.
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There is a distinction between
prepared and selected materials. Ordinar-
ily, inspection of the object itself is
the most persuasive means of presentation.
This is not practical when dealing with com-
puters. Print-outs, programs, grafts,
charts, models, photo's and maps
fall within the prepared category. Much
discretion is vested in the judge relative
to their admissibility. Therefore, estab-
lishing the relevancy of the aids in the
preparation stage becomes all the more
important.

photographs may be identified by a witness
in order to portray the facts at a given

in time. Although the witness need
not be a photographer nor know anything
about the time and conditions of the tak-
ing, it is usually advisable for the wit-
ness to be familiar with technical facts
so that a strong foundation may be laid.
The photograph must be an accurate depic-
tion of the scene or object. Verification
of the photograph is an essential part of
the preparation process. Much creative
ingenuity can be utilized in this aspect
of the preparation. Moving pictures should
be utilized only with caution. A greater
degree of preparation is necessary to elim-

A inate the possibility of distortion and
• falsific:;ation due to light, angle, speed

and position of the A more import-
ant strategic consideration is the time it .
may take and distraction it may cause to set
up the projector and screen in the. court
room.

Experiments may also be conducted, however,
they should be cautiously considered. The
factors of confusion, delay and possible
failure weigh high in the arsenal of con-
siderations. On the other hand, the persu-
asive possibilities of this type of evid-
ence present a challenging opporutnity in
the statistical-computer fields.

In some instances an actual view of the
equipment. object or site by tha court may
be the best approach. This can only be done
when the operation, appearance or condition of
it is relevant to the issues involved.
Such an approach is usually disruptive of
the pace and movement of the trial or hear-
ing and must be weighed accordingly. con-
sider substituting or supplementing such a
view for or with photographs, maps, diagrams
and charts.

c. In court - On The stand

1. Be Yourself

The most effective witness is a relaxed one.
ge appears as a genuine individual. The
best advice in this regard is "be yourself."
Avoid excessive egotism or modesty. Let
your expertise, familiarity with the issue
and opinions shine through.

Normally conservative dress is recommended
for the expert in demanding respect. How-,
ever, each particular situation may vary
in this regard.

Nervous habits should be avoided. For ex-
ample, chain smoking, in or out of the
ing room, make's the expert appear uncertain
and unsettled.

2. Communicate

The major pitfall for the statistical or com-
puter expert is that the testimony given may
be above and beyond the grasp of the trier
of fact. communication, even to the extent
of "coming down" to the level of the trier
of fact,is important. The expert witness is
usually the best judge of whether or not
communication is occurring and if not, how
to correct it. Many subjective factors are
involved.

3. Don't Volunteer

The expert should attempt to answer all
questions, on direct and cross-examinat-
ion concisely. Long-winded, complic-
ated answers should be avoided. Long de-
tails before answering should be avoided.
cross-examination should be limited to
"yes" and "no" answers if possible. When
such a reply cannot be given the expert
should say so and explain why as succinc-
tly as possible.

under no circumstances should the witness
volunteer or blabber on. This could open
up unexpected troublesomeareas for the
follow up of the cross examiner.

4. Don't be Adversary

The expert should be even tempered during
the testimony. Antagonistic, hostile or
adversary responses are taboo. The wit-
ness should not attempt to display a quasi
knowledge of the law.

5. Be Truthful

The key determinant is the expert's abil-
ity to convince the finder of fact of the
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truthfulness of his conclusions and opin-
ions. Thus, all of the pitfalls which will
discredit that goal should be avoided.
Lack of knowledge or ability
facts or opinions in unanticipated areas
should be frankly admitted. Bluffing or
a playful avoidance of such admissions can
lead to "project downfall". Credibility
diminishesl Don't try to

If the attorney and witness have prepared
well, their ability to convey truthful
facts from the stand will be totally en-
hanced.

Lastly, take a deep breath--say a prayer:
See you in Courtl

rv. Reasonable probability: Total Insight

An evaluation of the past and present of the
lawyer and statistical-computer expert in
court is appropriate for commitment to the
future. To attempt to do this in the phras-
eology of the law or a probability theory of
the expert would be futile at this point.
A Jesuit theologian, Bernard J. F. Lonergan.
S.J.,provides a pivotal method for the pro-
cess. He suggests a dynamic continuing
process from point of inquiry to insight.
This method emanates from the pinnacle of
man's understanding-self-appropriation. The
four essential stages of this consciousness
are eXPerience, understanding. judging and
deciding. S2within these four dimensions,
insight through self-appropriation can be
obtained relative to the relationship be-
tween the lawyer and the statistical-com-
puter expert. The result will be a total
insight which will lead to a new horizon,
i.e. truth in the courtroom and ultimately
justice.

The starting point to obtaining an effect-
ive interface is the mutual experience of
each. A mutual consciousness in a phen-
omenological sense exists. The event of
experience has occurred, at least for the
participants in the computer-science and
statistics Symposium on the Interface.
with an exertion of this conscious self,
the research, history and interpretations
set forth in the foregoing sections pro-
vide a functional path in the understand-
ing stage. The contemporary search for
truth and persuasion in adversary
proceedings necessitates a mutual under-
standing between the lawyer and the com-
puter scientist and statistician. The
foregoing conti:ibutions from the lawyers
standpoint will hopefully be an instrum-
ent in obtaining the mutual goal. Like-
wise, past and present contributions be-
ing experienced personally and by the
legal profession from the computer

statistical experts provides a strong aid of
understanding in the relationship. Through
this method a phenomena beyond mere formality
will occur. The processes of experience and
search for understanding of the past and pre-
sent provide the backdrop for the ultimate
dimensions of judgment and decision.

The very creation of the field of JUrimetrics
is indicative that this process has been
afoot for some time. The experiences, under-
standing and jUdgments of others have al-
ready made a commitment to the basic re-
lationship. However, today we are reques-
tioning and moving to a new horizon, i.e.
the melding of the evidential rules and
methods of the law with the science and
technology of measurement. This is the
.challenge. Experience and understanding
to this point has surfaced the need for
the various professions and advocations
involved to understand basic concepts of
the other. This presentation from a legal
prospective to the scientist and tech-
nician justifies certain judgments that
can be made now. There is a need to in-
crease the qualifications of all invol-
ved--the lawyer. expert and the court.
There is a necessity to achieve a higher
degree of cOlnmunication in the relation-
ship. It is essential that some uniform
standards be set.

The past and present demonstrates that
the law schools thxoughout the countxy are
dedicating more and more courses and sem-
inars dealing with jurimetric topics.
Generally, they are "computer-computerized
information systems, computers and the
law, law and biology, technology assess-
ment, communications law, law and tech-
nology, computerized legal reseaxch, law
and medicine, legal process and technolog-
ical change, sociology of law, and envir-
onmental law. * * * It's alxeady happen-
ing."S3 An evaluation process is now
occurring: "From the legal prospective.
the scientist contribution can be seen as
pximarily one of establishing facts:
the ones necessary to generate public
policy (legislative facts), and the ones
necessary to implement policy (adjudicat-
ive facts)" '* '* * what is needed is an
examination of all couxses to determine
whether they are helpful in preparing
tomorrow's lawyer to marshall facts and
to grasp technical vocabulary in context.
'* * '* only with exposure to the common-
alities and differences of various dis-
ciplines can tomorrow's lawyers be pre-
pared to meet the growing number of
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'11
diverse problems which demand solution. 54
A commitment should be made to incorporate
explicit treatment of scientific courses,
such as Statistics for Lawyers.

Ignorance must be pleaded relative to an
understanding of what legal related sub-
ject matters are taught to the com-
puter scientist or statistician. This
symposium regarding the interface is a
first experience with the experts legal-
ly related educational programs. It has
stimulated a new will strive
for insight.

The criticism of the courts qualifications
in the past and present are quite uniform
indeed. Judges, like the attorneys and
experts, are only human beings. They have
come from limited number of backgrounds
normally, ie. political, prosectutional,
governmental or general practice. Addit-
ionally, it must be recognized that the
judicial process involves many subjective,
non legal or scientific, factors and
motives. Unfortunateli", justice is not
always the ultimate result. Thus, ex-
periencing and understanding the base
of qualification inherent in the Court
system some judgments can be made.
The proposals to date are limited and
basically have not been implemented.
Some have suggested for special Courts
where. judges familiar with computer tech-
nology can dispense justice when the
computer is involved or its generated
product being submitted into evidence. 55
For many years qualified evidence treat-
ises have called for the tttilization of
Court appointed expetts and scientificly
qualified jurors or fact finders. 56
Mandatory continuing education for law-
yers, computer scientist and statistician
and judges, alike, should be considered.
This would appear to be a very meaningful
technique of increasing competency.

The increased level of qualification will
enhance the channels of communications.
Communication must be on an in and out of
Court basis. The foregoing article has
demonstrated the breakdown in communic-
ation that presently exists between the
attorney and expert and more oftenly the
expert and the court. certainly, the out
of Court communication is even much less.
The lack of qualification factor has been
detrimental to a movement from the experience
to a stage of understanding. The events of
experience of this sad situation are becom-

A ing more and more prevalent. A true sense
understanding is starting to develop

legally and scientifically.

Communication must not be just a vogue
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wordS7nor a dictionary of legal,
tific and technical terms. S8 It is a
process. A process which is essential
for the interface. The acts and instan-
ces of transmitting information, whether
verbal or written, must be fluid, contin-
ual and cumulative. The gravamen of
process thought is a method of "becom-
ing" and not "being".59 "The very act
of becoming is what is real".60 From
such.a process a set of symbols, signs
and behavior will result. This will
develop into---more uniform standards
for the interface.

The burden of effectuating such a proc-
ess is slow and often seemingly without
reward. "As for you, I lay up to your
credit a rich reward as though your-
selves had accomplished it". Recall
Rabban Gamaliel speaking to those who
bear the burden of communal work, to
wit: "You who bear this burden, if
your labors you have tried once and
despite your efforts have accomplished
nothing, do not throw up your hands in
despair"·" *".61 Understand. make your
jUdgment and give your commitment to
communica'tion.

From qualification and communication
uniform standards will start to
elop. It may be simultaneous or it
may trail conservatively behind. It
will differ relative to various aspects
of the interface. Standards will not
be legal nor will they be scientific
or technological. They will be a com-
bination of this interface. A degree
of jurimetric uniformity in the field
of reception scientific and technical
evidence is the prime aim. A degree of
uniformity was the first result for the
foundational matters, i.e. the accept-
ability of the subject as one of exper-
tise, the qualification of the expert
and the basic collection and processing
of data. A degree of uniformity has
been and will continue to grow in the
area of the expression and utilization
of factual and opinion evidence in the
computer science and statistical fields.

utilizing Lonergan's methodology one
will start and end with an inquiry. Why?
Why the general rejection of probability
theory to problems of legal relevance?
Why did the Court in Collins reject mathe-
matical evidence on the issue of ident-
ification? Why should students be reject-
ed as a cognizable group s when the undis-
puted scientific and technical evidence
is contrary2 The answers lie in the pro-
cess. The experience, understanding and
judgments e:cpressed are not intended to



impose decision on the audience. Decision,
being commitment, must be on a more person-
al basis before it becomes communal. Hope-
fully, this contribution to the law, scien-
ce and technical interface will aid. No
one solution or formula is recommended. A
direction for the process is attempted to
be imposed, i.e. qualification, communic-
ation and stress toward uniformity of stan-
dards. The scope of the decision is wide.
The direction in all reasonable probability,
to borrow a word from each segment of the
interface, will result total insight.
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APPROXIHATING H.J\RGH!ALS FROH NON INTEGRABLE JOINT DENSITIES

by

MARCEL G. DAGE..."1AIS ET CONG LIEM '!RAN

Universite de Montreal

ABSTRACT

This paper discusses a method to approximate marginal univariate densities,

when these cannot be obtained analytically from the associated multivariate density.

This is a problem often encountered in Bayesian statistics. The technique is partic-

ularly useful when dealing with joint densities of more than three dimensions, since

numerical integration with a minimum of accuracy then becomes very costly. The first

part of the paper summarizes briefly the technique and its rationale. The second part

mer-tions several problems of numerical analysis raised by the approach.

Problems of in Bayesian statistics

often lead to multivariate joint densities that cannot

be integrated analytically to obtain of

the individual parameters. For cases involvin6 more

than five or six dimensions, integration by

numbers of dimensions. The first part of the paper des-

cribes briefly the approach l and the second part

lists some of the numerical problems that may arise from

the use of this method. Our suggested technique must.

by no means, be seen as a definitive solution to the prob-

techniques is, as far as we know, virtually impossible, lem at hand. We consider it, on the contrary, as a first

both for reasons of costs and accuracy. This com- effort that might encourage further research leadir:.g to

putational problem is no doubt, presently, one of the core significant contributions on this very i=pcrtant

major drawbacks fer the diffusion of Bayesian problem.

in applied statistical work. This is an area where
t. The Hethod

the contributions of numerical analysts could be
The fundamental idea underlying the is,

helpful to statisticians, econemetricians and other
in order to obtain the densi.ti=s of the

users of Bayesian techniques.
of interest froo the non joint den5ity, to

This paper discusses a method that has been
perform appropriate changes of variables such that the

used with some success to approximate the marginal den-

sities of individual parameters from "well-behaved" non

integrable joint posteriors containing up to six para-

meters. The procedure is generalizable to even greater

160

A more extensive description of this method, with
numerical and graphical exanples, can be found in
Dagenais and Tran (197i).



shape of the joint density of the new variables is as

close as possible to the shape of the multivariate nor-

mal density. If the .transformed density is very close

to the normal. the marginals of the transformed vari-

ables can then be closely approximated by standard ortho-

gonalization procedures used to derive univariate

marginals from a multivariate normal. Yet, the changes

of variables performed must also be such that it re-

mains possible to make. in reverse, additional uni-

variate changes of variables on the marginals of the

transformed variables so as to obtain the marginals of

the parameters of interest. Our procedure entails five

steps. To make matters more easily intelligible, let

us assume that the joint under consideration

Ep(S,k)] involves a k-dimensional vector of parameters

(6) appearing in the means of some stochastic variables

and an (m x m) covariance matrix (k)

1. The first step is not systematic. It will· vary

according to the density under consideration. It

consists of making a first set of ad hoc transform-

ations to enhance the resemblance of the joint den-

sity to the multivariate normal.

One useful type of preliminary transform-

ation that can be applied to the of the

r matrix, when these may be considered as

parameters, is discussed in section 1. of Part II.

The changes of variables performed on the

parameters of interest should however affect only

one parameter at a time 2 •

2. The second step consists in fitting a multivariate

normal density to the density [p(Z*,r*)J

by finding its mode and evaluating its matrix of

second derivatives. If transformed joint den-

sity were perfectly normal. it would be easy to obtain

the exact marginals of each of the variables

Or small group of parameters. See below. part II,
paragraph 3.
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[i.e. p(B'!'). (i=1 .....k) and P(O'J': (j,t=l •••• ,m)J
1 •

by applying standard orthogonalizl1tion proceciures.

Since, however. the joint obtained at the

end of 1 is only approximately normal, a

first approximation to each marginal may be obtained

by taking the conditional of each transformed vari-

able, given the modal values of the other orthogonal-

I 0 0 ° ° )]ized variables [e.g. p(Bt SZ,···.8k , 0ll.····.omm

where the aOs and oOs are the modes of the other ortho-

gonalized variables.

3. Measures of skewness and kurtosis are then computed

for each approximate marginal density obtained at

the end of step 2. Then, further changes of vari-

abIes are made on each transformed variable

(6t (i=l, ••• ,k) and 01.2 (j.l=l, ••••m) using Johnson's
(1949) system of transformations. These trans-

formations are that applied to the

approximate obtained at the end of step

2, the resulting densities have all first four

central moments identical to those of the standard-

ized univariate normal distribution.

These same transformations are then applied

to p(s*.r*) found at the end of step 1, to obtain

p(B.Z). Note that for all parameters of ':'nterest,

there is still a one to one correspondence between

the relevant elements of CS. Z) and those of CS,
4. A new normal distribution ':'5 then fitted to the

new joint density ?CZ. 3) and atter applying the

same orthogonalization as in ste? 2, second

round approxinations of the marginals are again

obtained by using the appropriate conditionals.

OJ. of che original of interest

are then derived from the found at the

end of step 4.

The measures of ske'Nness and kurtosis of

the marginals obtained at the end of step 4 have

been found to yield very satisfactory indices



(i=l, 2)

of the accuracy of the approximating procedure. If

the suggested approach is valid, the values of these

indices ought to coincide with those of the normal

distribution for all marginal densities: discrep-

therefore good measures of the inaccuracy

of our system of approximation.

Applications of the proposed technique

(see Dagenais and Tran (1977)J were made to a

three-dimensional probit model and to a

dimensional regression model with incomplete obser-

vations 3 • In all cases, the marginals obtained by

our method were extremely close to the It t I:u,!It ..marginals

3x3 covariance matrix (1:) as an example, but it

can be generalized to more dimensions.

First, write:

1: = A R A

where It. is a (3x3) diagonal matrix with

typical diagonal (i=1,2,3) and R is a

matrix of pairwise correlation coefficients. Then,

changes of variables inspired from Fisher (1921)

and from Box and Tiao (1913). p. 413J are made:

wii = In aii (i=l, 2, 3)

1 1 + r i3
%i =2 In (1 - r

i3
)

evaluated by numerical while more g

standard techniques such as the usual large sample

approximations to the marginal densities of the para-

meters would in some cases yield totally unsatisfac-

tory results. Our method took four times less com-

puter time than the 95-point Gaussian quadrature

where

r 12•3 = (r12 - r 13 r 23)/\;'(1 - ri3) (1 - r;3)

and

(i,j=1,2,3)

routine (Stroud (1971)J used for numerical integration. 2. Once the first changes of variables have been made,

it would be useful to have ·means of verifying that
II. Problems of numerical analvsis

the joint obtained at the end of step 1
The application of the approach suggested

has a shape that does not depart "too much" from
in part I raises several of numerical analysis

the normal. Presumably, functions with several
which deserve further study and could be of interest

maxima or with very irregular or twistad shapes
to numerical analysts.

could not be treated by the technique discussed
1. The first problem concerns step 1 and consists in

finding simple rules for perfor4ing appropriate
3. One of the limitations of our procedure is that,

changes of variables, according to the types of
except for nuisance parameters (such as the ele-

probabilistic models considered.
ments of the covariance matrix, in some cases),

For example, it seems that in different

types of multivariate linear models, whete the

elements of the covariance are nuisance

paraocters with no interest Jcr $e.

type of is appror-ciate: use a

The probit model is discussed in Theil [(1971,
pp. 630-31J and the Bayesian regression model
with incomplete observations, in Dagenais
(1974).
For example, the 90% confidence intervals
coincided almost exactly. Th05 with
our procedure were slightly shorter:
they were 4.5% shorter on the average, with
a lII:lxil;\UI:l of 7%. 162

the transformations made in steps 1 and 3 can

affect only small groups of parar.leters at a time.

When the groups contain more than one parameter,

step 5 then requires numerical integrations.

For any given group, the order of the numerical

integration to be equals the number of

elements in the group minus ones.

4. We have used as indices of accuracy measures of

skewness and kurtosis computed at the end of

step 4. Alternative approaches for evaluating



the accuracy of our approximations could possibly

be developed.

5. For the univariate numerical integrations performed

at steps 2 and 4, bounds had to be set to the con-

ditional densities of the individual parameters.

Since the densities obtained at the end of step 2

are sometimes quite asymmetric, the upper and

lower bounds must not be set at equal distances

from the mode. Reasonable values for these bounds

Johnson, N.L., 1949, "Systems of Frequency Curves
Generated by Methods of Translation" Biometrika,
no. 36, De·cember.

Stroud, A.H., 1971, Aooroximate Calculation of
Multiple Hall, Inc., N.J.

Theil, Henri, 1971,. Principles of Econometrics,
John Wiley and Sons, Inc ••

may be found by trial and error. More systematic

procedures could probably be devised.

Note that the same boundsare used to per-

form Johnson's transformations in step 3.

6. Finally, other transformation systems could

possibly be used when that proposed by Johnson

does not appear to give satisfactory results.

In the limited number of experiments that we

have made however, Johnson's system has always

yielded good results.
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In part I, we have assumea tor simplicity that
the changes of variables of 1 and 3
affected onl:; one parameter of intere;:;t at a

In fact, cransforv2:ions affec:ing snail
non overlapping groups of two or three para-

still lead to a procedure.



MATRIX WEIGHTED AVERAGES: COMPUTATION AND PRESENTATION

Herman B. Leonard

Department of Economics
Society of Fellows

Harvard University

Inexpensive methods for computing matrix weighted averages of the form
b**(p)=(H+pN)-l (Hb+pNb*) for various values of p are developed and illustrated.
The central device of simplification is the joint diagonalization of the weight
matrices H and N, which permits their weighted sum to be written as a product of
fixed matrices and a variable but easily invertible matrix of the form I+pD. Trds
is further developed and a polynomial expansion for b**(p) is given. This permits
the application in the current context of the extensive existing knOWledge of poly-
nomial roots problems. The methods are applied to the problem of characterizing
the ambiguity in the posterior arising from uncertainty about the prior in a
standard Bayesian econometrics problem.

INTRODUCTION

Matrix weighted averages of estimated

parameter vectors arise especially frequently

Bayesian econometrics, though they are by

no means rare in classical inference. Effi-

cient computation of these is essen-

tial, because of the inferential

context often requires deriving the averages

for numerous different weights. This paper

collects some recent work on the properties

of weighted averages, their cornputa-

tion, their geometric representation.

Many of the results on the properties of

inference [3], and it is this experience that

provides the of the results dis-

cussed here.

By a "matrix weighted av€!:age" of t\olO

kxl vectors a and b will be meant simple

matrix analog of a weighted average of two

scalars. If A and B are two positive (semi)

definite matrices, a matrix weighted

average of a and b would be given by

c = (A + B}-l(Aa + Bb)

In the simple scalar case, with k=l, t.!lis

reduces to

such averages were developed in a pair of Sa + (l-Slb (6 A/A+B 1

papers by and Learner [1,2].

That work has been continued and expanded

to include the development of a package of

computer routines to carry out estimation

of a special class of problems in Bayesian

164

a weighted average.

Matrix weighted averages arise quite

naturally in a variety of contexts in Bayes-

ian econometrics. The simplest and perhaps



Conditional on p, the posterior b**(p:
165

This can be rewritten in terms of the error

It is assumed that

estimate of 0
2

AN(b*-(3) + H*(b-S) = 0

ANb* + H*b = (AN + H*)-lS

-,
I] b** = (pN + H) + Hb)

where H = x'x/s 2

s2 is the usual
(essb/n-k)

p = Ao2/s 2

and the "data mean" b, the "weights" being

since with normal districutions the mean and

mode are the same, is the vector b** that

minimizes the expression

(b*-S) 'AN(b*-(3) + (b-a) 'H*(b-S)

2where H* = xIx/a
The point of highest likelihood for the po-

or

this suggests rewriting the relation for b**

sterior, which must be posterior mean

given by the corresponding precision matrices,

The first order conditions are given by

matrices.

It should be noted that the value a2 has

matrix weighted average of the prior mean b*

so that

b** = (AN + H*I-l(XNb* + H*b)

as

Bayesian econometrics problem is simply a

an investigator to have seme about

Thus, the posterior mean in the archetypal

the way in the weighting of b b*,

been treated as known in the discussion above.

0
2 is generally the most precisely

normalized by the sum of the precision

to allow the value A not to be specified with

certainty. Since a2 and A are in

it is generally not in fact known. Moreover,

the appropriate prior variance covariance

estimated parameter in models of this kind,

while it may not be unreasonable to expect

embodied by N, it is perhaps safer

..

c exp [ (-1/2) (b*-S) 'AN (b*-S) ]2

and E, an nxl vector of independently identi-

The Bayesian investigator has a normal

y = x(3 + E

about the values S. The standard likelihood

best known example is of the standard

a kxl vector of (unknown) true parameters;

is also the maximum likelihood estimate of S.

tive (semi) definite precision matrix for S.

vector of observations of the dependent

function induced by the data alone is
2 2Ld(sly,x,a) = c l exp[(-1/2a ) (y-XS) ,

(y-XS) ]

variable 1 X, an nxk non-stochastic matrix of

observations of the independent variablesl (3,

as follows:

cally normally distributed errors with mean

o and variance covariance matrix a 2I nxn

Ld (Sly,x,a
2) c l exp[(-l/2cr

2 ) ( essb +

(b-S) 'X'X(b-B)) J

where b= (X'X)-lx'y

essb= y'y - y'X(X'X)-lx'y

In this formulation it is easy to see that b

prior distribution for S, defined by b*, a

The model problem is defined by y, an nxl

The prior distribution is thus given by

standard example throughout this discussion.

The inferential problem is to make statements

sum of squares at the "least squares point"

kxl vector of prior means, and AN, a posi-

The two likelihoods combine to yield a poster-

ior distribution,
2LU3Iy,x,a) = c 3 exp{(-1/2) [(b*-S) 'AN

(b*-S) + (b-e) 'H* (b-;3)] }

regression model with normally distributed

errors and a normal prior. Because it is

particularly simple, it will be used as the



is given by I. Generally, the ratio (12/5 2 In the next section, a series of simple

is thought to be sufficiently close to 1 that and inexpensive computational methods for

the primary ambiguity in p is from the unwil-

lingness of the investigator to specify a

priori with certainty a prior scale A. 1 If

the investigator were entirely sure of the

handling matrix weighted averages will

developed. In the final section the discus-

sion will recurn to the formulation and resc-

lution of questions like those just posed.

various components of his prior (sure that COHPUTATION
they correctly stat;d his true beliefs), then

he would be interested in computing only one

posterior b**, and the computational task

would be simple. The only remaining ambi-

guity would be in the ratio (12/s 2, and this

This section presents a series of formu-

lae for computing matrix weighted averages.

All are based on finding the axes of tangency

between the two families of ellipses generated

could be dismissed for most problems. Unfor-

tunately, world is not so simple.

Investigators are rarely so 3ure about b*, A,

by the "weight" matrices. This is called a

"j?int diagonalization," and it is considered

first. Next, a simple computational proce-

and N they only wish to know a single

posterior estimate. The general problem,

dure based directly on the diagonalization is

developed. iihile procedure is handy for

then, is that of helping the investigator

to explore his ambiguity in an organized

and interpretable way. The questions he asks

some purposes, it is useful for other purposes

to simplirj it to a polynomial expression,

this is presented in portion of this

are of the form, "how much difference ot'Jes it section.

make in the posterior if .•.• " This is

a discussion of ways of computing answers to
a. Joint Diagonalization

Since Hand N are both positive (semi)
a subset of such questions that can be

computed readily using properties of matrix

weighted averages. These include questions

definite, each has strictly nonnegative eigen-

values. 3 Thus, there is a matrix 8 1 of full

rank such that

and in b*, but not in N. Thus, this discus-

would be the value of the posterior for

andD.
J.

where D. is a diagonal matrix with positive
J.

elements. Since N is positive (semi) defi-

. ( ") D -1/2S INS D -1/2 's P d andpsa, 1 1 1 1 s,

there is a matrix of full rank such that
'"

S 'D -1/28 INS D -1/28 = D
221 1'11 2

and S2'82 = I

where D2 is a diagonal matrix with nonnegative

elements. Note that

(or,equivalently, in piabout changes in A

1) the uncertainty of beliefs in the prier,
2and 2) the prior location b*. These tools

sion will develop a set of ways of characteri-

zing the effects on the posterior of changing

woald permit answers to the questicn, "what

someone who thought Pl was twice what I think
it is?," and to the question, "what whould be

the posterior for someone who believed this

prior t',,,ice as strongly as I do?"

8 'D -1/2{S 'HS )D -1/2s2 1 III 2
S I (D -1/20 D -1/2)8
2 1 112

l66



S'HS = I

S'NS = O2
with S of full rank. It is clear from the

relation above that S and 0 = O2 are solutions

to the generalized eigenvalue problem

so that S

and H:

S D -1/2s diagonalizes both N112
leads, on substitution, to

-1 -1 -1 -1-1
} (S ' IS + pS' DS )b**(P =

(S,-lIS-lb + ps,-lDS-1b*)

'(8,-1 [IS-lb + pDS-1b*])

= S[I+PO]-lS'S,-l(S-lb + pDS-1b*)

NS = HSD F±gure 1

From this dual generalized eigenvalue formula-

tion follows immediately the geometry of

joint diagonalization. The columns of S are

the vectors along which lie the joint tangen-

cies of the ellipsoids x'Hx = c and x'NX= c.

Figure 1 gives an example in two dimensions.

To show that the tangencies lie along the

lines generated by the columns of S, note

that (as is clear from Figure 1) Als l solves

"minimize x'Nx subject to x'HX=c l " and A2S 2
solves "max x'Nx s.t. x'Hx=cl ." Formulating

this problem as a Lagrangean,

X'NX=C 3 _

Geometry of the joint diagonalization
of Hand N

the of 8 must the directions of tan-

problem NS=HSD, so that the solution x must

be one of the columns of S, and con7ersely,

This is exactly the generalized eigenvalue

-1 -1Setting = S b and =S b* gives

IIJ b**(p} = +

using I is enormous. To evaluate I, the kxk

matrix inverse (H+pNl- l must be computed. To

The computational convenience of computing b**

for a specified p using II relative to that

are

2Nx - 2AHx = 0

or Nx = HXA

L(x) = x'Nx - A(x'ax-cl )

for which the first order conditions

geney between the ellipses generated by Nand

H.

evaluate II, only the inverse of a diagonal

matrix (I+pD)-l must be computed. it

is true S must also be computed, this
b. A Matrix Algebra Simplification need only be done once, and thereafter gene-

N

Applying the results of the last section

leads immediately to a very simple

tional scheme for b**. Starting with

I] b**(p) = (n + pN)-l(Hb + pNb*)

rewriting Hand N as

H = S,-l1S- l

S,-lD8-1

rating additional points b**(p) requires only

a small amount of arithmetic, several orders

of magnitude less computation than evaluating

I, even when k is only 10 to 20.

c. A Polynomial Representation

II has provided an affordable means of



computing particular points b**(p) by using a

joint diagonalization of H and N to eliminate

need to compute kxk matrix inverses for

O,k and qij i=l,k j=O,k, can easily be com-

puted from 0, and and are not them-

selves functions of Pi they are fixed for a

each p. For many purposes, II gives a

suitable computational scheme. For others,

however, it is still too cumbersome. Happily,

particular inference in which p is

free but b* and N are fixed. Collecting these

expressicns gives

it can be reduced to a completely different

kind of representation, as a polynomial func-

tion, and this permits application of the

l+pdi
=

enormous collective knowledge concerning

real valued polynomials with real
Q2 (p)/QO (p)

ents. The task of this section is to develop

of II.
(1/00 (P))5(01(P))

Q2(P).

qlO qll q12

"'kj
11

q20 q21 q22 q2k P

qk2
'k eqkO qkl .00 qkk P J

Q 1

P
2P

Ok
P

Q

Letting

gives

1
}

b, :Pd, b.* J-K K-K

k
II (1+d .?) (b. +od .bn. 1. J -1.' 1.-1.]=
k
IT (l+d.p) (l+d.p)
j=l J 1.

II (l+d.p)
• JL • J -1. 1.-1.J ,,1.

1
1+pd1 .

£2+Pd2£2/
l+pd2

I

S

b**(p} = S l/1+pd1
1/l+pd2

Expanding II gives

=

£i+pdie.i
1+pdi

and then scrutinize a polynomial reformulation

Now

Both the and the denominator in this

expression are simply k th degree polynomials

III]

in p. Let

QO(p) =
k
II (1+d. p) =
j=l J

k
z: q.p j
j=Q J

k .
l: q .. pJ
j=O l.J

and

kb**(p) = [l/QO(p}] [qOaO+qlalP+···+qkakP ]

finally, expanding QO(p),

k k .
b**(p) = E q.a.pJ / E q.pJ

j=O J J j=O J

The coefficients of these polynomials, qj j=
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in

where qj is

The way in which the weighting of the a i
changes as p increases is also illuminating.

As mentioned, the weights at p=O and as

means, respectively.

b** (0) = aO = b

lim b**(p) = a, = b*
p'-' K

Thus, when H and N are of full rank, the first

on aO gradually falls and the weight on ak

and last "ideal points" are L'1e data and prior

points respectively, and 0 for the other

points. Evidently, as p increases the weight

p becomes large are 1 for the data and prior

same endpoints, sothe coefficient of pj
k
II (l+dmP)
m=l

is the coefficient of pj
k

in n, El+dmP) (£i+pdi£i)
mh

The computational simplicity of III should be

apparent. 4 Computing b**(p) for a specified

p is a matter of taking a polynomial weighted

average of the points a j j=O,k. The arith-

metic involved is of roughly same order

as that required for evaluation of II. The increases. Define

computations in III may be less accurate numer-

ically because of the wide range of powers of

p even when k is as small as 10 or 20. Thus,
so that b**Ep} = t::w. (p)a,

i

the importance of relative to II is not

in computational simplicity or accuracy.

and I.w. = 1, for i=O,k. The statements
i

about endpoints made above amount to the ob-

Rather, as mentioned before, it is in the fact servaticn that wOEO) = 1 and lim wk(p) = 1.
p"'oo

that using III in problems involving functions A simple derivation reveals that

Thus, wi(p} is increasing if its index i is

greater than the current "average index" i:jw ..
j ]

This average index is 0 for p=O and approaches

of b**(p) permits the application of enor-

mously rich known structure of polynomial

functions. The advantages of this will

become more clear later, when the discussion

returns to the issues of characterizing

=
w.
2. [ i - rjw. ]
p j ]

k as p becomes large. Lettingchanges in b**(p). In the remainder of this

section, additional structure implicit in III

will be developed.
n (p) = t::jw. Ep)

j ]

The endpoints of the curve traced by then
ow.; (p)

r j
j

Thus n(p) is monotonically increasing in p,

and wi(p} is increasing when i>n(p), is maxi-

[t:: j 2w. (p) - t::jw. (p) Ernw (p)]
j ] j ] m m

[ E (.2) _ IE (.})2w J • w ]

(l/p)

= (l/p)b**EO) =b

b**(p) are easy to identify. From

I] = (H+pN}-l(Hb+pNb*)

it is immediate that

and lim b** (p) b*.e p'-'
so long as Hand N are of full rank.

Since III is equivalent, it must give the



rnized i=n(p), and is then decreasing for

i<n(p) •

CHARACTERIZATION

In the preceeding section reasonably

inexpensive schemes were developed for com-

puting values of b**(p) for specified p. In

this section, the discussion centers on the

application of these techniques to the gene-

ral problem of characterizing an invesigator's

ambiguity the posterior b** cor-

responding to his prior and given data.

The methods considered include ways of tracing

movements along the curle b**(p) as as

shifts in the curve from changing

the prior location b*. The curve b**(p),

called the "contract curve" or "cur".re decol-

letage" [4], can be characterized by

1) tracing the curve, i.e., computing
a set of points b**(p) for p=
Pl,P2,···Pm;

2) computing points in the curve,
so that extreme values are not
missed;

3) reporting the statistical ambiguity,
or variance covariance, of esti-
mates b**(p) at particular values
of p; and

4) computing the effects on b**(p) (at
various values of p) of shifting
the curve by changing the prior
mean b*.

These methods are elaborated, and solutions

based on the techniques developed in the

section are presented in the sections below.

Before turning to these issues, the concept

and geometry of the contract curve are deve-

loped to motivate the discussion that follows.

In the original derivation of the con-

tract curve I, the formula was derived as a

maximization of posterior likelihood condi-

tional en the value of p. This emphasized

the role of the investigator's

about p (from lack of knOWledge either about

A or about a2 ) in determining a part of his

ambiguity about b** (p). This derivation can e
also be viewed in a slightly different light

that emphasizes the geometry of the curve as

a whole. Rather than conditioning on p (or

A), condition instead on the value of the data

(resp. prior) likelihood, and think of finding

the point that, subject to this constraint,

maximizes the prior lresp. data) likelihood.

These likelihoods are monotone funotions of

the quadratic forms (b-B) 'H(b-S) and (b*-S)'

N(b*-S), so that the formal problem is

minimize (b-S) 'H lb-B) subject to
S

(b*-S) 'N(b*-S) = c

The first order conditions are

2H(b-S) + 2pN(b*-S) = 0

where p is the Lagrange multiplier for the

constraint. Thus .

b** = (H+pN)-l(Hb+pNb*)

This is, of course, the fo=mula ! for

the contract curve. ThUS, the contract curve

is set of points corresponding to

the mean conditional on
relative prior and data pre-

cision scale factor p; and

2) the highest possible prior (resp. data)
likelihood aiven a set level of data
(resp. prior) likelihood.

Figure 2 illustrates the &econd of these.

Subject to a chosen level of data likelihood,

the contract curve point is the point dt which

the prior likelihood contour is tangent to the

chosen data likelihood It is this

feature that gives the familiar to econo-

mists, the "contract curve."

It should be apparent that the investi-

gator not be directly conoerned with a 4It
particular coefficient, but rather, might care

about the posterior value of a function of the
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Figure 2

data point b

data likelihood contour
'Blb-S) - c l

S
1

contract curve

Geometry of the contract curve

coefficients. For nonlinear functions there

is little that can be saij about general cha-

racteristics. Linear functions, of course,

are as simple to characterize as the coef-

ficients, since the coefficients are special

cases of linear functions. In what follows,

therefore, the discussion will be couched in

terms of characterizing linear functions of

the coefficients along the contract curve.

a. Tracing the Contract Curve

The first and most obvious step toward

characterizing a function l'b**(p) along the

contract curve is to compute the value of the

function at a selected set of points pER -

{Pl,P2, ••• Pm}' At issue is how to select

of data (or prior) likelihood from the data

to the prior.

The first set is computed easily by eval-

uating II or III for the indicated values of

p. It is useful becuase it is related to

the investigator's best guess about the

strength of his prior. It leads to statements

of the fOrTI! II if my prior precision were t'Nice

as great, the posterior would move to ... II

Thus, it gives an insight into the sensitivity

of the posterior to the strength of belief in

the prior means.

The second set is not so easy to compute,

because the values of p that yield the inte-

resting points are specified indirectly.

Figure 3 shows a hypothetical plot of the

an interesting set of points R. Two sets have data likelihood function along the contract

been found generally useful: 1) the set of pIS curve as parameterized by p. The investigator

corresponding to A = 2=mA*, where A* is the might want to know the point on the contract

investigator's best guess for Ai and 2) the

set determined by equal steps in terms

curve that is halr,vay (in terrs of data like-

lihood) from the data to the prior. 5 This
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Figure 3 nightmare. It is here that the polynomial

expansion is of such great advantage. Expan-

ding in terms of III gives

c= o:w. (p)a. - b) 'H(Ew. (p)a .. - b)
i i

Data function along the contract curve
as parameterized by p. P is "half way" from data
point (pO) to prior point (p--<o) in terms of data
likelihood.

w's leads to

c= (Ew. (p) (a.-b») 'H(Ew. (p) (a.··b))
i i

and finally

pep) = E qiqj (Zij - c) pi+j = 0
i J

gives

or, since Ew. = 1,
i

Substituting for the
l"'m

c i ; qlqrn p .

Letting z .. = (a.-b) 'H(a.-b) and substitutingJ

I

1L1.-
- J r-;;

p

I

a

The polynomial on the left hand side, P(p),

Since bk*(O)=b, P(Ol= -c and P is a monotcni-

2k with real coefficients, defined on the

positive real line. PEp) is difference

the solution p* for which ?(p*)=O could be

2) for each c if solve P (p)=O for p.,c i
3) using either II or III, evaluate

b** (Pi)

1) identify the values c. of the crite-
rion that yield int§resting points,

anAt

is simply a real valued polynomial of degree

a (reasonably small) value £ =or which any

larger value of p gives b**Epl essentially

can have at most one positive root. Of course,

cally increasing of p, so that pep)

arbitrarily large, but in practice there is

at p between Eb u Ep) -b) 'H(b** -b) andc.

indistinguishable from lim b** (pl = b*.
p->-<:o

Thus, for practical purposes the domain of P

used to solve for p*. For a particular cri-

terion, then, the procedure is as follows:

is limited to (0,£). Since P is monotone,

a simple interval splitting algorithm can be

find P and b** such that

(b**HJ)-b) 'H(b**(p)-b) = c

into a value for the quadratic form (b-8) 'H

criterion for selection of points is in terms

of the level of the likelihood function, as

would have a data likelihood (10 +

and would correspond to the stated

likelihood, the problem thus becomes

in this example, or in terms of the F value

for the test of the point against the least

terion. Expanding this in terms of I gives

C=«(H+pN)-lEHb+pNb*) - b) 'H«(H+pN)-l

(Hb+pNb*) - b)

(b-a) for the data likelihood or (b*-S) 'N(b*-S)

for the prior likelihood. Taking the example

squares point, the criterion can be translated

a single equation in one variable (p), but

of a criterion stated in terms of the data

p. In fact, it looks like a computational

where c is determined by the selection cri-

gives no insight into how one might solve for
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It should be apparent that the polynomial

expansion is quite 1lseful in solving a variety

of problems of this general t:lpe. Again, the

pf' (p) = k w
J
' k - k k jW

J
.

j ; 1.1. i J.J. j

= k liti-j) (wiwj )i J

for which (expanding the weights Wi)

li(i-j)qiqjpi+j / ( i: qmpm)2 0
m

i: i:
i j

values

O. Thus, the extreme points correspond to
b. Turning Points on the Contract Curve

relevant feature is the reduction of a complex Ignoring the values p=O and the limit as

expression in matrix algebra to a simple poly- which are defined as extreme points because

nomial roots problem. they are endpoints, the extreme values of f(p)

occur at points at which fl (p) or pf' (p) are

The procedures just discussed for charac-

terizing the contract curve amount to choosing,

in a set of points at which to ob-

serve the values or l'b**(pl. In most

examples, the curve is sufficiently smooth

that this does not obscure extreme values of

or, more simply,

Q(p) = l: k H{i_j)q.q.pi+j = 0
j 1. 1. J-

the chosen linear functions. To guard against

the possibility that some bend in curve

might be entirely missed by the "grid" pro-

cedures discussed above, it seems appropriate

to compute the turning or extreme values of

l'b**{pl along the curve, Defining

Q(p) is a real valued polynomial of degree 2k

with real coefficients. It need have no, and

may have up to 2k positive real There

are no obvious properties of Q that can be

exploited to make its roots easy to find, but

in practice little difficulty has been encoun-

tered in using readily available general poly-
f (p1= l' b **

the problem is to find the set of points p*

for which fl (p*)=O. Using the polynomial

expansion III,

nomial roots algorithms. Once more, it should

be clear that it is the transformation of the

matrix weighted average problem to a polynomial

roots problem permits its easy SOlution.
rep) = l' ( E w.a i )i 1.

c. Statistical Ambiguity of the Posterior

In addition to the ambiguity of the pos-

so that
ow. (p)

r' (p) = k 1* 1.
i i ap

w.
k H2. l i - i: jwj )i 1. P j

Letting li

rep)

Thus

= l'a. gives
1.

terior estimate that comes from the lack of

certainty about prior, there is the purely

statistical ambiguity engendered by the random

errors in the data and the ?rior. 6 The usual

characterization is in terms of the standard

error of the estimate. Conditional on a value

of p, and s2 is a correct

estimate of 0
2 , the variance covariance matrix

pr' (p) k - i: i: jW
J
.

i 1. 1. i 1. 1. j

tit Since l:w. = 1,
i 1.

of b** (p) is

V(b**(p» = {H+pN)-l = S(I+PDl-IS'

as shown in the derivation of II. Thus, the
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variance of f(p} = l'b**(p} is given by

V(f(p}} = l'S(I+oD)-lS'l
Letting 1 = S'l, the standard error (condi-
tional on p) is simply

SE(f(p} Ip} = 1i
2 / (l+pdi )

1.

Once Sand S'l are computed and p is specified,

this is a trivial computation. It should be

noted that what has been exploited here is

the reduction of H+pN to a product of fixed

matrices and a readily invertible diagonal

matrix I+pD.

d} Sensitivity to Changes in the Prior Mean

In the preceeding discussion, various

characterizations of a fixed contract curve

have been given. In essence, these amount to

statements about movements along a given con-

tract curve. It remains to characterize how

the curve itself would shift if the prior on

which it is based were changed. The discus-

sions above have covered one kind of shift,

in the scale of prior precision, A.

It is clear that changes in the structure of

prior precision, N, would be very expensive

to deal with, since all of the simplifica-

tions described have corne from the joint

diagonalization, which would be altered if

N were changed. Thus, the remaining shifts

that can be readily handled are that

corne from changing the prior means b*.

Starting with

b**(p) = S(I+pDl-l(S-lb+pDS-lb*}
which was in the derivation of

These expressions are simple functions of p,

easily computed once Sand 0 are known. Note

that the derivative at is 0; when the

prior is given no weight, changes in the prior

mean do not matter. As the derivative

approaches 1'; as all the weight is given to

the prior, the posterior moves exactly as the

prior mean moves. It should also be noted

that these expressions do not depend on b*;

the posterior (conditional on pl is linear

in the prior mean, so that these derivatives

give measures of the changes in the

posterior engendered by alterations in the

prior mean. The role of the joint diagonali-

zation in facilitating all of computa-

tions should be apparent.

CONCLUSION

This paper has dealt with a series of

characterizations of an example of a matrix

weighted average that arises commonly in

Bayesian econometrics. A set of computa-

tional simplifications of the basic formula

of the matrix weighted average was developed.

The use of these tools was then illustrated

by applying them to the example of exploring

the ambiguity in the posterior for a set of

coefficients of a linear model with normal

errors. The ambiguity arose first because

of knowledge of the normal prior,

and second from the purely statistical errors

in the data and prior. A number of insights

into the relation between the posterior and
II gives

3b** (pl :::ab*

and similarly

al'b**(nl
ab* l'S(I+pDl-lpDS- l

the prior were explored.

Much work remains to be done. First, it

would be helpfUl to have better algorithms 4It
for jointly diagonalizing po__ cive definite

matrices. Second, better polynomial root
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NOTES

lOne could specify a more general
(Student's T.) prior that included uncertain-
ty about 0 2 • This complicates the computa-
tions in'Jnense1y without altering the inter-
pretability of the results. The expedient0= examining posteriors conditional on p is
chosen because it is simpler in computation
and is at least as simple intuitively.

2 Two approaches come to mind as avenues
for investigating the effects of changing N.
First, one could compute the kinds of char-
acterizations of the effects of ambiguity in
A and b* for various different matrices N.
Second, one could adopt the extreme view that
any N is possible and compute bounds for the
possible locations of b**. c.f. Chawberlain
and Leamer (1 page 78].

3 In all of what follows it suffices
that Hand N both be positive semi definite
(psd) and that H+N be positive definite (pd).
For the sake of simplicity, H will always be
taken to be of full rank.

4 The derivation just given amounts to
a constructive proof of a theorem presented
by Leamer and Chawberlain (2 page 88]. They
also give other ways to compute the a., which
they refer to as "rotationally or
"ideal" points.

5 In the SEARCH package [3] the contract
curve is presented in terms of 10 equal steps
of __a likelihood.

6 Most investigators appear to think
..,about this problem the other way, i.e.,

the ambiguity is large
relative to the ambiguity from the prior.
There appears to be no good justification
for this widely held belief.

A standard text on the algebra of matrices,

such as Gantmacher, Theory of Matrices, may

be useful in reading paper.
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MODUlARITY) READABILITY, AND TRANSPORTABILITY OF THE
COMPUTER-ASSISTED DATA ANALYSIS (GADA) HONITOR

Melvin R. Novick, Gerald L. Isaacs, and Dennis F. DeKeyrel
The University of Iowa

ABSTRACT

The Computer-Assisted Data Analysis (CADA) MOnitor is a conversational inter-
active computer designed to enable educational researchers and administra-
tors, some of whom may be relatively inexpert in statistical methods to analyze
data more expertly through the use of Bayesian statistical and exploratory data
analysis methods. In designing the Monitor three considerations were taken into
account in order to maximize the Monitor's availability to users with varying de-
grees of statistical expertise and hardware capabilities. The three design
considerations are modularity, readability, and transportability. First, to re-
duce programming costs and to facilitate the incorporation of advances in numer-
ical analysis techniques, the GADA Monitor is constructed from building blocks
that are chained or appended whenever a particular computation is needed in any
analysis. Second, to insure that the user has available the information and
instructions necessary to carry out the step-by-step analysis, every effort is
made to present the material as clearly and completely as possible. Third, to
make the GADA MOnitor available on as many different hardware configurations as
possible, the programs are written in a subset of the BASIC programming language
that is common to major dialects of the language.

I. CAllA: An Introduction

The Computer-Assisted Data Analysis (CADA)
is a conversational interactive computer

system designed to enable educational researchers
and administrators, some of whom may be relatively
inaxpert in statistical methods, to analyze data
more axpertly through the use of Bayesian statis-
tical and exploratory data analysis methods. The
CADA Monitor is intended for two audiences. On the
one hand, it has as its primary function the teach-
ing Bayesian statistical and exploratory data
analysis methods to students minimal mathematical
background. On the other hand, it provides educational
researchers, administrators, and others with easily
used, yet sophisticated methods of exploratory and
confi=tory statistical analyses.

CADA leads a user through a statistical analysis
on a step-by-step basis so that he must "do things
correctly." It uses and teaches only correct proce-
dures. The CADA system makes use of the two major
strengths of the computer -- computational speed and
memory -- as adjuncts to the human thought process
and makes these tooo capabilities more directly usable
than do previous systems. At each decision point,
the computer accomplishes the necessary calculations,
which can be of varying complexity, and presents to
the user all data necessary for the particular de-
cision toJ;e made at that time.

In constructing the Monitor, made several
assumptions about the optimal man-machine interaction.
It was first assumed that data analysis be made
easier if the user never has to rely on his own mem-
ory. That is to say, that at any given point in the
analysis the frame which the user sees must contain
all information that he will need for the decision
that he now must make. Second, it was decided that
the same system should be made available to all users
regardless of their level of ability. This approach
differs from that .aken in other systems which have

the capability of providing various levels of prompt
for users with ditterent amounts of familiarity with
the system or expertise in the statistical method.
We have decided to use a single mode of presentation,
haVing judged that it is difficult for even the user
himself to know what of ?rompt he may
need at a given time. Thus a user may be quite sophis-
ticated but may have a lapse at a particular point and
want additional

The third assumption made in the design of CADA
is that it is important in the conversational man-
machine interface for the expert to to enter
or re-enter an analysis at any point he wishes. He
must be able to back up and redo a portion of ehe
analysis without having to redo those parts of the
analysis he wishes eo retain. In designing the sys-
tem as we have, it has been our intent co give the
user the feeling that the computer is working for
him rather than that he is working for the computer.

The fourth assumption is that user input should
always be numerical. Yes-no switching is done by 1-0
coding. Judgments are entered numerically as scalars
or vectors. The primary advantage of this approach
is the ease of user input. A second advantage is that
CADA can be run with very inexpensive user terminals
(current cost about 51,000) and very inexpensive com-
puters (current COSt as low as $12,500), and indeed
there should be no difficulty in using CADA with a
touch-tone telephone as an input deVice, a modified
TV set as display, and a $6,000 LSI-ll microprocessor-
based personal computer with an level one semi-
compiled BASIC and an extended floating
?oint chip.

A fifth assumption is that CADA will grow to en-
compass additional statistical procedures as time and
resources permit. Yet we know that many statistical
computations are common to a variety of analyses. Thus
it seems desirable to relate one analysis to another and
borrow subroutines in constructing new programs.



These basic assumptions led us to con-
siderations in designing the Monitor. The first of
these is modularity. The CADA Monitor is constructed
from building blocks that are chained or appended when-
ever a particular computation is needed in any analysis.
:he second is readability, i.e., that the material pre-
sented be as clear, complete. and accessible as possi-
ble. A third major design consideration is transpor-
tability. since we hoped to make the system available
on as wide a variety of machines as possible. Each of
these considerations will now be discussed in detail.

II. Modularity

D. CERROR -- Gives instructions in case of
failure or user-initiated break. Passes control
either to CADA (on user-initiated break) or CMO!ITR
(otherwise) •

E. RSTRT -- Sets values in restart file to correspond
to user's new choice of next step in his analysis.
Passes control back to CMONTR.

There are three distinct levels in the structure
of the Monitor: component; model; module. The high-
est level is called the component level. The fifteen
different available components are summarized as:

Figure 1

The following. in outline form, is a description of
the supervisory routines, models. and modules
which comprise the CADA Figure 1 provides an
overview schematic diagram of the structure of the Monitor.

Numerical analysis techniques have improved stbstan-
tially during the past decade and further significant im-
provements are continuing to be made. Because CADA is so
highly modularized any improvement in one building block
subroutine automatically benefits all programs in which
it is used with little additional labor being required to
modify these programs.

The central d.esign strategy of the CADA Monitor is
modularity. Whenever a statistical routine is constructed

required steps are broken down into logical steps that
are programmed separately as building blocks to be used in
the present program and possibly in future programs. Thus
now, after five years of development. an organized cata-
logue of subroutines that can be appended during program
construction has been collected. The savings in program-
ming time is obvious. However, a second benefit may not be
so obvious.

Data Management
Data File Catalogue
Probability Distributions
Binary Models
Univariate Normal Models
Multi-Category Models
Simple Regression and Correlation
Utilities and Expected Utilities
Simultaneous Estimation of Proportions
Simultaneous Estimation of Means
Multiple Regression and Correlation
Simultaneous Prediction in m-Groups
Educational and Selection
One-Way 110del I AlIOVA
Multiway Model I Factorial Designs

1- Normal 9. Snedecor's F
2. Student's t 10. Binomial
3. Inverse Chi 11. Pascal
4. Inverse Chi-Square 12. Beta Binomial
5. Chi-Square 13. Beta Pascal
6. Beta 14. Poisson
7. Behrens-Fisher 15. GaIIDIIS

COMPONENT 1:
COMPONENT 2:
COMPONEJIT 3:
COMPONENT 4 :
COMPONENT 5:
COMPONENT 6:
COMPONENT 7:
COMPONENT 8:
COMPONENT 9:
COMPONENT 10:
COMPONENT 11:
COMPONENT 12:
COMPONENT 13:
CJMPONENT 15:
COMPONENT 16:

1. Beta Binomial Nodel
2. !lixed Beta Binomial Model (not yet available)
3. Beta Pascal Model
4. Mixed Beta Pascal Model (not yet available)
5. Comparison of Two Proportions
6. Gamma Poisson Model (not yet available)

All other components are constructed as follows:
Each component has a set of models associated with it.
There are usually several models for each component.
For example. Component 4. Binary Models, consists of:

All components share the same general structure,
with the exception of Components I, 2. and 3. Compo-
nents 1. 2, and 3 are slightly different in that they
only have one level under them. Component 1 contains
data management procedures. Component 2 contains the
data file catalogue, and Component 3 contains routines
for evaluating standard probability distributions. In
some ways Component 3 may be thought of as the core of
CADA. It contains programs for doing most of the non-
trivial computations required in statistical analyses.
The following is a list of the distributions currently
available on GADA:CADA

CZXPUI

RS'rnT

'-
I.CERROR will be called "
from any module upon i COMPONE!lT I
lietection of an error! rl level n'"

br oo.'Wo• .1 II,(2l c::r:ents )
U levelI (Within comoonent)!,
t' ,I

I i MODULE i !
level r-I!(within I

Each model has a set of modules under it. These
modules are the actual data analysis programs. For
example. the Beta Binomial Model has five modules:

There are five supervisory routines that monitor
the presentation of programs to the user. The follow-
ing is a listing and brief explanation of the function
of each subroutine.

A. CADA -- Initializes the Monitor, chooses and zeros
restart file. zeros appropriate constants. sets
form feed appropriate to the terminal being used,
passes control to CLXPLN.

1. Prior distribution on proportion (PI)
2. Preposterior analysis
3. Posterior distribution on PI
4. Posterior intervals for PI
5. Predictive intervals

At the module level, sequencing is automatic under the
control of the Monitor. The analyst is led by the Moni-
tor, module by module. through the model he has se12cted.

B. CLXPLN -- Gives a brief explanation of the work-
ings of the Monitor, passes control to

C. CMONTR - Sets restart values in first record of
restart file. Leads the user through component.
model. and module levels of the analysis the in-
vestigator wants by passing control to appropriate
module.

There exists a restart capability which allows the
user to jump from module to module without loss of data.
The user may also select a different model within the
component in which he is now operating or to any other
component. Any time the user is asked for input he may
type -9999 and enter the restart module RSTRT. He is
then given the follOWing choices:
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This arrangement permits the user to redo only a small
part of the analysis and to retain the larger part with
which he may be satisfied.

Progress of a user through an analysis is directed
by the CADA Monitor, which takes him from step to step,
but always lets him retrace his steps. The Monitor
guides, but does not control the analysis.

1. Restart at the beginning of this module.
Z. Select a different module from this model.
3. Select a different model from this component.
4. Select a different component.
5. Exit CADA Monitor.

The approach to readability taken in CADA is, we
believe, the correct one in its context. It is not
necessarily correct for other applications. First we
note that the CADA project is committed to lowering
the cost of computation, making computation available
to locations with minimal capital resources, and pro-
viding this capability to institutions having a wide
variety of computer hardware, including those having
only minicomputers and microprocessors.

With larger machines the text transfer can be expensive,
depending on the charge schedule of the individual
computer.

With respect to a brief parenthetical re-
mark might be added. For CADA, the concept of economy
of scale in selecting a computer is fallacious. For
CADA, the larger the computer, the greater the cost.
Use of a CDC CYBER might average out to an all-inclusive
charge of $10 or more an hour for CADA, whereas use of
an LSI-ll based cicroprocessor might be $1. Either fig-
ure, however, represents an incredible bargain.

One means of counteracting the shortage and high
cost of software is for users to pool and share their
packages. Most hardware manufacturers have formed users
groups and in the educational contexr there is an NSF-
funded group, CONDUIT, hased at the University of Iowa,
whose purpose is to distribute computer software. How-
ever, in order for software to be shared many users
it must be transportable. This means that it muSt be
written in a language that is. supported on a wide vari-
ety of machines and also that the language is compatible
from machine to machine. Currently the only language
that fills these requirements is BASIC.

Regardless of what approach is taken to readability,
we believe that the central concept should be the assump-
tion of zero memory for the user. As Sherlock Holmes
pointed out, brain cells used to retain facts cannot be
used to process information. Indeed, the great virtue of
the computer is that it can store facts and retrieve them
instantaneously, thus freeing the cind to think. CADA is
organized to emphasize fully the use of this strength of
the computer.

rv. Transportability

While the cost of hardware has dramatic-
ally, the cost of computer software has risen substan-
tially over the past few years and will continue to do
so in the future. This is especially true in the area
of minicomputers and microprocessors, where new soft-
ware is needed and must currently be amortized over a
small base. However with the power and capa-
bilities of minicomputers and microprocessors, there is
a growing demand for new packages and this demand has
not been met by the manufacturers or by software houses.
In order that the gains in the hardware capability, par-
ticularly in microprocessors, be translated
into all-around increased computer effectiveness, the
need for software packages must be met and at a de-
creased cost.

As a result of this trend, a purchaser of today's
computer hardware can buy more than three times as
much power for one-third the price of a computer
five years ago.

The most important development in the computer in-
dustry during recent years has been the rapid decrease
in the cost of computers. This is true for central pro-
cessors, memory, mass storage, peripherals, and terminals.
Recent figures show that the price/performance ratio of
hardware has improved by a factor of 100 each decade since
1955 and indications are that this will continue at least
for the next decade (Computer World, August 8,1977, p. 1).

5000
7000
7300
6600
i800
6000
7500
8000
5850
5500
9000
9050
9100

Line NumberDescription

Beta Distribution CDF
Beta lIDR
Inverse Chi !IDR
Chi-Square !IDR
Inverse Chi-Square HDR
Student's t Distribution CDF
Student's t HDR
Normal CDF
Log Gamma
Chi-Square CDF
One Parameter Input
Two Parameter Input
Three Parameter Input

BDTR
BlIDR
IClIDR
CSQIIDR
ICSQHR
TDTR
THDR
NOTR
LGAl-!
CSQDTR
IMPRrl
INPRTZ
IMPRT3

III. Readability

Subroutine

Since many manipulations are the same
from module to module, CADA's data-analysis routines have
been built in a subroutine manner. A large percentage of
the computation done by CADA involves the use of compu-
tational subroutines. The subroutines have been assigned
fixed line numbers and are appended to the appropriate
modules. The following is a list of these subroutines.
The line numbers listed here are those assigned to the
subroutines on the HP 2000 ACCESS version; other versions
mayor may not conform to these assigned line numbers.
Note that these line numbers are fixed to allow easy
utilization.

These considerations rule out any possibility of
prOViding an artificial intelligence-based dialogue with
user-generated verbal input being syntactically or seman-
tically pa.sed to provide instruction to the computer.
Clearly such an approach to statistical computation is
desirable and attainable, however we would view our cur-
rent work as being compatible with that approach. Any
artificially intelligent reading of a user's input in-
volVing a semantic grammar will require a modularized
response capability under the control of a monitor or
mediator similar to that prOVided by CADA.

A common second approach that we have not adopted
involves making available two or three levels of textual
accompaniment of questioning, depending upon a prespeci-
fied level of expertise of the user. This approach
usually also incorporates a help call which prOVides
additional text. Our own use of these techniques con-
vinces us of our inability to decide just how much text
is necessary for each question for each of the levels
of expertise. We also found that there is much varia-
bility in need for help among users. Our solution to
the problem, therefore, is to present a full screen of
information when asking a question. However, this
screen is highly formatted so that the expert can pick
out the information he needs without reading everything
on the screen. This, of course, presupposes fast screen-
writing and a low cost for text transfer, both of which
can be achieved with cinicomputers and microprocessors.

Unfortunately, the situation is complicated by the
fact that BASIC has many dialects that may differ in both
syntax and semantics. Different machines from the same
manufacturer mav not even have the same dialects of BASIC.
For example, Digital Equipment Corporation has one
version of BASIC for its PDP-IO and two entirely differ-
ent versions for its PDP-ll. However, it has been shown
that if a few simple rules are followed when a program is
written, it can be transported from machine to machine with
a minimum of time and trouble (Isaacs, 1973, 1976).

With the first designs of C.\DA, it was anticipated
that it would be widely used on a variety of different
machines. Therefore, CADA was written in such away as
to make transportability from machine to machine relative-
Iv and easv. The CADA has been
written following these ruies and transported to a wide
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variety of different machines ranging from a Wang 2200 to
the large CDC CYBER systems. CADA is now available in
the following dialects of BASIC:

The first step in transporting programs from one
system to another took place during the program design
phase. At this time it was decided what capabilities
of the computer were necessarv for CADA. It was de-
cided that the following were necessary for a conver-
sational, modularized package such as CADA:

1. Formatted output
2. Program chaining
3. Data files
4. Limited string handling (substring, length, con-

version)
5. Minimum of six digits of accuracy

!he rules for transportability were then checked so that
only the most transportable forms of statements were used.
For example, only integer were allowed to ap-
pear as a subscript of an array. !his avoided the prob-
lem of some systems rounding the subscript while other
systems truncate the subscript.

The microcomputers such as Wang and DEC-ll V03 do
not have magnetic tape drives and must be handled dif-
ferently. !he wang 2200 was configured wich a multi-
speed RS232 compatible board which was connected to a
terminal with a cassette and the programs and files
were transmitted via this cassette. On the DEC-ll ,03
the transfer will be via floppy disk which can be writ-
ten from the IBM 360. After the programs have been re-
ceived by the new machine, there still must be some
hands-on translation done. The translator programs
handle about 95% of the statements, but some statements
must still be translated manually. The remaining 5% of
statements that are not automatically translated are
those for which the translator needs more information
than is available at the time it encounters the state-
ment. For example, the DEC-IO does not allow an array
to be written to a file with a MAT PRINT. In this case
a FOR-NEXT loop is needed and the size of the array is
not known. A second class of statements not translated
are those for which a part of a string is modified using
a substring on the left side of an assignment statement.
This is not permissible on some systems but can be ac-
complished using a concatenation operator. The final
types of statements requiring special treatment are the
PRINT USING and IMAGE statements in which cursor control
is specified to keep the cursor at the end of the print
line instead of at the beginning of the next line. To
accomplish this in the DEC PDP-IO, for example, the
?RL.'lT USING must be written onto a file and then read
back into a string and this string is outputted via a
PRINT statement with a semicolon at the end of it. Data
files to be transferred are written into ASCII files,
one entry per record, and passed to the magnetic tape,
cassette, or floppy disk. These are then read by a
small program written on the new machine and written
out by the same program in the appropriate format for
the new machine.

5. CDC CYBER NOS
6. lJNIVA,: 1100 SERIES
7. DEC PDP-ll V03 BASIC

(summer 1978)

1. liP 2000 ACCESS
2. DEC PDP-ll RSTS
3. DEC PDP-10
4. IBM 370 VS BASIC

CADA was developed on an HP 2000 ACCESS system and
then translated in stages to the other machines. Since
CADA includes over 150 programs averaging approximately
600 lines of code, and 30 data files, the translation to
each new system takes two experienced persons approxi-
mately two weeks. The following is an oucline of the
steps that were involved in preparing for and carrying
out the translation.

1. PRDlTIJ 6. CONVERT
2. READIJ string dimensions,.
3. PRINT USING 8. substrings and other string
4. IMAGE functions
5. GO TO OF 9. COM

10. CHAIN

The step in each translation of CADA was to
compile a list of statements used in the HP version of
CADA that needed translation to the new version. These
were kept to a minimum since only a subset of the HP
BASIC statements were used. The following statements
usually are modified in each translation:

A translator program has been 'oritten for each
dialect of BASIC for which a version of CADA 1s to be
produced. These programs reside on the HP 2000 ACCESS
system. !hey modify the necessary lines of each module
and produce an ASCII file that contains the translatad
programs.

This ASCII file is then transmitted with the appro-
oriate Job Concrol Language (JCL) by means of the HP's
Remote Job Entry (RJE) to an IBM compucer where it is
wTitten onto magnetic tape. Each program and file of
CADA is a separate file on the magnetic tape. The mag-
netic tapes for all machines concain no internal labels
and have the following formats:

CADA is then thoroughly tastad on the new machine
to ensure that no errors have been introduced during
the translation. This testing phase may take several
days of the two-week translation period. A program and
file tape or diskette is then creatad using the method
that is the easiest to transfer CADA to other machines
of the same type and operating system. There are usu-
ally programs prOVided by the manufacturar which allow
easy transfer from one machine to another. These allow
all of CADA to be loaded from tape with a few simple
commands. If a program is not available, the easiest
and most straightforward means is documented and sent
to anyone receiving CADA. The new tapes containing the
transported programs and files are then duplicatad at
the University of Iowa and sent to anyone using CADA.

It should be noted that there is an American Nation-
al Standards Institute commitcee XJJ2 which has
been commissioned to standardize the BASIC programming
language. It has been meeting for almost four years and
has produced ANSI standard !\ASIC. is a
small nucleus from which excensions be produced
that will standardize furcher enhancements. Minimal
BASIC contains only the following statements: DATA, DEF,
DIM, END, FOR, GOTO, GOSUB, IF, LET, ON,
OPTION, PRINT, REhD, REM, RESTORE,
and STOP. The following Implemencation Supplied func-
tions were also standardized: ABS, ATM, COS, EXP, INT,
LOG, RND, SQR, TAB, and TAN. However, more
importantly it sets down syntax and semantics thac are
to be followed in futura BASICs. The committee is now
working on level-one enhancements to p.l!SI standard mini-
mal BASIC and plans to have these completed late in 1979.
CADA has been developed in a manner consistent wich the
restrictions to the use of the proposed level-one en-
hancements. wnen and if level-one BASIC is standardized
and adopced by all manufacturers translation will no long-
er be necessary for CADA. But even an optimistic esci-
mate would put that at least three years into the future.

In the incerim, as more and more of BASIC becomes
standardized, it will become easier to transport programs
from one to another. However, all manufactur-
er.s will still offer their own enhancements beyond
level-one BASIC. Programmers will scill have to avoid .
chese nontransportable features if they desire transpor-
tability. With a little discipline and common sensa, most
programs may be writcen so that they may be transported
from one machine to another without a total rewrita.

Density Character
Codes

Record Block Record Trks
Format Size Length

DEC
PDP-ll Fi:<ed 1600 80 9 300 BPI ASCII
RSTS Blocked

DEC Fi.'<ed 1600 80 9 800 BPI EBCDIC
PDP-10 Blocked

IBM 370 Fixed 4000 80 9 l600BPI EBCDIC
Blocked

e CDC Fixed ;'000 80 9 1600BPI ASCII
CYBER Blocked

IDlIVAC Fixed 1600 SO 9 1600BPI ASC!!
Blocked
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V. Implications

The emphasis on modularity. readability. and
transportability that we have discussed here is ap-
propriate for the CADA project. It is unlikely that
this same emphasis will be appropriate in quite the
same way for other projects. Modularity. however.
may be important whenever complex computations are
common to or more programs. At this level. there
is nothing new in that the concept of shared subrou-
tines was introduced in the earliest computer lan-
guages. However. the use of a subroutine monitor in
the conversational mode. as developed for CAnA. is
new. and perhaps its essential tree-like structure
(component. model. module) may be useful in other
large scientific systems.

The issue of readability will always be resolved
on a case-by-case basis. The choice between highly for-
matted output. prespecified levels of prompt. help rou-
tines. and intelligent conversation will also depend upon
the application. the target ted hardware. cost considera-
tions. and the desire or lack of desire for
bility.

Transportability should be a dying issue as the
ANSI committee completes its work. But the current
illness may be a lingering one and the death of the
current multiplicity of dialects of BASIC may not be
imminent.
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A SURVEY OF NUMERICAL INTEGRATION

Arthur H. Stroud
Department of Mathematics
Texas A&M University

College Station, Texas 77843

Abstract. The most important numerical integration methods for functions

of one variable are Gauss quadrature formulas. For the regions most often

encounte=ed in more than one variable, namely the n-cube, n-sphere, n-simplex

and entire n-space, one can use combinations of one variable Gauss formulas.

Integrals in which the integrand is a product of a probability density function

times another function are considered. Computer subroutines for the univariate

normal and bivariate normal probability density functions are given.

1. Introduction

The purpose of :his paper is to survey some

important methods for approximating definite inte-

grals. First we will consider functions of one

variable. Here the metr.ods have the general fo=

quadrature formulas for one variable and cubature

formulas for more than oue variable. The are

called the coefficients or weights for the formula

at:d the \)k or (Vk,l"" '\)k,n) the points or

nodes.

J
il

a
w(x)f (x)dx '" (1)

If an approximation (1) or (2) is exact (i.e.,

has zero error) for all polynomials of degree j

in the n variables and if there is at least one

where [a,b] is a given interval and w(x) is a

given weight function which is nonnegative on [a,b].

Next we consider apprOXimations analogous to (1) for

functions of more than one variable. In this case

the approximations have the form

r···f w(xl""'x )f(x.,. .. ,x )dxl· .. dxJR n.l. n n
n

polynomial of degree d+l for which the approxi-

mation is not exact, then the integration formula

is said to have degree d.

Reference works on formulas (1) are Kry10v [2],

Davis and Rabinowitz [1], and Stroud and Secrest [4].

A reference for formulas (2) is Stroud [3].

The most important class of formulas (1) are

where Rn is a given region in n-space and

••• ,xn) is a weigbt function which is non-

(2)

Gauss formulas. In Section 2 we mention some Gauss

formulas which can be used when w(x) is one of

several well known univariate probability density

functions (pdi's). An important class of

(2) are obtained by combinations of various fornulas
negative on R •n Approximations (1) and (2) are

for one variable. These are called product formulas
cS::_j integration formulas, or alternatively,
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standard types of product formulas. In particular,

we consider product formulas which can be used for

two pdf weight functions.

fb f(x}dx '" + 4fCa+h) + 2fCa+2h) +
a

+ 4f(a+3h) + 2f(a+4h)

2. Integration Formulas for One Variable

First let us assume that w(x) =1 and that

+ 4fCa+5h}+•••+ f(h)]

b-ah .. N-l N" any odd integer > 3.

(4)

[a,b] is an interval of finite length. Then

t f(x}dx
a

can be approximated in the following way. Subdivide

[a,b] into a number of subintervals, say

[a, a+h], [a+h, a+2h], ••• ,[a+(M-l}h, b]

where h = (b-a)/M. Then

f
b fa+h
a f(x)dx" a f(x)dx +

f

a+2h b
f(x)dx+ ••• +J f(x)d:t

a+h a+(M-l) h

Each of the approximations (3) and (4) have the

property that if it is computed for a sequence of

increasing values of N the approximations converge

to the true value of the integral whenever the 1nte-

gral exiats. Also they are easy to program for a

computer. The disadvantages of (J) and .(4) are

that they usually have low accuracy. The repeated

trapezoidal formula has degree 1 and the repeated

Simpson's formula degrae 3.

approach can be used to find quadrature

formulas. Assume we allow all of the 'J k , .'\,

k = I, ••. ,N, to be free to vary in order to obtuin

a quadrature formula

and we can use an elementary approximation on each

subinterval. If on each subinterval use the
t f(x)dx::
a

trapezoidal formula

(8
J f(x)dx'" h [fCa) + fCe)]
:1 2

the approximation which results is the repeated

trapezoidal for.nula

,b N-l
! r
J a k=2

of as high degree as possible. The highest degree

formula which can be obtained has degree 2N-l; it

is the N-point Gauss-Legendre formula. Analogous

formulas exist for arbitrary [a,D] and N(X).

The well known Gauss formulas have s?ecial

names. These a=e listed in Table 1. The Gauss-

Legendre and both types Jf Gauss-Chebyshev formulas

are special cases of the general Gauss-Jacobi. The

If we star: with Simpson's formula

h b-a
N-l 0) points \)k' k = 1, ••• ,N, in a Gauss formula are the

zeros of the polynomial PN(x) corres-

ponding to [a,b] and w(x); this is the

rf(x)dx '" B-: [fta) + + feB)]
a

we obtain the repeated Simpson's fcrmula

which satisfies
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Table 1. Names of the well known Gauss
quadrature formulas.

t w(:c)f(x)d: ::
a

Interval
[a, b]

Weignt :function
w(x)

Name of the
formula

1s transformed into

[-1, 1] 1 Gauss-Legendre J
d
W""(z)g(z)dz ::

c

[-1, 1]

[-1, 1]

[-1, 1J

[0, "')

[0, co)

(-"', co)

(1_i)-1/2

(l_x)Ct(l+x)S
f). > -1, B > -1

-xe

C> -xx e
C£ > -1

2-xe

Gauss-Chebyshev
of the first kind

Gauss-Chebyshev
of the second kind

Gauss-Jacobi

Gauss-Legendre

Generalized
Gauss-Legendre

Gauss-Hermite

*where 101 (z) _ w(yz + 0) and

k·l, ... ,N.

Now we consider integrals in which w(x) is

one of the univariate pdf's listed in Table 2. The

bssic properties of these pdf's are derived by

Zellner [5; Appendix A]. Here feu) is the gamma

function and B(u,v)" f(u)f(v)/r(u+v) the beta

function.

(i) The univariate normal pdf. We assume that

f depends on the same parameters as does p. If

we make the change of variable
:for all polynomials of degree N-l. (See,

e.g. [1; p. 23].) :ables of the vk '

in the Gauss listed in Table 1 are given by

Stroud and Secrest [4J. The oain disadvantage of
then

x-ez =--
O"y2

dz
012

:t crh' z + 6

these iormulas :s the fact that the are,

in general, irrational numbers usually must be

take.n from tables.

r 00

J-<o p(xle, a)f(xle, cr)dx =

A linear change of variable can be applied to

any quadrature =ormula. For the inter,al J
0> 2

1 -z= - e
r-viT' -eo

f(ah' z + ele, v)dz

[-1,11 can be transformed by a linear change of

variable onto any finite length interval. TI1erefore

N
::..l. $' A f (012 \1 .L. 61 e 0),-" k - k' ,

t'1T k=l
(5)

a Gauss-Legendre formula can be used on any finite

length interval. In general, the linear transform-

atien relates the interval a x b to the

interval c z d is

where k = l, ••• is the N-point Gauss-

Hermite formula. In Appendix A below we give a

computer subroutine for apprOXimation (5) which uses

one of the values N = 4, 8, 12, 16, 20. The

x .. yz + 05

dx .. ydz b-a
y .. d-c

7 •
Z .. Y(x-c)

is ad-bc"d=G

function f(xle, 0)

FUNCTION subprogram.

must be "given by a Fortran

The program of Appenciix A

tnder this given formula
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Table 2. Some Univariate Probability

Density Functions

Function

1 • . 2p(xle, cr) '" -- (x-e) 1
crv'2iT 2cr

Interlal

-"'<x<=

Name

univariate
nor.nal

-'" < e < '"

univariate
student t

o < h < '" o < v

p(xIY, a)
1 a-l . -x/Y.. ---x e

r<a)ya gamma

o < a a < y

o < Y < <0 inverted
gamma

o < a o < Y

beta

case the true value of the integral is not

numerical results are given in Table 3. In each

However, frt'm the sequence of approximations

obtained, the result for N" 20 appears to be

(6) KJ: (1 +.h (x_Q )2 l -(v+1)/2 f_(x)dxv "
(7)

+K( (1 + h (x_6)2 l -(v+l)/2 !+(x)dxv

accu=ate to at least 9 significant figures for £1

and to between 3 and 4 figures for f 2•

(ii) The univariate student t pdf. To

evaluate

, QO
J_""p(x1e, h, v)f(x)dx

we write this as the sum of two integrals
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N

4

8

12

16

20

Table 3. Examples of approximation (5)

for functions (6)

f l f2

3.099350813737 8.636364

3.099454764011 8.882131

3.099453486117 8.835482 e
3.099453574338 8.845100

3.099453569961 8.846100



where

f(x) -

f_(x) for x < e

For '\J" Z the in

J
l -l/Z No (l-z) g(z)dz = Ak g(vk) (12)

Rere f may also

depend on 9, h, '\J, but we will not indicate this

with our notation. In (7) we make the change of

variable

are easily found from the (ZN+l}-point Gauss-Legendre

formula. (See [1; p. 143-144] for the details of

(12) and also for (10), (11).) Stroud and Secrest

[4; p. 29] give computer subroutines for computing

Gauss-Jacobi formulas for general a and S •

Z ..

1 + h(x_e)2'\J _

x .. e tjJ(i;;Z)
(8)

(iii) The gamma pdf. To evaluate

fa p(x IY, a)f(x)dx
we make the change of variable

where in (8) the sign is used with f+ and

the lower sign with. f. Then (7) becomes z .. x/y x '" yz d."( .. Ydz •

! Jl z"vI2-1 (l-z) -1/2 [f_(6 _IV (l-z) ) +z/i 0

(9)

Then the integral becomes

1 [ a-1 -zr<ar 0 z e f(Yz)dz (13)

The weight function in (9), w(z) '"

zV/2-l(1_z)-1/2 is a Gauss-Jacobi weight function

for [0,1]. Three important special cases are

V .. 1, 2, 3. For v .. 1 the quadrature formulas

are the Gauss-Chebyshev of the first these are

known in closed form:

(10)

which can be evaluated by a generalized Gauss-Legendre

formula. Stroud and Secrest [4] give computer

subroutines for computing formulas for (13) and

extensive tables for a" 1.

(iv) Inverted gamma pdf. To evaluate

J: p(y!y, a)f(y)dy
we make the change of variable

For v .. 3

\) .. 1:. [1 +cos (2k-I)7T J k 1k 2 2N" , ... ,.

the formulas are also known in closed

1
z '" Yy2 dy

form: Then the integral becomes

(11)
a-1z -ze f(J.....)dz

IYZ

(2k-l) 7T 2
vk .. [cos k"'l, ••• ,N
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which can be approximated in the same way as (13).

(v) The beta pdf. This pdf is a constant



Table 4. Some regions and weight functions for which
product formulas can be obtained.

Z 2 Z 2r .. xl + Xz + .•• + xn

times the Gauss-Jacobi weight function for [O.c].

Therefore an integral

I: p(xla, b. c)f(xldx
can be approximated by Gauss-Jacobi formulas.

3. Integration Formulas for More Than One Variable

We discuss some approximations (2) which can be

obtained by combinations of formulas for one

region region
name symbol

n-cube Cn

n-simplex Tn

region
definieion

k:::al, ••• ,n

Xl + x2 +.••+ xn 1

0, k" l, ••••n

weight:
func.tion

1

variable. If we can find a transformation (usually

nonlinear)

which transforms the integral of a monomial k .. l, ... ,n

1

1

Z-re

1Zr

n-sphere Sn

surface of U
n-sphere n

Z
entire Ernn-space

x ..
1

where the Yi are nonnegative integers. into a

product of n single integrals

transformation to any formula. Thus, a fer

Cn can be used for any n-dimensional parallelogram;

a formula for Tn can be used for any n-dimensional

simplex; and a formula for Sn can be used for any

n-dimensional ellipsoid.

is a polynomial of degree Y Yl +

YZ + ... + Yn ' then we can combine quadrature

formulas for these single integrals to give a formula

For the n-cube C assumen

for R.n
Then

The most important regions for which such

product formulas can be obtained are listed in

Table 4. For the last four regions listed in this is the product of

table the weight function can be more general than

the one listed; we will not be interested in

considering the most general case. Product formulas
k .. l, ... ,n.

for other regions are considered in [3].

to those for Sn' Of course, one can apply a linear

Sn

We will summarize product formulas for Cn' Tn'
r Zand E Product formulas for U are similarn n

Therefore no transformation is required. If, for each

k,
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·e
then

(14)

the limits for the Yk will be

o Yk 1, k .. l, ••. ,n

The Jacobian of transformation (16) is

where, for each k, Therefore integral (15) transforms into the product

A. , v j , jk = 1, ••• ,M
Jk

of the single integrals

is a Gauss-Jacooi formula corresonding to

Approximation (14) has degree it is called a

k=l, ••• ,n

Cartesian product formula to distinguish it from other

product formulas.

'Yk 'Yk+1+" ·+'Ynwhere Yk (l-Yk)

It follows that if we have n one variable

Cartesian product formulas can also be obtained
2

for Er . Since the integral over entire n-space ofn
?

exp (-r-) times a monomial is a product of single

integrals we can write

formulas of degree d of the form

k = l, ... ,n

where, for each k,
(17)

dxn···dxl
n

these can be combined to give a formula of degree

d for T:
nM

A. A••••A. f(v. ,v. "",vJ' )j =1 J 1 J2 I n J l J2 n
n

A. , v. , jk = 1, ••• ,M, is the
J k Jk

M-point Gauss-Hermite formula. Below we will mention

another type of product formula for

For the n-sicplex Tn we transform an integral
where

(15)
by making the change of variables

X2 =Y2(1-Y1) =YZ(l-xl )
x3 =y3(1-yZ) (1-y1) =

(16)

].l j (l-jl -1 j ) ... (1-:;, j )
n, n n, n-l ' 1

If the one variable formulas are Gauss-Jacobi

formulas then formula (17) has degree Formula

x .. y (l-y 1)···(1-yl ) = Y (l-xl-···-x 1)n n n- n n- (17) is called a conical product formula.

Since the limits of integration for the are

o 1 - xl - ••• - ' k .. l, ••• ,n

For the n-sphere Sn we to

n-dimensional spherical coordinates

as follows:
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Xl = r cos 9n
_
l cos 0 cos cflZ cos cfll'n-2

x2 • r cos
cfl
n
_
1 cos

<P
n
_
2 cos cfl 2 sin <P1

x3 • r cos
<P
o
_
1 cos 90 - 2 sin <PZ

Xn_1 • r cos 41n- 1 sin <Pn_2
xn .. r sin <P n_1

Then a monomial integral

f.s..I .. dxn =,
n

where the summation in (20) is over

and

(20)

transforms into the product of the

I 1 n 1Irl - (r)dr
-1

k .. 1 •••••0-1

where

(18)

2 1/2 2 1/2
\)i 2 .. r i (l-y l' ) ... (1-Y2 i) Y1 ·

• n n- ·1.n_1 • 2 .1.1

2 1/2
\)i.n-l .. r i (1-Yn_1 i ) Yn-2 i

n • n-l • n-2

Formula (20) is a spherical pro1uct formula.

If the one variable formulas are Gauss formulas then

k 2: ls ... ,n-l

Yow we transform the integrals (18) by

1 - Yk2 = (cos <P )Zk

formula (20) will have degree

Spherical product formulas can also be obtained
2

fer Er Here an integraln

.. (1_yZ)-1/2dv
'I' k 'k

is approximated by a SUIII analogous to the sum in (20).

The only change which lIIust be made in the sum in (20)

It follows (we do not give the complete argument)

that if we have n variable formulas of

degree d

is to take the

Ar i • r i
• n n

i" 1•••••H

to be a formula of the type

Now we consider two special multivariate pdf

1 M
jrln- g(r)dr = A j g(rj )j=1 r.

(19)

CD

J
n-l _r2

_CD Ir I e g(r)dr =
M
) A j g(r.)
j;l r. J

k" 1 •••••n-l

these can be combined to give a formula of degree d

for 5:n

weight functions. The basic properties of these

are derived by Zellner [5; Appendix B].

(i) The multivariate normal pdf. This function
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is

Id vi l / 2 1p(xle. V) a et i2 exp{- I(x-6)'V(x-e)}
(2;T)m

where x' a x2 ..... xu). 13 ' a (131, 62..... en)

and V is an u by n positive definite symmetric

matrix. To evaluate the integral

fl' The numerical results are given in Table 5.

For N" 20 results for f l appear to be

accurate to at least 11 significant figures and for

f2 to about 4 significant figures.

(ii) The multivariate student t pdf. This

pdf is

r <:0 J_= p(xfe. V)f(x)dxl ... dxnJ-<:o _ (21)

defined

p(xI6, V. v. n)

Idet vl l / 2
Tfn/ 2r(v/2)

[v + (x_6)'V(x_6»)-(v+n)/2

by

x - 6 a 12 Cz

where C is an n by n nonsingular matrix which

where x' .. (x1•.•• ,xn), 6' .. (61, ••• ,6n) and V

is an n by n positive definite matrix.

To approximate

satisfies (Z3)

c've .. I

where C' is the transpose of C and I is the

we first change to variables zl"",zn defined by

identity matrix. (21)
2 2

-n/2 r cc (<:0 -zl-" ,-zn
1T J' .. e

_00 J_O;J

transforms into

(22)

where C is an n

c've .. I

by n matrix which satisfies

which can be approximated by either a cartesian

product formula or a spherical product formula.

In B below we give a computer sub-

program which approximateS ingegral (22) for n" 2
?using a spherical product formula with N- points

of degree 2M-l. N can be one of the values

Then (23) transforms into

... L: p(zlv, n)f(6+Cz)dzl .. ·dzn
vV/2 f( v+n )

2p (z Iv • 0) .. -n-j;.;Z;----::::.--
1T r(v/2)

(24)

N .. 4. 8. 12. 16. 20. Here vector 6 is stored

in array T and matrix V in the 2 by 2 array V.
Next we transform to spherical coordinates by

This program was used to approximate integral (21)

for the two functions
cos <PZ sin <P1

In both casese
The program in Appendix B the calculation for

%3 .. r cos </)0-1 cos <P0- 2 ••• sin 9Z

zo_l r cos $0-1 sin <P,,-Z

zn .. r sin $n-l

Then (24) becomes



types:

Yk k· 2.; ••• n-l

(29)

Table 5. Approximations obtained with the

program of Appendix B.

N f l f 2

4 0.030571497642006 1.295379

8 0.030572860067111 1.423888

12 0.030572856321073 1.444658

16 0.030572856349807 1.450727

20 0.030572856350007 1.452256

J... Jper. <P l ·····cjln_1)f,.,(r, cjll····,.jh_l)drd 41.. ··dpn_l
(25)

Formula (27) is a Gauss-Jacobi formula. Asuitable

formula (28) consists of 2.'1 angles ¢l.j' j" 1••••• 2M

equally spaced in 0 cjl 2Tr with all the '\.j

equal to TriM. Formulas (29) are the same as in

q.9) •
v/2 v+n n-l n-Z ( )2( )v f(T)r (cos <Pn- l ) ••• cos cjl3 cos cjl2

Trn/2 f (viZ) [v + r 2] (v+n) 12 4. Remarks

where Computer subroutines which approxi:ate uni-

o < r < 00

variate integrals by Gauss quadrature formulas can

be found in some computer subroutine packages.
-rr/2 < rp < 3rr/2- 1-
-rr/2 rr/2 k .. 2••.• ,n-l

The IBM System/360 Scientific Subroutine Package,

Version II!, 1970. contains subroutines for Gauss-

Legendre. Gauss-Hermite and Gauss-Laguerre formulas.and where f,.,(r, cjll •••• 'cjln-l) corresponds to

fee + Cz). 5. Acknowledgments

Now in (25) we transform r by The calculations described above were carried

2 -1w = [v + r ] ;¥\lWr = ---
W

dr -dw out at the Data PrOcessing Center of Texas

University in Fortran double precision on the

Then (25) becomes AMDAHL 470 V/6 computer which is compatible with

J...
(26)

the IBM 360/65. The preparation of this paper was

supported in part by NSF Grant MCS76-82888.
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C
C APPENDIX A
C
C A COMPUTER SUBPROGRAM FOR APPROXIMATING
C A SINGLE INTEGRAL THE UNIVARIATE
C NORMAL PDF AS THE WEIGHT FUNCTION.
C
C

IMPLICIT REAL*S(A-H.O-Zl
EXTERNAL. Fl.F2
DO 4 N=4.20.4
T = 2.00
S = 1.00
Q1 = POFN1(F1.T.S.Nl
Q2 = POFN1{F2.T.S y Nl
PRINT 2. N.Ql.Q2

2 FORMAT(10X.14.2E2S.16)
4 CONTINUE
STOP
END

C
FUNCTION Flex.T.S)
IMPLICIT REAL*8(A-H.O-Z)
F1 = DSQRT(X*X + T*T + 1.00)
RETURN
END

C
FUNCTION F2{x.T.Sl .
IMPLICIT REAL*8(A-H.O-Z)
F2 = (X**4 + + 1.00)
RETURN
END

C
FUNCTION POFNltFCN.T,S .. N)
IMPLICIT REAL*8(A-H,O-Z}

C THIS APPROXIMATES THE INTEGRAL OF
C
C K*EXP{-{X-T>**2/(2*S**2»*FCN(X,T.SJ
C K = 1./SQRT(2.*PI*S**2)
C
C OVER -INFINITY .LT. X .LT. INFINITY
C USING THE N-POINT GAUSS-HERMITE QUADRATURE
C FORMULA. THE ALLOWED VALUES OF N ARE
C N = 4.8.12 .. 16.20
C

DIMENSION X(S.10),A{5.10J
DATA (X(1.J).A(1.J).J=1.2) /
1 .16506801238857850+1 •
2 .52464762327529030+0 •
DATA /
1 .2930637420257244D+! •
2 .19816567566958430+1 •
3 •
4 .38118699020732210+0 •

191

.81312835447245180-1 •
.80491409000551260+0 /

.19960407221136760-3 •
• 17077983007413480-1 •
.20780232581489190+0 •
• 66114701255824130+0 /



DATA /
1 .38897248978697820+1. .26585516843563020-6.
2 .30206370251208900+1, .85736870435878590-4,
3 .22795070805010600+1. .39053905846290620-2.
4 .15976826351526050+1. .51607985615883930-1,
5 .94778839124016370+0, .26049231026415110+0,
6 .31424037625435910+0. .57013523626247960+0 /
DATA (X(4.J).A(4,J).J=1,8) /
1 .46887389393058180+1. .26548074740111820-9.
2 .38694479048601230+1, .23209808448652110-6.
3 .31769991619799560+1, .27118600925378820-4,
4 .25462021578474810+1, .93228400862418050-3,
5 .19517879909162540+1, .12880311535509970-1,
6 .13802585391988810+1, .83810041398985830-1.
7 .82295144914465590+0,.28064745852853370+0 •
8 .27348104613815250+0, .50792947901661370+0 /
DATA /
1 .5387480890011233D+1. .22293936455341510-12.
2 .46036824495507440+1. .43993409922731810-9.
:3 .39447640401156250+1, .10860693707692820-6,
4 .33478545673832160+1, .78025564785320640-5.
5 .2788806058428130D+l. .22833863601635400-3 /
DATA (X(5,J),A(5.j},J=6,10)/
1 .22549740020892760+1, .32437733422378620-2,
2 .17385377121165860+1,
3 .12340762153953230+1, .1090172060200233D+0,
4 .73747372854539440+0, .28667550536283410+0.
5 .24534070830090120+0, .46224366960061010+0 /
DATA SRPI,SR2/ 1.772453850905516,1.414213562373095/
NX = N-
IF{N.GT.20) NX=20
IF(N.LT. 4) NX= 4
N4 = NX/4
N2 = 2*N4
SSR2 = S*SR2
aSUM = 0.00
DO 2 K=1,N2

Z = T + SSR2*X(N4,K)
= T - SSR2*X(N4,K}

2 aSUM = aSUM + A(N4.K>*<FCN(Z,T,S)+FCN(W.T,S)
PDFNl = aSUH/SRPI
RETURN
END
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C
C APPENDIX B
C
C A COMPUTER SUBPROGRAM FOR APPROXIMATING
C A DOUBLE WITH THE BIVARIATE
C NORMAL PDF AS THE WEIGHT FUNCTION.
C
C

IMPLICIT REAL*8(A-H,O-ZJ
EXTERNAl. Fl
DIMENSION T(2),V(2,2)
T( 13 = 1.00
T(2.) = 2.00
\1(1,1) = 2.00
'1(2,2) ..: 3.0G
V(1.2J = 1.00
'1(2,1) = 1.00
DO 4 N=4,20,4
Q1 = POFN2(F1,T.V,N)
PRINT 2, N,Ql

2 FORMAT(lOX.14.2E25.16)
4 CONTINUE
SiOP
END

C
FUNCTION Fl(Xl,X21
IMPLICIT
Fl = 1.00/(Xl**2+4.00*X2**2+16.00)
RETURN
ENO

C
FUNCTluN POFN2(FCN,T,V,N)
IMPLICIT

TH1S APPROXIMATES THE INTEGRAL OF

K*eXP(-.S*(X-T)·*V*(X-T)J*FCNCX1,X2)
X• = (X1 , X2 J , T 1 = (T ( 1 ) ,T ( 2) )
V = pas. OEF. SYM. 2 8Y 2 MATRIX
K = SQRT(OET(V»/(2.*PI)

.30157705217081680+0 •

.17870934621889980+0 •
• 19443954257502690-1 •
.26964735278066370-3 /

.42677669529663690+0 ,

.7322330470336312D-1 /

-INFINITY .LT. X1,X2 .LT. INFINLTY
THE N*N-POINT SPHERICAL PRODUCT

ALLOWED VALUES OF N ARE
N ..: 4,8,12,16,20

OVER
USING
GAUSS

DIMENSION R(5,lOJ,B(5.10hT(2) ,'1(2,2) ,C(2,2J
DATA (R{1,J),S(1,jj.J=1,2J /
1 .76536686473017950+0 •
2 .18477590650225740+1 •
DATA {R(2.J).S(2,J),J=l,4J /
1 .56793282139650310+0 •
2 .13212725309936430+1 •
3 .2129934340988268D+1 •
4 .30651379923750800+1 •

C
C
C
C
C
C
C
C
C
C
C
C
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.22948233697498180+0 •

.20850041538606050+0 ,

.56686691037022490-1 ,

.51995987265745370-2 ,

.13050860140746600-3 •

.44927395321481060-6 /

.15422055788251010+0 •

.20055996457763680+0 ,

.10903414380590470+0 •

.3104372804933887D-1 •

.47507584875905500-2 /

.1845942946708188D+0 •

.20939339040717150+0 ,

.8789749331858590D-1 •

.16671746130607830-1 ,

.13972681176128360-2 ,

.45382543866791070-4 ,

.42428733581362660-6 •

.52400058743575520-9 /

+ C(1.2J*'ll2
C{2.2)=W2

- CI1,2)*'ll2
C(2.2>*W2

S(N4.K)*{FCN(X1,X2}+FCN{U1.U2»

(R(3.J).S(3.JJ,J=1.6) /
.47206631332818140+0 ,
.10903816312065350+1 ,
.17299526947461060+1 ,
.24031528393143270+1 •
.31364737235281580+1 t

.39978586744158060+1 •
(R(4,JJ.8(4,JJ.J=1,8) /
.41264952720813940+0 •
.95063230367970340+0 •
• 15003621662339170+1 •
.20655992278967520+1 •
.26544124401444220+1 ,
.32800176844311370+1 ,
.39674524119739610+1 ,
.47815407283520300+1 ,

( R ( 5, J) • a ( 5, ,J) ,..1= 1 .5} /
•

.85408111412392820+0 •

.13447464079670620+1 ,
• 18442976163989640+1 ,
.23563735145481080+1 ,
(R(5,JJ,S(5.J),J=6.10)/
.28862003996196270+1, .37650419429376940-3,
.34414801812447020+1, .1412961674799 7 830-4,
.40347562294862500+1. .21246569924813430-6,
.46900517920360710+1, .91978241198981540-9.
.54699814453317750+1, .49559136098045040-12/

DATA PI,SR2 / 3.141592653589793. 1.414213562373095 /
C(l,1) = 1.00/0SQRT(V{1.1»
eETY =
C(2.2J = OSQRT(V{1,lJ/OETV)
C(1,2) = - C(2,2>*V(l,21/V{1.1}
C(2.1} = 0.00
NX = N
IF(N.GT.20) NX=20
IFtN.LT. 4) NX= 4
N4 = NX/4
N2 = 2*N4
NX = 4*N4
FN = NX
PN = PI/FN
aSUM = 0.00
DO 4 J=l.NX
FJ = OFLOAT(JJ - .500
CS = OCOS(FJ*PN)
SN = OSIN(FJ*PN)
DO 2 K=l,N2

WI = SR2*R(N4,K)*CS
W2 = SR2*R(N4,KJ*SN
Xl = T(l> + C(l,l>*w1
X2 = T(2) +
Ul = T(l) - C(1,lJ*wl
U2 = T(2} -
·QSUM = QSUM +

CONTINUE
POFN2 = QSUM/FN
RETURN
END

DATA
1
2
3
4-
5
6
DATA

1
2
3
4
5
6
7
8
DATA

1
2
3
4
5
DATA

1
2
3
4-
5

2
4



BAYESIAN ANALYSIS AND COMPUTING

by

Arnold Zellner*
Universi ty of Chicago

ABSTRACT

The paper provides canputer scientists with an overview and some examples of
problems associated with applications of standard Bayesian inference

procedures. Bayesian concepts and operations are reviewed with emphasis placed on
explaining the general computational needs of Bayesian analysts. To make the
considerations concrete, features of Bayesian and non-Bayesian computer programs
for the standard mUltiple regression model are compared. Several features of a
Bayesian Regression Analysis Program (BRAP) recently developed at the U. of Chicago
are described. Several computational problems associated with variants of the
mUltiple regression model are discussed and a discussion of certain specific com-
putational needs of Bayesian analysts is presented.

I. In1:::ClduC"tion

Tl1e IllAiD »=po.. of t.his paper is to provi4. ccmpueer

sci..,U.es "i1:l1 an overvi." an4 • .,.,. __1." ot c:aB9"ea-
eion.l I'''''bl.........od.aee<! "i1:l1 &IlPUc:aU""" ot sl:&l1<iar4

!layesian ull!.rll!lctl I'roce<!ure.. sayesi"" inter...a.. prccll<lure.

ue a anitied s.e of I'""c:e<lure. in th.. s...... thae Cb. •...

princ:iple.. are applied in analyses of a "rr b=&4 range ot
sUeiseic:al. probl..... Thus it is il!lporeane e.....e c:Clllpue....

sc:ieneists wcrkinq in the area of aayesian be

familiar "i1:ll buia Bayesian ..s. concepes and

operations in erde: facill1:ate wiell

aayesian analysts an4 eo un4erstan4 the ot sayesian

analy.e••

The plan of Cbe paper is as follow.·. In Secti"" II.

some basic Sayesian concepts operations are reviewed

placed on explaininq qener31 computational

need.a of Bayesian analyses. make considet"at1ons in

Section II concrete, Section !I: is devoted to a =omparisoft

of features of a and non-aayesian computer proqrama

for the standard :eqressioc model. Several
of a !layesian lbIqre."ion Analysis P".:oqraa (l1llAl'1 rec:enl:ly

_loped &e l:he O. ot ClUcaqo are deecribed. In sec:Uon rot.

several ccmputat:1onal Elrcbl..... associatlKi vit:l1 'nrilU1cs of!

l:be W1lt:1ple reqre.sicn _.1 4>:e dUcus88d. Finally in

Sec:Uon V. eancludin'1 .......nCS and a discussion of certain

specific """'llUUt:1cnal. needs of Bayesian ....al.ysts ar.. pr_

sete<!.

u. .Overview ot' Some Standard Prine-iDles ot Sav.siu
!nferenca

TIl. principles pres",,-ee<! below 4>:e e...•..aeed in .. nWll1'ler

of sayesian texts inoludinq Jeffreys (1939.1948. 1961. 19671.

lleitta and Sohlaifer (19611. Lindley (19651. DeGrooe (1970).

Zellner (1971) and Box and (19731.

2.1 Baves' and Posterior Probability Densitv

Central in Bayesian analysis is aayes' Theorem or Rule.
Givan a. ran4c1l nxl Observation vec:'Cor, i, anel a kxl

random parameter vec-eor. i. wit:l1 joine probability density

funC"tion (pdf). I" i E·I and :.:: E il:!" ."" can "",ite
p(!.:.::) • p(!)p(:.::1·1) • p(:.::)p(!!:.::) where pI!) and Ell:.::)

are marginal pdfs and plt!i) and are conditional

pdfs. Then Bayes' Theorem or Rule is qiven 1;)y

(2.14>

In (2.11.

pI:.::) ! .. pdf tor :.::. r•
°Rese.",c!> financed in par': by IrSF Grant SOC 77-15662

and by a.a.a. Alexander Endowment fUnd,
Graduate of Susiness, u. of
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! posterior pdf

! prior pdf

! pdf for observations 'liven
likelihood

i or



Po.teriar pelf • ('l'riar pdt) • (UlcaUhcoci fWIC:Uanl (2.lI:ll

ud/or mJDU..cal 1Il1:"'1l:al:iCl> to ....a.1.ual:8 •• such

as Ib_ Ln (2.2)-(2.4). S_ eXUl;>i.s Lllust:ral:iJl<J CU..

(1) uu! (2) wi.ll be pre.""t:ed belew.

(2.4)
nqaLred.

variaa.ce, etc:.) chu'ac1:erizinq it are required. in Sayesian

p(:,.l") - /p(v 1&)p(8!v)dS...... - -- -

given
q

(mean,

In addLt:i,,,,,, interest is aft:en cente..ed an

linear combin4'C10ns element af L, 13.'1_ "1lI'

with the c i I s qiven. The pdf " and measures

It: IIIAY I1&ve a "st:andai<l" fo"", or it may be ill a

foUl. In the lal:t:.r cue approxiJDal:ions • •• '1. uympl:Otic

"""ansicma AZId/or ll.....tical J.n1:"'1l:ation procedur.. .,ill b.

2.2 Bayes..... Predieti.ve Pdt.

__ t:I1&t th. pcnedar pdt. is a .....Uabla

AZId t:hel: it: is duirecl 1:0 ootain t:he pdf for a q><1 ftCta...

of AS yel: unobse..-d aOs.l"1at:iona ....th pelf

c The predicl:ive pdf for :1:.-. d-..Ol:ed by p (:,. I:::,) is
....... by •

Pa:e .....y pl'Ob1_. I::e int:equl:ian ill (2.5) can be done
aD&lyl:1cally whU. for a1:hAln il: has t:o be p....for.oed

..-neally. Gi....... ·that the predicl:ive pelf p <:,.It) has

_ abulIled, Bay••LUI anuysts ue lIlt:er••l:ed !.Il abt:ainin'1

CClIIPlIl:aUanaJ. results l:llac charaet:8ri:e its p""pert:"e••

Jtult a.....I:: a posterior pdf for a p..,...l:er vec:;:or. p (11:::,) •
qaanUl:ie. anuo'1lOUS t:a tho... in (Z.2)-(2.4) will oftu be

.val....ted. to provide pred"ct:"ve "'.""s. vari.anc•• and

.....ure.....ee..al:ed "'il:: mull:i"'''''''''at:.. predi.et"ve pdf.

aAAly••••

The t-..a c,"se. menl:ioned at: end of Se""i.aA 2.1 u.

also r ..levant wiI:: : ..spee:t to the predicUva pdt p ;:::,) •

2.3 aave.i.5ft Odds Rati.as

In o:ompa:dnq alt:unat:ive l1ypotheses or _els. 3ayesi.ans

employ pasl:a,..i.ar adds ral:ios. dat:a vector :::,

....I:: pelf Pt (:£.Ilt ) und.... !1ypoth.sis (or ....d.l) III wit:l1

par_t.... vec:t:or it and wi.1:: pelf (tl12' under hypothesis

(or lIlCldel) II2 • Gi....... that: III and liZ ue JIlUt:tIally 8xcl.... i ...e

aDd that anti 112- have prio%' probab1lities and lf2 ,.
""spec:l:ively, Bayes' TheoreJII provide. the :olla"'in'1l exp....s-

sion tor the posterior odds ratio, !t::'2' for relative,

P(SlIZ) - I P(Sl.82 ..... 91<I:/:JdS2d83 ••• d91< (2.3)
eo

where 10 is the sub-s9ace for &2,o3, ••• ,8k •

Gb. l:llat: P(91IZ) IIu _ obtained. iIll:eqraJ.s of the

faUcwLnq le:l.n4 are aft_ of Lnl:er••1: to Bay........ ana1ysu.
_ 0

p {a < Sl < bl • I aP(&11Z.)d81 (a.» 'liven)

III appllc:auona of (2.14-01. a.y....&Il aaa.1.ysl:

SUllPUe. tlI. prior P<ll p (!.I AZId the lU.Uho04 function

p (till. TIle aD&lysl:' s ••1: ... ftl1l:ared OIl tlIe pa.l:arLcI'

P<ll p(!.IZI bec.u.. il: su_.d:e. lIlfal'lllAucm CCIll:a.ill8d

1Il l:ll. pdor pelf ud. lJ.lca.1..l.hco4 fuIlcUon pc.dole

valuas of l:ll. pu....ter _or. TIle ....alysl: ....ll qeaer&Uy

.....b l:C p.rfOrlll cuc:u,lauCila t:a ....aly". vu"aus prep.rU••

of jailll: pc.l:ar"ar pelf p (lit).. hI' elCAlllPle. he lllAy

....." l:C duenU.ne l:lla IllC<!.a1 value (or ...alue.) of p(!.lt).

l1s""'lly ar. !.Ilt:.n.l:e4 !.Il ."..lUAl:.illq _aD. ud athe...
...-.its UlIOCbl:ed wi.th p(!.II,! AS "'live by the fallcw1llq

!.Ilt:eqraJ.••

8i SPo8l:u"al' _All of 8'- =l&i.,(81z.ld& (2.2a)
• - - 1-1,2, ••• ,&

Panedar varianc. of 'i ! (2.21:1)•
A.lso, on occuicm, cCDlpueaUcn of hiqher e.g.

.. (!Ix.ld!.••tc. and measure. of

skew••• and kurtosis are of !.nbrest..

TIle quanl:il:i.s ill (2.2)-(2.41 are some of 1::. items

relAl:in'1 to l:lla jaLnt: pcst:arior pelf p(!l:::,) t:I1&t: BayeaiAil

ana.1.rsts ...111 q.n.""lly w"sh to comput.. As is apparenl:,

l:lla•• quanUt:ias are just stAildard one. I::at charact.:""".
c_Ln prepert:.... of IIIDlU...ar"aI:8 pdfs. Also lLn"""

COIIbLnationa at the d .....nts of i' say !!.. C1. whue C

is a '1.....114 q'le .... t:ri.,. of rule q ar.. of iIlt..re.t: in lIW2y

i'""ol_. Th.re is thus a nae4 ttl ootaLn the pelf for t:he

In .AddLUan to the mentioned Above. analy.ts

USUAlly ""ish t:o compute the oarqinal pdfs as.acial:ed ...itb

p(!lt) - p(81'a2 •••• thaI: is e.q. the =arqinal

pcsl:eriar pdf for 91 q..ven by

...l1ere r l /r2 - Prior Odds, Pl'!t l ') and P2(!:zI'1 are

prior pdts :01' it and =espectiveiy, and 9l and 82
u. the domains of il and !:Z' raspecti,vely. 'rhe Ratio

·!lal:e thaI: ,,(v,1l1 - - p(:::,!lIlp(R) '"hen
II-II, ",1el1 prababi,lr:y 'i' .-1,2. 'rhen p(Hlt) z

and Kt2 - P(H1IlI/peRZ:l) - (P(Hl )/p(lI.'l
• !Pl(llllll/P2(lIR21]. Since Pi(IIi ) - '1 and "i(lIHil -
I. tar i-l.2, Kl2 is 9i,v8n by 'be
1

qJCl vec:tor .1 and. measures (means, ·vu1anca8, etc.) eo

chuae:tarh. i1:5 properl:i.es.

1ftth l'eqard t:a the· cuc:u,lations de.o,..j,l;>ed aI:love. it: is

us.tul t:o dLsl:in'JUish two c.....

(l) p(!I%) has a ·standard" form, e.'1' :oulU'1&ri.u.e

normal 01' mull:i.......iat.. Student-t:o such that t:he iAteqrals

in (2.Z)-(2.41, etc., can be e"alual:ed analyti.cally or by

us. of .undud tables. and

(Z) has a 'nan-standard" form for which

in (Z.Z)-(2.41. 8t:O•• cannot be evaluated analyl:ically

or usinq tabled results. In cue (1), tb. Sayedan anaiysl:

can pro...ide expiioi.t formulas for the lilee t:!1o.e

in (2.2)-(2.3) and taJoles ..-Ul be availaJole for oompuUn9

!.Ill:e'1ral. suoh as that .hown 1Il (2.4). on the other hand

in Case (2), it: is necessary to resor!: to approximatiOns

to

•

• (Pdo.. Odds) • (Ratio of Avera.,.ed
IJ.lcelihocds )

<2.6al
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fIX. saye"1an and NOft-Baye,,14ft Re¢J:es"ioft Aftalys1. Com=ut.r
prOClrlUllll

SizI_ the .UIlclari lIlU1t:i.ple reqraa.l.oa llIlOd.el (MIIH) La

a OIle 1ft .....y are.. ot .ci....e:.. specific atteAuoft
is 4.""tK to a .tllDDI&J:7' ot Baye"ian aad non-llay..sian analysJ.a

ot 1t that f"at"'7". COIIlPutaUOAIIl pl:Oblems. 'l'he It.'lK for the

11-1 ObS"rvaUOA V'IICtOr La '11van by

a..".nqecl %JJcilUhooda. U the raUo ot

izIUcJ%aU izI 12. 5al •

U appllcaUons, uaen w1U pl:Ov14e "'1/T2 • Pi Iy,l!j,)'

pj,I!J.I·), aad -1' i-l,2. U - pnbl_ the

izI1101vecl izI 1%.5.' CllA be aaalyucaUy vtU.l. izI

oth.n theu 1 w1U b&..- 1:0 be a1thel: by

axp iOlla 01" by ft-neal pzo<:eclAJ:...

'1'h• .u..e..aa1on abo'ft IIu coAS14u.ci ...... s1:Udazd llaye.illA

opanuOlla. __pu aad compui:aUoftal To llI&lce

til... COIlS14aratiOlls more _eren. 1zi til. _Xl:

c:oapuauva AlIlleeu ot Sayea:i.llA mel ftOA-say.sian l:etJl:e",,10n

aAaly... COIIlPutu wUl be cl1scuuecl.

twX a.u
nxk kxl axl

(3.11

.. < 81 c -, L. 1,2, ••• ,k aDd 0 c (. 1D wft1cb c...
13.4) 18 an iIoprcper pelt.. U 81th" c.... lIIUJ.:iplyiDq 13.21

aad (3.4) to'lethel: pl:Ov14as the poatenor pelt for tile

pu_.n ! aad a. p(!.al:l;.Ia ). ""er. to deaous diffuse

prior izIto......tion._ly

PI!.al%.IO) "

_ ,,-In+l)esp(_ev.2+(!_!I·X'X(!_!)12C12!} (3.5)

in wbic:b the factor of is .. nol:lll&lizizlq conatmlt.

'1'!le jo:int posteno,=, pelt far ! aad " i. 0'" thae can be
analyzecl '1'hat i •• to obtain til. jo:ine ......'1:i.nAl

.u.U:i.huUOll ot the el_U of 1. (3.5) c:cr be int..,rated
lIAalyticAlly vith ""stNtet to C1. a < CI < -. to yield:

(3.51

wbare c _ with V. X'Xls2

15 the 1l0J:'J:l&1iz.iAq collstant. Th. pelf in (3.61 is in the fo"",

of a IllUJ.Uvuiate-Stuclen1;-t pdt - .ee e.'1. R&i.ffa and

Schluter (J.9Sl.). Zellner (197J.I md BoX ancl '1'iao '(U7JI fo,=,

it :::n particular. ita mean vector ....d cova.l:'iance

....tr:i.x are 'liven by

an4

7uz:1:ller. t........ .. of (3.SI. it is the cue that the

tollowi.n'1 qu<:nuty.

wbera It i. m nxic non.toc:bastic l114uix of ranl< k. §. is

a kx1 vec:or of reqression coefficienta with value.,

anel is an nxl error vec:t,oJ:. It is assumed that. 2-
has Deen drawn from a =nltivariate nor=al di.tribut1on w1th

zero mean vector and covariance mauiJc a2In, where (1'2 is

a par...."r w1th unknown value. 'l'he likelihood funcuon for

t."le !-!P..'t is:

v > 1 (3.71

!.
va2 • (rXAI'
v • n-k •

13.3al

13.3bl

(3.3el

S-"t-e pdf with v d8CJ>:.... of f""eclom.

U addition to the above well-known re.ults. it La

poss:i.hla to obta1A the posUrio,=, pdt for 11 frca (3.51 by

int8'1""&uon with re.pect to the Jc elemenu of i to yield

3.1. Baye.ian Analvsis of with a Prior Pdf

A diftuse pdor peSf for ! anel " is 'liven by

that is the Si •S # and 109 a are assumed unifaJ:'2!LLy ana
independently elistr:i.huted over very lar'1e finite inter-tals.

Alternatively. it i. po.,,1ble eo re'1ard (3.41 as 4efined for

13.10)

se. Raitta aacl Schlai:er (19S11. Zellner

*R8Dyi {1970) provides an axiom for ?robability
thGory that accomodates unbounded measures and a
ot 3ayes' it.

with C" 2Iv.2/21 v/2/r(v/2l. the no:ma.lizin'1 con.tant. The

po.terior pelt for " in (3.101 is :i.n the fOI:lll of 411 inverted

(197J.1 &lid Sox anel Tiso for its pl:O!'ertiea. From (3.10).

it i. pos.ible to obtain the poseerior pelts for a2 anel h-

1/,,2 loy .1mple chan'1&S of vanable. Similarly. !:he quan:it?

v,,21a2 has a X2 pelf with v d8CJ>:ees of freedom. Explicit

alqebraic expre.sions !or means, medians, variances, ate.,

..&Oc1&teel with po"terior pelts fol." ". a2 , anel n ue

available.

?inally, the posterior pelf of a qXl vector

where C i. a q-Jc '11ven matrix of ranJc q i. in the fOI:lll of

a q-dlmen.1onal =nltivar1ate Student-t pdf with v de'1r.e.

of treedClM, posterior _an vec'tor

13.4)pl!.a) " l/a •

Sizlca sayedana placs '1""eAt importance on .tudy of tile liksli-

hood funct:.icn·. it is ....ual to COlIIPute i. s2
anc:I othsr .....un. to characurbe the likelihood funcuoa' •

•propenie••

TWo prienr pelf. that ue oft.... ""'l'loyed in analyz:i.nq tile

MllII are III a ditfuse or 'non-1Atormative pdf that is appropriate

when little out.i.ee information i. avai.l4,ble ahoul:

values of ! and a aneS 121 a natural conjWJate prior pelt

that e_ies outside information 4,bcut par....ter.· value. that

i ••upplied by the Bayesian analyst.

.Here we have limited attention to a likelihood
based on an assumed error vector.

can =e made --- see e.q. Zellner
(19761.
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(3.Uc)

v > 2 (3.121

whee. • (X·XI-1v.2/(v-21 i. the co-

'IUiaua lllAu:I.s 1. Ilac:ll l.A4.f.ri4u1 .l_c of l h..

a po.tanoz: pelf 11:1 the to_ ot ;> wsi.va.c1ata 5tudeAt-c pdf vith

v d..,nu of trHdoa.
'1'Isa n.ull:s 11:1 (3.71-(3.121 aac1 _Uclnad 11:1 the

_ &I:lI _ of the it_ that u:e of 1I:Icaraat to

aaalysl:s _lOY!Aq the lUlK vit: the dUtue pc:If 11:1

(3.4). It l.a s_ t:ft OWlY quaAUU•• to be CCllIIp\lcad u:e

.tlIllaz: to tIlcH COIII;".tect 11:1 te"1; squ&n.

ACJ%Ud.... proqr_ but haft & tUlldamaDca11y dUfuuc 11:1-

tupnUt.l.on. roz: exup1e !. (x'xl'-lx'x, 11:1 (3.7), the ....,.

of the pc:If !, is numadeaUy th. s_ as the

1e..t squan. (aDd llWd.lIWIl li.l<.11hoocl1 .,1:1:I&t. buc Ilaa &

different .... as the _lOA of a

po.tar1= pelf that 1DfOJ:llI&don "equcl1nq .,.,••1I:Ile

val"e. of i, a of e..n.ida.cacl 1:0 loe sub-
!ecUvely """d.ClIII. Che nsullo ion (3.9) can !os.

to cClqluc. p"..babil1t.i.... requcl.ion'7 3i' s value

U !oUeva. Yro.. the talll•• of the 3_n1O-" d1scr.i.l>u1:ion

III (3.Uel the natw:al _!uqat. is qivea .. the

of a c=cU.tiOll llClZ'lll&l pelf tez: 1 q1vea a. 111(1117. ·1. t:1.-.
;> 1aU'lJ1Aal 1I:IYertaci q_ pdt tez: a. PIG (a I '1 • SpecU1c to=-

tcz: Cb_ twa pdts u:e qlvea ion (3.1510,0) "Union the quaAUU••

I. A. " 0 &D4 pu_t.... ol! the prtClz: pelf vlle.e valu..

.&Ze to be s"P1'Uad by the Bay.."" aaalyst.

u.eas oil Baye."" "sqr•••ion viIl qanerally be

t .... vith the tanl. conjuqau pnor pc:If ion (3.UI.

the ;>rcb1 of ehood..q val.... of the ;>nor puamecer.

'r, A. Vo &D4 So 1IC as to the avallable

1DfOJ:llI&t.l.ClIl weU is not: a crt"...l OM. Thus the paper by

(19721. thac may ba helpful :I.D thts "eqarc! vas in-

eLudacl 11:1 the lIsu'. _ ...1 lor SlIAP. Aloovc! (1977). Furt.ll.er.
CD iont1lqZ'at:I.Dq a. 0 < a <.r the reauJ.t:l.Dq

mazv:I.D&J. pdor pGt for !. is qt....... by

a pc:If :!.n the to"", of & lc-d1Jll8nsioDal

pGt vith "0 deqreell ot IrsaclOlll. :'''0lIl (J.15). the

=-AIL V'eCto:" z! ancl pri-or covariance m&:t%'i:'C !, V ue

vitb 'J deqr••• of :reed.CIII, value ot a c:enst:an1:, <=02/2'

can loe obtai.nacl sueh ;hac < tv < eo/2II..1o) • 1-0.

Sy 1I:Ieer1Oionq the value 01 tv ion (3.91 in this probability

stacemenc and rear:anqi.nq terms. the r ••ult is.

"0 > 1 (3.17)

(3.lS1

(3.21a)

(3.Zll»

(3.21e)

iJ.Udl

(3.19]

M• A + X·X
i. (A + X'XI-llA! + X'::t!)

"1 • n-jc + va • v+ v"

v:,si • '>1.
2

+0 • j:x·x! !'A,a - j::-fi"

where

.If 8 and a were independent in the that is
• P1(1IP2(a). this effeet will net be presene. The

dependence between i and a (3.15) can loe of as
ui.:ai.nq fro= a pric:: assumpt.ion that and are
independent:. If p(i.a)· w'eh' a normal
pdor pdf fa" i. then on t:ansfol:'1llinq baek eo 3 and '1.
tbe.i.r pdf will eaks the fal<m p(i.'1) • PN(!la)PICTa).

the sqaa::e on 1. the "e.ult1Aq po.eerior pdf is.

-lc • - 2 - (111+1) Z Z
p(!.aII..le' • (a (a exp{-II1s:.12a )J (3 .20:

where Ie denote. natural conjuqat:s pri.. :!.nfo.....tion. on
sub.t.l.cut:I.Dq I"".. (J.Z) &Dd (3.151 :!.n (3.19) &Dd CClIPlet:I.Dq

If "0. 1. (3.16·) beeOlllSs the Olultivariace Cauchy pdt

chis ca.. ! is to be

as a loc&i:1on veeta!:" .aDd A-1S; a,. a 4!s'Persion matrix. rrcm.

(3.181. 1t l.a apPUUlC h.... val".. of " 0 anc! So ul!ec1: the

val.... of V(ll a part1cuJ...... clu:l1c:e of A. Thus us.... should
!os aware ol! the bot that clu:liee ot val"". of "0 anel So

iD the pGt a iD (3.Uc:1 has ..... impacl: en Cbe

pdor pc:If f= ! as s_ iD (3.181.

Gi..... thec val ol! the p........eer. I. A. So and "0

ion (3.151 ha"" b_ iqnecl. the nacw:al eonju!;aU

. pGt can 10, mulcipUed by Cbe lik.11l:looel I,..,<:tion ion (3.2) to

obtai.n Cba joiont posur:l.or pdf ! and a. " .....11'

(3.13)

(3.15&)

(3.15b)

The natural conjuqate 5',,:l.or pdt tor !

a of the n..:mal MllM. ;>.. (1.171') b qiven loy

III _ria (3.13) neds. qb... aac1 cl.1ftue 1Afozma-

tion 10 • as s!lDlnl ion (3.41. the IIl,cilal:l1liry thal: Si u.••
the qt..... ionunaJ. S:I. * "0/2.9 is..:ruJ. to 1_. III

o
(3.131 that daftn•• a 1_ laval Bayedan CODt:l.den...

Q:acI1l:l11.iry IIlCU"ftl. a:l. is <:OII.iduad to be raDclCllll anc! aU

qlZlUrt1ti.. qt'1811 or ......-raftdo... III CODuaet a n",,-

Hllpl1Aq theory COZ1t14uee 1Ater-al 8:1. l.a

q:l....... by the 10llow:I.Dq proAa1>:I.lity scac_t

h{S1 - 00/2s §1 < 8i < ii + eo/ 25 3i 'S:I.) ·1-" (3.141

III (3.141 8L is llCZl-1'&Ildca aL ....d s§L are coD.ide:ed
to be "andoa. ':hus (3.14) staces tha1: ;he prcbaloiliry thac

the "_Ill :!.ntenal 5L * e"/2s5 """er. the q1veft value
L •

81 is 1_. T:Ie ll....-lIay..ian cclllPut.. 8L ::</2s§:I. trclll

hta daca and to (3.141 its wh:l.le Cba

BayedaD COIllP"Cu Cbe ...... :!.near-al and ""fars to (3.131 tor

its :!.nuJ:P""tation. In eb1. 5'rcb1_ tlIe :!.ncemls 'ue the ......

(noe alway. Cbe easel but the Baye.hn and non-Bayes.i.an

taUons ue quite differeDt;

with

aDd

and
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. (3.25)

n- tile fOI:a of 13.20). Ut 1• ...,..1111. to LAU9ftI:. 11:

llIIa1reJ.caUl ril:ll nst'"1t to a. 0 < a < •• to 01ll:aJ.D l:Il.

foJ.J.0wi.D9 aqinAl poal:.d" pcU fOll: i.

I - - 2 -iTc+v1)/2p(i :..:..) • (v1 + li-1) ·M(!-!)/.l.1

.. pcU l:lIal: is tA l:U font of &k...u-10naJ. 1IIl&1l:.i.YU'1.au
pcU ,,1l:1l v1 • v + Vo 4.-,,:.... of f:eedoa v1l:A

-- an4 C09U.i....... 1ll&l:J:.i.x ,hen bl

(3.23)

I -1 2VI! r..I,,1 • II v1s1/lv l -2)

1'lIJ:l:hu. l:U q1Wll:.i.t:r

l:V1 •

baa a Wl1V&J:iaU pelf ,,1l:1l v1 4.-,,:... of f"• .-

c1om.

OIl CC\III;'u:1Aq (3.6)-(3.9) v1l:1l !:h. equa1:.i.clrtll

13.22)-(3.%5). 11: is s•• !:hal: !:hey an tA sillli.1&J: fo",...

1lh11. "01: shoom her. upl1ei1:1T. tile 1_ s1llli.laJ:11tY 1Io1c1S

fo" tile pelf fo.. l:1A.u. coa:ll....al:1ona of !:hs .l-.>"s of 1.
• C! and fOll: !:h. p..ed1Cl:.i.ve pdfs unde.. tile d1f:a.e and

"al:UZ'al eonju'O'a"e pdol'S. ':h"" il: is conv_1sn1: 1:0 P1'Oqz'3lIl

0". IlIUltivarial:" Stude",,-lO 1'Oul:.....

13.25)'

alo"., wi!:h -. ions for il:s .........l:s • .....'0'......1,;'; e!:C.
For .ead>. cas. :1A wl1ich a mull:1V&J:ial:. Stud_l:-t <>4t

is ..equired. appropdalOe values of a. !:h. dsqre•• of

f"eedam pu-u:. lB. !:he dimensionaliq. !' !:h. 10cal:1on

V8Cl:Or. and If l:lI..... tr.i.x of !:h. qwul:al:1e fo_ are tA-

Ierl:ed..

Alao on l:eqral::1A'O' (3.%0) w11t11 rsspec1: 1o0 !:h••l_l:s

of 1. l:lI ull: is

_2 II _ 2
wilen ..- - 1 - u'u J l: IYi"Yl • l:lle squue4 sample aJ.l:.i."1._;:r i-1 r

COft81au= .....fUe1...I:. when !. r. - xi. l:Ile l_it_ n
8q'II&ftS rea1dua.l V'fI<rtOr. y. J.;1YJ./n. an4 n is l:Il. sample
sis••

to. rlI9&1:ll. res1dua.l llIIa1rsis 0,," Ula1y.i.e of t:h. n&J.1sed

enor 1:_. :.llAer 11"" baa ...,....Ud Olll: l:Ilal: t:h. po.l:.dor

- of l!..:' - Xl 1. ,1-= Ily

where i.e !:h. pein.do,," ....... of !. U a dU:ua.
prt= pelf is empJ.ayed. E(ll:.••o ' .• i. and

thIla E(!if:..Io' - r. - xi - i. 1tII•• vec:l:Or of laU1t squan.
:u:l.dna1s. on !:h. o!:her lland. if a nal:uraJ. colljuqal:. p"1o,,"
pdf is employed. l:lIs value for EI!Ir.) in 13.29) is q1vea Ily

13.211l1. .Thes. posl:""io,," ....... of l!. a.....11 .. ol:ller .....un.

c:huaC1:ari"':1A'O' l:Il. 91'09art1a. of tile ""al1"'ed .""""" veel:"r

]i. _1:.i.clned in :elln.". (1975). can bs eOlllpul:..... This &nor.
tUIII Ula1ys1s p1'Ovide. infa:=au"l0 reqardin., t:he vaJ.ues of ..eaJ.i"'ed

req:assioD ez:or

rrca whalt has b..... prel""l:ed a.l:love. it i.s d ..... !:hal:

a Bayes1an ...'O'nuion "ro'1""'" inc:orporal:1.", use of d1llus.

an4 nacuraJ. c:on;uqa1:8 prior pelb involves many eaJ.c:ulatialls

l:hal: are limilar to l:lIOI. in non-say".ian l.asl: squ&1'''s

p..oqn... Fo" example. qood aJ.qoril:l\ms for invert....'O' ....uieu

luch as X'X and X·X + A musl: b. ava11abl.. In addil:ion.

al:her al,eb..a1e ap.ralt1011S are involved in cOmpul:111'O' po."erio..

...ana and var1....e.. at "eqr.ss1alO coeft1eienlOs, fu=. aoa.rva-

elans, realized reqres'.ton errors, Sayesi.an con.fidence 3nd

predJ.cl:1oo LAI:SZ'V&J.a. e!:C. J'.i.z1a.1.lY. qood plol:l:1nq ""ul:1n..

are .uetuJ. in pr.....l:1nq ....u1l:S. fo,," axazople COIIlI"IZa1:1_

pJ.ol:s of prior. poa1:8rio,," and Pl'ed1Cl:.i.ve pelfs.

c:onl:OW:a of jo....1: Pl'1or. po.it...10r and pr.dic1:ive ;>db.

""sl:Sri" pelts fa.. rsall"'ed error tSDlS. alte. to. v1!:h

COIIpUUr ''''''1''- in ......eraJ.. il: is imporr:"';1: l:lIe a.l:love

be carried aul: aceural:e1y.and eftiei.nl:ly.

.... for i-l,2, is an nixl vector, Xi is an

nixk matrix of =ank k,! is a kxl ..aqre.-

sian coefficiene vector and is an nixl veceor of errora.

Au..... l:lI...lO l:lIe elellleftl:S of and are normally and

IV. Bav.sian Analysis of variants of ehe )!!tlI

Hally vu1anl:s of t:he M!lIt have been ....alyzed from !:he

Bay....i"'" po....1: of vi... - see ..... :.lln.r (1971. Ch. 4,

5 and 5). SOx and COx (1964)·. '1'1&0 and ZeJ.ln... (1964),

zellner and '1'1ao (1964), ZeJ.ln.r (l97S). lticnard (1977),

(1977), el:c:. Th..... anaJ.yse. inel.ude e.. at:ll8nl:s of
aU1tCcorrelation. h.l: scedaslt1"1l:y. transfo tiortll and

at:!ler deparl:UZ'•• f""lII UlIIpI:1on. of !:h. Sl:Alldard Ilml.

lren.i.z1 an. upeel: of the praoJ.... of h.lO.""sced...sticiey Will

be :e9i.wed to illusl::slO. praoleMa !:hal: artse

in an analysts of a non-stand....d "eqr"ssian "rool...

Assume t:!latth. 4al:a have been .."n"ratad oy th. foJ.-

lawin'O' sy.I:....

-Iv +1)
p(a!r..I,,1 • ca 1 e%\><-v1sil2a2} 13.27)

2 v1/2
w1!:h" 2 (V1s 1/2) /rlvl/2). NOlO. t:hal: (3.27) is in

pree1s.1y for: of (3.10) and (3.1S,,). Thu. il: is ""efui

to have a ,,,n.raJ. ·inverted........... pelf l'OUl:1ne" tA a. Say.sian

..eqreslian C<lIDpUI:.... pacJca"'; l:lIal: can b. ....1qned appropria«

p........l:er vaJ.ue. fa" part1cuJ.= ""e. in diff""e and/or ""'!:ural

priQr t'eqresaiOIl an&1ysee.
r1na.l.1y, jllll: U v1!:h non-Baye.ian ""I':•••1on p"aqrams

11: is useful to have qaodlte•• of f11: mea.urs. and re.1duaJ.s

calDpU".d in a Say.sian rsqr...ian c""'pul:",," pro'1"..... ID.

P.........d Zellner (1968). the post.r1a" for l:lI.populalOian

lquared multiple ca..r"lalOian co"flicienl:. p2. i. de..i?ed

the prior and natural cQnjuqate prior cases.
Also -49Proxi%l1a.t8 larqa sample resw,u: are preseneed. :n
particular, for prior case, ie is shown
the posterior mean and vcriance of p2 are qiven by,

!:(p2 il. IO) .lo a2 (3.28a)

va"(p2'::,,Ia ) • 2112 r2-ilh (l_R2)2/n
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(4.':'01

(4.111

(4.12)

i· (W'''I-J",%- AXn)-l(Xi.:Cl" (4.91

vs:& • (rtf!I' (!!:"Wil

al,.' a c 0( Il!l, &ad t:he elamea.'t2i of !IJ - < 81 0( -,

1-1.2 .....)<. the result: is the lII&J:CJinaJ. pdf tor,
("'2-21 /2

(1(41%..:1:0 ) • Ix'x" UZX:zI-l/· O. ••
(S2) '1/70 1. 1

wilen v· III + 112 - 1< aalil s2. the!: depends Oft is

q1"'" l.n (4.101.· tlll1vuiate I1U1l101riCaJ. illt:aq:aUoll 1:ec:b.ll.iques

and II· .. liz - le.

OD inaez'1:1Aq (4,al ill (4.41. t:he joiAl: ROSudo1:' pdf
1. cr1 and _ be as.

1 2
(I(!·<11 ·41%,·:l:o'· t;.+nz"i u;l{- :-2'['18 ... (!-11""'W(!-i,1

0'1 2at

vhen1A a:&,! aaa W·W izlvolve tile pan-tu .A.

U (4.·111 ia Ulteqnt:eel analYtically w.it:h respeC1: t:CI

can be _loyelil to obt:ain the l1oZ'lllAli:r:l.nq censtnt: anli to

analy:r:e features ot pdf in (4.12).

Oil (4.11) an&lyt1cally v1t:h respect to al ,
a c 0'1 ••, the reeutt: J.s the joint: pdf 1
anel l1amely

(r"V' (rtf!) • (rtf!.I' (!!:"Wil .. (1-11 .".,,(!-!)

- ....2 .. (1-!' ''''''(!-!I

vnen t·. (x.i.ti)' Given 1:II.a1: tile foUovinq dU:uae

;.cu. fo: 1. crt AZld. cr. u aoq;ol0ye4. .. ill 'U&O and Zllllau

(UU).

':lie iIlt:eqn1:103 of (4,4) w1th nllpeC1: t:o a l aad a.
a • a l • a. '.. can be eon. aaalY1:1cal1! t:o yiald
follovinq lIIarqinal Ilo.udol:' pdf 1. l1amely

• . -111/2 -n2/2
-Xl!) • (I.l-Xl !)1 [(Y2-X2!2) , (14-X2!)1

• • -n./2 2' • -11,/2
+ (!-11) 'Xi.ltl (!-61 )1 - [V 2s 2 + (6-!.<' 'XP:2 (S-!2) 1 -

(4.5)

(I (!.a1 • cr. IX;.:l:o) •
-(t;.+1)-("'2+1) 2

u;l( - (%1-Xll)/2ai-(t2-X21I' (I.2- lC2!)/2a2}
(4.4)

vh.:., tor

cU.aU1W1:acl v1th :uo ..... ':lie

of l!t an ..aam.d 1uI_ & co_ vari_. vII1le

tho.. of !z llave a =-a vadUce. t7Ildu' these

the UkaUlloo4 tunc1:.i0ll u '119... by

-t;. -ti
•

(4.UI

say 81 , g:l.ven

fo""" thet: is

• {vs2 + (!.-1)
and thu the cOlldit:ional post";,or pdf tor any element: of 1.

n is ':0 obeene tre.· (4.131 t:h&1: tile CfIOlld11:1ollel

pef tor ! giv",,·X is ill the !ollov1nq II!u1.U-

Studallt.-t tOrlll:

and vi. l1i - Ie. I1: is seell !:halt (4.5) i..·in .the !drlll of

a of 5__1:-1: foZ'lllS. Pdfs ill l1lUa "dou.bl_t:"

fora aD4 in the foa of llIOI:'e tllall 1:-foma had bees eA-

in (1961. p.140ft. aD4 p.198ft.)

nl&:1nq t.Ile analyau of ciau .e1:&, w:l.t:h p"""1-

si...... to .........-1: of a CQlIlIDQD ....an. tA

==ec:t:1Q1l wit:h (4.5) that: is a qanual fo"'" of p=b-

1_. 't1ao &lid (1964) daveloped aD asympeo1:1c """,&A-

ItOll allP=x:l.ma1:1oll to tile aael sllctntci how ........t:s of the

pdf caa ba &llPI:'Ox:iloat:ed.

tile &8YIIlPeo1:1c expaas.ioa allP=ac:b. f,,: ':boa analys1s

of (4.5) .... put tlOl:'V&J:cl. it: Ilas be... l1ot:elil, &llPUeAUy U.,st:

by J. K. 111ckey. 1:II.at: (4.4) C&A be expnue<i l.n tum.. of 1.
2 2'0'1 &lid • 0'1/a2• On III&lc.inq l1lUa cl1&Dqe of vadUlles. (4.4)

!lec:alIu

wbere Si
vll.aJ:e

(4.141

or

_ it "e WJ::tt:a.

pefs tor tile elements of ! !rem (4.131 as explaineel below.

but to compute the exact: lII&J:qinal poste.,io:

. '1'llua q:l.vell the analysis of t:h.is p.,obl... is st:J:a1qlll:-

tOJ:V&J:ci, Sinca can be eet:.im&1:elil. is r. sf/si.
11: is poasible to cOlII!'ute condi1:1onal post:s.,1or pdts tor

eleaents ot ! qu.ite readily. giv.... cOlldit:ion1nq on

• r. anel each ot them "tll be ill the ",.1v&:1at:e Student.-t

tom as s_ ill (4.141. TIIese ue ot course apprex.i.lllate

resul:' that "tll be reasollabiy accurat.e for to

larqe values of 111 anel 112 , Analyses dan be pe.,fo=elil

by vuyinq the CfIOnliittonAlt:r:inq value of to deterllline i.f

result:s a.,a sensiUve to the value gtven to If are.

i1: is ilIIportant 110t: to use the condit:l.onal poet:er:l.o: pelf fol:'

(4.7a)

(4.71»

vhe:e !'. w· • (X{,\%Xi) and i·
tha quallt1ty ill squa:e brackets ill eha exponelltial of (4.6)

can be expressed as
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bivuis1:a n_deal inl:lS<1Rc:l.on ""Ut:1n. emI:lecldttcl in a M1IM

cCllllpUeer

vttll p"" by (4.14) UIIi 9'1"" it>
(4.12) eo yi.ld

:asu.lt:s. example, approximate- qeneraJ.i.zed laue Squa:-8S

es1:1llat.s. ccntainecl in non-saye.ian l ...t: squa.,... cOlllputer

output.

pro..-. :Iawever. for ......-st:andllJ:cl vui&llU of til•. .....-

dOll lllIO<1.1. Bayesian ..ion comput." prc..- requiu

".-neal inteqra1::ion prceeclw:es eo q..t nWllu:l.cal apprcxima-

t10ns to exact: tinite sample I'0st...ior plUs. othe"

hancl app""ximat. 3aye.iaa naull:s. say ba..eel on ccndiuonal

po81:Ui= pelts. q."e"Ally......ult In computaeion. 1:.'>&t .....

si.Dli1aJ: in =y RspeC1:S to tile luqa semple approximate

All nqllda "1ICla-s1:&CclU"l:1- reqre••i= p"'obJ._. for

.....1. tile h111:aJ:cscecluuc 1on pl:Oblaa nviewecl

abOft. posee..10r uauaJ.1y n01: in foClS t!1ae

pe&'lII1t UI&lyUCal Raults eo be obUinecl mel tIlua uauaJ.ly
uaJ.varial:a lUIcl binria.1:a n rical iA1:ecjnl::l.OA ""ue1nas IIlWIt

be -.ployecl. Also. it _ t:anclucl pdor dis1:.r:i.bUuo", an

e.ployecl. f= 1IX&IIIp1. & p,,10r diauillu1::l.oD t:!l&t "lac•• "tiAU.

naqea Oll tile "II<J'%8a.1OA "".ftic1...U. lllU1uvuu.1:a

int8CJ"Sl::I.= ""ut:1n.. vUl qeneJ:ally be in

til. UI&ly.1s of po.ee..io:L' disuillutiou. Wiell re.pec1: 1:0

II-ncal l'01l1::l.n... it is of =UJ:S. ilIlpeJ:ac:l.ve
tIla1: th••• be ac=a1:a mel aff1ciaal:. In tIlia COIIIIecl::I.cm.

1:lIaXe is th. issu. of ell. lllUits of IlOn1:a Cal:lo

tecIlJl.:I.quee ...lac:l.... 1:0 oellu tecllaiqu... lillat_ tecllllique

is SIIlployecl. it: is d••uable. it ;>cuibl. to have ••1:1lIate.
of tile UTQn in ineeqrala' valu..s incluclaci in

a cu!:put. Pinally. in qe"e"al i: would be desirable

to Ila_ il1tol'lllAdoa "eCJU"l:1inq th.. nUlllb... of siqnifican1:

tiqw:es l:Ilet can be qu&1'anteecl in ou!:put of a

i'o:L' "UlIIl'l•• '1iven t!1at input 4a1:& ar.. ac=ate eo tIl%e.

siqnificant tiqu.,es. i:: woulcl be u.eful for th. oul:p..t of

a to contain otat_1:8 nqa"ainq the nUlllbe:J:' of

s1qnificmt tiqu.,e. tIla1: can be ....urad. in tile p"ogram·.

In su:zar.oary, it is the cue t:.ha1: an operational Bayesian

:eqression analysis computer proqram has many features in

CQImIQD. with usual leas1: squares reqresaion proq-rams.

many numerical analysis problems are common in kinds 0:

abov.. til... expua.ic>na 11k. (4.15)

'l'IIeir UI&ly• .i.s uauUly involves

exempl. taJcinq •

!left eo be

fa th. post.d= p4t tor & sit>q1e e1_:

of "1. say Si ' UIIi - c:u -.ploy

applicadcn of bivadat. n.....rical 1otll<J'%aUooll tec!lDique••

It is ......c:l.al tIla: suell t.cIlIlique. yi.lel &CCUJ:ate ".aults

a: as low a co.t pouibl.. Not. tIlat in ell. pJ:Olllea

analyzttcl &Cove. n ,,1cal int8CJ"Sc:l.on _que. will have eo
be app1:l.ecl i... tile ma1.ysi.s of (4.151 tor i.l.2 ••••• l<. that

La at l_ ll: bivuiat:e int:eCJrSla •..ill have to b••va1.uatecl.

'l'II1a fael: llLI.kea it' ......c:l.a1. eo have m .fficient &llcl accurate

wbue lSi.!. 1a th. (i.1) 'th e1_: of "XiX::) -1.

t'lle 111nru.:. pcU in (4.lS) reqa:I.r.s appUcauon of llinr:l.ae.

n-nc:al intll<J'%atiOA tecllll:l.que. to evall:1&t. J.ts nonl&.l:l.zinCJ

""11&1:&1\10. eo obl:ain th. llIllZCJinal poste,,10r pdf tor s1 anel

eo malyz. oellu leat:u."s of it.
'l'II. allov. p"olllem La 1:ypica1. of ......y ...COtllltue<l in

Bayeaian econOlll8uics anel natist:l.cs in that a c:onclil:ional

aA&lyaia. to" example condil:iollinq on tll. value of

above. lealia to raelle" se:a1qlltfo""U"l:1 analytj.cal reaul.loS.

1Ihetll." elle conel1donal reaults ue "accura1:a .nouqll" ia a

lIIO<lt poine. If 1:."ey """ deemeel not to be. p."llap. because

o ot sen.itivity of final nsul.ts to tlle condit1oninCJ. fo"

V. Caftcludiag Comments

l'1:c)II WIl.e Ilas been p"eaencecl above. it: is s.... tha1:

llay........ analys•• of l:!1e standU"l:1 1U1M. basecl on or

""tural con;uqat. pdo" disuibudon.. involve ......y ""'""'u""-

uona t:!l&1: """ s1m11ar to those employecl in WluaJ. leut ....a

ccIllpUU" These cO_1:&t1o"s involv" in th. :IIain

mae..:t.x l!lUluplicat1cn and matrtx invenion. 'l'IIus usual

accuz&ey anel eff1ciency r.qui"ements to" th..a. cpuaeions

""e required in Sayesian reqn.. ion pl:Oq"ams. Fw:t:!Ier. in

3ay.s1an "eqr....ion comput.." proqr..... it will q..nerally b.

n.ce.sa..,. to /lave 1:.". capability of area.

st3JldaJ:cl pdts .-- univuiate and

'1...... pdb. anel of /lavinq sucll pdfs plotted as pUl: of ..

"O1ll:pul:. AJ,so. u••". will '1en.rally ...ish to /lave th. capabiUey

of explo"inq .. p""per:ie. of alt..r.native p"io" pdfs in-

clucleel in a llaye.ian p"oq"am. Fo" naeu..a1.

prio" pdt. involves analysis of Student-t.

inver:ed '1&II1lIIA and associated q&ll1lllA lOcUs.
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ACOMPUTER PROGRAM FOR MODEL BUILDING WITH STEPWISE LOGISTIC REGRESSION

L. Engelman
University of California, Los Angeles
Health Sciences Computing Facility

Logistic regression is used to investigate the relation between a binary dependent
variable and a set of independent variables. The dependent (outcome or response)
variable represents events, such as success or failure, dead or alive, response or
no response, etc. An independent (explanatory or covariate) variable may be cate-
gorical in nature, such as treatment, sex, race, etc., or an interval-scaled vari-
able, such as age, temperature, heart rate, etc.
The program estimates the parameters (ei) of the linear logistic model as the
values that maximize the likelihood function; it proceeds in a stepwise manner,
entering or removing one term from the model at each step. Selection of terms to
be moved into or out of the model is based on either the likelihood ratio test or
on a provisional asymptotic covariance matrix. The latter is considerably
faster, making the computation of large problems practical. Interaction terms and
design variable components are generated by the program for categorical variables.
In the stepping process design variables are considered in sets, one set for each
categorical variable or interaction term. Interactions are included in a hierarchi-
cal fashion; an interaction is not included if its lower order components are not
included.

1. Introduction

An independent (explanatory or covariate) variable
may be categorical, such as treatment, sex, race,
etc., or an interval-scaled variable, such as age,
temperature, heart rate, etc.

where x represents the independent variables.

The maximum likelihood estimates of the parameters
(Si) = S of (1.2) are obtained as the values
that maximize the function

eYS'x
£(S) = (1.3)

l+eP x

In linear stepwise regression one tries to find a
subset of independent variables that adequately
predicts the dependent variable. One usually
assumes that the dependent variable is continuous
and has a constant (or at least a known) distribution.

In logistic regression one investigates the relation
between a binary dependent variable and a set of inde·
pendent variables. The dependent (outcome or
response) variable y = 1 or 0 represents events such
as dead or alive, success or failure, response or no
response, ate. The outcome can be considered as a bi-
nomially distributed variable

In stepwise logistic regression one also tries to
find a subset of the indeoendent variables that ade·
quately predicts the dependent variable. This problem
differs from the usual linear regression problem in
that the estimates of e are nonlinear functions of the
data that cannot be expressed in a closed form.

The computation proceeds in a stepwise manner. At
each step a term is entered or removed from the model.
Design variable components are generated for categori-
cal variables and their interaction terms. In the
stepping process design variables are considered in
sets, one set for each categorical variable or
action term. Interactions are included in a hierarchi-
cal fashion; an interaction is not included if its
lower order componer'lts are not included.
Selection of a term to be moved into or out of the
model at a step is based either on the likelihood
ratio test (MLR) or on a provisional asymptotic
covariance matrix estimate (ACE). While MLR is
consistent with the estimation criterion, the ACE
selection method is considerably faster, making the
computations of large problems practical.

2. Other methods and models

The assumption of binomial distribution of s (1.1) is
generally accepted. However, there have been at
least four major suggestions as to the relation
between e and ex (see Cox [3J and Finney [SJ):

• the logistic model (1.2)
• the linear model, which assumes that

d8/d(6x) has a uniform distribution in
o ax 1:

(1.2)

(1.1)!: 'I = s - B(n, 9 )a.

The linear logistic model [3] is

ePx=e =------
n l+eSx

204



• the angular model. which assumes that
de/d(ax) has angular distribution ino < ax 1r/2: .

rr/2
e = sin2(Laxl ) (2.3)o

the cumulative normal model, which assumes
that de/d(l3x) has nonnal distri.bution:

I3x ()2 .e = = __1__ ! e- ax /2d(I3X) (2.2)
5 .....

•

1
e = Laxl *o (2.1)

The rest of this paper considers the maximum likeli-
hood method for the logistic model. BMOQLR, a
program to do this, is now under development at
Health Sciences Computing Facility, UCLA.

3. The input
The outcome variable Yi is recorded as 1 or 0, indi-
cating success or failnre respectively. The count
nj (the number of times the outcome is recorded
for a given set of values of the explanatory vari-
ables) may also be recorded. Occasionally, instead
of the outcome variable value. the number of
successes Sj and the number of failures fj for the
OJ trials are recorded. To specify the outcome
elther Yj, nj and Sj, nj and fj. or Sj and fj must
be recoroed. An input case represents 1 or nj
outcomes.

The two methods commonly used to estimate the para-
meters (ai) are the maximum likelihood method and
the minimum logit x2 method [lJ.
The maximum likelihood method estimates as the
value that maximizes

£(a) = ITf(S,x,y) = IT[y e(ax) + (l-y)(l - e(ex»J
(2.4)

The expression (1.3) is a specific case of (2.4).

The minimum X2 method estimates 13 as the value that
minimizes

The explanatory or covariate variables are
V1 'V2' ....vq, the variables measured in intervalscales, and
gl,g2, •.. ,gr' the categorical variables.

The program generates a set of design variables for
each categorical variable and each interaction term.

A categorical variable gi with ti levels gives rise
to a set of ti-1 design variable components:

_ (1 2 ti-1)di - di,di, .. ··di •

where t is theAtransfonnation that linearizes the
model and p =e, the observed proportion of y =1.
For the logistic distribution

The expression (2.5) is the weighted least squares
criterion to fit if is assumed to be
constant. Unfortunately, when n = 1, P is 0 or 1
and expression (2.5) becomes zero.

Table 1 describes the four models and the two
methods.

Comparison of four models and two methods.

..

Model
teal fol' min X2 f(S',x,y} for ML

Logistic

/lO!l(l:a}
eBX eYSxa---

l+eSXl+eBx

Lineal'
I .!

9 .. LSxl e 2(y-.S}lBx-.51 + .5• _.5

Cum. Normal I¢-1(9')9 - ¢(ex) ¢(2(y-.5)Sx)I
Angular

'lh "/2
+ y¥-l9 - sin2 (LSxl } arcsine( ,'e} sin2 (LSxl• •

Agroup of k categorical variables yeilds a kth
order interaction. which in turn gives rise to a

k
set of IT (t. -1) design components:

j=l 'j

d... =ITd.
'1'2""k j 'j

For example, for three categorical variables A. B
and Cwith 2, 4 and 3 levels, seven sets of design
variables are generated. The number of desi2n vari-
ables in each of these sets is: 1 for A, 3 for B,
2 for e, 3 for AxB, 2 for Axe, 6 for Bxe and
6 for AxBxC.
4. Buildino the model
The parameters (ai) = B of the model (1.2) are
estimated to maximize the likelihood function (1.3),
and are computed using the nonlinear iterative
process proposed by Jennrich and Moore [7J.

The computation proceeds in a stepwise manner. At
each step an interval-scaled variable or a set of
design variable components is entered or removed
from the model. Design variables are consi-
dered in sets such as di or d. i i''1 2'" k
Interactions are considered in order.
An interaction is considered for entry into the
model only if the model does not have a higher
order interaction which contains it. For example,
if A, Band e are categorical explanatory variables:
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These components could represent the linear, quad-
ratic, etc., components, or they may only be
contrasts between the 9,i groups. For the sake of
computational speed we use components that contrast
each of the first 9,i-1 groups with the last group.
For example, for three categories the contrasts are
(1,0,-1) and (0,1,-1).

(2.6)

(2.5)

b rbiff>b
Lfl = \ f if a < f < b
a : a if f a -

x2 = np(l-p)[(t(p) - axJ2

t(e) = loge =ax

e Table 1.
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• The ACE method using the significance of
the F value obtained from the asymptotic
covariance matrix via the following steps:

- Compute the "F-value" from the apparent
change in the "residual sum of squares"
(i.e. diagonal element corresponding
to the outcome variable).

is linear in a region containing
Scurrent and Scandidate'

- Perform the necessary pivot (sweep)
operations to step in or out the
term to be tested.

The three year survival of breast cancer patients
(see Table 2) is the outcome variable. The data
are grouped by diagnostic center. inflammation size
and appearance. and are stratified into three age
groups. Center. size and type are considered cate-
gorical. and age is treated as an interval-scaled
variable. Unfortunately the exact age is not

lIla'al l.n_tiOll __ lan_tiOll

Df.gao.tic IIalfgo••t , ..igo Ilalfgo.at 'enign
teftter Age Survl¥Od Appe!raftce Arpetr.nce Apmrance Aepuraftce

10 • ' 7 4 3
Yos 2$ 68 '25 •801. .. • , Il 2

10 or • .,.... Yes 20 46 18 '$
110 t 3 1 0
Yos 1 , $ 1

Ie.ta
_10

110 , 7 " o .
Y.. n 24 4 o ' '

50-8 110 a 20 3 2
Yes 18 68 10 3

300'0.... 110 • 18 3 0.,.. U '2$ 1 1

11"-
_10

Ilo 16 7 3 0, Yes 16 ,211 a 1
IiH9 Ilo 14 ., 12 3 0,.. fl. '39 10 4
"lOar_ Ilo 3 7 3 0

"OS 12 11 4 1

Table 2. Survival of breast cancer patients.
Morrison et a1 ..

'PRQUeM nTl.! IS 'SURVIVAL OF 811.EAST CANCElI. PATIENTS
- MOIUUSON E1 At... ".

'INPUT VARIABLES AR! 7. FORMAT IS ·(7F2.0)".
'VARIABLE NAMES ARE HUMSER.TUMOR.SIZE.SURVIVAL,AGE.

, . CEHTElloCOHSTANT.
'GROlP ARE 1.2. HAMES•• ) ARE HO.VES.
'REGResS Ol!l"EHOEHT IS SURVIVAL.' COUNT IS /MISER.

IHTERVAt.. • AGE.
MODEt. IS COICSTAHT.. AGe. '

available. so we use the ordered strata codes as
an interval-scaled variable.

The ACE method of term selection is used. If the
MLR rr.ethod had been des ired, "METHOD=MLR." wou1d
have been included in the regression specification.
The assumed limit for significance to enter a term
is 0.1. to remove a term. 0.15.

Figure 1. Input cards for the breast cancer data.

For the program to consider a model with terms:
CONSTANT. AGE. TUMOR. SIZE. CENTER. TUMOR x SIZE,
TUMOR x CENTER, SIZE x CENTER. TUMOR x SIZE x CENTER
we state in the MODEL statement the highest order
interaction terms: MODEL=CONSTANT, AGE.
TUMOR*SIZE*CENTER.

The BMDQLR input cards for this problem are:

At each step the following results are printed
(circled numbers refer to those in the output in
Figure 2).

lEND
9111111,
7211111
.. 1.1.1 1
3 2 2 1 1'1 1
26 1 1 2 1,1 1.
68 2 1 2 1 1 1
25122111
"""211'.,,/ • 2 •. ..
122.
1.. 1 1 1 Z 3 1
12211231
3 1 2 1 2 3 1
21 1 1 2 2 3 1
39212231
10 1 2 2 2 3 1
.. 222231
3111331
121 1 3 3 1
312133'\
12 1·1 2 3 3 1
11212311

1 22 2 3 3 1
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(4.2)

- Assume that the function
SXh(Sx) = _e_._

1+eSX

AxBxC enters only if A. B. C. AxB. AxC and
BxC are all in the model;
A may be removed only if AxB. AxC and AxBxC
are not in the model.

At each step the variables x in (1.2) and (1.3)
consist of some interval-scaled variables vi. some
design variable component sets di. and some design
variable sets representing interactions.

A step consists of entry of a term into the model.
if its computed significance is greater than a
user-specified limit. or removal of a term from the
model if its computed significance is less than a
user-specified limit [5J.

The user can select one of two methods for esti-
mating the significance of a term:

• The MlR method. using the significal',lce of
the X2 obtained from the log of the ratios
of the maximized likelihood functions

X2 = 211 0g(L(Scurrent)/L(Scandidate)) I (4.1)

The ACE method is not exact. since the assumed
linearity (4.2) does not hold. The utility of the
ACE method is that it is considerably faster than'
MLR and that the rank order of significances com-
puted by ACE is very highly correlated with that
computed by MLR.

When the significances are approximated by the ACE
method. the computed significance for entry of a
term may not equal the significance computed after
its entry. The potential problem of cycling a
term in and out of the model is prevented by
limiting the number of times a term may be moved.
5. Examples

The first example uses the data from the Morrison
[9J study. The data are treated by Bishop et al.
[2J and are also used as an example for multiway
contingency tables (BMDP3F) by Dixon and Brown [4J.



the log of the maximized likelihood value.
the XZ value and its p-value. which
measures the change of the log-likelihood
value from the previous step, and the
goodness-of-fit X2 value (and its p-value).

for each component. the computed coefficients.
their asymptotic standard errors and the
ratio of coefficient to standard error

the approximate F-to-enter or F-to-remove
and their p-values for each term to be
considered in the next step. and, if
METHOD=MLR. the log-likelihood value for the
model if the term were entered or removed

Note that for the example at step 3 (Figure 2) the
SIZE x CENTER and TUMOR x SIZE are not considered
because SIZE is not in the model •

The simplicity of deck setups is illustrated with
two more examples. both of which are from Cox [3].

TtTlE.'SRANO·X - COX, PAGE 38-39'.
IINPUT FOR"'AT.' 16F4.CU·.
IVARIAILI N,,"ES A.E TOTAL,PREF.TEHP.US£R.SOFTNESS.

CONSTANT.
IREGlESS COUNT.TOTAL. SCOUNT.PREF. INTERVAL-SOPTNESS.

lEND
110 .. 1- 0 3 . 1
12 42 2 0 3 . 1
19 31 1 1 3 1., 24 2 1 3 1
116 .. L 0 2 • 1
56 33 2 O· . 2 ... 1
102 41 1 1 2 1
11)' 23 2 1 2 1
116 63 1 0 1 1
56 29 2 0 1 1
106 51' 1 1 1 1.- 19 2 1 1 1

....... ,. _1A,1f CAe" Ita"...., - .....- n ...

"·"UIf a..... ..- ....... a... o.lOla Oo'e '.f"IC as..". MAy ..... ettH"...."sc ·as_ M .. fI01 H ."uo••"",rc .... ..,.... ...
U_fIT-S IS_ M'" ..............co,,_ .SoU ...... ...
SUt .... "ton .....- - I.•• .... "/PROBLEN TITLe.'INGOT DATA - COX. PAGES 61 ANO 91".

IIHPUT VAA1A8LES.'. FORMAT.' 15F5.0t' •
IVARIABLe NA",es ARE HeAT.SOAK.REAOV.NOTREAOV.CONSTANT.
IREGRESS SCOUNT-REAOY. FCOUNT-HOTREAOV.

INTEltVAL •. MEAT•SOAK. .

3. Input for Cox's Brand Xpreference data.

Figure 3 shows the deck setup for the preference of
the new detergent Xover the standard M. The three
explanatory variables are water softness. an
interval-scaled variable recorded as 1. 2 or 3.
water temperature at two levels and a factor indi-
cating previous use of brand M. Cox treats softness
as a categorical variable. The deck setup in
Figure 3 treats softness as an interval-scaled
variable•

-u.s?"-t.nt.
Z..JU'..-,·It

til-

Figure 2. Sample output obtained from setup
shown in Figure 1.

Table 3 illustrates the high correlation of signifi-
canCes computed by the ACE and MLR methods. The
values were obtained from the breast cancer data
run with both ACE and MLR methods.

r- I '-or
P-ACE Ste a Ste I ; St:e 2 Ste 3
P-MlR I ntel'" . emove I nter Re!nOva I t.ntHr ienter Rerovel

I I i I. Constant : .0000 .0000 I .0000 I! .0000 .0000 I .0000 I
: Age 1.0000 .0145 I .0106 ! .1088 I

I'OOCO .0148 I .0108 i .1090 !
Tumor .0001 .0026 .0029 •0020 i

.0001 .0027

I
.0027 •0018 I

Slze .0000 .7360 .4610 1,9023

•0033\
•0000 .7364

I
.4649 .9021

Center •0002 .0040 .0028
•0002 .0036 .0025 .0025 I

T_r x Slze

T....r x Center I
I .S830

Slle x Center I
TUDIlr x She x Center

Table 3. Comparison of p-values for ACE and MLR.

Empty places in the table indicate that the corres-
ponding term was not tested due to the hierarchical
inclusion rule of interactions.

lEND
7.0 .1.0 10. O• 1.
7.0 .1.7 17. 0. 1.
7.0 2.2 1'. O. 1.
1'.0 2.a 12. o•. 1.
7.0 4.0 9. O. 1.·
14.0 1.0 31. O•. 1.
14.0 1.7 43. O. 1.
14.0 2.2 31. o. 1.
14.0 2.2 O. 2•. 1.
14.0 2.a 31. o. 1.
14.0 ·4.0 19. G. 1.
21.0 1.0 55. O. 1.
27.0 1.0 O. 1. 1.
27.0 1.7 40. 0. 1.
27.0 1.7 O. 4.0· 1.
27.0 2.2 21. 0.. 1.
27.0 2.' 21. O. 1.·
2T.0 2.e o. 1. 1.
27.0 1t.0 15. O. 1.
27.0 1t.0 Q. 1•. 1.
51.0 1.0 10. 1•
51.0 1.0 O• 3.0. 1.
51.0 1.7 1.0 O• 1.
51.0 2.2 1. O• ..1.·
51.0 4.0 1. O• 1•.

Figure 4. Input for Cox's Ingot data.

The data in Figure 4 are the number of ingots ready
to ro11 (fi rs t column) and the number not ready
(second column) tabulated by the explanatory vari-
ables heating time and soaking time, both interval-
scaled. The setup shown in Figure 4 yields the
identical result shown in Cox [3. p. 91].
6. Sunmary

A stepwise logistic regression program. BMDQLR, will
soon be available from Health Sciences Computing
Facility. UCLA. This program can be used to build
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logistic models. It requires a relatively simple
set of instructions. The program

At the conclusion of the stepping process the program
prints the results in a number of forms to
enhance assessment of the results. These lnclude:

Cox. D.R. (1970). Analysis of Binary Data.
London. England. Methuen.

Dixon. W.J. and M.B. Brown (1977). BMDP-77
Biomedical Computer Programs. P-Series.
Berke1ey. Calif., UC Press.

Efroymsen, M.A. (1960). Multiple regression
analysis. Mathematical Methods for Digital
Computers. A. Ralston and H.S. Wilf. Eds.
New York. Wiley.

[3J

[4J

[6J

[7]

Finney, D.J. (1964). Statistical Methods in
Assay. London, Gr;ff;n. Chapter 17,

pp. 4 7-467.
Jennrich. R.I. and R.H. Moore (1975). Maximum
likelihood estimation by means of nonlinear least
squares. Statistical
dings of the American Stat1stlcal Assoclat1on.

[8] Lee. E.T. (1974). A computer program for linear
logistic regression analysis. Comouter Programs
in Biomedicine 4, 80-92.

[2J Bishop, W.M.M•• S.E. Feinberg and P.W. Holland
(1975). Discrete Multivariate Analysis: Theory
and Practice. Cambridge. Mass •• MIT Press.

[9J

[5]

[11J Prentice R. (1975). Use of logistic model in
studies. Biometrics 32, 599-606.

Morrison. A.S., M.M. Black, C.R. Lowe,
B. MacMahon and S.Y. Yuasa (1973). Some
national differences in histology and survwal
in breast cancer. Int'l. J. Cancer 11. 261-267.

nOJ O'Neill. T.J. (1975) •. A cOl1ll?arison of
regression and maximum likellhood classlf1catl0n
methods. Technical ,Report No. 12, Stanford
University. Division of Biostatistics, Stanford.

a summary table indicating which term was
entered or removed at each step, the degrees
of freedom of the term, the model's log-
likelihood estimate at each step. the x2

the change in the log-likelihood
from step to step, and the goodness-of-fit
X2 •

for each distinct pattern of the considered
independent variables the number of cases in
each of the two outcome groups. the propor-
tion of the first group to the total. the
predicted probability of the first group and
the values of the independent variables

scatter plots of the proportion of first
group versus predicted probability of
first group and the proportion of first group
versus the predicted log odds. These scatter
plots are useful if patterns contain more
than one case alld proportions are not 0 or l-

for each distinct pattern of independent
variables in the final model the above two
are repeated.

of predicted probabilities for
each group; these histograms are useful if
there are interval-scaled independent
variables in the model, resulting in computed
probabilities that have more than a few
discrete values.

a table. summarizing the counts and percents
of correct and incorrect predictions if
rrobabilities at various cutpoints are used
to classify cases into outcome groups

a plot of percent correct classifications as
a function of the cutpoint for each of the
outcome groups and for the total sample

•
•

•
•

•

•

•

•

•

•

•

handles categorical or interval-scaled
explanatory variables.

automatically generates interaction terms .
and design variable components for categor1-
cal explanatory variables.

enforces a hierarchical inclusion rule of
interaction terms

provides a choice of term selection methods;
ACE - fast but approximate
MLR - slow but more exact

The output produced at each step. such as that
illustrated in Figure 2. provides useful informa-
tion concerning the explanatorJ variables.

References

OJ Berkson. J. (1952). A statistically precise
and relatively simple method of estimating the
bioassay with quantal response. based on the
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METHODS IN SMDP FOR DEALING ILL-CONDITIONED
DATA -- f4ULTICOLLINEARITY AND f4ULTIVARIATE OUTLIERS

James W. Frane
Health Sciences Computing Facility, UCLA

Abstract

A statistical analysis is ill-conditioned if it is overly sensitive to the input
(i.e., a small change in the input may cause a large change in the results of
analysis) or if it is difficult to compute a numerically correct answer .. One klnd
of ill-conditioning is due to variables (multicollinearity); another to individual
cases or observations (multivariate outliers). Checks are built into Sf·lDP-77
programs to prevent an investigator from trying to answer questions that a:e very
ill-conditioned in the numerical sense; the regression programs also descrlbe the
nature of any numerical ill-conditioning. The new BHDP9R regression program P}"O-
vides several statistics that describe the sensitivity of the analysis to the
individual cases.

Introduction

We define a statistical analysis as ill-conditioned
if it is overly sensitive to the input in the sense
that a small change in the input may cause a large
change in the results of the analysis. There are
types of ill-conditioning: one due to variables
(multicollinearity), and the other to individual
cases (multivariate outliers). A problem of the
first type is numerically ill-conditioned when it is
difficult to obtain a numerically accurate solution.
Problems of the second type are statistically ill-
conditioned. Numerically ill-conditioned problems
are frequently statistically ill-conditioned also.

We are concerned with total accuracy -- statistical
and numerical. Therefore, both types of ill-condi-
tioning must be considered. Unless the fit to a
regression equation is extremely good, statistical
accuracy is likely to be more difficult to obtain
than numerical acC'.uracy and statistical error is
likely to be larger than numerical error. As demon-
strated by Frane (1974), by using a single pass of
the data and accumulating cross products of deviations
in single precision, it is possible to obtain esti-
mates of the regression coefficients for the highly
i ll-condi ti oned Longl ey (1967) data such that the
ratio of numerical computing error in each coefficient
divided by the corresponding standard error is .0005
or less.

For either type of ill-conditioning, it is quite
that the original ill-conditioned analysis

"should be replaced or supplemented by a well-condi-
tioned analysis. BMOP-77 statistical computer pro-
grams provide a number of methods for describing the
nature of the ill-conditioning, and a variety of
methods for obtaininq a well-conditioned anJlysis.

This paper describes-the available methods. The
Bf40P-77 manual edited by Oixon and Brown (1977)
describes how to use the programs. BMOP programs are
updated constantly, so versions aated before December
1977 do not contain all the features described here.

1. Detecting and Describing Numerical
Ill-conai tion; ng

BMOP-77 includes several programs for regression that
focus on specialized needs. Some use single preci-
sion computation, some double precision. All programs
read data and perform transformations (if in
single precision. All programs have some klnd of
tolerance test to detect multicollinearity.

Abasic method in most of the BMDP-77 linear and non-
linear regression programs is the accumulation of
cross oroducts of deviations by a provisional means
algorithm. Typically, this matrix is swept (or
pivoted) under control of a tolerance test. The,tol-
erance test used until August 1976 was the class1cal
Efroymsen (1960) test. Berk (1976), at the Ninth
Interface Symposium, showed that the Efroymsen test
was, at least theoretically, unsatisfactory in the
context of classicial stepwise regression. In BMDP,
variables in linear regression are always se1ected
in a stepwise fashion: no is if
its squared multiple correlatlon wlth
variables exceeds one minus the tolerance llmlt, or 1f
including that variable causes the squared multiple
correlation of an already included variable with the
other included variables to exceed ene minus the tol-
erance limit (Frane, 1977). In BMDP linear regression
programs whenever a variable is not included because
it f3ils'the tolerance test a is written that
it failed the test, and the tolerance for that vari-
able is given.
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The provisional means method protects against small
coefficients of variation, but does not protect
against extremely small coefficients of variation,
except in the programs that use double precision for
computations.

Data are always represented in single precision in .
BMOP. It has been frequently stated (or at least
suggested) that single precision numbers have seven
decimal digits of numerical accuracy on IBM 360 and
370 computers. Amore accurate statement would be
six digits: a number with a nonbinary fractional part
has 24 bits in its mantissa but it may have as few as
21 bits of accuracy since the leading three bits could
be zero. Twenty-one bits give slightly more than six
decimal digits. Integer-valued real numbers can be
represented wi thout numeri ca1 error if they do not
exceed If a problem actually requires data entry
beyond these levels, modifications can be made to the
BMOP source.
Sometimes data appear to have more digits of accuracy
than they have in fact. This can be deceptive in ill-
conditioned analyses. Economic time series (such as
that used by Longley, 1967) frequently yield numeri-
ca11y i11-condi ti oned ana lyses. A frequent mi sconcep-
tion is that in these series time is measured without
error. For example, in the Longley data time
measured by year. However, the year is not a perfect
measure of time because of leap years. Table 1 con-
tains the regression coefficients for the Longley data
in original form and after year has been converted to
"true" time by adjusting for leap years. Frane (1974)
and Beaton. Rubin and Barone (1976) give a variety of
other statistical reasons for avoiding numerically
ill-€onditioned analyses.

Each BMOP linear regression program provides some
information about ill-conditioning, but if ill-condi-
tioning is known to be a problem it is advisable to
use BI1DP9R because computations in this program are
performed in double precision. Figure 1 contains
selected portions of the output when BMOP9R is used to
analyze the Longley data (the first variable has been
multiplied by 10 to avoid fractional values). There
are several indications of possible ill-conditioning
in the analysis. Note the small coefficient of varia-
tion (standard deviation divided by mean) for the year.
The tolerance for each independent variable is one
minus its squared multiple correlation with the other
independent variables. The reciprocal of the toler-
ance for an independent variable is called the variance
inflation factor because the variance of its regression
coefficient is inversely proportional to its tolerance.
Thus, numerically ill-conditioned analyses frequently
have problems with statistical accuracy so the toler-
ance check is both a numerical and a statistical safe-
auard. Note that the tolerance for GNP is .0006; the
multiple correlation of GNP with the other independent
variables is .9997. All digits in the reported regres-
sion equation are numerically accurate. The next six
digits (not printed) are also numerically accurate.
However, since there is little statistical accuracy
in the coefficients, the number of useful digits is
far 1ess than the number of numeri ca11y accurate
digits.
When you recognize that an analysis is numerically
i ll-condi ti oned, there are several alternati ve anal-
yses you may wish to perform. You can do some form
of stepwise regression (P2R), or you can consider an
analysis using one or a wide variety of possible sub-
sets of the data (P9R).

included. This limit corresponds to a tolerance test,
and the limit should not ordinarily be set lower than
its default value. Eigenvalues of the correlation
matrix are usually used rather than those of the
covariance matrix because the units of measurement of
the independent variables are usually arbitrary and .,
the numerical methods used in BMOP are not sensitive
to the scale of the independent variables. Similarly,
the correlation matrix is rather than some sort
of matrix of cross products computed without subtract-
ing means because (1) the zero point on the measure-
ment scale is frequently arbitrary (e.g., rear measured
A.D. or from some other point in time), (2) the numeri-
cal methods are not very sensitive to moderately small
coefficients of variation, and (3) a small coefficient
of variation is usually an artificial form of ill-
conditioning, which is easily eliminated by subtract-
ing values roughly equal to the mean; e.g., subtract-
ing 1900 or 1950 from the year in the Longley data.

In the Longley data, two eigenvalues are less than the
default eigenvalue limit, so only four principal com-
ponents are used. For greater detail P4R can be
supplemented by a detailed principal components analy-
sis of the independent variables, usually with rotation
(P4M).Rotation is suggested because it is often
easier to semantically interpret the rotated loadings
than the unrotated loadings. P4M includes (among other
things) eigenvalues, rotated and unrotated factor load-
ings, factor (component) scores, plots of rotated and
unrotated loadings, and factor score plots. When the
number of variables is large, the shaded correlation
matrix is especially helpful. (Although the P4M out-
put for the Longley data is interesting, space does
not permit us to include it here.)

In an economic time series many variables are highly ....
correlated with time. It may be interesting to com- .,
pute the partial correlation matrix for the dependent
and independent variables after removing the linear
effects of time (P6R). This partial
matrix is computed by the process of regressing the
dependent and independent variables on time. Both the
partial covariance matrix (equivalent to partial corre-
lation matrix) and the raw data plus residuals can be
output to a BMDP file. The BMOP file can then be used
as input to other regression routines. Alternatively,
the stepwise regression program (P2R) can be used to
force time into the equation first.

P9R also reports a numerical consistency check: the
residual mean square is computed both as part of the
computation of the regression equation and from the
residuals themselves.
Canonical correlation (P6M) can be viewed as an exten-
sion of regression for two sets of variables. For
each of the two sets of variables BMDP reports the
squared multiple correlation of each variable with all
other variables in its set. The tolerance test pre-
vents any variable from being included in the analysis
if its squared multiple correlation with the other
vari ab1es in its set exceeds one mi nus the tolerance
limit. Figure 2 shows part of the results from P6H
for the Longley data when the first set of variables
is the usual set of independent variables and the
second set contains some of the components of derived
employment (the usual dependent variable). P6M also
reports a numerical consistency check: the sample
variance of the canonical variable scores should be
equal to one; the actual variance is computed and
reported, together with the relative error.

A different approach is to do a regression on some,
but not all, principal components (P4R). P4R reports
the eigenvalues of the correlation matrix of the
independent variables. An eigenvalue lower limit is
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2. Detecting and Describing Statistical
11' -Condi tioni n9

Frequently an analysis is overly sensitive to the data
for a single case (row of the data matrix) because the
case is an outlier on a single variable. As an inte-
gral part of the regression analysis, P2R and P9R
report the largest and smallest values for each vari-
able and the largest and smallest standardized scores.
When some values are missing, it is important that the
extreme values be reported as part of the regression
analysis. If they are reported only as part of a
univariate screening procedure, all values available
for each variable are usually used, rather than values
for only the cases that are complete (have values for
all used in the analysis). P2R and P9R
elimlnate any case that has missing values for any of
the variables used. Thus the extreme values reported
by these programs differ from those reported in
routines that do only univariate screening.

Identification of univariate outliers is a relatively
easy and straight-forward task. Amore difficult
problem is to identify and describe cases that are
multivariate outliers. An index of the influence each
case has on the regression equation is given by Cook
(1977). Cook's index is included in the April 1977

to BMOP9R, and can be defined and interpreted
ln a number of ways. Our preferred way is as follows:
For each case, Cook's index is a monotonically
increasing function of both the Mahalanobis distance
from the case to the center of ell cases in the space
of the independent variables, and of the standardized
(Studentized) residual for that case. Thus a case has
a large influence if

a) i ts 1anobi s di stance is 1arge,
b) its standardized residual is large, or
c) both the Mahalanobis distance and standard-

ized residual are somewhat large.
For each case, P9R reports Cook's index, the Maha lano-
bis the standardized residual, and the stan-
dard error of the predicted value. Figure 3 shows
output from P9R for the Longley Note that the
data for the year 1951 are very influential (Frane,
1974, identified this fact by means of Tukey's catch-
ers) •
Once a case has been identified as highly influential,
several strategies can be used. P9R automatically
updates the regression coefficients by removing the
most influential case, and reports the original and
updated coefficients side-by-side. For the Longley
data (Table 1), the most drasti c change is for the
intercept, which changed by four Standard errors and
added an opposite sign. This can easily happen when
the regression coefficient is nonsignificant, but in
the original and transformed data, the t statistic
for the intercept is highly significant.

Interesting insights to help interpret data can be
gained by computing the residual for each case after
removing the effect of the case from the regression
equation; these deleted residuals can be compared in
a bivariate plot in P9R. The deleted residuals are

used to define David Allen's (1971) prediction
sum of squares (PRESS). In the Longley data, the
deleted residuals are large for both 1951 and 1962 --
much larger than the ordinary residuals; this is an
indication of the sensitivity of the analysis to the
data. The error mean square from a regression is an
estimate of the residual variance, 0 2 •
The sum of squared deleted residuals (prediction sum
of squares) divided by the number of cases is also
an estimate of 0 2 • For the Longley data, the ratio
of these estimates of 0 2 is about two. Unfortunately,

we do not know the statistical properties of this
ratio except that it should be approximately one.

Suppose we have a case with a large value for Cook's
index. If it has a large standardized residual but
its Mahalanobis distance is not large, it is likely ,..,
that the influence is due to an unusual (perhaps
incorrectly recorded) value for the dependent variable.

If the standardized residual is small, the influence
is due to its Mahalanobis distance. In this case it
is possible that one or more values of the independent
variables are unusual or incorrectly recorded. To
identify these values we can perform a stepwise dis-
crirnnnant analysis (P7M) in which the outlier case in
question is group one and all cases that are not con-
sidered outliers or unduly influential are in group
two. Since a two-group discriminant analysis can be
performed as a regression analysis with a binary
dependent variable, P9R (which considers all possible
subsets) can also be used for this analysis. Weisberg
(1977) has noted that the data set given in Narula
and Wellington (1977) has one case with a very large
effect on the regression equation -- it is a bivariate
(not a univariate) outlier in the vector space of the
independent variables. Both Cook's index and the
Mahalanobis distance are large.

If the standardized residual for an influential case
is moderate or large and its Mahalanobis distance is
moderate or large. the above discriminant analysis
can be performed using both independent and dependent
variables. This is the case for the years 1951 and
1962 in the Longley data and for the oxidation of
ammonia data in Daniel and Wood (1971, p. 61).

3. Nonlinear Regression
Nonlinear regression problems have all the numerical
and statistical difficulties found in linear regres-
sion, but are particularly difficult when constraints
are imposed on the parameters to be estimated.
There are two BMDP programs for nonlinear regression.

uses a modified Gauss-Newton approach; this
requires user-specified derivatives. BMDPAR uses a
secant approach and does not use derivatives. PAR
was described by Ralston at last year's symposium and
is discussed in Ralston and Jennrich (1978).

Similar to the BMDP linear regression programs, the
nonlinear programs sweep matrices of cross products
under control of a tolerance test. BMDP3R was origi-
nally written in single precision, but both programs
now do computations in double precision. P3R was
recently updated by Jennrich and Sampson to improve
its performance on problems with constraints on the
parameters.
P3R and PAR both handle boundary constraints on param-
eters such as

a. < p. < b.
1 - 1 - 1

In P3R, you can impose additional constraints of the
form ECiPi = d. For example, in P3R you can solve
problems with constraints 0 Pi 1 (i=1, .•.• 4) and
Pl + P2 + P3 + P4 = I, which cannot be handled in
routines that permit only boundary constraints.
PAR handles general linear inequality constraints of a
the form •
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Table 1

Comparison of Regression Coefficients

intercept
GNPIPD
GNP
Unemployment
Size of Armed Forces
Noninstitutional Population
Year (Time)

Original

3482260
1.50619
-.0358192
-2.02023
-1.03323
- .0511041
1829.15

After
Correcting

Time

77751. 7
1.48250
-.0352025
-2.01598
-1.03604
-.0567546
1824.16

Omitting Data
for Year
1951

-496270
3.16114
-.0837701
-2.69785
-1.25585
.166137
2583.58

For example, PAR can solve problems with the con-
straints 0 Pi 1 (i=1,2), and 0 Pl + Pz 1;
routines that permit only boundary constraints cannot
handle these analyses.

P3R and PAR report residuals and the standard errors
of the predicted values. Data for points with large
standard errors for predicted values should be re-
viewed carefully. Other indicators of the sensitivity
of the results to the individual data points could be
computed, such as deleted residuals and Cook's index,
available in P9R.

Other features in the BMDP-77 versions of P3R and PAR
that are not always found in nonlinear least squares
routines include case weights, user specification of
loss function, and user specification or error mean
square to be used for computing asymptotic standard
errors. These features are frequently used in con-
junction with maximum likelihood estimation and test-
ing. Case weights can be redefined at each iteration
in order to do iteratively reweighted least squares.
Two passes of the data can be requested for each
iteration (e.g., when fitting multinomial models as
explained in the 1977 manual).

4. Conclusion

The accuracy of computer programs is a sensitive issue.
In BMOP, we are concerned with both numerical and
statistical accuracy. An analysis is incomplete if it
does not describe the nature of any numerical or
statistical ill-conditioning.
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BEST SUBSETS REGRESSION UNDER THE
MINIMAX .CRITERION

James E. Gentle and W. J. Kennedy
Iowa State University

ABSTRACT

The use of a minimax (L or Chebyshev) criterion for estimation in a
multiple linear regression model is considered.. A procedure is described for
selecting from among m ::potential regressors the best sets of each size for
fitting the model under the minimax criterion. The method is a search that
allows implicit enumeration by bounding.

1. nrrRODUCTION

logical choice. For errors fran heavier-tailed distri-
butions, the S. or least absolute values estimator is
recommended. N'hen the errors are restricted in range,
and partiC"J1arly if the distribution is fairJ.y uniform
over the finite range, the L" or minimax estimator has
desirable properties. Ha.rler (1972) suggested an
9.daptive procedure for selecting among these three
estimators for use with a given data set.§. is an m-vector of parameters to oe

i is an :l-vector of random disturbances.

!n recent years a nwnber of criteris other than
least squares have been suggested for in the
regression model

'I. = + i' (1)
'I. is an n-vector of Observations
X is an n x m matrix of observations

and

were

The choice of a resonable criterion for fitting depends
on the distribution of i. !f the distribution of .§.
is well-behaved andlor if a linear estimate of §. is
required, then least squares is an optimal criterion.
Depart'.lres fran these ideals, however, may suggest al-
tarnative criteria for fitting the linear model. Many
situations encountered in practical data analysis
suggest the use of methods that protect against heavy-
tailed error distributions andlor arbitrarily deviant
outliers in the data. In other cases the data do not
a.ppear to have infinite-range distribution about
.. the fitted model. nice and W'llite (1$64) and Harter
., (1972) ha.ve suggested three I!linimum L estimators forp

use in the three situations 9.ll.uded to above. In the
case of identically, independently, norma.l1y distribu-
ted errors the L2 or l.east squares estima.tor is the

2. ALGORITHMS FOR MINDIAX SST:1WION

The problem or obtaining the :ninimax or L'"
estimators for the model (1) may be posed as a linear
program, as was pointed out by Kelly (1958). The
pri:laJ. linear progrSlllllli.cg problem is

minimize d

. subject to X£ + d!n 2: 'I.
-X£ + d!n 2: -y,

where !n is an n-vector of 1 's, and Eo is unrestricted.
(d is 2: 0 by the nature of the problem.) Kelley (1958)
suggested using the dual formulation of the :problem,
and a number of modified dual simplex algorithms ha.ve
been suggested for efficiently obtaining the solution.
The stl'aightfor..rard. dual sim"lex algoritbm is verJ
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inefficient bath in storage and ccmputation time
relative to some special purpose methods available.

Ba.rrodale and Fhillips (1974) give one of the
most efficient algorithms for obtaining the minimax
estimates. Using the dual formuJ.a.tion,

maximize z· l' (! - :!?) (3)
subject to X'(! - i) = Q

l'(s + t) < 1m - --
.!Ii 0,

they add a slack varia.ble in the inequality constraint
and an artificial variable in each row of the equality
constraints. The final marginal costs of these vari-
ables are the opti:nal !2. in (2), that is, the minimax
estimators. The relationships among variables are
such that only 11 colUIlUls are required.

The algoritbm begins by bringing the vectors
associated with the si into the basis, replacing those
corresponding to the artificial variables. Tlle pivot
column is chosen to correspond to the si with marginal
cost of greatest absolute value, and the row is chosen
so the pivot has largest absolute value among those
corresponding to artificial variab;l.ee in the basis.

Next the sl.ack variable is driven out, using the
:pivot col'Ulll11 corresponding to the si or t i '.nth margin-
al cost of greatest absolute value. (si is used if
the marginal cost is negative; t i , if nega.tive.) It
ml!¥' be necessary to perform raw interchanges and inter-
changes of si' s and t i ' s to be able to take the slack
variable out.

Tlle :'inal stage of the algoritbm uses as pivot
column that one corresponding to the variable si or t i
ha.ving the most negative marginal cost. The pivet
raw is chosen by the usual selection rule of the sim-
plex method. The procedure is continued until aJ..l
marginal costs are nonnegative.

Barrodale and Roberts (1975) give a FORTRAN
program for this a.lgorithm.

3. PROCEDUEE FOR BEST SUBSETS UNDER THE MINIMAX
CRITERION

In the process of fitting equations to data, it
is natural to seek the best subsets of explanatory
variables for forming submodels which !Il8¥' adequately
describe the relationships among the variables. Tllis
problem has been studied extensively under the least
squares criterion. Various branch-and-bound routines
such as the one by L&'1otte and HockiDg (1970) have
been given to search efficiently among the subse'ts
of each sp.ecified size to identii"j that subset giving
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the best least squares fit. Roodman (1974) described
a branch-and-bound procedure for obtaining the best ..
subsets of each size under the or least absolute .,
values criterion. The key idea in each of these pro-
cedures is the effective use of fathoming. As many
subsets as possible are eliminated from consideration
without explicitly fitting those submodels. We naw
consider a branch-and-bound or partial enumerative
scheme for selecting the best subsets under the L",
or minimax criterion. Although the implementation is
different, the basic ideas are similar to those of
Roodman(1974), which derive from procedures suggested
by Balas (1965) and Geoffrion (1967). Scme tecluU.ques
of the implementation are si:ni.lar to those described
by Narula. and Wellington (1977) for estimation.
The basic program for obtaining the minimax estimates
is that of Barrodale and Fb:Ullps (1975).

At a given stage of the algorit1:lm each potential
regressor will be in one of three possible states:
fixed in, that is, of necessity included in the model;
fixed out, that is, not considered for inclusion in
the model; The basic a.pproach is to include
all tree variables, do a. minimax fit, update sta.tes of
potential regressors, and repeat. e

The procedure follaws a. simple search tree dis-
cipline in which the root represents all variables in
the model and from each node there are a.B ma.ny branches
emana.ting as will yj.eld unique subsets, assuming a
search from. the right. This is a caumonly' employed
tree discipline, as, for example, in Narula and Welling-
ton (1977). Figure l iJ..b.strates the tree alld labeling
scheme.

The labeling ::trocedure as in Narula and Wellington
(1977) will be employed here. The l.abels consist of
the integers 1,2, ... ,m, a dot, and underlines. The .
root of the tree is labeled a.s a dot followed by s..l.l
the integers, i.e., ·123···m. A step at a
node is taken by moving the dot one space to the rigllt.
When all integers are to the left of the dot, the node
represented is a terminal node. A ba.ck'..ra.rd step
at a node is taken by underlining the rightmost integer
not yet underlined to the left of the dot, moving the
dot to the immedia.te right of this integer, and re-
moving the underlines of any integers to the right of
the dot in its new position. The labels on the nodes
in Figure 1 represent a. simple traversal of the tree.
At stage all integers to the left of the dot which"
are not und.erlined represent variables which are fixed"
out of the ::lode1.

We use the notation Zj to represent a current



Figure l. T!le Tree-Labeling· Soheme

*'optimsJ. solution and Zj to represent the smaJ.lest
cu..--rently known optimsJ. vaJ.ue of Z in (3) for pre-
vious models containing j variables (regressors).
(Note that number of variables in the linear pro-
gram remains constant, but the number of constraints
varies as the number of regressors does.) 'l1e begin by

*'obta.:i.l:li.ng Zo (as the max Iyi I or, U ea.cll submodel is
to contain an intercept, the mi.drange, of the yi ' s) and
*' *'Z (representing the full model). Initia.J..ly all Zj for
m *'1::: j ::: m -1 are assigned the value ZOo Beginning at

*'the root (with Z and the label ,123...m), update them
label consistent with the search procedure (for exampl.e,
the right-to-left procedure as shown in Figure 1) and
go to Step 1.

Step 6: Take a forward step in the tree (i. e., up-
date the label by.moving the dot one space to
the right) and go to Step 1.
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THE SWEEP OPERATOR: ITS IMPORTANCE IN STATISTICAL COMPUTING

J. H. Goodnight
SAS Institute

Abstract

The importance of the Sweep Operator in Statistical Computing is not so much
that it is an inversion technique, but rather that it isa conceptual tool for
understanding the least squares process itself. The sweep operator can be pro-
grammed to produce generalized inverses, and create as by-products such items as:
the Fonvard Doolittle matrix, the Cholesky Decomposition matrix, the Hermite
canonical form matrix, the determinant of the original matrix, Type I Sums of
Squares, the error sum of squares, a solution to the ncrma,l equations, and the
general form of estimable functions. This tutorial paper begins by describing
the use of Gaussian elemination for least squares and builds up to the description
of a completely generalized sweep operator which computes and stores (X'X)-,
(X'X)-X'X, (X'X)-X'Y and Y'Y - Y'X(X'X)-X'Y all in the space of a single upper
triangular matrix.

1. Introduction

The Sweep Operator is perhaps the most versitile
of all statistical operators. It can be adapted for
use in ordinary least squares (including multiple
regression and the general linear model), and
three stage least squares, non-linear least squares,
multivariace analysis of variance, all possible
regressions, regression by leaps and bounds, stepwise
regression, partial correlation, and others. The most
important aspect of the sweep operator with respect to
its use as an instructional tool, is that each element
of the matrix being operated on is readily identifiable
and has statistical meaning. In order to understand the
significance of each element of a matrix being swept
and to understand the interrelationshi? between
Gaussian the Doolittle, Cholesky
decomposition, Hermite canonical forms and the sweep
operator, this paper will start at the most basic level,
that of Gaussian elimination.

Throughout the paper the general linear model;

which arise from (1). Gaussian elimination involves
only operations, that of multiplying equations by a
constant and that of adding a multiple of one equation
to another. The following simple example illustrates
these points.

Given the system:

Multiply the first equation by 1/4

Y=XB+-e (1) Next: Add -2* eqn. 1 to eqn. 2

will be used, where Y is an vector of individual
observations; X is an nxk matrix of O's and l's and/or
continuous variables; 8 is a kxl vector of constant
but unknown parameters, and e is distributed NID(0,o2).

2. Gaussian Elimination

Gaussian elimination may be used to solve directly
the normal equations:

b l +- 1/2 b2 • 3/2

Next multiply eqn. 2 by 1/5

X'X'b = X'Y (2)
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Finally: Add -lIZ * eqn. Z to eqn. 1 matrix. Thus the row operations performed in (4) are
equivalent to multiplying (3) by (X'X)-l.

b l + ObZ ,. 4/5

Obl + bZ " 7/5

In addition to computing the b values, the error
sum of squares may also be simultaneously computed by
augmenting (3) as follows:

This same sequence of operations can be carried out
in a simple matrix tableau using equivalent row
operations (multiplying a row by a constant and adding
a multiple of one row to another. For example:

[
X'X! X'YJ---1----
Y'X I Y'Y •

(5)

Definition: operator

Step 1: Set B =

(7)

(6)[
(X'X)-l I 0 J

1---
-Y'X(X'X)-l I I

then the resultant product is:

The ADJUST(K) operator performs a pivot on element
of a matrix A as follows:

[
x'x I X'Y ] I (x'x) -1 X'Y ]I row I

operations' (8)

If (5) is multiplied on the left by

Since (7) was achieved by multiplying (5) on the
left by matrix (6), (7) may also be achieved by per-
forming row operations on (5). "That is,

Since X'X is positive definite, the row operations
used in (4) and (8), see Wilkinson (1961), need consist
only of a sequence of pivots on the diagonal elements of
X'X. In fact, by restricting the row operations to
pivots on the diagonal elements of X'X, much valuable
statistical information may be obtained, and an easily
programmed algorithm is achieved. Since pivoting on a
diagonal element "adjusts" the remaining matrix elements
for the variable associated with the diagonal element,
it is helpful to define this operation as an operator
called the ADJUST operator.

Given the tableau

[:
Z

,:]6

Multiply row 1 by 1/4

rl lIZ 'IZJLz 6 10

Next: Add -2 * row 1 to row Z

[:
1/2 ,;zJ
5

Next: Multiply row Z by 115

[: lIZ 3IZ]
1 7/5

Finally: Add -1/2 ;, row Z to row 1

[:
0 4/5 ]
1 715

Thus to solve full rank regression equationE one has
only to form the augmented matrix

[X'X ! X,YJ (3) Step 2: Divide row K by B

and use row operations to convert the left hand matrix
to an identity. Once done, the right hand matrix will
be the solution. Symbolically:

[ X'X I X'Y J row (I I b J (4)I' operations • •

Step 3: For each other row i#k
Set B = aiK and subtract B*Row k from Row i.

Using the operator on a simple example shows the
amount of statistical information that is available
through its use. For the regression model

Nota that (X'X)-l need not be computed in order to solve
the normal equations, and that the entire process may

4111re carried out in-place on a computer.

One of the most important aspects of performing
row operations on a matrix is that it is equivalent
to multiplying the matrix on the left by another

the augmented normal equations (5) would be:
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EXl EXZ EY

E:<l Z EX1XZ EX1Y...
A-

EXZ EX1XZ
EX Z l:XZYZ

l:Y EX1Y l:XZY 1:y 2

If an ADJUST(l) operation if performed on A then:

I Xz y1 I XlI
I--1---------
I z0 I l:xl txlxZ l:xlyI
I.. I
I
I Z0 I l:xlxZ l:xZ txzyI
I
I
I
I ,. Z0 I l:xly l:xZYI I..y
I

The lower right 3x3 in Al is the corrected SS&CP
matrix. The upper right lx3 matrix consists of b
values for the submodels: Xl 60+ e#,
Xz 60# + eO, and Y .. 130° + e#o. The diagonals
in the lower right 3x3 correspond to the error sum
of squares for these submodels. If an ADJUST(2)
operation is performed on Al then the following'matrix results:

A ..Z

In A2 the upper right 2xZ matrix contains the b values
for Ehe submodels: X2 .. aD + 6i Xl + e# and

The lower right 2x2 matrix

is the error SS&CP matrix for these two models. If
an ADJUST (3) operation is performed on Az then the
following matrix results:

1 0 0 t bO lI
I
I
I
I

0 1 0 I blI
I
IA3 I
I

0 0 1 I bZI
I
I
I 20 0 0 I Ey .1,2I
I

This last adjustment completes the solution of the
normal equations and yields the error sum of squares
in the bottom right position.

The Type I SS for each variable, see Barr e
(1976). is an important by product of the ADJUST
operator. If the augmented matrix A as in (5) is pxp,
then whenever ADJUST(K) is made. the Y'Y element aZ pp
is reduced by Thus R(XKI the other
variables adjusted for) .. An
vector can be employed to store the Type I SS prior to
each use of ADJUST.

As noted above, after each use of ADJUST. the
d:lagonaJs not yet ADJUSTED represent error sums of
squares for submodels among the independent variables.
Suppose that a matrix A as in (5) has been adjusted
for l.2 ••••• ,K-l. Then is the error S5 for the
model

The a2 value for this model is then:

2where CSSk is the corrected SS The Rk value
provides an invaluable singularity check. If > .9999
(for instance), then x:, is "statistically" at least, a

i<
linear combination of the preceeding X's. The elements
in column k associated with previously adjusted
variables spell out what the linear combination is.
Recent by Frane (1977) and Berk £1977) examine
further the use of the tolerance, T l-R , for
checking against singularities. The tolerance T, will
be discussed further in a later section concerning
generalized inv=rses.

In the past few years, hundreds of articles have
appeared concerning the numerical accuracy and stability
of regression solutions obtained using Gaussian elimination.
Beaton et al. (1976) and (1977) reference some of the
more important articles and conclude that in many cases
the attempt at estimating regression coefficients in
highly collinear problems cannot be justified
statistically. data is highly collinear, then
the technician in the lab who records the data may
have more effect on the solution than does the
technique used to achieve it. One of the most obvious
facts about accuracy, that is often overlooked. is
that when Gaussian elimination is used the mantissa
length on the machine must at least be able to contain
the largest element of X'X. Any program written in
single precision is obviously headed for trouble when
more than four significant digits appear in the input
data. It is hoped that no least squares programs in
common use are written in single precision when
Gaussian elimination is used. For the very large
class of least squares problems which involve only X's
with O's and l's and whose largest X'X element is
equal to the number of Gaussian
elimination programmed in double precision is more
than adequite with respect to accuracy, and cannot
be topped in terms of storage or speed. .,
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This is equivalent to the univariate case, except that
Y has dimensions N x p instead of N x 1.

[Cll
Cl2

C
u
]C • Cll Cl3

rowCll operations
Cn C32 C33

[:"
Cll C

13
]C22 •1 C23 •1 ... A

0 C33 •12

tL(X1X) -Lj_Lbj(Lb) , I 0
I

SS(RO: L6-0) .. (Lb)' (L(X'X)-L,)-l (Lb),

The Forward Doolittle matrix is constructed by adding
multiples of the first row of the matrix to all following
rows such that zeros are introduced below the diagonal
in column one. Multiples of row two are then added
to all following rows to introduce zeros below the
diagonal in column two, etc. If the positive definiteness
of the matrix is in question the tolerance check discussed
in section three may be used. Note that if the ADJUST
operator had been applied to the C matrix, and if the
adjustments were made sequentially (k" 1,2,3, ••• ),
then prior to the adjustment for row k, row k of C
is equal to row k of A.

and a Forward Doolittle is performed on the diagonals of
the upper left matrix, then the lower right matrix is
transformed into:

where L is estimable and b is any solution to (1). If
the following matrix is formed:

When only the adjusted SS&CP matrix is needed as
in (9) and (10), the Forward Doolittle affords a faster
method of computing than the ADJUST operator. A
further example of this is the computation of:

(9)

(10)

ADJUST for
Columns of XiXl

(X'X)-l X'y J
y'y_y'X(X'X)-l X'Y

[:-1o I

[ X,_'X_-i-_x_,y_J ADJUST on
[y,X y'Y·J Columns of X'X

Next, divide each element of XiXl - XiXl(XiXl)-l XiXl

by the square root of the ewo associated diagonals,
and the partial correlation matrix is complete.

3. Other ADJUST Uses

Partial correlation coefficients for ewo sets of
variables, Xl(N x p) and Xl(N x q), may be obtained
using the adjust operator. Suppose the correlations
among the Xl's are needed after their adjustment for

then proceed as follows (assume Xl contains a
colums of l's):

For multivariate linear models, where several
dependent variables have the same set of independent
variables, the b values and.the error SS&CP matrix
may be obtained simultaneously; i.e.:

the negative of which is SS (Ho: L3 =0) .

5. Factoring a SymmetriC Positive Definite Matrix

B'A = C.

0- (Lb) , (L(X'X)-L,)-l (Lb),

Forward
Doolittle ) AC

then if each row of A is divided by its diagonal to
produce a matrix B, then

If the symmetric positive definite matrix C has
been mapped as follows:

4. The Forward Doolittle

The basic Doolittle method, see Steel and Torrie
(1960), was introduced in 1878 while Doolittle was an
engineer with the U. S. Coast and Geodetic Survey. It
was perhaps the first attempt to structure Gaussian
elimination to fit the needs of the statistician. As
it has evolved it is now referred to as the abbreviated
Doolittle and consists of parts. The first part,
the Forward Doolittle, maps the sum of squares and cross
products matrix into an upper triangular matrix. The
second part, the Backward solution, computes the .
'regression coefficients and the inverse matrix.
Symbolically, the Forward Doolittle is used to map any
symmetric positive definite matrix C into an upper
triangular matrix A:

Furthermore, if each row of A 1.s divided by the square
root of its diagonal to produce a matrix U, then
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Uru • C

The matrix U is called the Cho1esky decomposition of C,
see Isaacson and Keller (1966).

Since L-1 .. (U-1)" L- l HU-l is a symmetric positive
definite matrix. The eigen values of E-la are the

-Lu-lsame as the eigen values of L -au .
-L -1vectors of E -a .. U * eigen vectors

6. The Determinant of a Sxn;metric
Positive Definite Matrix 8. Finding the INVERSE

After mapped C into A by the Forward Doolittle and
created B by dividing each row of A by its diagonal,
then:

The inverse of a symmetric positive definite
matrix A, may be found by augmenting an identity
matrix to the right of A and then using the ADJUST
operator on the diagonals of A.

Since in (11) the original identity keeps count
of the row operations being performed, this technique
has been referred to as the method of counters.

Since repetitive use of the ADJUST operator is
equivalent to multiplication on the left by some
matrix, (11) is equivalent to (12).

(11)

(12)

I ADJUST A t
] diagonals[A[CU

C12
C
13
]e21 C22 C23

C3l C32 C33

[:u
0

:] [:11
a12

a
13
]1 a22 a23

b13 b23 0 a33

Le.C· B'A
The above process is also reversable since,

therefore jcj .. IB'I IAI.
1

thus

Obtaining b Values, Error SS, and Inverse

Tne determinant of an upper or lower triangular
matrix is always the product of its elements,
by the basic permuted products summation definition.
Therefore the determinant is easily a by-product of
both the ForNard Doolittle and the ADJUST operator. 9.

ADJUST A-l
diagonals I]

and letting L" U', then

7. Eigen Values of E- l H

In multivariate analysis, the eigen values and
vectors of E-l H are needed, where E and Hare
symmetric positive definite matrices. Routines for
eigen values abound for symmetric positive definite
matrices, but E-l H is not symmetric positive
definite. Using the mapping

E ForwardDoolittle' A U .. Cholesky decomposition

By forming the following augmented matrix and
adjusting the columns associated with X'X, the
regression coefficients, error 55 and inverse may be
computed simultaneously, i.e.

Adjust
Y'X Iy'y I 0 X'X columnsI I

__
01 ESS I -b' J

- AI)X .. 0 This is equivalent to the matrix multiplication,

(H - ;\E)X .. 0

(H - ALU)X .. 0

- AU)X .. 0

(L - H)UX .. 0

(multiply by E)

(E • U'U .. LU)

(multiply by L- l )

(factor out U).
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o 37/12 -3/2 -1/4 -1/3

(15)

(16)
o

o

1

o 1/6

o

o

o2

3/2 7/6 -1/2 a
1/4 -1/2 1/4 a

3/2 7/6 -1/2

1/4 -1/2 1/4

1/3

b

15/4 -3/2 -1/4 0

a
1o a

a 0

o 1

100

100

006

002

010

STEP 3

STEP 2

The reversibility of adjustments allows one to ADJUST
any of the original colUlllI\s of X'X and thus "enter"
that variable into the model, and also to readjust
any column in the (X'X)-l area and thus "remove"
that variable from the model. For example, consider
the following data:

Also note that

e [I ! b 1 __(X__,X)_-lj readjust
•.

I I 1o I ESS I -b ' (X'X)- columns

[
-:'x_1 X'Y ,- I]
Y'X I Y'Y I a

y
2 1/6

a 1 0 10/3

(17)

o
a

a

a 1/6

a -1/3

1

a
-2

-21

1/3

1 2 a

001

040STEP 4

3

1

3

1

1

3

2

Xl

1

1

1

Xo

1

1

1

1

2

-1

-1

2

2 1 2 0 2 1/6 a a

12 28 0

(18)
a

a
1

o1

:I (19)

oJ

o
o

o

a

o

1

1

a

o

o

1

a
-2

-2

4

2

1

2

12

28

25

a 4 a
006

012

6 12 0

The above tableaus represent the following models with
respect to Y.

REMOVE Xo 0 0 6

12 25 2

STEP 6 12 28 0

STEP 5

(13)
o
a

a
1

1

o

o
a

1

b

28

25

12

-131

6 12 a

12 25 2

FOR.){
MATRIX a a 6

STEP 0

tXIX i X'y I IJForm ---r---.---
Y'X i Y'y I 0

I I

b values error 55
2 1/6 a

4 -2

1 -2STEP 1

ENTER Xo

1

o
a
o

4

o
1

o
a
6

2

2 a
1

a
o

o
a
1

a

(14)

o
1

2

3

4

5

Y .. 0

Y .. bO+b1Xl
Y .. bO+blXl+b2X2

Y .. bO+b2X2
Y .. bO

3/2,1/4

3/2, 1/4, 1/3

2, 1/3

2

28

4

15/4

37/12

10/3

4

6 Y .. 0 28
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Observing the tableau at Step 3 (the full model), note
that if Xl is removed. the E5S will increase by
(1/4 * 114)/1/4 • 1/4 • Type II S5 due to Xl. If Xz
is removed from the full model, the ESS will increase
by (1/3 • 113)/1/6 • Zl3 • Type II SS due to XZ. The
Type II SS due to Xi (given the full model) is always

Z th -1(bi ) ICii , where Cii is i diagonal element of (X'X) •
The Type II S5 corresponds to the SS due to the
hypothesis that 8i • O.

10. Stepwise Regression

Stepwise regression (although usually employing the
Sweep Operator) is illustrated by the following tableau.
Suppose the original tableau has been formed and several
adjustments made, i.e.

adjusting the tableau for a particular variable,
replaces the identity column just created by the
associated column in the original identity matrix
which has now been modified. By obserTing what
happens to the i th identity col= when variable Xi
is entered, the ADJUST operator can be modified
to a SWEEP operator. When variable is entered,
row k is multiplied by therefore its identity

th .
col= will have in the k row.

To zero out the remaining elements in col= k,
-aik * row k is added to all other rows (i +k).
Since the identity column has 0 I S in all positions
other than row k, the i th row of the identity column
becomes (1 + k). With this in mind, the
SWEEP operator is defined as follows.

SWEEP(K) defined:

[.
X'X IX'y I I.J
--, I
Y'X I y'y I 0

(original tableau)

Several
Adjustments

(current tableau)

Given an originally symmetric positive definite
matrix A. SVlEEP(K) will modify the current mat=ix A
in the following manner:

Step 1: Let D

Step 2: Divide row k by D.

11. The SWEE? Ooerator

The operator is a modification of the
ADJUST operator which reduces the amount of core

-1needed to compute the b values, error SS, and (X'X) .
Whereas the ADJUST operator performs the in place
mapping:

For any variable not yet entered, the error SS would
2be reduced by bi laii if it ware entered. For any

variable in the current model. the error 5S would
Zincrease by bi ICi1 if it were removed. The

Z ZSS (b i lai1) and the exit SS (bi Icii) form the basis
for deciding which variable is to enter and which is
to be removed at each stage.

Y'X : y'y I 0
I I

ADJUST
X'X Col=s

-1]
o I ES5 I -b'

I I

Step 3: For every other row i k, let B a a ik,
Subtract B * row k from row i, then
Set aik .. -BID.

Step 4: Set • lID.

Since the SVlEEP operator is only a modification
of :oe ADJUST operator, the reversibility of SVlEEP is

A useful exercise. for the interested reader,
would be to use the operator on the left most
4x4 matrix in tableau (13), to compute the equivalent
sweep tableaus associated with (14)-(19).

It should be noted that, although the amount of
core needed to compute the b values, error SS, and
(X'X)-l has been reduced by using SVlEEP, none of the
by-product information has been lost. The Type I and
II SS may still be computed. The determinant of X'X
may still be computed. The singUlarity check is still
available, and all submodel information is present.
For example, let

the sweep operator performs the in place mapping:

tX' X I X'v J. I· SWEEP
X'X Col=s -b' lESS

I

A·

One of the first references to sweep operations may be
found in Ralston (1960), but the term "Sweep Operator"
was coined by Beaton (1964).

By observing tableaus (13)-(19), note that when-
ever a variable is in the model its associated X'X
col= is an identity col=, and whenever a variable
is not in the model its associated col= in the
original identity matrix remains unchanged. The SWEEP
operator takes advantage of these features, and after
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Xl'Xl ,



, )-1 I
(Xl 'xl )-lxl 'X2

i
(Xl'Xl)-lxl,yI Ie (Xl Xl I I

I I
I I

-X2'il (Xl 'Xl) -1 I I X2 'MlYI
I

I I

-Y'X (X 'X )-1
,..-
I Y'MlX2

I Y'MlYI I1 1 1 I I

Xl • XlL

L •

(20) X2 'Xz - • 0

The X'X matrix,

(by definition),

(regress Xl on Xr),

(error SS,!s,t CP).

l

(22)

(21)

o

I]I

"z'X,
Y'x.. Y'X I Y'Y-J. 2 I

I

(X 'X )-1
1 1

Thus sweeping on the columns of Xl'XI yields a gl
inverse and the appropriate adjusted Y'Y. However,

-1the b values. bl = (Xl 'X1) Xi'Y and b2 = 0, do not
correspond to the b values computed using the gl
inverse, i.e.

This matrix results from SWEEPing X'X on the columns
associated with Xl'Xl • If the full augmented tableau,

particular generalized inverses which are easily
constructed through use of the SWEEP operator. The
first, a g1 inverse (AAglA • A) for X'X, is

is swept on the columns associated with Xl'Xl , theresultant tableau is:

A large family of models, characterized by (1),
are over-parameterized. Linear dependencies are
known to exist among the columns of the X matrix.
For some models, the dependencies are easily
predictable. For others, the interchanging of
effects (putting interactions before main effects),
the absence of a cell, or the inclusion of a covariable
may bring about unexpected dependencies. The ADJUST
operator, the Doolittle, and the SWEEP
operator, through use of the tolerance check, can
detect dependencies among the columns of the X matrix.
In this section, the SWEEP operator will be modified
to produce a generalized inverse and the corresponding
particular solution whenever a dependency is
encountered.

12. COMPuting Generalized Inverses

The regression coefficients for the submodels: Model
Xl • Xl; and Model Y • Xl; are clearly available.

is the error SSCP for the first model, and
is the error SSCP for the second model.

The ADJUST operator and the Forward Doolittle
operator are all easily programmed to operate only
on the upper triangular matrix by observing their
symmetry properties. The SWEEP operator is also
easily modified to operate on just tha upper
triangular portion of the matrix.

The amount of time it takes to compute (X'X)-l,
b values, and error SS using the SWEEP operator is
generally only a fraction of the time it takes to
form the sum of squares and cross product matrix.
If only the upper triangular portion of the sum of
squares and cross product matrix is formed as the
data is being read, then one SWEEP operation

e (modified to operate on the upper triangle) takes
about the same amount of CPU time as does the reading
and accumulation of two observations. This can be
verified by counting that number of multiplications
and additions that are performed. Thus the approximate
CPU time ratio of inversion to building the X'X is
approximately 2k/N where k is the total number of
independent variables and N is the number of
observations. Since N is much larger than
k, inversion represents only a fraction of the cost
of regression analysis.

Initially assume that the X matrix can be
partitioned, i.e., X· [Xl : such that the
columns of Xl are linearly independent, and each

of X2 is a linear combination of the columns
Xl' This implies that:

(Xl'X1)-lX1'Y + (Xl'Xl)-lXl'X2XZ'Y

(Xl'Xl)-lXl'Y + LX2 'Y.
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Although bl • (Xl'yl)-lxl'Y and bZ • 0 is a solution
to the normal equations this particular solution does
not equal (X'X)glX'Y.

Another disadvantage of computing a gl inverse
is that additional computition is needed to compute
the variance of the particular solution since:

(Z4)

Therefore,

On the other. hand, a gz inverse (AA8ZA a A, and
AgZ A AgZ • AgZ ) of X'X has the property that:

It is easily verified that

is a 8Z inverse of X'X. If the full augmented
tableau (Zl) is swept on the columns associated with
XI 'Xl' then resultant tableau is (ZZ).

The foregoing discussion was simplified by
assuming that the X's were grouped with XI being of
full column rank and Xz .. Naturally, this seldom
ever happens but, as it turns out, the SWEEP operator
can be modified to handle the situation in which the
linearly independent columns of X are not all grouped.

For model (1), if it were known which columns of
X formed a linearly independent basis then an index e
matrix M (an identity matrix with columns permuted)
could be formed to rearrange the X's, and M' could be
used to rearrange the 8's. In other words, since
MM' .. I;

Y .. XS + e

O's in the two submatrices adjoining
in (Z2) yields:

.. XIS + e

.. XMM'S + e.

:][

(Z 'z )-1
1 1

o

Letting Z .. XM and y .. M'S, then Y .. Zy + e, where
z .. [Zl: ZZ] with the columns of Zl linearly
independent and Zz .. ZlL. Thus

and (Z'Z)gZZ'Y.

Since (Z'Z)8Z • (M'X'XM)gZ .. M'(X'X)6ZM

(23)oo

I
o I

I
I
I

o I
I

____________0 -010--------------
I

o !
I

This tableau contains (X'X)8Z and the adjusted Y'Y.
The b values bl = (X1'x1)-lxl'y and bZ = 0 are
equivalent to (X'X)8ZX'Y, and therefore Var(b) ..

Z .(X'X)'" a. If the 8Z inverse of (Z3) :LS employed,
then the expected value of bl and bZ are:

Then (X'X)gZ .. M(Z'Z)5ZM' and S.. My. (25)

If the containing (Xl'XI)-lxl'XZ is saved
after sweeping on the columns of Xl'XI, then this
matrix may be used to compute all possible solutions
to the normal equations since (for Z arbitrary):

E(O) o . In essence, the above rearrangement process
selects a maximum rank subset of elements from X'X,
inverts the resulting matrix, then puts the inverted e
subset of elements back into their original positions
and zero's cut the remaining elements to form (X'X)gZ.
The SWEEP operator can achieve the same results
without any rearrangement of rows and columns, simply
by proceeding as normal, except when encountering a
'variab1e which it finds to be linearly dependent on
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previously swept variables. When a dependency is
encountered, say for variable K, the SWEEP operator
should set the Kth row and 'column to zero and proceed.
A g2 inverse and corresponding solution will result.
Note well however, that once a row and column have
been zeroed, the generalized SWEEP is no longer
reversable. The critical information which defines
that variables dependency has been set to zero.
With these points in mind, the G2SWEEP operator is
defined as follows:

Given an originally symmetric positive definite
or symmetric positive semi-definite matrix A as in
(21) which has not been SWEPr on column K, G2SWEEP (K)
will modify the current matrix A in the following
manner:

Step 1: Let D"
If D is less than DMINk then set row
and column k to zero and stop at this
step. Otherwise proceed.

Step 2:' Divide row k by D.

Step 3: For every other row i k, let B .. aik,
subtract B * row k from row i, then
set ail< .. -B/D.

Step 4: Set .. liD.

fact are not. Too small a tolerance may let dependen-
cies go unchecked. For variables which take on only
o or 1 values, (l-R2) values in the range lE-12 to
lE-14 are quite common when dependencies occur. Fifth
and sixth degree polonomials may exhibit (l-RZ) values
as small as l-E8 even when they are linearly indepen-
dent. Thus Tolerance values in the range of lE-8 to
lE-12 seem appropriate when looking for dependencies.

13. The Upper Triangular G2SWEEP

As discussed by Schatzoff, et al. (1968) the
amount of time it takes to perfoIia-sweep operation
may be reduced by approximately one half by taking
into account the symmetry properties of the sweep
tableau. The amount of core needed to store the
tableau may also be reduced by almost one half by
saving and operating on only the upper triangular
portion of the tableau. Since operating on the
upper triangular tableau, stored in a one-dimension
array, is an obvious extension of what is to be
discussed here, the tableau will be assumed to be
stored in a rectangular array, but reference will
be made only'to elements on or above the diagonal.

Starting with the following tableau:

(26)

I

(Xl'Xl ) i (Xl'Xl)-Xl'Y
I I

, ( 'X)- I , I I Y-X2 Xl Xl 1 I X2 !1.X2 ! Xz Ml
-Y'Xl (Xl'X1)- I Y'M1XZ i Y'M1Y

As stated above, the G2SWEEP operator should not
be applied but once to any given column of A, (although
the order is unimportant) since information needed may
have been set to zero. In addition once swept may
be legitimately less than DMINk •

The DMINk values used in the operator are
functions of the TOLERANGE value a.._ either the
corrected SS(GSS) or uncorrected SS(USS) for variable
k. If no intercept is employed in the model then:

{
Tolerance if USS = 0

. DMINk .. Tolerance * USS otherwise

If an intercept is employed in the model then:

y'y

perform a G2SWEEP on the Xl'Xl columns.in:
This result.s

(27)

vary or has

{

Tolerance if does not
a computed GSS < = O.
!olerance * GSS otherwise

In checking to see if varies (has more than two
distinct values) if the smallest and largest non zero
absolute values of are computed, this affords the
opportunity to check the ratio of the largest to
smallest non-zero absolute values If the
ratio is greater than lE7 (or lE8) then the chances
are that the computed X'X matrix in double precision
is incorrect to start with.

Establishing the value to use for tolerance is
not a simple task, since it involves (as does the
comparison of two means) compromising between a Type I
and Type II error. The major difference between

a Tolerance and an a level is the lack of
theory. Too large a tolerance may

declare variables dependent on others when they in

where (Xl'Xl ) is a symmetric gz inverse and =
1- Xl(Xl'Xl)-Xl '. Note that this tableau is symmetric,
except for the sign of the submatrices below (Xl'X1)-.
Letting a .. denote the elements of this tableau, then
the elements below;the diagonal aij (With i > j) may
be constructed from the elements above the diagonal in
the following manner:

fl' if i and j have been swept.

aij .. a
ji if neither i nor j has been swept.

-a.; if i or j (but not both) has been swept.J-

By keeping track of which columns have been swept, the
lower triangular portion of the tableau can be
constructed from the upper.
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The easiest way to keep track of what has been
swept and what has not is through use of an
vector V. The elements of V are initially set to 1.
then after sweeping on column K, Vk is set to -Vk • If
this vector V is employed. then elements below the
diagonal may be constructed from the upper triangular
portion as follows:

Note that the upper triangular elements are always
correct as is. It is only when an element is not in
the upper triangular portion of the tableau that
multiplying aji by Vi*VjiS necessary. The upper
triangular GZSWEEP makes the same assumptions about
the matrix A as does the GZSWEEP operator. Up to
the point where a dependency is declared. reversability
is possible. The vector V is assumed to have been set
to 1 prior to any sweeps. UTGZSWEEP(K) modifies the
upper triangular portion of the matrix A in the
following manner:

Step 1: Let D
If Vk 1 and D < DMINk then zero
elements above and to the right of

including then terminate.
Otherwise proceed.

Step 2: For each value of i: i a 1,2 •••••NROWS
except for i ,. k perform Step"3
Then go to step 5

Xl 'X2 Xr'y

Xl'Xl Xz'XZ XZ'Y (Z8) e
Y'XI Y'XZ y'y

on the columns of Xl'XI yields:

(Xl'Xr)-lXr'Y

0 0 (29)

-y'X (X 'Xr)-l 0 Y'MIY1 1

where ,. I - Sweeping (Z9) on the
-.I.columns of (Xl'Xl ) yields (Z8). therefore reversa-

bility can be achieved. Note also in (Z8) and (19)
that the same symmetry properties discussed for the
UTG2SWEEP also hold.

The (X'X)gZ matrix can be obtained from the
final tableau (in which no columns are left to sweep)
by use of the V vector described earlier. Letting
G represent the gz inverse. and A the final tableau.
then

14. The Reversable Upper Triangular G2SWEEP

Step 5: For each value of i: i 1, •••• k
set aij .. -aij/D
For each value of j: j .. k•••••NeaLS

{: if Vi = 1
h 04 ..
J._ otherwise

if Vi + Vj of O. otherwise
hij if i < .. j or -aji if i > j

{:'i ifVi+Vj > = 0, otherwise
gij ..

if i < j or aji if i > j

Using the gz inverse described above,

Letting H represent (X'X)gZX'X. and A the final
tableau. then

As was discussed with the G2SWEEP operator it is not
necessary that the columns of X be grouped, since the
tolerance check can be used to determine which
variables are linearly dependent on the ones
previously swept. In defining the reversable e
UTGZSWEEP, the same initial tableau and V vector as
used in the will be assumed.

set ,.
then set akk ,. lID and Vk = -Vk

If k < j then
Otherwise c ..
Set aij ,. aij

Step 4:

Step 3: If i < k then B aik/D
OtherAise B =
Then for each value·' j i, i+l •••••
NeOLS except for j ,. k perform step 4

By modifying the U!G2SWEEP such that it does not
zero the kth row and column when a dependency occurs.
reversability may be achieved. In addition the
resulting tableau will contain both (X'X)g2 and
(X'X)gZX'X which are easily separated. along with
(X'X)gZX'Y and Y'y - y'X(X'X)gZX'Y. To demonstrate
these properties. reconsider the case in which X was
partitioned into [Xl : X2] with Xl of full column
rank and Xl ,. XlL. Sweeping the initial tableau:

The RL7G2SWEEP(K) modifies the upper triangular
portion of the matrix A in the following manner:
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Step 1: Let D •
If Vk • 1 and D < • DMINk then
terminate. Column K cannot be swept
at this time. Otherwise proceed.

Step 2 - Step 5 are the same as for UTG2SWEEP.

Using the RUTGZSWEEP, the Type II SS for any
effect may be computed by starting with the tableau
at any stage and making the appropriate sweeps.

(1977) Berk, K. N. Tolerance and Condition in
Regression Computations. JASA December 1977.

(1977) Frane, J. W. A Note on Checking Tolerance in
Matrix Inversion and Regression.
Technomecrics, November 1977.

(1976) J. H. Computational Methods in
General Linear Models, ASA Proceedings of the
Statistical Computing Section, August 1976.

(1966) Isaacson, E. and H. B. Keller, Analysis of
Numerical Methods, John Wiley and Sons,
New York.

15. Using RUTGZSWEEP SequentiallY

By using the RUTGZSWEEP sequentially (K· 1,2, ••• ,NX)
all of the statistics described previously are available.
Prior to any sweep, row k's diagonal and elements to
the right of the diagonal correspond to the k'th row
of the Forward Doolittle, thus (provided

> DMINk) is the Type I SS for variable k. Also
the product of each diagonal (just prior to sweeping)
equals the determinant of X'X. When sweeping is done
sequentially then (X'X)g2x'X is the Hermite canonical
form H, is upper triangular and the elements of H
(except for some O's and l's) are already in place
in the final tableau. H can also be computed by
sequentially pivoting on each non-zero row of X'X.
Since the expected value of the solution achieved
using RUTGZSWEEP sequentially is equal HB, the
nature of the bias in the solution is at hand. The
H mat:rix is also one of many matrices whose rows
can be used as a generating set to compute any
estimable function. In other words, any linear
combinat:ion of the rows of H produce a matrix L
such that L6 is estimable, see Goodnight (1976).

16. Summary

The SWEEP operator and its extensions are indeed
versatile tools which not only afford solutions to
the normal equations and a gammet of additional
statist:ics but also allow complete insight into the
nature of least squares. The general concepts of
the SWEEP operator, once mastered, allow the whole
least squares process to be visualized. Without this
conceptual tool it is extremely difficut to explain
such concepts as Absorbtion and what the R not:ation
is testing in terms of the parameters of the model.
With the SWEEP tool in mind those concepts are
readily grasp.
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REJECTION USING PIECE-WISE LINEAR
MAJORIZING FUNCTIONS IN
RANDOM VARIATE GENERATION

Bruce W. Schmeiser
and

Mohamed A. Shalaby

Southern Methodist University

ABSTRACT

In the context of random variate generation on digital
computers, the use of piece-wise linear majorizing functions
in conjunction with the general rejection algorithm is pro-
posed. Based on previous results obtained in the generation
of beta variates, the expected advantages and disadvantages
of applying the concept to other distributions are discussed,
as is the use of minorizinf functions for fast acceptance of
values. Areas of potential application are also discussed.

I. INTRODUCTION

Much literature in the last twenty years
has been devoted to process generation on
digital computers. Process generation is the
creation of a sequence of observations having
the properties of some desired distribution
or process. Almost always process generation
is a transformation of one or more uniform
(0,1) values to the distribution.
Common methods for performing the transforma-
tion include using the inverse distribution
function transformation, rectangular approxi-
mation, special properties, composition, and
rejection. (See for example, [2,5,6].) In
the past most interest has centered on the
first three methods. Recently composition
and rejection have received much attention.
In a wide variety of cases, rejection is
fast, easy to code, and requires little
memory.

In this paper the use of piece-wise
linear rejection functions and methods for
fast acceptance of observations are discussed
for the univariate contL.uous case. Thebeta
distribution is used as an example, drawing
on the results of Schmeiser and Shalaby [8].
Discussion centers on concepts necessary for
generalizing the results to other distribu-
cions. The general rejection algorithm is
discussed in Section II and specialized to
the piece-wise linear case in Section III.
Discussed are limitations in Section IV, fast
acceptance in Section V, and potential appli-
cations in Section VI.

II. THE GENERAL REJECTION ALGORITHM

In this section a general form of random
variate generation using rejection is given.
This general form is specialized to the
piece-wise linear special case. Implications
and applicability or the piece-wise' linear
approach are discussed.

The common rectangular rejection algor-
ithm can be generalized as follows. Let p(x)
be the density function from which random
variates are to be generated. Lec t(x) be a
maj orizing function of p (x); i. e. , t (x) > p (x)
for all x. Corresponding to t(x) is the
density function rex) = t(x) I k, where
k = ( t(x) dx. Figure 1 illustrates theJ

relationship of p(x), t(x) and rex). The
general rejection algorithm for generating
variates from p(x) is

1. Generate a value x from r(·).
2. Generate a value u from the

rectangular distribution over the
interval [0,1].

3. If u < p(x) I t(x), accept x by
setting y = x. Otherwise go to
step 1.

Proposition: The algorithm provides values
of y from the distribution having density
function p (.) .

Proof: Let A denote the event that step 3
results in acceptance. In any given itera-
tion

peA I x) = p(x) I t(x) = p(x) I [k rex)]
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Figure 1. The functions used in the
general rejection algorithm
for generating random
variates from p(x).

and therefore

•

peA and Xo;I)

P(Xo;I)
II peA I x) rex) dx

II rex) dx

II (p(x)/t(x)J rex) dx

II rex) dx

II p(x) dx

plays a central role in determining whether
or not the resulting algorithm is efficient.
The majorizing function must both have near-
ly the same shape asp(x) (thereby resulting
in a small value of k) and a density function
rex) which is amenable to variate genera-
tion (via any technique, but probably not
rejection).

The reason for early disfavor of rejec-
tion was the selection of a uniform distri-
bution for rex). (In fact, many textbooks
discuss only this special case.) The rec-
tangular assumption restricts consideration
to distributions having a finite range or to
approximations obtained by truncation.
While such approximations may be made as
accurate as desired in theory, great ineffi-
ciency results from using a rectangular dis-
tribution to model tails having small proba-
bilities.

In the last several years the use of
non-rectangular rejection regions has appearec..
more frequently in the literatw;-e. The gannna
distribution especially has been the topic of
several papers [l,9,10,12J. All of these
papers have used density functions rex)
corresponding to well-known distributions.
The basic results of these papers is the iden-
tification of suitable functions rex) and the
determination of k such that valid and
efficient algorithms result.

III. PIECE-WISE LINEAR FUNCTIONS

Although stated in a different form,
this rejection algorithm is mathematically
equivalent that described by Tocher •
[11, p. 251.

Let Y be the random variable resulting
from the algorithm. It is necessary to show
that P(Y 0; I) = ! I P(x) dx for any interv.s.l I.
The proof fo·llowsdirectly from

P(YgI) P(Xo;I I A)
= peA I X€I) I peA)

For a given majorizing function t(x) =
k r(x), k is selected to be as small as
possible while still maintaining t(x):p(x)
for all x. This results in maximizing the
probability peA) that in any given iteration
the value x generated in step 1 will be
accepted in step 3.

For a given density function p(x) the
choice of majorizing function t(x) = k rex)

and
II t(x) dx

peA) = I x) rex) dx = 11k

r p(x) dxJ

jI Ir(x) dx/[l/klJI t(x) d.'t

JI P (x) dx as desired. )

While the use of common theoretical
distributions for rex) has been fruitful,
another approach which is very general and
often easy to apply is to use piece-wise
linear majorizing functions. Piece-wise
linearization calls for partitioning the
range of the random variable into segments
such that t(x) is linear over each segment.
The usual rectangular rejection region is a
special case corresponding to only one seg-
ment. Another slJecial case, brieflY dis-
cussed by Lewis l5, p. 821, is the use of
"regular parts," which is a discontinuous
piece-wise linear majorizing function having
only rectangular segments. More generally,
however, the linear segments may lie at the
angle providing the best fit to p(x). As an
example, Schmeiser and Shalaby [81 used a
piece-wise linear majorizing function in con-
sidering rejection methods for the beta dis-
tribution. Figure 2 illustrates the algor-
ithm for a particular beca density function.

Step 1 of the algorithm requires genera-
tion of variates from the density r (x) =
t(x)/k. Now the piece-wise linear r(x) is
composed of a mixture of rectangular, tri-
angular, and trapezoidal densities. Note in
Figure 2 that the trapezoidal densities are
each composed of a rectangular lower density
and a t;iangular upper denfiity. Thus,
r(x) = k r.(x) where Z a i = 1 andi=l i=l
o < a. < 1 for all i, i = 1,2, ... , n and each-
ri(x) is either a rectangular or a triangular
density.
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_ t(x)
-P(x)

x

Figure 2. al¥ori thm us ing a
majorizing

runctl.on t (x) .

The generation of variates from a piece-
wise linear rex) (using the composition
method) requires the generation of a variate
from r.(x) with probability The rectan-
gular aensities may be easily generated using
x =,a + (b - a) u where u is a uniform (0,1)

and a and b are the bounds of the
rectangular density function. The triangular
densities require x = a + (b - a) max (u
when r i (x) has a positive slope and 1 ..
x = a,+ (b - a) min (ul ' u2) when ri(x) has a
negatl.ve slope, where ul and u2 are.indepen-

generated uniform (0, 1) variates.
generation from a piece-wise linear rex)

no exponential level operations
step I can be executed quite rapidly. '

addition the probability of accep-
tance step 3 can be made close to one
since a piece-wise linear majorizing
can.be to fit any density function p(x)
arbl.trarl.ly well by the number of
segments. Here a trade-off developes between
few in simple coding (with

memory requirements) and
many resulting in longer code, more
memory reqUl.rements, but higher probability
of acceptance. The use of even a few seg-
ments provides a considerably better fit than

simple rectangular region. For example,
l.n [8] three and five segments are
us 7d l.n two of the beta generation algorithms.

segment provides an algor-
l.thm l.S not competitive for many beta
parameter values, five segments are the nu-
cleus of the fastest algorithm available ·for
many parameter values,
IV. LIMITATIONS

, applicability of the rejection tech-
l.S dependent only upon the selection of

the function. For a particular
p (x), the minimal value of k such that

k r (x) > p (x) for all x is central to the
applicaoility of the rejection technique.
This inequality implies two conditions:
1) k rex) must be greater than zero whenever
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p(x) is greater than zero and
2) lim k rex) = whenever lim p(x) •

Since k must be greater than one and
finite these two become 1) ,.,
rex) must be greater than zero whenever p(x)
is greater than zero and 2) lim rex) • when-

x"'a
ever lim p(x) • Since the piece-wise

x"'a
linear majorizing function cannot be non-zero
at infinity nor be infinite, the piece-wise
approach is applicable only as an approxima-
tion to distributions having densities with
one or more infinite values and to distribu-
tions with infinite length ranges.

These are two theoretically important
restrictions. For example, the beta distri-
bution with parameters less than one, the
gamma distribution with shape parameter less
than one, and some members of a general fami-
ly of distributions of Schmeiser and Deutsch
[]] have points at which p(x) is infinite.
In addition, many distributions have infinite
length ranges, most commonly =) and
[0,=) •

However these restrictions are not im-
portant in practice. First consider the
problem of lim p (x) = . Few computers have

x+a _8
accuracy beyond 10 ,nor do many applica-
tions require more accuracy. If eis the mini-
mum discernable accuracy, then an approxima-
tion using the finite values rea + e) or
rea - e) rather than the infinite rea) will ..,
probably be quite acceptable. The second
problem of infinite length range may be over-
come by including so much of the range that
the excluded portion will never be missed.
For example, consider the normal distribution.
While having a range of the probab-
ility of observing a point more than ten
standard deviations from the mean is only
1.524 x 10E-23. Of course, if this is
unacceptable then one hundred standard
deviations can be included with little
additional cost.

Although the theoretical limitations are
not important, the use of a piece-wise linear
majorizing function does require that the
density function p(x) yields rex) with a
reasonable amount of effort. For distribu-
tions having only a single shape this is not
important, since an appropriate rex) may be
determined once and for all. For example
see Kinderman and Ramage's [4] normal variate
generator. However, families of distribu-
tions such as the gamma and beta include mul-
tiple shapes. A generator designed to gener-
ate values from any member of the family
be able to quickly detarmine an appropriate
majorizing function. For example the beta
generators of reference [8] use the equations
for the location of the mode and points of
inflexion to locate the junctures of the
piece-wise linear segments. The points of
inflexion are critical since the convexity
or concavity of the density function at
various points is necessary to prove that ..,
indeed k rex) p(x) for all x.



V. FAST ACCEPTANCE
trials for the binomial. The commonly used
normal approximations could be avoided by the
use of rejection techniques.

3(a).

3(b) .
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6.

1.

2.

3.

The commonly used rectangular rejection
region has been generalized and the most gen-
eral form of rejection has been specialized to
the use of piece-wise linear majorizing func-
tions. The implications of the piece-wise
linear approach have been discussed and poten-
tial applications have been mentioned.

The rejection algorithm using the piece-
wise linear majorizing function has both
advantages and disadvantages compared to other
rejection methods. The disadvantage is that
the determination of the piece-wise linear
majorizing function can require a non-trivial
set-up cost. The expected advantages are

1. applicability to a wide variety of
distributions,

2. fast and easy generation of x in
step 1,

3. high probability of acceptance in
step 3, and

4. fast acceptance in step 3(a).

9.

4.

5.

7.

8.

10.

11 .
12.

If u t(x) b(x), accept x by
setting y ... x.
If u t(x) < p(x), accept x by
setting y ; x. Otherwise go to
step 1.

The theory underlying the algorithm has not
changed, since step 3(a) accepts x only if
3(b) would accept x anyway. However, the use
of step 3(a) often makes the evaluation of
p(x) unnecessary. Since density functions
often include time consuming operations such
as exponential and gamma functions, the
savings due to this minorizing function can
be substantial. In particular, a piece-wise
linear minorizing function is often easy to
determine and is always fast to evaluate.

Sometime a minorizing function is not
necessary. If a trapezoidal region is formed
by t(x) which is composed of triangular and
rectangular regions, then the rectangular
region is often entirely under p(x). In this
case no check is necessary in step 3, the
value of x being accepted automatically.

Note also that the minorizing function
b(x) may be used any majorizing function,
not just the piece-wise linear functions
discussed in Sections II and III.

In addition to choosing r(x) such that
the probability of acceptance is high,
another function b(x) may be chosen to reduce
the time necessary to determine whether or
not u < p(x) I t(x) in step 3. If b(x) is
substantially faster to evaluate than p(x)
and if b(x) < p(x) for all x, then the
algorithm may be made faster by replacing
step 3 with

'J'! • POTENTIAL APPLICAJ:IONS

There are a number of distributions to
which the above concepts can be applied. The
gamma distribution generators currently
available involve several logarithmic oper-
ations. The use of piece-wise linear major-
izing and minorizing functions would almost
certainly be faster. Pearson distributions
other than the gamma may also be amenable to
the piece-wise linear approach. Two families
which have well-known, but slow, generators,
the Weibull and lognormal, could also be
generated using this approach. The F and t
distributions, classically generated using
their relationships to the normal or the beta
distributions, could be more quickly generated
using the above techniques. In addition, the
J-shaped beta family could benefit from such
techniques. (Johnk's algorithm [3] for U-
shaped and the algorithms discussed in
Schmeiser and Shalaby [8] for bell-shaped beta
distributions probably preclude much faster
times using the above techniques.)

It is also possible that the piece-wise
.... linear techniques can be applied to discrete

such as the Poisson and bino-
mial. Current generators for these two
distributions require times proportional to
the mean of the Poisson and to the number of
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IMPLEMENTATION OF HAIt.?10NIC DATA ANALYSIS PROCEDURES
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ABSTRACT

An interactive and graphical data analysis system, GRAFSTAT, has been developed
whose underlying structure is based on harmonic or Fourier series methods. The
general organizational framework and content of the system is outlined in this
paper.

O. Major concerns and constraints

One general goal underlay the development of
GRAFS'l:AT. This was to make univariate and bivariate
harmonic data analysis procedures usable. Certainly
these new techniques not deal with all data
analysis applications. Thereiore, a wide variety of
conventional such as histograms, scatter,
fractile and frequency diagram options ce included
as program options alongside their harmonic nonpara-
metric counterparts.

\ START

The basic structure of GRAFSTAT can be divided
into nine subsystems, one of which, VIE'.ilEDIT DATA,
is central 1."\ the sense that almost all other sub-
systems are accessible when the VIEW/EDIT DATA frame
is on the cathode ray tube, CRT, screen. The figure
given below describes the distribution of the :lbe
subsystems in terms of calling sequence. As denoted
by the dual heads on all but one arrow, there is only
one one-way street, i.e., a sequence from data
must be re-entered before accessing alternative
sequences.

BIVARIATE TRANSFORMATION SMooTUING AtID DECOMPOSINGDATA SELECTION AND GENERATION MID
VARIABLE EXCHANGE SERIES UEIGHTS

I I
(,""-'"'" I I \Nonparame tric IRegression
Regression Regression ...-. VIEW/EDIT DATA r++ ( Blvariate :.....< and
Bands and Contours 1CorrelationStudent t

l , Ratio

DISPLAY AND CASE J MODIFICAnON UNIVARIATE COMPARISON UNIVARIATE DETAIL
AtID IDENTIFICATION !PDF and CDF

Enlarse Scale and Range Student t
Edit and Restore Data Kolmogoroff-Smirnoff UNIVARIATE TRANSFORMATION
Frequency, Full Screen and Histogram AND

Case f1 Plot Survi',al Curve VARIABLE EXCHANCE.

Figure 1. GRAFSTAT CALLING PATTEIt'f

Rpsearch supported in part by National Inst itutes of Health, Nat icmal Cancer
Institute Grant l-ROICA21448-0l
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Only two of the nine subsequences, DATA SELECTION
AND G!N'ERATION and LINEAR REGRESSION A.'ID BANDS. do not
contain options based on harmonic analysis. In most

_ program subsequences, both harmonic and nonparametric
estimation procedures are accessible alongside their
conventional counterparts. This makes it fairly
simple for a user to compare results obtained by new
and old methods.

Yith only two exceptions. the label of any
immediately accessible frame or option is always
displayed on the CRT screen. The eT.ceptions.
accessed by CONTROL 0 or Z. allow a user to return
to the immediately preceding frame or immediately
exit the program. Unlike the high-Ay where a driver
f:lJ1ds him- or herself· proceeding in a wrong direction.
and where a long distance must be travelled before
reversing direction, GRAFSTAT prOVides offramps for
immediate change of direction whenever the user
selects CONTROL O.

1. Data Selection and Generation

The first frame presented to a user allows the
ability to choose bet'tJeen the selection of natural,
and the generation of artificial. data. If a file of
natural data had· been analyzed prior to selection
of the artificial data generation frame, initial
values of artificial data parameters will be set
equal to estimates obtained from the most recently
analyzed file of natural data.

The natural data selection frames allow the user
to easily enter subsets of data and measurements of
up to six variables for further analvsis. The size of
the twenty-six natural data files which are currently
available on our system ranges from ten cases, each
containing two variables. to a maximum of three
thousand cases and twenty nine variables.

2. ViewlEdit Data

.- .... "'... • ,
I 2 2 2 1 2
I I
1 2 I ,
2
2 I, 1
2 I .1 1 PJ, • 1 J,
J 1 '2

I 1 I I t
I '2 , L
I 5 J 3 .
I • '2 I
S I '2 I I
I
'2 • J 1

3
'2 • ""1 I I
J i3 'z • J
'2 '2 2 ,

...- -- --

I GET oell CAIA
1••'1t,!.... DAfA
I JCI) II" IE IGHIS
I Cl"NGI! ,_

LloeM
"LOT I'IlIi t:O<lCUlS
:_CJ1I<AIICN
EJI I TO II< IVM

I •• , _ p,tCfeRS

"101 pUUs;:;I!EN
I E:n>_ "'OT 9:A,e
"I!GI! T "'OT s::ALe

l EDIT :lI.IA POINTS
"I!SICA! all; :Jjt,TA

•

-
In order to avoid cluttering the aT face with

unnecessary detail, only minimal scaling and other
numerical information is automatically displayed.
However, a user who wishes to obtain the numerical
coordinate of any point on a displayed curve, seatter
or other diagram can. by pointing with the light pen
to the appropriate location. have the associated
numerical values presented. Since GRAFSTAT allows
for an unlimited degree of display enlargement, the
roughness of light pen sensing can be overcome to
provide any needed degree of accuracy (un to the
degree of precision of our numerical
Yhen dealing with the variable "case number," a
special option can be executed to find the exact

_POSition in the data file of any displayed point.

Special options can be accessed bv a seauence of
identical control selections. For the first
display which appears after selecting the UNIVARIATE
COMPARISON - option overlays the histograms
constructed from t'tJo subgroups of data_ To display
the two histograms indiVidually. one need only select

a second or a third time.

All but 0 and Z options be initiated by
light pen sensing the option's label on the CRT
screen. With only three exceptions all options can
also be accessed by key-board. This form of selec-
tion is usually preferable to light-pen sensing.
The light pen. however. plays an important role in
the execution of many options. :E'or example. to
change the number of class intervals of a histogram
in the UNIVARIATJZ COMPARISON seog:nent, one need only
light-pen sense on any of the CRT display

• 20. A cursor will then 200ear
beneath the digit 2 and allow the user to the
n'xmber 20 by key-board entry.

FIGURE 2. VIEW!EDIT DATA FRA}!E

The V!EWIEDIT DATA frame consists in part of a
scatter or frequency diagram of variables
as X and Y in the DATA SELECTION
segment. Coordinate axes are to Dass
chrongh the sample means X a:1d Y ...nile the are

in sample standard deviaeion 'mits. The
X and Y sample median pair is bv a small
triangle placed within the displav. origor-al
and post-editing sample sizes as as
values of the sample correlation and X and Y stan-
dard are projected on the screen.

Although details of our computing hardware and
software as well as new statistical procedures
cannot even be skimmed over in this brief paper. one
very important COlll!llent seems mandatory before pro-
ceeding to outline the nine seg:nents of GRAFSTAT.
It would have been impossible to have developed this
system without the IMGRAF language and considerable
technical assistance provided by W. Dixon. J. Johnson.
C. and K. of the UCLA Health Sciences
computing facility. Too :nany individuals at our
end of the roughly four hundred miles which separates

IMLAC ter:ninal from UCLA have co.ntributed to
to make it practical to list their

names. However. without the assistance of the HSCF
Graphics group our own programmers and other scien-
tists could not have comoleted and used a small
portion of the whieh are outlined below.
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To obtain the coordinates of an
re?resented on the scatter diagram the user need
only sense the appropriate point tdth the li;ht pen.
I:1 certain applications, by ?lotting case number
againse a variable's numerical and using ene
expand plot scale option. numerical values can be
associated with individualized cases. A
easily utilized procedure for case identification,
which lists point coordinates and associated file
rank, is accessible whenever the PLOT SCALZ
option has left ten or ...er points on the screen.

3. Eivariste and
of Variables

Variables can be and
using a variety of procedures, rangi:1g



from a single log transformation to conventional
regression as well as nonparametric-ordac residual
calculation.

S. Nonoarametric Bivariate Contours, Regression
and Correlation

Although GRAFSTAT is designed primarily to
perform bivariate and univariate analyses, an X or
Y variable or both variables simultaneously can be
modified or combined with up to four additional
variables. A user can either create a new transformed
variable, or replace an old variable with a new value.
The latter process allows an unlimited series of
transformations to be executed in the memory space
prOVided for four Z or supplemental, as opposed to
the display or XI, variables.

By exchanging a Z with an X or Y variable the
user can view a variety of bivariate combinations
without returning to the DATA SELECTIOn A..'lD GENERATION
FRA..'1E 1. After any transformation or editing option
has been executed, a RESTORE ORIGONAL DATA option
is provided in the VIEW/EDIT DATA frame. By using
this option it is possible to quickly undo the
results of transformation and editing processes
without returni.."lg to Frame 1.
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4. Parametric Regression and Student's t
FIGURE 4. PDE CONTOURS NONPARAHETRIC

REGRESSION

.,

......................
A. The separation of contour subsets implies

bivariate bimodality and the eXistence of distinct
population subcomponents •

By selecting.option, PLOT PDE CONTOURS, a user
can obtain isopleths of a generalized histogram con-
structed above the X,! variate plane. The "terraces"
of this estimated "hill" of probability have several
uses among which are the folloWing:

length of the major axis of
contour tends to indicate
(see Tarter and Silvers (1975)

B. The slant and
an ellipse fitted to a
degree of relationship
Section 4) •
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?IGURE 3. TIl'ICAL LINEAR
REGRESSION AIm BA1IDS

The bivariate option, REGRESSrOX, allows
a user to obtain a least squares line fitted to the
points displayed in the DATA frame. After
selecting LINEAR REGRESSION, a user can elect to
obtain a set of 95% confidence or prediction bands
for this line.

The equation for the least squares line, an
of error cr I and the Student's t statisticYlx

for the null hypothesis that regression slope equals
8-0 are also displayed. By choosing a dichotomous
variable as X and a normally distributed variable
as Y, a user can use the LINEAR REGRESSION frame to
obtain a Student's t test for group difference.

C. By light-pen sensing on members of a list
of contour heights provided on the lower left hand
portion of the frame, the user can erase or recon-
struct anv of the displayed contours. This option
prOVides a "feel" for the three dimensional structure
of frequency associated X and ; variable values.

D. The size of the lowest contours in relation-
ship to the axes origin, i.e., the sample means
and graduations, i.e., the sample standard deviations,
conveys information about !>ivariate and
kurtosis.

A variety of nonparametric regression options are
accessible from PLOT PDE CONTOURS. The coordinates
of any point on a nonparametric regression curve can
be obtained by light-pen sensing. By sensing on ewo
points and obtaining their coordinates, a user can
compare the position of nonparametrtc and parametric
regression curves.

Three procedures can be from ?race 5
which utilize nonparametric of the standard
deviation of the Y variable given value of the
X variable, i.e., of 0 I . The most use-y x
ful of these options displays an estimate of the e

/ , 2/,..2 ('1 .- th •. Ycorrelation ratio ,,-0, v. ,. "te :lor e ."-,
Ylx Y; ? ?

variables are normal 1-0-: 10- = 0, the
YIX y

?opulation correlation coeffi=ient.) In a sense the
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correlation ratio provides a local as opposed to global
estimate of variate association and bivariate non-
normality (see Rietz pp. 129-31).

Roughly speaking, local as opposed to global estimation
procedures are used to estimate the parameters of the
two subpopulations. Preliminary research seems to
indicate that for some applications these local
estimators tend to be more insensitive to outliers
than are conventional estimators.

FIGURE 5. RATIO ESTIMATOR

6. Univariate Comoarison

The correlation ratio estimate shown in 5
indicates that for the GLUCOSE-PROTEIN BLOOD LEVELS
data beil'1g considered in this example, small values
of blood glucose levels tend to be more closely
associated with differences in blood protein levels
than do large values. An alternative interpretation
of this figure is that variation in protein levels
is much greater for individuals with high glucose
blood levels than it is for individuals with low
glucose blood levels.

By selecting RISTOGRAM, a user can obtain a pair
of histograms for the groups ot data being compared
in the UNIVARIATE COMPARISON ROUTINE. An additional
histogram option is. provided in the VIEW IEDIT segment •
The difference between these options is that the
UNIVARIATE COMPARISON variant adjusts the areas under
each of the two histograms to be equal. This is not
done by the VIEW IEDIT histogram segment. Thus if one
wishes to compare proportions, use of the UNIVARIATE
COMPARISON histograms is indicated. If group sample
sizes differ, one can graphically compare actual
frequencies or counts, rather than proportions,
i.e., counts scaled in accordance with sample size,
by the VIEW IEDIT data histogram.

After selecting the UNIVARIATE COMPARISON
HISTOGRAM OPTION, histograms associated with both
data groups will be presented for purposes of compari-
son. A second and then a third sensing on
allows a user to view each of the histograms
individually •

The UNIVARIATE COMPARISON segment contains a
survival curve estimation option. This program
section has been designed to link to our
life-table type options in order to utilize combina-
tions of complete and incomplete data. The same pro-
cedure used to select data subsets for comoarison
purposes is used by the survival curve estimation
option to distinguish complete from incomplete
observations.

The histogram segment
allows a user to specify a choice of from 1 to 30
class intervals. The VIElo1jEDIT data histogram,
which is designed to correspond to the VIEWIEDIT -
PLOT FULLSCREEN frequency diagram option, uses 22
class intervals which is the number of classes
associated with the frequency diagram option.
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By selection of the option
a user can compare the univariate distributions of
two data subgroups by means of a variety of displays.
The first frame presented after UNIVAR(Y) is chosen
is a modification of VIElo1! EDIT data designed to allow
a user to select appropriate data subgroups.

the X or key variable of this VIEWIEDIT
modification will be an attribute or dichotomous
variable, e.g., SEX = 0 male and SEX = 1
implies female. The program allows up to four
separate interlals to be selected within which values
of the X or key '",ariacle will assign cases to the T
or test group.

After specifying the intervals upon which the
test will be based, the program will display

distribution function estimates for the
test and its complement group. A Kolmogoroff-Smirnoff,
K-S, test statistic will be approximated as well as
the asymptotic 95% K-S critical point appropriate
for the sample sizes of the test and test complement
group (see Siegel (1956), p. 131).

By selecting PROB. DENSITY, a user can obtain a
of.estimated densities associated with the above

Since the standard group difference
t-tests can be obtained :rom the parametric regression

the univariate comparison frame displays
at-test" stat:;,stic which is computed very different-
ly from its regression counterpart.

7. Univariate Detail

As indicated by its name, the basic GRAFSTAT
program is in reality a combination of bivariate
and univariate subprograms. The bivariate portion
of BHLNK to contain many more conventional
procedures, e.g., data editing and residual con-
struction options, than does the univariate portion
UNIVAR. Conversely, L'N!VAR, either as automaticallv
linked to the bivariate section of BHLNK or else as'
used alone, contains many new nonparametric estima-
tion procedures which are not available in its bi-
variate counterpart. For although there
are few transfcr:nation options included L."1
those that are included contain an "automated"
suggested transfor:nation constant section (see
Tarter and Kowalski, 1972). Specifically, although
a user can use the transformation Y' = log(Y-C)in
both programs, in UNIVAR a "best" value for the
constant C will be suggested while in the bivariate
transformation segment, the user is given no assis-
tance in the selection of C. (Note that setting C=O
can lead to serious computational as well as
statistical problems for certain samples of data.)
He can of course copy down the value of C orovided
by UNIVAR for later use in other segments

Several display modification and enlargement
options are available in TR1IVAR. The user who wishes
to edit his data is advised to ?erform editing.



operations before branching to UNIVAR. However, while
UNIVAR permits only a few operations to be performed
on data, there are a large number of options available
in this program for operations invol',ing separation
and isolation of population subcomponents (see Tarter,
et a1., 1976).

For the long and short term components
of cancer survival probabUity 'densities can be
separated, and then compared or analyzed individually.

. A large number of parameter estimation alterna-
tives and transformation effectiveness checks are
provided in UNIVAR. Besides conventional sample mean
and median as well as estimated population median and
mode, UNIVAR permits a user to estimate location and,
in some instances, scale by a variety of new proce-
dures (see Tarter 1975, a and b). These methods can
be applied after population subcomponents have been
isolated.

Individualized density, cU1llUlative or survival
curve components can be reassembled by a UNIVAR
option. This procedure can both provide a check on
the decomposition process and in some cases provide
improved estimates due to the use of different density
estimation constants for different population
subcomponents.

A variety of UNIVAR options are designed to
counteract side effects of either kernel or series
density procedures. For example, the
option REDUCE first estimates and then compensates
for variance of displays based on non-negative
kernels. The option PERTURB tends ,to remove the
distorting effects of Fourier series periodicity.

Several mrIVAR options are designed to overcome
problems associated with particular types of data or
underlying distributions, e.g., densities with
straggling tails. We have found our method for
correc tion (the nonparametric analog of Sheppa1:d I s
correction) useful in a variety of cancer and other
studies.

8. Smooching and DecomDosimz Series Weights

The methods described in the last section are
all designed to deal with specific and known data
analysis obscacles, e.g., or data collected
with minimal precision. These methods do not
necessarily smooth a display and in particular, the
REDUCE option, which corrects for non-negative

excess variance, cends co roughen
a display (see Tarter and Raman, 1972).

are =y instances "..here a user may wish
obtain a smoothed display. High COntrast may

not be desirable since details may obscure
icportant global distributional features (see
Tarter and Kronmal, 1976, Section 2). For this
reason, the procedures previously described for
superimposed component variance have been
designed to work in reverse and allow a user to
smooth most distribu:ional displays.

Two distinct types of smoothing procedures are
actually available in all BHLNK subsegments. The
first procedure, the A method, is based upon proper-
ties of the cumulant generating function (see Kroneal,
1964 and Tartar and Silvers, 1975) and the second
FEJER \fEIGHTS, is based on series summation techniques
(see Kronmel and Tarter, 1968). The former procedure
can be used either to blur or resolve detail, i.e ••
decrease or increase contrast. The latter can only
be used co decrease contrast. The above methods
can be used simultaneously. The FEJER lfEIGHT

has in a few instances tended to temper a display
so that the Amethod can more effectively resolve
preViously hidden detail.

FEJER WEIGHTS and the A methods are available in _
both tJNIVAR and other segments of the program. The
A method tends to be very useful when used in conj unc-
tion with the CONTOUR program segments since in the
bivariate case covariance modification often is an
effective procedure for teasing apart distributional
subcomponents (see Tarter and SUvers (1975) Section
3).

9. Dis1)1&1 and case Modification and
Identification

Many options have been provided to modify dis-
plays and edit data. Axis scale as well as the mar-
gins between the data range and harmonic estimation
period can be set automatically or manually. When a
series of displays are used for comparison purposes,
e.g., by using thermofax transparency overlays, manual
input of identical axis scales allows displays to be
more easily compared. All data editing and display
lIlOd:if icaticn procedures can be reversed.

Since the VIE'..I'IEDIT data frame lists a large
number of options, we have provided a procedure which
utilizes the space otherwise reserved for the option
list to provide an enlarged display. By choosing
PLOT FULLSCREEN, one can also reset the display point
threshold which automatically determines whether a
scatter or frequency diagram will be presented. For
example. before modification by the user, this point
threshold is at sample size n .. 720. At this setting,
if more than 720 points are to be displayed, counts
of points occurring within preset intervals rather
than individual points will be presented. This •
option both protects the Cathode Ray Tube Phosphor
from being damaged by the proj ection of a large
number of coincident points, and permits a user to
obtain a better grasp of data distributions over rich
as opposed to sparse regions of concentration.

linen fewer than ten points are projected on the
sc:een, an option, SROW CORRESP CASES, is made
available which lists the point coordinates togecher
with the order of the points in the file. This option
was designed for outlier detection follow-up purposes.
The SHOW CORRESP CASES option can be used in conjunc-
tion with the PLOT SCALE option to find the
file rank and X, Y coordinates of any data point
subset.
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FINDING INFLUENTLU SUBSETS OF DATA IN REGRESSION MODELS

Roy E. Welsch and Stephen C. Peters
Center for Computational Research

Sloan School of
Institute of Technology

Abstract

This paper discusses a of techniques for identifying influential sub-
sets of data in estimated regression models. Single and multiple row methods using
deletion and infinitesimal perturbations are treated. The primary emphasis is on
the algorithmic issues arising in the computation of these diagnostic measures.

1. Introduction and Notation where

where we have replaced the usual estimate of J 2 , s2,
by

(2)

(3)
, T -1

s (i) o/(X :1:) jj
;)nETASij =

In order to assess the relative $agnitude of this
change for the j-ch component, b1, we divide by an
estiI:Late of the standard error of OJ to obtain

J

In this paper we explore a ·number of ways to iden-
tify subsets of data that appear to have a dispropor-
tionate influence on estimated linear regression
models and to diagnose which parts of the estimated
model are moSt affected by these subsets. Our main
goal is to discuss some of the algorithms needed to
compute these diagnostic measures and to point out
some unsolved problema. A more detailed discussion
of many of these diagnostic measures is contained in
Welsch and Kuh (1977) and Hoaglin and Welsch (1978).

The regression model will be denoted by y a X6+E:
with X an nxp matrix and the least-squares estimates
for B by b. Parentheses, as in b(1), will be used to
denote what row or subset of rows has been deleted
from the computation. The estimated error variance
will be called $2 and ri a Yi-Xib.

2. Single Row
in order to make the denominator stochastically inde-
pendent of the numerator in the Gaussian case. A
simple formula for sCi) is

The Euclidean norm of DFBETAS for each i is one way
to summarize all of the COefficient =hanges for a given
row. Another way, which does not depend on the parti-
cular coordinate system used to form the regression
model, is the scaled change in fit

We begin by presenting techniques for discovering
influential observations Which examine each row
separately. An influential obserration is one which,
when perturbed, has a relatively larger impact on the
estimated coefficients, standard errors, etc. than
is the case for most of the other obserrations. One
obvious means for finding such obserrations is to
delete each row, one at a time, and note the resul-
tant effect on the various calculated values.

Since the estimated coefficients are often of pri-
mary interest, we look first at the estimated coeffi-
cients, b(i), obtained by deleting the i-th roW'. The
change caused by this deletion is given by

! -1 T
(7. X) xiri

DFBETA =b-b(i) • (1)1-hi

_ 2
2 loti(n-p-l)s (i) .. (n-p)s2 - 7""'h'

.- i
(4)

(5)
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A detailed discussion of H is contained in Hoaglin
and Welsch (1978).

The influence of the response value. Yi' on the
fit is most directly in its leverage on the
corresponding fitted value Yi' and this information
is seen from (7) to be contained in hi. The hi may
also be interpreted as distance measures. Let X
denote the Xmatrix after centering by removing the
colUllll1 means. Then hi • hi+l/n and

We often multiply this by (n-p)!p to remove some of
the dependence on n and p. Additional details are
contained in Welsch and Kuh (1977).

We can see from (1) eo (5) that hi and ri are fun-
damental components of deletion diagnostics. Some
properties of hi will be discussed in the remainder
of this section and we will study special types of
residuals (like ri!s(i)1r:ni! in the next section.

The hi are the diagonal elements of the least-
squares projection matrix. also called the hat matrix.

(12)

(14)

3. Subset Methods

Given hi and Q, B is formed in about np2/2 additional
operations. Note that care must be exercised in
forming the quotient ri!Cl-hi ) when hi is very near
one. but this occurrence is seldom found in practice.

We can compute the hi in parallel by forming in turn
each column of Q. squaring its n elements. and adding
these new squares to the previous cotals.

The columns of Q are found by app.l.ying the elemen-
tary symmetric orthogonal transformat4 H1,H2' •••
which determine Q to p columns of the nxn identity
matrix. The cost of forming the hi this way is
about 2np2 operations.

Finally we consider the computation of the b-b(i)
given- in (1). The residuals are formed directly and
b-b(i) for i·l, •••• n are obtained from

B a (XrX)-lXTA =R-1Q!A (13)

where A is a diagonal alements ri/(l-hi ).
The columns of B are found by backsolving the system

(7)

(g)

(6)

y • Xb • Hy.

which determines the fit

and guidelines about what constitutes a large value
for hi can be derived fromMt.

We now turn to the computation of some of these
measures when X is of full rank and well conditioned.
All of these computations are based on the orthogonal
decomposition

x • QR (10)

where Q is nxp with Q!Q • I and R is ?XP upper trian-
gular. !he least-squares coefficients are found
stably and efficiently by back substitution in the
triangular system

Q and R can be computed most reliably by using
Householder transformations (Golub, 1965). An often
used alternative, :IDdified Gram-Schmidt (MGS) does
not suit our purposes because. without additional re-
orthogonalization steps. the Q delivered by MGS can
be severely nonorthogonal; Householder
do not have this defect. We require orthogonal Q
because if QTQ • I then H =QQT. The cost of deter-
mining the least-squares solution by Householder
transformations is approximately np2_p3/3 operations
where an operation is one floating-point multiply and
one floating-point addition. When X is ill-condi-
tioned more work is required. A rather complete
treatment is given in Golub, Klema. and (1977).

- Although in later sections we need some of
the off-diagonal elements of H a QQT, we will focus
here on the diagonal elements which are given by

3.1 Dummy Variables

If we JUSt look at each row separately, the
influence of one point may be masked by another or
the true impact and nature of a group of influential
observations may not be fully diagnosed. This im-
plies that we need to examine sets of rows of size
larger than one. In this section we will discuss
four approaches based on d=y variables. derivatives.
covariance measures. and Each of these
approaches can be specialized to single rows and used
to supplement the basic measures discussed in the pre-
vious section.

A number of authors (Mickey, Dunn. and Clark. 1967
and Wood, 1973) have suggested adding dummy variables, di'
with a one in row i and zeros elsewhere to the data
matrix. X. in order to assess which observations
might not be well represented by the regression model.
Usually a base set, B*, of misrepresented
rows is chosen by some means (such as residual
plots) or by the one row at a time methods (with re-
laxed cut-off levels) and then stepwise'regression
or Cp selection is used to choose possibly influential
subsets from this base set. If a variable is
retained then its corresyonding row merits special
attention.

These techniques have a certain appeal because
they consider more than one row at a time and because
of the computational procedures ::hat are available to
,perform stepwise and all possible subsets regression
(Furnival and Wilson, 1974). It is probably best to
first choose a set of explanatory variables and stay
with them while the dummy variables are selected.
Stepwise regression will fail to consider all possible
subsets of the dummy variables and may therefore m1ss
some interesting subsets of the base set. All possi-
ble subsets regression puts severe limits on the num-
ber of dummy variates that can be considered (the
size of a*) but branch and bound algorithms can be
improved somewhat when only dummy variables of this
special form are used. More work needs to be done in
this area.

In the special case when just one dummy variable

(9)

(11)

Mf .
• n(n-2). hi

n-1 Cl-1/n)-hi

which is one form of distance from Xi to i. The
Mahalanobis distance from to the center of all
other observations, xCi), is
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is added. the t statistic for this new variable is
just

(13)

which we have called a studentized residual (Hoaglin
and Welsch. 1978). As we can see from (1) or (5)
looking at (or just ri) i3 not sufficient for diag-
nosing influential observations because a large change
can occur when is small and hi is large (hi is
always or conversely•. This implies that the
general technique. with llIOre than one dUllllllY variate.
may not be adequate either and so we turn to some
other approaches.

a natural of the statistic developed
by Cook (1977).

Computing largest eigenvalues is. in general.
relatively expensive. However. there are several
ways to reduce the cost. For convenience we will
only consider the matrix corresponding to fitted
values. RE. Let F be the formed by con-
sidering only the columns of HE which are in a subset
D of a*. F can be decomposed into two matrices Q and R
as was discussed in section 2. (These are not the same
matrices. however.) Given R. Cline et al. (1977) have
devised a way to approximats the largest singular value
in O(p2) operations. R is updated (or downdated) as D
Ls changed by one row in operations. Thus the
search over subsets of size 1.2, •••• k* from the base
set of size m is of order

which is still fairly large. Weare seeking a better
method for this problem.

A lower cost approach makes use of the idea that
the trace of the square of a matrix reflects the mag-
nitude of the larger eisenvalues. This trace is sim-
ply the sum of squares of the elements of the matrix.
(EAE)D' Thus for each subset D we need to compute

(20)

(19)

(21)

• ,h.r* + 2 ) h ..
i.:D i i<j

Given T(D) for a subset D of size d. T(D') for D' the
same size as D but with one row changed can be ob-
tained in O(d) additions. Similarly. i! Dn has one
new row added to D. then T(D") is obtained in O(d+l)
additions. The total operation count for subsets of
size 1.2, •••• k* is of the order

k*
Zk(:n) Sk*2m
ksl K

(16)

which we combine into the pxu matrix

where E is a diagonal matrix with entries rl.rZ •••• r n •For :he fitted values we obtain

We now try to generalize (1) and (5) to the lar-
ger subset situation. To motivate this we consider
infinitesimal perturbation via derivatives rather
than deletion. In particular. we will alter the weight
attached to the 1th observation by replacing
var(':i) ,,2 with var(e:i) • (J2/wi • Differentiation of
the regression coefficients with respect to Wi' eval-
uated at Wi • 1. for i·l •••••n. prOVides a means for
examining the sensitivity of regression coefficients
and fitted values to a slight in the weights
given to each observation. rne it component of this
derivati',e is

3.2 Derivatives-

(17)

which can be comi:lined into thenxn matrix RE.
Our concern is with subsets of observations that

have a large influence. One way to identify such
subsets is to the directional derivatives.
(CV)!. or for the fit. vTER. where v is a column vec-
tor of unit length with nonzero entries only in the
rows of 3 subset. D. of the base set which we want to
perturb. Since we are interested only in the ex-
treme case. we are led to consider

and these are essentially all additions.
In the single rOll situation. the largest eigen-

value for the fit matrix is hirt when derivatives are
used and hirr/(l-hi)2 for differences.

It is also useful to consider putting the same
weight on all rows in D. That is. we will perturb all
of the rows in D simultaneously and by the same infini-
tesimal amount. For the fit deri7atives (17) the chain
rule implies that we need to compute the quadratic form

sup vTEHEv
v

(18)

where r" (rl •••.• r )T. This is of the same order as
,(21) and is once all additions.

3.3 Covariance

where we have used the fact that H2.a. These suprima
are given by the largest eigenvalues of the matrices
(CTC]D and (EREID where the subscript is used to de-
note the matrix formed by considering only the rows
and columns in D. These computations will. of course.
have to be done for all of the subsets in the base
set up to some given size (perhaps half the size of
the base set).

In the above discussion we could have replaced
the partial derivatives (16) by the difference approx-
imation. o-b(i). For the fitted values this leads to

It is easy to construct examples where the dele-
tion of a subset of observations does not affect 0
very much. but has a large effect on the variance of
b. Thp.se points are worth knowing about. because
they represent situations which may be used to in-
crease the precision in future experiments. It is
also important to know how the variance is
for subsets that do have a disproportionate influence ,..,
on the estimated parameters or fitted values.

One way to measure the change.in variance is to
compare the two matrices sZ(XTX)-" and
s2(D)(XT(D)X(D»-1 in the ratio
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COVRATIO _ [det [s2 (D)(XT(D) X(D) -t n1Ip •
det s2 (XTX) -1 J (22)

-T- 1 -1' T- 1 -·r T-
A(O) • det rZ Z - d Z vlv1Z - n:d Z v2v2Z

det(ZTZ)
(27)

Computation of this ratio is facilitated by the fact
that

• det (I-H)O
det XTX

(23)

For computation. several simplifications are possible.
First. note that (V1+v2JTi . 0 since the data has
been centered. Thus the numerator of (27) is equi-
valent to

(28)

(29)

where (I-H)O again stands for the submatrix formed by
considering only the rows and columns of I-H that are
contained in O. In if we let Z • [y:X] then

We now use the fact that when c1 and c2 are col=
vectors

where

COVRATIO. (n-p) a(O)
(n-p-d) [det(l-H) ](p+l)/p. 0

T
a(D) • det Z (O)Z(D) • det(I-?)O

det ZTZ

(24)

(25)

From (28) it is clear that

(30)

and then (29) may be used to show

where
and P • Z(ZTZ)-lZT. Andrews and Pregibon (1977) have
developed algorithms for computing quantities like
det(I-P)O based on the Choleski decomposition of I-P
which can compute all subsets of k* in order

(31)

(32)

COVRATIO can therefore be obtained at about twice that
cost.

When looking only at rows.

1
COVRATIO • /

---" + (l-h) Pn-p n-p i

(26)

T-Fortunately vIPv1 is very easy to compute since it
involves sums of elements of the projection matrix ?
tle generally examine the smaller values of :\(0) (cor-
responding to the fact that D is not like the rest of
the data. G) for subsets'D of B* of size 1.2 •.•. ,k*.
The computational details are similar to those "resented
earlier for the trace of the square of a matrix and
are of the same order (21). Further might be
made by considering branch and bound

_Ii we assume (only for guidance) that the
of Z are from a p-variate Gaussian distribution, we
can use the fact that

which is based on r.* hi' This points out the
utility of looking r i ana hi separately and in com-

like (26).
en-p-I) l-ti(D) 0, F
P A(D) p.n-p-1 (33)

3.4 Geometry

The principle reason' for looking at multiple-row
procedures is to deal with masking. However, we may
also want to see if an influential subset can be di-
vided into subgroups of similar nature. This is par-
ticularly interesting when the observations cannot be
grouped on the basis of prior knowledge (i.e., time)
or when there is prior knowledge but unexpected
groupings occur.

In this section the focus is more on geometric
outliers rather than on influential observations
because we will use the matrix Z formed by adjoining
y to X. Thus y loses its special place except where
significance levels for some of these statistics are
computed.

Consider two groups of observations 0 (of size d)
and G (of size n-d). Let Vt be an nxl vector con-
sisting of ones for rows contained in D with zeros
elsewhere and v2 be the same for G. The Wilks' A sta-
tistic for comparing D and G is (Rao. 1965, 1'.484)
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It is important that not just the smallest value of
A(D) be examined for each group size. k, since there
may be several significant groups of this size. Gaps
in the values of .\(D) for a given k are also \;sually
worth noting.

When D consists of JUSt i th row

The l;tter is. again. a particular combination of hi
and r i .
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NUMERICAL DETERMINATION OF THE DISTRIBUTIONS OF STOPPING V

ASSOCIATED WITH SEQUENTIAL PROCEDURES FOR DETECTING EPOCHS

OF SHIFT IN DISTRIBUTIONS OF DISCRETE RANDOM VARIABLES

by

S. Zacks
Case Western Reserve University

Cleveland, Ohio 44106

ABSTRACT

Algorithms for the determination of the distribution functions of stopping
variables are developed, for two types of sequential detection procedures. The
'first type is a Bayes quickest detection procedure. The second type is based on
the crossing of linear boundaries by sample sums. Approximations which are par-
tiCUlarly designed for computer application are given for the first type of
stopping variables. Wiener process approximations, which significantly reducee the amount of computations required for the other type of stopping variables, are
given too.
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SIR, A WORKING SYSTEM FOR MANAGING LARGE Al.'ID COMPLEX RESE..'\RCH DATA

Gary D. Anderson
University

Eli Cohen
Wally Gazdzik
Barry Robinson
Vogelbach Computer Center

Abstract:
The Scientific Information Retrieval (SIR) is a research data base management
system designed for use with case oriented research studies with multiple ·types
of records collected on each case. SIR provides the researcher with capabilities
for detailed naming and labelling of his data items, for specifying editing criteria
to use in detecting incoming data errors and for conducting batch or interactive
updates to or retrievals from the data base. The SIR language is based upon that
of the popular SPSS system and allows data subsets retrieved from the data base
to be written directly to either SPSS or BMDP save files for statistical analysis
by those systems. SIR includes a report generator and several descriptive statis-
tical options built directly into the system.
This paper provides examples of the use of SIR to address the following seven areas

to research data analysis: 1) complex data structures 2) description and
definition of the data items 3) multiple types of data items 4) insuring data
integrity and updating the data base 5) providing adequate data security
6) conducting data retrievals 7) providing interactive as well as batch access to
the research data base. .

I. Introduction

Many modern research studies involve the
need to manage and analyze large and comple.'C data
sets. These data sets are characterized by
multiple types of data collected on each study
subject and by the fact that the data Set is
dynamic in that it continues to grow over time.
In addition, the researcher wishes to perform
various analysis of the data as the study
progresses. ExaQPles of such data sets are
prOVided in the health sciences, for example, by
multi-center clinical trials, patient record
studies, health surveys, patient monitoring
studies, etc.

The following issues are felt by the authors
to be among the major ones which must be dealt
with in managing research data sets of this kind.

1) Complex data structure:

The data set w:ill contain varying amounts
of data on each study subject due to
missing observations or because of
different numbers of observations on each
subject.

2) Data description:

Iheabi11ry to prOVide each data item with
a meaningful and label is important
to avoid confusion when large numbers 0:
data items are involved for each studv
subject. Further labelling the of
each categorical data item prOVides
significantly improved clarity on tabula-
tions produced during analysis. The
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ability to produce a well organized
lis ting of the data item labels and
information about the structure in the
data set is also important. Good detailed
documentation on the definition and coding
conventions of each data item leads to a
minimization of confusion in analysis and
makes for good communication among
individuals involved in the study.

3) Various data types:

Much research data is categorical in type.
That is, only a small number of discrete
integers (or categories) represent the
possible observations on that data item.
In such cases, it is generally wasteful of
computer storage if these integer values
are stored as real numbers which require
an entire computer word of storage.
Therefore, the ability to specify integer
as well as decimal data is important.

The storage and management of character
information (e.g. names, addresses or

can be important to a research
study as well. Finally, the ability to
store and manipulate dates and clock
times in a standard consistent manner is
import.ant, particularly in ongoing
longitudinal studies.

4) Insuring data integirity:

Methods of insuring, to the greatest
degree possible, that data which is
allowed into the data file is correct
must be given high priority by the
researcher. Although there are no



automatic Methods of guaranteeing that no
wrong data values are placed into the dau
file. a number of things can be done to
assure a high level of data integrity.
Data can be checked for containment within
a specified range (continuous data) and
for being one of a specified set of
allowable (integer data). It
can also be checked for consistency with
other data within the same data record or
with data already in the data file.

S) Data security:

Data security is particularly important
when identifying infOrMation such as names.
addresses. social security
telephone numbers. etc. are kept as part
of study data lile. Sufficient
flexibility on security provisions is
necessary to allow different users of a
data set access to specific subsets of
the data relevant to their needs while
denying them access to sensiti-.re data
not important to their analysis.

6) Data retrieval capability:

The ability to desired subsets of
the data set. to carr! out extensive
computations and to display. report and
statistically analyze the retrieved data
are reqUired capabilities. Retrievals
should be possible both sequentially and
by direct access to the data on specified
individual sets of study subjects. Since
the data collected on each study subject
may be complex and large in volume, it
should be possible to do
subsetting computation within
subjects as well as between subjects.
Further, simple seraightforNsrd Means of
displaying retrieved inforn:ation in
reports as'well as the
ability to interface the reerieved data
values with existing statistical systems.

7) Interactive access:

With the increasing availability of power-
ful and responsive interactive computer
systems, it is important that the
researcher have flexibility in accessing
his data set interactively as well as in
the batch mode. Consequently, a good
interactive query system is a vital
research data processing tool.

II. Terminology

Before proceeding to discuss the SIR system,
several items of terminology will be defined to
clartIy their usage in the sections which follow.

1) Variable:

The individual items on which measurements
are taken and recordings are made in the
course of the sutdy, are defined to be the
study variables. The following
attributes are important to properly
describe and define a variable:

a) A short descriptive name, a more
lengthy label and specific labels for
indiVidual values of the variable if it

is categorical in type.

b) An identification of the type of data
the variable represents (continuous,
discrete. character, date or time)
along with size and location of its
values on the input medium.

c) A list of specific values that are
valid for the variable or a range
within which values for the variable
IllUst lie.

d) A list of values which are to represent
missing liata for the variable. -

2) Record:

The data record is defined to be a group
of one or more individual variables which
are considered together as a fixed
identifiable unit. Records are usually
composed of those variables which can
conveniently be measured together at a
point in time (e.g. the measurements taken
on a patient during each to a
clinic). Many different types of records
may need to be defined for a given situation
to contain all of the various kinds of
data collected on each subject over the
course of the study.

3) Case:

We will define a case to be the collection
of all records which contain measurements
on an indiVidual study subject. The _
nature of the research study will _
determine the way that a case will be
defined for that study. For example, in
a health study, a case is likely to be
the individual fdll1ilies or specific
individuals in the study. In a
geographic study, the case might be
cities, counties, states or countries,
etc.

4) Data base:

The data base is defined in this document
to be the total set of all records
presently collected on the cases of a
specific research study. The concept of
data base further assumes that there are
well defined between types
of records as well as between individual
records of specific types within the cases
of the study.

III. SIR - A case oriented hierarchical research data
base management system

In this paper, we will describe the
Scientific Information Retrieval system (SIR)l
which has been designed for use with large and
complex research data sets. This system is
fully operational on CDC6000 computers and
presently in use at a number of research
installations. No capabilities will be
described here which are not actually operation-
al at the time this document was written.

SIR is designed for use with case oriented
study data. By case oriented it is meant that
observations of various types are made on many
study subjects (persons, animals, cities, states,
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Student #25 (Case #25)

The follOWing schematic illustrates the
lavout of records for student #25 who

just completed grade five:

Record Type 1 Record Type 2

Grade /I Grade /I }sortTerm Ii vari-
ables

Record Type 2
Achievement Records

Ilst term
I2nd term
13rd term records

in this
ilst ter.4 case
I2nd ter.n
13rd term

Record Type 1
Aptitude Records

IGrade 41

For example, consider a study of the
relationship between aptitude tests and
students actual performance in the
classroom in language and mathematics.
Two types of records are collected on
each student (case) in the study. The
first record type consists of demographic
information on the student and aptitude
test scores collected at the start of
each school year in grades four through
eight. The second record type is made of
records collected at the close of each
term of the school year on achievement
during that term.

IGrade 5 I

lakes, etc.). For case oriented data sets, SIR
provides extensive capabilities to meet all of
the requirements outlined in the previous
section and provides many additional features
as well.

The SIR language conventions are based upon
the popular SPSS2 language syntax. For the
researcher who has used SPSS, the use of SIR
is a very natural step. SIR also has the
ability to create SPSS and BMDp3 save files
directly from SIR retrievals, thus providing
an easy link to all of the statistical capab-
ilities of these popular statistical systems.

SIR allows the researcher to establish a
hierarchical relationship among data items which
have been first grouped into records. A
hierarchy is defined here to be a structured
collection of records in which one record is
said to "own" many other records in a top-down
or tree-like structure.

With SIR, the hierarchy is established by
the relationships that naturally e."ist among
the data items contained in the various
records (e.g. a county belonging to a specific
state) or on the basis of how the data is to be
used (e.g. to maintain direct links between
specific records important to common analysis).
By properly designing the hierarchical rela-
tionahips among various records in the SIR data
base, the efficiency of common retrievals can
markedly be improved. The hierarchical
relationships can be completely ignored,
however, if a different structure needs to be
imposed for a specific analysis.

IV. Establishing the hierarchical structure in an SIR
data base

1) Case identification:

The initial step in defining a SIR data
base is the definition of the case
structure. Each case must posses.s a
unique identifier which distinguishes
it from any case in the data base.
This case identifier (case id) vari-
able is often a sequential
assigned to each case as it is admitted
to the study. It may, however, be
made UP of the subject's name, birth-
date, security number or any
other items which together will yield
a unique identification value for each
case in the study. Within a case, each
record must contain a record identif-
ication key which consists of:

a) the case identifier,

b) a number identifying which record
type it is a member of,

c) zero, one or more sorting values.

We see, then, that each case will have 5
or fewer aptitude records (i.e. 1 type I
record for each grade 4 through 8) and 15
or fewer achievement records (type 2).
SIR maintains a hierarchical relationship
between grades and associated term
achievement records for that grade because
these variables are named as sort variables
within the respective record types. In
this case, we can say that a specific
aptitude record for a given grade "owns"
the associated achievement records for
that grade.

V. Data within SIR

Before describing the process of defining and
using an SIR data base, it is appropriate that a few
comments on the data base security mechanisms
within SIR be discussed. A minimal level of
security is required for all data bases Illaintained
by SIR. This minimUQ level requires that a
prospective user know the name of the data base and
be able to specify a single global password before
access can be gained to the data base.

The case id value identifies the case
to which a record belongs while the
record type identifier specifies which
record type within the case a record
is a member of. The record sorting
values distinguish between multiple
records of the same type within a case
and establish any desired hierarchical
structures the records within
the case.

If he wishes, the data base administrator can
specify anyone of up to 31 levels (0 to 30) of
read and write access security to data items or
entire records in the SIR data base. In order to
gain access to a specific data item, the user's
security password must have a read or write
(depending upon which he is requesting permission
to do) security level which is as high or higher
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than the security level in effect on that item.
By judicious application of security levels to
the data by providing different users with
passwords having security levels appropriate to
their individual needs, the data base administrator
can retain complete control over access to data
base items.

VI. schema definition nrocess

The SIR schema is defined to be the complete
specification of the data base. The schema
definition process provides SIR with a description
of the case structure, initial estimates of the
size of the data base and all individual record -
and variable attributes.

1) Case definition:

The first part of the SIR schema definition
process supplies general information about the
data base and the individual cases. Within the
case definition section, the user specifies
security passwords, data base name, case
identifier, expected number of cases in the
data base, etc.

For example, the following might describe the
case definition section for the student
aptitude data base described earlier:

prOVides them with-a security lavel of zero
(the lowest level available). The data base
administrator =&y assign other passwords with
different levels at a later time as required.

The fifth statement names the variable as
the case This variable will have
a unique value for each case in the data base.
The next statement identifies that the fifth
column on each incoming data record will contain
the number of the record type to which that
data record belongs. The N OF CASES command
prOVides SIR with an 'upper limit' of
the total number of cases expected in this data
base. The next two statements prOVide an
estimate of the average number of records
expected per case and the maximum number of
record types to be defined for thiS data base
respeceive1y.

The LIST command specifies variables to
be placed in the common information record
which is a single record created by the system
for each case which contains the case identif-
ication variable and any other variables which
the user wishes to have convenient access to at
any time while retrieving inforamtion from the
data base. The DOCUMENT command is used to
provide explanatory information on the data
base which will be listed with SIR schema
listings when requested.

RECIYPE COL 5

FILE NAME

PASSWORD

READ SECURITY

T.m.ITE SECURIty

CASE ID

N OF CASES

RECS PER CASE

EDUCAT

SCHOOL

(30)DATABA(O) EVERYONE

IDNUM

5000

100

2) Record definition:

Once the case definition section is complete,
a separate record definition section must be
specified for each record type in the data
base. As we noted in Seceion IV, the student
aptitude data base has two record types; an
aptitude record type and an achievement record
type. Thus, two record specification sections
will be necessary.

The following example provides a possible
listing for the aptitude record definition
section and the of the achievement
record definition for this example SIR data
base:

MAX REC TYPES 9
1,APTrTt'DE

COMMON LIST

DOCUMDi"T

AGE,SEX,IQ

THIS IS
TO PROVIDE DATA '!HE
RELAUONSHIP OF Al'TITtmE
TESTS TO ACHIEVE-
MENT. FOR EACH CASE
'I'dERE ARE UP TO 5
RECORDS (GRADES 4-8) OF
TYPE 1 AND UP TO 15 TYPE
2 RECORDS

SORT RECORDS

DOCL'11E}iT

VARIABLE LIST

GRADE

STL'DENT A!'TITt'DE A1'D DEHO-
GRAPHIC RECORD.
THIS RECORD TiP=; CONTAINS TIP
TO .5 RECORDS PER CASE (ONE FOR
EACH GRADE).

The first two statements specify EDUCAT as the
name of the data base and SCHOOL as the global
password. These two names must be used in
requesting access to this data base for all
future work with it. The two security commands
assign read and write passwords for future use.
The password DATABA will be used as a master
password by the data base administrator since
it has a security level of 30 (the highest
level possible) and allows him access to all
records and variables in the data base regard-
less of the security assigned to them. This
initial creation run provides only one other
security password Tnis password
will be given to users of the system and

INPUT FOro-tAT

DATE VAR LIST

COMPUTE

VALID VALtJES

VAR Rlu'lGES

MISSL'lG

VAR SECURITY

(I4 ,L'i:,AZ.5,A8,Il, 12, I3,A3, 2I3)

AGE#(TESTDATE-BIRIHDAY)/36.5.Z5

SEX(1,2)

GRADE(4,3)/AGE(5,15)/IQ(60,200)

TO l"JATIl(BLANK)



va LABELS

R.EJ"ECT REC IF

RECORD SCm-A

SORT RECORDS

STA:.'DA..'lUHZED LANGUAGE
APntuDE SCORE/MATH, STMi1lAR,D-
IZED MATH APTITUDE SCORE

(AGE-GRADE LT 3)

2,ACliIEVE

(GRADNO) and then on the individual terms
within grades. Thus, the key for

records of type 2 will consist of case id, a
2 from the record type column, a grade number
and a term number. Because the grade is a sort
variable for both record types 1 and 2, the
record type 2 records are hierarchically
"owned" by the record type 1 records and direct
key linkage is retained between a grade record
from record type 1 and the associated term
records for that grade from Record Type 2.

VII. SIR schema documentation

The first RECORD SCHEMA statement in this
example indicates to the SIR system that the
record definition for Record Type 1 follows.
The record type is also given the name APTItuDE
so that it can be referred to in later
retrievals either by number or by name. The
SORT RECORDS command specifies that the records
within this record type will be ordered on the
variable GRADE. Thus, the record key for
records of type 1 will be made up of the case
id number, a 1 from the record type column and
the grade the student is in when this record is
collected. Again, the DOCUMENT command may be
used to prOVide documentaJ:j information, this
time with reference to this record type.

The VAlUABLE LIST, Im'UT FOR.11AT, COMPUTE,
MISSING and va commands are old
friends to many as they are directly compatible
with their SPSS counterparts. Several new
commands have been added, however, to those
available within SPSS. For example, the DATE
va LIST provides for variables to be read as a
date string, but to be scored within the system
as number of days from a reference date.
VALID and va RANGES allow the user to
specify permissable values for discrete vari-
ables and ranges for continuous variables
respectively. Further data integrity checks
can be supolied in the data definition by using
the REJECT"REC IF command which gives logical
consistencies which must be checked on incoming
data records beiore allowing the record into the
data base.

The va SECL1UTY command places read and write
security levels on variables. Variables have a
zero level by ieiault and, consequently,
can be accessed by any user who is permitted
access to the data base. .."hen higher security
levels are given to a variable, however, the
users security level (determined by the security
password he provides at his entrance into SIR)
must be as high or higher than that present on
the variable before he is allowed access to any
of its contents. In addition to the variable
security command, a record security command is
also available which permits security levels to
be assigned to the entire record type.

FollOWing the completion of the definition of
the first record type, a second RECORD SCHEMA
command begins the definition of the second
record type. Record Type 2 is named ACHIEVE
and the scores the student
receives at the end of eacn school term. As we
see by the SORT RECORD command, since this
record type contains records for different years
in school and then for each term within the
years, it will be ordered on grade in school
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Once the schema definition has been completed
for an SIR data base, the user can request one
of several schema listings. The schema listing
options produce x 11" page size document-
acion listings suitable for binding. These
schema listings are meant to serve as reference
documents on the study.

The user can choose one or more of the
following listing opcions:

1) STRUCTURE

This option prOVides a listing of the
contencs of the sections from
the schema definition command set along
with information on the case structure
for the data base.

2) LABELS

The LABELS option provides a list of
variable names and labels from the data
base.

3) REGULAR

This listing includes the variable
names, short labels, ranges, missing
values, location on the input data record,
etc.

4) DETAILED

This option provides the most complete
listing available which acids the complete
variable labels and the value labels to
those things included in the REGULAR
listing.

By default, the schema listing options
include all variables from every record type
in the data base. However, the user can
request specific record types and restrict the
listing further to only specified variables if
he wishes.

In addition to the schema listing options
available, the LIST STATS option allOWS the
user to request, at any time, a complete set
of statistics on the status of the data base.

VIII. SIR data input and uodating

1) Data input:

Once the SIR data definition process is
completed for at least one of the record
types in the data base, data records
belonging to that record type may be
entered into the data The data



records may follow the schema definition
deck directly in the sace computer run or
they may be input from a separate file or
even directly from an interactive
terminal if desired.

Several input modes are available to
provide control over data input:

a) The READ INPUT DATA cOlllllland indicates
both that new data can be added from
the incoming records and that old data
already in the data file can be over-
written by incoming records. Thus,
this option allows both adding new data
and updating old data in the same run.

b) The ADD REC option allows only new data
to be added and will allow no old data
to be overwritten.

c) The REPLACE REC option allows only old
data to be overwritten and no new data
to enter the data base. This option
would only be used if records already
in the data base were being re-entered
to correct some of the values they
contain.

d) The UPDATE REC ootion allows records
already in the base to be updated
by placing only the record identifiers
and the values to be changed in their
correct columns on the new updating
record, All other data on that record
is left unchanged in the data base.
The following schematic illustrates how
the UPDATE REC option words:

Variable list •••• ID VI .V2 V3 V4 V5

Before updating
in the data
base ••••••••••••103 7 35 49

Input update
record ••••••••••103 16 48

After updating
in the date
base ••••••••••••103 7 16 35 48

e) The MODIFY REC and the MODIFY REC IF
cOllllllaods are designed to be used inter-
actively to modify specific variable
values in the data base from a terminal.
With this the user first
identifies the record to be changed and
then using COMPUTE and IF statements,
modifies the variables desired by name.

2) Handling input errors:

Errors can occur in input data records for
a number of reasons. The value for a
variable may violate the valid values or
the range specified for chat variable in
the schema definition. rne value of one
variable may be inconsistent with that at
another variable. A record may be
attempting to overwrite one already in the
data base when SIR is in the ADD mode or
the opposite situation may be true when it
is in the REPLACE mode. Finally, a record
may be in violation of a security level
established for the data base.

Normally, any record containing an error
is not allowed to enter the data base so
as to protect its integrity. Instead, a
listing of tne record containing the
offending variable is reported and as much ,..,

about the error which caused
the rejection as possible is given. SIR
may, however, be instructed to save a copy
of any records with errors in a separate
file for easier modification and re-entry
if desired. As an option, the user may
further instruct SIR to accept records
with errors in ranges or valid values and
to place a missing value in the offending
variable location. In all cases, the
errors are reported to the user that he
may later correct the erroneous missing
values placed in the data base.

3) Deleting records from the data base:

Often, for many reasons, indiVidual records
or entire cases may need to be removed
from the data base. To facilitate removal
of unwanted records, several deletion
options are provided: .

a) The DELETE REC COlllllland deletes a single
record from the case for which the
record identification key is provided.

b) DELETE REC IF deletes all records in a
specified record type which satisfy a
logical criterion given. For example,
if we wished to delete all records
from Record Type 6 for which
variable AGE was not known, the fo110w- A
1ng cOlllllland could be used: ,..,

DELETE REC IF 6(EXISTS (AGE) EQ 0)

c) DELETE CASES deletes one or more cases
as specified by a case id list or an
interval ·of case ids.

d) DELETE CASE IF deletes all cases that
satisfy a given logical

SIR data retrievals

1) Introduction:

The key to the retrieval power of SIR lies
in its ability to con7eniently extract
desired data subsets from a complex
multiple record type data base. The
retrieved SIR data base subsets consist of
fixed length records tailored for statis-
tical analysis either by built-in
procedures within SIR itself or by SPSS,
BMDP or other statistical systems.
The records formed as the result of an SIR
retrieval may be processed directly by the
SIR descriptive statistical options or the
SIR report generator or they may be saved
as a new SIR data base. Just as easily,
they may be saved as an SPSS or BMDP save
file where the variable specification
information relevant to the host statis-
tical system is passed on directly to the A
save file. Finally, records formed by a ,..,
retrieval cay be written as a card image
file in a acceptable as input to any
statistical program which the user wishes
to use.



The SPSS statements then tell SPSS to
perform the desired paired t-test analysis
on the data SIR has written to the SPSS
save file COHT48.

As a second example, suppose the researcher
wishes to perform multiple linear regress-
ion to determine the respective ability
of age, sex, IQ and aptitude scores from
the aptitude record to the vari-
ability in average achievement scores
received by the student. rne following
SIR retrieval program and SPSS control
card deck will accomplish this analysis:

formed which contains the four summary
variable values for !.Al{G4 through MATH8.
This summary record is then written to a
file called COHT48 which is an SPSS save
file completely cOmpatible with the SPSS
system. The retireval program will be
applied repeatedly to each case in the
student data base and will create exactly
one summary record like the one described
above for each student.

2) summary records:

Variables created during an SIR retrieval
are called summary variables. A summary
variable can be a variable moved directly
from the data base or it can be a new
variable computed from data base variables
or other information as part of the
retrieval process. The records produced
by the retrieval process are called summar]
records. It is the summary records that
are then available for further analysis.

A retrieval is defined by a series of SIR
commands forming a retrieval program. 4
When the retireval program is executed by
SIR, each pass through the program creates
one fixed length summary record composed
of the summary variables defined within
the retrieval program.

3) Retrieving a single summar] record from
each case:

As an example of an SIR retrieval, consider
the situation where the user of the student
data base defined previously wishes to use
SPSS to perform a paired t-test on langu-
age and mathematical aptitude scores
between grades four and eight. The
following SIR and SPSS command statements
will perform this analysis:

SIR statements:

SIR statements:

GET FILE

PASSWORD

FOR E.<\CH REC

SELECT REC IF

EDUCAT

SCHOOL

APTITUDE

(GRADE EQ 5 OR 6 OR 7)
GET FILE

. PASSWORD

EDUCAT

SCHOOL
MOVE VAR LIST

PROCESS REC ACHIEVE,WITH (GRADE)
PROCESS REC

COMPUTE

APTITUDE,WI'!".! (4)

LANG4=LANGUAGE;MATH4=MATH
COMPUTE ;

AVGL=MEANR(ACm....u'iG)

PROCESS REC

COMPUTE

APTIn'DE,WITH (8)

LANG8=LANGUAGE;}!ATH8=MATH
SPSS SAVE FILE FILENA}m=EDURZG/

(6)<;R6 (7)GR7
SPSS SAVE FILE

FINISH
FLTISH

SPSS statements:

RUN EACH

SPSS statements:

GET FILE

T-TEST

OPTIONS

FINISH

COMT48

WITH LrlllG8/
HATH4 WITH MATHS/

2

GET FILE

REGRESSION

EDUREG

VARIABLES=AGE TO AYGL/
REGRESSION=AVQl InTI! AGE
TO MATH/
REGRESSION=AVGL WITH AGE
TO MATH/

In this the first PROCESS REC
statement indicates to SIR that record
keys are to be used to retrieve the grade
four record from among all aptitude (type
1) records for a student. After this
record has been retrieved, two summary
variables; and MArd4, are to be
created from the language and mathematical
aptitude scores respectively found on that
record. The second PROCESS REC statement
tells SIR to retrieve the grade 8 record
from the aptitude records for the same
student. By the same method as before,
two variables and MATH8 are created
from this record. A summary record is now
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STATISTICS ALL

FINISH

In this example, the FOR EACH REC command
tells that it is to create a summary
record for each record found in the
aptitude record type (type 1) that
satisfies the SELECT IF command (i.e. that
belong to grades 5, 6 or 7). Each time a
grade 5, 6 or 7 record is found, the
values on that record for AGE to are
moved into the summary record and the
PROCESS REC command following is
This command tells SIR to g9 into the



achievement record type (type 2) to the
records for the same grade as on the type
1 record just processed (e.g. grade 5) and
calculate the mean mathematics and language
achievement scores over that entire grade
and place them in the summary record being
created under the names AVGM and AVGL
respectively. The result will be a summary
record for each grade 5, 6 and 7 respec-
tively for each student in the data base.
These summary records are written to an
SFSS save file called EDUREG which is
divided into three subfiles, one subfile
for each of the three grades being
analyzed.

The SPSS control cards listed will then
perform separate multiple linear regression
analysis on the average achievement scores
for mathematics and language within each
of the three grades 5, 6 and 7.

4) Retrieval procedures available within SIR:

A number of automatic procedures are
available within SIR to process the summary
records created by a retrieval in addition
to the SPSS save file procedure which we
have used in both of the examples just
discussed. The following is a complete
list of the SIR procedures which will act
directly on sets of summary records
resulting from an SIR retrieval:

a) CONDESCRI?TIVE

This procedure is similar to the SPSS
CONDESCRIPTIVE statistical option. It
provides summary statistics (mean,
standard deviation, minimum, etc.) on
continuous variables.

b) FREQUENCIES

which are in effect within SIR for
the summary variables involved will
also be written to the SPSS save file
created by this procedure.

g) B}!DP SAVE FILE

As with the SPSS SAVE FILE procedure,
this procedure the summary
records to a file compatible with BMDF
save files for direct analysis by that
statistical system.

h) REPORT

The REPORT procedure provides capabil-
ities for generating complex multi-level
reports from the summary records
resulting from a retrieval. The ability
to generate sequential reports
within the SIR retrieval programs
directly. Consequently, the REPORT
procedure will only be used when the
summary records must be re-ordered
before generating the report or when
the report is of a complex multi-level
nature.

5) An example report:

The report procedure is sufficiently
important to warrant presenting an
example here to illustrate how it might be
used. Suppose the researcher wishes to
obtain a list, for each student by grade.
of his IQ, mathematics aptitude score and
his average achievement score
for that year. Also, at the end of each
grade, he wants to list the average values
of these scores over all students when
they were in that grade. The report might
look like the following:

Univariate frequency count distributions
and histograms may be generated using
this procedure.

MATH SCORE REPORT

GRADE NUMBER 5

PAGE 1

c) PLOT

The PLOT procedure allows the user to
generate two way scattergram plots of

variables with the option of
stratifying the plots on a third
variable.

d) SIR SAVE FILE

This procedure causes the summary
records to be written as a new SIR data
base.

e) WRITE RECORDS

MATH A"It'E.}!ATH
STUDENT'S IQ APTIT- ACHIEVE-
NAME ODE MENT------------------------------------------
JONES, JAY 83 63 74.8
MASON, SUE 85 68 70.4
ABBOT, JA."IE 93 78 72.1
PIIM,JON 93 81 79.6
JONES, SEAJ.'i 94 65 83.3

POWERS.ED 127· 94 97.0
ABJ.'lfOLD ,JD! 135 91 93.8
------------------------------------------

With this procedure the user can write
the summary records to a card image
file with a specified format so that
he can later read them into any program
he chooses for further analysis.

f) SPSS SAVE FILE

112

MATH SCORE REPORT

GRADE NUMBER 6

87 82.5
PAGE 12

As described in the examples above, this
procedure the summary records as
an SPSS save file for direct processing
by the SPSS system. All variable names,
labels, missing value designators, etc.,
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The following SIR retrieval and report
procedure could be used to produce this
report:



SIR retrieval commands:

GET FILE EDUCAT

PASSWORD SCHOOL

FOR EACH REC APTITUDE

MOVE VAP.. LIST NAME,IQ,GRADE,MATH

1) TAPE STORE

This utility stores the SIR files ror
a given data base to magentic tape.

2) PURGE SIR FILE

Using this utility, the user can purge
an entire SIR data base from the computer
disc.

3) SIR CARD DUMP

SIR report commands:

X. SIR utilities

No effore will be made in. this present:ation
to explain in deeail the statements in this
SIR repore example. For more information
on ehe REPORT procedure, the user is
referred to the SIR Manual. l

In order to prOVide the user with the ability
to store his SIR data base to tape, to obtain raw
listings of the contents of an SIR data base, to
produce merged or subseced SIR data bases or to
transport an SIR data base to a foreign computer,
a number of utility options have been prOVided.
!he following is a complete list of utilities
which are a part of SIR system: .

PROCESS REC

COMPUTE

REPORT

!.EVE!.

HEADING

COMPUTE

AT lll.'I)
. COMPUTE

WRITE:

COMPUTE:

END REPORT

ACHIEVE,WITH(GRADE)

AVGMAnI-MEANR(ACRMATH)

SORT-GRADE,IQ,MATH

1 ,GRADE

'MATH SCORE REPORT',
llX. 'PAGE' ,PAGE(I3)!!
'GRADE NtlHBER' ,
ORADE (I3)!
'STUDENTS' ,16T, 'IQ',
24T, 'M.<\nI' ,34T, 'AVE.
MATH' !
'NAME' , 24T, 'APTITUDE' ,
34T, 'ACHIEVEMENT'!
,---------------------,t ....__ _ -:-__ '

IQSUM-O;APTSUM=O;
ACHSUM=O; N=O

,-,-----
!'AVERAGES', 16T,IQA(I3),
24T,APTA(I3),34T,ACdA
(FS .1)

2

24T,MATH(I3),34T,
AVGMATH(F5.1)

IQSUM-IQSUM+IQ;APTSUM=
APTStTM#'.AnI;ACHS1.l!1=
ACHSUM+AVG}'.ATH;N=N+l

This utility is designed for transporting
the aIR data base foreign
computers. It dumps the data base to a
file in a card image format which can
then be read directly int.o another
comput.er.

4) SIR F!I.E LIST

Oft.en t.he user may wish t.o dump portions
of t.he SIR dat.a base cont.ents directly
t.o an offline printing device. This
ut.ilit.y provides t.his ability wit.hout. t.he
formalit.y of defining a specific SIR
ret.rieval.

5) SIR SUBSET

The user can produce a new SIR data base,
using t.his utility, which in one of
several ways is a direct subset of the
initial SIR dat.a base. For example, he
can produce a data base containing only
one of the many record cypes that may be
in the master SIR data base. On the other
hand, he could produce a subset SIR data
·base that contains all of the record
types within each case, but only
contains a sample (say 1%) of the cases
from the master file. Subset files are
often useful for testing retrievals
before running them against the master
file.

6) SIR MERGE

Using this utility, the user can add the
contents of one SIR data base to
another SIR data base. Very often, for
example, it is useful to add the summary
records from a retrieval back into the
caster file as a new record type :0
facilitate further

XI. The SIR QUERY subsyste:il

The query subsystem provides the SIR user
with an interactive, oriented subsystem
which makes SIR a true blend between an inter-
active and a batch system. Using the interactive
editor facility built inco the query subsystem,
the SIR user can:

1) Build his own procedures which may then
be either executed directly from the
terminal at that :ime or stored within
che data base users procedure file.

2) Execute procedures which have been
previously stored within che da:a base
user procedure file.

The editor capability within the SIR query
subsystem is a fully implecented, line number
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oriented editor feacu:ing searching, tab setting,
and line modification operations. The editor may
be considered as a wo:k area, similar to its use
with BASIC language systems, within which programs
may be built and from which they may be executed,
stored, etc.

Within the query subsystem, SIR retrieval
programs may be built and executed which inter-
actively prompt the user for appropriate input.
The interactive program may, in turn, call other
previously defined procedures stored in the data
base and pass parameters to these called proced-
ures as necessary. Thus, a user can bulld a set
of retrieval procedures or reports specific to
his data base which can then be executed as needed
directly from within the data base itself.

XII. Conclusion

In this paper we have discussed the
Scientific Information Retrieval system. SIR has
been designed for use by researchers to manage
complex case oriented research data sets of either
large or small size. Although SIR was designed
with the needs of the health sciences researcher
specifically in mind, its application extends to
all areas of research where multiple types of
data are being collected on many cases over time.

It has been impossible to go into detail in
this short document on the large number of
commands, special functions and operations
available within SIR system. The interested
reader is encouraged to request further detailed
information directly from the authors.
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DATA MANAGEMENt IN SAS AND INTERFACES TO OTHER SYSTEMS

A. J. Barr
SAS Institute

Abstract

In one system, SAS offers data management, statistical procedures, and a
language. This integrated approach means that the individual

SAS user (or the organization using SAS) needs a smaller mass of knowledge for
effective data analysis, since language conventions, data element standards,
and error conditions are handled consistently across all three application areas.
Features of the data management system are discussed and the counterparts in SAS
to the Relational Data Model are mentioned.

1. Counterparts tn SAS to the Relational Data

The SAS data canagement facilities manipulata rec-
tangular data sets, which are also called "flat files."
In the SAS vocabulary, the columns of the data set are
called "variables," ar.d the rows are "observations."
Codd's Relational Data Model (1) has brought added

to the elementary. data organization used
in SAS, which is augmented by several operators.

In (3), Date gives four examples of the relational
operators' use. Below, Date's examples are coded in
SAS to show analogous capabilities. The data sets used
in these examples are:

DATA SLTPPLIER;
LABEL SNO=SUFPLIER

NAME;

INPUT SNO $ PMO ;; QU&"lTITY; CARDS j
51 PI 30
Sl P2 20
51 P3 40
52 PI 30
52 P2 40
S3 i?2 20
S3 P3 30

Example 1. the location of the supplier Sl.
This is the ROM Select operator. In SA5 we code:

DATA SuBSET: SET SUPPLIER; IF SNO='Sl':

giving the data set SUBSET,

SNO STATlJS LOCATION

Sl S}!ITH 20 LONDON
SMO $ $ STATUS LOCATION$;CARDS;
Sl SMITH 20 LOHDON
S2 JONES 10 PARIS
S3 CLARK 20 LONDON

DATA PARTS;
LABEL

NAME;

INPUT PMO $ PNAME $ COLOR $ ;''EIGHT LOCATION$; CARDS;
PI NUT R..""'D 12 LONDON
P2 BOLT GREEN 17 PARIS
P3 SCRE'.v BLUE 17 Rm-!E
P4 SCREW RED 14 P.o\RIS

DATA SP;
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Example 2. Find SNO and STATUS :or in Lon-
don. This uses the ROM P=ojection Operator. In SAS
we code':

DATA; SET SUPPLIER; IF LOCATION='LOrIDON':
KEEP SNO 5TATU3;

FROe SORT;BY SNO STATUS:
DATA LOrIDON;5ET: BY SNO STArJ5:

IF FIRST. STAreS;

giving, SNO STATUS
Sl 20
53 20

Example 3. Find for parts supplier by supplier
51. This uses the ROM Join Operator. In SAS che
MERGE scatement the operation:



DATA SP;!F SNO.'Sl';
DATA TEMP2;

MERGE PARTS;BY FMO;
PROC SORT;BY PNA..'iE;
DAT.o\ PARTNA.'!E; SET TEMP2; BY

IF FIRST.PNA..'iE; KEEP PMAME;

IF AGE 16<OR AGE>80 THEN ERROR

This statement would set an error flag if the AGE
variable were not in the acceptable range, and would
also print out the value of the AGE variable and
print the input record.

Example 4. For each part supplier, find 1'NO and names
of all locations supplying the part. This uses both
ROM Join and Projection operators.

DATA TEMP: MERGE SP SUPPLIER; BY SNO;
KEEl' PNO LOCATION;

PROC SORT;BY 1'NO LOCATION;
DATA TEMP;SET TEMP;BY 1'MO LOCATION;
IF FIRST.LOCATION;

PNA..'1E
NUT
BOLT
SCREW

giving,

giving, FMO
1'1
1'2
1'3
Pl
1'2

:OCATION
L01"DON
:ONDON
LONDON
PARIS
PARIS

SAS provides two ways to correct errors that
are detected: a merge updating method and an on-line
interactive update procedure.

The merge updating method has traditionally been
used by business. For this method, both the old mas-
ter and the transaction data sets are sorted by a
common key. A merge process matches the transaction
records to the records of the old master by compar-
ing the sorted key data element. After all the
transaction data is applied to the old master record.
the master record is written on the new master
data set. It is possible to add and delete observa-
tions with this method and to alter the default
updating action with SAS programming statements.

For interactive updating, SAS provides the EDITOR
procedure, which works under the Time Sharing Option
(TSO) of the IBM Operating System. The procedure
works in a direct access mode. so that only the data
being 1IlOdified is read or written. The user can
display. update, delete, or add data with EDITOR.

Chamberlain (2) lists positive attributes of che
Relational Data Model, and these attributes also apply
to che SAS data management scheme:

1 Simplicity. Users see a single, consistent
structure.

2 Data Indeoendence. The user's program is indepen-
dent of the way the data is stored.

3 Symmetrv. Data base systens that are based on
between records make some questions

easier than others. In a hierarchical data base,
<;uestions that start by asking conditions of. the
root and progres$ out the branches to the leaves
are easily answered. "Questions not reflecting
this pref.erred structure can be asked awkwardly
if at all. Since information is represented by
data values in relations, there is not a pre-
ferred format :or a question at the user interface."

" Strong Theoretic Foundation. Chamberlain points
out the mathematical foundation of the Relational
Data Model. The SAS data management operators are
not derived so formal17, but are rather concepts
that evolved to meet the needs of our users.

These tend to support the rectangular
file approach it is augmented by a good set of
data management operators. But there are benefits
f=om hierar.chical organizations as well. The above
arguments fail to recognize chat there is always
some organizational to data that

important to the updating, maintenance and
report preparation processes. Also, redundant data
must be stored to act as keys for joining the data
sets. In a data set, the name of the
parent need not be stored with the data for each
child's record.

2. Editing and

The SAS prografining language is used for eciting
data for errors. For example, to check for an invalid
age variable for college students, this statement
could be written:
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3. Hierarchical Data Sets

Because the SAS statement can be used as a
programming statement like the GET statement in PLII,
SAS can read existing data sets which have a hier-
archical structure. Examples of this kind of data
set are the Public Use Samples of the of the ,..,
Census and computer performance data. SAS also handles
files containing many different record types easily:
an INPUT statement reads enough of the record to
determine the record type, then another INPUT statement
reads the variables in the format specific to that
record type.

To aid in processing large diverse data sets.
SAS breaks them into useful subsets. Thus such
a data set is usually stored as several SAS data sets.
When data from different data sets must be processed
together, the SAS statement is used. This
approach to large data files increases the efficiency

which large of computer performance data
can be processed, since many SAS data sets can be con-
structed in one pass of a raw data set.

4. Computer-Produced Data Set

SAS data sets are self-defining, with the data
set dictionar; stored with the data. This that
the data set cannot ever become separated from its
dictionary. Besides against diccionary
loss, this scheme also against the equally
bad situation in which the dictionary does not exactly
match the data set. The answers cne gets in this
situation cay look normal, making the hard to
detect:.

When many people access the same data, documen-
tation describing the data base is essential. The

procedure in SAS provides such a desc=ipcion e
of a SAS data set. This desl:rip:ion includes the
variable names, variable labels, input and output
formats, and length and storage code of the variables.
CONTENTS also prints a hiscory of the data set, includ-
ing the programs that produced the data set, and the
date and times these programs were executed. CONTE;ITS



also prints a physical description of the SAS data set,
including the tape or disk volume of the data set,
the data set name, the amount of disk space used, and
the cost to store the data set.

The information produced by is the same
as that maintained by the "data dictionaries" associated
with large data bases. The Osiris CODEBOOK LIST (4) is
a very similar features to CONTENTS; it produces the
value labels and what ranges of the variables are in
error.

5. Access Method

Basic to the SAS approach to data management is
the concept of multiple data sets, and S·AS maintains
collections of data sets. Before the 1976 implementa-
tion of SAS, we used the access methods available with
the IBM Operating System. However, the limitations of
this method were frustrating. For example, only one
member of a partitioned data set could be written at
a time. When a member of a data set was
deleted, the space occupied by the deleted member was
not available for other uses until a separate job
was run to compress the data set.

Consequently, for SAS76 we implemented an access
method that enables many data sets to be written con-
currently. Its disk management is governed by one
simple rule, ''W1ten more space is needed for a SAS da.ta
set, use the first empty track in phySical data
set." t.ith this approach, most SAS users never need
to do any space maintenance of SAS data sets.

The problem of directory block allocation is also
solved because the directory of a physical data set
that contains many SAS data sets is itself a SAS data
set. This means that any number of SAS data sets can
be stored in a physical data set, and no allocation
of directpry blocks is necessary.

Although SAS data sets are basically sequential,
a direct accessing scheme is maintained. Each obser-
vation of a SAS data set can be located directly by
its obser/ation and the SAS statistical pro-
cedures make good use of the direct access mode, as
does ED!TOR. The statistical procedures sometimes
also create temporary data sets which are written
in the work space along with SAS data sets, and thus
do not requirG a separate allocation.

In addition to the disk access method, there is
a similar access for storing SAS data sets on
tape. Because it is usually not feasible to store
data sets containing over a million records on disk,
they are stored on tape most cases.

6. Data Elements

SAS has both numeric data elements and character
data elements with lengths up to 200. The numeric
data are stored as floating point numbers
with up to l7-digit accuracy. Some storage compression
can be achie7ed by truncating the floating point num-
bers. A two-digit number can be stored as a floating
point number with one byte for the and one
;yte for the mantissa.

SAS allows 28 different missing values to be
maintained. These missing values are coded by using
the 255 non-zero exponent combinations along with a
zero mantissa; the IBM 360/370 series never generates
these combinations as a result of floating point oper-
ations. Our programs can test for missing values very

efficiently: if the number has a floating
point value, it cannot be missing. If it tests as
zero but the exponent is non-zero, the number is a
missing value.

Standards for data, time, and date-time data ele-
ments have recently been implemented. Time is uniformly
stored in units of seconds. Dates are stored as the
number of days since January 1, 1960, and date-time
is stored as the number of seconds since January 1, 1960.
These conventions make it wasy to calculate differences
in times. For inputting, printing. and manipulating
date, time, and date-time data elements, SAS offers a
. sizable collection of functions and format routines.

7. Svstem Imolementation

SAS compiles the user's data management and pro-
gramming commands and generates machine instructions,
which are then executed directly by the computer.

Some other systems are implemented through an
interpretive mode of In these systems,
the compiler produces output that acts as input to
another program. Glass (5) compares the timing for
executive compiler-generated machine code and his
interpretive code, and finds from 2.5 to 33 times
faster execution of machine code. This efficiency
improvement the size of the files that may
be efficiently maintained and processed sequentially
by as much as 10 to 30 times.

8. Renort Writing

Report writing in SAS is an integral part of the
SAS programming language. The report writer is used
to print raw data, as well as statistics derived from
the data. If it were not present, some other pro-
gramming language would be needed: the user would
thus need much more knowledge to produce a report
based upon data stored in SAS.

In our 1972 system, we always had a hard tiQe try-
ing to get users to save costs by storing their data
in SAS. The most commcn reason users gave for not
storing their data in SAS was that they they
never could get it back out of SAS. The report-
writing ability is a straightfor,;;ard way of copying
a SAS data set into a file that most System
programs can process.

9. Interfaces with

Automated interchange of information among the
major statistical systems is possible because of their
self-defining file structures. The SAS procedure
CONVERT, which was originally developed so that data
stored by the 1972 versior. of SAS could be processed,
was later extended to convert data stored by the BMDP,
SPSS, AND OSIRIS systems.

The "stereo sound system" modular aooroach to data
analysis is preferred by many This approach
takes the data base system best suited to the user's
needs and interfaces it with a report w.iter and a sta-
tistical system. In response to many in the
tical industry using the INQUIRE data management sys-
tem, a procedure for converting data stored in
into a SAS data set was developed.

Many users want to use programs on SAS data
sets. The SAS procedure copies a SAS data set into
a BMDP save file, and the ENDP ;Jrogram is executed by
the SAS supervisor. In this way, many BNDP programs



can be executed in the same SAS job. This procedure
was recently improved by eliminating the step that
copies the SAS data set into a BMDP save file. The
BMDP program is now loaded from the library and the
caller patches into the incore version of the
program. mten the BMDP progra1ll calls its "get data"
subroutine, the call is diverted into the SAS code,
which fills the BMDP data area with the SAS
data. This change required that the linkage editor

dictionary of the program be read fro1ll the
load 1IIodule in order to find the address of the "get
data" subroutine.
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ABSTRACT

"large" files used in statistical computing has grown
the last 15 years. This paper describes the evolution
file sizes grew from a few boxes of cards to multiple

1. INTRODUCTION

A general statistical computing system
attempts to be reasonably usable over a
large area of applications. Problems can
surface when the area includes extremes such
as simple batch versus prompting
interactive, or core resident files versus
census files. It reqUires a tremendous
amount of -",ork to augment a batch system
with such as prompting, error
correction and screen controls which are
obligatory.for effective interactive use.
For example, verbosity levels are relatively
unimportant in a batch run, but become vital
in interactive sessions.

An equally major series of changes has been
caused by the need to process larger and
more complex files than were envisioned ten
or fifteen years ago. This paper will
outline our experience with large files,
starting with the IBM 650 and inclUding the
current changes gOing into P-STAT 78.

2. FILE GROWTH IN THE LAST 15 YEARS.

e
The size of files processed in university
computer centers has increased sharply over
the last 15 years for the most basic reasons
of all, economic and technical. In 1959 the

most common university computer was an rBM
650, which usually had 2000 words of storage
(on a drum), no tapes or disks and no
on-line printer. Most software was in an
assembly language called SOAP (although an
early Fortran could be used awkwardly).
With no mass storage, a study doing a number
of analyses on 10,000 cases usually meant
five boxes of cards being read at a very
slow card reader again and again. In those
days a large file was more boxes of cards
than you cared to carry.

Princeton shifted from a 650 to an IBM 7090
in 1962 (after some transitional use of a
CDC 1604). The 650 to 7090 shift was a
factor of 15 in memory size and 200+ in
speed. Fortran II became easily usable and
there were tapes for mass storage. One
could put 30,000 cards on an unblocked tape
and files of this size were. conSidered qUite
practical. Large was more tapes than you
cared to keep track of (for example, 2).

P'Jtting one's cards onto tape and running
jobs from the tape had one major effect on
statistical software: errors could no longer
be corrected by hand. As long as one fed
boxes of cards into a reader for each job,
it seemed natural to hand correct and
feed the cards in again. Not so with tapes.
The data was already out there, let programs
do the checking and either fix or skip over
any problems. P-STAT, in 1964, already had



4. EXPERIENCES WITH COMPLEX FILES

3. PROBLEMS CAUSED BY LARGE FILES

This sorts file XX and calls the result
XX.SA, sorting on age within sex.

The time and cost of processing large files
are obvious problems. Accuracy and
formatting must also be considered.

DAY1, RIGHT = DAY2,
DAY12 S

= XX ,OUT = XX.SA,
= SEX / .\GE S

SORT, IN
VAR

JOIN, LEFT =
OUT

Cross tabulation in allows either an
unweighted or a weighted cell N. If both
are wanted, the normal N is unweighted and
the weighted N is captured by asking for the
SUMS of the WEIGHT variable. One government
project had a file of 200,000 or so cases
with integer weights to represent the entire
U.S. population. A table was run with Ns
and with sums of the weights in the cells.
The Ns were fine. The sums of the weights,
however, did not quite add up, i.e., the row
total of 143,214,732 was not quite the sum
of the four eight-digit row elements. The
problem, of course, is that 7 digits is the
best one can do in 32 bit single precision
on.a 360. A new option, integer sums, was

spliced into P-STAT to utilize the 9
digit accuracy of a 32 bit integer. (It is
interesting, people like data to be
consistent even though it is most unlikely
to be literally correct to 9 digits.)

Our approach to complex file structures has
been pragmatic. - P-STAT allows only
rectangular system files but there can be a
number of them simultaneously available to
various file manipulation commands. SORT,
JOIN and COLLATE are t7?ical. UsuallY
either row labels or data values can be used
for sorting or link-ups between files.

Numbers of this size also caused formatting
problems. Code had to be added to allow
optional wider table cells so that large
numbers could be printed in a readable
manner.

Clearly large files strain general systems
someWhat. A patching solution like integer
sums to lessen strain is not ideal but not
too bad for the ICL 1900, which has
48 bit reals and only 24 bit integers).

JOIN combines data from DAYl and DAY2 into a
single file named DAY12. DAYl and DAY2 must
have the same number of rows. The row
labels of the rows being joined must match
in order to be sure that data of the same
case are joined together. Other options

This, like drought and pestilence, tended to
hold file sizes down (or cause complaints)
so ASSIGN and ATTACH were put into ·P-STAT.
ASSIGN=XX, TAPE-as directed P-STAT to put
file XX, when it was created, directly onto
unit 8 as a save file. ATTACH=X, ONIT=8 S
caused X to be used directly from that save
tape. Thus, using ATTACH, ASSIGN and then
the NOOP allowed a 30,000 case file' to be
processed in the same amount of I/O as a
FIND, NOOP, SAVE sequence on a 10,000 case
file.

case, ID checking and card order checking of
card per case files. By 1966 we

were able to catch invalid numeric fields,
keep control, report the error and convert
it to missing. Both of these were results
of the "large" files of that era. 10,000
cases with 8 cards per case was large.

By 1968, there was sufficient use of 10 000
case files in P-STAT that the I/O to
and SAVE a file became excessive. FIND
means locate a given file on a P-STAT system
save tape and copy it onto a scratch disk or
tape by itself for use in a run. SAVE is

reverse, take a new P-STAT file and copy
from a scratch unit to a P-STAT save

tape. Assume one FINDs file X, does a NOOP
(which reads a file, applies recodes, etc.,
and makes another file of the result) and
SAVEs the resul t. Each of the 3 .steps reads
and writes a file. If X had 10,000 rows,
then 60,000 reads or writes of rows would
occur.

The result was users praised
ASSIGN/ATTACH briefly, increased their
notion of what was a large file, and began
once again to push at P-STAT's revised
limits. Another point, ASSIGN/ATTACH was a
change in design philosophy - it meant that
users could direct the system a little bit
instead of letting the system manage
everything in a general but
inefficient manner.

Computing power continued to grow, of
course, as did I/O speed, so by 1972 a file
of 200,000 cases was large to a general
package but not impossible. An indication
of the change in attitude was a long
distance call one Friday afternoon from a
P-STAT user who had read 95,000 of 110,000
cards when he crashed with a B37 (ran out of
disk space) . We proposed writing and
dictating a quick program to finish the
95,000 case P-STAT file cleanly so all would
not be lost, but he declined, saying that
the load was light on the weekend and he
would redo the entire run with more disk
space. Clearly his concept of large was
greater than ours.

266



allow the checking to be done on variables,
or to be bypassed.

COLLATE, LEFT = CHILD, RIGHT = MOTHER,
OUT=CHILD.MOTHER, RIGHT.MULT.MATCH,
VAR = REGION / CITY / DISTRICT /

HOUSE.NUMaER / AGE. MOTHER,
LEFT.ON.MATCHED = EXTRA.CHILD $

COLLATE always has two input files,
identified by LEFT and RIGHT because that is
the relationship their data will have in the
output file. COLLATE is a JOIN of the
subset of matching rows.

This illustrates a COLLATE of a file of
perhaps 15,000 children called CHILD with a
file of 5,000. mothers called MOTHER. The
output file (to be named CHILD. MOTHER) will
have a row for each child who matches up
with a mother. The output variables will be
the child's variables followed by its
mother's variables.

The assumption is that the input files are
in sort order on the five VAR= variables.
Both files have those five variables.
RIGHT. MULT. MATCH indicates that a given
right (i.e., MOTHER) row can be joined to
each of several children that match her on
the VAR= variables. The unmatched children
(i.e., unmatched rows from the left file)
will make up another new output file named
EXTRA. CHILD.

Two other commands, DUPLICATES and SUB.STATS
permit subgroup aggregation to be achieved.
COLLATE can then graft group results to the
data of each group member.

5. AN EXPERIENCE WITH A LARGE FILE

About a year ago we spend a week in Turkey
helping to produce 130 fairly
crosstabulations for Syrian census
bureau. About three months before leaving
we were told that the file had 700,000 cases
and 45 variables. On a 370/145 with 256K,
two tapes and two disks, that seemed to us a
very large file. At perhaps 200,000 cases
per P-STAT system tape, it looked like 4
tapes would be needed, a disturbing thought.

The data was mostly small integers, so a
months work on packing and unpacking ensued.
We developed some code that compresses
strings of repeated values (usually chunks
of missing data) and/or packs many small
integers into a word. It began working
fairly well. The size reduction was about
70 percent so that the 700,000 cases might

..,just fit on one tape. Packing entailed a
one time cost when making the file, but
large files tend to be made once and then
used numbers of times. Therefore, the
critical cost was unpacking the file to use

it. The extra CPU time it took to unpack
the file was balanced by less I/O, so that
the net cost of unpacking was zero. After
all this work we learned that the file would
only be 97,000 cases, clearly not a large
file, so we put the packing code away for a
while.

Another change that did get included in
P-STAT was the ability to select and process
the raw input in chunks. If one has input
records for 700,000 cases, only a very brave
person should try to process all of them in
one great gulp and make just one P-STAT
file. It is better to process the first
100,000 cases and call the resultFl, the
next 100,000 becomes F2, etc. The resulting
files can be concatenated when used
(TABLES, IN=Fl+F2+ ..• ) with no loss of
efficiency. The change that was for
that second file was the ability to locate
card 100,001 quickly. The system indicator
is ....

FIRST. RECORD = 100001,
LAST. RECORD = 200000,

The fastest practical way we know of (in
portable Fortran) to skip 100,000 records
is •.•.

DO 40 J = 1, 5000
40 READ ( JTAPE, 50 )
50 FORMAT ( III III III III III // //

The 97,000 cases did have some structure:
the head of the house always immediately
preceded the rest of that household. The
head had a 1 on variable HH.HEAD, other
family members had a zero. For some tables
it was necessary to carry the head's
occupation, which was in variable
HEAD. OCCUPATION, down to the other household
members' records (who had missing on
HEAD. OCCUPATION) . P-STAT's temporary data
area was used as follows ..••

IF HH.HEAD .EQ. 1, SETX .Tll.
TO HEAD. OCCUPATION )
SET HEAD. OCCUPATION TO .Tll.)

Whenever a household head occurs, his
occupation score is moved into temporary
location number 11. That score is then
moved back (unnecessarilv) for the head, but
it is also moved 'place for the
following household members. Normally
P-STAT sets all temporary locations to
missing before each row is read. That
initialization was dropped for the Syrian
runs.

We did have an embarassment. One table was
occupation code (200 levels) by a
school/education variable (90 levels) by
sex. Normally all surfaces (and if possible
additional tables) would be done in one file
pass. However, 200 by 90 was so large that



only one surface would fit in core during a
file pass. We decided to include all three
possible levels of missing data
(TABLES, ••... MISSING=ALL) since a 203 by 93
surface was not that much larger.

The data was on tape (using ATTACH) so we
watched it take one pass for males and
another pass for females. Then it started a
third pass. Third pass? Oh yes, a three
level table produces a surface for the total
population and then a surface for each value
in that third level variable, so the first
pass was total, the second was male and this
is the female pass. Complete comprehension
as it finished the third pass, great
consternation as it began the fourth,
confusion during the fifth and
recriminations during the sixth. Finally we
realized what was going on, it was the
MISSING=ALL effect. TABLES, as instructed,
was making one extra pass for each possible
type of missing data on the third variable.
Fortunately we do not have 26 types of
missing data.

Actually, TABLES did a reasonable th ing as
it finished the 6th pass. It noted that
three unproductive passes had occurred and
quit, so we were in fact protected from 23
more.

6. CURRENT P-STAT ENHANCEMENTS

This yer.4 we find ourselves working at both
inproving both large file

performance as well as small file
interactive capability. For example, READ
is a new, extremely simple command for
entering free format data. Every imaginable
speed versus human factors decision is
tilted towards human factors. It would be a
slow way to read 100,000 cases, but that is
not the intent of the program.

LIST is a new command for printing a file.
It is also totally aimed at attractive
printout rather than raw speed. These
efforts reflect our conviction that (1) more
and more statistical computing will be done
interactively in the next 5 years, and (2)
that attractive, easy to read output is what
our customer's managers like best.

We believe that increasingly large files
will be routinely processed interactively
because results per pass of the data
can be obtained that way. The user is there
to decide what to do as the data unfolds
instead of SUbmitting guesses to a batch
run.

This makes it rewarding to increase the
payoff of a pass through the file and vital
to increase the speed of a pass, both for
cost and for response time.
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Cost of a pass.

Minimizing cost comes from areas like
packing (mentioned above), hierarchical
structures and, of course, writing highly
efficient code.

We recently processed a file of 150,000
cases and 6 variables. -The rows in P-STAT
files begin with a 16 character row label.
These are lovely for combining files and
identifying cases. We find, however, that
they are almost never used in large, thin
files. Sixteen characters is 4 words, each
variable is a word, thus 40 percent of that
file was unnecessary row label text.
Clearly we could benefit by having - varying
length row labels (of which 0 is one
optional length). Packing could have
combined the 6 integers into one control
word and one packed word. These two
improvements would yield an 80 percent
reduction in size, extremely important if
the data is online for interactive use.

We have done less work with hierarchical
structures because we are less sure how to
do it. There are certainly two reasons to
work in this area. Space and speed
improvement is one reason, but we feel the
bigger gain in that area will come from
packing. The more important reason is
between-row data modification. The head of
household occupation code mentioned above is
an example. For the next year or two our
strategy, besides work on packing for large
and/or sparse files, will be to enhance the
current language to allow
modification within hierarchically related
groups of rows. The goal is effective use
of data. internal file structure is
less important.

Payoff of a Pass.

It is common for a general system to parse a
crosstab program two parts. One part
reads the file and collects a coreload of
information representing dozens of tables.
The second part does the printing. This
gets the most out of the file pass itself
and no obvious improvements to the file pass
suggest themselves. A more interesting
issue is how to get the most of the
resulting coreload of information.

The most fundamental difference between
programming a batch system and an
interactive system is the handling of user
errors. When an error occurs in a batch run
there is little to do except explain the
problem as clearly as possible, give up on
the current command and try the next
command. ..

In an interactive run it is better to prompt
for .a correction and to keep on going.
However, it is not quite that simple.



When the command is typed, no checking
occurs until it ends. Then, if a syntax
error is found, the user can type FIX$.
This brings in a prompting text editor. FIX
works well. We feel no need to prompt and
correct syntax errors they are typed.

Some commands, when they begin to execute,
need records to complete the command
definition before any files are read. For
example, a discriminant command might
contain NG=6, which means that six groups
are involved and definition records are
needed for them. Is prompting and on the
fly correction necessary if a typing error
is made while entering these records?
Possibly, but it is not vital as long as the
command and the already correct c9mmand
completio;-(ecords are retained and can be
reprocessed easily, bringing the user back
to the point of the error. None of the
user's effort is lost, and there was no file
processing investment.

Suppose, however, a TABLES command is
issued, table definitions are entered
(T = AGE BY SEX WITHIN EDOCATION) and the
program passes the file and produces the
table. The interactive user is then given a
number of choices. He can quit (leave
TABLES and begin another command), convert
the table surface into a P-STAT system file,
display it again, send it to a different
printer, compress and relabel some of the
rows or columns, etc. Keeping control when
an error occurs is critical here. If the
program gives up because a syntax error is
made, the file pass may be wasted because
the information now in memory is lost. The
test version of P-STAT 78 already has
increased support for type of
interactive usage.

7. CONCLUSIONS

There are three areas in which large files
(.2 to .5 million cases) are now affecting
P-STAT. One is better usage controls. For
example a user can now specify MISSING=3/3/0
to control third level missing surfaces in
TABLES. Another is better pay-off from a
file pass, mainly possible in interactive
use. The third is a more efficient form of
file structure. Packing would raise the
practical limit of P-STAT file size to a
million or two. Beyond that, the economics
are such that a potential user should
consider software tuned for his particular
file, either a special purpose package or,
conceivably, a general system which has been
modified for that one particular file.



MANAGEMENT OF COMPLEX DATA STRUCTURES IN A CLINICAL RESEARCH ENVIRONMENT
Michael A. Fox

Departments of Biomathematics,
City of Hope National Medical Center

and
University of California at Los Angeles

ABSTRACT

The interplay of data management and statistical software is discussed with
emphasis laid on practical problems of interfacing systems designed to perform sep-
arage but complementary functions.

Hierarchical, relational and inverted structures are reviewed and implications
of their implementation are discussed within the The
manaqement of these studies has all been conducted w1th A Cl1n1cal Informat10n System
(ACIS) which, as a compiler, generates custom the
power of context dependent variables to be used 1n conJunct1on with m1xed data
tures to facilitate highly specialized retrieval strategies.

Both the incorporation within ACIS of the Systematized Nomenclature of Medicine
(SNOMed) as a medical language and the practical aspects of translating encoded infor-
mation into English are featured.

Statistical packages have traditionally been designed
to acceot data for analysis from a rectangular matrix wnere
each case consists of a single row of the matrix. Analysis
is oerformed on numerical information and in most cases
categorical information too must be numeric.

Information systems, in contrast, attempt to preserve
the user's concept of data which is eften more complex than
a simple rectanole and in which the variables may be repre-
sented linguistically rather than numerically (Umale"vs. 1).
This dichotomy emohasized the complementary nature of data
:nanagement and analysis. It is therefore more sensible to
explore the interface between these activities than either
to ignore the existence of one or to totally embed one within
the other.

Admission of data structures of greater complexity than
rectangular arrays exposes two important facets. There is,
on the one hand, their internal representation in the machine
which often has implications on both the mode and efficiency
of retrieval, and on the other there is the attempt to pre-
serve the user's view or model of his data and hence his
ability to interact with it.

Application of AClinical Information System (ACIS) has,
to date, been exclusively with biomedical data and it is
appropriate to use these data to illustrate the system. A
case is a oatient on Whom information from multiple groups of
varTables is obtained. For each case there is usually a
fixed set of demographic variables (race, sex, date of
birth ••. ). Other groups of variables .are not fixea but may
repeat, the multiplicity of a particular group being arbi-
trary. Some variable groups may be functionally to
others and some may be indeoendent. Thus microorganlsms are
detennined from blood, sputum or urine cultures. only
may the number and type of cultures differ from patient co

patient, but the number and variety of microorganisms found
will undoubtedly be non-uniform. Further, procedures such
as operations can be considered as functionally independent
of the cultures perfonned. Viewed as a case the oata is
naturally structured hierarchically, that is, there is' a pat-
ient from whom samples are taken and for each sample the micro-
organism composition is founc. Additionally operations and
observations may be performed on the oatient, and these are
separate branches in the hierarchy. .

The variable groups (i.e., the set of urine cultures)
consiaered across patients are entities on their own ana this
leads to a different view of the data and hence a different
model. The laboratory handling only the culture material
would view the data as a two-dimensional rectangle or array,
where each row is a separate culture and each column is a
variable of interest. The segregation of data into rectangu-
lar arrays represents the relational model. Each "relation"
is a Set of variable groups. Provided certain linking vari-
ables are preserved (deletion of a culture could wi'.:hout the
deletion of the microoroanisms associated with the culture
lead to an inaccessible-group of variables), relations and
sub-relations are consistent and constitute an ordered graph
with no isolated nodes. Such models are important theoretical
tools and their attractiveness as practical systems stems
from the universality of a schema whiCh operates on rectangles
to produce other rectangles. But, as will be later demon-
strated, a balance has to be drawn between theoretical schemes
and natural representations.

Data retrieval is often concerned with the extraction of
particular variables from cases that manifest specific attri- .....
outes. :f information is stored either hierarChically or .,
relationaliy, then the Investigation of an association between
types of microorganisms and particular biopsy findings, to use
one example, would require a forward or direct search of all
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NOS means "not etherwi se spec1fi ed"

Since generation of new relations from existing ones by
the "cut-and -paste" functions of erojection a'nd join are
thus understood, then it will be s1mpJe to pass rectangular
information to statistical packages, except for the conversion
of alpha to numeric. It must be pointed out that to date
application of ACIS has been with stUdies that have natural
hierarchical structures. With social science data this may
be different.

that all first level hierarchies are to have this as an
implied domain in hierarchical data-bases and as an actual
domain in relational data-bases. Similarly the command
MATCH identifies the variable that is used to link variable
groups in a hierarchy deeper than the first level. It is
an implied domain in a hierarchical reoresentation and an
actual domain in both a relation and its immediate sub-
relations. If one elects to use the relational structure,
the data-base can be operated without reference to implied
hierarchies. Thus repeated cultures taken from the same
patient will appear as individual lines in a table of
cultures with one particular variable (CHART) being the
same. Analyses of these tableaux is thus possible without
reference to the rest of the data-base.

Since ACIS can operate on multiple files, it is possible
physically to oetach the data from the inverted reference
information and to work in principle during retrieval with
only references to cases and with no actual data on the cases
being within the machine. This would be important for huge
files where post-processing of the reference information would
determine which disc packs need be mountea for retrievals
requi ring actua1 va1ues of variables.

The building of a data-base consists of adding new cases,
adding to established cases, and modifying existing cases.
During an ACIS run an audit is maintained of the data and re-
jected data is reproduced together with error messages. The
retrieval program is created using the same Data Definition
Language as that used to build the data-base.

2 peopZe are
WEIGHT LOSS F0007
4
CHILDHOOD
1
URIC NOS*
3
GLUCOSE, NOS
2
464-467 ATOPIC ANO HYPERSENSITIVITY STATES
HYPERSENSITIVITY REACTION, NOS
ALLERGIC REACTION (CODE TO E- •..... )

F0007

F0706

Fl1553

Fl182

F4640

No single program can fully encompass the diverse require-
ments of different stUdies. In an ACIS medical record file
containing some 30,000 cases periodic retrievals are required
which take the form of tabulated reports. Although the method-
ology of retrieval is uniform for the system, particular pro-
grams were constructed to provide customized features around
a core program. These sub-programs are run as batCh jobs.
Individual retrievals are conducted interactively. The current
system solicits commands from the user. Such commands perform
global functions which give information about the data-base as
a whole, control the print options, or select either the vari-
ables for viewing or the commands which perform the selection
and sub-selection operations. Thus if the user lcceots the
invitation to review the inverted files, an alphabeti::ed
listing of the categories comprising the inverted variable
chosen will be displayed together with the number of

associateo with each category.

An interesting feature of the system is the
ation of SNOMed. tl'ie Systema.tiled Nomer-dature of Meaicine,
as a substructure. This nomenclature, which consists of
over 40,000 terms, is divided into six fields: topography,
etiology, morphology, function, procedures and diagnoses.
Medical Enalish can in most cases be completely enCOded
into SNOMed and therefore accessed and manipulated by the
resulting codes. Automatic translation from information
thus encoded is a feature of ACIS. Furthermore, access
to all SNOMed terms is available, even when no reference
to the particular cooe exists in the data-base. The fol-
lowing extract is obtained on browsing througn a file for
the inverted variable F-fie1d or function.

nverted structure is an additional structure
the data which allows complex logical ooerations
ormed without reference to the actual data. For
ory of interest a membership or index file is
or example, there may be cases with a particular
a1 condition (determined by biopsy), with a spe-
nosis recorded, but with no evidence of a spe-
oorganism (determined by culture). These cases
nd by operations on the simpler inverted struct-
orward pass is only necessary to extract the
ariab1es on that subset of patients with the
attributes. "

material in oroer to select those cases in which
rganism content Should be examined. Oetermin-
he set of patients who satisfy more complex con-
11 often require multiple searches. These may
ensive with large data-bases.

TIENT: CDNTA INS (B IOPSY ,. CULTURE. , . ) :
CONSISTS OF (•. "SEX(16,I,Il, ..•CHART(3,6,N3), •. ,
KEY (CHART)::

f the strengths of ACIS is its ability to build
u1tip1e data structures. The particular struct-
ned are determined by choices within the system's
ition Language (DOL). As different systems have
preferred terms equivalents will now be defined.
r row) of a two-dimensional array is a relation
iona1 data-base and is to as a varlable-
CIS, where the members of the tuple are the var-
domain is the set of values that a particular
a can assume. These values are the cate-
lues in an inverted structure and are collectively
inversion in .l\CIS, (i .e., "male" and "female" are
ries of the inversion Sex). A sub-relation which
10n in its own right but contains a linking domain
om another relation is a contained variable group

Ita Definition Language is composed of commands which
:ween variable grouos (giving the group-by-grouo
dependency), commands which aoply to the data base
, and commands which supply information with respect
:icuJar variables within a variable Thus, in the

e time a potential user of ACIS has collected or
J cc11ect data he has a concept of how his data
:d. Thus a block of data on a form (or even the
) is a variable group and one block may or
,ica1ly related to another block. Certain variables
rica1 and may be useful for segregating or

become the inversion variables. This concect-
s refined by the user when he describes it to ACIS
Jata Definition Language. rt should be empnasized
lta-base can be built in stages and not all variab1:
j be completely defined initially.

the compiiation phase ACIS ooerates on the user
lauses and generates a viable ?L/l program which
:s the variable-group names and variable nam'!!s chosen

The program produced is link-edited to the nucleus
is ready for use.

readable PL/1 code is produced, the user rray add
of code to those sections whien operate on the

:orporate features not supported by the Data Definition
For examo1e, the values of the context-deperdent
:an be evaluated: elabOration of this will occur later.

the rame of the variable-group. is the
ich builds the directive links to the variable
sub-relations) Biopsy, Culture. CONSISTS OF is
j which soec:fies the variables (tuo1es) which
the variab1e-grouo (relation). Fcllowing each
'e a series of parenthesized parameters which
'ormation both the external form of the var-
'or its internal packing (e.g., date goes from
:iona1 mm dd yy to a two byte Julian represen-
Jther oarameters are usea 'Nhen the variable is to
j, to aliow certain choices with respect to blanks

similar purposes. For instance, SEX{16,i ,:)
compiler that the 'la1ue of the variable cailed

le found in column 16 and is to be treated as a
variable. The command KEY identifies the

iART as the prime access key to the patient. and
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information such as this is extremely inter-
esting to epidemiologists and to those who explore data for
its content· rather than oerform analysis with a specific
hypothesis.

The observant statistician wil1 irrrneoiately recognize
the central problem of interfacing such data to a statistical
package. As has been stated before. a case consists of var-
ing number of different reDeating groups and with mixed alpha
and numeric variables.

Having browsed through the variables of interest. to
gain familiarity with the fields or to construct dec1S10ns
on what to extract, the user can elect to retrieve individ-
ual cases. particular sets of inverted variables. or those
cases which satisfy a complex Boolean expression whose argu-
ments are categories of inverted
of retrieval is being used, the result 1n the h1erarch1cal
schema is cases (or patients). The investigator usually
wishes to examine particular variables and these are dis-
played on the screen. line printer. or data set, dependent
on the commands of the investigator.

The following example shows.how one patient.is
using a Boolean p.xpression; the 1nformation retr1eved 1S
essentially non-numeric. Analysis of cases similar to. tllis
require care. For example. if categorization is performed
with respect to microorganism content. then this case could
erroneously be classified into more than one class. If,
however. mic1'00rganisms were scored with respect to serious-
ness, then such errors would be avoided.

ihe understanding of the implications of both repeating
orOIJPS and unrelated groups will enable the investigator to
construct sensible rectangles by only asking for those vari-
ables in which analysis will have meaning within the context
of the generated caSe. It is clear that with a complex data
structure the·onus rests with the investigator to select
vari ail 1es for interfacing with some thought.

The problem of re-coding information from
character strings into
only a small number of var1ables (e.g•• yes. no, male.
"female"l. Such conversions are accomplished using an
internal' table in conjunction with a variable descriptor
'lector. Files for the PSTAT System are created by ACIS with
this kind of data conversion.

Automatic report generation consists essentially of
proDucing titles, tabulations and totals. ACIS contains.a
deponent function. the first action of which is to solic1t
a '/ariable group name and a variable name from the
user and then to construct an access path to this variable.
Cases retrieved bv means already mentioned are then oper-
atea Jpon by a function applied to this additional varia-
ble. The command BY induces a sort with respect to the
value of this variable, and the sorted cases are then tabu-

snowi.,:g .:zgrefE.ment
oenter and

,,;·i.th aor.:;riblL"or
'..i'i pgf.::rd -;0 ,-.ain d.iagn:;sis
(Hoagkins did€a3e
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reZa;-ive ;0

76MCPDD
I

I
I

Eot:h zr.a aen::ral

Hodgkins disease, mi:ed
aeZ Z;<!azoi

PATHOLOGY

diffuse.

lated together with a count of cases with a common value
for the sort variable. The deponent function is also used
for accepting cases when a particular variable is greater
than, less than, or equal to a solicited value.

Practical solutions to interfacing are as follows.
Output can be directed to a data set with each variable
group preceded by its name. The user has total control
therefore over this output with respect to its subsequent
disposition. but is left with the task of constructing his
own interface. A semi-customized approach where the user
supplies a sub-routine is often used. In a study of a few
hundred cases of non-Hodgkins lymphomas, the statistical
analysis was performed on the survivorship of the patients.
Althou.gh much infol"lnation was stored with resjjP.ct to treat-
ments, classification of lymphomas. and so forth. this was
only used to select the cases and was passed to the
statistical program as descriptors or classifying vari-
ables. The variables used for survivorship were either
numeric. or for "alive". "dead". etc. converted to
numeric. A routine was constructed to generate the con-
trol language for the SHOP statistical program, and for
this particular study survivorship was obtained from a
two-step job. Thus for a particular study the problem
of interfacin9 may be straight forward, but specialized.

For a more general izea approach there are two
options; both of these depend upon rectangularizing the
output. The first method relies on a direct interface
to SMOQ5S, a generalized rectangularizing program which
functionally collapses repetitive values by taking their
means, maximum values. ecc., and produces a single row
consisting of the concatenation of collapsed variable
groups composed of the selected variables. ihe cases
so produced are then written out as a BMO Save File.
The second method is to expand or pad a case on the left
with repetitions of variable groups in their entirety
each time a group or level in che hierarchY is retrieved.

In a collaborative study of some i.OOO tissues
taken frtlm cases suspected of having Hodgkins disease or
non-Hodgkins lymphomas the and disagreements
between-three separate diagnoses were required. Contrib-
uting pathologists sent their tissues and diagnoses to
one of twelve regional centers where-a second diagnosis
was made, after flhich a diagnosis for each tissue was
made at a central repository. Of the many retrievals
required the following is a typical example: those cases
in which the contributor classified the tissue as depict-
ing Hodgkins disease where there is disagreement between
the contributor and bryth the regional center and the
central repository. It will be noted that the agreements
and disagreements constitute context-dependent information.
Instead of having to retrieve separately on each histology
sub-category. status 'lectors constructed that
matically reflected tile type and nature of the dif?erences.
Rapid and effective retrieval .• ;> obtained
on these variaoles. These were then automatically
sorteo into hlstological subgrouos and year of diagnosis
using the BY function. The is part of one line
from such a report and how the pathologist
can comprehend his data using abbreviated EngliSh as code
and representing the agreements with numeric scores.
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In this study the changes in proportion of agreements
over time was of This serves as a measure of
the relationship between collaboration of experi-
enced contributors with highly specialized training
in pathology and the learning process. Real differ-
ences expose areas of insufficient understanding of
the cellular processes, which will lead to Illore
research to understand the natura I hi story of th is
disease. A further use of this stUdy is a comparison
of the treatment outcomes of those who were correctly
classified comparee to those who were incorrectly
classified. This comparison provides an effective
tool for quality control aSSurance in the diagnosis
of this disease.
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The. Data Interchange File:
Progress Toward Design and Implementation[1]

Richard C. Roistacher
Center for Advanced Computation

University of Illinois
Urbana, IL 61801

Abstract

. described. data files are designed for maximum
efflclency In processing wlth a particular data management cranalysis
system. This paper outlines a design for a Data Interchange File for
the. and archiving of machine readable. data. The primary
deslgn crlterla of the Interchange file are generality simplicity
and extendibility. The file will accept rectangular and hierarchicai
files, matrices and tables of arbitrary dimensicnality as well as
data from network and relational data bases. file is self
described and will accept. machine readable documentation as archival
data. Strategies are also outlined for the technical and
organizational implementation of the Interchange file.

e.
INTRODUCTION

An increasing amount of scientific
research activity involves the dissemination
and secondary analysis of machine readable
data files. Some of these data files are
produced by individual research projects,
some, like the Uniform Crime Reports are
produced by organizations in the course of
their operations; some, like the National
Crime Panel Victimization Data, are procuced
as part of 3 special research project; while
others, such as the National Election
Studies, are produced by ongoing data
collection efforts funded by a consortium of
data users.

A data collector who is also the data's
end user has many options for file
construction and documentation. In the
limiting case, a producer can maintain data
:n a completely undocumented deck of ounched
cards, relying solely on memory or a FORTRAN

statement for information about the
file. Standardized documentation is not
always crucial where data are transferred
through personal contact between producers
and users, although it is not uncommon to
discover a colleague who would be happy to
share a file, but who has forgotten its
format.

An increasing number of files, however,
are transferred not by personal contact
between producers, but through dissemination
by a central archive. National archives such
as the . Inter-University Consortium for

Political and Social Research and the Roper
Public Opinion Center receive data from their
original collectors, transform files to a
standard form, write appropriate descriptions
. of files, and fill user orders for data and
documentation. Even though it is sometimes
possible to refer a client's question to the
original producer, no archive can afford to
omit information transmitted by the producer
from its own file; nor can an afford
to produce documentation Which is anything
less than a complete summary of the
producer's documentation.

Card The archivist's
problem has 1n some respects been simplified,
and in other respects complicated by the
development of integrated statistical
systems, self-described files, and machine
readable documentation. The universal coin
of machine readable data exchange is the deck
of punched cards or the unlabeled, unblocked
card image tape. The most common
representation of data in such files is as
numeric characters, with data
indicated either by blanks or by some
arbitrary code, such as a field of nines. In
some cases, alphabetic characters are used to
indicate valid data values, with "-"s and

(1] This work was originally supported A
by Grant 75-NI-99-0077 from the National
Institute of Law Enforcement and Criminal
Justice, and is currently supported by Grant
77-55-99-6821 from the National Criminal
Justice Information and Statistics SerVice,
Law Enforcement Assistance Administration.
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"&"s used to indicate missing data. A few
punched card files contain data coded using
tabulating machine methods, in which a data
item is always repre.sented in a single
column. Arbitrary combinations of multiple
punches are used when the standard character
set has been exhausted.

Several archives, e.g., the Roper Public
Opinion Center and the California State Data
Program, maintain their data in card image
files after converting alphabetic and
multiple punched data items to numeric
character form. Almost without exception,
data archives will continue to produce card
image files for export, even where their
internal files are maintained in other
formats.

Documentation for card image files is
most often in the form of printed entries,
giving the name, deck and column numbers,
missing data values, and where appropriate,
category labels for each variable. Some
archives have produced machine readable
documentation by punching their codebooks
onto cards, which can then be stored and
reproduced with the data files to which they
refer. Such documentation is both easier to
reproduce and more difficult to lose than is
paper documentation.

Self-described files. Originally, data
files-wire analyzed with individually written
programs designed to no particular standard.
Beginning with the Biomedical Data Analysis
Program library, (Dixon, et. al., 1967) ,
libraries· of computer programs with similar
control languages and input formats were
written at many universities and research
centers. In most of these program libraries,
and indeed, for many currently used programs,
the input data are described with a FORTRAN
format statement which is included by the
user with the program. setup. Such programs
and libraries expose the user to the
inconvenience and possible error inherent in
transcribing codebook information each time a
program is used.

Most modern statistical and data
management systems use self-described files,

contain program readable documentation.
The user of such a system refers to variables
by name or number rather than by location in
the input record. The analysis program

codebook information from the
program readable file description stored with
the data. Such systems locate data, provide
appropriate handling or missing values, and
label both printed and machine readable
output with much less user intervention than
would be required if a self-described file
were not employed.

Even though self-described files make
life easier for the user of a particular data
management system, they complicate matters
for the data archiVist, or for the person who
wishes to tr.ansmit data to someone who uses a

A different data management system. Most
..,self-described files have been designed to

maximize processing efficiency in their
UhomeU systems. In many cases, data are
stored in a non-printing internal form, with
a high degree of machine and program
dependence. Missing data are
represented in program dependent forms which

do not fit into the computer's standard set
of numeric or character representations.
Such files can be called "esoteric," not

they are necessarily
incomprehensible, but because they are
designed to be read from within a particular
system rather than being generally readable.
Files Which can be interpreted by a simple
character dump and which can be read using a
FORTRAN-type format statement will be called
"exoteric."

A common way of transferring esoteric
files is to process them with programs which
transform the data into card images and the
dictionary into a printed codebook. However,
the production of such card-image transfer
files undoes much of the work and nullifies
much of the value of building the self-
described file in the first place. The
recipient of a card image transfer file is
either reduced to writing FORTRAN format
statements, building a new self-described
file from the printed documentation, or using
a program which attempts to reconstruct a new
self-described file from the printed output.
The SPSS WRITE FILEINFO SUbprogram is an
attempt to make the process of degrading and
transferring an esoteric file as painless as
possible. The SPSS however, is
designed to facilitate the transfer of
esoteric SPSS files between SPSS
installations on different computers, rather
than to make the full self-described file
available to other data analysis systems.

Other data analysis systems using
esoteric files are SAS, the Statistical
Analysis System developed at North Carolina
State (Barr and Goodnight, et al., 1975); and
IMPRESS (Meyers, et al.,1969). A somewhat
less esoteric file structure is used by
OSIRIS, (University of Michigan, 1976), which
stores an esoteric dictionary separately from
its data, which are stored as an exoteric
file of fixed or variable length character
records.

SUPPORT FOR A DATA INTERCHANGE FILE

An increasing number of data management
and analysis systems generate and use self-
described data files. The development of new
systems should be encouraged, for it fosters
a healthy diversity and spirit of innovation.
Several considerations render impractical any
attempt to standardize a common self-
described file for all data analysis systems.
Several statistical systems which use
esoteric files have been in use for many
years, and have been used to produce
thousands of self described files. It would
be impractical to require the users of such
systems to learn and adopt a new file format
solely for the sake of standardization with
other systems. In addition, the use of a
standard file for internal processing might
reqUire extensive rewriting of existing
systems, with the risk of degrading of
internal processing efficiency. Finally, it
would be foolish to attempt to restrict the
designers of future statistical systems to
the limitations of today's data processing
techniques.

A better solution is to design an
exoteric file capable of supporting most of
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the features found in all statistioal
systems, and designed speoifioally for the
exohange'rather than for the prooessing of
maohine readable data. Suoh a file should be
designed for simplioity, generality, and
extendibility·, rather than for data
processing efficiency. Designers of
statistical systems can accommodate such an
Interohange file by writing procedures whioh
oonvert their own esoteric files to and from
data Interohange files. Thus, a data
analysis system's own files oan be designed
to maximize processing effioiency within the
system and, oan be transformed to Interchange
format for transfer and archival purposes.

The CONDUIT conference. In 1974,
CONDU!T7 the eduoational computing
oonsortium, held a conference for the purpose
of designing a data Interchange file. The
conference laid the technical and political
ground' work for such a file, but lacked the
funding for its further development and
implementation.

The LEAA Research Support Center. In
1975 -rhe--university of Illinois' Center for
Advanoed Computation, under a grant from the
National Institute of Law Enforcement and
Criminal Justioe, funded a research and
development on teohniques for archiving and
using readable social data. One of
the tasks of the new Research Support Center
was to define an archiving format for data of
interest to oriminal justice researchers.
The best way to accomplish this task was to
continue work on the technical and
institutional deVelopment of· a standard data
Interchange file. Accordingly, in January
1976, a conference on the exchange of machine
readable data was held at Itasca, Illinois.
The conference was attended by
representatives of the Center for Advanced
Computation; the National Institute Law
Enforcement and Criminal Justice, LEAA; the
National Criminal Justice and Statistical
SerVice, LEAA; SPSS, !nc.; the Inter-
University Consortium for Political and
Social Research, developers of the OSIRIS III
data analysis system; the Survey Research
Center, University of California, Berkeley;
The Institute of Statistics at North Carolina
State University, developers of SAS; the
National Archives; tne Bureau of the Census;
and DUALabs.

This is the second in a series of
reports resulting from the Itasca Data
Interchange Conference. The Interchange file
is to be used as a standard format
for data archives and for the exchange of
data between users, regardless of the
computing hardware available to them or the
data analysis systems they wish to use.

DESIGN CONSIDERATIONS

Several major considerations govern the
design and implementation of the data
Interchange file. The first consideration is
that the file is designed to maximize its
utility for data archiving and transmittal
rather than for data processing. The file is
designed to support arbitrary data structures
and missing data representations. It is
designed to support more extensive variable
and category labeling than is found in most

data analysis systems. However, the data
Interchange file is not designed to support
all features of all existing statistical
systems; in particular its features are not
necessarily the union of all features to be
found in the systems produced by the
participating organizations.

The interests of simplioity dictate that
the Interchange File support only the minimal
number of program readable features.
However, it can carry arbitrary textual
information in its documentation records.
Documentation records can be marked to
indicate that they contain information which
is not part of the interchange standard, but
which is readable to a particular data
management system. For example, the
documentation records of an Interchange file
produced with IMPRESS may carry information
on the "standard dichotomy" of each variable.
Such information may be read as text by users
of systems which do not use such a standard
recode, but may be read back into a receiving
IMPRESS system. The Interchange standard
includes a method for marking documentation
records to indicate the presence of program
readable information. However, the format of
such information is the ooncern of those
responsible for the design of the particular
data management system.

Several characteristics are basic to the
design and implementation of the Interchange
data file.

Character format. Interchange files
will be transmittea entirely in character
form. It remains to be decided whether both
ASCII and EBCDIC will both be allowed as
character formats. !f there is to be a
single character set then obviously it will
have to be the American standard ASCII.
However, if the capability of almost all
machines to understand IBM is granted, then
either character set can be allowed. Both
the dictionary and the data file will be
composed entirely of printing ASCII (or
EBCDIC) characters.

Separate dictionary and data fil:s.
Each Interchange data set will be-transmitted
as two separate files, a dictionary and a
data file. Thus, it will be possible to
separate the dictionary from the data without
the use of special facilities,
and to read and operate on the data either
with or without the mediation of the
dictionary. One of the major reasons why
most self-described files are esoteric is
that dictionary and data ar-e written into a
single file. Special programming, intrinsic
to a partiCUlar data management or analysis
system, is required to read and interpret the
dictionary, and to determine where the
dictionary ends and the data begins. Only by
storing dictionary and data in two separate
files can the need for special programming be
eliminated.

Card image dictionaries. Most users of
data have facilities for

creating new data variables, facilities
may range from a ten line FORTRAN program to
an extensive recode language. However, it
cannot be assumed that all users of machine
readable data will have access to similarly
powerful facilities for modifying and editing



dictionaries. Therefore, it seems wisest to
maintain the Interchange dictionary in the
form of eighty-column card image character
records with five-digit sequence numbers in
columns 76-80. Although it is hoped that
more elegant facilities will available, in
the last resort a user should be able to
produce and edit Interchange dictionaries
with tools no more complicated than a set of
card listing and punching routines and a key
punch.

Free format dictionary records. All
dictiO"ii'a'Fy records wlil have a type
identifier in column one, a variable number
in columns 2-6, a file identification in
columns 73-75, and a sequence number in
columns 76-80. In all but the basic variable
descriptor record, columns 7-72 will be used
to record dictionary information in free
format. !he use of a free format for
recording missing data information, variable,
and category labels allows both greater ease
of file creation, and greater flexibility in
adapting to the characteristics of new
statistical systems as they appear on the
scene. Free format is obviously easier for
someone who must create a dictionary by hand,
and is irrelevant to a dictionary creating
program. Free format dictionary information
is probably easier reading for the person who
must interpret the dictionary manually.

It is sometimes argued that the reading
and processing of free format information
requires unduly sophisticated software and
inordinate extra expense. Such criticisms
are simply no longer valid. Any reasonable
computer system has available the software to
do simple parsing of text. The additional
expense entailed by the one-time use of
parsing programs in converting an Interchange
file negligible in comparison to other
expenses incurred in obtaining and processing
the file. The length of a dictionary is
determined by the width of its data file
i.e., thG number of variables and their range
of codes. Extremely large and expensive
files usually large numbers of cases
as well as large numbers of variables. Thus,
dictionary processing expenses for files with
large numbers of cases are relatively small
in relation to data processing expenses;
dictionary processing expenses for one-time
conversion from Interchange to some other
self-described file format will be negligible
in comparison with other expenses incurred in
acquiring and processing the data.

Machine readable file documentation. A
direct consequence or-?ecording
in free format wherever possible is that
extensive file documentation can be produced
and transmitted in machine readable form.
Each Interchange dictionary will contain a
set of documentation records giving technical
information on the file. Such information
should include the file's name and creation
date, the file's logical structure, the
system on which the file was originally

_ created, the character set and collating
used in the file, global treatment of

blanks, and technical processing
information. The description should also
include an abstract of the file and the study
which produced it, as well as any notes the
producer wishes to pass on tc future users.

There are two main reasons why such
documentation need not be program readable.
First, it is impossible to tell what
information producers of Interchange files
will want to include in their file
description reGords. Second, most of the
information contained in the header records
will probably reqUire human intervention in
any case. Thus, the interests of flexibility
dictate that basic information on such things
as a file's name and creation date be acted
on by the user, rather than interpreted by a
computing system.

Since the contents of documentation
records will be transparent to the programs
which read and write Interchange
dictionaries, there is no reason why they
cannot be used to document individual
variables and parts of the dictionary. The
inclusion of a variable number field on
documentation records, in addition to the
sequence number, allows unique placement in
the dictionary file. Since the documentation
text will be in whatever format the producer
wishes, all that can be guaranteed is that
conversion programs will print all
documentation records. However, this does
not preclude users from including program
readable information that required by
the Interchange format.

Variable length data records.
Interchange data records will be of variable
length in order to support files with more
than one type of record. A number of
questions regarding data record formats
remain to be answered. Although the
canonical structure of Interchange data sets
is hierarchical, many, if not most,
Interchange data sets will be rectangular.
Should recta'lgular data sets be allowed to
use fixed records, or should all
Interchange files, regardless of their
structure, use variable length records?

Another urtresolved question concerns the
labeling of Interchange data sets stored on
tape. If an IBM tape file is assumed, then
it would be expected that IBM labeled, format
VB would be acceptable. If, however,
the ANSI tape format is to be used, should
the canonical Interchange data format be an
ANSI labeled, fixed-length record, blocked
file for the dictionary; and an ANSI labeled,
variable-length record, blocked file for the
data? The problem of users' computers not
being able to handle such labeling or
deblocking can be solved by writing the
labeling and deblocking routines into the
programs which import and export Interchange
files.

Structure definition. The Interchange
dictionary will carry not only a description
of each separate type of data record, but
also a program readable description of the
file's logical structure. A user should be
able to obtain a rectangular file based on
the lowest level of analysis; e.g., a file in
which data from the record on a household has
been duplicated and appended to the record of
each person in the household.
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Documentation Documentation
reoords contain free format text giving
information about the file as a about
sections of the file, and about individual 2-6
variables and responses. Documentation
records dealing with the file as a whole
should probably have a variable number of
00000. Sinoe the contents of a documentation
reoord is transparent to the Interchange
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The format for the variable description
reoord is:

Variable record. The
variable description record stores a
variable's number, name, location and width,
label, level in the file, and whether the
variable is to be considered a number or a
character string. Since the recording of
missing data values may require more space
than will be available on the variable
description record, all missing data
information will be placed on a separate
dictionary record.

Column 7 of the documentation record is
used to indicate the presence of text which
is program readable. A blank in column 7
indicates that the record carries no program
readable information. A printing character
in oolumn indicates that the record carries
information which is program readable to some
data management or analysis system. The
file's producer must indicate in the
documentation which characters are used to
mark data for Which systems.

the basic
Interchange

Information

Record type: V

Variable number.
The variable number will be
data identifier in the
file.

format, the variable number of a
documentation reoord oan indioate the number
of the variable to which the record applies,
or oan be used as an indioator of the
record's position in the file.

It seems reasonable that some users
would make certain documentation records
readable some receiving programs. For
example, a data analysis system which
produced value labels longer than twenty
oharacters long might write shortened labels
for the Interchange value label records,
while inserting the original longer labels in
documentation reoords. The original labels
can be marked so that they are automatically
recovered if the Interchange file were
converted back to its original type. These
documentation records would in no sense be a
replacement for the Interchange value label
reoords, but would serve as additional
documentation for most users, and as a way of
allowing some users automatically to recover
the original labeling.

This strategy has been chosen in order
to minimize the number of semantic elements
which require standardization. Designers of
data systems may develop their own standards
for the transfer of program readable
info·rmation, but these standards are
transparent to the Interchange standard.
There is little to be gained by establishing
any common list of data system identifiers to
use in column 7 of the documentation record.
It is easy for a user to look in the file
documentation, while it is difficult
maintain and uodate a list of
identifiers. .

Column

Although the Interohange data set will
store alphabetio data, variables should be
stored in numerio form wherever possible. In
partioular, missing data information should
be numerio rather than alphabetic. In some
oases it may be necessary to have a variable
whose value represents some attribute of a
particular value of another variable. For
example, variable one may have the value "1"
in observations in which the value of
variable two is an estimate, while
one has the value "0" in observations where
the true value of variable two has been
obtained. Suoh cases are rare and should be
made as rare as possible, sinoe they
invariably require some recoding before the
file is usable. In most cases identical
information can be transmitted using ordinary
missing data conventions.

Creators ·of Interchange data sets should
also be sparing in the number of exaot-matoh
missing data codes used in the file. Most
users receiving a file having, for instance,
eight exact-match missing data codes per
variable will be forced to soend considerable
time collapsing such codes into a more
manageable number. File •.•·oducers should
also be discouraged from using mid-range
missing data codes. A variable ranging from
o to 9 should be given a missing data code
outside this range, even if a value within
the range is unused.

Standards 2i Good Praotioe
Sinoe the Interohange file is designed

to maximize flexibility, it will support many
options whioh are not presently in use, and
some options whioh probably should never be
used. The final speoifioation of the
Interohange data file should implicitly
support some rules of good praotioe, rules
whose violation oan be supported by the
Interchange data structure, but whioh should
be discouraged. While a full of suoh
rules is probably infinitely long, some rules
oome immediately to ·mind.

AN IMPLEMENTATION OF THE INTERCHANGE FILE

The sort order for dictionary records
should by variable number and then by
sequence number. Suoh a sort order will
allow intervals to be left in the original
sequence numbers for the insertion of new
records.

ili Dictionary
All dictionary reoords are 80 charaoter

records oontaining a type identifier in
column 1, a variable number in oolumns 2-6, a
file identifier in oolumns 73-75, and a
sequence number in culumns 76-80. The format
of columns 8-72 is different for each type of

record.



7-9 Relation number.
A relation is a set of variables
referring to the same type of
observation. Examples of relations are
. information about. a single household,
or information on a single individual
in one wave of a panel study.
Rectangular files will have only one
relation.

33-72 Variable label.
The maximum length of a variable label
is forty characters. An interpolated
set of documentation records may be
used to extend the variable labeling
infermation, but only the forty
characters en the variable description
record will be considered program
readable for Interchange purposes.

Examples of missing data codes in most
systems are easy to express in this language.
Seme examples are:

73-75 File identification.
76-80 Sequence number.

One way to express a set of universal
missing data codes might be to specify all
missing data codes for the file with a single
set of missing data records with a variable
number of 00000. Thus a SAS data set in
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Things are relatively simple when
missing data cedes are entirely numerical.
However, there is some question of whether
ranges of character strings ought to be
allowed in missing data expressions. To do
so implies that there is a common collating
order. If this is the case, then the ASCII
collating order could be specified as the
order underlying such expressions as "(GE .A
AND LE .Z)", which would neatly express all
of the SAS internal missing data codes. The
use of collating order ranges for alphabetic
missing data codes is attractive, but may
violate the primary criterion of relentless
simplicity which underlies the design of the
Interchange file.

"77 88 99"
"99 GE 77"
"LT 10 GT 90"
".A .B .C .0 .E .F .G .H"

SPSS
OSIRIS
PICKLE
SAS

Missing data record. The missing. data
record contains missing data specifications
for the variable in columns 7-72. Since
missing data specifications vary Widely among
systems, it seems best to allow the greatest
possible flexibility in the specification of
missing data. The most general way of
specifying missing data would be as a Boolean
expression describing which numbers and
character strings will be used to represent
missing v.alues.

In this instance, the full Boolean
format can be abbreviated. The "or"
connective can be implied by a simple
sequence of values. The statement, "If V is
missing, then V equals 7 or V equals 8 or V
equals 9," is well defined by "7 8 9". "If V
is missing" is implied by the missing data
record itself. The phrase "[orJ V equals"
can be used as the default meaning of a
delimiter. If a fuller representation is
desired, the mis·sing data example above can
be rendered as "7 OR 8 OR 9". If the "OR"
default is used, then the necessary
connectives are "AND", "(", "1", and "'".
The relational operators, "LT", "Li", "EQ",
"NE", "GE", and "GT" .omplete the set of
primitives needed to ferm a missing. data
language. (It is not clear that "NE" has any
real use in suehal enguag e. )

10-17 Variable name.
This field is designed to carry
variable icentifiers generated by
systems which refer to variables by
alphabetic names. The field can also
be used to hold an OSIRIS reference
number, which also serves as a variable
name independent of the ordering of
variables in the file.

18-19 Record number.
This. field allows the support of data
on cards or other unit records.
Interchange dictionaries and data files
stored on disk and tape will usually
have only one record per
However, when a file is stored on
cards, this field will indicate the the
sequence order of the card carrying the
variable. A blank in this field should
probably be allowed to indicate that
the observation is stored on one and
only one record.

20-24 Location.
This field records the location of the
high order character in the variable,
counted from the left edge of the
record. The count includes all linking
information required to associate a
record with records in other groups,
but does not include the binary length
field which is part of the format VB
record. Thus, the location field will
give an accurate account of the
variable's position once the record has
been deblocked.

25-28 Width.
This field records the width of the
variable in characters.

29 Field type.
This field is a "0" for numeric data, a
.t 1" for purely alphabetic data, and a
"2" for variables which are numeric in
some observations, and alphabetic in
other observations. The latter case
can occur in systems which generate
alphabetic missing data codes for
numeric

30-31 Number of decimal places.
This field has two columns to
accommodate very large numbers, and
numbers with a negative number of

places. The latter case can
occur where income is being stored in
hundreds of dollars. Since all data
are in character, rather than in binary
form, very large and very small numbers
may be written into the data file in
E-format.

32 Spare place for later expansion.



Interchange format would have a single set of
missing data records spelling out the 26 SAS
missing data codes. This single set of
records would apply to the entire file. The
description of global blank treatment
immediately from this procedure. Global
treatment of blanks as missing data is
indicated by a missing data record with a
variable number of 00000 which carries a
blank between primes. If desired, the file
standard can be written so that variables
with local missing data declarations are
exempted from any global missing data
declaration.

pointers. For example, consider Figure 1,
which represents a file having six types of
records in three hierarohical levels. Every
record in this Interchange file will carry
six identifioation numbers, one for each type _
of record. Each record will carry the
identification variable of all records under
which it can be structured. Thus the record
of a child will carry numbers identifying the
records of its family, neighborhood, class,
and school. The child's record will oarry
missing data in the field oarrying a "parent"
pointer, since children are not subordinated
to parents.

2 FEMALE:

and of

Structure techniques

It seems best to require that all labels
containing blanks be enclosed in primes so
that frequencies can be added without having
to reformat the record.

I
I,
I
I
I

IO:5

:::0::16

2. School

4. Class

If'
I
I
I
I
I,,
I
I------,

1. Neighborhood

ID:21
;r;
I
I
I
I
I
I

3. Famlly

IO::36

'f\ 'l'
I I
I I
I I
I I
I I

5. Parent ,.J ChildI I o.
ID:72!l I , ID::103I I

I I
I I

Although the set of pointers in Figure 2
is implied by the linkages in Figure 1, it
would be difficult to infer those linkages
solely from analysis of the pointers, since
to do so would require reading the entire
file. The structure can be inferred from the
information that parents and children never
point to each other but both point to
families, and that families point to
neighborhoods, while neighborhoods do not
point anywhere.

All possible linkages may be represented
by such sets of upward pointers. The
assignment of levels does not always imply
that records at a lower level are
disaggregations of records at a higher level.
In some cases the specification of levels is
simply to resolve which record is pointing at
which.

The structure definition, however,_
should be prOVided explicitly, so that both
the user and file imoorter know what to
do with the data. Thus the Interchange
diotionary should have an "explicit structure
definition record as well as a set of record
definitions giving pointer information. The
person creating an Interchange file must
choose an identification variable for each
type of record. People should, in general,
be discouraged from creating records without
identification variables. If no variable is
appropriate as an identifier, then the file
exporter should supply an arbitrary sequence
number for each record. The sequence number
need not be unique within the file, but only
within the level at which the record enters
the structure. For example, the records of
children in Figure 1 may carry unique

Figure 1: A hypothetical data structure.
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delimiters.
are required
such label

3 FATHER'S HOUSE 405

2 FEMALE 500

if blanks allowed as string
However, additional delimiters
for the proper interpretation of
data as

Category label record. The category
label record --contains a value for a
categorical or discrete variable, a label of
up to 20 characters, and an optional
frequency count for the category. It seems
simplest to have a single category on a card,
with the first character string in the field
interpreted as the code value, the second
string interpreted as the label, and the
third string interpreted as the frequency
count. This set of conventions will allow
the correct interpretation of,

The Interchange dictionary describes
each of the several types of records
contained in the data file and the structural
relation between record types. The structure
definition facilities of the Interchange file
will support rectangular files, hierarchical
files, generalized network data bases of the
CODASYL type, and relational data bases.

Rectangular f!l!!
Rectangular data files contain only a

single type of record, and thus require no
explicit structure definition. Where an
interchange file is being used to store data
from a DBMS or a set of files, a rectangular
file may be stored as a single relation.

Hierarchical Files

Hierarchical, or tree structured, files
are the most complex data which
can be processed sequentially. It thus makes
sense to provide information which will allow
the sorting of the into meaningful
ord er. The most ,obust linkage method is to
give each record a complete set of upward



Pointer Ii .

o 2 3 4 5 6

TT 21
I
I

12 5
I
I

13 21 36
Reoord Type I

I

14 5 16
I
I

15 21 36 "724
I
I
16 . 21 5 36 16 103,
-'-

Figure 2: Pointer array for the data struoture in Figure 1.
Pointer 0 is the reoord type.

identification numbers, but if they do not, a
simple sequence number within each family
will suffice. Each of the N types of records
in a tree structure will be prefixed by N + 1
identification variables, consisting of a
record type identifier and N pointers, one
for each type of record in the file. Where
two records are conneoted by more than one
link, then more than one pointer will be
reqUired. Hopefully, people will be sparing
in their use of multiple identification
fields.

It should be noted that at least one
pointer on eaoh record is a simple
duplication of one of the variables in the
record. The duplication is justified in
order that the syntax of the pointer
variables be completely under the control of
the file exporter, and thus absolutely
canonical in the Interchange format. The
user may use almost anything as a missing
data indicator in the data portion of the
record, but when that identifier is oopied
into the pointer section, it will be subject
to conventions specified in the Interchange
data standard. Such conventions should
require that pointers have only numeric
values, that there be no blanks in pointers,
and that a particular type of missing data
indioator be used. <See Tsichritizis and
Lochovsky, 1976, for a fuller exposition of
hierarchical data bases.)

a variable oalled "favorite hobby". This
variable is a link between the child and
information about his or her favorite hobby.
ThUS, the "hobby" and the "ohild" records
need share no sorting information, but their
linkage must still' be documented. The
linkage is documented in the structure
definition by naming it and by indicating the
variables which link the two records.
However, there is no way in which hobby
records can be sorted into the hierarchy of
neighborhood, family, and child. (See Taylor
and Frank, 1976, for a fuller exposition of
network data bases.)

Relational Data Bases-----
Relational data bases are constructed

from rectangular files which have unique
identification variables. Relational data
bases have advantages in being uniquely
simple and general. Their present
disadvantage is that there are at present
relatively few implementations of such data
base systems. Each "observation" in a
relational data base is a rectangular file
with a unique identification variable. The
relational data base is simple because it
uses no system of po inters. "Observations"
or "relations" as they are called in data
base management terminology, are linked by a
process of sorting and merging on the basis
of numbers.

Suppose that the file contained a set of
reeords each of which held information on a
hobby, and th'at each "child" record contained

A network data base is
of the hierarohioal
hierarchical file, records
each other in only one
subordinate or superordinate
In the example above,
subordinate to families, who
to neighborhoods.

Network Data Bases=..-..;.;..;;.;;..,;.;-----
a generalization
file. In the
are related to
way, by being
to each other.
children are

are subordinate

As long as the proper conventions
uniqueness of identification variable are
maintained, the interchange file will support
relational data bases in the form of
heterogeneous records with no explicit
hierarchical relation. Each relation a
relational data base is simply assigned a
relation number in the interchange file.
(For a fuller exposition of relational data
bases, see Chamberlin, 1976, and Teitel,
1977.)
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73-75 File identification.

76-80 Sequence number.

10-11 Level.

12-31 Name.

32-36 Pointer location.

37 Pointer width.

38-46 Pointer missing data value.

56-60 Pointer variable number.
This field indicates the variab1e
number in the record type which has
been used as the pointer. A variable ..
number of zero indicates that the file
exporter produced an arbitrary sequence
number for the record.

Structure definition record. The
structure definition provides an explicit
indioation of the links between record types.
The structure definition consists of a set of
free format expressions indicating the
equivalence between pointers in different
relations. The format for the structure
description record is:

Record type: S.

Information

Variable number.
The variable number has no direct
application to the record definition
record but is used solely for
sequencing in the file. Thus, any

47-55 Pointer inappropriate value.
It has been suggested that separate
missing data and inappropriate oodes
are not needed for pointers. A missing
data code in a pointer to a higher
level can be interpreted as actual
missing data, while a missing data oode
in a pointer to the same level or to a
lower level oan be inferred as
inappropriate. It has not yet been
decided whether or not
inappropriateness should be explicit or
inferred.

lowest record type begins in column
three, columns one and two of the
record are assumed to be the record
type. A third, and perhaps the most
sui table al ternat1ve, is that the A.
definition of record type zero indicate
the location of the record type
indicator.

61-65 Number of variables in the record.

66-70 Aggregate record length.
These two fields would be helpful in
allowing the importing program to.
allocate work space for reformatting
the file. However, they may require
two passes through the file to create
the dictionary and might be omitted
from the record definition record.
Further discussion of whether or not to
include them is necessary.

Column

2-6

Structure and Record Denni tion Records

Record denni tion record. The record
definition records constitute a dictionary
for the rectangular subfile formed by the
type identifier and vector of pointers. The
format for the record description record is:

Column Information

Record type: R.

2-6 Variable number.
The variable number has no direct
application to the record definition
record but is used solely for
sequencing in the file. Thus, any
variable number less than the smallest
variable number can be used. Users
should probably be encouraged to number

in a way which helps identify
thelr record type, such as having
variables in record type 5 begin. with
501.

Matrices Tables

The interchange file stores matrices and
multidimensional tables in straightforward
fashion. A matrix or two dimensional table
may be stored as a rectangular file. A table
of higher dimensionality may be stored in
either "row" or "cell" fashion. An n-
dimensional table stored in "row" fashion is
treated as an n-1 level hierarchical file
with a single record type. Each record in a
"rowff file is a vector from the table,
labeled with its cocrdinates in the table.

A 3 x 4 x 10 table could be stored as a
file of 12 records, each of which contained
10 variables. Each or the records would be
treated as the third level of a hierarchical
file, and would have pointers indicating the
row and plane of the table to which it
belongs. Such a file could easily be sorted
by row and plane. However, a sort by column
would have to be performed by reformating the
records.

A seemingly more clumsy, but preferable
way of storing a table is in "cell" form, in
which each cell of the table is labeled with
its coordinates. The coordinates are in
canonical form as pointers rather than
variables, and are thus provided by the
exporting program, rather than by the user.
Although a "cell" file might appear quite
bulky in relation to the original table it

the advantages of being totally'open
In format and of being possible to manipUlate
without reformatting records.

7-9 Relation number.
Several options are available for the
formatting of relation numbers. One
option is that the data Interchange
specification require that the first
three columns of every data record be a
record type identifier. The second
alternative is that the location of the
record type identifier be inferred as
everything ahead of the first pointer
field. Thus, if the pointer for the
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variable number less than the smallest
variable number can be used.

Structure definition expressions.
Free format expressions showing the
logical structure of the file and the
variables linking different relations.

e 7-72

73-75 File identification

76-80 Sequence number.

A suggested syntax
description expressions is:

for structure

Interchange Ii!! Creation and Conversion

Manual Creation

Proper design of the Interchange
dictionary will allow many Interchange files
to be constructed without the use of special
programs. Rectangular files will require the
addition of an observation identifier,
something which should probably be there in
any case. Once such a data file has been
produced, a valid Interchange dictionary can
be produced by hand.

<name>:<rectype>C<var*»=<rectype>«varn»

In the oase of hierarchical records, it would
be nice to require that the direction of the
expression go from lower level to higher
level in order that the hierarchy in the file
be inferrable without reference to the level
numbers contained in the record definition
records. Hierarchical files do not need
explicit names for pointer relationships.
However, names are necessary to clarify the
relations between the records of a
generalized network data base. The structure
of the file in Figure 1 could be indicated
(using arbitrary variable numbers within
record types) as:

5(2)=3(1) 6(2)=3(1) HOME ROOM:6(3)=4(1)
3(2)=1(1)

This structure definition allows both
the user and the importing program to recover
the original structure of the file.

Entry definitions. Following the OSIRIS
oonvention, an entry is defined as the
rectangularized file actually read and
analyzed by a program. The OSIRIS structured
file carries with it a default entry
definition which is used in the absence of
any specification by the user. There is some
question as to whether the Interchange file
should carry a defaul t entry definition with
its dictionary. If the importing system uses
a hierarchical file, then the importer could
simply transform the Interchange file into an
esoteric hierarchical file. However, it can
be expected that many importing systp.ms will
not support hierarchical files, and that the
file must therefore be rectangularized.
Perhaps the most reasonable course is to
include a verbal summary of some entry
definition and leave the actual construction
of the entry to the user and the file
importer.

Data

Perhaps the only restriction on the data
is that they be in the fotm of printing ASCII
or EBCDIC characters. It would be nice to
require that data be written without leading

but considering the number of FORTRAN
which will be used to produce data

files, it is unlikelY that this restriction
would be very popUlar.

File Conversion Programs

In order for the Interchange file to
succeed, statistical systems must have
facilities for converting their own esoteric
files to and from Interchange format. File
importers will probably need special care in

design, since they must be capable of
correcting the file producers' deviations
from good practice. Importers will probably
reqUire not only extensive recoding
techniques for converting such things as
missing data codes, but also reasonably
powerfuL text editing techniques in systems
which will not support the long labels of the
Interchange dictionary. In the long run, it
would be far better to increase the labeling
capabilities of other systems to the SPSS
standard, than to degrade one of that
system's most pleasant and useful features.
The design of an Interchange file importer
for each statistical system is a problem
whose difficulty should not be minimized.
Hopefully,. much of the work of civiliZing
files which violate rules of good practice
will be done by data archives.

The task of designing a file exporter
seems somewhat simpler than that of designing
an importer. The Interchange dictionary can
be written from the system's esoteric
dictionary, and the pointer section of the
data records written without much difficulty.

Machine Readable Documentation

At present, the development of machine
readable code books Considerably lags the
present state of computer text processing.
Most code books are simple transcriptions of
paper code books to punched card for easy
transmission with the data. The OSIRIS code
book, the most highly developed of machine
readable code books, is basically a primitive
form of document processor manuscript.
OSIRIS code books are laborious to prepare
and difficult to edit. Few users employ the
sUbsetting facilities of the OSIRIS system,
while even fewer ever edit, expand, or create
new OSIRIS code books.

The full data Interchange file should
probably include a machine readable code
book. Code book information can be carried
on the documentation records in literal form,
and these records can even be subsetted as
the file is broken into subsets. However,
transmission and storage of code book
information in literal form loses most of the
flexibility afforded by computer document
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prooessor systems. Code book
stored as a dooument prooessor manusoript can
be easily edited, subsetted and modified. In

the dooument processor will provide
such features as automatic resolution of
table and variable numbers and an automatic
table of contents and cross reference.

Future '.Jork on the data Interohange file
should include the seleotion of a dooument
prooessing language. In the meantime
documentation on the Interohange file should
probably be stored in literal form.

titeral text. Text which is printed
exactly as re--is stored on the maohine
readable medium without reformatting.

Machine readable. Information stored on .-
punched cards or magnetio media which can be
interpreted by a computer. Maohine readable
data, e.g., literal text, is not necessarily
in a form whioh oan be interpreted by
prooessing programs and should be
distingushed from program readable data.

Pointer. The vector of identifioation
variables prefixed to each Interchange format
data record.

REFERENCES

Tsiohritizis, D. C., and Lochovsky, F.
H. Hierarchical data-base manage!:lent.
Computing Surveys. (3), 105-124, 1976.

Dixon, W. J. (Ed.) END Biomedical
Computer Programs.
of California, 1975.

Meyers, D. Jr. Project IMPRESS:
Time-sharing in the sooial scienoes. AFIPS-
Conference Proceedings. (34), 673-680, 1909.

University of Michigan. OSIRIS III:
Volume I, system and program descriptIOn.
Ann Arbor, MI: Author, 1976. . .

data base
Surveys.

Barr, J., and Goodnight, J. SAS progress
report. Paper presented at the SAS Users'
Group meeting, Orlando, Ft, January, 1976.

Buhler, R. The P-STAT system. Pp.
283-286 in Proceedings of Comouter Science

Statistics: 1.!:E. Annual Symposium on the
rowa State University, 1973-.- ---

Program readable • Machine readable data
in a form sUltacle for interpretation and

by a oomputer program. For
example a set of keywords punched on cardS
are both machine readable and program
readable, while a oomment statement is merely
machine readable.

Chamberlin, D. G. Relational
management systems. Comouting
(8),43-66.

Nie, N. H., Hull, C. H., Jenkins, J. G.
Steinbrenner, K. , and Sent, D. S?SS;
Statistical Package for the Social :5cieii'C"eS.
New York, MoGraw-Hilr:-19T5.

Roistaoher, R. C. The data interchange
file: A first report. Center for Advanced
Computation. (CAe Dooument 207), 1975.

Taylor, R. W. and Frank, R. L. CODASYL
data base :nanagement systems. Comoutin!1i
Surveys. (8),67-104, 1975.

teitel, R. F. Data base concepts for
social soience computing. Prooeedings of

Science and Statistics: 9th Annual
Symooslum on .!:.h! .:.nterface.--' Harvard

19'(5.

GLOSSARY

File. A set of machine readable data
organized as a unit With respect to a
computer system. A file need not be
coterminous with a data set. For example,
several SAS data sets can occupy a single IBM
file, an SPSS data set is coterminous with an
IBM file, While an OSIRIS data set requires
two IBM files. .

Exoteric file. A file whioh oan be
interpreted wren- character format dumps and
which reqUires only a simple format statement
for interpretation. Card image files are
exote!"ic.

gxporter. A program or SUbprogram built
into a data analysis system whioh generates
Interchange' data sets from the system's
native data set.

The data vector created from a
file Which is actually read and

analyzed by a statistical program.

Esoteric file. A file which cannot be
interpreted with simple printed cumps and
read by simple FORTRAN style
statements. Esoteric files must be read by
specially designed software. SAS and SPSS
files are both esoterio.

This glossary is intended to olarify
oertain terms whioh are used in new or
unusual ways in this paper. It is not meant
to be in any sense a complete glossary of
terms relating to the Interchange standard.

Data set. A file or set of filoes
oontaining -COmplete information on a set of
self-described data. An S?SS data set
consists of one file, while an OSIRIS data
set oan oonsist of two or three files.

Dictionary. A program readable set of
information describing a machine readable
data file.

Importer. A program or subprogram built
into a data management and analysis system
for converting Interchange data sets into the
system's native data

Interchange data set. A dictionary file
and data file constructed according to the
standards outlined in this paper and agreed
on by the working group.
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ABSTRACT

The field of "Algorithm Design" abounds with beautiful theorems for the theoretician
and tools which can save kilobucks for the engineer. This survey shows how an
understanding of fundamental algorithmic issues can benefit anyone involved with computing.

1. INTRODUCTION

"Algorithm design--lhat's. the field where people tc.lk
about programs and prove theorerru about programs instead of
writi.ng a.nc! aebu.ggi.ng programs." I've heard statements along
those lines from aj)plications programmers and academicians
alike. Sut I've also heard, "No! Proper algorithm design has
helped us to save kilobucks at our installation every month." In
this paper we wiil investigate the field of algorithm design
(which also is known as "Analysis of Algorithms" and "Concrete
Computational Complexity", among other names) and belter
equip the to judge the field for himself.

I trust that anyone who has even the slightest love for
mathematics burning somewhere inside his heart (however
deeply), will continue to r'!ad this paper to see how
mathematical toois can be applied to the problems of
programming. But for the rest of the readers (whose 1nterest in
mathematics was probably squelched in freshman calculus) I'll
have to offer the same bait that drew me into this field. I can
trace my interest in the design of efficient algorithms to the
time when I was a Business Data Processing programmer and
nad just finished reading an introductory text on "Data
Structures". A colleague of mine had just had his job
cancelled--the operators had estimated (by counting the turning
rate of the tapes) that it would take about three hours to
process his one reel of data. The program itself was fairly
short and a quick glance told us that all of the time was spent in
scanning a one thousand element table. I suggested that instead
of scanning we try a new-fangled technique I had just read
about--binary search. We did, and the modified program
processed the reel of tape in [we minutes (and spent almost all
of its time waiting for the tapeO. Arour.d that same time I was
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asked to help another programmer who had already spent one
month of time and produced about a thousand cards of code for
a particular program. A simple :;,ange in data structure and
less than a week's work (starting ""er from scratch) allowed us
to redo the program in less than two hundred lines of code.
The resulting program was faster than the original would have
been, used far less code. and was much easier to understand.
So even if you have no aesthetic interest in algorithm design
(yet), please read on--the practical benefits alone can
sometimes be rewarding enough!

Throughout this paper we will refer oniy to the ai.screte
aspects of algorithm design, or to the design of discrete
algorithms, if you will. We will not even mention numeric
problems such as staoility, truncation error, error propagation
and other issues that are in the domain of numerical analysts. It
turns out that even with this restriction, we still include some
very numeric problems, such as the manipulation Cif sparse
matrices (in which almost all elements are zero) and the Fast
Fourier Transform.

A number of survey papers on the field of algorithm
design have appeared recently. Hopcroft (1974J and Tarjan
(1977] both give a broad and thorough picture of the field.
Weide's (1977) survey concentrates on the techniques used for
analyzing discrete algorithms, and accomplishes that task
expertly. For those who are skeptical of sweeping surveys and _ .
prefer to see a couple of problems examined in detail, Knuth's •
introductions [1971, 1977] will prove enlightening and
fascinating. And if one is ready to become a serious student of
the field, the canonical texts are provided by Aha, Hopcroft and
Ullman (1974) (2 one-semester, graduate level introduction) and,



Knuth [1968, 1969, 1973J who has completed three volumes of
his seven volume tkfilli.ti.tte work on computer algorithms.

In this paper I will try to supplement those works by
providing a broad survey for the uninitiate. Although I hope
that the beauty of this field will not go unnoticed, I will try to
emphasize its utility to the practicing computer user. My goal in
this paper will be to communicate the flc»or of the field, and I
therefore abandon any pretenses as to the completeness or
thoroughness of this study. I urge the reader to keep in mind
that the contents of this paper are not the established
paradigms of the field, but merely one man'$ view of the
currents in his area. The bibliography has been kept
exceptionally short for the sake of brevitYl both Tarjan [1977]
and Weide [1977J contain excellent bibliographies for those
interested.

This paper is divided into five se"ctions, which should
probably be read in order. In Seetion 2 we will examine four
problems and some algorithms for solving them. Having
examined those concrete examples we turn to a systematic view
of the field in Section 3. In Section 4 we will mention some of
the current directions in which the field is now moving. Finally
we tie together the main points of this paper in Section 5.

2. EXAMPLES OF FAST ALGORITHMS

Sweeping generalizations without supporting examples
are otten content-free, so before we go on to our sweeping
generalizations in Section 3 we will study a few examples of
fast algorithms. For each example we will specify a problem,
mention some of its real-world applications, give an algorithm to
solve the problem, analyze the efficiency of the algorithm, and
::.en discuss interesting issues which have surfaced. We will
study the Nsubset testingN problem of Section 2.1 in a fair
amount of depth and then trs'!t the other three problems at a
m""e superficial level. After discussing these examples, and
before we move on to the statements about the field of
algorithm design in Section 3, we will summarize what all of our
work bought us in Section 2.5.

But first a word on why we are exammmg these
particular problems. rne subset testing problem will raise a
number of familiar issues and should cover some old ground for
almost everyone; it also gives us a nice illustration of the
tremendous time savings achievable with proper algorithms.
The substring searching problem of Section 2.2 provides an
extremely interesting blend of theory and practice. The Fast
Fourier Transform of Section 2.3 is known to many, uses some
important 'algorithmic techniques, and is eminently practical. In
Section 2.4 we examine a very old problem (matrix
multiplication) and a recent and remarkably counter-intuitive
solution; we will also see some mysterious relations among
problems that appear to be at opposite ends of any spectrum!

2.J Subset Testin.g

Given a set A (of size n) and a set 8 (of size I'll :s n). is 8e a subset of A?1 This ·subset testing· problem can be stated as

1 This problem is discussed by Knuth [1973, p. 391J.
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a programming exercise: given an array A[l:nJ and 8[1 :mJ, both
of (say) 32-bit words, is every word in 8 also in A? Disguised
versions of this problem arise in many contexts: A could be an
employee mast,er file, 8 a list of weekly transactions, and we
want to find a master-file record for each weekly transaction.
Or A misht be a table of real numbers x and have an associated
table S which contains sine x, then 8 would be a set of x values
at which the sine function is to be evaluated. Although this
problem does have some practical application, that is not our
main motivation for examining it here. We will see that it leads
to many of the basic issues in sorting and searching, and points
to inter-relationships between those problems. We will also get
an exposure to some of the common methods of algorithm
design.

We will examine three ways of solving this problem. In
order to compare the methods we will find the running time of
each by counting the number of comparisons between elements
each requires. This will not give the exact running time, but
should give us a fairly robust idea as to the relative merit of
each. (Con't worry; we'll return to this issue later!)

Brute F'cree

The simplest way to accomplish this task is to compare
every element in B to each of the elements of A until either its
equal is found or we have examined all of A and determined that
it has no equal in A (in which case 8 is not A's sucse!); this
approach gives a simple, two-loop program. If 8 is indeed
contained in A, then each scan for an element that is S's mate in
A takes n/2 comparisons on the average (you have to look
halfway down the list>. Since there are I'll such scans made, the
total number of comparisons made by this program is about
m(n/2>. So if I'll is very close to the size of n, then (JIe will make
about n2/2 comparisons on the average2• Although Ihis
algorithm is exceptionally simple to understand and 10 code, its
slow running time might prohibH ,,5 use in certain applications,
We will now turn our attention to an even faster algorithm.

Scrtin.g

If I were to give you a randomly ordered list of phone
numbers 8 (say a list of phone numbers in a town) and anolher
randomly ordered list A (say alt phone numbers in the county)
and asked you to check whether 8 was a subset of A (make
sure every town phone number is included in the county lis!),
then you might use the brule-force algorithm we just discussed.
If, however, I handed you a town phone book and a county
phone book and asked you to perform the same task, then your
job would be a lot easier. Since the two phone books are
already sorted (by name) we can just scan through the two
books logether, insuring that the county book contains all Ihe
town names. This of course immediately gives us another
algorithm for $ubset testing: sort A, sort 8, then scan through
the two, checking. To analyze the run time of this strategy we
observe that the scan will take about m+n comparisons, and we
heard somewhere that you can sort a list of size n in about
n log2 n comparisons, so the total running time is (n 1082 n) +
(I'll log2 I'll) + m+n comparisons.

We could just pull a sorting routine out of thin air, but it

2 We won't try to analyze the case that 8 is not a subset of A;
to do so we would have to say exactly how it is not a subset,
and that is very dependent on the particular problem!



Isn't much more difficult to describe called Mergesort. The
basic operation of Mergesort is merging two sorted Iists3 of
numbers, say X and Y. To do this we compare the first element
of X with the first element of Y and giYe the smallest as the
first element of the new list, deleting it from its source. We
repeat this remoYe-lhe-smallest step until both X and Y are
empty. Since we used one comparison for each step, if there
were a total of m elements in X and Y, we will haye used about
m comparisons4• We can now use this tool of merging to
Mergesort a set S of n elements. We start by Yiewing S as a
set of n sorted one-elemlfnt lists. We then merge adjacent pairs
of one-element lists, glYing n/2 2-element sorted lists. The next
step is to merge adjacent pairs of those lists giYing n/4
4-element lists, and the process continues. After 1012 n
iterations we haye one sorted n-element list, and our task is
complete. To analyze this we note that we use about n
comparisons for the merges at each of the log2 n iterations, so
the total number of comparisons used is the promised n log2 n.

We can Yiew Mergesort from the Yantage point of
recursion and achieYe a totally different perspective on the
same algorithm, which might reinforce our intuition and ease our
aAalysis. To .Mergesort a set S of size n we dlyide S into two
sets X and Y (each of size n/2), sort X and Y by recursively
calling Mergesort, and then merge the sorted lists together.
This algorithm will haye exactly the same effect as our iteratiYe
version, and (at least for those elrperienced in ·recursiYe
thinking'') is easier to conceptualize. We can also use this
viewpoint to analyze the algorithm. Since it takes no
comparisons to sort a one-element list, frolrt. our algorithm we
know that if T(n) is the number of comparisons required to sort
an n-element list then it satisfies the recurrence relation

Tm·O,
T(n) • 2T{n/2) + "

which has solution T{n} • n log2 n. {The recursiye p.art reflects
the fact that to sort an n-element list we must sort two
(n/2)-element lists and then use n c:)mparisons to Irterse those.)

We haye now shown how to solve the subset probiem
with n(log2n + 1) + m{log2m + 1) comparisons. If m is the
same size as n then our algorithm takes 2n 1012 n comparisons.
Can we do better?

Ha.shtng

Our introspection as to how we would solye the phone
book problem led us to discoyer an interesting sorting approach
to the subset problem; if we rephrase Jhe phone book problem
our "hulrtan" approach will lead us to an even faster subset
algorithm. Suppose that the county phone book (A) was sorted
and the town phone list (8) was not; to insure that A contains S
we can "look up" in A each number in B by the name of the
subscriber. For each of the m elements in S we would do a
"binary search"s among the n elements of A. It is not hard to

3 We won't worry right now about their implementation--they
could be either arrays or linked lists with pointers.

4 Actually at most m-l, so our results are a little pessimistic.

5 A binary search for a name in a phone book first cOlrtpares
that name to the middle name in the book. If that name is
less than the middle we restrict our search to the first half of
the book, otherwise we search the last half, and so on.
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see that a binary search in an "-element sorted table takes at
most log2n comparisons, so this algorithm Is easily analyzed.
We therefore have a searching solution to the subset problem:
store the elements of A in a table, then for each element of B
insure that it is in the table.

Although binary search is the best searching Irtethod for
. many problems, there is another searching strategy eyen more
appropriate for this problem: hashing. Using hashing we can
store an element in a table or check to see if an element is
already in a table in about two comparisons, on the averageS.
With this approach we will be able to do subset te,ting in
2n + 2m comparisons-2n to store A then 2m to look up each
element of a To store the n elements of A we will haye to
allocate a htuh t4ble which is an array of length (3/2)n7 We
then store the elements of A in the table one-by-one by the
use of a ha.sh /u.ru::ti.ofl, This function maps a data value into an
integer in the bounds of the hash table. If that position in the
hash table is empty, fine: we insert the element. If the position
was occupied, however, we have a coLWi.on., and must employ a
co/JJ.$i.on strc.tsg", such as scanning up the elements of
the array until a free position is found. Analysis has shown that
a proper collision resolution strategy allows one to find an
empty spot very quickly (say, in two comparisons). When an
empty spot is finally found the element is inserted. After
inserting all of A's elements into the table we then look up all of
S's elements. For any particular element we calculate its hash
function and lOOk in that position. If that position is empty then
it is not in A; otherwise we must employ the same collision
resolution strategy to see where it should be. The technique of
hashing is something that a person would never use in his
searching (we are much better at colrtparing things and then
lOOking in one of two directions than at calculating weird hash
functions), but it leads to a very efficient algorithm. If m is
about the same size as n then the hashing approach uses only
about 4n comparisons (on the ayerage) to do testing.

The subset testing problem is stated very simply but
has led us straight to some of the fundamental problems of
algorithm design. We yery quickly arriYed at
scan of the brute force algorithm is just a naiYe search. From
there we moyed to sorting, then to binary search, and finally to
hashing, which introduced us to a non-obYious data structure
{the hash table).S The approaches lhat we used to solve these
problems are some of the fundamental tools of algorithm
designers. We have also touched on a number of interesting
aspects of algorithmic problems such as time and space analyses
and worst-ease versus expected-time anaiysis. We will study
these issues further in Section 3.

Sut what has all this gained us? We certainly haye a
more definite understanding of some of the fundamental
computational problelrts inYolYed, but does it make any

S For pessimists, however, the worst case of hashing is
might haye to look at ail of the elements in the

table.

7 We could use a smaller array; {l.l)n would probably work A
almost as well. ..,

8· For a more thorough examination of searching the reader
should see Knuth's [1977] surYey.



difference in practice? To answer this question let's assume
that we are writing a program for subset testing where A and B
both contain one million elements, and for the sake of argument
assume that one comparison takes one microsecond of computer
time. By these assumptions, the n2/2 comparisons required by
brute force translates to 138 hours (or a little shy of six days)
of machine time; the 2n log2 n for sorting will give 40 seconds;
and the 4n of hashing will yield 4 seconds. Although we haven't
calculated all the costs of implementation, this example shows
how sometimes a simple analysis is all you need to make an
informed choice!

2.1 SuJmring Searching

Does a given :trinrr contain a specified substring po.ttern,
and if so, where? This is the substring searching problem. This
problem is familiar to most who have used computer text
editors; as I sat down to type this paragraph I told the editor to
find the substring "2.2" in my text file so I would know where
to insert Ihis text!9 This same operation is used in information
retrieval systems as they try to identify abstracts which contain
certain keywords. Similar problems are encountered in many
macroprocessors and text formatters.

It is not hard to write a program to solve this problem.
We first hold po.ttern.'s leftmost character under strin.g's leftmost
character and start comparing. If all the characters of po.ttern.
match the characters above them, fine--we have found the
substring in position 1. If we find a mismatch we slide po.ttet'n.
over one and do the same thing again. This continues until we
either find a match or come to Ihe end of the string. The
worst-case behavior of this algorithm is very slow--for each of
Ihe n positions of :tri.ng we might have to compare all m
positions of ptUtern.. Thus in the worst case we might have to
make mn comparisons. Strings and po.tterrtJ that realize this
worst-case behavior are fairly palh%gical and the performance
of this a/gorilhm in practice is fairly good, but the question still
haunts us--can we give an algorithm that will always do better?

Knuth, Morris and Pratt [1977J give an algorithm that
beats that bound. They preprocess po.ttem. into a data
structure that represents a program; that program then looks
for po.ttern. in string. Preprocessing ptUtern. by their algorithm
takes only m operations (where m is Ihe length of po.ttern) and
the "program" Ihey produce looks at each character of string
only once, so total running time of their algorithm is
proportional 10 m+n. (Of course if the pattern is in the string in
position i, then their algorithm takes time proportional to i+m.)
This result is exceptionally interesting from a theoretical
viewpoinl, and also provides a faster substring searching
algorithm in practice.

Boyer and Moore (1977J recently used the basic idea of
the Knuth, Morris and Pratt aigorithm 10 give an even faster
method of substring searching. Their method has Ihe same
worst-case performance (proportional to m+n), but is somewhat
faster on the average. They accomplish this by making il
unnecessary to examine every element of string. They have
implemented their algorithm on a PDP-10 so efficiently that
when :tring contains typical English text and po.ttern. is a five
letter word in ;trin.g, the number of PDP-IO instructions

9 The text editor J use looks at my file as one long string of
text, sprinkled with charaeters representing "carriage return".

executed ;., leu theA ,<on.. This is at least an order of magnitude
faster than the naive algorithm.

The history of the substring searching problem provides
an interesting insight into Ihe relation ot theory and practica in
CQmputer Science. I<nuttt reiales that he was led to his
discovery of the algorithm by the use of a machine from
automata theory called the "two-way deterministic pushdown
automaton". The easiest way to understand the fast algorithms
is through the use of another abstract machine called the
"non-deterministic finite state automaton". It is noteworthy that
in this one problem we talk about such diverse Ideas as abstract
automata and POP-l0 instructions, with a· lot of difficult
combinatorial analysis In between!

The Fourier Transform is often studied in mathematics
and engineering. If can be viewed in a number of ways, such as
transforming a function from the "time domain· into the
"frequency domain" or as the decomposition of a function into
its "sinusoidal components". The continuous Fourier Transform
has a discrete counterpart, which calls for applying an operation
to one sel of n reais yielding a "transformed" set of n reals.
This problem has applications in signal processing, interpolation
methods, and many discrete problems.

The naive algorithm for computing the Fourier Transform
of n reals requires approximalely n2 arithmetic operations. The
Fast Fourier Transform (usually attributed to Cooley and Tukey)
accomplishes this task in approximately n IOS2 n arithmetics. It
does this by doing about n arithmetics on each of IOS2n levels;
in this sense it is quite similar to the Margesort algorithm of
Section 2.1. There are many different expositions of the
algorithm; see Aho, Hopcroft and Ullman (1974J or Borodin and
Munro (1975]. (It is inierest:ng to note that in addition to being
faster to compute, many of the numeric properties of Ihe FFT
are better than those at the n'!ive transform.)

ihe Fast Fourier Transiorm has had a substantial impact
en computing. It forms the backbone of many "numeric"
programs. The FFT has been used in diverse fields to find
hidden periodicities at a stalionary time series. In signai
orocessing il is used in filters to remove noise from signais and
eradicate blurring in digital pictures. It is used in numerical
analysis for the interpolation and convolution of functions.
Applications of Ihe FF'T in such diverse areas as electrical
engineering, acoustics, geoohysics, medicine, economics, and
psychology are listed in Bullinger (1975, Section 1.5]. Many
special-purpose processors have been built which implement
this algorithm; some of those are multiprocessors which operate
in parallel. The FFT is also widely used in the design of
"discrete" algorithms. It is the primary teal in many algorithms
whicn operate on polynomials, j:lerforming such operaticns as
multiplication, division, evaluation and interpolation. Not
surprisingly, il is also employed in some of the faslest known
algorithms for operating on very long integers (such as
multiplying two one-million bit integers).

2.4 Mo.triz Mu.l:i.pUco.tt.on.

One of the most common ways ot representing many
different kinds at data is in a matrix, and one of the most



common operations on matricH is multiplication. How hard is it
to multiply two n x n matrices? Using the standard high school
method takes about 2n arithmetic operations to calculate each
of the n2 elements of the product matrix, so the .total amount of
time required by that algorithm is proportional to n3. People
have been multiplying matrices by this method for centuries.
Surely this must be the best possible way to multiply
matrlces-our intuition tells us that we just can't do any better.

The high school algorithm for multiplying two-by-two
matrices uses 8 multlplicalions and 4 additions. It is fairly
counter-intuitive to learn that the product can be computed
using only 7 multiplications at the cost of an increase to 15
additions. But if that is counter-intuitlve, then it is absolutely
mind-boggling to find that that fact alone allows us to construct
an algorithm for multiplying n x n matricas that runs in less than
n3 time! This algorithm is due to Strassen [1969] and works by
decomposing each n x n matrix into four (n/2) x (n/2) matrices.
To find the product of the original matrices it does seven
multiJ)lications of (n/2) x (n/2) matrices and then fifteen.
additions on matrices of that siu. Notice. however, that the
cost of those additi9ns is proportional to n2. If we let T(n) be
the time required to multiply n x n matrices, then T(n) satisfies
the recurrence

T(n) • 7T(n/Z) • 0(n2),
T(l). 1

whicn has the solution T(n} • 0(n2.81) (where 2.81 is an
approximation to 10127). Using the naive implementation of this
algorithm would probably prove less efficient than the high
.school algorithm until n was in the thousands; recent work,
however, has shown that it can be practical when n is as small
as 40. But practice aside, who can help but be amazed by the
fact that we can multiply matrices faster· than we thought we
could?

The fast matrix mUltiplication algorithm provided the
basis for one of the aU-lime great revolutions in the history of
algorithm design, during whicn a number of "best known"

were toppled from their reign. Many of these were
n'" matrix algorithms which we can now do in 0(n2.81) time;
among these are matrix inversion, LUP decomposition, solving
systems of linear equations, and calculating determinants. A
number of problems which seemed to be totally unrelated to
matrices were phrased in that language and 0(n2•81 ) algorithms
foilowed for such diverse problems as finding the transitive
closure of a graph, parsing context-Iree languages (an important
problem in compilers} and finding distances between n points in
Euclidean n-space. All of these algorithms stem Irom the fact
that two-by-two matrices can be multiplied with seven
multiplications! If only they had told us about things like this in
freshman mathemalics, instead of making us memorize integral
tabies!

2.5 So What?

We have now examined four cases in which proper
algorithm design has led to a sophisticated algorithm which is
much faster than a naive algorithm, A 101 of work has been
invested in developing these algorithms; what difference will all
this work make in practice?

To be honest, most of the time a fast algorithm makes no
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difference at all. Knuth has gathered empirical evidence which
shows that most of the run time of a program is spent in just
three pereent of the code (this should come as no shock to
statisticians who know that twenty percent of the population a
accounts for eighty percent of the beer consumed). If the .,
problem to be solved is not in the critieal three pereent of the
code (as about 97 percent of the problems are!) then it makes
little difference it that algorithm is fast or not. A more
complicated algorithm can often be a liability rather than an
asset. If will usually mean· more coding and more debugginl

and can sometimes even incr.ase the run time (when the
overhead of "starting up· a fancy algorithm eosts more than the
time it saves).

Sometimes, however, a fast algorithm can make all the
difference in the world. If the computation being performed is
indeed the bottleneck in the system flow, then an algorithm of
half the running time almost doubles system throughput. In
many text editors the vast majorty of the time is spent in string
searching; the fast algorithm of Section 2.Z can speed up many
text editors by a factor of five. My experience with the
searching program which I mentioned in the introduction (when
we reduced the running time of a program from three hours to
five minutes) is another classical example of an appropriate use
for a fast algorithm. In the inner loops of comJ)utation-bound
J)rograms (those not waiting all the time for I/O), proper
algorithm design is critical.

An analogy will perhaps clarify these issues. It is fairly
easy to walk, it more complex to drive, and it is even more
complex yet to learn to fly a modern jet airplane. Walking is
the best way to get from one room of a house to another. e
driving is superior for getting from one town to another, and
fly!nl is hard to beat for getting from one part of tne country
to another. There is no "best" mode of transportation-the best
mode in a particular case depends strongly on that ease. For
most of us the time we spend travelling in jet airplanes is very
small compared to the time we spend walking-but it sure is
nice to know about jets when we need Ihem!

Although the effort of fast algorithm design only
occasionally gives us large linancial savings, it always gives us
something of a different value--a fundamental understanding of
our computational problems. This is usually reflected in cleaner
programs. But even more important is the understanding of
how difficult it is to eompule something. After a student has
spent a month or two investigating the problem of searching, he
not only knows how to search last but also why he can do it
that fast and why he can't do it any faster. Such a student has
learned something of the very foundations of his field.

3. A SYSTEMATIC VIr:N

In Section 2 ',\I'e saw a number of particular problems
and a number of particular solulions; in this section we will
shOW that there is more to the field than isolated examples. In
Section 3.1 we will discuss the concepls one needs to define a
computational problem. and in Section 3.2 we will use those
concepts to describe the kinds of problems for which last e
al.gorithms have been designed. In Section 3.3 we will take a
peek into the algorithm designer's tool bag.



must be careful not to ignore certain
ooerations that. become critical in

The above models allow us to analyze algorithms for
their suitability as 'in-cor." programs on single-processor
machines. If a program has very little main memory available
and must store most of its data on tape, then some
tape-oriented model such as the "Turing machine· is the most
accurate model of the computation. If a program is 10 be run on
a multiprocessor machine then one's mOdel must express this
fact; the parlicular model employed will vary wilh the
multiprocessor arcnitecturell. Many other models of
computation have been proposed 10 describe diverse computing
devices. The two important things in choosing a mOdel are that
it be rec.Wti.c, so the results will apply to the situation it
purports to model, and that it be mathematically trCl:ra.bl4, so we
can derive those results.

sorne criti.coJ op,ero.tion. is performed. For Ihe analysis of the
FFT and matrix multplication we chose to count the number of
arithmetic: operations. We know that the FFT uses exactly
n 1012 n multiplications; 10 estimate its running time for a given
implementation we can look up the execution speeds of the
instructions around the multiplication instruction. sum those, and
then multiply by n 1012 n to get an estimate for the running
time. It;s usually easy to determine Ihe running time of a
particular program if we know the number of times the critical
operation is to be performed10• Once we have chosen a critical
operation to count it is very easy to specify a model of

To count arithmetic operations we usually employ
the "straigIH-line program" model in which an algorithm for a

value of the problem size (n) is represented by a
sequence of statements of the form

XI+- Xj OP Xk
where OP is add. subtract, multiply, or divide. If the sequence
for a particular value of n is m instructions long then we say
that the execution time of our program is T(n). m. If our
critical operation were comparison, then we would probably
choose the "decision tree" model. These and other models are
described by Aho, Hopcroft, and Ullman (1974, chapter 1].

Once we have chosen a model of computation we can
analyze the performance of an algorithm by counting the
amount of resources (lime or space) it uses as a function of n,
the problem size. How accurately shouid we do that counting?
We could be very precise, calculating the answer exactly, or we
might settle for an approximate answer. ihere are levels of
approximation, all the way from the firsl two terms of the
answer to rough upper and lower bounds. It is certainly
desirable to get the exact answer, bul this is sometimes very
difficult. The first one or two terms of the cost function are
adequate tor masI purposes, and in many eases only the
asymptotic growth rate of the functions is needed. We saw in
the subset testing problem an example in which the run time for
one program tor a task was 138 hours while another program
took just 4 seconds. Even if our analysis missed constant
factors of ten, that eould not affect our choice tor large
problems.

10 Though we
"bOOkkeeping"
implementations.

Thr"" .;hout Section 2 we were able 10 make reference
to Ihe time and space requirements of various algorithms
without reference to Iheir implementation on any particular
computer. Our intuitive notions were robust enough to lead to
sophisticated algorithms that will certainly beat their naive
competitors on any existing machine. But to analyze an
algorithm in detail we must have a precise mathematical model
of the machine on which the algorith:n will run.

The subset testing problem of Section 2.1 showed that
there can be many different algorithms for solving a particular
problem. In or-ier to say which one is best in a particular
application we have to know certain dUnett.liott.l of the problem.
For example, in one application we may need a subset algorithm
that must be very space... fficient and have good worst-case
running time; in another context we might have a lot of available
space and only require good expected running time, not caring
if we (infrequently) must take a lot of time. We have thus
identified three dimensions of a computational problem: time
analysis, space analysis, and expected vs. worst-case analysis.
In this subsection we will discuss these and other dimensions of
computational problems.

3.1 Olmatt.liott.l 01 Q, Problcm.-A MLcrolcopil: Vi.evI

The two most important resources in real computational
systems are time (CPU cycles) and space (words used), and
these are therefore the Iwo dimensions of a problem most
frequently discussed. The running time was the primary subject
we examined in the examples of Seclion 2. lIAost of the
algorithms we examined use very tittle extra space after storing
Ihe inputs and outpuls; lhe hashing algorithm of Section 2.1 was
Ihe only exception. In large computer systems huge quantities
of extra space (megawords) can be had for Ihe asking and Ihe
paying; for Ihat reason many have ignored Ihe space
requirements of algorithms. With the rise in popularity of mini-
and microprocessors with very smail memories, however, space
analysis is once again an extremely imporlant issue.

We could chooJe as our model a partiCUlar computer,
such as an IBM 650 or a DEC PCP-lO, and then ask how many
microseconds of time or bits of storage a particular alg<lrithm
requires. There are two problems with this accroach. First, we
will probably be analyZing the expertise of the implementor of
the algorithm more than the algorithm's intrinsic merit, and
second, once we have completed such an analysis using the ISM
650 we still know very little about the algorithm's behavior on a
PDP-lO. One way of dealing with this difficulty is to invent a
representative computer and then compare the performances of
competing algorithms on that machine. Knuth [1968] has
described one such machine which he named the MIX computer;
it has much in common with most existing machines without
many idiosyncracies of its own. If algorithm A is faster than
algorithm B when implemented on MIX, lhen it is very likely to
be taster on most reai machines, too.

Another solution to the model of computation problem is
not to analyze the implementation of the algorithm on any
particular machine at all, but to count only the number of times

11 ihe interested reader is referred to Kung [1976] for a
discussion of some of these issues from an algorithmic
viewpoint.
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We often use lhe "big-oh- notalion 10 describe the
complexity of a problem. No matler what the relative constants
are, an O(n log, n) algorithm will be faster than an o<n2)
algorithm for large enough n. As larger and larger problems are
being solved by computer we are more and more frequently in
the domain ot 'arge enough n-. Asymptotically fast algorithms
also have another advantage. It we get a new machine one
hundred times faster than our current, using an O(n JOl, n)
algorithm will allow us to solve a problem about one hundred
tilllfl larger in the same period of time. Using an o<n2)
algorithm we will only be able to increase the problem size by a
factor ot ten. Thus the asymptotic growth rate ot a function
alone is usually enough to tell us how much an increase in
problem size will cost.

Many algorithms perform a sequence of operations
inependent ot their input data; the FFT and matrix multiplication
algorithms of Section 2 are both data-independent. The
analysis ot a data-independent algorithm is straightforward-we
count the number of operations ·used. The operation of other
algorithms (such as lhe sorting and substring algorithms) are
dependent on their input data; one algorithm can have very
ditferent running times for two inputs of the same size. How do
we describe the running time ot such an algorithm? Pessimists
would like to know the worst-case of lhe running time over all
inputs and realists would like to know the average running time.
(We are rarely concerned with the best-case running time, for
there are very few optimists involved with computing.) .

Most of the mathematical analysis of algorithms has been
done for the worst case. Even in data-dependent algorithms it
usually easy to identify the worst possible occurrence, and then
analyze that as in a data-independent al.gorithm. In certain
applications (Air Traffic Control is often cited) it is very
important to have an algorithm with which we are never
surprised by a very slow ease. For most applications, however,
we are more interested in what will usually happen;
expected-time anatysis provides us with this information.
Relatively little work has been done on expeded-time analysis.
The two major stumbling bioCKS aooear to be in the choice of a
realistic and tractable probability model of the inputs and the
instrinsic difficulty of dealing with instead of single
cases. It would be very desirable to have a singie algorithm
that is very efficient in boih expected and worst-case
performances. A family of such algorithms was recently
described by Bentley and Shamos [1978J; their expected
analysis made very weak probabilistic assumptions.

gives us a low.,. boun4. Since the two have the same growth
rate, we can say that Mergesort is opUm4J, to within a constant
factor, under the decision tree model ot computation. Notice
that we have now made the important jump trom speaking of
the complexity of an algorithm to speaking of the complexity of
a problem.

Lower bounds are usually much more difficult to obtain
than upper bounds. To find an upper bound on a problem one
can give a particular algorithm and then analyze. it. For a lower
bound, however, one must show that in the let 01 a.U a.lioruluru
/01' $ol.!Iini the there are none wmch are more efficient
than the lower bound. There are some trivial lower bounds
which can be achieved easily: most algorithms must examine all
.their Inputs so \l!e usually have an easy lower bound ot n (or n2 .
for metrix multiplication), The number of nontrivial lower
bounds achieved to date is very small.

In proving lower bounds it is important to be very
precise about the model of computation. In Section 2.1 we gave
three algorithms that can be used for testing set equality 12:
brute force, sorting, and hashing. The importance of
computational model becomes clear when we learn that each of
those algorithms can be proved optimal under different
computational models! The o<n2) performance of brute force is
optimal it only equal/not-equal comparisons can be made
between elements at the two sets. It lhe model of computation
inludes only less-than/not-less-Ihan comparisons then the
O(n log2 n) comparisons at sorting are optimal. It the model is a
random access comouter (such as MIX), then the Iverage-case
linear performance of hashing is provably best.

There are many for which the best-known
algorithms are quite slow, requirin.. (say) 0(2n) time. For a very
few of these problems people have actually proved lower
bounds. Others belong to a fascinating class called the
NP-complele problems which are either .all· solvable in
polynomial time or all of exponential complexily-unfortunately
nobody knows which (but most of the money is on exponential).
Examples of NP-complete problems include the Travelling
Salesman Problem (finding a minimal-length tour through a set
of cities) and the Knapsack Problem; literatly hundreds of
problems are known to be NP-complete. There are other
problems whicR have not been proved to be hard, yet no one
has been able to design fast algorithms for them. When we
have a problem which we do not "'now how to solve efficienily,
what can we do?

The answer is amazingly simple: don't solve it. Solve a
related problem instead. Instead of designing an algorithm to
produce the exact answer, one can build an algorithm Ihat will
produce an approximation to the exact answer. So inslead of
finding a minimal lour for the Travelling Salesman, we might
provide him with a tour which we know 10 be no more than fity
percent longer than the Irue minimum. Or if someone asks us to
determine if a number is prime or composite, instead of
providing the true answer we might respond "I don't know, but
I'm 99.999999 percent sure that it's prime." Examples abound in

Upper o.nd uwor 2cu.rub

The first sortil'!g algorithm we mentioned in Section 2.1
reQuired 0(n2) comparisons in the worst ease; we then
investigated Mergesort, which never uses more than O(n 10&2 n)
comparisons. Should we continue our search, hoping to find an
algorithm that uses perhaps only O(n) comparisons? The answer
to this question is no, for it can be shown that ellery lonini
a.liorithm mwt ta.ke al leeut O(n loi2 n) cQmpOJ'uoIU in the
worlt ceue. The croof of this theorem uses the -decision tree"
model of computation and is described nicety by Aho, Hopcroft,
and Ullman [1974]. The Mergesort algorithm gave us an u.pper
bou.nd of O(n log2 n) on the complexity of sorting; this theorem
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12 We gave them originally for subset testing, but recall
two sets are equal if and only if each is a subset of
other.

that-
the



which the best known exact algorithms for a problem require
exponential time, but approximate solutions can be found very
quickly. Garey and Johnson [1976J examine these issues.

These problem dimensions are the categories in which
algorithm designers think. When someone brings a problem to
an algorithm designer, the algorithm designer's first task is to
understand the abstract problem. His second task is to
understand what kind of solution the person wants, and he uses
these dimensions to describe tne desired solution. Using the
vocabUlary of this section it is elsy to describe concepts such
as a "fast expected time and low worst-case storage
approximation algorithm for task X which· is to be run on a
multi-processor machine". There are certainly other
infrequently used dimensions which we have not covered (such
as code complexity-how long is the shortest program to solve
this problem?) but these dimensions are adequate to describe
most algorithmic results.

In Section 3.1 we developed a vocabulary which we can
use to describe a particular algorithmic problem at a very
precise level of detail. In this section we will change our
perspective and examine large classes of problems, using the
terminology of the last section. We will describe each area by a
brief summary and one. or two illustrative problems.

Ordered Set:

There are many problems on sets that depend only on a
than" relationship being defined between the elc·, ..oInts of

the set. In many cases the set contains integers or real
numbers; in other cases we define a 'ess than" relation
between character strings (..'ONES is less than SMITH). The
problems we examined in Section 2.1 are all problems on
ordered sets--these include sorting, searching, merging, and
subset tesling. The algorithms of that section are appropriate if
the elements of the sets to be processed are numbers,
character strings, or any other type of "orderable" object.
Knuth [1973] provides an excellent introduction to the
applications ot and algorithms for ordered sets.

The "median problem" is defined for ordered sets: given
an n-element set we are to find an element which is less than
half the elements and not less than the other half. A naive
algorithm would count for each element the number ot elements
less than it, and then report the median as the element .....ith
exactly half the others less than it. This data-independent
algorithm makes exactly nZ comparisons. An 0(1'1 log2 n)
algorithm is given by sorting the elements and then reporting
the middle of the sorted list. A median algorithm with linear
expected time was first described by C. A. R. Hoare in 1962.
For over ten years it was not known if there was an al.gorHhm
that had linear worst-case time; one was finally given by Slum
et a.L [1973]. Much additional work has been done on this

.problem, exploring such facets as minimal storage, detailed

.,analysis of worst-case and expected running times (both upper
and lower bounds), and approximation algorithms.
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AliebMk <UUl NI.r.IMri4 Problem:

Many aspects of algebraic and numeric problems have a
discrete flavor, and discrete algorithm design can play a
significant role in such problems. Matril( multiplication is
perhaps the clearest example of such a problem; the fast
algorithm can be described (and appreciated) without reference
to any of its numeric properties. The FFT can also be viewed
-non-numerically". Another example of a numeric problem that
can assume a purely discrete character is the manipulation of
sparse matrices (matrices in which almost all elements are zero);
we return to this problem in our discussion of graph problems.
Borodin and Munro [1975] give mlny applications of the
principles of discrete algorithm design to·numeric problems such
as polynomial manipulation, extended precision arithmetic, and
multiprocessor implementations of numeric problems.

Cf'o.plu

Graphs are used to represent many diHerent kinds of
relations, from the interconnections of an airline system to the
configuration of a computer system. Tarjan's [1977] survey
discusses many computational problems on graphs. One
important problem calls for determining if the nodes of· a given
graph can be imbedded in the plane without any edges crossing.
The first algorithms for testing planarity ran in 0(n3) lime on
n-node graphs; after much effort on the part o.f many
researchers hac! been spent on the problem, Hopcroft and
Tarjan finally gave a Iinur-time planarity algorithm in 1974.
Another graph problem is to construct the minimal spanning tree
of a weighted graph, which is a set of ecges connecting all
nodes at minimal cost. A wide variety of algorithms have been
proposed and analyzed for this problem; SOme are superior for
very dense graphs, others for relatively sparse graphs, and yet •
others for graphs which are planar. Effieient graph algorithms
have been given for problems such as the flow anl!llysis of
computer programs and finding maximal. flows in networks. A
sparse matrix is usually represented by a graph; the algorithms
for manipulating matrices are then graph algorithms.

Ceometry

Shamos' [19i5] pacer is an outstanding introduction to
the field of Compu.tc.ti4ncJ Ceometry, which is concerned with
developing optimal algorithms for geometric problems. Many
applications are of a geometric nature (such as architects
planning a bUilding) and other problems can be viewed
geometrically (such as looking at a set of multivariate
observations as points in a multidimensional space). Shamos has
described an important structure called the Voronoi diagram
which ailows many geometric problems dealing with n points in
the plane to be solved in O(n logZ n) lime. Among these
problems are determining the nearesl neighbor. of every point
and constructing the minimal spanning tree of the point sets
(both of these are important tasks of many data analysis
procedures, and previously required quadratic time). Many
other important problems have been solved atter being cast in a
geometric framework. One result obtained by this effort is that
the simplex method of linear programming is not optimal for two
and three variable programs with n constraints. The simpiex
method has worst-¢ase running times in the two problems of
0(n2) and 0(n3), respectively; an O{n log2 n) method has been
given and proved optimal for both the two and three variable
case.



In this section I have tried to give the reader some
feeling for the scope of the results that have been achieved to
date in the field of algorithm design. The results in many areas
must go unmentioned; these include algorithms for compilers,
operations research problems, data base management, statistics,
and problems on character strings. The results described in this
section have led to both fast algorithms for solving real
problems and to a new, algorithmic understanding of the various
fields.

Wandering through a computer room one can not help
but be impressed by the complexity of a large-scale computing
system, and the novice might find it hard to believe that a
human mind could design anything so complicated. The novice is
not too far from tha truth, yet many undergraduates are able to
understand the basics of the organization of a computer after
only one or two semesters. They are able to comprehend the
complexity not by sheer force of concentration, but rather by
understanding the "bUilding blocks"of which computers are
made. A similar experience awaits the novice algorithm
designer. The algorithms mentioned in Section 3.2 deal with
many problem areas, but are rather simple to comprehend once
one understands the "building blocks" of algorithm design. In
this section we wit! describe three important classes of these
fundamental structures.

Do.:a.

Algorithms deal with data, and data structures are the
tools the designer uses to hold his data. rn Section 2
we saw data struct:Jres such as arrays and malrices, and
a fairly data structure, the hash table. There are many
more exotic types of dala structures, such as linked lists, stacks.
queues. priority queues, and trees, to name a few. Each of
these provides an appropriate way to structure data for a
particular task. Tarjan [1977J gives a brief description of many
of these structures; a detailed description of a large number of
interesting structures is provided by Knuth [1968].

Structured programming demands that a programmer
eXl'ress a complicated sequence of commands as a series of
refil"lements by which the program can be understood at
different levels. In each of these refinements a basic. well
understood method is applied to a well defined problem. Good
programmers used this technique long before it was vocalind;
good algorithm designers use a similar strategy even though
they infrequently discuss it. The constructs available to the
algorithm designer are similar to Ihose in structured
programming languages, though somewhat more powerful. We
will describe some of these constructs very briefly; more detail
can be found in Tarjan [1977J and Aho. Hopcroft, and Ullman
[1974, ch. :n

We have already seen many common algorithmic
techniques in Section 2. Most of the algorithms we described
used i.tero.:um. in one form or another--this strategy says "do x

over and over until the task is accomplished", Iteration is
present in almost all programming Jansuases as £9. and while
1001'S. A more powerful construct is rfICurs£;'n., which gives us a
way to eXl'ress recursive problem solving in prosramming _
languages. To define a recursive solution to a problem one says .,
(essentially), "to solve a problem of a certain size, solve the
same problem of a smaller size.· We used recursion to describe
binary search: to binary search a table of size n we binary
searched a table of size n/2. A partIcular application of
racursion is usually called dWi4e-o.tu:1.-conqu.e, and says, "to
solve a I'roblem of size n, l} divide it into subproblems each of
size only a fraction of n. 2) solve those subproblems
recursively, and 3) combine the subsolutlons to yield a solution
to the original problem." Mergesort is a textbook example of
divide-and-e:onquer: to sort a list of n elements we 1) break the
list into two sublists each of n/2 elements, 2) sort those
recursively, and 3) merge Ihose together. The Fast Fourier
Transform and the 0(n2.81) matrix multiplication algorithms are
other application of the divide-and-e:onquer technique. Once
one understands the fundamental princil'les of
divide-and-e:onquer algorithms, each of these instances becomes
rather easy to grasp.

Many other algorilhmic techniques have been identified
and studied. Dy1llSllUc PI'OFa.mnUn'l is a technique from
operations research that has found many applications in
algorithm design. Search strategies such as brndth-fvn seo.rch
and depth-fvn sftU"Ch have been used to yield efficient graph
aigorithms. Trc.n:fQrm4t£;,n allows us to turn an instanc. of on.
problem into another; we saw in Section 2:.4 that there are
many transJormations to turn almost totally unrelated problems
into instances of matrhc multiplication. Perhaps the single most _
important algorithmic technique is to use optimal tools to solve .,
the subproblems we create ourselves in designing a new
algorithm. To do so an algorithm.designer must keep abreast of
the current results in his field.

Proof Tschni.qun

Once an algorithm designer has given an algorithm and
"knows in his heart" that it has certain properties, he must
prove that it dges. (Perhaps it is this step which separates
theorist from practitioner.) His first task is to prove that his
algorithm indeed computes what it purports to; he will use many
of the tools of program verification in this step. Next he must
analyze the resource requirements of his algorithm. during
which he will use many diHerent mathematical toots, Finaily he
can prove his algorithm optimal by giving a lower bound proof.
The different methods of analysis used in these various steps
are discussed by Weide [1977].

4. CURRENT DIRECTIONS

The field of algorithm design has experienced a meteoric
rise in the I'ast decade. Essentially unknown as a field ten
years ago, it is now one of the most active areas in theoretical
computer science and has seen widespread use in applications,
Although the field has come a long way. it has much further to _
go. In this section we will examine some of the directions in .,
which the field is currently movins.



One constant direction of the field has been from "toy"
problems to "real" problems. This involves many detailed
analyses and. expected-resource analyses, for in applications we
are otten seriously concerned about twenty percent differences
in what will usually happen. Along with these efforts much has
been done recently on approximation algorithms. for many
applications do not require exact answers. On the more
theoretical side, the outstanding question is the complexity of
the NP-complete problems-are they exponential? Another
important theoretical problem is the search for some underlying
theory of algorithm design. Though many individual results have
been achieved to date. we stm have no theoretical explanation
for what makes a class of problems easy or hard. Tarjan has
mentioned the need for a "calculus of data structures"-a set at
rules that will allow us to develop the (provably) best possible
structure for a slvensituation.

An important outgrowth of this work will be the
development of "Algorithmic Engineering". This field will supply
the programmer with tools similar to those Electrical Engineering
gives the circuit designer. Before Algorithm Cesign turns into
Algorithmic Engineering we will need to develop many more
particular results and give a theoretical basis for the field. We
will know that the field has become an engineering discipline as
soon as theoretical computer scientists start to sneer that
designing algorithms is no longer Oena. fuJ. research because
"It's such a well understood process.-

People who work in different applications areas have a
serious responsibility in guiding the development of this field.
Theoreticians have a strong tendency to work on the problemsa they can solve at the expense of ignoring the problems

,., important in applications. To .help the field from faillng into this
trap practitioners must tell algorithm designers what their
problems are, and where their CPU cycles are going. The
author personally would favor the institution of a system
whereby a practitioner could complain of high computer costs
only after describing his computational problems to at least
three people who specialize in algorithm designl

5. CCNCLUSiONS

In this paper we have seen the field of algorithm design
from a number of different viewpoints. In Section 2 we
investigated particular computational problems and their
allJorithmic solutions. We saw interesting techniques used to
solve the learned of many counter-intuitive results,
and glimpsed some of the practical benefits of algorithm design.
We turned from ·war stories· to a systematic view of the field
in Section 3. In Section 3.1 we developed a set of terms which
can be used to define a computational problem, in Section 3.2
we used those terms to sketch some of the results achieved in
the field to date, and in Section 3.3 we mentioned some of the
tools used to achieve the results. Having looked at what has
already been done in Sections 2 and 3. we turned to the
dangerous task of prophecy in Section 4.

In summary I would like to describe what
a:tesign has to offer to. various individuals. ine mathematician
,.,..nd theoretical computer scientist can view the field as a rich

source of problems that need precise mathematical treatment;
these problems are mathematically fascinating and require the
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use at some of the most powerful tools of discrete mathematics.
The applications programmer with little interest In beautiful
theorems can also benefit from this work, for. the proper
application of its products can occasionally be very rewarding
financially. Finally. I feel that anyone involved with computing.
reiardless Of his position on the practlcaHo-theoretlcal
continuum, should be at least somewhat familiar with this field.
The study of algorithms is the study at computing, and through
It we gain a fttndamental understanding at what computers are
all about.
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ABSTRACT

Problems of data structuring and file organization are discussed when records

are to b2 retrieved associatively on the basis of a range of values for several of

their attributes. A of methods are described and compared for their suit-

ability in various applications.

1. Introduction U.S. cities a list of all those for which the latitude

A file is a collection of records, each contain- is between 370 and 41 0 and longitude between 1020 and

ing several attributes. A ouery asks for all records lOgO (defining the state of Colorado) may be sought.

satisfying certain characteristics. If we seek all In data analysis it is often useful to do separate anal-

records for which the attribute values are each with- yses on sets of data lying in different regions of the

in specified ranges, this is called an orthogonal data measurement space and then compare (or contrast)

query. The process of retrieving the appropriate records the respective results. in statistics range searching

is called range searching. Conceptually the problem can be employed to determine the empirical probability

of range searching can be cast in geometric terms. content of a hyperrectang1e, to determine empirical

One can regard the record attributes as coordinates and cumulative distributions, and to perform density est-

the k values for each record as representing a point in imation (Loftsgaarden and Quesenberry, 1965).

a k-dimensional coordinate space. The respective query Files to be searched may reside on a variety

ranges can be represented as a k-dimensional hyperrect-

angle in this space. The problem of range searching is

then to find those points lying inside this hyperrect-

angle.
Range searching arises in many applications. A.

university administrator may wish to know those students

whose age is between 21 and 24 years and whose grade

point average is greater than 3.5. From a file of all
297

of physical media. If it is not too large the file

can be accommodated in the random access memory of

a computer. Larger files may require random access

disk drives for their storage. Exceptionally large

files may be accommodated only by a series of mag-

netic tapes. A similar situation arises for data

stored on cassette drives of a microprocessor con-

figuration.



There are several problems. closely related

to range searching for which there has been con-

siderable research. Future researchers might

apply the methods used for solving these prob-

lems to the problem of range searching. Bentley

(1975a) discusses the problem of finding all

points within a fixed radius of a given point.

Yuva1 (1975) and Bentley, Stanat, and Williams

(1977) discuss this problem for the special

case of the La metric. Friedman, Bentley, and

Finkel (1977) discuss the problem of finding

the k-nearest neighbors of a point in a 'file of

Npoints. Bentley (1976) discusses the problem

of finding the nearest neighbor to all N points

in the file. Domination problems are also close-

ly related to range searching. A point is said
to dominate arother if all of its coordinates

are larger. King, Luccio, and Preparata (1975)

discuss the determination of whether a given

point is dominated by any other point. Bentley

and Shamos (1977) discuss the calculation of

how many points a given point dominates, w:Jich

is the empirical cumulative distribution eval-

uated at the point.

2. Logical Structures

In this section we discuss the various

methods for range searching in terms of their

logical structures; that is the logical struct-

ure of the data at the level of adjacency and

"pointers" without regard to implementation.

We devote Section 3 below to the problem of

how one implements these logical structures

on specific storage media.

A search method is specified by a data

structure for storing the data, and algorithms

for building the structure (which we call pre-

processing), searching the structure, and poss-

ibly various utility operations such as insert-

ion and deletion. One analyses a search struct-

ture (say $) by giving three cost functions:

1) the cost of preprocessing N-points in k-

space, PS(N, k); 2) the storage required,

SS(N. k); and 3) the search time or query
cost. QS(N, k). These costs can be analyzed

in terms of their average or their worst

case cost. We will usually speak of the

worst case cost.

2.1 Brute Force

The simplest approach to range searching

is to store each of the Npoints in a sequen-
tial list. As each query arrives all members

of the list are scanned and all records that

satisfy the query are enumerated. If the

queries do not have to be handled immediately

they can be batched so that many queries can

be processed with one sequential pass through

the file.

It is easy to see that the brute force

structure, B, possesses the following proper-

ties:

PB(N. k) = 0 (Nk)

SS(rl, k) = 0 (Nk)

QS(N, k) a (Nk) .
Brute force searching has the advantage of being

trivial to implement on any storage medium. It

is competitive with the more sophisticated meth-

ods described below when the file is smail and

the number of attributes is large, or when a

large fraction of the records in the file satis-

fy the query (or queries, if they are batched).

2.2 Projection

The projection technique is referred to as

inverted lists by Knuth (1973). This technique

was applied by Friedman, Baskett, and Shustek

(1976) in their solution of the nearest neighbor

problem. Projection involves keeping, for each

attribute, a sequence of the records in the rile

sorted by that attribute. One can view this geo-
metrically as a projection of the points on each

dimension. The k lists representing the project-
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can be obtained by using a standard sorting

algorithm. After preprocessing, a range

query can be answered by the following search

procedure: chose one of the attributes. say

the i-tho Look up the two positions in the

i-th sequence (using a binary search) of the

extreme values defining the range on the i-th

attribute of the query. All records satisfying

the query will be in the list between these two

positions just found. This smaller list is then

searched by brute force.

One can apply the projection technique with

only one sorted list. If the distribution of

values of the various attributes are more or less

un iform over simil ar ranges and the query ranges

of each attribute are similar, then one list is

sufficient. If not, then it can pay to keep

sorted sequences on all k attributes. The posi-

tions of the corresponding query range extremes

are found in each of the k lists. The list for

which the difference in positions is smallest is

searched cetween the two positions.

Analysis of the projection technique, P,
for near neighbor searching is reported in

Friedman, Baskett, and Shustek (1976). Most of

this analysis directly carries over to the prob-

lem of range searching. It is clear that

Pp(N, k) :: o(kNlogN),
and

Sp(N, k) :: a (kN) •
For searches that find a small number of records

(and are therefore similar to near neighbor

searches) one has

Q (N k):: a (N l - l/k ).p , .

The projection technique is most effective

when the number of records satisfying each query

is usually close to zero.

2.3 Cell s

"There are two ways they can search [for

the murder weapon]: from the body outward in a

spiral. or divide the room up into squares

that I s the grid method".

From CBS series Kojak

"Death Is Not a Passing

Grade".

Cartographers as well as detectives use the

grid (or cen) method. Street maps of many metro-

politan areas are printed in the form of books. The

first page of the book shows the entire area and the

remaining pages are detailed maps of (say) one-mile

square regions. To find, for example, all schools

in a specified rectangle one would look in the first

page to find which squares overlap the rectangle and

then check only on those pages to find the schools.

This approach can be mechanized inmediately. A square
of the map corresponds to a cell in k-space, and the

points of the file within the cell are stored as a

linked list. The first page of the map book corres-

ponds to a directory which w,lows us to take a hyper-

rectangle and look up the set of cells.

Knuth (1973) has discussed this scheme for the

two-dimensional case. Levintha1 (1966) used a cell

technique in three dimensional Euclidean space for

determining all atoms within five angstroms of every

atom in a protein molecule -- he referred to this as

"cubing". Yuval (1975) and Rabin (1976) apply an

overlapping cell structure to the near neighbor prob-

lem.

The directory can be implemented in two ways.

If the points are (say) uniformally distributed on

[0, 10]2 and we have chosen 1 x 1 cells, we can use

a two-dimensional array as the directory. In DIRECT

(i, j) we would keep a pointer to a list of all points

in the cell [i, i + 1] x [j, j + 1]. If we then

wanted to find all points in [5.2, 6.3] x [1.2, 3.4]
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2.4 k-d Trees

then we would only have to examine cell s (5, 1), (5, 2),

(5,3), (6, 1), (6,2), (6,3). The multidimensional

array works very well when the points are known a

priori to be in a rectang1 e. thi sis not

known to be the case, one would probably use a

search method, such as hashing, for the directory.

In this method
we name each cell as before, so .cell (i, j) is a

pointer to the points in (i. i + 1) x (j, j xl).

Instead of storing all cells, however, we store

only cells which contain points of the file. To

process a query we "decode" the rectangle into a

set of cell id's. look up those id's, and check the

points in the occupied cells for inclusion in the

rectangle. The storage required for the cell tech-

nique is the storage for the directory plus locations'

for the linked list representing points in cells; the

size of the directory is usually much smaller than N.

Basic parameters of the celi technique are the

size and shape of each cell. In analyzing a search

there are two costs to count: cell accesses (the

number directory look-ups) and inclusion tests

(testing whether a point satisfies the range query).

If the cells are extremely large, there will be few

cell accesses and many inclusion tests. :f the cell

size is very small, on the other hand, there will

be very many cell accesses and very few inclusion

tests. Clearly either extreme is bad.

The best cell size and shape depends upon the

size and shape of the query hyperrectang1e. Bentley,

Stanat, and Williams (l978) show that if the query

hyperrectangles have constant size and shape so that

only their location (in the coordinate space) is

unspecified, then for a single grid a nearly optimum

size and shape for the cells are the same as that

for the query hyperrectang1e. For this case the

number of cells accessed is Zk and the expected

search time is proportional to Zk times the number

of points in the range. In most appl ications the

queries will vary in their size and shape as well

as their location, so that there is little inform-

ation available as to how to make a choice of cell

size and shape.

This data structure was introduced by Bentley

(1975b). Friedman. Bentley and Finkel (1977) intro-

duced adaptive k-d trees and showed that this struct-

ure is very effective for nearest neighbor searching.

The application of k-d trees has the effect of

dividing the k-space into a collection of irreg-

ular hyperrectangles each with the property that

they are approximately cubical

and all contain nearly the same number of points.

This overcomes the problem of empty cells which

severely limits the performance of searching with

regular grids. The cell pattern induced by k-d trees

adapts to the distribution of the points in the k-

space.

The k-d tree is a generalization of the simple

binary tree used for sorting and searching. The k-d

tree is a binary tree in which each node represents

both a subcollection of the points in the space and

a partitioning of that subcollection. The root of

the tree represents the entire collection. Each

nonterminal node has two successors. These successor

nodes represent the two subcollections defined by

the partitioning. The terminal nodes represent

mutually exclusive small subsets of the points, which

collectively form a partition of k space. These termi-

nal subsets are called buckets.

In the case of one-dimensional searching, a

point is represented by its value in a single dimension

and a partition is defined by some value of that dimen-

sion. All records in a subcollection with key values

less than or equal to the partition value belong to

the left successor node, while those with a larger



value belong to the right successor. The dimension

thus becomes a discriminator for assigning records to

the two subcollections. In k-space, a point is repre-

sented by its k dimensions. Anyone of these can

serve as the discriminator for partitioning sub- .

collection represented by a par.ticular node in the

tree; that is, the discriminator can range from 1 to k.

The prescription for constructing an adaptive

k-d tree is to choose for the discriminator that

coordinate i for which the spread of attribute values

(as measured by any convenient statistic) is maximum

for the subcollection represented by the noae. The-

partitioning value is chosen to be the median value

of the ith attribute. This prescription is then applied

recursively to the two suocollections represented by

the two sons of the node just partitioned.

The partitioning is stopped, creating a

terminal node or bucket when the cardinality ofe the subcollection is less than a prespecified

maximum. This maximum is a parameter of the pro-

cedure. Friedman, Bentley, and Finkel (1977)

found empirically that values ranging from 8 to

16 worked best 'for nearest neighbor searching.

Associated with each node in a k-d tree is

a set of geometric bounds within whiCh the points

in that subcollection (represented by the node)

must lie. The bounds can be represented by two

one-dimensional arrays of k elements, called LOWER

and UPPER. For a given subcollection S it must be

true for every point x in S and every coordinate
; that

Range searching with k-d trees is straight-

forward. Starting at the root the k-d tree is re-

cursively searched in the following manRer. At

each node visited a decision is made as to whether

it is necessary to search either of its sons. If

the bounds (LOWER, UPPER) on any coordinate (attri-

bute) are outside the query range on that coordinate,

the subcollection represented by that node are all

outside the query range and the node (and all of

its descendants) need not be searched. If the

bounds on all coordinates are entirely within the

query bounds then the enti re 11 ection repre-

by the node is within the range and satisfy

the range query. In that case the records repre-

senting the subcol1ection are simply enumerated

and the node (and all of its descendants) need not

be searched. A node need only be visited (searched)

if one or more of its coordinate bounds lie partial-

ly within the corresponding range of the query.

If it is determined that a son must be visited,

the above procedure is applied (recursively) to the

bounds of each of its sons to see if they must be

visited. With this strategy only those file records

contained '/lithin k-d tree cell s that enclose part

of range query bounaary are expl icitly searched.

A pseudo-ALGOL procedure for range searching of k-d

trees is described in (Bentley, 1975b).

Analysis of k-d trees for range searching has

been considered by several researchers. The work

required to construct a k-d tree) its storage require-

ments are:
LOWER (i) Xi < UPPER (i).

The counds are updated as the recursive partition-

ing proceeds. That is, if at a particular node a

partition is made on coordinate i at position p,

tit then UPPER (i) ... p for the subcoll ection represent-

ed by the left son of the node, while LOWER (i) ... P

for that represented by the right son. The LOWER

and UPPER arrays are initialized to minus and plus

infinity respectively. 301

PK(N, k) = 0 (N log N), and
Sk(N, k) a few percent of N.

The search cost depends upon the nature of the query.

In the very worst case lee and Wong (1976) show

that

(worst case).

If the number of records that satisfy the query is

small so that the range query is to a near-



est neighbor search one has from Friedman, 8entley

+ points in region.

For the case where a large fraction of the file

satisfies the query Bentley and Stanat (1975) show

and Finkel (1977).

Ok (1'1. k) = 0 (log 1'1)

Qk (N, k) = points in region
+ small tenns.

(average case
for small
answer)

(average Case
for large
answer)

will, of course, be proportional to the number of

such points. Letting F be the number of points

found in the region. we have

PR(N.1) = 0(1'1 19 M),
SR(N,l) = 0(1'1), and

QR(N.l) = O(lg N+ F).
We will now build a two-dimensional range tree.

using as a tool the one-dimensional sorted arrays

we described above (which we abbreviate SA's). The
The k-d tree structure is most effective in situ-

ations where little is known about the nature of

the queries or a wide variety of qveries are expect-

ed. They are also useful if, in addition to range

queries. near neighbor or spherical region queries

are anticipated.

2.5 Ranae Trees
In this section we describe the range tree. a

structure introduced by Bentley (1977). It

achieves the best search time of all the struct-

ures we have seen so far. but has relatively high

preprocessing and storage costs. For most appli-

cations the high storage will be prohibitive, but

the range tree is very interesting from a theor-

etical viewpoint. Since the range tree is defined

recursively we will begin our discussion by looking

at 3 one-dimensional structure, and then generalize

that structure to higher dimensions.

The simplest structure for one-dimensional

range searching is a sorted array. The preprocess-

ing sorts the 1'1 elements to be in ascending order

by key. To answer a range query we do two binary

searches to find the positions of the low and high

end of the range in the array. After these two

positions have been found we can list all the points

in that part of the array as the answer to the

range query. For this structure we use linear

storage and O( N log tl) preprocess i ng time. The

range tree is similar to the "binary search trees"

described by Knuth (1973, Section 6.2) so we will

use his tennino1ogy in our discussions. The range

be a rooted binary tree in which every

node has a left son, a right son, a discriminating

value (all nodes in the left subtree have a dis-

criminating value Tess than the node's) and (unlike

a regular binary search tree) every node contains

an SA (sorted by V-coordinate) and has as discrim-

inating value the median x-value for all points.

The left subtree of the root has an SA containing

the N/2 points with x-value less than median

sorted by y-coordinate. Likewise the left son of

the root represents the N/2 points with x-value

greater than the median and has an SA of those

points sorted by y-coordinate. This partitioning

continues so that i levels away from the root we

have 2i subtrees, each representing points

contiguous in the x-coordinate, and each contain-

ing an SA of the points sorted by y-coordinate.

This partitioning continues for a total of (approxi-

mately) 19 1'1 levels; we handle small point sets

(say less than a dozen points) by brute force.

The search algorithm for a range tree is most

easily described recursively. Each node in the tree

represents a range in the x-dimension. When visit-

ing a node we compare the x-range of the query to

the range of the node, and if the node's range is

two binary searches will each cost O(1og N), and entirely within the query's then we search that

the cost of listing the points found in the region structure's SA for all points in the query's
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y-range. After this we compare the query's x-range

to the node's discriminator value. If the range

is entirely below the discriminator we recursive-

ly visit the left subtree; if it is above we visit

the right; and if the range overlaps the discrim-

inator then we visit both subtrees.

The analysis of the planar tree is somewhat

complicated. Since there are 19 rI levels in the

tree and N points are stored on each level. the

total storage required is O(N 19 N). The preproc-

assing can be performed in O(N 19 N) time if some

:lever techniques are employed. Analysis shows

that at most two SA searches are done on each 1evel

)f the tree (each of cost 19 N) so

the total cost for a search is oolr/) plus the
for 1isting the points in the region. Letting

: stand, as before, for the total number of points
:ound in the region we have

PR(N.Z) = o(n 19 N),

SR(N,Z) = 0(N 19 N). and

QR(N.Z) = O(lgZN + F).
If we -step back for a moment we can see how

we built the structure: we constructed a two-

dimensional structure by building a tree of one-

dimensional structures. We can perform essential-

ly the same operation to yield a three-dimensional

structure: we construct a tree containing two-

dimensional structures in the nodes. This processs

can be continued to yield a structure for k-dimen-

sions, which will be a tree containing (k-l)-dimen-

sional structures. This results in structure with

performances.

PR(N,k) ( k-l)=o N 19 N,

SR(N,k) = O(N 19k- lu}, and

QR(N,k) = O(1gkN + F).

The range tree structure is very interesting

from a theoretical viewpoint. The asymptotic

used is probably prohibitive in practice. So

although the application of this structure to pract-

ical problems will probably be limited to cases

when k =2 or 3, it does provide an important
I

theoretical benchmark. It al so gives us an inter-

esting method that might yield fruit in practice.

(Indeed, there are some very interesting relation-

ships between range trees and the k-d trees of

Section 2.4).

2.6 Other Structures
In this section we briefly mention several

structures that we feel are no longer competitive

with-those discussed above. We include them for

completeness and in the hope that someone might

be inspired by one of them to invent techniques

superior to those we have discussed.

Knuth (1973) points out that the notion of

cells can be applied recursively. That is. when

one of the cubes has more than some certain number

of points. the cube is further divided into subcubes

of yet smaller size. This scheme implies a

mu1::";imensiona1 tree with multiway branching.

In terms of ,both the partitioning imposed on the

space and the ease of implementation, this idea

seems to be dominated by the quad tree (see below/,

which is in turn dominated by the k-d tree.

Finkel and Bentley (1974) describe a

ure called the quad tree. It is a generalization

of the binary tree in which every node has 2k sons.

Bentley and Stanat (1975) analyzed the performance

of quad trees for fixed radius near neighbor searches

in 2-space using the maximum coordinate metric in

uniform point sets. linn (1973) discussed the

fact that quad trees (which he called "Search-sort

k trees") have advantages over binary trees when

used in a synchronized multiprocessor system. This

application aside, however, the quad tree seems to

be dominated by its historical successor, the k-d

search time is very fast but the amount of storage 303 tree.



Bentley and Shamos (1977) describe a data

structure (the ECDF tree) for finding the empirical

cumulative distribution of a point (in k-dimension-

al space) among a collection of points. If only a

count of the' number of points in the query hyper-

rectangle is required and, not a listing of the

points, then several ECDF searches can be used to

obtain that count. This structure has very desir-

able worst case performance but requires cor.sider-

able storage and has average-case behavior worse

than k-d trees when applied to range searching.

2.7 Comparison of Methods

Four structures (brute projection,

cell s, and k-d trees) have been presented as pro-

viding practical solutions the range searching

problem. For each there. are situations for which

it is clearly superior and other situations where

it performs badly. In this section we try to

enumerate various situations and compare the per-

formance of the four methods.
If the file is and the number of attri-

butes large, if the file is to be searched only..,
a few times, or if the queries can be batched so

that nearly all of the records in the file satisfy

at least one, then brute force is the method of

choice. Otherwise one of the other methods is

likely to be more efficient. Projection does best

when the query range on on1y one of the attri butes

is sufficient to eliminate nearly all of the file

records. For this case the low overhead of search-

ing this structure allows it to dominate the others.

In situations where several or many of the attri-

butes serve to restrict the range query the pro-

jection technique performs badly.

The ce1l and k-d tree structures are appro-

priate in those situations where the query restricts

several or many of the attributes. If the approxi-

stant and are known in advance then cells defined

by a fixed grid with size and shape common to that

of expected queries is most advantageous. How-

ever, for queries with sizes and shapes that differ

considerably from the design, performance is poor.

The k-d tree structure is characterized by

its robustness to wildly varying queries. The

cell design adapts to the distribution of the attri-

bute values of the file records in the k-dimensional

coordinate space. The cells all contain very nearly

the same number of records; there are no empty ce11 s.

In dense regions there are many cells and a fine

division of the coordinate space; in sparse regions

there is a coarser division with fewer cells. If

a wide variety of queries are expected then the

k-d tree structure should serve best.

3. Imolementations

In Section 2 we discussed the various struct-

ures for range searching in a more or less abstract

way without regard to implementation. !4e now turn

Our attention to how one implements struct-

ures on real computers.

3.1 Internal Memory

If the file is small enough so that it can

be contained in the internal memory of the compu-

ter then implementations of these structures is

straightforward. The brute force structure is

implemented as a two dimensional (N x k) array.

For projecti"n one has a set of tables of pointers

to each record; each table is sorted on a differ-

ent coordinate.

As discussed in Section 2.3, there are two

possible ways to associate records with cells. If

the points are uniformly distributed in a more or

less rectangular area so that there are few empty

cells then the grid can be efficiently represent-

ed as a multidimensional array. If there are many

mate size and shape of the queries are roughly con- ampty cells then the k attribute defining
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a cell can be treated collectively as a key and a

well known search method such as binary searching

or hashing can be employed.

The tree can be implemented as any other

binary tree (see Knuth (1973) and Bentley, (1975b)].

It is easy to store for each node a pair of point-

ers to the records defining the subcollection assoc-

iated with the node. This facil itates enumeration

of the records satisfying the query (if this is

the case for all records of the node) without

traversing the descendants of the node. .

3.2 Disk

'Implementing these structures on random access

disks is only slightly less straightforward than

for central memory. For the most part disk add-

resses simply replace memory addresses. For brute

force one simply performs a sequential scan of the

records. With projection the sorted lists contain

pointers to the disk address of the correspond-

ing records. The lists for each attribute can

themselves be stored on the disk and only one list

at a time need reside in central memory. With ehe

cell technique the hash tables contain disk point-

ers and reside in memory. Only those cells

e'

overlapping the query range need be read into

central memory.

Tree structures lend themselves nicely to

external searching from random access disks.

This is discussed by Knuth (1973, p 472).

Figure 1 is a reprint of figure 29 from Knuth.

The nodes of the tree are grouped (as shown by the

dotted lines) into "?ages". The size of each

page is chosen as some convenient unit of disk

memory (SUCh as a track or sector). While the

tree is beingsearched in the usual manner only

one page at a time need reside in central memory.

If the records satisfying the query represent a

sma 11 fraction of the fi 1e then on the order of
305
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10g(N/b) disk accesses are required where b is the

page size. Williams et al (1975) have implement-

ed k..d trees for range searching on a random access

disk system.

3.3 Tape
By its nature magnetic tape is a sequential

storage medium. This makes it ideal for the brute

force approach. However, even within this sequen-

tial limitation, it is possible to employ to advant-

age the other range searching methods described

above. In order to read a record from a magnetic

tape it is necessary to pass over all records from

the beginning to it. However, it is not necessary

to read all of those records into central memory

or even transmit them from the controller to the

channel. On most computing systems it is possible

to issue instructions to skip one or several blocks

without transmitting any data. Although the real

time to read a tape is nearly the same whether

blocks are skiped or read, the CPU requirement
memory interference, and channel activity can be

SUbstantially reduced. This is important a

multiprogramming environment.

With the projection method the first k-blocks

on the tape are the lists of pointers to the data

records sorted on each attribute. This is followed

by the data records. Each sorted list is read

into central memory in turn and the list of records

to be searched is determined as described in Section

2.2. These records are then read sequentially from

the tape skipping all records in between them.



tions and deletions can be made. Dynamic versions

of brute force, projection, and cell structures are

range trees should only involve these two attri-

butes. Heuristics for detecting these and other

similar situations would be very helpful.

5. Conclusion

easily obtained. Dynamic k-d trees are briefly

discussed by Bentley (1975b.). Consiaerable work

remains to be done in the dynamic analysis of all

of these structures.

Considered also remains in the

development of heuristics for aiding these search

methods. For example, if in a seven dimensional

problem the range queries almost always involve

only two of the attributes, then the design of the

projection, cell, k-d tree orstructure for

Our discussion of range searching has in

respects just scratched the and there are

many avenues open for further research.

.All files that we have discussed so far have

been static, that is, unchanging. Manyapplica-

tions require structures, in which inser-

In this paper we have tried to present a

reasonably complete survey of the state of the art_
for range searching. We have presented a number

of results that may be used by those who im-
plement such systems, and we Mave described a

control is returned to the that many blocks

are skipped.

With this method the number of blocks read

into main memory is equal to the number of nodes

visited in the tree search. This technique can be

applied to a wide variety of tree searches on tape

and the same behavior will be obtained. In particu-

lar this method can be used with the range trees

of Section 2.5, in that magnetic tape can often

accommodate their large storage requirements.

4. Further Work

The cell method is implemented similarly.

Here the directory comprises the first few blocks

of the tape with the data following, arranged so

that points within each comprise one block of

data. The cell s overlapping the query are deter-

mined from the directory and then those cells are

read sequentially from the tape skipping unwanted

blocks.

ing the tape. If only the right son is to be visit-

ed, this is also easy--skip the number of blocks'

occupied by the left subtree. The case of visit-

ing the left subtree only is more complicated;
here one stacks the number of records to be

skipped when returning to this node, and when 3c6

The hierarchical nature of k-d trees and

range trees allows for a natural implementation on

a sequential storage medium such as magnetic tape.

The nodes of the tree are stored in the order of a

preorder (left son, right traversal of the

tree. Each node comprises a record. The terminal

nodes are the data records. Associated with each

node (record) are the geometric bounds (LOWER,

UPPER) that del imit the data records that are its

descendants ·in the tree. Also associated with

each node is the number, 0, of its descendants.

.With this arrangement the tree search can pro-

eed directly from the tape. At each node visited

(beginning with the root which is the first record

on the tape) a determination is made as to whether

it is necessary to search either of its sons, as

described in Section 2.4. If the bounds associ-

ated with a node are outside the range of the

query then a command is issued to skip D records

on the tape. If the bounds are entirely within

the query range then all data records wJthin the

next D tape.records are in turn presented as

satisfying the query. If the bounds are partially

within the query we have three cases. The easiest

is when both sons are to be visited--continue read-



number of methods that can be of use to data

base designers.
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Space-Efficient On-Line Selection Algorithms

Bruce W. Weide *
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Abstract -Algorithms for the "order statistics problem", which is essentially a
statistical problem, and for the "selection problem" from computer science, require
linear space. We present on-line algorithms for these problems which are space-
efficient (i.e., -require sub-Unear direct access storage) but which consequently give only
approximately correct results. It is shown that the approximations are quite good

I. INTRODUCTION

Although algorithms which find the
median element of a totally ordered set are known,
these algorithms require linear space (see Knuth
[1973], Section 5.3.3, Exercise 15). In particular, even
if the elements of the set are generated (or can be
transferred to primary memory of a computer)
sequentially. we must in general have direct
storage for n/2 elements in order to find the median
element exactly. Here we consider whether we might
not be able to take advantage of the "on-line"
appearance of the set of elements, thereby saving
primary memory space, if we are willing to settle for
an approximate answer to the problem.

If we note the ultimate reason for finding the
median element of a set, it is clear that in many
applIcations an approximate answer is sufficient. There
are really two separate problems:

(1) Given a set of n real numbers which are
observations from some unknown population,
estimate the median (or, in general, the

• Supported by an IBM Graduate Fellowship.
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(lOO4:)th percentage point) of the population
distribution. We will call this the "order
statistics problem." Note that it does not
require that the estimate be obtained by
finding the (I.o:nJ+1)th-smallest observation, or
for that matter, that the estimate be one of the
observations at all.

(2) Given a set of n linearly ordered elements, find
the median (or, in general, the (lo:nJ+ l)th_
smallest) element of the sat. We require the
answer to be one of the original elements.
This is the "selection problem." In this paper
we will consider only the "median selection
problem," which is somewhat easier than the
general case.

We will demonstrate on-line algorithms for both
problems which use very little space, without sacrificing
time, but In the second case sacrificing accuracy. In
particular, the algorithm for the median selection
problem will not be guaranteed to find the median
exactly, but will (with specified probability) find an
element whose rank is very close to (n+1)/2. This e



problem therefore provides another example of the
time-space-accuracy trade-off, and shows that it is
possible that any two of the three factors may be
traded off Independently of the remaining one. The
ordinary time-space trade-off and a time-accuracy
trade-off demonstrated by most approximation
algorithms are the other possibilities.

To summarize the results, we will exhibit
algorithms which demonstrate the following theorems:

THEOREM 1 (Order statistics problem): Let the
population distribution F{x) be absolutely
continuous and strictly increasing whenever
o < F{x) < 1: let the density f{ea:) > a, where

is the population (100a:)th percentage point:
and let F' have a finite absolute oth moment for
some 0 > O. Then for any function r(n) co, it
is possible construct an estimate of the
population (100«)th percentage point having
the following characteristics:

(1) The estimate has the same asymptotic
distribution as the (L«nJ+l)th-sma/lest
observation.

(2) The estimate can be computed on-line in
O(n) time and r{n) space.

THEOREM 2 (Median selection problem): For· any
odd integer r > 1, it is possible to produce an
estimate of the sample median (i.e., to report
as the approximate answer some element of
the set) having Ihe following properties, if
each possible permutation of the elements is
equally likely to be the input stream:

(1) The estimate is unbiased (i.e., the expected
relative rank of the element reported is 1/2).

(2) The variance of the relative rank of the
element reported is 0(n-1 + 10g(n/2)/log r).

(3) The estimate can be computed on-line in
O(n) time and r log n / log r space.

II. THE ORDER STATISrrCS PROBLEM

Let {Xi} (I .. 1, 2, 3, ..., n) be a random sample
from an unknown population with density function f(x)
and cumulative distribution function F(x). Let X{k) denote
the kth·smallest element of {Xj}, and X(n,a:} the

(l«nJ+l)th-smallest. Let F(e«). IX, so that E« is the
(100«)th percentage point of F. We assume that F(x) is
absolutely continuous and strictly increasing whenever
o < F(x) < 1, that f(E«) exists and is positive, and that F
has a finite absolute oth moment for some 0 > O.

Walker [1968] shows that under these
conditions n1/2(X(n,«) - e«) converges in distribution to a
normal distribution with mean 0 and variance «(1-
«)/f(e«)2, which we will write as nL'2(X(n,a:)-
E«) -+d m{ 0, «(1-«)/f{Ea:)2). This result not only allows
us to determine how good an estimate X(n,«) is; but
provides the key idea for a space-efficient algorithm
which also estimates ecr The intuitive idea for the
case « • 1/2 is that since the median equals the mean
for any symmetric distribution which has a mean (and
therefore for the normal distribution), and the sample
mean is known to be the minimum-variance unbiased
estimator of this parameter for the normal distribution,
we should be able to "replace" median-fh1ding by
averaging at some point. Averaging can obviously be
done using constant space: this fact, combined with the
-superiority of the sample mean as an estimate of the
center of a normal distribution, allows us to prove
Theorem 1.

ALGORITHM 1 (Order statistics problem): Let
r(n) co with r(n) and n/r(n) integers. Here, n ..
lSI·

procedure estimate(S,a};
begin

set Q:
real total := 0:
for j := 1 until n/r(n) do

begin
Q := next r(n} elements of $;
total :- total + (larl+ l)th_

smallest element of Q)
end;

return(total • r I n)

This algorithm is implemented in such a way that
only r(n) space is used if the elements of S are
generated or transferred to primary memory on-line.
The time required is easily seen to be O(n}. If we let
Zn,a be the estimate produced by Algorithm I, then ail
that remains to be shown is that nll2(Zn,o: -
converges in distribution to m{ 0,
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Let Y".«oj be the (1.0:1'J+1)th-smallest elerr.ent of
the jth subset. Then rll2(Yr.«.j - eo:l-'d m( 0, «(l-
e:t)/fCee:t)2): furthermore, the Yr,Ol,j are independent
because the original observations {XI} are Independent.
Sen (1959] has shown that, under the conditions of the
theorem, the Yr,Ol,j have finite mean and variance
approach those of the limiting normal distribution. ThIs
fact allows us to apply the central limit theorem to
show that nl/2{Zn," - Ee) - rll2{Yr,cz,j -
Ee) -'d m( 0, cx(1-o:)/fCEc)2), which proves Theorem 1.

III. THE MEDIAN SELECTION PROBLEM

In order to simplify the analysis, we limit the
selection problem to the case of approximating the
sample median. This is slightly different than the
previous problem, in that the answer must be an
element of {Xi}' The elements XI may be from an
arbitrary linearly ordered set, so they may not oe real
numbers, or' even numbers at all, and therefore it may
not be possible to average them. Otherwise, Algorithm
1 would be a perfectly suitable way to approximate the
median element.

As a result of this restriction, the
"approximation" is really approximation of the relative
rank of the desired element. We may theretore identity
the elements of {Xl} with their relative ranks, the
numbers I/Cn+1) for 1 siS n. We seek the median
element "1/2", and measure the error between the
relative rank ot the element produced by our algorithm
and the relative rank 112 we desire.

The following algorithm illustrates Theorem 2:

ALGORITHM 2 (The median problem): Let I' > 1 be
an odd integer, and let n .. rS for some integer
s 1. The partition size I' is constant

thrOUghout, and s is the depth of recursion, or
the depth of the "tree" as in Figure 1. Again,
n Is the size of the original set S. , e

procedure median_est(S):
begin
!!t T :- 41, Q:
it 151 • 1 then return(S):
for j :- 1 Y!!li!. ISI/r do

begin
Q' :- next I' elements of 5:
T :- T U (exact median '

element of Q)
end; ,

return(median_estfn)
end

The operation of the algorithm for n .. 9, I' .. 3
is illustrated in Figure 1. This special case of the
algorithm has been proposed independently by Tukey
[19771 who calls the corresponding estimate the
"ninther". He is more interested in the statistical, rather
than the algorithmic, aspects.

Although the algorithm is presented here as, a a
recursive proeedure operating "bottom-up" to make its •
operation clear, it can be made space-efticient for on-
line processing of S if it is implemented to operate
"top-down". The time used is O(n), and for the top-
down implementation the space used is r locations at
each level of the tree, for a' total of ra ..
r log n I log r .. snl/s. The expected relative rank of
the element produced is 1/2 by symmetry
considerations.

Sounding the variance of the estimate is
complicated by the fact that the relative ranks of the
elements produced at step (2) are not independent.
However, the dependencies introduced (effectively by

FIGURE 1 - An example of Algorithm 2 with n = 9 and r '" 3.
In this case, the actual median "5" is found; the algorithm always

finds an element ranked 4, 5, or 6 it n = 9 and r = 3,
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"sampling without replacementj tend to cluster these
elements even closer to the true median than would be
the case if the ranks were simply independent random
variables from a uniform distribution between 0 and 1.
Thus, a bound on the variance should be obtained by
considering this easier case.

Carrying through this analysis gives a bound on
the variance of (n/2)s/(2nn), where s is the depth of
the tree. Expressing s in terms of n and r and
rewriting gives the bound stated in Theorem 2,
0(n- 1 + 10g{n/2)/log r). Simulatio'n results tend to
confirm that the actual variance is in fact bounded by
this function and, even for small nand r, decreases at
about this rate (see Figures 2 and 3).

As an example, assuming that the relative ranks
are uniformly distributed between 0 and 1, let r • 99
and n .. 993• In linear time, and space < 300, we can
find an element whose relative rank is between .492
and .508 with probability at least 0.99 (using the
Chebychev inequality). Assuming the asymptotic normal
distribution for the ranks which results if they are
considered to be uniformly distributed on (O,l), the
estimate is between .4992 and .5008 with probability
at least 0.99. Interactions among the ranks reduce this
intet'Val even further.

IV. CONCLUSrONS

'Two algorithms are presented which show that
space efficiency need not be poor for the order
statistics problem or for the median problem. The fact
that asymptotically no accuracy is lost for the former
problem, and that very little is lost for the latter,
indicates that sacrificing a small amount of accuracy can
go a long way toward saving space. This phenomenon
has already been amply demonstrated for accuracy vs.
time by the many approximation algorithms which have
appeared recently in the literature. By using sampling
algorithms, we can also show tremendous time and
space savings at only a slight cost in accuracy.

Acknowledgements - The author is indebted to
Michael Shamos for first suggesting the idea of space-
efficient on-line selection algorithms. Numerous
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Kadane and John Lehoczky pointed out the weak
conditions sufficient for the proof of Theorem 1.
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Abstract

Sophisticated improvements in both computer hardware and software have made the
task of analyzing system performance increasingly more complex. Many analyses under-
taken during the lifetime of a computer system require experimenters to compare
alternatives: either different systems for purchase or different improvements for
tuning a single system. '!hese comparisons are performed in order to determine 'which
alternative is the best'. Unfortunately, due to a general lack of performance theory,
comparison tend to be unstructured and wasteful. What is needed is a set
of general, but precisely defined, procedures which can be employed in the task of
evaluating system performance. One approach for developing these procedures is that
of interfacing established statistical (in particular, the theory of
ranking and selection) with experimental design for computer comparisons. Two
procedures have already been developed and another, referred to as a binomial
approach, is presented here. Further efforts to interface statistical theory and
computer performance evaluation will provide the theoretical resources needed by
performance analysts to properly design comparison experiments.

1.0 tNTRODUCTION
Sophisticated in both computer hard-

vare and software have made the task of analyzing
system perfor.nance increasingly more complex. Simple
comparison of execution times of various mathematical
operacions is no longer sufficient for supplying
the bulk of iniorcation in a comparative analysiS.
Factors such as oultiprogramming, virtual memory,
intelligent cer.ninals and master-slave computer ' team$'
are just a few of che complications which have
increased coday's lack of understanding as to why a
system behaves the way it does. In order co adjust
for this increasing complexity, perforcance analysts
often collect massive amounts of data, much of which
is left unused. Data analysis is then cocmonly
structured around the already existing data, rather
thaa flowing smoothly from a statistically sound
experimental design: Certainly this is unacceptable.
\/hat is needed is a set of general, but precisely
defined, proce1ures which can be employed in the task
of evaluating system performance.

This paper is concerned with the establishment of
one of these procedures through the interface of
computer studies with a well developed
area of statistical theory. It has been divided into
three major sections. the first (Section 2)
is a general motivation for the application of statis-
tical techniques to computer performance experiMents.
It describes the eheme which is central to
many perfor=ance studies and how the application of
statistical techniques can help reduce some of the
current ?roblems existing in ehe comparison
ment. Section 3 is a description of statistical
ranking and selection theory and its relationship co
computer comparison scudies. Included is an account
of the initial work interfacing the two areas
entieled, "Statistical Methods for Comparison of
Computer Services" [MAM17]. Section 4 is an intrO-
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duction and analysis of a binomiaI approach co
computer comparison problem. This new approach takes
advantage of ranking and seleceion of binomial popu-
lations -- something not previously attempted. Section
4 is followed by a brief summary of the results with
a motivation for coneinued research efforts along
these lines.

2.0 COMPARISON STUDIES
Computer performance experiments often deal with

the comparison of a set of alternatives. Throughout
a system's lifetime, the theme of comparison is present.
Unfortunately most comparison efforts lack ehe
structure Enr ehe resules to be of maximum
use to the experimenter. Que solution to this problem
is to design in such a way that statistical
methodology which has been preViously developed can
provide the needed structure. .
2.1 Comparison Theme in Design-Purchase-Tuning Stages

A computer system's existence may be divided into
three stages: design,?urchese and tuning [GRE72l.
this characterization proviaes a good basis for seeing
how evaluation experiments, perfor=ed during different
times of a system's lifettce, can be improved through
interaction ·.tth statistical eheory.

The design stage begins with the initial ideas of
creation and lasts until the completed product is
ready for marketing. Basic perfor=ance questions here
include compatibility existent machinery and
superiority over competitor's equipment. It is
desirable, alehough extremely difficult, to compare
proposed ideas in order to develop the best product
possible. company which ignores careful design
performance analysis is likely co find its produces the

buyers perform their purchase
comparison experiments later on.

The purchase stage begins with the initial
salesperson/prospective-buyer interactions and lasts



UDtil the system has been contracted and installed.
testing, cost-benefit analyses and other

emptrtcal comparisons are carried out by selection
committees in the process of choosing what is generally
a $10.000 to $1,000,000+ purchase. Experimentation
is moSt important in order to determine the 'best'
alternative to purchase since future performance
tmprovements are inherently limited by the systa
chosen during this scage.

Once a system has been installed, in many cases
a team of SySClIlII analysts begin an on-going battle .
to improve the machine's performance. This stage.
co=monly referred to as a tuning period. includes
tuting &lid cClllparison of alternative scheduling
algorithms, priority classifications and new software.
Constant experimentation of this nature continues
throughout a syscem's lifetime with the hopes of
bettering its perforQance capabilities.

In all three scages of development, a central
theme is apparent: the need for comparison. Whether
the goal is to compare ideas for design, available
systems for purchase or proposals for improving
performance. the basic desire is to evaluate the
relative merits of a set of possible choices. Given
several such alternatives, an experimenter W&llts to
1cllow 'which one is the best?'. This question provides
the foundation on which to base an experimental design.
One natural approach is to 1) determine a criterion
(criteria) by which the alternatives are to be judged.
2) collect measurelllents which represent the criterion
(criteria), and 3) select that alternative which
results in the opti:l:al ".lle&sured value!!. Unfortunately,
it is not always clear how to successfully accomplish
the first and last steps in such a way that the overall
experiment has an associated statistical confidence
statement. One potential solution to this problem is
discussed in Section 3. At this point, a closer look
at how interactions with established statistical
theory can improve comparison studies is appro-
priate.
2.2 Comparison Environment

Comparison experiments are commonly laced
potential inaccuracies due to constrained budgets. In
the case of a system procurement, costs which can
accrue from a complete pre-purchase analysis may be
aa much as one-third of the actual system's cost. It
is difficult to understand. therefore, why only
partial analyses are performed less than optimal
selections resulting. ?art of the reason for such
high costs in comparison efforts is the lack of
available performance theory on analysts can
design their e.'tperiments. Every time a need for
comparison arises, whether it be in private business.
academic communities or installations,
personnel and effort must be spent devising an
experiment i3 appropriate for the particular
comparison problem at hand. Having little perforcance
theory to use as a guide, the analysts often produce
loosely structured axpericents based on what a few
people judge is 'reasonable'. Also, since most
procurement data is proprietary, there is little
published literature describing past comparison
effores. Given an identical comparison problem and
criteria for selection, seldom will two performance
groups initiate identical e.'tperiments or build UDon
formerly used techniques. .

As a solution to this lack of consistency, it is
proposed that the development of a package of general
and reliable experimental procedures be undertaken.
!sch one will provide three parts: 1) a description
of the different computer environments for which the
procedure is applicable, 2) an e.'tperimental design
indicating the necessary data collection and statis-
tical computation steps and 3) an explanation of the
significance of the resules. From this package of
procedures, performance experts could select the
procedure most appropriate for their particular
comparison problem. The results of establishing such
a package would be improved, nore
comparison efforts, more confidence in
results and decreased costs.

!he development of a set of designs with such
favorable characteriStics is feasible through efforts
to interface statistical theory with the area of con-

puter comparison. An initial effort to begin such an
interface is described in In that
work (dtscussed in Section 3). statistical theory of
ranking and selection was successfully applied to the
cOlllparison problem. A second effort is the binomial
approach presented in Section 4, Continuing effores
in this area. aimed at meeting the goal of a package
ot widely applicable experimental comparison procedures,
vtll remove many of the obstacles that e.'!:ist in the
current comparison environment due to lack of available
theory.

A detailed description of the positive benefits
available from the application of statistical theory
to the performance evaluation field was published
several yearll ago by Grenander and 'rsao (GUn]. In
thair state of the art appraisal they declare, 'There
a no doubt that the task of evaluating the performance
of cOlllputer system is of utmost importance. both to
computer manufacturers and to users of computers. It
deserves a lIIOre systematic study than it has received
until now and we believe that modern statistical

offers powerful tools that have not yet
beza exploited to full capacity for this purpose.'
The establishment of a set of computer comparison
procedures derived from powerful statistical tools,
one of which is ranking and selection tneory, will
provide support for their prediction.

3.0 RANKING AND SELECTION
3;1 Relation to Computer Comparison Problemf

When judging different systems. it is
to rank the alternatives in some numerical fashion and
asaert the system with the superior ranking (largest
or smallest. depending on the criterion being evaluated)
&8 the best one. An obvious technique for deriving a
numerical ordering based on a single is to
'perform an empirical analysis which results in a single
value for each system under consideration. For maximum
credibility. it is desirable to design the experiment
in a manner which provides a confidence statement
concerning the probability that the best observed
value truly comes from the best alternative. Since
a'tperimental results are variable, there always
exists the possibility that an inferior system has a
'good day' while the best system performs below normal.
!he goal of a good experimental design should be to
know precisely what the statistical chances are of such
a nonrepresentative sampling. The theory of ranking
and selection offers the computer performance analyst
an excellent foundation Eor satiSfying this goal.

In general, ranking and selection considers a
set of populations, each with a probability distri-
bution. Sample observations are collected from each
population and a single statistical estimate such as
the mean or a-quantile is computed. These estlcates
are ranked in numerical order and the population
associated with the superior one is labeled as being
the best. A variety of assumptions concerning tte
populations and the data collection process can be
These include assumptions regarding the underlying form
of the distribution (e.g., nor.:a1, exponential, etc.) and
the level of dependence between obtained observations.
An excellent SU1lllllarY of the nUl!lerous ranking and
selection techniques which are available can be found
in [GU77].
3.2 Mamrak and DeRuyter S.tudy

The initial effort in applying ranking and
selection theory to computer comparison studies was
performed by Mamrak and DeRuyter In that
study, the authors present two computer comparison
metbodologies related to ranking and selection techni-
ques. One is for ranking populations by sample means

TFor purposes of clarity, the discussion of
efforts will be in terms of rating alternative computer
systems (purchase stage). However, the methodologies
are equally applicable to the comparison of performance
tmprovements on a single system (tuning stage). In
such a situation, each improvement on the single
system is analogous to a completely separate system.

315



TABLE 1. Measures Useful for the Cocparison
of Computer Services (ABR]7]

DESCRIPTION
Elapsed t1llle from end of user input
to beginning of system output
Printout or output display tillle

8. Task comple-
tion

9. Total enor

10. User idleness
ll. CPU time
12. Throughput

1. System delay

2. System
transit

3. Acknowledge-
lIent delay

4. I1ser transmit

S. Interprocess
transfer

6. Total session

7. Character
arrival rate

Time from input taniage return to
first system reaction
Time for user typing and trans-
adssion
Time to move a process between
different software or hardwars
processors
Time for complete interactive
session
Number of characters per unit
time. averaged over the entire
session
Individual user task throughput
rate
Number of errors per unit time; a
.reliability measure
Fraction of time the user is waiting
Total job processing time
Number of completed jobs per unit
time

[SOB67]. Very extensive tables are currently being
generated by Oudewicz and [OUD781· at The Ohio
State University. Some were given in [HAH77].
3.3 Binomial Approach

In practice, it is uncommon that an experimenter
will know which a-quantile for a particular is
appropriate in a computer comparison. Such knOWledge
is important. since as indicated in Figure 1, compar-
ing distributions at different a-quantiles may result
in different orderings. It is more likely the case
that an experimenter has a criterion and particulat
threshold value in mind, say and wishes to

the system which has the largest
proportion of observed values· less than (or greater
than) This is often true of response time at
most usercerminals. as illustrated in Example 1.

1!:x=ole 1
Psychological studies have indicated thae
excessive and unpredictable delays on a t:.:ne
sharing system result in a degradation of user

[CAR6S]. In particular, it is
claimed that response delays of 15 seconds
or longer rule out conversational interaction
between human and information systems [MILoS].
Hence a purchaser of an interactive system
would find it most profitable to buy a system
which prOVides the largest proportion of
response times less than 15 seconds and is
still within the limitations of other con-
straints such as cost and available services.
This particular view of the comparison problem can

be expressed in such a manner that a segment of ranking
and selection theory chus far unused in computar
comparison experiments becomes applicable. The general
goal of the 'binomial approach' is to
(*) Which system has the largest propor-

tion (or percentage) of its response time
values less than a threshold value

assuming that the distributions are normal and the
observatioas collected are independent. t It is not
often the case. however, that a normality assumption
is valid for computer performance data. The other
methodology is for ranking according to sample
a-quantiles (O<a<l) where no assumption is made about
the underlying of the distributions and again the
observations are independent. .

In both cases. the experiment is desi;ned so
that the probability of correctly selecting the
superior population is predetermined by the experi-
lIIenter to be any value between 11k and 1. where k is
the number of populations being compared (11k is the
lower bound since randolll selection guarantees at
least that value). A case study was in
which the populations compared were response time
distributions of two interactive services. thus
verifying the practicality of the two techniques. By
interfacing ranking and selection theory with the
field of computer performance evaluation, the work
offers an experimenter two new procedures for
computer comparisons. More important, the comparison
procedures are well-defined for easy implementation
and have an associated confidence statement regarding
their precision.

There st1.ll remain many situations, however, for
which the procedures are not appropriate. The context
in which ranking and selaction techniques were
discussed in the Malnrak and DeRuyter study was that of
comparison of computer services available by ramote
terminal access. (For purposes of clarity, the
binomial approach which will be introduced and discussed
later in the paper will be presented in the same
context. Its use. however, is to other
comparison environments.) In their examination of
computer services. the authors note that 'the general
nature of computer performance data (a large number of
relatively small values and small of large
values) has led many analysts to their expec-
tations in terms of a-quantiles'. Based on their
methodology for ranking according to a-quantiles,
results are produced of the form:

If computer service A has 90% of its
response times less than 3 seconds.
and computer B has 90% of its
response times less than 3.5 seconds,
thea rank A as being better than B.

In this case the criteria for establishing the
superior is response time. Other criteria.
herein denoted which may be appropriate under
different circUlllStances, are listed in Table 1.
Stated more precisely. the procedure involves
estimating the distribution functions of k popula-
tions at a predetermined a-quantile. Let
'k i k- l ••• Fl denote the distribution functions
ranked according to their a-quantile values. xa(Fi ),

i.e., xa (Fk) XCl0\_1) ••• xa (F1)
The procedure the dif:erence between the
distribution with :he smallest Cl-quantile value. Fk ,and all of the other distributions over a small
interval around xCl(Fk) denoted! • [XCl_£(Fk), xa+e(Fk)].
(See Figure 1). long as s minimum distance. d*>O,
exists Fk and Fk_l throughout this interval.the number of observations, n, required to
statistically a given probability of correctly
selecting the best population on the basis of
results can be precisely calculated. The
value d* may be determined by considering that any
loss incurred by an incorrect selection of an alter-
native whose distribution lies closer than d* to
l'k within the noted interval is insignificant. For
practical purposes all such alternatives are considered
equivalent to the best one. Tables of n for a few
particular combinations of k. P*, d*, E: and a were
computed in the original ranking and selection research

tA population is the same as the distribution of a
particular variable (criterion) on a system. e.g ••
distribution of response times on an
systf!lll.
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Using the above goal. results analogous to those which
Mamrak and DeRuyter derived would be of the form:

If cocputer service A has 80% of its
response times less than and
computer service B has 87% of its
response times less than then
rank B as being better t!la1i' A.

It is important to note the difference in the two
approaches. In the Mamrak and DeRuyter procedure. the
a-quantile (O<a<l) is predetermined and the best syste=
is the one with the optimal x value for soce criterion
t. In the binomial approach,3a threshold value, t'!lILD'
is chosen and the best syste= is the one with the
largest proportion, p(O<p<l). of t values less than
tntIJ)' In a sense. a is analogous to p and is

analogous to t THlD , A comparison of Figures 1
and 2, slong with the in Section 4. will
help to clarify this distinction further.

4.0 BINOMIAL APPROACH ANALYSIS
4.1 Relation to Computer Comparison Proble=

By treating the comparison question as in (*).
work performed on comparing probabilities of success
of several binomial distributions (50857] takes on
major importance in performance studies. A good
analogy for understanding the significance of the
binomial distribution research is found in an
example of comparative life testing of light bulbs.

E.:tample 2
a representative has a set

of alternative brands of bulbs from -..hich to
choose. Since the size of the purchase is
considerable. the buyer wishes to first test
the bulbs in an attempt to determine which
brand is the best. It is decided that the
best brand be the one with the largest
proportion of bulbs which operate at least
1000 hours. In other words. the company
wants those bulbs which have the highest
probability of maintaining 1000 hours or
more of service.

In the above example the criterion. t, is life
&:pectancy and t THLD is 1000 hours. Any bulb which
lasts longer thad 1000 hours is considered a
success unit. is chosen according to non-
statistical considerations and is held constant through-
out the experiment. ::Sch brand of bulbs has an associated
life expects:lcy probability diseribution, f i , andcumulative distribution. :i' (See Figures Za,b.) In
this case the goal of any experimenc is to deeermine the
brand for which is a minimum. For the hypoche-
sized distributions th :igure Zb, it can be seen that
60% and 70" of Brands Z and 3. respec tively. go bad by
1000 hours whereas only 50% of Brand 1 do likewise.
Hence Brand 1 is the bese since half of its bulbs
lase longer than the 1000 hour threshold value. more
than either of the oeher Z brands.

The with the above analysis is that the
probability and cumulative distributions of the different
alternative brands are not known .! pr:!.ori and therefore
must be est:!.mated by some form of empirical study.
Specifically it is desired to the cumulaeive
distribueions at the single value i.e••
for i • 1•••• , k where k is ehe numoer of brands
being compared. One way to go about this is to cest n
bulbs selecced at random from each of the k brands and
let Xi be the number of bulbs collected from the i th
brand Which lasts less than 1000 hours. !hen XL has a
binomial distribution with parameters n and P; Where Pi
is the probability a bulb from brand i will not last
longer than 1000 hours. :;ote that p, is identical to

and the value 1i • X./n is an unbiased
o 1-
ese:i::1a.tor for that particular population parameter.

An analogous in compucer studies was
given in !.-.:ample 1 in Section 3. In that example.
the analyst is interested in determining which
ineeractive syscam has the largest proportion ot
response times less than 13 seconds. 8y collecting n
random response times from each syseem and letting
Ii be the nt;lllber of responses less than 15 seconds,
. then Xi is binomial (n,Pi) with 11 • X/n as an

est:lmator for P;l.' As a result of considering each of
the collected ooservations as being in only one of two
states, < 15 sees. or > 15 sees., information regarding
exact measurements is discarded. However. the experi-
ment is designed so that existent ranking and selection
theory becomes applicable.

One problem is determining how many response time
observations need to be collected in order that the
experimental estimates of Pi (and l;l.kew1se
are accurate enough to satisfy an overall probability
confidence staee=ent. !his is -..here Sobel's work on
ranking binomial populations according to probability
of success becomes important:.
4.2 Selection of the Best Binomial Population [SOB57]

In the follOWing discussion there are k 2
computer systems from which it is desired to select the
best one according to a single criterion. t. (Recall
that: these results are equally applicable to k 2
alternatives on a single sysee=,) One must: collect a
suff;l.cient amount of data in order to statiseically
guarantee that the probability of making a Correct
Selection (CS) is at least a specified value P*.

p* < 1). i.e., P(CS) P*. Observations from
the same system have a cOllIIIlOn probability of being less
thaD a threshold value. t IHLD , Let P[l] P[2] ,.,
P[k] denote the ordered Pi vilues
where the asst;lllption is made that the has
nD .! priori knowledge about the correspondence betwe.en
the ordered P(i] and the k identifiable populations
(systems) which are themselves denoted

i • 1, 2, •••• k. The goal (*) is then reduced to:
(**1 Select which has associated P(k]

where P(C'S) P*.
The exact mathe=atical solueion to this probl£n employs
what is known as an 'indifference zone' approach. The
indifference zone is a minimum distance. d* > 0, between
ehe best probability. p('oJ' and the remai.tt:l.ng oJ:m...",
which the experiQenter it is significant co be
able to detece. !hac is, it is felt that any loss
incurred by incorrectly seleccing a population whose
Pi value is less than P(kj' but not more than d* less.
is insignificant. !his is si:::ilar, but not
the same as the ceaning of d* described in Section 3.
As d* decreases, are in order
to increase the accuracy with which the Pi values are
estimated. A smaller d* implies that ece
wishes to be able to detecc a finer difference among
the populations being compared. !he complete experi-
mental goal is now:
(***)Select which has associated P(k]

where P(CS) P[k] - P(k-l] d*.
The derivation of the mathe=atical solution and
extensive tables and. graphs of requiredn for certain
values of k, d* and P* can be found in [SOB57}. A
few selected tables have been reproduced in Appendix
A.

E.:tamtlle 3
. Suppose there are four priority schemes
for processing the transactions which are
transmitted from ?arious user terminals.
A transaction can be considered co be any
user request for processing. usually
initiated upon striking ehe return key of the
keyboard. !he- priority schemes are to be
tested in an attempt to determine the 'best'
One for permanent installation. The
deciding factor to be used in judging the
best one is: 'which system processes the
largest proportion of individual user trans-
actions in less than 15 seconds'. This
criterion might be appropriate in an
environment where the major concern is avoid-
ing extre=ely long response tues ae ter:ni.nals.
such as in a bank or reservation system
(airline. hotel, etc.). It is desired thae the
experiMent produce at least 90:'confidence of
correctly selecting the best priority scheme
whenever the difference between the largest
and next largest proporeion is at least ,10,
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Figure 1. nlustration or the Distance Measure !'or f:(-Quantlles (MAM17)
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Thae is, as iong as the best priority scheme
processes tea percent more 15-second-or-less
transactions than any of the others, the
results of the empirical study are statis-
tically guaranteed to determine which scheme
is the best at least 90% of the time. That is
given k a p* a .90,
?(CS) .90 whenever P[4j - P[3] '.10.

Simple table look-up (See Table III in Appendix A)
confirms that response times from 150 random user
transactions :ust be collected from the system under
each priority scheme in order to satisfy the stated
requirements.
4.3 Experimental Design

Step 1. Collect n independent 1 observations from
each of the k alternatives in question, where n is
determined by table look up based on k and the p* and
d* values supplied by the analyst.

Step 2. Let Xi a number of observations from
alternative i which are (alsosuppl1ed by the
analyst).

Stec 3. Compute Xi • Xi/n, the estimates of the Pi'
Stee 4. Select the alternative which produced thi

largest Xi' Note that since n is identical for all
systems, selection of the alternative which produced the
largest Ii has same results. In the case of ties
for the largest X, (which is not completely unlikely
due to the common·sample size), the probability
statement will be satisfied by making a random selection
among the alternatives whose Xi values were tied.

Comment: One should note that following the steps
outlined above guarantees p* as a minimum probability
value for a correct selection. is true since n
is derived assuming the worst possible combination of
Pi values. This combination is mown as the least
!avorable £onfiguration. (For a discussion of l.f.c.,
see [GIE77] - Section 1.3 or [tLE75j - Section V.C.2).
In reality it is seldom that such a configuration
actually exists, but since the true arrangement is
unknown, an exact numerical solution must be pessi-
:1stic in nature. Hence, although the experimenter
selects a minimum ?* value, the actual experiment is
likely to have an even larger probability of correct
selection.

'5.0 CONCLUSION
The computer system life cycle is divided into

three stages - design, purchase and tuning. From a
performance evaluat::=on vi.ewpoint, the theme of
comparuon is present in all three stages. Current
comparison efforts in the purchase and tuning stages
appear to be unstructured and at times inaccurate due
to practical cost constraints. It is proposed that
further advances in interfacing the area of statis-
tical theory with the experimental designs of
comparison effects will icprove these efforts.
Eseablishcent of a collective set of statistically
sound procedures, from which performance analysts can
choose to suit their particular problem, appears to be
one potential to such an interface. Mamrak
and DeRuyter offered comparison procedures which
employed ranking and selection theory. A binomial
approach procedure is presented here as another
general experinental design to answer a different
class of comparison problems. As the Mamrak
and PeRuyter procedures, its presentation is in
the context of comparison of computer services, yet
it is also applicable in any performance environ-
ment in which selection of the alternative with the
largest proportion of criterion values less then a
certain threshold value is desired.
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Gauss-Jordan vs. Cho1eski

Kenneth N. Berk

Illinois State University

ABSTRACT

A simulation study was performed to compare Gauss-Jordan elimination, Gauss-
Jordan elimination with choice of pivots, and the Cho1eski algorithm.

Two types of matrices were used. Type I has eigenvalues 2, 1, ••• , 1, 0;
. 2 2 2 s: s: -4 -4 ·5Type II has , r, 2r , ••• , U; u takes 6 values: 10 , 10 , ••• ,

10-6 .5. Gj.ven a diagonal matrix D with the specified eigenvalues, the matrices
to be inverted were obtained as PDP' where P is random orthogonal. Matrices of
order 5, 10, 20 were used, so there were 6 x 3 = 18 matrices of each type.

There were several surprising results. Type II matrices were inverted with
1 to 1.5 more decimals, on the average, but the standard deviation was also ten
times as large. For both types, Choleski is best by a fraction of a decimal, but
pivoting is helpful only for Type II matrices. The number of decimals was pre-
dicted with less accuracy by the matrix condition than by the trace of the inverse

tit correlation matrix.

April. 1977

Gauss-Jordan (Sweep) vs. Choleski

Kenneth Berk. Illinois Scace Universicy

1: IncroducCion

Although more accurace methods are available using

Householder or modified Gram-Schmidt orthogonalization

[6J. most statistical packages solve Che least squares

problem by applying Gauss-Jordan eliminations

[2J co che normal equations (perhaps scaled co cor-

relation form). The Gauss-Jordan procedure is very

convenient in cerms of adding and deleting prediccor

variables. and it is easily programmed.

For accuracy on a general matrix, che Gauss-Jordan

procedure requires pivocing. choice of che row and

column fOr elimination. However, based on che work of

Wilkinson(7. p. 305J iC is generally accepced chac

chis is unnecessary for posicive definiCe matrices.e On the' other hand, Wilkinson I s work (7. p. 305 J also

suggescs chac che Choleski (square root) pr.ocedure is

more accurate for positive definice matrices.
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To compare che inversion accuracy of che mechods.

a scudy was done co compare Gauss-Jordan

eliminacion. Gauss-Jordan elimination with choice of

pivots (ac each stage. che pivot is chosen co maxi-

mize che colerance. che ratio of a diagonal element

co che value originally in Chat position). and che

Choleski algorichm.

Two cypes of matrices were used. Type I has

eigenvalues 2. 1 • •••• 1, d; Type II has eigenvalues

2, 2=, 2r2 , ••• , 0; here 0 takes on six 10-4 ,

10-4•3••••• 10-6.S, Forming a diagonal 0

With che specified eigenvalues. che maCrices co be

inverted were obtained as POP' where P is random

orchogonal. Matrices of order 5. 10, and 20 were

used. so Chere were 6 x 3 a 18 matrices of each

cype.

To obcain a random orthogonal matrix of order

n che Gram-Schmidc process was applied co an

array of normal random numbers. :he normal



deviaees were generated by the Marsaglia modified polar

procedure [5J, using uniform random numbers from ehe

Lewis-Payne generator [4J. All computations were done

on an IBM 370-145. The inversions were done in single

precision and compared with a double precision inverse

A used as a standard. Digits of accuracy of a computed

inverse B were computed as

models for each N. Note that the Choleski-Gauss-Jordan

difference is smaller for large N. Note, too. the de-

crease in digits of accuracy with increasing N.

For the Type II matrices, it was also necessary to

fit separate models for each N, not because of inter-

actions, but because of variance heterogeneity. Using

the same model as described above for Type I matrices,

we get the follOWing 95% confidence intervals and estimates

of a:

2• R.esl1l ts

The resl1lts are s=ar1:1:ed 1:1 Figure 1 and Table 3.

There are some surprising results. In particular.

the resl1lts for Type I and Type II matrices are very

different in terms of accuracy and in terms of varia-

Type II matrices

! !' + 1111 1112 - 1111 1113 -

5 2.45t..70 .40:..90 -.41:,..86

10 2.21!..23 -.05+.32 .023:,..28

20 2.23!..16 -.015!..22 -.003:!:.19

10 d of f

.77

.25

.17

bility. To achieve sufficient resolving power to detect dif-

Type II matrices were with 1 to more ferences, the Type II results with N • 5 were replicated

digitS. on the average. for the Same d. The overall "40 times. Based on a Illodel that includes effects of

means were 2.3 for Type II, 1.1 for Type I. method. d, interaction of and d. and replication. 95%

For Type I matrices. Choleski was the clear winner confidence intervals and the estimated standard deviation

Eollows:

although the margin depends on the order N of the ma-

.52 (663df)

1113 - (y]
.09O:t.OaO2.28:,..065 .118+.0925

are as follows:

argull1ent to the effect that. on a oachine with d decimal

digits, a matrix of condition 10c (the condition her'll

Forsythe and Moler (3. p. SOl present a heuristiC

Type II disparity is not very significant.

is the ratio of the SII1allest and largest eigenvalues)

and give less advantage to Choleski. but the Type I. vs.

Compared to Type I results. these results favor

10 d of fIII _ (1ll1 + 1ll2)3 --2-

trix. Based on the model dij a + Illi + OJ +
where dij is the number of digits accuracy. mi is ef-

Eect from method i (i a 1. 2. 3). Sj represents the

effect from the jth value of o(j a 1 ••••• 6), and the

Results for Type I matrices

'ij are assumed independent normal, mean 0, variance

0 2 • 95% confidence intervals and est1mates of 0 are as

5

10

20

1. 37:!:. 071

1.03!..021

.75::.034

-.035:!:.100

-.056;t.030

-.048:!:.048

.204+.087

.128!..026

.058:,..041

.078

.023

.037

should be inverted (d - c) correce digits. It

should be evident from the scatter plot, Figure 1. that

condition alone is not a very good predictor. Only 2/3,

Here 1ll1' 1ll2' and 1113 are the effects for Gauss-Jordan,

Gauss-Jordan-pivoting, and Choleski. respectivelY. The

or 63:. of the variance in correct digits is accounted

for by the linear prediction by log condition.

differenc:es favoring Choleski were expected but the ad- Several alternatives to condition were tried to see

verse effect of pivoting is a big surprise. It was as- how well they predict digits of inversion accuracy.

sumed that. if anything, pivoting would be helpEul. These included Tmax (log of the smallest tolerance), Tr

Originally. N was included in linear model. but (log trace of the inverse cor::elation matrix). M (log

interactions of the other factors with N forced separate maximum diagonal element in the inverse correlation
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matrix), and C (log condition of the eorrelation Matrix).

Lat J be the log of the condition of the matrix. Then

the simple correlations with the number of correct digits

of inversion ara

This the extremely surprising result that the

trace of the inverse correlation may be better

than condition as an indication of the number of cor-

rect digits. More werk is needed to verify this. Note

that Tr, M, and C are closely related [1].

3. SUlllIIIllry

Io sUlllillllri:le the results of the study, the Type I -

Type II disparity is the most striking result. The

difference in digits of accuracy between the two types

is much greater than any of the observed vs.

Gauss-Jordan differences. The author is unaware of

any published analysis that would predict such a dis-

?arity. The much greater variability of the Type II

results also require& explanation.

The differences .favoring Choleski were expected.

They do not seem sufficiently to cause Gauss-

Jordan users to switch, since the Choleuki

advantage is below one-tenth of a digit for large Type

I matrices.

1'IIIax

-.60

Tr

-.77

M

-.71

C

-.66

J

-.68.

[41 Lewis, T. G. and Payne, W. H. (1973) Generalized

feedback shift register psendorandom number al-

gorithm. Jourual of the ASSOCiation for Com-

puting Machinery, 20, 456-468.

[5] G. (1962) Random variables and com-

puters. Transactions of the Third Prague Con-

ference. 499 - 512.

[6] Stewart, G. W. (1973) Introduction to Matrix

Computations, Academic Press, New 'lork.

[7] Wilkinson, J. H. (196l) Error analysis of

direct methods of matrix inversion. J. Ass.

Comp. Mach. 9, 281 - 330.

The condition of the matrix was a disappointing

predictor of the number of correct digits. Surpris-

ingly, the trace of the inverse correlation matrix

did somewhat better.
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NUMERICAL SOLUTIONS OF THE BETA DISTRIBUTION

Hubert Bouver, APL of Johns Hopkins
Rolf E. Bargmann, The University of Georgia

ABSTRACT
This'paper presents the derivation of a newly developed formula, with its

computational algorithm, and its FORTRAN IV module for comparison of numerical
methods in the evaluation of the Beta distribution.

Series and continued fraction expansions were compared with the goal of
finding the most efficient techniques for the different domain of the degrees
of freedom of the Beta distribution. These methods, in addition to the standard
serie solutions and continued fraction expansions, include the recent technique of
the Hermite expansion around a local maximum which was investigated for large
values of the two shape parameters of the Beta distribution.

The Incomplete 8eta subprogram functicn was written in standard FORTRAN to
evaluate in double precision the cumulative density function, the inverse of the
cumulative density function and, the probability density function of the Beta
distribution with guaranteed precision of 10 significant digits.

ADplication of the aermite exoansion to the Beta
disc:ribution

other approximations may be quite adequate. On the
other hand. if high precision is required, these stand-
by apprOXimations are useless.

(1)

(2)

functionLet J be defined as an Incomplete Betamtn

( f(m+n+2) J X !II n
Jm•n x) .. f(m+l)r(n+l) a t (l-t) dt.

where J (x)· a < x < 1 and m > 0,m,n
n > a (m and n not necessarily integers).

Substituing fCt) .. mlog(t) + nlog(l-t) in (1) we
obc:ain

J (x).. r(m+n+2) J x ef(t) d
m,n J t.

and its r th derivative is
( ) (-1 ) r-1 1f r (t) • (r-l)f(m+n) [- - - ----.Jr-1 r-1p q

Since
F'(t) 21 1! - -11-, h -t(') 01 11 " m- t 1-t were t t.. mp es t .. n+.n a p

and
f" (e) m n '".. - F - (1-1:) t < 0 implies that gives a

local maXimum. hence the Taylor series expansion around
its local maximum p is
f(t) .. (m+n) [plogp + qlogq - (t-p)2",pq

+ _ _ +3 p q. 4 p q- .

+ t<}- - -

A comparison of modern computational algorithms,
for mathematical functions (e.g. IBM library [1]),
with those used twenty years ago, shows a trend
toward higher efficiency with guaranteed precision.
Even for elementary trigonomet:ic, exponential and
logarithmic functions, the classical series expansions
have been replaced by optimized fixed-length continued
fractions and Chebyshef minimax rational functions.

INTRODUCTION

The collection of mathematical functions by
Abramowitz and Stegun [2] have been used extensively,
especially the formulas and mathematical properties of
series expansions and rational fractions. Johnson and
Kotz [3], describe in detail properties of many
statistical distribution functions and present
formulas especially developed for approximations. They
devote particular attention to formulas for small
range of arguments and for modest precision.

The techniques of numerical analysis are, for the
most part, well known and are merely studied as they
relate to statistical distribution functions. However,
the Hermite exoansion around a maximum. as described
next. appears to be a novel approach. It seems to have
superficial similarity with a method described by
Daniel [4] which Kendall and Stuart [5J regarded as an
entirely novel approach for the evaluation of
distributions. The Hermite expansion proved very
successful for large values of the shape parameter

e (a > 100) of the Incomplete Gamma and was needed to
fill rather large gaps between continued fractions and
Normal approximations Bouver and Bargmann [6J.

If one is-satisIied with low precision (e.g. 3
places) and a limited range of probabilities (e.g.
0.01 and 0.99 level) reference to the central limit
theorem. variance stabilization transformations. and
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where

_
z 76 600 504 540 1,296
3 4 3 3 2)+z 19
1,920 18,432 2,880 3,888 8,100
ala5 21 aja! aja2C13 aia"

+13,608)-z (62,208+38,880 r I74,960)
atCt3.) H( ala2

+z 933,120+2,624,400 -z 44,089,920)
27 at. . 12a10 1. ala,

+z (7,142,567,040)] - (z 12 -z (33
2 2+Chas+CU-)+ 1s (£1£8+a1a2a7+a la,a.

40 45 48 98 z 180 108 120
2 2 2 2+ala.. 18(a1a21).S

126 256 140 288 300 z 672
3 2 2 22,+Cl1':lza3a4+ala, +CLjCtzCl6+ala,aS+ CLla.+ ala7

360 2,250 576 630 1,296 1,458
22 3 , 22 2 2+ a2a" )+z2 0(aja:?a3+alaZa4+Cl.raZa3

1,600 2,304 5,760 3,456 3,600
3 S 2 4al(1:?aS -lU...-) 22( ala?

+4,536 +4,860 +15,552+122,880 -z 110,592
afaia 3 ajaza" 24 aja!
+25,920+46,656+97,200+204, 120)+z (746,496

S salaZa 3 ala" )
+583,200+3,149,280 -z 16,796,160
ala, ) 28 ( a.tag

+55,112,400 +z 1,058,158,080
30 ai o

-z (214,277,011,200)]

/ Xl
Xo (4)

J •••

q"_o4

follows that

g3+n 3
a 2'"(m+t1)pqa 1"(m+n)pq ,

(3)

qS+pS qS_pS
a4-[(m+t1)pq]% a s-[(m+t1)pqjS'%

R(z)Now, in the expal1sion of e , it

ini+n A,mr-where Xl=(X-p) rpq , x o--1Itii+ii, and

eR(z) .. z3_ Z4+ zs_ zs+ Qa Z7_
3 4 5 6 7

Thus (2) may be writtel1 as .
x ·.....L(t_p)2(m+t1) A(

( pmql1 /0 e 2pq eR t).It,Jm,n x -f(m+l)f(n+l)

'",ith

Aoplication of the continued fraction to the Beta
dis tribution

We will show that the continued fraction is by tar
the most efficient method to evaluate the Incomplete
Beta function. Its continued fraction may be written
as [2]

The computer program DBETAX evaluates the
Incomplete Beta function (4) in double precision. It
is most valuable if both parameter are large. For
a .. S '"' 1000, its precision is about 23 significant
digits at ·.he mean and 18 significant digits at ]..I i: 50'.
If one parameter is small (e.g. a .. 1000 and 8 .. 10),
the precision is 10 significant digits at the
mean and 8 significant digits toYard either end.

This for.nula is most efficiently used when x is less
than its mean (i.e. x <]..I .. a/(a+8», but when x > ]..I ,x x
we may simply take complements (i,e.
5(xia,S) .. 1 - S(l-x;S,Cl».
The computer program DBETA-X evaluates the Incocp1ete
Beta function using the continued fraction as defined
in the follOWing way (2):

f .. :1n .. a, h.-!..L. !n.
n En - b;-t- b?T b3+ bn

b3+a4

k - 1,2,3k(B-k)

-(a+k-1) (a+B+k-l)
c2k " (a+2k-2)(a+2k-l) x,

x? (l-x)S [J £l...£2.. £l. £.0.. ]
f(aTl)f(S) 1+ 1+ IT 1+ .,. iT •••B(XiCt,B)

where

and

and its fil1al asymptotic expansion form up to terms
involving I(m+n)pq 1-5 may be written as

2 3
eR(z) _ 1 + - +

4 2 2 2 4• ( sf!. _ 8 (2J£3 .!!.t) , z 1 -z 12!!l... ]z 6 z 15 T 32 T 72 1944
S 2 2 3

+[z 7y_Z9 )-z13mZ

+ IS--S!LJ • [
z 29,160 z 8 z 21 24 50

2 4 3 2 23 3 .. 2
+ 12(a,':I:?a'+"la )+ZISCl.ta
z 60 108 384 576 810 7,776
_ 18 at ] + [ _ 11 .. )
z 524,880 z 9 z 24 28 30

2" 2 3+ 13 (1).1Cl.2>:L....al>:L11ata5+':!l.Si3)_zl 5 (£.l.£!.L
z 72' 150 126 160 . 1,152
2 3 32 4 52CllaZCL3Ci!£") 17(a,az 19 ClIO.

+ 360 +972 +z 5,184+9,720 -z 116,640

aT J. ( 10fU.. _ 12
+11,022,480 z 10 z 27 32 35

2 2 S 2'14 ('hCL2a5+ala,a4+<!l.£
+72 +z 84 90 144 200 192

2 Z. 22 35 4

-z 480 432 900 1,134 6,144

18 cdai a ?a*"3 etta" Z0
+z (6,912+3,240 +11,664)-z 62,208 145,800
sa'Z2 atCl.2 _ 2" at ] +

+z 2,099,520 z 264,539,520 11
" 7_ 13 15 Mfa +al a 2a 6

z 30 36 40 42 z \162 96
2 2 S 3+Ct2CL 1CL,,+.£!.) (5)

105 216 224 120 750
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CHART FOR THE

INCOMPLETE BETA FUNCTION

BJ::l'AX

INPUT

FX ... BETAX(xja B

rea) - logr(B) - 10 [a-x(a+8>

III'LAG 0 .. y.s <x < -;;:fj • ?>N2 .,

,
<; -668 ? >,..__ __--1.... , ...... 1>, .,

rBETAX • 1.0

a 1) NO

1te BETAX
,

the Hermite - YES ra S 10
lCI- I

,
ion

Print Message
a and a are too

large, BETAX • 1/2

'r I

,00

lua
ng
ans

ES

____RN_l ct

BETAX'" 01
I

Y<a.a < 70

Evaluate BJ::'XAX Eva
using variable length ;..1..... usicontinued fraction exp

BETAX IFLAU •IBETAX • 1 - o ?)
Iy

l' ,
- RE'fU-
FIGURE 2

328



Time on an Average of 10 Calls in

for 10 Digits Precision, using Variable Length

Fraction and Expansion for the
'JcEvaluation of the Incomplete Meta Function

b'raction Hermite !::xpansion

'rimE:: Cycle 'rime
lfor X l!'or X For X

u ::; a lolx-30 \.Ix u "';'3(J I \.Ix. \.Ix-3(J \.Ix<' x x x

10 , 2.2 2.a 6 9 39.0 37.4

100 3.5 3.8 11 20 37.7 35.0
"-

1,000 3.7- 7.9 16 43 36.9 33.5

10,000 3.9 17.5 21 91 36.4 33.5

40,000 5.8 26.0 23 144 37.1 34.0

70,000 5.8 30.8 23 174 35.3 34.1

100,000 I 34.8 34.1

108 { 35.0 34.2

1010 35.2 34.1

TAELE 1

'if
if x > Ux a the complement (i.e. B(x,a,S) = 1 -
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where

AEN .. a2k , AOD - a2k+1' BEN - bZk ' BOD - b2k+1,

10 digits of precision, has proven to be vastly
superior for all cases encountered in practice.
Therefore, the continued fraction is the only module
considered for the evaluation of the Incomplete Beta
function unless min(a,S) a 70,000. For this extreme
region, the Hermite expansion will be used. When
min (a,S) ;. lOa, the results of the Hermite expansion
are valid to 5 digits of precisionj beyond
min (a,S) • lOB, the results are even less accurate.
At this time, the highest value for which the
Incomplete Beta function will be evaluated is at
min (a,S) • 1010 where the results are still valid to
3 places of precision. No approach resulting in
reasonable precision has been found for values of
min (a,S) > 1010. .

The continued fraction works very efficiently
even if the Incomplete Beta function is extremely
J-shaped or U-shaped (e.g. a • 10-10and
S .. 10-B). The continued fraction becomes more time-
consuming as the argument x approaches the mean (
approach is always from the left for, if
x > • a/(a+S), the complement is used, (i.e.,
B(xja,S) • 1 - B(1-x;6,a».

{

AliI..BOD*ALO+AOD*AIiI or A3 ,AS ,A7,

2 BRI-BOD*BLo+AOD*BHI or B3,B5,B7,

{

ALO-BEN*ARI+AEVoIrALO or A2,A4 ,A6,

1 . BLO-BEV*BIiI+AEV*BLO or B2,B4 ,B6,

Initially

[

tep

cycle

step

Our computer program DBETAX uses this Euler second-
difference, two-step per cycle continued fraction
method as defined by the following
statement where for each cycle (k" 1,2.3, ••• ) we
have

AliI - A1 - a l
BHI .. B1 • bl

ALO - AO .. 0,

ELO .. 80 - 1,

and the result is An/in
F .. AliI / BHI

Table 1 and Figure 1 show for a few selected
values, the average time of execution of DBETAX for 10
digits of precision. The flow-chart (see figure 2) and
the program listing of DBETAX in its final form,
Figures 3 and 4 represent the Statistical Distribution
Package SDPIO and its calling sequence are
illustrated.

Aoplication of the series expansion to the Beta
distribution

The Incomplete 3eta function as previously defined,
may be written as

r(a+6)
B(XjC1,S) .. r(a)f(6)

r<a+6> a . 6.. r(a+l)r(s) x (I-x) + 6(xja+l,6)

REFERENCES

[11 Systems Library, and
Service Subprograms, IBM GC 28-6818, 1972.

[21 Abramowitz, M. and Stegun, I.A., Eandbook of
Mathematical Functions. Bureau of
Standards, Washington. D.C., 1968.

[3] Johnson, N. L. and Katz,S., Continuous Univariate
Distributions-1,2. Co.,
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which is a recurrence relation valid for all a > 0,
S > OJ thus we have an infinite series expansion

[4} Daniels, H. E., 'Saddlepoint ApprOXimations in
Statistics'. Ann. aath. Statist., 25, 631,
1954.

This series (see, e.g. [2}) is the expansion in terms of
"negative binomial" probabilities; the expansion in
"binomial" terms is less useful for non-integer a and 6
since, in the latter, terms will have alternating signs.
For high precision evaluation, a series expansion is not
very efficient for the Beta function, unless
x is very small (x < ' say). The series expansion
does, however, play an role in the evaluation
of non-central Beta distributions since, by an adroit
procedure of storing individual terms of the series, the
non-central distributions may be evaluated in
approximately the same amount of CPU time as the central
one.

'" (C1+6+k-l) xa-k(1_x)6a+k

[5] G. and Stuar:. A., The Advanced
Theor.., of Statistics. Vol. 1., London.
Griffin, 1969.

[6} Bouver, H and Bargmann, R.E., Numerical
of the Incomnlete Gamma Function. Proceeding
of the Tenth Interface Symposium on Computer
Science and Statistics, 1977.

[7] Bouver, H. and Bargmann, R. E., Pearsonian
Distribution Package: An Application to
Curve Fitting. Proceeding of the 1977
American Statistical Association of the
Statistical Computing Section, 1977.

CONCLUSION

For the Incomplete Beta function, the continued
fraction evaluation ',;.lth a variable number of terms, for
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C
C

OF THE C.D.F •• 0 .GT. X .LT. 1.0

HUBERT BOUVER RNO ROLF E. BARGMANN

UNIVERSITY OF GEORGIA. ATHENS OEORGlA.

DEPARTMENT OF STATISTICS RNO COMPUTER SCIENCE

ALPHA =THE FIRST SHAPE PARAMETER

x =THE PERCENTAGE POINT.I.E THE UPPER LIMIT

BETA =THE SECOND SHAPE PARHMETER.

IF THE SUM Of THE TWO PARAMETERS EXCEED 1.ES THE

ABRAMOWITZ. MANO STEOUM. I. HANOBOOK Of MATHEMATICAL

BARCMANN. ROLF E•• A STATrSTICAL OISTRIBUTION PACKAGE.

WHERE P =PROBABILITY LEVEL.

RESULTED VFU.UE WILl. BE SET TO 0.5.

P =BETAX IX.ALPHA.BETAl

THIS CDC SUBPROORAH fUNCTION EVALUATES THE CUMULATIVE

DEPARTMENT OF STATISTIC AND COMPUTER SCIENCES. UOA. ATHENS.

FUNCTIONS. NEW YORK. DOVER.

(11 THE fUNCTION CALLING STATEMENT.

(2) THE PROGRAH LIMITATION

(31 REfERENCES

WRtTTEN BY

DISTRIBUTION OF THE INCOMPLETE BETA fUNCTION.

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
.c
C
C
C
C
C

c 6ETRX ------------------------------- CC
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

FUNCTION BETAX (X.AlPHA.BETA)
c
C ••• ALL CONSTANTS USED IN THIS PROGRAM ARE IN DATA STATE"ENT
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c

c

c

DIMENSION SJ(30).C1C30)
LOGICAL fLAG
X=XX
A:AA
B=BB
FLAG=.FALSE.
IF(X.LT.Q.O) 00 TO 95
IF(A.LT.O.O.OR.S.LT.a.Ol GO TO 98
BETAX:l.O
If(X.GT.1.Q) GO TO 95

C=OLGGMCA+B).A.ALOO(X)+SaALOGC1.0-X)
• -OLGOMCA)-OLGOMCB1-ALOG(A-X.CA+8))
IFCX.LT.A/CAr8)) GO TO 10
X=1.0-X
A=BB
B=AA
FLAG=.TRUE.
IFlC.LT.-34.01 GO TO 99

10 IF(C.L!.-S75.01 GO TO 96
IF(A+B.LT.l.ES) GO TO 20
IF(A+B.LT.l.E101 00 TO 30
BETAX=O.5
WRtTE{6.102) A.B

102 fORMAT"I,. THE PARAMETERS ARE TOO LARGEa.2G15.S)
GO TO 99

20 CONTINUE
APB=A...B
ALO:RM::.O.O
BLO=BHI=6eV=600=1.0
AHI=EXPCOLGOHCAPB)+A-ALOO(Xl+SaAlOO(1.0-X)-
.OLOOM(A.l.O)-OLOOM(B))
F=FX=AHI

11 RM=Rth 1 .0
RM1=RH-l.O
AEV=-( A...RMI )a(A+6+Rt11 )aX/( CA+RI11+Rt11 he A+RM+Rt11 J)
AOO=Rn.C8-RM).X/(CA+RM+RH1).(A ... RH ...RM))
ALO=8EV.AH!+AEV-ALO
6LO=BEV.SHI ...AEv.SLO
AHI=600.ALO·AOO.AHI
6HI=600.SLO ...AOO.SHI
IFIBHI.EQ.O.Ol GO TO 11
F=AHI/BHI

GO TO 21
fX=f
GO TO 11

21 BETAX=f

2S IF(fLAGl 00 TO 99
BETAX:l.0-BEiAX
GO TO 99

30 CONTINUE
BH=X
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R"=A-l.0
RN=a-I.O
OATR RI 11.01
RMN=RM.RN
p=RM/RnN
Q=RI-P
RPQ=RMN.P.Q
N =24
Al=LQ-P)/SQRTCRPQl
R2=(Q··3+P••3)/RPQ
R3=!Q•• ••4)/RPQ•• 1.5
A4=(Q••S+P••S'/RPQ.·2
A5=ca••s-p••S)/RPQ.·Z.5
R6=LQ••7+P••7)/RPO.·3
R7=CQ••S-P••S1/RPg••3.5
A8=(Q.·S+P••9)/RPO••4
8I(1)=A1 ••S/Z64539520.0
81(Z)=0.0
Bl(S'=-A1 ••6.AZ/Z099S20.0
Bl(4)=Rl ••7/11022480.0
Bl(S,=Al ••4.AZ••Z/6Z208.Q+Rl ••SaA3/14SS0Q.O
Bl(6)=-Al ••S-AZ/116640.0
81(71=Al ••6/S24880.0-(Al ••Z.A2•• ••3.A2.A3/S240.0
$ +Al •• 4.A4/11664.01
Bl(Sl=Rl ••S-AZ••Z/S184.Q+Al ••4.AS/972Q.Q
Bl(91=-Al •• 4.AZ/7776.0+Al-AZ••2wRS/480.0
+Al ••

$ ••3.A5/1134.0+A2••4/6t44.0
Bl(lO)=Al ••S/29160.0-1AlaAZ••3/1152.0
t +Al ••Z.AZ.A3J360.0+Alaa3-A4/97Z.0)

••Z/576.0+Al ••3"A3/810.0
$ ••2.A6/144.0
$ •• 2¥A(/192.QJ
BltlZ)=-Al ••3aA2/648.0+Al-AZaA4/7Z.0+Al.AS··Z/IS0.0
$ .Al ••Z-A5/1Z6.Q+AZ••Z-A3/1S0.0 .
61l13l=Alaa4/1944.Q-CAl-AZ»A3/60.0.Al ••Z-A4/108.0
$ +A2 ••
$ ••21IZ.Q
Bl(14l=Al-AZ••Z/96.Q+Al ••ZwAJ/90.0-(Al-A6/Z4.0
$
Bl(15l=-Al ••Z-AZ/7Z.0.Al.A5/Z1.0+AZ-A4/24.0

t ••2/50.0-na/l0.0
al(16J=Rl ••
Bl(171=Rl.A3/15.0+AZ••Z/3Z.0-A6/e.Q
81l181=-AlaAZ/lZ.0+AS/7.Q
Bl(19l=Al ••Z/18.0-A4/6.0
81lZ0)=A3/5.0
81(21) =
Bl(22) = AI/3.G
Bl(23) = 81(24) =0.0
Bl(251 = 1.0
NP =N+l
CALL HERPOL (Bl,Cl,N.Z)
NM N-l
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C

c

c

CALL HERPOL (Cl.al.NM.!)
CNI = ClCNP)
AL = -SQRTCRM.RMN/RN)
BN =BH
BN=(BN-P).SQRT(RMN/(PaQl)

DATA IN! 11/.RNO 10.001
SJ = • CNI. CYORMXCBH)-YORMXCAL))
PA =(YORMZeAL))
PB =(YORMZeaH))
NN =N-INI
SJ1 = SJ2 = RNa
00 12 (=INl.NN
NR =N -I
az = au Il
SJl = SJl + aZ.ALaaNR
SJ2 =SJ2 8Z-SH••NR

12 CONTINUE
SJ = SJ • PA-(SJ1+81CN)) -

SJJ=EXpeCRM?50)aALOOCP1+CRN+.50).ALOOCQ)
$
2 SQRTce.O-ATANel.Ol/RMNl
SEnne=SJJ.SJ
GO TO 25

95 HRITEL5,100) X
100 FORHATe/I •• ILLEGAL INPUT VALUES FQR X••G1S.S)

GO TO 99
SS BETRX=O.O

GO TO 98
S6 WRITcL6.101) R,a
101 FORMATell,. ILLEGAL INPUT PARAMETERS FOR A.a•• 2GIS.51
99 RETURN

END

336

.e



An Algorithm to Derive Mnemonics for Computer Usage
John Brode, Jeffrey Stamen, and Robert Wallace

23 Berkeley St., Cambridge, MA.

Commands to computer systems make extensive use of mnemonics.
To regularize the formation of these mnemonics, an algorithm has
been devised that takes word strings as input. Thus the user of
this system need know only the algorithm and the full name for a
procedure in order to create the correct mnemonic.

As the online use of computers expands
beyond the computer professional to the com-
puter consumer, the problem of keyword name
proliferation arises. This has already oc-
curred in the world of statistical comcut-
ing where are a great many statistical
techniques each of which is assigned an ab-
breviation as a keyword to minimize typing
(and also to fit environments where keywords
are restricted to only 6 or 8 characters).

These abbreviations, however, are ar-
bitrary. They have to be memorized for each
usage. Besides, which analysis of variance
should be called ANCVA since there are a
variety of techniques available?

To get around these encombrances, an
abbreviation algorithm was developed at -
M.I.T. (1) The advantage of an
approach is that the user is absolved from
memorizing abbreviations. Instead, each
abbreviation can be recreated from the nor-

name for a statistical technique by the
application of the algorithm.

The algorithm for abbreviating names is
as follows:

The first letter and the next following
consonant (if any) of the first word to w1".ich
are added the first letter of each subsequent
word in the name. (N.E. prepositions, con-
junctions, definite and indefinte articles
are passed over in scanning the
words. )

As an example, "analysis of variance
for complete layouts" becomes "anvcl".

A "an" comes from the fir.st word. "of" is
as is "for" so the first letters of

the remaining words make up "vel".

Exceptions to the above algorithm have
been adopted for two categories of names:

1) In order to avoid confusion and
redundancy, short names are not abbreviated.
Short is defined as any name composed of only
one word which has four or fewer letters.
E.G., "for", "with", "plot", are not abbre-
viated.

2) Function names, such as "leg", "tan:'
that are already widely used in an abbrevia-
ted form are left untouched. For the most
part, these abbreviations have become names
in themselves and as such would not be ab-
breviated under the above algorithm, sxcep-
tion 1. The few, like "conig", that would
be abbreviated normally have been left un-
touched as well so as to avoid undue con-
fusion.

(1) This algorithm was developed by the au-
thors as part of work at the Cambridge
Project,M.I.T.,and is incorporated into the

language developed there. This re-
search was supported in part by the Advanced
Research Projects Agency of the Dect. of De-
fense under Contract No. F30602-72:C-0001,
which was monitored bv the Rome Air Develoo-
ment Center. - -
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STATISTICAL DISTANCE MEASURES AND TEST SITE SELECTION: SOME CONSIDERATIONS
Charles D. Cowan and Randall K. Spoeri

Bureau of the Census
ABSTRACT

The selection of test sites or a judgemental sample of test items is often in-
fluenced by political and administrative considerations. Yet the researcher.would
like to make this selection as objective as possible, and at the same time be
guaranteed that the selections made are representative of the domain from which t,e
test items are selected. Often the selection process takes into account demogra-
phic and economic statistics about an area, gathered in a census or estimated from
survey data.

One way of approaching this problem is to use statistical distance measures. The
measures described in this paper were used to calculate a distance for each site
in a set under consideration from a standard specified by the researcher. However,
when two or more test sites are being selected, this method may not yield the best
combination of sites or items in regard to the distance of the combination from
the standard. This paper examines conditions under which consideration of individ-
ual distances may be inappropriate. However, it is shown how the individual dis-
tances may still be used, while improving the selection process for combinations
of test sites.

Introduction

In April of 1977, the Farmers Home Administration
(FmHA) of the U.S. Department of Agriculture entered
into an interagency agreement with the Bureau of the
Census. One objective of this agreement was to assist
FmHA in selecting six states, in each of three
regions, as sites in which to test their Unified
Management Infcrmation System. The method of select-
ion used and compared three measures of distance,
each offering an objective and quantitative basis
to determine the "distance" of a state from its
region. These measures were a) Euclidean distance,
b) Mahalanobis distance (1936}),
and c) a nonparametric ranking procedure suggested
by Kendall (1975). Each distance measure is
desi2ned to quantify similarity.

In this project, FmHA wanted assistance in deter-
mining which states were most similar to a region
simultaneously considering a number of factors.
Thirty two characteristics, or variables, to be
used determination of similarity of a state
to a region were identified by Census and FmHA.
These included such factors as median family in-
come, land area, and FmHA caseload. Fcr each of

FmHA regions, consisting of 9,9, and 12
states, Census was asked to indicate states
which might represent the region for testing of
the information system.

.In general, the three measures used produced very
Similar results. All three measures identified the
same state as having the distance for all
three regions. and all measures indicated the same
state as having the second smallest distance in
of the three regions. These two states in each
region were selected as most representative of their

region. It might be, however, that this procedure
gives a set"of items which jointly does not have the
smallest distance from the regional averages. The
problem will be stated more precisely in the next
section.

Selection of Combinations of Sites or Items

The being drawn in this paper is the
difference in the selection obtainee when calculat-
ing distances for individual sites, with
results obtained when combinations of sites are
considered simultaneously. When n objects are being
compared, which q are to be selected, there are
(n) combinations to be reviewed. determine which
c8mbination yields the minimum distance the
standard established by the researcher, it will be
shQwn that consideration must be given to both the
individual distances of items and the distances
between those items. Computing algori tillllS are

as part of the discussion.

- Assumotions

rhe development that follows makes some assumptions to
simplify the presentation, with no intentional loss
in the generality of the argument. It will be assumed
that all distances are calculated from the mean(s}
of the variables under review. Thus if there are
n observations and p variables, each observation
can be represented as a point in a p dimensional
soace with a centroid of the observations located
at point (Xl X2 , ••• ,X), where X. denotesmean of the n ooser'lationsPfor the j d variable. This
assumption is used only to simplify the calculations;
any centroid can be specified. It may be that the
researcher would prefer to calculate distances
from rather than means, cr from a
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and

tolerance level that would represent the point where
cost savings would be greatest given a certain de-
sired level of quality.

Secondly, following the recommendations of several
authors (Chen (1974), Gower (1966), Kendall (1975»,
the observations will be standardized by subtracting
the mean from each variable, and diViding each vari-
able by its standard deviation. If some other
standard than the mean were desired (see above),
one could subtract those values instead; the purpose
of the standardization is to move centroid to the
origin. Division by the standard deviation makes all
observations unitless and yields observations of
approximately the same order of magnitude. This is
necessary since some variables might be represented
in millions of dollars, whereas might be tabu
lated in square feet. In place of the standard devia-
tion, one might also wish to use the variable mean
(if not zero), the range, or a skewness measure.

The final assumption is that all sites or items
receive equal consideration and equal weight. For
example, when calculating the mean income for a
region, the mean is calculated as the unweighted
average of the individual states' incomes. Later in
the discussion it becomes necessary to average the
values of r.NO observations, and so each is given
equal weight. This assumption is made to facilitate
the geometric presentation, but weights could be used.

Definitions

Let X be an n x p matrix consisting of n observations
on p variables. The entries in X can be standardized
by subtracting the mean of each variable from the n
observations on"that variable, and dividing each
observation by its standard deviation. To subtract
the means, we define a matrix E of size n x n, with
all entries in E equal to Then,

x* = X - 1 EX.n
From X*, a matrix V (the variance - covariance matrix)
is calculated as:

The Euclidean distance of observaticn i from the
origin is the square root of:

dii = ' where .!i is the i th row

of Z, and

D ZZ', where Z is as described

above.

The n principal diagonal elements of D, the d. i , arethe squared Euclidean distances of the n stanaardized
observations measured from the origin of the p-space.
The off diagonal elements, the dik (i # k), are thescalar products between and do not
directly measure distances the pairs of obser-
vations, but will later enter into the calculations of
that distance.

The Mahalanobis distance is similar to the
distance, it weights the observations to
account for the correlations variables. By
calculating the correlation matrix of the p variables
as Z'Z/(n-1) (remembering Z is standardized), then the
Mahalanobis distance for observation i from the origin
is the square root of:

= (n-1)z.(Z'Z)-1 z.'
-J. -J.

(n-1)Z(Z'Z)-1 Z'

The n principal diagonal elements, the m.. , are the
squared Mahalanobis distances, again mea§Gred from
the origin in the p-space. Note that if Z'Z/(n-1)=I,
(i.e., the p variables are uncorrelated) the
Mahalanobis distance is the Euclidean distance. Also
note that if n< p, the solution' is degenerate since
Z'Z has rank less than p and so cannot be inverted.
Principal components can be used to obtain approximate
solutions by reducing the rank of Z' Z to something
less than n (Chen (1974)).

The diagonal of Ware the reciorocals of
the standard deviations. The matrix Z is thAn oArivAd
as

The principal diagonal of this matrix is extracted,
and the reciprocals of the square roots of the
diagonal are inserted in the princioal
diagonal of another p x p matrix whose off
elements are zero.

1V=-n-l
,

(X*) X* Finally, the procedure involves creating a
new matrix K from the matrix Z. Each element in Z
is transformed to its absolute value, so a new
matrix Z* is created, where z· = I ThQnij -ij' ..
each column of z* is transformed by the
cbservations in that column. The jth column of K
is the ranks of absolute values of the jth
of Z. These are across the rows,
and the sum is divided by p, the number of vari-
ables. These results from K are the
distances.

Z = X*',I/.

The set of standardized observations is now displayed
in matrix form by Z, an n x p matrix, where n can be
greater than, less tRan, or equal to p. An observa-
tion or case, the i case say, is the set of values
on the p variables which make up the i th row of Z.
For the remainder of this paper, the term "observa-
tion" will be used to denote one of .the n rows of
Z, and may also be viewed as a point or vector in a
p dimensional space. Also, lip-space" will refer to
the p dimensional space under study.

Selection of Two Sites

Each of these measures can be used to determine a
set of n distances from the centroid for the n
observations. Initially it seems reasonable to
take the observations with the and second
shortest distances from the centroid of the p-space
as the combination of observations which has the
shortest total distance from the centroid. It follows

one would take three observations with individ-
ual least distance from the centroid if choosing a comb-
ination of three observations to be most similar to
the mean vector, and so on. However, it may be
possible to find a combination of Observations which
has a smaller distance from the centroid than
combination which includes the r.NO observations with
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smallest distance indiVidually. This would be done
by combining, or averaging, two observations which
are very dissimilar to other. Positive values
for the standardized variables would cancel out
negative values between the two eases in the averaging
process. The net result would be to obtain a comb-
ination which would be closer to the centroid.

1: Combination of Vectors in Two Dimensions

z,

(4)

.
. , A+B
'::;I.

B+C
2

Note: The length of a vector A= zAi + ZA; is simply
the squared Euclidean of the point
(ZA1. ZA2) from the origin.

determine the distances from the origin of all sets
of two observations, one can derive a matrix E:

s
•. 7":• • .j.

.. " QoI'

(3)

. (2)

= 2 2 +Yz:f;z .•! Zij Zkj
j j .. J J.J J

.. + dkI< + Yz d ik • (1)J.J.

Combining equations (1) and (2) yields:

This can be demonstrated by examining the squared
Euclidean distance from the origin of the vector
which is average of vectors i and k (again
from a mean vector of zeroes):

di +k
2

Contrast this to the distance between the same points
i and k in the p-space:

dl:.:::k. = Yz dii + Yz dkl< - d i : k •
2

That is, the squared Euclidean distance from the orlg1n
for the average of observations is a linear
function of their individual distances from the origin
and the distance the cases. Since all the
distances involved in (3) are nonnegative, it can be
seen that the more are observations of
constant length (the larger the distance them),
the smaller their combined distance from the centroid.
Geometrically this can be shown as in Figure 1. (For
details on the geometric presencation, see Davis (1967).)
Three vectors, A,B, and C are shown in the Figure,
dAA(d3B<dcc. The vector A is relatively close to 3,
however, and closer to C than C is to 3, so
dA:B(dA:C(d3:C' Given these two circumstances, the
vectors can be added as described above to obtain the
three possible combinations of vectors A,B, and C to
discover that d3+C(dA+C<dA+B'

222
Note that result is counter to one would
intuitively expect, as the length of the longest
vectors combined is shorter than the length derived
from the two shortest vectors combined. In fact,
combining the observations with the shortest and long-
est distances (A and C) also gives a shorter

distance from the origin than the combination
involVing the shortest distances (A and 3). There-
fore, there is no guarantee that selection of the two
observations in Z closest to the centroid will nec-
essarily be the combination of observations which will
yield an average vector having minimum distance from

except in most fortuitous of circum-
stances.

where d is an n x 1 column vector consisting of the n
elements from the principal diagonal of ZZ', and u
is a n x 1 column vector with all entries equal to
unity. The matrix E is symmetric, with entries along
the principal diagonal equal to the Euclidean dis-
tances corresponding to individual observations,
and with off diagonal elements equal to the di +k given

in equation (1), the Euclidean distances of alt the
averaged pairs of observations. Note that where
before there were n measures of there are
now distances to compare. Depending on the
distances the observations, any of the pairs
may turn out to have average vector with minimum
distance from the origin. .,
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For two observations
ant squared distance
be calculated as:

General Selection of Sites

Now consider the situation where more than two sites
are to be selected. By examining the combination of
three observations, i, k, and m, one discovers:

= 1 d + -91 cL + -91 dmm ... -9
2
dik9 ii -l<k

2 2
+ 9' dim + 9' dkln

mi +k =-2-

combined ( i and k), the result-
of the average vector can

T

l_r2

+zk2) •

l_r2

And using an analogous argument to the t""o site case:

1 1 1. Id=3' dii + 3' dkk + 3' Qmm - 9' ilk
3

- -9
1
dk -.m•9

Next, it is necessary to calculate the Mahalanobis
distance between the observations i and k,
milk' where:

In equation (5), because (Zij"'Zkj) could be either
positive or negative, there is apparently no simple
way to determine the net effect of combining cases
i and k, as with Euclidean distance. With
more than variables under consideration, an
analogue to equation (4) appears unlikely.

Again the problem can be reduced to consideration of
all distances and distances observations. However,
where before there were distances to examine,

n n-2there are now (:3)' increase by a factor of 3""
And instead of appearing ina vector or an
array, these distances can be considered as entries
in a cube, with the distances in cells along the
principal diagonal still the individual Euclidean
distances, (the principal diagonal is the set of
cells containing dikm , where i =k =m). off
diagonal elements are the distances from the origin
of the combinations of three observations be

Off diagonal here refers to not only
four major diagonals in the cube, but also to the
diagonals in the six faces of the cube. At this point

notation cannot be used, but a fast algorithm
for examining cells in a multidimensional array can
be developed for use in conjunction with the computer.

and searohing similar for
distances for combinations of four or more observa-
t:'ons is then handled in the same way.

Distances

1_r2

Notice that the presence of the term dik implies
that the Mahalanobis distance of the combination
i and k from the origin will be a function of the
distance i and k. However, the rightmost
terms involving and in

equation, so

1/d 11-d '/ ( ) ( )mi +k /z 11 + '2 kk - 4!lli:k -r Zil + zi2+zk2
2 = ......:-- _

1_r2
(5)

Establishing a similar argument for dis-
tances is more difficult because of the weighting
introduced by the correlations the variables
under consideration. There does not appear to exist
any simple geometric way of presenting the results of
the ccmbination of t'Jlo observations. Recall that the
squared distance from the centroid in the
p-space for i is:

= (n-l) ::. (Z'Z)-l z.'.__ -.1 -l,.

In the special case of two variables with correla-
tion r bet".reen them, mii can be easily calculated
as: 2 2 - 2
m.. (! - 2r z., z'2) / (l-r )j=l -

dil - 2r zi1 zi2

1 r 2

Again, if r
_distance.

0, mi i is equivalent to the Euclidean

To obtain the desired Mahalanobis calcul-
on all pairs of cases in the Z matrix, it is

necessary to create a new matrix, T, which is of
crder x p, where each of the rows
one of the combinations of q observations. For
example, the first row of T would be the average of
the first and second Observations in Z. The second
row of T would be the average of the first third
observations in Z, and so on.

This new matrix, T, can still be used to calculate
Mahalanobis distances using the Z'Z matrix, as
correlations the p variables have not

changed. The (n) x (n) matrix:q q
(Z'Z)T',

contains on the principal diagonal
distances from the origin for the (n) combinations.q
Care must be taken after all the have
been made so the researcher can ascertain which rows
in the matrix Z correspond to a particular row in
the matrix T (or M).
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Ranking

Analysis of the ranking procedure follows easily from
the discussion of the Euclidean distances. Suppose
two observations (i and k) are combined (averaged) as
in Figure 1. The length of the resultant average
vector is a function of the distances between the ob-
servations i and k and the lengths of i and k. Now

absolute value of each variable value is taken.
The effect of this operation is to rotate all vectors
back into the first quadrant, since all data values
must now be positive. This affects only the direct-
ion, and not the length, of any of the combined
vectors. Note this would not be the case if one were
to take absolute values on all the elements in Z
first, and then combine the vectors. The vectors
must be combined before any distance calculations
can be made, because the combining of the two vectors
gives an average which represents the two items. By
referring to the example in the section on Euclidean
distances, the analysis of selection of multiple
sites using ranking can be illustrated.

A+B' A+CReferring to Figure 1, imagine vectors
B+C . B+Call rotated into quadrant I. Vector still
has shortest length, and at least one of the variable
values obtained by extending a perpendicular line from
the end of the vector to each axis would necessarily
be less the corresponding variate values for

A+C d A+Bvectors So when ranks are taken,
ranks averaged for the combination 5:C will

"'+C '" A+Byield rank relative to and or a tie.
There is no simple formulation which will yield the
minimum combination. As in the case of the
14ahalanobis :listances, a new matrix of order x p
must be created, and then the ranking procedure out-
lined in an earlier section applied.

Ccnclusions

Selections of test sites and related selection
problems based on measures are
complex and may involve a good deal of preparation
and calculation when more than one site is to be
selected from a set. Choices based on individual
characteristics or distances may not yield optimal
groups of sites, as mutually dissimilar sites may in
combination turn out to be offsetting, and the
choice to represent a region or the nation.
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Algorithms are presented for calculating an osculatory quadratic spline f.
The spline f preserves the monotonicity and convexity of the data if the first
derivatives are consistent with the monotonicity and convexity of the data. The
knots of the spline are the data points and at most two additional knots between
each adjacent pair of data points. The specification of the spline between two
adjacent data points depends only on the points and the first derivatives at these
points.

*Work supported
4It**work supported

i. Introduction

There are several techniques for constructing
smooth functions which interpolate data such as the
method of ordinary polynomial interpolation [4J,
cubic spline interpolation [2J, trigonometric inter-
polation [4J, and convex spline interpolation [5,6,7J.
There are also methods which use osculating cubic poly-
nomials where the derivatives at each point are esti-
mated using quadratic interpolation or a method
proposed by Akima [1] which uses the slopes of the
lines passing through adjacent points.

In all of the above methods, except for the
convex spline methods, there is no guarantee that
the monotonicity of the data is preserved by the
interpolating function. The convex spline methods have
the drawback that the data must first be divided into
increasing, constant and decreasing segments and then
further subdivided into convex and concave segments
before the method can be applied. Although they do
not require derivatives, they can be easily modified
to use derivatives if they are available; however,
the degree of the splines or the number of knots may
.. be increased.

In this paper we propose a method for computing
an osculating quadratic spline which interpolates
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data and first derivatives and preserves the monotoni-
city and convexity of the data if the first derivatives
are consistent with the monotonicity and convexity.
Moreover, the knots of these splines will be the data
points and at most two additional knots between each
adjacent pair of data points.

The method is useful in cases where first derivatives
are available or can be estimated. It has the advantage
over convex spline methods in that it uses only "local"
information to compute the quadratic spline between two
adjacent data points, namely the two points and the
first derivatives associated with those points. FOr
this reason it is easy to add and delete points and
modify derivatives without having to recalculate ail
information required to specify the spline.

II. Notation and Background
It is well known that Bernstein polynomials inherit

certain global properties of the functions they approxi-
mate, including monotonicity and convexity [5J. We will
use these properties to develop an algorithm for
computing a (smooth) osculating quadrati.c spline
which preserves the monotonicity of given data. We
will show that if the data are strictly decreasing
and the given slopes are non-positive, then the
quadratic spline will be strictly decreasing between



the data points.
Let P = (Pl,PZ) and Q= (Ql,Q2) be given points

with Pl < Ql' and let g be a continuous function on the
interval I = [Pl ,Ql]' The n.:!!!. degree Bernstein
polynomial Bn(g), is defined asfollows:

n
(2.1) Bn(9)(X) = (Ql-Pl)-n t [g(Pl + (j/n)(Ql-Pl »j=O

n ,i n j(j)(x-P1T(Ql-x) - ]
Let W=(W"W2) be an arbitrary point satisfying

Pl < W, < Q" let Ll be the line through the points P
and Wwith slope 51' and let L2 be the line through
the points Wand Qwith slope 52' Let g be the contin-
uous piecewise linear function defined by the three
points P, ii, and Q (see Fig. 1):

(

(Ll (x) for XE:[Pl ,W,] ,
g(x) =

L2 (x) for XE:[W"Ql]

Q--.r-. '""1 --

Figure 1
Define
(2.2) n = f(Ql-P l )/min[(W, -P,), (Ql-Wl)]l and

, .. Bn(g)·
Then, satisfies the following on I:

(1) If 9 is increasing (decreasing) on I, then
, is increasing (decreasing) on I.

(2) If 9 is convex (concave) on I, then, is
convex (concave) on I.

(3) ,(P,) .. P2 '=Q2
(4) ,'CPT) =5"

,'(Q,) =52 ,
We observe that if iI, is the midpoint of I, then

from (2.2), n=2 and Bn(g) is a quadratic polynomial.
We wi" show in the following section that if the

data are strictly decreasing (P2>Q2 with and
then using the above properties of Bn(g}, it is always
possible to specify a (smooth) .quadratic spline on I
which interpolates P, Q, 51,and 52 is strictly decreasing on
I and requires at most two additional knots in I.

III. Algorithm Description
Let P=(P"P2) and Q={Ql.Q2) be points to be
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interpolated with Pl<Ql and P2>Q2' Let 51 and 52 be
the slopes associated with P and Q. respectively, and
Ll and L2 be the lines through P and Qwith slopes 5,
and 52' respectively. We assume in the sequel that

and Let Rbe the set of points
R• {(x,y):P,<x<Ql' and Q2<y<P2} - {P,Q}.
That is, R is the rectangle and its interior

described by the points A=(Pl ,Q2)' P=(P"P2),
B=(Q"P2), and Q=(Ql,Q2) minus the points P and Q.
Let fit be the "midpoint" line through the points
Fa«Pl+O,)/2,Q2) and G=«Pl+Q,)/Z,Pz)' Let C and
o be the points where L, and LZ intersects the boundary
of R, respectively. If Ll and LZ intersect. let
Z=(Zl'Zz) be a point of intersection (in R, if Z is
not unique) (see Fig. 2).

p -::;-+--?O:..------rg

c

Go

Figure 2
Case Ll and L2 intersect at a point Z in R (see
Fig. 3).

""8p---------------r

" Q
Ii

Figure 3
For this case the algorithm is as follows:

Let
(1) Xl =Zl
(2) V, = (Pl+Xl )/2,

Vz = L1{vl )(V=(Vl ,VZ) is the point on Ll
with abscissa Vl )

(3) iI, " (X1+Q, )/Z,
il2 = L2(W1)(W=(W"WZ) is the point on L2

_ with abscissa ill)
Let L be the line through the points Vand ii, and
define

(4) X2 =r (Xl)
(5) ql to be the quadratic Bernstein polynomial



a.

Figure 4
The algorithm is as follcws:

Let
(l}Xl"Fl

Now proceed as in Case I.

Figure 5
Define Kto be the point of of L,

and Lz(Klies in the interior of R). I

Define
(1) Xl = (Kl + Ql )/Z.

Now proceed as in Case I.
The knot Xl can be chosen arbitrarily in the

interval (Kl,Ql)' The above choice insures symmetry
in the algorithm as in Case IIa. (We note that it is
also possible to choose X; = Kl but then the resulting
spline will have zero slope at X.)

To show that the line L is decreasing we note
that by choice.of Xl we must have

VZ " :1 (Xl) and
Wz " L2 (Xl)'

The choice of X, is not unique but the above choice
insures a symmetry in the algorithm: if Rwere rotated
interchanging P and Q, the algorithm applied and then
the resulting graph rotated back, the function would
be the same as if the algorithm had been applied
without rotating R.

As in Case I, f is an osculatory quadratic
spline. To show f is decreasing, it suffices to show
• that VZ>WZ• If Ll lies above LZ (see Fig. 4 (b», then
Vz>WZ is obv"ious. 'If Ll lies below LZ in R (see
Fig. 4 (a)), then by construction we have VZ>(GZ+FZ}/Z>W2
since both Ll and Lz cross Mon the interior of R.
Hence, L is decreasing and therefore f is also.

Note that in Cases IIb and lIe that Cmust lie on
AQ and 0 must lie on PB.
Case lIb. Only one of Ll and LZ intersects M on the
interior of R.

Without loss of generality, assume that Ll is the
line which crosses Mon the interior of R.

We construct two additional lines:
(a) Let Hbe the point on the line through Aand

Q so that C bise.:ts the line segment AH.
Define Ll to be the line through P and H.

(b) Let J be the point on the line segment
through P and S such that 0 bisects Ja.
Let L2 be the line through Qand J (see
Fig. 5).

b.

of the piecewise linear function defined by
the three points P, V, and X(henceforth
denoted by
ql .. BZ{P,V,X}) and

(6) qz • BZ{X,W,Q}, the corresponding quadratic
Bernstein polynomial of the piecewise linear
function determined by X, W, and Q.

Now define f as follows:
'tql(X} for x£[Pl,Xl ]

f(x} "
qZ(x} for xe(Xl,Q,]

Then f is a decreasing, smooth osculatory quadratic
spline with knot at Xl' satisfying f(Pl } .. PZ'
f(Ql} " Q2' " 51 and " 52'

It follows from the properties of Bernstein poly-
nomnals that f interpolates P, Q, and Xand that
interp01ates 51,52 and the slope of r at the points
P, Q, and Xrespectively. Hence, it suffices to show
that f is decreasing. This, however, is an immediate
consequence of the fact that a Bernstein polynomial of
a monotone function is monotone in the same sense, and
that the above mentioned piecewise linear functions are
decreasing. We note that in this case the spline f
preserves the convexity of the piecewise linear function
defined by the points P, Z. and Q.
Case II. Ll and LZ do not intersect.

There are three subcases:
Case IIa. Both Ll and L2 intersect the midpoint line M
between the points F and G (see Fig. 4), or 5,"52=0.



Since [1 lies above L2 to the right of Kl , it follows
that V2>WZ and hence f is decreasing.
Case lIe. Neither Ll nor LZ intersect Min the interior
of R.

This is the only case in which we add two knets
r l and I l in the interval [Pl,Ql]' In fact, except in
the case that 0 - Gand C - F, two such knots are
required. That there exists no quadratic spline with
a single knot for this case follows from Theorem 1 of
[7]. Among other things, the theorem shows that the
tangent lines to any quadratic polynomial at the end
points of a closed interval [a,b] must intersect at
x-(a+b)/Z.

We also note that the lines Ll and LZ do not
intersect in R and the triangles PCH and QOJ have no
points in common (see Fig. 6).

AL.-........ .......
C F

Figure 6
For this case the algorithm is as follows:

Let
(1) r l = (Pl + Cl )/Z
(2) V, - (P, + rl )/2,!..z =Ll (Vl )
(3) X, .. (01 + Q,)/2
(4) 101, .. (Q, + Xl)/Z,

\012 = LZ(1011) •
Define Lto be the line through the points Vand W.

Let
(5) Y, =rl ,

(6) Z, = r"
Z2 .:. L (Zl)

and E=«Xj + r,)/2, L«r, + r,)/2», the midpoint of the
line segment Y1:.
Let ql .. B2{P,V,Y},

q2 .. B2{Y,E,Z}, and
q3 =B2<Z,\oI,Q},

(Note that q2 is the line L). Define
forx£[P1,r,],

f(x} .. q2 (x) for x£C:l ,Xl] ,
q3(x) for x£(rl,Ql]'
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That f is decreasing follows from the fact that
Vz> (FZ+G2}/Z>WZ'

Hence, by construction and the fact that the second
degree Bernstein polynomial of a line is the line,
we have f is a decreasing quadratic spline which
interpolates P and Qand fl interpolates S, and S2'

In the special case that 0 - Gand C - F, although
it is possible to have only a single knot (anywhere
between p, and Ql)' the resulting spline will have a
zero slope at the knot, a condition which the authors
wished to avoid. Hence this case was treated using two
knots instead of one.

Fina11y, it remains to describe the algorithm for
arbitrary data with arbitrary first derivatives. For
increasing data (Pz<QZ) with non-negative first
derivatives we simply rotate the rectangle Rabout
the line Mand apply the algorithms already
described. In all other cases, if Ll and L2
intersect at a point Z satisfying Pl<Zl< Ql' apply the
algorithm of Case I; otherwise, apply the algorithm
given in Case IIa.

IV. Numerica' Results
The algorithm was applied to three examples considered

by Akima (lJ using his method for estimating derivatives
at each point. The examples were as follows:
(1) 10 1'0 110 pO.5 '5 20 60 IB5

3 I I 6 8 I 9 110
Examples (2) and (3) used the same y values as example
(1) but with the following x values:
(2) 0,l,3,4,6,7,9,'O,lZ,13,'5 and
(3) O. 2, 3. 5, 6, 8, 9, 11, '2, '4, '5.
The data is increasing beginning at y=10.5 in all cases.
Since Akima's method produces non-negative slopes for
increasing data, the quadratic spline wi" be strictly
increasing beyond y=10.5.

In examples (,) and (2) the graphs produced by
the two methods were almost identical. However, in
example (3), it can be shown that between the points
(12.20) and (14,60) Akima's osculating cubic poly-
nomial is decreasing at x"13 while the quadratic
spline is strictly increasing through the interval.
We should note that this was the only interval in all
three examples where two knots were required for the
quadratic spline. However, it is possible to redefine
the slope at ('2, 20) so that the resulting quadratic
spline requires only one knot between each pair of
data points. The graphs are given in Fig. 7.
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Figure 7
At the conrerence the authors wii 1 demonstrate the

usefullness of the technique for general curve
representation and compare the technique with Akima's
for generation of random numbers from probabil ity
distribution functions as described in [3J.
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FOSOL: A FOR STATISTICAL COMPUTING,
MATRIX ALGEBRA AND TOP-TO-BOTTOM STRUCTURED PROGRAMMING

D. Anton Florian, Sarigamon State University, Springfield, Illinois

ABSTRACT

FOSOL, a new programming language is described. It features
interactive and batch modes of access, dynamic allocation of arrays,
matrix algebra-type arithmetic statements, structured programming
sequence control statements and an extensive run-time library of
functions and procedures that plot, partition, concatenate, generate
and analyze data structures.

1. INTRODUCTION

1.1 Objectives of FOSOL

FOSOL is a general purpose computing language
that stresses statistical and algebra facil-
ities. objective of FOSOL is co provide users
of statistical and mathematical methods a natural
and convenient way of expressing their problems.
FOSOL was originally designed for instructional
use as a tool in courses ranging from pre-calculus
introductory statistics for non-statistics majors
co multivariate analysis fOr statistics majors.
FOSOL has been found to be useful in teaching
linear algebra. !n addition FOSOL been used
bv statistical researchers to imolement "state of
the art" statistical analysis pr;cedutes.

FOSOL attempts to combine the simplicity of
BAS!C, the clarity of ALGOL 60 and PASCAL with the
powet and conciseness of APL. However, FOSOL hopes
to go beyond these languages by providing an ex-
tensive run-:ime lib tar/ of nathematical and stat-
istical procedutes. A large numbet of these pro-
cedutes ate, to our knowledge, not available else-
whete.

1.2 Implementation

FOSOL has been installed on two Control Data
Corooration machines: Computer Coop-

CYBER 72 under KRONOS and _he University
of Illinois' CYBER liS under FOSOL is implemented
as a-preprocessor to The pteprccessor .
generates a driver program that is compilea
and linked co :he FOSOL run-time libraty. Neatly
all of the processing in FOSOL is performed by
library functions and subroutines. Both the pre-
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processor and run-cime library were designed and
coded by this in FORTRAN IV. Because port-
abilitv for FOSOL was an important design criterion,

was used. The dependent features
of the preprocessor and the library that relate to
the computer's word length, the inpuc/output oper-
ations and the file system have been confined to
a small set of primitive operations.

1.3 Documentation

One of the outstanding feat utes of FOSOL is
its user orientec docucencacion: a bound
manual by Florian [2] and an interactive on-line
manual.

The on-line manual consists of a keyword
drive.n, hierarchically structured Cext file re-
siding on a word addressable tandom access file.
Usets may tandomly page and read the text at theit
terminals or dispose portions of the text to their
remOte iob entry terminal's high speed printer.
The contains about 20,000 lines of text.
Topics such as the initial log-on procedure fet
novices, permanent file .:ommanas, hot" co execute
FOSOL in any of its three modes, language des-
ctiptions, hundreds of sample programs cemplete
with output to illustrate :he language and che

library. The is wric:en
in a tutorial style wi:h excensive discussions on
methodology and computational procedures.

1.4 A Summary of :he :eatures of FOSOL

To give an idea of the scope of FOSOL, we
give a brief list of its featutes. of
space limitations, only a few of these featutes
are expanded on in this paper. Interested readers
may raference [2].



FOSOL can be run in cheinteraetive, batch and
deferred batch modes. The language is the same in
all three modes.

Extensive format-free, formatted and binary
input/output operations on external files are avail-
able.

Complete syntax error checking with clear and
meaningful error messages is provided. In the event
of a run-time error, explicit reference to the user's
statement is used to indicate where and why an error
has occurred.

FOSOL is a structured programming language. A
rich set of conditional, branching and iterative
sequence control statements is prOVided.
FOSOL has no Gato statement, two restricted uncondi-
tional transfer statements are given. FOSOL requires
the user to write programs in a top-to-bottom struc-
tured programming style.

The present versiOn of FOSOL has three numerical
data types: integer, real and arrays. Arrays may be
in rectangular or lower triangular form (for symmetric
matrices) •

Memory for arrays is dynamically allocated at run-
time when they are assigned, generated or read from ex-
ternal files. FOSOL' s memory manager performs garbage
collection and compaction when needed. If necessary,
the memory manager automatically increases the field
length of the job (up to the user's validated limit).
If this is not enough memory, FOSOL's virtual memory
routines are called to manage the paging between the
core memory work space and a word addressable random
access file.

All arithmetic operators arPo polymorphic. Mixed
mode arithmetic is permitted with all data types. All
matrix algebra operators, including generalized inverses
and tensor products are implemented.

Many of the functions such as the square root,
logarithm and exponential are generic.

An extensive library of functions and procedures
transform, plot, partition, concatenate, generate and
analyze data matrices. The cumulative distribution
function and inverse functions of all common discrete

continuous random variables are included. Many
of the "state of the art" statistical procedures are
not available elsewhere. the and type of all
arguments in the user's use of functions and procedures
are cheeked. possible, FOSOl automatically
performs data type conversions.

All parmanent file commands and other KRONOS or
lIOS control language statements related to the job may
be imbedded in the FOSOL program file. In the event of
an error, the relevanc portion of the user's dayfile
is automatically lisced.

t:ser supplied FORTRA..'; and COHPASS sub routines
and functions may be part of a FOSOL program file.
The FOSOL processor has these roucines compiled by
the FIN FORTRA..'; compiler and linked to the FOSOl
object program.

1.5 Future Plans

AC the presenc time we are designing an
of the existing data structures and the required support-
ing library routines. The new daca structures will
include real arrays (and their lower
triangular counterparcs), n-dimensional boolean arrays,
characcer scring conscants, variables and arrays. The
booleans will permit the conscruccion of generaliza-
tions of ALGOL 60 type conditional arithmetic and
character string expressions. Also, we look forward
to an opportunity to implement FOSOL on ocher machinAs.

2. LANGUAGE

FOSOL has two types of scatments: simple and
struccured. Sil:lple perform given tasks
such as assignment, procedure calls and input/oucpuc

operations. Structured scatements such as conditional,
branching and iterative statemencs control the order
chat the embedded simple stacements are executed by
the computer.

FOSOL statemencs are formac free. Any number
of stacements may be placed on a line. A semicolon
is used co denote che end of a scacemenc. No special
punccuacion is needed to continue a statement to the
next line.

2.1 Simple Statements

2.1.1 Assignmenc Statement

!he assignment statement has form
variable :- expression;

where "variable" is a name starting With an alphabetic
character followed by any number of alphanumeric char-
acters, ": s " is the assignment operator and "expression"
is a constant, a variable, a function or an arithmetic
expression involving constants, variables or functions.

!he present version of FOSOL contains chree
numerical daca types: integers, reals and arrays.
!he type of each newly definied variable is implicitly
determined by its usage. For example, the statements

Xl :- 123;
:<2 :- l2..3;
:<3 :- 1 2 3.4;

implicicly define Xl, :<2 and X3 of type integer, real
and array After execution, the three
variables the integer 123, the real number 12.3
and 3 by 1 array

U.J
respectively. The elemencs in an array or matrix may
be either integer or real constants that are separated
by blanks or commas. Matrix conscants, other than
column veccors, may be assigned by indicating the
number of columns in parentheses after the assignment
operacor. For example, the statemenc

Y := (3) 1 2 3 4 5 6;
assigns to Y the matrix

fl 2 31
FOSOL also allows assignments and operations on

symmetric macrices in their lower triangular form to
make more efficient use of the computer's resources.

2.1.2 Library Functions and ?rocedures

Constant and random matrices may be generated using
the functions :!.n che FOSOL library. For example, the
statement

A := CON(C, N, M);
assigns to A an N by M macrix such that each element
has value C (C, Nand Mmay be scalar conscants,
variables or arichmecic expressions where the
truncated values of and M are used as di",ens ions) •

statement

B: =RAN (100, 10, 50, 9);

assigns to a a 50 by 9 random macrix such that each
element is a normal random number With a mean of leO
and a scandard deviation of 10. A large number of
deterministic and random macrix generators are avail-
able.

Output may be sent :0 the syscems output file
(an inceractive user's terminal or a batch user's
high speed princer) or any other designated file
with the use of the ,..ite statments or with
tical analysis or plotting procedures :haC generate
output. 70 illustrate the form of a FOSOL program
and 1:s output, present 3 three scacement program
as it :yped on an ictarac:ive



FROGRMt ao THE OF' A Fesat. F"Kt)CiF:.Ht
!Y ';HAl,r:!HQ A &HA SET UITH THE PROtE.ljRE "eFRE".

10
:0
30 1
40 X:. 3J J: 18 40 41 l' :0 :: 1. 41 4f 51 53 H 40 36 :1 3S
50 48.1 :5 3:.S 51 H J3 45 44.1 48 37 47.3:
60 PRINT 'THE eATA S£T:< IS' ,X:
70 eFRE txJ:

where Yi is an observaeion on the dependent variable,
xil ' x,,, and xi, are observations on ehe independent
variables, €. an error eerm and So, 61, 62 and 53 are
unknown paraffieters. In the sample run of REGG we im-
pose the restriction 61 + S2 - 1 while simuleaneously
eeseing the hypoehesis S3 - O. In maerix form ehe
restriceion and hypoeheses may be seaeed in the fonn

The line numbers (digies on ehe far lefe of each
line) are opeional, Commenes (characeer serings de-
limieed by ehe square brackees) may appear anywhere,
The PRINT seaeemene, such as ehe one on line 70, may
coneain characeer strings, variable names and arieh-
meeic expressions. The outpue from chis sample pro-
gram is given in Figure 1: The corresponding FOSOL resericeed and hypoehesized

maerix. say M, has form
Figure 1

THE DATA SET x IS
M -

I"IllOW
l2.. 001

TRANSPOS£D
I • 30 I

3J .000
J9 .COO
41 .000
36.000
35.800

J:!.OOO
50.000
51.000
:1.000
51.000
44 .100

3
!8 .000
:5.000
53.000
J9.000
H.OOO
48.000

4
40. GOO
30.000
34.000
43.100
n.OGe
37 .. 000)

S
41.000
41.000
40.000

4$.000
41.300

In general, any number of resericeions of ehe form
- Cl and hypoeheses of the form L'p - C2 may be

input to REGG wieh an Mmaerix of the form

l1 - fRo C-'J'I C2
'-

..._---- -_ - -_ _..__ "-- .. ""'-- "'--- ---.

..............- _-------- _ -.."---"- ---- - "--. _.._ _- ..

.0 • t ., .J .4 • .i

The procedure REGG assumes ehae ehe last
(right mose) column ehe observaeions on
the dependent variable. The ehird parameeer in
REGG is used to denoee the number. of rows in the
model matrix ehae are resericeions. Only the de-
faule outpue of REGG is presented here. REGG opeion-
ally prines the estimaeed covariance maerices of boeh
the unconstrained and restricted/hypothesized models,
residuals, residual ploes and oeher staeistics. Also,
REGG opeionally assigns eo user supplied maerix names
ehe lease squares estimaees vector, covariance maerix
and veceor of residuals. These oueput quantitiees
are available for subsequene calculaeions or inpue
eo oeher procedures in che program.

where 6 is ehe vector of unknown parameeers, R is a
matrix of coefficienes on ehe resericeions, L is a

of coefficienes on the hypotheses and Cl and
C2 are veceors of the appropriate dimensions. In
Figure 2 we give boeh the FOSOL program and ies
output •

:-tnIMI
J3.J'"

RELA Tl'JE

'JAR lANCE
.141

COIJHT

.1)0 ,0.60 .! 00 .. ,. •• r'
30 ••0 36 •:33 .. ,." 1'1I'C'.'
36 41.S0 ? .JOO .. ' t t, ry," .1''' t.,..
41.30 47. .! J3 .tt"."
47.40 . 53.00 .:33 .... , .... ,..

VARIABLE HO.

SAMPLt HZE
30 40.:1:' '! .SSJO

FOSDL procedures have one required argument
several opeional argumenes chat are used co direct the
analysis. With CFRE, ehe number of ehe daca
eo be analyzed, ehe number of classes for the frequency
eable and his eogram and a window for the class limies

explicitly be seated.

The FOSOL library procedures range from simple
descriptive staeistical procedures, such as eFRE above,
to general linear analysis procedures such as
GEXOVA. The procedure can alalyze all possible
and multivariaee experioental design models. There may
'be any number of faceors (fixed effeces or random
effects from an infiniee or finiee population) at any
number of levels in the model. The factors may have
any possible nesting or hierarchical structure" There
may be any number of replicaees or missing cells, ehere

be any number of covariaees and any number of de-
?endene variables in the model. The procedure ueilizes
some unique operations available in FOSOL: general-
ized inverses, kronecker or tensor products and the
dynamic storage allocation eechniques ehae allow array
struceures such ehae each elemene in an array is itself
also an array. These elemene arrays need noe be of the
same di::lens ion.

To illuseraee how convenienely a complex general
linear hypoeheses may be seaeed in a FOSOL program we
give an illustraeion using the regression procedure
RECG. The procedure RECG is a generalization of ehe
analysis described in Searle (3J. REGG accepts de-
sign maerices thae are noe of full rank. Ie accepts
any estimable restrictions on ehe model (ehe proced-
ure checks if ehe resericeions are estimable). It
accepes any teseable linear hypoeheses (ehe procedure
checks for eestibiliey).

In ehe example we assume ehe linear model

Data eransformaeions are particularly simple eo
perform in FOSOL. For example, funceions such as ASS
(for absoluee value), SIN (for trigonometric sine)
and SQRr (fot' square rooe) are generic. accepe
integer, real and maerix argumenes and reeurn integers,
reals and These functions are very ?ower:ul
for oaerix arguments. For instance, if A is a maerix
chen the seatement

a :- SQRT(A);
generaees a new maerix B of the same dimension as A
where the elemenes of B are the square roots of ehe
corresponding elemenes of A. Each generic funceion
has an opeional second scalar argument chat can be
used eo selece a given column or row of ehe argumene
maerix eo operate on. For the staeement

B :- SQRT(A,K);

limies ehe square rooe operation to the Keh column
of A if K is posieive and eo the _Keh row of A if
K is negative. If, in ehe above seaeement B is
replaced by A, chen the seatement esseneially per-
forms a row or column operaeion on matrix A; a new
maerix is not generaeed.

In eddition to ehese generic functions, ehe
FOSOL library coneains over 200 user-callable
funceions and procedures ehae ploe, crans form,
concatenaee. lag and smooch maerices. Included
are of ehe Beaton [lJ operaeors,
such as our generalized sweep, Cholesky and eigen-
value decompos itions. Als.o, all che common discrece
probabiliey functions and discrete and coneinuous
cumulaeive diseribueion funceions are in ehe library.
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Figure 2
C TO CLLUSTRAT£ TH! ·REGO·. 1

ZO M:'(S) I I 0 I 0 0 0 I 0: C TilE
30 D"(4) 1 Z 3 3.S 3 3 3 4.S 3 4 S S S 4 3 S
40 8 6 9 6.6 4 J 7 4 3 4 6:
SO ·HODE" HAIRIX' ,D;
00 REGG( D.H.I J:
OUTPUrr

TR IX

2 •

DATA

o.
O.

1.0000
O.

3

1.0000
O.

O.
1.0000

1.0000
O.

2.1.3

One of the most powerful features of FOSOL are
the polymorphic arithmetic operators. mode
arithmetic is permitted with all dara types. !he
arithmetic operators used constructing all
metic

+ for addition
for subtraction or negation* for multiplication

f for division, reciprocal or
for multiplication or transposition

** exponentiation
! for factorial

7 •

1.0000
3.0000
3.0000
S.oooo
8.0000
4.0000
3.0000

3.0000
4
4.0000
••
3.0000
4.0000

3.0000
3.0000
S.0000
3.0000
9.0000
7.0000
2.0000

3.S000
4.5000
S.OOOO
S.OOOO
•••000
4.0000
•• 0000

The operators -, f and ' may be used as both
unitary and binary operators. The -A
yields the negative of A for all data types. If A
is a scalear, fA yields a reciprocal of A. If A is
a square of full rank, fA yields the inverse
of A; fA yields a generalized inverse of
A. The expression A' yields the of A.
Operators may be combined. For example, if A is a
matrix, rhe statement

.. FOSOL GEHERAL LIHEAR HYPOTHESES - REGO •• 3 I- -/A';

UHCOHSTRAIHEO

AHALYSIS OF VARIAH.cE

SOURCE OF
VARIATIOH

REGHSSIOH

TOTAL

DEGREES OF SUM OF
FREEt'OM !OUARES

171.02
...;a84
.3487S

HEAH
SQUARE

.1I62S

F-RAno

1471 • .:!
19 .178

P-VALUE

.ooooa

assigns to B the negative of the generalized inverse
of the transpose of A. The operator ! <lIay only be
used as a post-fix unitary operator. !he expression
Al yields A factorial.

For matrix operands, the binary operators permit
full matrix algebra type operations. For example, with
the inversion operator f and the product operator* solVing a system of linear equations becomes a
problem. The system of equations (written in matrix
algebra form)

HYPOTHESIZED AHD/OR RESTRICTED

l\' • •
• SHHDfoRD Of' THE REGRESSICH: .34095

LEAST SOUARES ESHHATES

VARIAPLE HO. ESTlM4TE STAHDARO gROR T-STATlSTlC P-VALUE

.5:064 3.1531 .04978
•

t. 4.4481 .019S0
-.107S7 .80827E-01 -1.3309 .27503

AHALYSTS OF

where A is the coefficient matrix, X the column
vector of unknowns and C a column vector of con-
stants may be solved with the statement

X:-fA*C;

The usual matrix algebra solution X_A-1C is obtained
if A is square and of full rank. If A is not square
or A is not of full rank no unique solution to the
system exists. The FOSOL solution in chis instance
is one of the infinite number of possible solutions
to the system.P-VALUE

HEAHOEOF"S OF SUM OF
SOUARES

SOURCE OF
VARIATlOH

FULL HODEL
HYPOTHESES
REDUCED

RESIDUAL

TOTAL

t77 .71 59.:!J7

177.41 S8.744
.11.:5

178.06

1528.7
1.1Zl0

.00004

.';:'962

There is virtually no limit to the complexity
of the expressions chat are For example,
in general linear hypotheses theory for the

y - xa + e,

....._...........__ ...-.. __..........-_ ..._------_........_.._----------------------_.._-........

ANALYSIS OF VARIANCE

REDUCED 10HL
REDUCED ERROR

SOURCE OF
VARIHIOH

t'EeREES OF OF

1'7.49

!'!EA-H
SOUARE

ae.7·4
.11448

F-RATto P-VALUE

.C0003

as described above in connection with procedure
the least squares estimate, of the unknown vector
B, subject to che condition L'S-C. is given by the
matrix algebra expression

s- CX'y - GL(L'CL)-(L'CX'Y-C)

STANDARD ERROR OF .nS3S

TOTAL 17S.06 where C • (X'X)-,which is a generalized inverse of
X'X. This solution be coded directly into two
FOSOL statements:

LEAST S.UARES ESrIH,HES G : .. f(X'X);
HO. EHIHA!E ERROR T-STATlSTlC P-VALUE B .- C*X'Y-G*Lf(L'G*L)*(L'C*X'Y-C);

1 .1 ·.SH6 .000.0
•• • t 1;0° .. :.Sll : S
f .! 130. 11.307
O. O. O. 1.00000

One of che outstanding features of FOSOL is its
superlative compile-time and run-cime diagnostics and'
error recovery systems. The syntax ,analyzer detects
any misuse of operators, operands, keywords, special
symbols, statements, the number cypes
of arguments in library functions and procedures.
Virtually error conditions are trapped
Mhen they occur and informacive messages are princed.
The follOWing program and its output illustrates che
run-cime error message system:

351



Figure 3

10 C TO THE RUN-TINE (ilROR HESS.G. ?RIHTEO
:0 IJHEN ON THE rUQ 1t4Tf\IX
30 OPERANOS!S HOI I
40 I : 3 ":
P:' ( 3) 11 :: I 3 1 4 15 I'; 17 19 19:

10 PRINT "HAUIX 9",':
70 PRINT "TUICE TNE PRODUCT OF A AHD 9",:*.'8:

OUTPUT:

r.AIRIX

: *
:.0000
0000

There are six structured statements: the DO, the
IF, the CASE, the REPEAT. the and the stace-
ments. In addition, there are two transfer statemencs.
che :lEX'l' and the EXIT, that transfer execucion concrol
to the head of a structured statemenc and to the state-
ment follOWing the tail of a structured statement re-
spectively.

Of the six structured statements, four are re-
petitive scatements: DO, REPEAT, and BEGIN. The
DO statement is appropriace when che number of repeti-
tions on the body is known beforehand. The REPEAT and
WHILE are suitable for situations where the number "f
repetitions is not known beforehand. The BEGIN stace-
ment, when used in conjunction with the two transfer
statements and EXIT, is'a generalization of the
other three repetitive statemencs and may be used when
more generality is desired.

1:.000
19.000
18.000

IUICE THE PRODUCT OF 8

A TAL ERR 0 R ON L: HE

13.000
16.000
19.000

The IF statement is used to one or more
stmple or other structured statements conditionally.
There are three variations of the IF statemenc - each
having one, two or more than three sub-bodies that
are executed depending on certain conditions. The
CASE statement is an n-way branching statement that
permits the execution of one of n stmple or structured
statements in the body of the CASE statement.

The DO statement has form:
70 PRINT "TUICE THE OF A AHD S" ,:'.'8:

"
TNE OPERATION IS HOT IEC,IUSE OF THE INCORRECT

CF THE .RRATS. IHEIR FIRST S ARE. :

2"2.2 The DO Statement

DO v :a el TO e2 BY e 3;

boely

3 *

:.0000
6.0000

11.000
14.000
17.000

4.0000
8.0000

1:.000
19.:00
18.000

13.000
1•• 000
1'.000

EJ.'lD v;

where v is the iterative variable. et is che initial value,
e2 is the terminal value and e3 the increment. The part
"llY e3"optional; if omitted an increment of 1 is assumed.
The type of incremental variable v is determined by
the type of et. The et. e2 or e3 may be constants.
variables or arithmetic expressions. The increment may
be either positive or negative.

that the operator "*" "'as flagged by the
symbol "IJ" and the present value of both operands was
printed. We feel that clear and unambiguous error

are of importance in any computing
environment •

2.2 Structured Statements

2.2.1 Introduction

The program in Figure 4 prints a.short cable of
the cumulative standard normal distribution function
and illustrates the DO statement:

Figure 4

10 DO Z :2 -4. iO 4. gy
:0 PRINT :,CHOfZ):
30 EN" Z:

A sequence of simple statments are always exe-
cuted in the order that they appear in the program.
For a large number of problems, considering the power
of the FOSOL statements and the functions and
procedures in the FOSOL library, a sequence of simple
statements is sufficient. Structured statements are
used whenever a straight sequence of si::lple statements
cannot be used to solve a problem to the desired gen-
erality. A general solution to some problems often
necessitates an examination the data which may require
that certain simple statements be executed conditionally.
It may also be deSirable to execute a group of simple
statements conditionally until one or more conditons
are met. The structured stacemencs in FOSOL add con-
siderable power and flexibility to language.

OUTPUT,

-4.
-3.5000
-3.0000

-, .0000
-1.5000
-l.OOOO
-.50000
O.
.50000
1.0000
1.:000
Z.oooo
:.
3.0000
3. :000
4.0000

.JI67IE-04
•232S]E '·'3

· ::7:0E ..11
.Ho07E-01
.1
.30SS4
.50000
.69146
.34134
.13319
•
.193;09
.19505
· ?997i
.1999;0

Structured statements have a common form: each
statement type has a usually a keyword

denotes the cype of structured statement. and
end, the head and the tail of the

The stacements becween
head and the cail of the structured statement are the

The body may consist of a sequence of sinple
statements or other structured statements with
cwn heads. bodies and tails. Any structured
that is nested inside another is
created as though it were a sinple scatement by
structured i: is nes:ed in. !he nest-
ing may go any depth.
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2.2.3 The IF Statement

For the IF. and REPEAT statements. logical
are used to control the order of execucion.

The FOSOL relational operators used in consulcing logical
expressions are listed in Figure 5.



Relational Operators

Figure 5

HeaningSymbol

<
>
<-
>-
<>

equal to
less than
greater than
less than or
greater than
not equal to

equal to
or equal co

N:-NROW(X); [NRCW returns the number of row in X]
00 1:-1 TO N-l;

00 J:-I TO N;
IF XCI) > X(J) THEN [interchange J

T:-X(I);
X( I) : -X(J) ;
X(J):-T;

Fl;
END J;

END I;

In addition, the three logical operators OR, AND and NOr
can be used to construct logical expressions.

The short for: of the IF statement is

IF t !HEN

b

IF N-l nlEN
PRINT "SA.'lPLE IS OF SIZE ONE";
MED:-X(l);

ORIF (N/2)*2-N THEN [N is even]
HED:- (X(N/2)+X(N/2+1»/2;

ELSE
MEO:-X(N/Z+l);

Fl;
PRINT "MEDIAN-", liED;

2.2.4 The and REPEAT Statements

The WHILE and REPEAT state¢ents have a similar
structure. Their forms are:

FI;

where t is the logical expression and b is a body of
simple or other structured statements. An example is

IF X<O !HEN

PRINT "X HAS VALUE", X;

WHILE t 00 label;

body

END label;

REPEAT label;

body

UNTIL 1.;
X :- -X;

FI;

The statements in the body are executed if the logical
expression in the head is true, otherwise, they are
skipped over. The most general IF statement has form:

ORIF 1.2 THEN

b2
ORlF t 3 !HEN

b3

ORIF t THENn

bn
ELSE

FI;

ORlF heads and their bodies as well as the ELSE
head and its body are optional. chey are present,
each logical expression is evaluated in turn until a
true logical expression, say L. is found. In this case
only the body of statements executed; the state-.
ments in all other bodies are skipped over. If none or
the logical expressions are found to be true, the state-
:nents in che E'_SE body are executed.

The following is a part of a program that illustrates
the use of the 00 and IF statements to sort a vector X
in ascending order using the bubble sort algorithem, and
then computing the median (this is given for illustrative
purposes only since the median library function could be
used for this task):
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where the t are logical expressions and "label" are
optional labels. In the statement che state-
ments in the body are executed repeatedly until the
logical expression in the head is false. In the
REPEAT statement, the statements in the body are ex-
ecuted repeatedly until the logical expression in the
tail is true. For example, in the following sequence
of statements

REPEAT;
X:-RAN(O,l,lO,lO);

UNTIL DET(X»O.;

.0.10 by 10 matrix X, where each element is a standard
normal random number, is generated repeatedly uncil one
with a positive determinant is found.

2.2.5 The and EXIT Statements

FOSOL has two unconditional transfer statements:
NEXT and EXIT. Either seatemene may only be as
the last statemene in an IF, ORIF or ELSE conditional
block. The of the staeements are

NEXT label; and E.'l:II label;

The stacements must also be nested in a DO, \<HILF,
vr 3ECIN structured stacement that has the same

label used in the NEXT or E.'l:IT statemencs. the
NE.'l:T statement is executed, is transferred
to the head of the referenced structureci statement and
the body vf that structured scatement is again.
tfuen the E.'l:IT is execuced, is trans-
ferred to the scatement follOWing the tail of the re-
ferenced scructured stacement. Botn scatements may be
used to out of nested structured statemenes. For
example, in the follOWing prime number generator pro-
gram, the NEXT N statement breaks out of the inner DO I
loop after N is found to have I as a factor:

DO N:22 TO 20;
DO 1:=2 to SQRT(N);

IF(N/I)*I-N THEN
NEXT N;

n;
END I;

N, "IS
END

In che following exam?le the EXIT I statement breaks
out of the outer DO I loop after the first negative ele-
ments in the A is found:



M :- NCOL(A);
.DO I :- 1 TO

DO J:- 1 TO M;
IF A(I,J)<O. !HEN

PRI:lT "NEGATIVE", I,J ,A(I ,J) ;
EXIT I;

The "FOR 2.", containing a logical expression 2, is
optional. It may be used to restrict the inclusion
of certain terms in the SWII.

For example, the FOSOL equivalents for computing
the mean, m and standard deviation s of the numbers:

FI;
END J;

END I;

In the above example, NCOL(A) returns the number of
colUDllls in matrix A.

2.5.6 The BEGIN Statement

The BEGIN statement has form
are

and s'-J! " m)_2£-1 l-
n-l

BEGIN label

body

END label;

With the use of the IF, NEXT and Exit statements, the
3EGIN statement, with appropriate initialization, serves
to generalize the DO, WHILE and REPEAT statements. The
BEGIN statement also serve£ to collect a series of state-
ments together so that the CASE statement considers these
statements as a single case.

2.5.7 The CASE Statement

The statement is a conditional n-way branch
that does not need labels. The CASE statement has
form:

CASE e OF;
statementl;
statementz;

END;

where e is a scalar variable or arithmetic expression
called the selector. The action of the CASE statement
is as folloW'S7If-the selector is not an integer var-
iaole then it is evaluated and truncated to an integer
value (if the selector expression is real). Suppose
that value of the seleccor is k. If the value of
k is between 1 and n, then the kth statement below the
case head is All other statements are skipped
and execution continues with the statement following the

statement.

If i< [laS value less than 1 or greater than n, then
all n statements are skipped. The case statement has an
optional ELSE Sttucture (as in IF statements) that may
placed before the END statement. The statements in

the ELSE structure are executed only if the above k value
is less than 1 or greater than n.

The statements in the body of the case statement
may be simple statements or structured statements. Each
structured statement (complete with head and tail) is
treated as a single statement as far as the case state-
ment is concerned.

2.3.8 rhe Sl1i Expression

operation of summation is basic to general
formulation of many relationships in mathematiCS.
summations may be computed using the str:lctured s cate-
ments described thus far, the structured summation ex-
pressions are far more convenient. rhe FOSOL equivalent
for the condition summation

N :- NROW(X);
M :- I:-l TO N: X(I»/N;
S :- SQRT(SUM 1:-1 TO N: (X(I)-M**2)/(N-l»;

Sums are treated as arithmetic expressions and may
be nested any depth. Thus, for example, if A is on n
by m matrix, the FOSOL equivalent of the restricted sum
of squares of the elements of A, as given by the double
sum

n III

;; - 1: 1:
1-1 j-l
i"j

is

N :- NROW(A) ;
M :- NCOL(A);
S :- SUM 1:-1 TO N : SUM J:"l TO H

FOR I <>J : B(I,J) **2;

The star: and end for the summation inuex may be
any scalar constant, variable or arithmetic expression.

REFERENCES

1. Beaton, A.E. "The Use of Special Operators
in Statistical Calculus." Ed.D. Thesis, Ha-rvard
University. Reprinted as Educational Testing
Service Research Bulletin, 64-51, Princeton, N.J.

2. Florian, 0 . .1.. FOSOL User l1anual, Springfield, IL:
Sangamon State Universitv bookstore. 1977.

3. Searle, S.il. Linear Models, New York, ':ohn ioiiley
& Sons, 19 i1.

In

1:
i-n

condition

is I :- N TO M FOR 2:

354



VARIANCE-cor·IPONENIJ: ESTDtATIOH FOR THE

UNBALANCED CLASSIFICATION

BY

F. Giesbrecht and Lynn Dix

North Carolina State University
Raleigh .. North. Carolina 27607

ABSTRACT

paper presents a solution to the problem of
computing minimum norm quadra.tic unbiased estimates (:;II1'iQUE)
of variance components for the two-way classification
model with all factors random. An important intermediate result
is a compact method for obtaining the inverse of the variance-
covariance matrix of the vector of observations.

1. 2.. r-tODEL AND HOTATICN

where

(2.2)

The mode1 assurned is

YiJk D \1+ r i + c j + rcij + eijk {2.l}
for kDl, ••• , niJ • •• ,r and j=l, •••• c,
where \1 is a fixed constant, {ri},{cj },

} and {e. jk} are indeper.demt sets of
ind;;endent identically distributed random
variables with mean zero and variancesa;, a;c and a: respectively. :·!cre
compactly, Y denotes the n = tn•• cbservations

- ·u
in order. If denotes
a typical element in the variance-covariance

of Y then it :ollows that

This report presents a solution to the
problem of computing minimum norm quadratic
unbiased esdmates (;,tL1QUE) for the unbalanc-
ed two-way random classification model.
method originally described by Rao (197la,
1971b, 1972) required the inversion of an
n x n matrix ror a data set with n observa-
tions, with n • tniJ and nij the numDer of
observations in the cell corresponding to
row 1, J of an r x c table. An
alternative method, described by
and (l973) and Liu and Senturia (1977)
reqUires the inversion of an (r+c+rci}x(r+c+rc·)
matrix when an interaction component is
present in the model (rc. rc is the number
of cells) and the inversion of
an (r+c}x(r+c) matriX when there is no
action. The methed developed here allows the
interactioncornponent in the model and yet
requires only the solution of a system or
r linear equations and a system of c linear
equations. 'I'he resulting saving in computer
space becomes appreciable when one considers
data sets approaching the sizes encountered
oy some researchers (Lee. 1976).

A computer program (in Fortran) imple-
the techniques derived in this paper

has been developed. 'I'he emphasis has been
on minimizing the amount of computer memory
required in order to the size of
the data sets that can be processed.
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In notation one can vr1te the
matrix as

where the d.etin1t1on& ot !r' !c' !rc' and. !e
tollow trom (2. 2) • 'rna m1n1mw:l norm quad.-
rat1c (Rao 19114, 1911b, 1972)
or maximum likelihood. estimates
it one assumes normality, (Harv1lle 1977)
are obtained. by comput1ng the tour quadratic
torms, tor 1 • r,c,rc and. e,

them to their expected. values and
solVing tor the tour variance components,
Where

Q • v-l_v-lx (X:v-1y_) -lx:v-1 ,• _ .0 .O.:u .0_

v • V + V + V + V ,• r.r c.c rc.rc e.e-

Xo 18 an n x 1 matrix or ones and.
and Clft represent the prior guesses tor the
tour variance components. It an iterative
scheme is contemplated then in the m"th
l.terat1cn the {Cll.} us the estimates produced.
in iteration m-l.

It is 1mmed1atel1 clear t!:lat computing
the n lit n matrix v-l 18 the maJor hurc11e
in th1a method. Standard. numerical. inver-
sion techniques rap1c11y become unreasonable
as n becomes large. The object at this
paper 115 to obtain the elecents ot ;£-1
by using a method. that only require! solu-
tions tor a system ot r linear equations and
a system ot c linear equations.

The typical element ot V-1 can be
as

Set 1.

Set 2.

Clc <lIC1e ) + ClCf.n1ijwr1*iJ <3.2)

+ (Clrcnt ..j .+ Cle )Wri "1j • 0 Y 1,1".1.

Set 3.

Clr'l/Cle ) + Clrn1jW%"c1J + (3.3)

Set 4.

From the nature _ot y and. 1-1 one can
see that W%"i1"j • W%"1"1J and. wciJJ .. •
wC1j;J •

Set 1 immed1ately yields

wrc1J • - aro/ Ee (niJ,ar c: + Y j:.j.

Set 2 ot rc: subsets ot r
equations, i.e. a set ot r equat10ns for
ever:! pair n;j). Solv1."1g these yields

itr., ... .,- -"
(n. __ j II + a )_ e

where

.Je
'i'he {w1J1 .. j .', {wc1Jr}, {W%"ii"J} and {wrcij }

are functions ot the {ail and {n1J } and
satisfy the !ollowing four sets of

S1c11arlJ set 3 Jield.s
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Set 4 oonsists or rc subsets of rc
equations. For spec1ne i'- and J'- the
equations can be 1c1ent1t1.ed. as

tor 0 c 1. < r an4 0 C J < c •

..
In order to solve these equations a number
of l1near operations are performed. For all
1 r and. J c replace t 1.1 Dy t 1.1- t rJ - fie
+ t re , t 10 Dy

Also

and.

. _. -
*10 "rc

tor all 1.,J.

1:1 the order Siven. . The resulting system of
equations consists ot

t 1j : (4rCn1j+

The t1na1 two sets or equations (Which are
solved. numencal1sr) are obtained. by combining
the t 1a 1·1,···. r and. t rJ ' J a l,···, c
equat1ons. In the t::.rst case, they are
combined to el1m1nate all unknowns but
wrj1 "J" tor .1·1,···, C and. in the second
case-. to elim1 nate all unknowna Dut
w1c1,.J. t"or 1·1,.·•• , r.

The rirst set is obtained. by
the- a equations

- (arCn1C+

+ Cle)wrc1-J" .. 0 ,
f for j .. 1, •••• c - 1

The c equations which are solved. numerically
are

c
- t
j*

C3.9a)(3.7)

Clrkij §rrlirri"r - niJ"wrU".13)

(arCn1c + Cle )P1
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tor J • 1••••• c - 1
and

i( "rQ cnroE1J W7:'"ri".1"- n1j ..wu"j3)
1 (Qrc n1c + Qe )P1

The second systemet·equat1ons. which
11814a tor 1 • 1, •••• r is obtained
bY' s1m11a..r' Dta::U;pulat10ns. Comt11ne

t 1c + t rJ f
J "rcnrj + Qe)qj

Not1"ce that. there 14 a sUght redundancy
1%1 the two systems 1n that the valu.e
tor wrci ..J .. 1s obtained :rom both sets
ot equations. rema1n1ng (r-1) (e-l) e
values tor specitic 1" and J" are avallable
immediately Via (3.5).

obtain the complete set or r 2c2
constants. note that there is much symmetry
1n the (wiJi..J.. l. In particular

wiJi"J" • w1"j1,t .. • wiJ"1"j • w1"J "'1J •
It tollows. that since only the rig11t hand
sides ot (3.98 • 3.9b) and (3.10a. 3.10b)
depend on 1" and j" it tallows that the
system of' equations needs to be solved
With r right hand sides tor i ....
and rixed J'" and the system ot e equations
needs to be solved with c right hand sides
!:.!.. tor .1 ..·1.·· •• c and t.1xed 1.... 'rhe remain-
ing (wiJi..j ..l tallow trom (3.5).

4. VA,RUNCE COMPOlWlTS

tor 1 • l ••••• r-1 'rhe tact that the matrix Xo consists
of' only 8 column at ones leads to a compact
formula tor Q,. 'rhe element corresponding
to row 1jk add column 1"J"k'" tollows 1mmed1-
1&tely aa

where

(4.1)

(4.2)i:tr( Qv·l. ..V i) I1j
2

'" ...... --"..

and w· ttm1.n.{. It will occasionally
.. of 1I-V
""0.1

be convenient to write aa

The step is to obtain the system
ot equations.

In oreer to apply the technique
values for the variance ac'

2 2where j,i • an4 solve for I1r , ac 'a;c and 11:' Note that the reduced cases
2where is assuced arc • 0 and where

are or one lead to systems three
Expressions for tne 14 distinct

teros required in (4.2) are directly
and are available in the appendiX.

(3.10b)

..
we, ... ,,, )

- HH-

1:
1*

i = 1, ••• , r - 1 and

C

j

,,( m...,. we, .. .. - n,"'1+ £t WtJ \01 .. ""OJ - II

(ClrCnrj + Cle)qj

+
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and u: (or at least their relat1ve
magnj.tudes) are requ.t......d. In pract1ce
these are otten not ava.1lable and it 1.:s
recommended that reasonable values be used
to begin the procedure and the wholescl:1eme
1terated. course, nee;at1ve values must
be replaced by zeros. Experience 1.nd1cates
that convergence will be rap1d.

It it is also assumed that the ran40m
components 1n the model have normal dis-
tributions ana the iterat1ve scheme proposed
above convergea then the solutions are
exactl:r the re8tr1cted maximnm l.1.ke11bood
est1mates (HarV111e 1971) of the variance
components. Also, the aS1lllPtot1c variance-
covariance matr1% or the est1mates 1s g1ven
by two t1mes the inverse or the matr1% on
the ler1: a1c1e ot (4.1).

-1 2.-2
+ ..n1jn1J ..qv1j1J ..ae + tn1+Qe '

- oj 1

Where n1+ • tn1J •
J

• .. ..n1j ..n1".1qv1J-1".1+n1Ja;1)2.
·v - .,;

where n++ .·::n1J •
1.1

• .. 'if ..n1jn1"J ..qV1ji"j .. )2
-1 2-2

+ 2jn+.1if ..n1Jn1".1qvij1"jQe + .,

where n+ A • •
oJ i-

• .. (f ..n1".1 ..

.., 2 -1 2-2
+ ..n1".1qVij1"jae + ijn1JQe

• ..nf"j ..

3 . -1 2-2+ + ttn1J Qe1.1 • -oJ - 1.1-

CoR. <:'.9110). Variance
Unbiased Est1mat1on of Variance
Journal of Analysis, 1,
445-05.
C.R. (191Z). Esttmat1cn or Variance
and Covariance Components in Linear
!1odels, Journal of the American
Statistical AssocIation, c7, 112-115.

Rao,

Rao.

Rae,

Hemmerle. W1l1:1.aJ:1 J., and iiartley, H.o•
.(1973), Computing Likelihood
Estimates for the !UXed A. o.v. :'lQdel
crsing the W Transformation,
Technometrics. 15, 819-831.

Lee, A.J. (1915), Estimation of Variance
Components 1n targe Herd - by - Sire
'Designs with Interaction, Journal of
Oa11"7 Science, 59,

Liu. Lon-t\tu. and. Sentura, Jerome (1977),
Computation of Variance Component
Est1mates, JOll."'nal of the American
Statistical Associaclon. 72, 007-058.
C.R. (1971a), Estimat10n of Variance and
Covariance Components - Taeory,
Journal of Hultivariate Analysis, 1,
%51-275.

Harville, D.A. (1977), Maximum L1kel1booc1
Approaches to Variance Component
Estimation and to Related Problems,
Journal of the American Statistical
Associaeion, 72,

APPEUOL:

Compact expressions for the 14 d.1s'Vinct
elements of (4.2} follow d.irectly from the

eXPreSSions tor elements ot in (4.1) and.
the d.etin1tions of Vr , Vc ' Vrc and Ve €1ven
by (2.3). Note in particular the det1n1tion
ot {qv1J:1. ".1 .. } •
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Analysis of Data From A Research Aircraft

J. E. GRIHES
California Polytechnic State University

&
NASA-Ames Research Center

Juring the flight test portion of the testing program cf a research
various sensor devices, such as strain gages, are placed at various points on the
aircraft to measure the variation of critical parameters. The data must be
analyzed in near-real-time as well as off-line in order to ensure the safety and
efficiency of the flight test program. This paper gives a general overview of a
computer system and the associated software that can be used to perfonn the re-
quired data analysis.

1.0 INTRODUCTION

During the fiight of a research aircraft, data
sampled from various points (strain gages, etc.
are used as measuring devices) on the aircraft
are monitored on the ground by research en-
giryeers. For safety of flight, continous,
ur.lnterrupted voice and data originating
in the research aircraft must be available for
the monitoring research engineers while the
aircraft is airborne. When NASA-Ames Research
Center tests an aircraft, such as the
Rotor Research Aircraft (Figure 1), it is
desirable to do some dynamic analysis computa-
tions in a near real-time mode so as to improve
the efficiency of the testing and assure
greater safety. A computer system, along with
the appropriate software, must be available to
perform the tasks of data acquisition, pro-
cessing, and reduction. Because the data
cannot always be completley analyzed in a near
real-time mode, it must be collected on tape or
disc so that it can be considered further after
the completion of the flight. This paper ieoks
at the approach that NASA-Affies is implementing
to handle the problem of data collection and
dynamic analysis.

2. a FLIGHT DATA ACQUISITION .Il.ND ANALYSIS SYSTEM

In general, at NASA-Ames Research Center data
from the research aircraft is transmitted by
means of a pulse code modulated (PCM) data
stream to a ground station Where the task of
acqUisition is completed and analysis is
performed. Because the aircraft testing is to
be performed at two sites separated by mountain
ranges (See Figure 2), real-time data acquisi-
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tion systems must exist at both, with a data
communication link between the sites so that
the complete data analysis system is necessary
at only one site.

The completed data acquisition arid analysis
system, necessary to meet flight reouirements
at can be satisfied by any ene of
several system architectures. The approach to
be used is an approach standardized for use in
the wind tunnel facilities. The
architecture for the Data System is a
distributed system approach using parallel data

ARMY/NASA

fIGURE 1..
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and process ng when and where high data
and precess n9 rates are required (Figure 3).
The system s partitioned into functicnal
blocks in a manner so that parallel can
be added for increased capacity or power-
ful modules can be added for more sophisticated
capabi1i ty. and the three blocks i'.re the:

a) Kernel System
b) Data Gathering Processor. and
c) Real-time Executive

The function of each block is given _
in Figures 3 and 4. .

The detailed breakdown of each of the blocks is
given in Figures 5. 6. and 7. It is not the
intent or within the scope of this paper to
iook at these components in detail.
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This Flight Data System has capability for:

a. Decomutation of data streams.
b. ?CM recording on analog magnetic tape.
c. Digitizing and recording data from ground

support.
d. Driving strip chart recorders.
e. Bar chart display of up to 128 data channels.
f. Display of raw data CRT terminal.
g. Da ta management.
h. Inserting dummy words in data streams if

signal is lost.
i. Computating and displaying various other

quick look information.
j. Interactively performing dynamic analyses

in a near real-time environment.
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3.0 DYNAMIC ANALYSIS C. ENAME Modu1e

Basically, the T!..EFJl.D program uses a least-
squares z-trans7ormidifference-equation
error modeling method in conjunction with

and digital filtering tecn-
niques (see two preViously quoted refer-
ences for theoretical detailsj to
the modal resonant frequencies and damping
coefficients associated with the aero-
elastic response of the structure.
Th .. e prlmary output of the program consists
of a of the resonant frequency .
and damp1ng coefficient results obtained

modeled mode in every data segment.
:h:_e re7ult7are augmented by diagnostic

:f real poles are detected or
,f dlfflcultles are encountered in ex-

ail the roots of the specified
dlfrerence-equation model. Auxiliary

The optional program termnation module for
an applications program called NAME. This
module will prepare the of the
computations for output.

Included with the oriqinal software oackaqe from
Grumman Data Systems Corporation were the six
applications modules TLEFAD. APSD.
FORIER. TU1HST, and FILHST. The functions of the
application modules are:

A. This program was specially de-
s1gned to track the migration of modal
resonant frequencies and dampir.a coeffi-
cients as the flight envelope of an air-
craft is expanded. The utilization of this
program requires that the user have some
knowledge of the modal composition of the
flutter response data; this information is
obtained from previous structural analyses.
ground vibration surveys, test resuits.
etc. If the modal composition is not
available. it can be readily obtained from
an initial frequency domain analysis of the
data via the APSD. or FORIER
programs or from time history plots and/or
stri p chart records. Fii tered and un-
filtered data channel time history plots
are available from the FILHST and TIMHST
programs. respectively.

The utilization of the TLEFAD program is
particuhrly desirable Ivilen timely decisions
on aircraft flight test er.velope expansion
must be made, since speed of comoutation,
f1exibil;ty. and noise rejection' are im-
proved by use of the known modal informa-
tion. In addition, cross-checking by
analysis of data from independent response
transducers may be accomplished simul-
taneous1y, enhanci ng Ilser confi dence in the
resonant frequency and damping results.
The analytical techniques employed are
capable of processing flutter resconse data
with or a measured drivino function
signal and are compatible with. and in no
way limited to. anyone of the following
means of structural excitation:

In determining the type of to be used
in dynamic analysis the following items were
considered:

A. Time·Factor. Flight testing schedules for
the Tilt Rotor Aircraft allowed only one
year for implementation.

B. tv.pandability. The software must be such
that it can be easily expanded to handle
data from various aircraft in various
environments.

C. Portable. Initially the software was to
reside on the IBM 360/70 and then at a
later date it was to be to a
combination PDP 11/70 and array processor.
Hence as much of the coding as possible
should be in FORTRAN.

D. Accuracy. The analysis algorithms should
be capable of accurate analysis in diffi-
cult environments.

Various alternatives were considered and it was
determined that an off-the-sheif packaoe would
be used. The package was developed and used by
Grumman Data Systems Corporation.

A block diagram of the is given in Figure
8 and a functional software diagram is
given in Figure 9. Features of the
package include:

A. Minimal software development risk since it
was fully developed.

8. Fully expandable, expecially in terms of
applications modules.

C. Highly portable because initiallv most of
the coding was to be ANSI with
primarily only the IBM utility routines
coded in assembly language.

The capabilities of the applications modules are
of prime interest to the aircraft research
engineer. and the ability to add new application
modules is of high importance.

The application module consists of three sub-
modules - RNAfvlE, and EI'IAME. Each of the
original "pp; ication modules. as -..Iell as anv
added application muzt be composed

J

of
sub-modules. The sub-module's purposes are as
fonows:

A. INN1E r'lodule

The initialization module for an aoplica-
ti ons program called NAME (e. g. mi ghr.
be TLEFAD, APSD. etc.). The module
is stored on an application program file
along with the related and ENM1E
modules.

B. RNAME Module

The data analysis module for an applica-
tions program called NAME.
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swept frequency excitation,
random axcitation,
abrupt surface inputs,
shake and stop excitation
impulsive excitation.



System resonant frequency and damping
coefficient can be determined by means of
the frequency response component analysis
method or by the least-squares z-trar.s-
form/difference-equation error modeling
method. The first method is only useful
where sufficient modal frequency separa-
tion exists. The second method provides
the primary means by which reduces
frequency response information to deter-
mine the overail modal characteristics of

GIFMAP. This program is primarily designed
to evaluate swept frequency or random
structural response data to detennine if
any significant modes of vibration have
been excited. Calculated signal frequency
response functions provide the basis for
determining modal content and for ex-
tracting estimates for corresponding
resonant frequency and damping coefficient
information. GIFMAP is particularly
useful in analyzing data segments whose
modal content is either unknown or uncertain.

If the test data contains a system driving
function measurement, GIFMAP can be direeted
to compute the cross-correlation function
between system input/response quantities
and the autocorrelation function of the
system input. By transforming the re-
sulting correlation information into the
frequency domain and dividing the resulting
cross-spectrum by the autospectrum,

computes a frequency response
function respresenting the transfer function
characteristics of the system under test.
On the other hand, if the nature of the
test data is consistent with the require-
ments of autocorrelation or random decrement
signature analysis, the program can compute
frequency response inform3tion throuah the
transformation of either one of these two
functions. Although the frequency response
functions computed from an autocorrelation
function or a random decrement signature
are somewhat different in form. they both
can be considered representative of a
transfer function characteristic pos-
sessing poles identical to the actual
system under test.
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is helpful 1n assessing the validity of
results, a plot of calculated shaken
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the data. In this case frequency response
function information is windowed and
transformed back into the time domain for
analysis via the least-squares difference-
equation identification algorithm. The
user can select the manner in which the
frequency response function will be win-
dowed and modeled or allow the program to
establish analysis procedure in an auto-
matic fashion. In the interactive real-
time operating mode the user has the
ability to override automatic windowing
and modeling selections made by the
program.

Primary GIFMAP outputs consist of tabula-
tion of calculated resonant frequency and
dampin9 coefficient information, as well
as plots of the computed frequency response
function and its real and imaginary compo-
nants. Optional secondary program outputs
consist of plots of calculated autocor-
reI ati on functi ons, j'andom decrement
signatures, or mathematically reconstruc-
ted frequency response function informa-
tion where appropriate.

C. APSD. The APSD program can compute and
output p10ts for signal power spectral
density, spectl'al distribution
amplitude spectrum. and autocorrelation
function information for mUltiple channel
inout data. Signal power peak tabulations
are also available. The specific outputs
to be calculated in a program run are user
selectable. Data reduction can be imple-
mented by either the transform method
using the Fast Fourier Transform (FFT)
algorithm or the classical autocorrelation
calculation technique. In either case.
Bartlett. Hanning, or Hamming data weighting
options can be selected for smoothing
results.

Results are calculated and averaged over
the total interval of time necessary to
achieve the statistical accuracy implied
by the user specified degrees of freedom.
iWSD can be di rected to output accumui ated
intermediate results in fixed incremental
degree-of-freedom steps. This provides
the user with a visual means of assessing
the stability and convergency of power
spectral The program can also
be directed to outout nonaccumulated.
snapshot, results in user specified fixed
incremental steps
which are helpful in establishing whether
the data is stationary.

The AS?D program has wide in
the analysis of random vibration time
series test In flutter data analysis
it is often called upon to provide power
spectral density plots for a given set of
response signals. Its primary purpose is
to provide a quick look at the overall
vibrational energy distribution as a
function of frequency. This information
provides insight into the modal complexity
of the data. Although APSD is not nor-
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mally used to establish modal damping
coefficient information, it can be esti-
mated from a power spectral density plot
using the one-haIf power method if the a
system input has a spectrum that is broad- ,..,
band-flat.

D. FORIER. This program individually calcu-
the Discrete Fourier Transform

corresponding to multiple channel data
sets using the Fast Fourier Transform
(FFT) algotithm. Output is presented in
terms of a finite Fourier Series coeffi-
cient expansion on a fixed segment of each
input data signal. The primary output of
the FORIER program is a plot of total
signal amplitude spectrum. However, the
user has the option to select additional
plot output corresponding to signal phase
angie and/or its sin and cos amplitude
spectrwn components.

The FORIER program is particularly useful
in the analysis of periodic signals such
as those typically encountered in heli-
copter and propeller aircraft structural
response data. Since. in these cases, it
is not necessary to accumulate or average
data over relatively long intervals for
the purpose of achieving statistical
accuracy, the response of the program is
particularly quiCk. In flutter test data
analysis a user can employ this program to
establish the relative magnitude of blade
reflection effects and modal response
amplitudes. This information. in turn. a
can be used to establish proper modeling ,..,
selections for subsequent analysis via the
TLEFAD program.

E. TIMHST. The TIMHST program outputs time
history plots for multiple channel user
selected input signals. In vibration and
flutter analysis these plots are primarily

to assess general signal level and
quality.

F. FILHST. This program is similar to the
TIMHST program with the exception that it
outputs fi 1tered time hi story pi ots.
Fi:tering is accomolished by recursive
digital filters with low-pass or
8essel or Butterworth characteristics.
For each input signal the user can select
the filter type. corner frequencies, and
roll-off characteristics (up to 12:h
order) required.

It is anticipated that additional applica-
tion modules will be added in the
when difficult testing environments arise.
such that existing modules do not give
accurate results.

CONCLUOIaG REI·lARKS
Ageneral overview of the computer system, along
with the dynamic analysis software, has been given
in this paper. It is anticipated that because of
the block des ign of the computer system and the
expandability of dynamic analysis software the
system will be efficient for many years in the ,..,
future.



Variance Estimation Using Half-Sample Replications

by

Robert S. Jewett
Computer Systems Analyst
Bureau of the Census

This paper explains how the Bureau of the Census applies the bala."lced
half-sample replication technique to calculate variance estimates for
demographic sU!".,reys havi-ng a stratified sample design. Computer storage
limitations make it difficult to use this technique if there are a large
number of strata, and a computer program is presented that was developed
to overcome this problem. A. new proof is give."l to show the equivalence
of the Keyfitz method and the balanced half-sample replication technique
when estimati..'"lg va..'l"'iances for simple linear statistics. .

Introduct.ion

At the Bureau of Census we often use the Balanced
Ha..l:f'-5ample Replication (EHSR) technique to calculate
variance estimates for surveys having stratified
sample designs. In the past this has been done for
the longitudinal Manpower Survey, and it is presently
being done for the National Travel Surv!'!Y and for
certain supplements to the National Cr:i.me Surve"J'.

This method has several advantages L'1 that it is
eaS"J' to understand and to program, and it also
produces reliable variance estimates. One draw-
back to the EHSR technique is that it realJires the
usage of an orthogonal matrix, a.'1d if th; matrix is
large, computer storage can present a
problem. 'Ibis paper describes a computer program
we have developed that makes it easier to overcome
this difficulty when it arises. In addition,
appendix A gives a new proof of the equivalence of
the Keyfitz ar.d EHSR variance est:L'Ilates ...men
applied to a simple linear estimate.

The EHSR Technicue

The next few paragraphs describe how the EHSR tech-
nique may be used to calculate variance estimates
for a statistic Y. Assume that the samole is
divided i.'1to N independent strata, and that for each
stratum 13 there are t-"ro indepel".dent ha..l:f'-sample
estimates and::1 with the following properties:e 1) the expected value of .. the expected

value of x:1•

2) the estimate XS for the stratum ..
.,13 _,13
....1 -1

3) The final estimate for Y is the statistic:
N 13

Y.. r (Xl + Z:i
13=1

If ;;e select one :Jill-semple frcm each stratum, add
them up, and multiply the result by 2, "..e will have
an u:1biased "replication estimate" for Y. '!here are
Z'1 possible di::'ferent patterns for choosi.'lg ha.l.f-
samples from the strata, and it ;;e t:-ied each pattern
and obtained unbiased replication estimates of Y,
....e could calculate the variance of this set of
Zl numbers ar.ci the result would be a.'l estimate for
the sampling variance of Y.

Of course, it N is large it becomes impractical, to
calculate -l separate estimates. In this case, an
orthogonal matr...x can be used to dei'i.'le a much
smaller set of replication estimates that can be
used to estimate the variance. An orthogonal
matrix is dei'i.'1ed to have the follow"..ng properties:

1) The size of the matrix is T by 21"., ....nere
n is a positive integer. '!he value tor I".
IlIUSt be chose.'1 so that the number of strata
is less tha.'1 or equal to T.

2) The elements ot the matdx are +1 and -1.



For example when n - 2 the 4 by 4 matrix is:

3) The matr-'...x multiplied by its transpose gives
a matrix with the number trt along the
diagonal, snci zero else1o'here.

1 -1

-1 1

1

1

1

1

The method we used to deve'lcp the matr-'...x is taken
from the paper Constructing Orthol101'1al

Replications for Variance Estimation. [2], which
ten:; how to generate a."1 onhogonal matrix using
two parameters p and 1'1, 1o'here p is a prime number
and n is any positive integer. Using the value
p - 2, a computer program was written that follows
the procedure descl''ibed in the paper and creates
an orthogonal matr-'-x :£or any value of 1'1 up to 12.

'The Kevfitz Alt.e!":!ative
In the case described the Keyfitz va.""iance
estimation technique [4] could also be used. '!he
va..""iance estimate would be

N 2
t X:1)s-l

Given an orthogonal matrix with at least N co11JlllnS,
each row of the matrix can be used to determine a
pattern for selecting halt-samples from the strata,
and a correspmding replication estimate may be
calculated. ilben this is done for each row, we can
cClllpute the variance of this set of replication
estiJ:Iates about the overall estimate, snci the
result as McCarthy [5] shows would be the same as
if all possible replications been used. 'The
exact fomula to calculate the BHSR va..""iance
estimate is given in Appendix A.

1 1 -1

-1 -1 -1

1

1

'!he following is a general description of the steps
to create a 2? by 2? orthog':lnal matrix.
Step 1: Consider the r-'..ng 01' polynomials that have

coefficients in the !ield of integers
modulo 2. Find an i.."'reducible polyncmial
of degree n.

Example: i3 + X+l is irreducible.

Step 2: The ring of medulo the irreduc-
ible polyncmial forms a Galois field havi.'lg
':f elements.

A generator 0:£ the field is a polynanial
that p(x)k.1 if u.d or.ly ii:

k..':f-1

F:ind a generator for the field.

Example: a generator is X + 1.

Example: The vector of 7 is (1,1,0,1,0,0,1).

Step 3: Write the non-zero elemer.ts of the .t'ield. as
po','ers 0:£ the generator.

This vector is the one that is created in the computer
program. The program is designed to read in any value
of 1'1 up to 12, and to then calculate the approptiate
vector of length The next two steps show how
t.he- vector can be used to form an orthogonal matrix.

Example:

(X + 1)1 • I + 1

(X + 1)2 .. x2 + 1

(X + 1)3 .. x?-

(X + 1)4 .. x2 + X + 1

(X .. 1)5 .. X

(X + 1)6 .. x?- + X

(X + 1)7 .. 1

In clement that is listed, the
coef1'icient in the place is equal to
either zero or one. Form a vector of length
2n_1 consisting of these coefficie."1ts 1."1 the
sace order they appear 1."1 the list.

Using this vector as the first colucn of a
matr...x, fom succeed;i."lg colu::m. by
moving every element of the original colmn
up cne place, and oovi."lg to:t=most element
to the bottom. TIlis mattix is of the size
':f-1 by r-l.

Step ;:

Step 4:

Generati."lll OrthollOnal Matrices

As was mentioned bete re, one problem in using an
orthogonal matr-'...x is that it can require a great
deal of computer storage. For example, if the mattix
is 0:£ the size 256 by 256, then 65536 words are
required to store the matr-'-x, anti under the present
computer system at the Bureau of the Census a single
program is roOt alloWed to use this much storage.

We have now developed a way to create orthogonal
matrices hav-'...ng the property that the entire matrix
can be generated :t'rcm the first collJmn. This
means that only one colu:::n of the matrix has to be
resident in the computer, lihich solves the storage
problem. Of course, it dOes take a certai:l amount:.
of computer time to recalculate an eleme."1t Of the
matrix each time it has to be used, but the
calculation is so simple that it should not cost much.

... would be exactly' the same value as the repli-
caticn variance estimate (See appendix A for a proof
of this statement). This is obviously' a simple
calculation to perform, but a problem a."'ises when
we attempt to use the Keyi'itz to estimate·
the variance of more complex statistics as
ratio estimates or regression coefficients. In
order to use the Keyi'itz technique, the estimation
for:nula for such statistics must be linea."'ized
using a Taylor's series, and from our experience the
resulting va..""iance estimation procedure is often
complicated and hard to program. On the other hand,
the BHSR method may still be applied with only
slightly more dii'1'iculty than in the case of the
simple linear estimate.
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Example:

1 1 0 1 0 0 1

1 0 1 0 0 1 1

0 1 0 0 1 1 1

1 0 0 1 1 0...
0 0 1 1 1 0 1

0 1 1 1 0 1 0

1 1 1 0 1 0 0

Step 6: Change all zeros in'the matrix to -1. Adci
on a row of -1, ana make an aciditional
col1.11m1 with evelj element equal to one.
'!his foms an orthogonal matrix of size
r by r.

·1 1 -1 1 -1 -1 1 1

1 -1 1 -1 -1 1 1 1

-1 1 -1 -1 1 1 1 1

1 -1 -1 1 1 1 -1 1

-1 -1 1 1 1 -1 1 1

-1 1 1 1 -1 1 -1 1

1 1 1 -1 1 -1 -1 1

-1 -1 -1 -1 -1 -1 -1 1

From the last two steps it is easy to see that if the
vector o£ length 2n..l is stored ir. the mai.'1 memolj of
the computer, it is easy to calculate a.'l7 other
elementol the matrix. In the past, ·..e haci only
useci this methoci of constructing orthogonal matrices
for the case n-7, but ·..e are now using matrices 'liith
n=B ana n-9 to obtain variance est:lmates. Here are
some of the vectors that are calculateci for certain
values of n.

n • 3, the vector is 1 1 0 1 0 0 1

n • 4, the vector is 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1

n - 5, the vector is 1 1 1 1 0 1 0 0 0 1 0 0 1 0 1 0
110000111001101

't,e computer program that does the preced:i:.g steps is
listed in Appendix B.

APPENDIX A

Assume that the estimate X is a simDle sum of other
estimates lrilich are taken from independe:lt strata.
That is, each stratum was subsampled independently
from all the others, and

N
Y - t

n-l

where X:n is the estimate for stratum n. The pu1"?ose

of this appendix is to prove that the ICeyfitz varie.t:.ce
estimate of Y is equal to the balanced half-sample
replication variance estimate.

Preliminaries:

The standard Euclidean nom of a vector (denoted as

II x II) is defined to be the square root of t1:1,e inner

product of the vector with itself.

If A is an N bY' N orthogonal matrU:, we can use the
propert-y tbat the matrix multiplied by its transpose
equals the identity natrix multiplied by N to easilY'

s1:1,ow that I lAx 11..,..'Nllx II , 'where % is an N-dimensional
vector. Note that N is a power of 2.

Assume that the samole is divided into N strata, and
that for each stratUn: j there are he half-sample

...

Xl X2
-1 -1

STRA.TTJM 2

Define these two vectors of dimension N:

, ... r
1
)

The EHSR Variance !stimate:

Arr;r row of the orthogonal mat:-ix A can be used to
define a replication est:lmate by letting each
element of the row refer to one of the two halt-
samples f:oem the corresponding stratum. For
example, if the jth element of the row is equal to
-1, then we hill-sample from the jth
stratum. Likewise, if the kth eleme.'1t is +1, the."l
the halt-sample is se1ecteci from stratum k. Add-
ing the half samples selected ana multiplr..ng by 2,
we obta.i:l the replication estimate for the row.



Appendix A

Using the elements ot the-ort.hogonal matr..x as sub-
scripts, we can define the replication estimate for
arr:I row i.

N j
Rep. Est·i - 2t j)

j-l '

The BHSR variance estimate is equal to
N 2..!.. t (Rep. Est0i - overall estimate) -

N i-l
XN

1 tT i-l j-1

-1 N[ th ]2
T 1:1 l:he 1 element of the vector ACYl - 1'-1J
"-{-II ACt,. _ 11

2
• +[hillt,. _ 2

2
- 1'_1 11 • the Keyfitz variance estimate.

The Kev!it: Variance Estimate:

Show that for all i anc1 j less than N

The Keyt'itz variance estimate is

N
t
j-l

,.,
"

Epilogue:

It was mentioned earlier that N must be a power of t'lrO.
If we have a collection of M strata where !! is not a
power of two, we then choose N to be a power of two
larger than M and create an orthogonal matrix of that
size. The first M columns of this matrix can be used
to define the replications. This can also be inter-
preted as creatiIlg (N-1J:) imagiDa.-y strata with half-
sllll1p1e estimates equal to zero.

In a:r:r event, with this set of N replications defined
over the M strata, the ERSR variance estimate can be
defined to be

N
1 2
IT t (Rep. Est'i-overall estimate) "
i-l .

which is equal to tne Keyfitz variance estimate

Proof: Case 1

If A(i,j) - 1, then
A(i,j)(xr - - - x.:1- - - X:1

- 2X!(i,j) _ (xi + X:l )

1
IT N UM M j 2t 1: XJ - t (x...j ... Xj )

1=1 J=l A(i,J) J=l -1

Proo!: Case 2
If A(i,j) " -1, then

j j j j jj
A(i,j)(Xl - X':l ) " -Xl + X_l - 2X_1 - Xl -I_1

j (j j )
• 2XA(i,j) - Xl + I_l

Main Proof:

We now have that the EHSa variance estimate equals:

M ui . 2
t (X). - X:1) •
J=l .

N
- , tT i-1

- N
1 t
T 1-1
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CALCULATION OF CHI-SQUARE

Clifford J. Maloney

Food and Drug Administration

Pearson developed his chi-square test of significance in 1900 before it was
pointed out to him by Soper that the then rediscovered Poisson distribution could
be made the basis of a derivation. Fisher in 1922 showed that the multinomial
could be viewed as a conditioned multiPoisson and made a "simplified" form of that
formula the basis of an exact test. This paper shows that the "simplified" form
of the test is a backward step and provides a computer program for· the test.

( 2 )

ID.L.

11'\ " i. ! ) 11'( x. J! )
p • ------------------

IV. Malonev's Revision: Fisher obtained his
formula (2) as a "simulification" of

'..rhere each capit.l! P stands for an individual
term of the Poisson distribution

p ---------------------------- (3)

Formula (2) yields the probability of just one
possible (or actual) outcome such as Table I. The
calculation of (2) laborious then (1)
is often still feasible, especially if tables of
factorials and/or a comouter is emnloved. The
difficulty arises from fact terms
like (2) must be CAlculated. Only the one quantity
in the denominator 11' (XiJ ! ) changes at each sten.

Still the volume of computation for a table as
large as Table I (37 roys and 12 columns) quickly
becomes expensive if not prohibitive. Even to
count, not the can be a
task (Gail and :1antel, 1977). of this effort
results from terns of transcendentlv
probability, a condition not descernible in the
forn (2).

II. Pearson's Solution: Pearson showed that,
if the exoected cell count in everv cell of the
r.able (for example, Table I) is sufficiently
for a Poisson distribution to be adeauately renre-
sented a distribution with the same mean
and variance, then the

I. Introduction: In 1900 Karl Pearson 1ptro-
duced the chi-square statistic to measure the
adequacy of fit of a theoretical model to an
ooserved frequency distribution. The technique
quickly found other uses and continues to find
widespread application in statistical practice;
especially in the treatment of count data. The
method however is subject to a number of deficien-
cies; one of the most troubling relates to' appli-
cations where expected numbers are low. It is not
fully realized that this disability is an artifi-
cial one, entirely a relic of its path of develop-
ment.

The reader is referred elsewhere (Maloney 1978)
for a detailed theoretical examination of the
question. In this "how to" paper at"tention will
be confined to the treatment of the R x C TWo-way
Contingency Table, including application to a par-
ticular example. In computer terms, the problem
becomes one of performing a particular calculation,
the probability of an observed outcome in terms of
an assumed frequency distribution. The observed
outcome is shown in Table I. The question to be
answered is: are the data consistent with the
assumDtion that all manufacturers of Pertussis

are consistent with respect to the one
property of vaccine potency? Lots released and
lots not released are included in the table.

( 1 )

P( X,tII) •
m" e-m

x!
(4 )

Dl

calculated for all cells in the table could be
referred to newly computed chi-sQuare tables 'Nith
the a,propriate degrees of freedom. The effect of
these tebles is to avoid the repeated calculations
required in the so called "exact" methon of Fisher.

III. Reolacement: a lead of
Soner, earlier discussed by Pearson (1916), Fisher
replaced auproximation (1) by the exact formula

(2) is not however a simplification, except
nerhaos for extremely low total sample counts.
This is due to two effects. First, in the form
(3) rather than (2), the assistance of tables of
the Poisson distribution (Molina 1947, General
Electric 1962) can be

An even greater of (3) over (2) is
each Poisson term P(x,m) can be individually cal-
culated in (3) if the normal approximation is in-
adequate, or be replaced by the normal according to
(1) if the approximation is adequate.

373



-----V. Detailed Procedure: For those cells where
m is sufficently large, expression (1) is used.
The reQuirement on m can be quite large. Every
cell Table I was in fact calculated by the pro-
cedure next to be described.

Table I.

nmb 3

Potency of Pertussis Vaccine Lats a

}lanufacturer
4 5 6 7 8 9 10 11 12 13 14 Tot.------_._--For each cell calculated by Poisson, the Poisson

individual term orobabilitv for the observed out-
come is all terms whose proba-
bility is greater are calculated, subtracted from
one and divided bv two. Notice that this is a
univariate For hand calculation

Poisson tables would De used for this
summation.

The result is the one tailed probability for the
cumulated normal whose probability matches the
Poisson accumulated probability for the possible
outcome. Hence. we refer to the standard normal
tables for the corresponding deviation in standard-
ized units (or calculate it by computer). The
sQuare of that deviation is the contribution of
that cell to the Pearson formula (1). The process
continues until all cells are accounted for,
the sum in (1) is referred to standard chi-square
tables (or again calculated by comouter).

VI. Examnle Results: The unmodified Pearson
formula a chi-sauare of 600.1 for Table I,
highly significant. "The method of this paper gave
a value of 311.3, less than the 11 x 36 • 396 de-
grees of frep.dam.

Table II is a listing of the computer program. A
printout of the detailed calculations is available.

VII. Acknowledgement: I am indebted for the
data to Dr. Manclark, Food and Drug Administration;
for the oroorietarv inverse normal routine to Mr.
C-eoue Institutes of Health, and for
collaboration at everv stage Mrs. Lucille Carver,
Food and Drug Administration.

VIII. References:

92
82
78
74
72
70
68
64
62
60
58
52
SO
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
Ii
4
2

o 0 0
010
000
010
o 0 1
1 0 0
o 0 0
o 0 0
o 0 0
111
o 0 0
100
110
010
120
1 2,0
2 2 2
o 2 0
120
150
2 1 1
130
o 4 2
o 8 3
174
4 14 4
3 13 9
12 10 10
6 22 4
7 15 8
8 18 9
10 16 2
If! 30 7
8 17 8
4 7 3
3 1 0
000

000 0
o 0 0 0
000 0
o 0 0 0
000 0
o 0 0 1
o 0 0 0
o 0 0 1
o 0 0 0
o 0 0 1
o 0 2 0
o 0 1 0
o 0 1 0
o 0 1 1
001 2
001 1
002 1
o 0 1 4
2 0 2 4
o 0 2 3
3 1 2 4
3 2 10 7
1 1 4 5
2 1 4 5
5 0 8 15
4 0 10 11
6 1 11 8
8 1 15 24
9 3 11 18
11 6 17 28
12 8 14 31
17 9 13 32
17 6 19 42
17 9 8 35
7 6 11 26
7 3 2 15
121) 4

o 0
o 0
o 0
o 2
o 0
o 0
o 1
o 1
o 0
o 0
o 0
o 0
1 3
o 0
o 3
o 0
2 1
1 1
1 1
1 3
2 0
2 1
2 1
3 2
2 3
4 5
3 3
6 6
11 2
12 1
13 2
8 5
15 11
18 8
14 6
11 5
2 1

o
o
1
o
o
o
o
o
2
o
1
o
1
1
o
o
1
4
3
4
o
4
1
4
10
9
7
17
19
18
14
32
31
31
18
22
4

o 1
o 0
o 1
o 0
o 0
o 1
o 0
o 0
o 0
o 1
o 0
2 0
o 1
o 0
1 0
1 0
o 0
1 0
3 1
2 1
1 0
o 5
1 0
4 1
3 1
2 1
2 0
6 1
Ii 3
6 4
19 1
19 4
20 2
17 0
14
2 1
o 0

1
1
2
3
1
3
1
2
2
5
3
4
9
4
10
6
13
14
20
22
17
38
22
37
59
68
66
116
114
133
149
167
218
176
117
72
14

Fisher, R. A. (1922), "On the Interpretation of
from Contingp.ncy Tables and the Calculation of p",
Journal of the Royal Stat. Soc., A8S, 87-94.

Gail, and Mantel, Nathan (1977), "Counting
the Number of r x c Contingency Tables with
Fixed Hargins", Journal of the Amer. Stat. Assn.
(Dec.), 72, No. 360, 859-62.

General Electric Defense Systems Department (1962),
"Tables of the Individual and Cumulative Terms of
Poisson Distribution", New York: Van nostrand.

Maloney, C. J. (197R), "Chi-Square for Small Ex-
neceed Numbers", submitted to the Journal of the
American Statistical Association.

E. C. (1947), "Poisson's Exponential Bino-
mial Limit", New York: Van Nostrand.

Pearson, Karl (1916), "an the General Theory of
Multiple Contingency with Special Reference to
Partial Contingency", Biometrika, 11, 145-58.

374

Tot. 97 206 78 132 S9 173 329 134 78 259 132 32 709-----------------_._----
a Tested from Januar" 1957 to August 1965.
necessarily released

b Total human dose



Table Z. Poisson Chi-Square Program

DWENSION T(80)
5 FORMAT (3FS.5)
10 (lX,FlO.S, IS)
20 (/4X,2HN-,I8,4X,3RIX-,I2,4X,2HM-,E15.S,4X,

12HA-,E15.8,4X,2HB-,E15.8,2HP-,E15.8)
30 FORMAT (114X,5HT(J)-,EI5.8,4X,7HT(J-l)-,E15.s/)
34 (112RK-,I3,2HL-,I3)
43 (lX,2RK-,IS,2X,5HT(K)-,EI5.S)
SO FORMAT (//I0X,141U'ARAMl!TERS AT ,IS,13H'TH READING "

318,4X,FlO.5,12ROUT OF
55 (2(4X,FI0.5),34X,2(5X,110.5»
37 (lHl,I/IX,' OBSVD COUNT ',' EXPCD COUNT',

35X, 'PROBABILITY', 7X, I DEVIATION "
l' CHI-SQUARE' , ' CHI-SQUARE SUM 'I/)
IlRITE (15,'37)
REAL*8 M
L-I000
T(1) - O.
AL-50
LEN - 40
DO 64 N-l,L

40 READ D,X,M
lQlT - lQlT ... 1
IF (KN'r.U.Lnn GO TO 606
IlRITE (l5, 37)
KNT - 0

606 CONTINUE
IF (M.GT.AL) GO TO 45
IX - X
Z - DE.ltP(-M)
IF (M.U.O.) GO TO 2S
IF (X.LT.O.) GO TO 25
IF (X.EQ.O.ANO.M.LE.l.) GO TO 100
IF (X.EQ.l.ANO.M.LT.l.) GO TO 65
IF (M.GE.X.ANO.M.LT.X+l.) GO TO 35
GO TO IS

25 WRITE (15,50) N,IX,M
GO TO 64

35 CHI - O.
GO TO 111

45 CHI· (X-M)*(X-M)/M
111 SUM - SUM + CHI

(15,55) X,M,CHI,SUM
GO TO 64

65 B - Z
GO TO 75

100 B - O.
GO TO 75

15 T(1)· M
DO 60 I-2,SO
T(I) -0.

60 CONTINUE
A • O.
IF (IX.Gr.l) GO TO 88
CK - 1.
IF (IX.EQ.O) GO TO 85
CK - M
GO TO 85

8S DO 66 J •
T(J) - T(J-l)*M/J

66
IF (T(IX).LT.l.) GO TO 5S
A - O.
GO TO 11

58 A-I.
eo TO 11

11 CK - T(IX)
IF (X.LE.l.) GO TO S5
DO SO K - I,IX
XK - K
U' (T(Y.) .I.E.CK) GO TO 80
A - A'" T(K)

80 CONTlm.'E
85 I - IX ... 1

IF (X.EQ.O.) 1-1+1
DO 90 J - I, 60

375

T(J) - T(J-1 )*M/J
IF (T(J).U.CK) GO TO 95
A - A + T(J)

90 CONTINUE
95 B- A*Z
75 P - 0.5*(1. - B)

CALL MDNRIS(P,D,IER)
IF (IiR.NE.O) GO TO 42
CHI - D*D

222 SUM - SUM + CHI
IlRITE (15,200) X,M,P,D,CHI,SUM
GO TO 64

42 IlRITE (15,210) P
GO TO 64

200 FORMAT (3(4X,t10.5),5X,3(5X,F10.5»
210 FORMAT (FI0.5,2I, 'P LIES OUTSIDE OF RANGE')
64 CONTIWE
999 CALL EXIT

STOP
rom



THE ROLE OF PSEUOO-RANDom NUiYlBER GENERATORS
IN THE HOPE-FILLED VARIANCE-REDUCING EFFORTS

G. Arthur Mihram, Ph. D.
Post Office Box NO 234

Haverford, Pennsylvania 19041

ABSTRACT

Considerable speculation has arisen in the recent literature [SImULATION:
STATISTICAL FOUNDATIONS AND METHODOLOGY (1972); OPERATIONS RESEARCH 21: 988
(1973); and, SIMULATION 22: 45 (1974), e.g.J of simulation methodology regarding
the applicability of certain established procedures for reducing the variance of
li'bnte Carlo estimators [mONTE CARLO lYIETHODS (1964)J. In particular, antithetic
variates and stratified sampling have been highly recommended to simulationists,
though the direct applicability of antithetic variates to simular experimentation
has been shown to be logically ill-founded [PROCEEDINGS, 1973 SUiYlMER COMPUTER
SIMULATION CONFERENCE 1: 91 (1973); and 1976: 256 (1976)J.

THE: PROBLEm

The present peper reiterates the current logical
incomoatibility of these mente Carlo techniques and
simular experimentation by depicting the generalised
:echnique of Hammersley and mauldon [6J as a requi=e-
ment for an ad hoc pseudo-random generato-. The pro-
mise of the generator for the pur-
pose of variance reduction by either antithetic varia-
tes or stratified sampling is revealed, but it is no-
ted that any suggestion for its widespread use in si-
mular experimentation is weakly based. The use of
stratification or antithetic variates in simular expe-
rimentation requireEl considerable knowledge of any
stochastic medel's behaViour as a transformation of
the model's seed. Indeed, the use of either veriance-
reducing approach in simulation methodology requires
an intimate knowledge of the model's transformation of
the seed, ill environmental condition (input data
save the seed) to be specified by its user.

The response of a dynamic and stochestic simul-
ation is a random variable:

Thus, for a fixed t and i, the simular response,
R(S' ;,t), is a transformation of the seed, 51 i.e.,
!h! whole is .!!. function. The histogram of these
simular responses, R(S; x,t), possesses only a
mean value, r(x,t), but also a variance, a. Thus if
one were to adhere to the Principium of Seeding [lj to
define two separate encounters with the model and to
provide statistic31ly independent res-
ponses, Ri :: R(Si) x.t), i • 1 and 2, then the simular
response function can be estimated unbiassedly by

r*(;,t)=[R(Sl' ;,t) R(S2' ;,t)J / 2 (3)
2an estimator haVing variance a / 2.

For the Carlo evaluation of the finite Ri-
emann integral,

I -I f(x)dX, (4)
o

Hamersley and I'I'orton [8J devised a "simple" antithe-
tic technique. Instead of ccmputing the estimate,

(1) (5)

where Ul and U2 ere independently and uniformly dis-
tributed random variables, Hammersley and morton [aJ
recommended thet, if f(x) be a continuous and monotone
transformation of its argument, then, instead, one use

IIIhere

(2)

rea resenting the simular resoonse function (the mean
value of the histogram, gRey, i,t), which could be
formed by collecting the model's from en-
counters of simular duration, t, end by a
fixed vector, x, of environmental conditions, yet over
the entire set of admissible values of the model's
Juxtaoosed :sndom number seed, S). [7J

i - [f(Ul ) f(1-U
1
)J / 2.

With

Var[f(U)] - var[f(l-U)J
_ 2
=a ,

(6)_



then
var(I*) • of / 2,
yet

2Var(I)· a

then 1. Hence, if K ia chosen randomly and uniformly
from amcngthe III • 2b integers between a and 2b _ 1,
inclusively, thea the random.variate, L, ia-also uni-
formly distributed, since, if sequentially,
any properly defined mixed congruential generator is-
sues exactly once every integer between a and 20 _ 1,
inclusively, before any among them is repeated.

lIIhere

p • Corr[f(U), f(l-U)] < 0,
provided that f(x) is a continuous and monotone func-
tion of its argument over the range: a x b.

Hence by taking advantage of particular informa- .
tion (continuity, monotonicity) regarding an
one may use the antithetic variate, l-Ul' as the ergu-
ment in a second evaluation of f(x), then form their
arithmetic mean, i, to provide an unbiassed estimate
of I, yet with a smeller variance than that of 1*.

In the event that the integrand, f(x), is not
monotone over the interval of integration, Hammerslay
and l1!auldon [6J suggested a "generalised" antithetic
technique [SJ. Under this approech, one seeks a one-
to-one transformation, v(u), of the unit interval onto
itself such that:

(a)

(b)

except for at most a finite number of points,
dv/du ••1; and,
for V • v(U), feU) end f(V) shall not be positi-
vely correlated.

One would then compute,

In this sense, the mixed congruentia1 generator
acts as a shuffler of B deck of 2b • III sequentially
numbered cards. Two examplary shuff1ings, each for
the case m • a, are depicted in Figures 1 end 2. One
may note that the first generetor permutes a deck of
the integers, 0 through 7, yielding the random sequen-
ce: (7, 0, 1, 2, 3, 4, 5, 6); whereas the generator
depisted in Figura 2 prOVides the permutation:
(5, 2, 7, 4, 1, 6, 3, 0).

Ll= (lK • 7) (mod a)
L

7 •
5 •
5 •
4 •
3 •
2 •
1 •
a •

0 1 2 J 4 5 6 7 K

is an unbiassed estimator for the simular response
function, an estimator with variance less than for
r+(x,t) of equation (3) ?

• [feU) • f(V)] / 2, (7)
with V • v(U) selected so that V is itself a uniformly
distributed variate, yet defined in an fashion
(i.e., specifically oarticular
grand, f(x), at hand) so that

Corr[f(U), f(v(U»] O.

6y such an .l!.E. t25. procedure, one could usure that

"Var(I) Var(I*).

The recent literature [1, 2, 5] has questioned
the widesoreed aDolicability of either the simple or
the approaches to efforts to
=educe the variance of estimators of the simular res-
ponse function. For a given model, can cne define a
generalised antithetic variate, V • v(S), to be em-
ployed as the seed in a second encounter with a sto-
chastic simulation model so that

L2 :: (5K .5) (mod 8)

L
7 •
5 •
5 •
4 •
:5 •
2 •
1 •
0 •

0 1 2 3 4 5 6 7

Figure 2. mixed Congruential Generator
(a • 5, c • 5)

Mixed Congruentio1 Generator
(a • 1, c. 7)

Figure 1.

(8)" - - - - ] /r(x,t) • [R(S; x,t) • R(v(S); x,t) 2

One may view the mixed congruential generator as
a traneformation, V • v(U), of a continuously uniform
random variable, U,

wherein K • [ emu] J, the greatest integer less than or
equal to mU. and L is obtained from K via the mixed
congruential generator of (9). Two such con-
tinuous, generalised ar.titnetic variates are depicted
in Figures 3 end 4, corresponding to the mixed congru-
ential generators depicted in figures 1 and 2,

CONGRUENTIAL

The mixed congruenti.l generator [1, e.g.] pro-
vides exemplary functions of the generalised antithe-
tic type. rcr a binary computer of standard :omputa-
tional word of b bits, th. algorithm generates, from
integer, K, the pseudo-random integer, L, according

"'-0:
(9)

where m. 2b, a =1 (mod 4) and c is chosen so that
c and III have no common integral divisors greater

v • v(U) :: [L + (mU - K)] / III, (10)
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respectively.

and

V:s • v(U)
1

o

F"igure 3. Generalised Antithetic
(a • 1, c • 7)

Var(v3) • var(V4) • • 1/12,

lIIhile
l/S 1.! u(u+7/S)du + { u(u-l/S)du - 1/4o /s

• 11/384 • 0.0287 (> 0),
yn

Cov(U,V4) • -(104/3072) • -0.0:34 « 0).

In terms of correlation coefficients, one mey
list the results:

Corr(K, Ll) • +1/3,

Corr(K, L2) • -:3/7,

Corr(U, V:3)' • +11/32, and

Corr(U, V4) • -0.406.

One notes that the Functions deoicted indeed sa-
tisFy the two conditions, of and
[6J, For V • v(u) to be a generalised antithetic va-
riate. (CF: Conditions preceeding Equation (7).) One
may note that the discrete random variates, Ll, and
L2' of F'igures 1 and 2, respectively, have the proper-
ty of being discretely uniform variates, with

1 m-l
• • E(K) • m- _ i· (rn -l) / 2 • 7/2

i-o

Generalised Antithetio Variate
(a • 5, c. 5)

VARIANCE REDUCTION

Thus the mixed congruential generators can be
employed to transform an uniformly distributed variate
into a second uniformly distributed variate, though e
the induced correlation between the two variates may
be positive or negative. The generator in
Figures 1 and :3 constitutes a "stratified
[lOJ approach to variance reduction, whereas the gene-
rator provided in rigures 2 and 4 is a more
generalised antithetic variate.

the first two of which represent the autocorrelation of
the two respective mixad congruent!al generators (auto-
correlation of lag 1).

One may note that ths choice of a generator,
will induce a negative correlation between its

pair of uniformly distributed variates, depends ueon
one's selection of the generator's additive and multi-
plicative constanta (£ and !.t respectively). Yet, in

Carlo investigations, this is precisely what Ham-
mersley and mauldon [6J proeosed; vi:., that, for a
given integrand, f(x), of integral, I, of Equation (4),
one shall need to deFine an ad hoc generalised antithe-
tic variate. F'or the of word si:e of
.!l. bits, there are choices for the additive cons-
tant (c) and then 20 - 2 choices For the multiplicative
constant (a), so that; conceptually, one could search
through the 22b- 3 • mixed congruential generators
so as to locate that one pair of constants (a, c) for
whi::h the correlation is minimised.

u1

/'
//

F'igure 4.

end

while

Cov(K, Ll) ••7/4 (> 0),

yet

One should note, however, that one must
in a soqewhat bg£ fashion, determining whether

Corr[r(U), f(V)] < 0,

For V as defined in Equation (10). Without an algo-
rithm for conducting this search expediently, one could
rightfully question the practical utility of antithetic
variates in monte Carlo analyses.

Cov(K, L2) =-9/4 « O).

Similarly, tne corresponding continuous random
variates, V3 and V4, of Figures 3 and 4, respectively,
are continuously uniFormly distributed, with the pro-
perties that

One mey note that the simular fun::tion
can be construed as an integral:

r(x,t) • f 1R(UJ x,t)du,
o

where U • s/m is an uniformly cistributed variate
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10. Gaver. D. P•• "Statistical Methods 1'01' Improving
Simulation Efficiency." PROCEEDINGS, THIRD CON-
fERENCE ON APPLICATIONS or SImuLATION. 38-46.
La Jolla. Calif.: Society for Computer Simul-
ation. 1969.

whenever the stochastic model's juxtaposed seed, S, is
selected in accordance with the Principium of Seeding
[1]. In this sense. experimentation with a particular.
dyn8lll1c. and sU,chestic st""lation model is indeed ana-
logous to the monte Carlo evaluation of an integral.
Yet. for a given mOdel. the unknown integral,
I • :(i.t). depends not only upon the model (which is
the "integrand") but also upon the particular set of
"parameters" .employed [ i. e.. upon the i"l:lut data spe-
cifications for the model's enVironmental conditions
(x) end simuler duration (t )].

CONCLUSION: (VARIANCE REOUCTION OR

an algorithm delineating the procedure
by which one selects a generalised antithetic variate
for seeding the second of two encounters with a dyne-
mic end stochastic simulat10n model. one must question
any widespread or "blind" apolication of entithetic
variates in simular experimentation. Indeed, if anti-
thetic variates ere to prove useful in experiments
with stochastic. computerised models, then it would
appear that one must employ, in successive pairs of
model encounters, a pair of antithetic seeds, BE! oair
!2!..!!Ell soecification (x,t}.£!,.!:h! model's data.

Perhaps, as scientists emplcying simulation to
model reliably the systemic problems which currently
Challenge us, we should focus attention on an important
asaect of simular crecl1bllity: model confl..rrnation Sin-
ce a dyn8lllic end stochastic simurat'iOn model is de-
signed to mime the behaviour of 1ts simulend, then the
statistical properties of the simular responses must
be compatible with the corresponding measures made on
the modelled system.

Typically, c:Q'l6.rma!:jcn i!. conducted
the statistician's collection of two-semele L9].
In particular, homogeneity of the varianca of the s1-
mular responses and that of the actual systelll's ctlrres-
Qonding yields is of paramount variance
reoroduction i[ considerably greater

systemiC scientist!h!a variance reduction.

iIkIdel CQ'1/hmatial must be attended if indeed si-
mulation is to earn its designated title. The method-
ology of the Scientist of Systems.
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ABSTRACT

Robust linear regression problems can be solved by the method of iteratively
reweighted least squares. Stable numerical algorithms applicable to this problem
are known for computing the 1,1 and 1,2 starting estimates, the subsequent iterations,
and a scale free convergence criteria. A system of semi-portable Fortran sub-
routines embodying these techniques is described. Eight weight functions, numerical
rank determination, various regression statistics, a stem-and-leaf display, and an
interactive driver are included.

Development of this software and associated research was supported by the
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O. Introduction

M:.:c:-, a"-iei a great: deal of prog:-ess has bee..'l

The ?.obust: L:beer Regression P::-oblem

We propose -:0 fi"t 'the linear rroeel

y =XS + e: (1.1)

linear ni!gressions, the method of i taratively reweig..'1t:ed

:east: squa.--es prove..'l successful. Stable and

eff':'cier.:t aj"gorit!'Jl1S for t.'le soll.;"t:ions t:o

weighted least squares probler..s a...--e available. We have

ca..'"'SfU11.y asseltbled t.l-Jese algoriu.lr.s in a syste..'1l of

subroutines which reliably solve i'terat:':'vely reweig.'lt:ed

leas't: squares problems.
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whe--re Y is t:he n-veC"tor of oDse-·...,\ts::icns on

to'le depe.,de.."l't: variable, Y = (y:, y:, ... 'Yn)- ,
X is the nxp rratrix of ca..""'!'iers or' in:;'ependem:

variables, X = 'h' ... ,xn )-,
S is 'the p-vector of ccefficien'ts ':c be

de't:enn:i.r.ed, and

e: is a.., n-veaor of ra.."1dom aI'rCrs or c.::.snJ:'-

bances.

The fit is from to"e mi:u....'"1izaticn

whe---e "0(.) is a loss function sat:':'sfyi."lg Pe (0) = 0
and Pc(u) Pe (t) if lui < !t:!. s is a scale 0:" si:e for

to'1e residuals Yi - XiS. vmer. Pe(t:) =-::2, (1.2) is
cr-'-ir'.ary least: s;uares regression, s rray be taker. as e
an ar;'it:ra..."'Y (non-ze-""O) ccnst:a..,t:, a...d a v-ariet:y of

comp,,1:aticnal tec.'l.-.iques a...--e available t:o caffee:': a

st:able solution (see for example [9] or [15J).



Ivnen Pc is a robust: loss func-:ion, for exu.lpla The :ret."'.od we use rrcre closely approxi.'lIa't:es

(1.3)

P II asc
"Cu) p'(u)Pc "-u-- C1. 7)

C1.2) generally eecomas a r.on-linear mirJ.'I'.ization prob-

lem. Eecau:se robus't: Pc are not: usually scale invar-ant:,

selection of s requires speci.al attention. The. "";l;ning

Ct.'1is is just -:."1e slope of the secant line joini.'1g

, Cu) to t'1e origin). If we define t.'1e weight::ir.g

f>.:nction

const:an-::" or "robust:ness parameter", c, d.i.reC"'"':y effect:s

·the depU'1:'uroa of the solution from leas't: sqW!.'""es end is

prior to the minimization wit.'1 regaro to effi-

cie."lcy.

Solution of (1.2) for the robust loss case may :le

obtained. by choosi:lg a sta.'"'l:i.'1g g1..:eSs, SCO), =i.ndi.'1g a t.'1en our approximation 'to C1. u.) :.s
scale s as a rebUS"t: funC't:ion of ':he residuals

Yi . x, 8CO), end ta.1d..-.g Gauss-Newton ite:-aricns:

, C ) "-xa Ck)
aCki-l) = SCk) + K (---5--)

C1.9)

Cl.L;.)
A little si::;Jlificai:i.on yields

,... , o '(Y.. c .. s <l.10)

(primas carivari.,es)
A "C').. end Pc j( , similarly defined, is an n x n diagonal

Iratrix. For non-convex Pc' the soll.lti::n obtained

:ray ee only a local :ni:'J.."'!lJlll ,,<= C1. 2) • It Il'ay also Ce

cesiracle to reccmpute residual scale as t.'1e i-::era-

-::'on proceeds, but he.."'e we do not inci\:C!e s ==a.lly

Th1,lS, at each itaration 'Noe solve '!:he '.vei.g..'1't:'!Q leas't:

ir. "::he ::tini:nizarion. The :ret.'1od of weigh't:ed leas't: sqW!."'es is widely !cCffl1,

To ease CCI:l?u-:ational expense of fcr.:d::g

o II (k) a.....d. ":0 avoi.d ':tose si"tt:a't:i.cr.s :k.ere 0 (}:)
'C 'to the r=bus"t ;."':.near pr:blem suggest:-='

;ossasses diSCO::-:i.iuit:i.es, -3;pproxir:'a1::,c:ls 'to -:.'":.e

c:::) nGc)U) r ;)1"'eSe"""'le ;:csitive4"..:: <\ '" ....._.. •• _ _

:cr.n TI".e scft.vare we have selves rc::us't

Ck 1) (. ) ,-1 r C' )3 +- = 3''< + sCX-X) X·p K
C

C... S)

of sof't"Aare a.--e lls-:ed. :...":. ':':..b:e 1 ..

:ea.s-e squares.. The weigi"rt: as ;Oar:

2. Sta."'ts, Steps, end Stoppi.-.g

G.• S) The ii:e:-ative process ::-equi..""Ss a s-::art, gCO), :;dch

has the ac.vant:age once -:r.e squa-'r'l3S

?robl.e.':l :"-r.p!i.ci:: in (1. E) is =:..rs't solvee, i..a. ,

subsec.uerrt 'Lay :e cb-:a.i.."'!.ed a't a f:'aet:'cn of
can ob-:a.ir"ed in cur prcgra.'!lS frcr.'l least:

soll.:::io:;, of Y = ;\SCO), f='om":he o·J'erCste.."T.li:.ed
sclu-eion in ":1".e nom of 'l = xs(Q) corrt;spcn,ds
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'l'abJ.e 1

it
!!!!!:! !!Sli) Fange ':\in.ing

wA(II) a { er.(uIAll (ulA) 1111 :; irA A = 1.339

Q 1111 > irA

wa(lI) a { C1 - (ulB)2]2 III! :; a a =
Q lal > B

WC(II) = 11(1+ (ulC)2) C " 2.385

"rM = 11(1+ I'JIFP F =

MER wa(u) = { 1 lui sH H=
Hllul luI >F.

WS'l'!C w. (\1) = ( tanh(ul1..)Y(ulL) 1.. =1.205

.,,:-(u) = { 1 lui l' 1=2.795

0 lui> l'

= ..- (ulRl2 ? =2.985

(perhaps usi."1g a Ciffere."\i: weight £'IT.c-::icn,scal.e, e'tc.),

or t:xm a user cefined sui:lreu'tine. ':'::e starti.,g scale

value is de'Cer.!'ined as tl".e n:ed:.an of tile absolute values

of ':he :lOn-zero resicuals ,[-XS(0) . '!he :xx1ulari"tY of

'=o"le scf::'...-are :rakes readily ;ossible t:l-.e inclusicn of

acdi-:icr& :"'esidual scalir.g functior..s (e.g.,

of :"esiduals).

-rhe leas'C square-s s'Car";, =r.d i'Cera'Cicns (steps)

fac':orizatbn. Sue-It tec.'miques <!.t'e generally advisable

for solving least prcble.'l:S and a...-.a especially

J:"9COomer.decl J-.ere where, a'C any i teraccn, :-e":,oleigl'lt..-.g

celetion creates red: dege."\eracy. Specifica.lly, we

f= an crt.lotogonal fac:oriza'Cion of X (or ·"r.(k)x) by

f.ouse.ltolc.er tral'lsformadons witil col= pivoting:

i:icning with respect to least squares solution is ide."\-

ti.cally thai: of X. 11'.e ccndii:icn of R is then

in O(p2) operations by the algori"thm of CUI'le e'C.al. [5].

If the condition of X as judged by t:."lis esti:rate is

sufficiently small, '.-Ie go ahead and solve t.lte (l.;eig.'l'Ced)

leas-: squares problem. Q-J'le..'"Wise we for.n COl!;Juta-

tionally llOre expensive singular value ceccmposition ef

X, deter.nir.e t."le rank of X wit."l respec: to the Ceri:ai."!-:y

of the da'Ca [10J, and then solve '?.e (weighted) least

squares problem.

We er:.ccurage t."le user 1:0 supply an i.-.dica:ticn of

the Ceri:ain"tY of t."le cata I.nen X is inp.:t, and to exar.lir.e

t.lotose sir.gular values which are b "':he ::OU.""S8

of hera"don to satisfy hir.self wi1:."l '=o"le 5-=e."\g-.h cf

t.lte \{e co, however, ?rcvide a ccnserllati'ie

default dei:e..""!:\i:.ation of ra."lk associated with t."le condi-

don of "':he rratrix at each iteration relai:ille to -::."Ie

where Q is an ort.lotogonal matrix, P is a pe..'"1m.l1:ation

llJatrix, and R is upper trapezoidal. L'nless X is exactly

sir.gular, R is an upper whose condi-

QXP (2.l)
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squa...""e-reot of t.."le precisic."l of -:he ccmputir.g ::'achi:.e

being used. Explicitly, when ti".e ccndi-.:ion .;st£·:-2::e

cf R exceeds € (whe..1"'lo! e is t."le !'ela'tive preci3icn of



(2.2)

resic;ua!s, (weighted) standa.""d errcr of t."le regressicr.,

(weigh:ted) R-squa.."'ed a:'ld r statistics, ar.d S4"'lo' cf

absOl1.1te residuals. The diagonal elerrents of ..he

leas"t squa.."'es projectiqn mat:'ix ("l'.a.t" a..."'e

To test fer convergence of the iterative process

we use the covergerlce crite.-'''ia suggested by Cennis (6].

At convergence the residuals, =
. (k) (k)

IV'1 C:I - X6' ), should be crthogonal to t.":e reo;.;eighted
h(k)

r.1at:'ix of carriers IN :<. As a. scale free ll'eas\.1X'E! of

ort.l'l.ogona."lity t.;e examine the cosine of -oe angle
(k) • (k)

bet"vleo..n r (j(,) and t.'le j th col1Jll1l'l of X, for

j=l, ... ,p, which is

(2.3)

whe.."'e II -II is tIle Euclidean norm. This is a scale
2

me l:"eas1.l..""'e of "t.'1e gradiel'!t for the ::Iinimiza:t:ion.

3• Sof1:',;cma Particula."'S

The sofrNare we proviee to compute iieratively

lines of Fcrt:'an cede, ccmrents, and dccur.erl"tatien for

rou'ti.:les to t.":e S"tandard des-

cribed in [14], :lId:"'.aS been chec:'<:ed by t.'1e P:ORT

'Jerifier' [16]. :'''lcl1Xied are the cont:'Ol s"tatelr.e.'ltS

ve:"":er [1] to procuce source ve...1"lSicns for IEM, c:C,

3urrou.g..iols, ::.cneywell, DEC ?DP-10, and linivac :-a.c."'li.nes.

:'0 cC:i;)u-ce "':o1.;.e :easi: sqi..lareS end i --:era-e:.cns

±e s:icrouti..-.e c.ol.:.sc=icn uses ':ac-:criza-

1::'005 by Householder 'C:'3.I1sforraticns, or

-"2.lue -cion frcm E:S?ACK r: Ca] • ::l.l [3 J cct".-
;t.t.-ees =.e.l, TIle weigh"t fur:.tt:'cr..s have bee.."...

S3.c.e--:z:ec"Cs. r,.Je supply a.."'I. i.."lteractive eri'/er

i..'1 =a't·::hs;tsterr..s. !..'1. additicn -:0 rcbus't least

roesults C:cefficient estiJl'.s:tes, =esidua!s, ar,d

f!..r'.al ttleigh'ts), ot.l-].SZ" statistics are (cptior.al1y)

383

also (optionally) ccrrputed. Stem-ane-leaf dispJ.a.ys

eill of the resid1.:.als, ...-eights, and r.a.t mat:'ix diago!".a.ls
can be produced. A group of test proble.':1S

:rem [7] are included.

The software is ava.i:.a.ble through IHSL Inc. at

the followi."lg address:

rnte.."'l'lational. l-';a:t."lema.tical ar.c. Statistical
t.i..Praries, L-:c.

Sixth Flcor G.'-l'B Building
7500 Eella.:L."'e
Houston, :'e:-as 77036 Us.c,
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SURVEY SOFTWARE -- AMETHOD FOR HANDLING THE VARIANCE PROBLEM
Clark Readler

Systems Software Division, U.S. Bureau of the Census
Suitland, Maryland

Abstract
Sample survey designs are generally complex, and require complicated variance cal-
culations. Most survey software packages either ignore the problem, or provide an
inadequate capability to obtain valid estimates of precision (standard errors).
Ageneral method is presented for handling thi s requirement.

INTRODUCTION'
Most probability sample surveys are not based on sim-
ple random or unrestricted random samples. Rather
they are usually often clustered, and
frequently employ ratio or regression estimates.
Some surveys employ a "probabil ity proportional to
size" sampling scheme. There also a growing trend
toward post stratification ratio adjustments. Using
various combinations of these designs produces ex-
tremely complicated variance formulas.
Unless a "most correct" estimation procedure is used,
it is infeasible to envision a routine that calculates
the variances for more than a few variance formulas.
It is also not feasible to envision a l"outine utiliZ-
ing the "most correct" approach that would handle
every survey design. [1J

CALCULATING VARIANCES

The problem of variance estimation may be answered by
extending the language of the tabulating systems.
This extension will be presented in the context of the
GTS languag.e.
The GTS language allows easy construction of tables
for any survey design. It is a" simple matter to con-
struct tables containing sums of observations, sums of
squares, sums of cross products, and counts of the
number of observations. The extension of the language
will include an APL like ability to perform table,
., column, and cell computations, (i .e. table compute, and

column compute statements). The commands will allow
tables to be conceptualized as "unitary" variables
and plugged into any variance equation.

CURRENT TABULATING SYSTE}lS

Numerous tabulating systems have been developed.
Among them are GTS (Generalized Tabulating System),
developed at the U.S. Bureau of the Census, TPL
(Table Producing Language) developed at the Bureau
of Labor Statistics, and CENTS AID II (Census Tabu-
lation System Aid) developed by Data Use and Access
Laboratories. These software differ from
statistical packages, such as SPSS, 1n that they are
actual tabulating languages and not a series of sta-
tistical procedures.
The tabulating systems are designed to create pro-
duction tables and tables for analyst review. These
languages can produce tables of first order
for almost any survey design (i.e. means, populat10n
totals, percents, etc.). However of these
terns provides an easy method for var1ance calculat10n.
except for the most simple .

EXTENSIONS TO ATABULATING LANGUAGE

Let R be the real numbers and f:Rk + Rwhere k=l
or 2. Suppose that Smxn' Tpxq , Urxs are tables
whose dimensions are indicated by their subscripts.
Then for k ,. 1

Smxn = f(Tpxq ) <=>

s(i,j) ,. f(t(i,j)) when m=p, n=q
s(i,j) = f(n)(t(i,l)) when m=p, q=l, and any n

s(i,j) = f(m,n)(t(l,l)) when p=l, q=l, and any m,n



where s(i,j), t(i,j) and u(i,j) are elements in the
i th row and the jth column of tables S, T, U
respectively.
Example:

r.
n1::N1

;NZ,
Let Tl = :N3 n3!

, !

;N4
,

n4!
I nS!...ellk I:Y1Zk l:Y15k1

I
I

TZ = i:Y33k

I
:Y5SJ

l:Y12k

'-YZ1k IT3 = Eyhk I
I

'YlsJ
Using the table compute statement the tables of
estimates T(X;j) and T(crij) can be comouted by

Table compute T3 = sqrt(Tl(l)*T1 (l )/Tl(2)*(1-Tl (2)/
T1 (1) )*(T3- (T2*T2/T1 (Z»/ (Tl (Z )-1»

Table compute T2 = T1(1)/T1(2)*T2

The design of the survey is a stratified random sample
with sub-groups producing a five by five table of
estimates.

The estimate of the total Xij for each sub-group e
within strata is given by Xij = where Yijk
denotes the kth observation in the yth sub-group
within the i th commodity group.

Nj - population total for commodity grouPi
ni = sample total for commodity grouPi

• - (EYijk)%)/(ni-1)
ni

lZ

when m=p=r, n=q=s

whf!n m=p-r, n=q, 5=1
when I1P'par, n=s, q=l

when I1P'p=r, q=l, 5=1
and any n

when map, n=q, r=s=l

when map, q=r=l, 5=1
and any n

when mar, n=s, p=q=l
when m=r, p=q=l, 5=1

and any n

when p=q=ras=l
and any m,n

=> T =Table Compute T = 7

Let Tl =

Table Compute T =T1*TZ

'az bzi
TZ = I

:cZ dt
... ::z

Then in the context of the GTS Language we have
la1*az bl*bZ""1

T = I
dl*dt
b1/aZ!

Table Compute T = T1/TZ(1) => T =
C1/CZ

bl+bZ:
Table Compute T =T1+T2(1,Z) => T = ,

1] 7 1
i

7 j

s(i,j) = f(m,n)(t(l,l),u(l,l)

s(i,j) = f(t(l,l),u(i,j»
s(i,j) = f(n)(t(l,l),u(i,l»

s(i,j) = f(t(i,j),u(l,l»
s(i,j) = f(n)(t(i,1),u(l,l)

For k • 2
Smxn = f(Tpxq,Urxs)
s(i,j) = f(t(i,j),u(i,j»

s(i,j) - f(t(i,j),u(i,1)
s(i,j) • f(t(i,l),u(i,j»
s(i,j) - f(n)(t(i,l),u(i,l»

EXAMPLE TZ and T3 have been transformed to:
To illustrate the power of these commands, consider a
survey designed to estimate the length of financing
for various export commodity groups. The exports are
classified into five commodity groups. Each export is
also classified into one of five sub-groups. A random
sample is drawn independently in each commodity group.

STRATA
Commodity 1
Commodity 2
Commodity 3
Commodity 4
Commodity 5

SUB-GROUPS
CASH 2 yr. 2-4 yr. 4-8 yr. 8 yr.

Xll X1Z

XZ1
T2 = X33 I

I
I

XS1
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all a12

21e T3 .. a33
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EQUIVALENT FORTRAN STATEMENTS

If a custom FORTRAN program was written, the same
concepts (creating table structures) would be employ-
ed. The final FORTRAN statements would be:

DO 100 i = 1, 5
DO 100 j = 1, 5

T3(i,j) = sQrt(Tl(.i,1)*Tl(i,1)/Tl(i,2)*
{1-n (i ,2)/T1(i,1»*(T3(i ,j)-T2(i ,j)*
T2(i,j)/T1(i,2»/(T1(i,2)-1»

100 continue
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e 200

DO 200 i =1,5
DO 200 j =1, 5
T2(i,j) =Tl(i,1)/Tl(i,2)*T2(i,j)
continue

The table compute command performs the same function
as nested DO loops, but is conceptually easier to
comprehend. Hence, the table compute, and analogous
column, row, and cell compute commands allow a
FORTRAN like ability for computina second order
estimates.

DISADVANTAGES

Although the parsing and implementation algorithms
are quite simple a lot of computer core will be
utilized. If the target machine for implementation
does not contain a paging mechanism, then about 80K
of core would be required with a user limit of 60000
tabl e cell s.

cm/ClUSION

There is no feasible way to create a routine that will
compute the variances for all possible survey designs.
The only possible answer to the problem of variance
calculation is to allow a table manipulation or matrix
computation ability. The table computation comands
can be compared to similar FORTRAN structures that
would be in a custom written program. The table com-
putation commands are also conceptually easier to

_comprehend than the associated FORTRAN statements.



Least Squares Spline for Incorrectly-Posed Problems: Information Theoretic Approach

Kunio Tanabe
Institute of Statistical Tokyo, Japan

and
Brookhaven National Laboratory, Upton, N.Y. 11973

The use of the least squares splines for solving ill-posed (multi-colinear)
problems is discussed. It is shown that choosing appropriate number of nodes, lo-
cations of nodes and degree of splines, we can control the smoothness of approxi-
mation in terms of spline functions, without resorting to Tikhonov's regulariza-
tion (ridge regression) method which is designed to adjust the smoothness of the
model functions to be fitted to data. It is also demonstrated that the Akaike's
Information Criterion can successfully be applied to select the appropriate number
of free parameters in the 'spline regression' models in which the number of nodes,
locations of nodes and degree of splines are variable, based solely on data without
using a subjective criterion such as significance levels in the statistical hypothe-
sis testing.

mate of the struotures.
The author re-examined t.he subject from the infor-

c.a.tion theoretical po1.'1t of view which was originally
introduced by Akaike in paper for fitting statisti-
cal models. Mr..kiI'.g use of the Kullback-Leibler 1.'1t'or-
mation quantity and the asymptotic theory of likeli-
hood ratio statistics, he pr:oposed a new statistic
based on what we call the Akaike's information cri-
terion(AIC) ,

The recover! of some definite structures from
noisy data forms an important subjec-t in experimental
sciences. The' in'/ene p::oblem' in physical sciences
are typical sources of this type of pr:o'olems. These
pr:oblems are inherently ill-conditioned in the sense
that small disturbances in data cause a disastrous
effect on the direct estimate of the true structure,
although sometimes the pr:oblems are conSidered im-
pr:operly fo:rI:1Ulated. They are called 'incorrectly-
posed pr:oblems' and extensive efforts have been de-
voted to them in the literature for a reasonable esti-

AIC = -2log of a model with
e respect to given data)

+(degree of freedom of the model),

value among competetive models with degree of
freedom. This pr:ocedure which we call minimum ArC
estimation(MAICE) from the s."Cisting methods in
that it does not requi--e such a subjective criterion
as the significance level in statistical hypothesis
testing. its significance 1.'1 the field of
time series analysis was well demonstrated in Akaike's
papers (1), apparently its potential use in other
areas such as pattern recognition is not yet fully
recognized. :n this note we show its applicability
to the resolution of noisy data by tr.eatir.g two typi-
cal pr:oblems.

The first ;roolem is the of a
noisy system of linear

P.x = b,

whose coefficient rr.atrix and the right side
oonstant 'lector are ccrr..lpted by random noise. The
problem is closely associat.ed with the numerical so-
lution of the equation of the first
kind,

r
) K(s,t)x(t)dt = b(s),

arA the model chosen is the one with the smallest
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whioh arises in many branohes of physical sciences,



?x)(y- - Y)/2

for a given u(x,t2). Approximating u(x,t1) L'l terms
of a finite linear combination of B-splines and dis-
c:retizing x-space by colloc:a.tion, we obtain a linear
algebraic equation. Fig. 1-1 shows temperature
profiles u(x,t) at the time t 1 =0.16 and t 2 =1.
Fig. 1-2 shows an solution obtai."1ed by applYing the
usual least squares method directly to the disc:retized
linear equation. Fig. 1-3-9 show the least squares
(cubic spline function) solutions with varJUlg nUJ:lber
of node points. Fig. 1-10 shows the profile of the
values of AIC vs. number of nodes of cubic spline
functions. Fig. 11 and 12 show quadratic and linear
spline solutionS which a=e respectively
selected by 11AZCE: from quadratic: ar.d. linear spline·
least squares solutions 'r.arious node poL"1ts.
Reoently Golub (4-b1 and. 'liahba [12] pro:posed methods
to determine ,using sill'.ilar statistical idea.

The seoond problem is reconstruction of a.
polynomial regression from The
difficulty of this type of smoothing is due to our
ignorance of degree of the polynolllial to be fitted to
given data. If we keep the orier of the regression
polynomial too low, the solution is biased from

If we allow too many ;arameters in
the regression polynomial, the is afi'eoted
with noise. Thus the main problem is the choice of a
suitable degree of the regression polynomial. This
problem was treated by Anderson 2 from the statisti-
cal r.y:pothesis testing point of View, But his
is root satisfaotorJ since it depend on subjective
judgement. Applying the procedcre, weare free
from the Fig. 2 shows the
regression polyncmials with degrees 0 cO 10, fitted
t.o data (top right) which are generated by addir.g
random numbers to the left),

evaluated at g=id ;oL'lts in ;(-1 ;lane.
The problem sketched hers will direct

application in the follOWing important fields of
science and engineerL'lg:

a) super-resolution of noisy ;atterns respective-
ly b1 radio telescopes, by mine
detectors, by electron and
X-ray ;hotographs,

b) deduction of profiles in the

+00.-va < x

where 1\ xli 2 = x*x, II x II = x*Wx and the posi-
tive definite matrix W, the vector x and the smooth-a
ing ;a.ra.meter? are determined from a prio.ri infor-
mation on the •true' solution. The :result thus obtain-
ed is given by

typically in the experimental sciences where phsycal
data. are measured by indirect sensing devices.

As was well demonstrated by Phillips (61, direct
applic:a.tion of usual numerical procedures to the
equation ',fill result in an osscillatorJ solution
which is oftennot in good agreement with the nature
of the problem. This subject has been discussed ex-
tensively in the literature and various smoothing
procedures have been They are classified
into two c:a.tegories. The first one mi.'1imizes

This problem is reduced to solve the ?redholm integral
equation of the fi=st

Phillips (6] and Tikhonov t9] devised this method.
:roster r3] and Strand &: Westwater t 7] gave statisti-
cal extensions and justific:a.tions of this approach to
certain models in which disturbances in the coeffi-
cient mat.rix were not taken into a.ccount. Their
method for deter.:lining the smoothing parameter is not
entirely satisfact.orJ since it on rather
precise knowledge of the covaria.nce mat:::ix ,.."'" the
stat.istical noise which is usually unknown. The
other method uses the singular value decomposition to
invert the equation by the lea.st squares method for
the rank deficient c:a.se. Golub &: Saunders C4-a.l ,
Hanson (5 J a..'ld Varah (11} used an ad hoc method for
detat'lilining an efi'ective rank of A. 30t.h approaches
·...ill give sat.isfactorJ results so long as 'Ii, xa a:'ldr or an effective rank of A are suitably chosen.
However the choices depend heaVily on subjective
judgement of the L'lvestigator.

To solve this problem we int:::oduced a statisti-
c:a.l mcdel which uses spline functions(Fig.1-3). Ap-
plyi.'lg the MAlCE procedure we c:a.n determine 'object-
ively' a reasonable approximat.e solution in which the
gain in resolution is the amplifi-
c:a.tion of the noise. Fig. 1-4-9 and 11 ..... 12 show the
approximate (spline function) solutions of the 'back-
ward heat equation for the system,



.A
.

""
"'l

_. ...
-...

_"
.IU
I _.... ,._. ..._.. _...- ....

"

si
gn
al

+
no
is
e

-..... •&.
.

tiC
I'l
l•
•

I6C
'lIlI&

'"
"'
",
.·
..
tJ
ad _......
.

....._. 'I
e
-
..
"
• _.- ........... ,... ..-

.'
..-
:
"',
.....

"
"
"
1
0
1
1
0
'

....,
......
.

'0
.
"

...... "C.
..
..
.,

......
...'

-'
'-
:0
..
-

..
..
II

...

si
gn
al -.

rcl
r"Y

:J
-(
'..
x_
.-
X
l'o
Y
"C
Y
-,
V
I

t:
.:.
ot
t.

"....
.""

......
......
.

.::a
I'_. IIC
.
.
.

......
.....

..
..
..
..
0

,... ..--.....GIII. .....,..... 1:1
11
It.... ..._
...

.....,
... ..,.. ...,

....
u

51
3

'I
Ir

Ia
'l.

Po
:r.r

n
ftf
:5
IQ
1i
J..
.o
••&

1t
lS
1'"

t.
.l:
:l

'R
IC

2.
1 &
1C
2S
21
)

4.

IG
'L

1
PO
lA
r

17
R
!5
1W

R
.
O
.1
6!
A
l!:
lS
(-
1
9

iU
C

-90
3"
-1.

O.
hA
l!C
fV

1.
71
13
10
'1

11

/lS
rt.

,
'O
IK
'

n
lIt
SI
l:U
.1
l.
O.

f-
17

RI
C

·6
C
20
.2
Sl
::l

IO
SG
Ct
V

l.n
'lS
56
S

11 .,
1\A

S.
6

...1
.$

,..11
1

'.:1
S.
O

C1
'!'

il\
... '. .

IU
·

l13
l'i.

1
1'1
11
'"

18
fte
SI
D
.A
..

I!-
10

RI
C llC
fY

'.1
N
31
36
4

".o
'n
!U
1

hS
l'l

,
po
rK
'

15
R
ES
Iw
;l.
O
.IO
O
'1&
'J
f-
IO

al
e

21
CS

'0. o.
&'
11
26
'10

1111'"

l13
l'i.

•
IIl
Jr
.T

1
lIt
SI
Q
Jl
l.
0.
20
11
:2
15
f·'

RI
C

·m
7.
21
'll
l

1.
1l
O
S3
;i1
5

Itl
X
D
f'I

'.3
':i
IO
llQ
ll

A
l

li
lt

•
1
:::=

:=
>

0$
..

--
u

11 11 '!i.
.'-
.:
).';
.
....

''
- ".S
··
u-

•
11
1

.-.
s.(
I

rn
:N
T

til
•

••
2

Af
S(
GJ

ttl

VL
Ri
C

..
.

£-
13

12 • •
1
..
,...

:IS
..
....

,...
•

A
'D

-$
.8

"J
.S

<..
u

C1
11

'-'" \0 o

F
ig
.l
(K
.
T
an
ab
e,
Su
ri
ka
ga
ku
,
fm
ch

19
16
)

e
e

Fl
g.
2
eK
.
Ta
na
be
.
19
14
)

e



atmosphere by measurir.g the spectral
distribution of infrared energy,

c) inference of aerosol size distribution from
diffusional decay measurements of the total
particle counts,

d) unsupervised estiJna.tion(learning without
teacher) of mixture of density functions
in pattern recognition,

e) numerical S<llution of ill-posed problems
such as harmonic continuation and numerical
inversion of Laplace transform.

1. a) H. Akaike, "In:f'or.nation theor'J and an ex-
tension of the maximum llkeli."ood princilpe,
2nd International Symposium on Znformation
Theor'J, PrOblems of Control and Information
Theory, B.N. petrov & F Csaki ads., 1973, pp.
267-281.
b) H. Aka.ike, " Fitting autoregressive models
for prediction" An."l. Inst. Statist. 11ath., vol.
21, pp.243-247, 1969.
c) H. "Statistica.l predictor identifi-
cation" Ann. Inst. Statist. 11a.th., vol. 22, pp.
203-217, 1970.
d) H. Akaike, "A new look at the statistical
model identification" IEEE Trans. on Automatic
Control, vol. AC-19, PP.716-723, 1974.

2. T:11. Anderson,-- " T'ne choice of the degree of a
polynoI:lia.l regression as a multiple decision
problem r" Ann. Math. Statistics, vol. 33, pp.
255-265, 1962.

J. M. Foster, "An application of the -
!(olmogorov smoothi."lg theory to l!'.a.trix inversion"

Appl. Math., vol. 9, pp.387-)92, 1961.
4. a) G.H. Golub and :1.A. Saunders, "Linear least

squares and quad.ra.tic prograJJllJli."lg" Integer a."ld.
Nonlinear r-cg:::ammi.."lg, pp.229-256, 1970.
b) G. H. Golub, r!. Heath and G. 'tlabba, "Cross-
validation and optil:l1.lm ridge regression"
Stanford Computer Science report, 1976.

5. R. J. Hanson, 'Integral equation of iJn.munology"
CACM, '101.15, pp.88J-890, 1972.

6. D.L. Phillips, "A teohnique for the nUI:lerica.l
solution of certai."l integral equations of the
first kind" JACM, vol. 9, pp. 84-97, 1962.
O.N. Strand and E.R. '/iestwater,":1inimum ?,,"lS

of the solution of a
Fredholm integral equation of the first kind"

Numer. Ar.al., vo:. 15, pp.287-295, 1968.

8. a) Ie. Tanabe, "Fitting regression curves and
surfaces by Akaike's information criterion"
Inst. Statist. Math. Res. Memo. n062, 1974.
b) K. Tanabe, "Statistical regulariztion of a
noisy ill-conditioned system of linear equations
by Akaike's in!ormation criterion, Computation
and Analysis, '101.6, pp.2-25, 1975.
Above two papers were presented at the 1974 IEEE:
Internatiol".a.l Symposium on Information Theory
held at Univ. NotreDa.me, Indiana, 1974.
c) K. Tanabe, "Treatment of Statistical errors"
(in Japanese), bit, vol. 7, pp.113-125, 1975.
d) K. Tanabe, "Statistical Approach to Incorrectly
Posed problems"(in Japa.."lese),
Sciences), no. 153, pp.60-64, 1976.

9. A.N. Tikhonov, "The stability of algorithms for
the solution of degenerate system of linear
algebraic equations" USSR Computational Math. a.."1d
Mathematical ?hysics, vol. 5, PP.181-188, 1965.

10. s., "The Applica.iion of numerica.l filtering
to the soluticn of integral equations encountered
in indi=ect sensing measurement" Jour. of ?ran.idi.'l
Inst, vol. 279, PP.95-109,196,.

11. J. M. Va.:rah, " On the num.erical solu";ion of 111-
conditioned lL"lear systems with applications to
ill-posed problems, SIAM Numer. Al'l,al., 'Tol. 2,
pp. 257-267, 197J.

12. G. 'liahba, "A s'1r'/ey of some smoothi."lg problems
and the method generalized cross-validation
for solving them': AMS Short. Course on
Statistics, 1977.

391



A SHORT ALGORITHM
TO TRANSFORM DISSIMILARITIES INTO DISTANCES

Hoang M. Thu
University of Cincinnati

ABSTRACT
In this paper, it is shown that given a set of dissimilarity data,

one can find a parameter Ymax so that for all Ymax the power
function x--> xY transforms the dissimilarities into distances.
An algorithm is given with its FORTRAN N module for computing Ymax.

II. POWER OF DISSIMILARITY
-EFFICIENTS INTO DISTANCES

co e

Proof:It is obvious.

Results similar to those proven below
for the family of power transformations
xY can be found for other families of trans
-formations such as linear, exponential and
logarithmic (or their composites).

First let us review some definitions. A
positive function R+defined on. the
set of objects I may the
-ioms

(1) d(i,j)=d(j,i»O for all i,jET
(2) d(i,i)=O - for all iEI
(3) d(i,j)=O =:;> i=j for all i,jd
(4) d(i,j)+d(j,k» d(i,k) for all i,j,keI
If d satisfies-(1)-(2) it is called a

dissimilarity coefficient
If d satisfies (1)-(4) it is called a

distance (or metric).
Mathematicians believe that the triangle

inequality axiom (4) is of central importance
to the metric structure of a space. Therefore
we focus our attention on dissimilarity coer.a°
-cients which violate this axiom, and choose
to work with dissimilarity coefficients satis
-fying axiom (3). +

Denote the composite of d:IxI->IR and
the power transformation x-> xY by dY • The
problem is to, find th: set of all
Y such that d( (4) for all
(i,j,k).

I. INTRODUCTION

Many data analysis techniques involve
the use of similarity or dissimilarity coeffi
-cients considered respectively as meas-ure-s 9f
"proximity" or lIdistancefr between objects in
a finite set. The purpose is often
a)to represent this set of objects as a

set of points in a Euclidean space so that
their distances match with the
between the corresponding objects
b)to find the best least-squares linear ad

-justment to this set of points by a hyper-
plane of small dimension.

Principal components, ordination in tax
-onomy or ecology, and multidimensional scal
-ing in psychology are examples of such meth
-ods.

According to some authors, including Wil
-Iiams and Dale(1965), Johnson(1968), Sokal
and Sneath(1973), Clifford and Stephenson(19
75), it is desirable that a dissimilarity co
-efficient be a metric even when the assumn
-tion of the Euclidean structure of the embed
-ding space is omitted.

Some computed dissimilarity coefficients
and dissimilarities coll.ected directly as data
fail to satisfy the axioms of a metric. In
these cases, transformations may help in "aid
-ing in the analysis of data by bending the
data nearer to the Procrustean bed of the as
-sumptions underlying conventional analyses."
(Tukey,1957)

This paper presents a simple algorithm
to transform dissimilarity coefficients into
distances.
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Given any
with a=b+c

(i) aY<b(+c
eli) aY >bY+cY

three positive numbers

for all y<l
for all y>l



The example is taken from Foa's study
of the exchange of material and psychological
resources through interpersonal behavior (1 9
il). Foa postulates a cyclic orderin2 of the
six resource categories being investigated;
love, status, information, money, goods and
services. The similarity data are converted
to dissimilarities which,in turn, are trans-
formed into distances by power transformation
with Y = 0.556701E 00 ( 0.56). The Figure
shows the projection of the configuration
the plane spanned by the two first eigenvec-
tors produced by a multidimensional scaling
procedure. The cyclic ordering is indeed re
-covered.

'N •. EXJ\,MPLEOORROLARY. Given three positive numbers a,b.c
the function y bY+cr:ar has at most one
zero.
---- It has only one zero if, in addition,
b<a and c<a.

Proof: Suppose that y-> bY +cY-aYhas a zero
Applying the previous Lemma to aYo and cYo ,
it is easily seen that this function has no
other zero.

Now if, in addition, b<a and c<a,i.e.,
b/a<i and c/a<l, there is an so that

bY' +c"Y1 -aYl" a"Y1 CCb/a)"Y1 +(c/a)Y1 -1) 0

since (b/a)Y and (c/a)"Y to zero as Y--'''''.
On the other hand as Y-,> O. Hence
the continuous function bY +cY -aY has a
zero Yf (0 ,Y1 ) •

PROPOSITION. Given a nonmetric dissimilarit
coefficient, t e set 0 a I uarameters
that dY is a metric is an interval (O,"Ymax]'

Proof: Let a,b,c be three positive numbers.
If or then aY .::.bY+cY , for all If
a>b and a>c then by the Corollary the function
Y bY c"Y-aY has exactly one zero, say yea,
b,c). Applying the Lemma, we have aY<bY+c"Y,
for all 0 <Y< y(a,b,c). -

TherefOre for any three pos itive numre!S
with a>b+c, there is a positive

number y(a,b,c) so that aY<bY+cY for all 0 <
The intersection of all such in

-l:ervals . Goods

Services

Love

n (0, Y(a , b , c) ]
a, b d (Ix I)

is the set of all parameters Y so that dY is
a metric. It is an interval, say (O'Ymax ].

Now in choosing a specific Y, werecom
-mend Y;u . Why?

remark that in the Euclidean errbed
-ding problem a), for y=O, the configuration
associated idth (I ,err) is equilateral and nec
essari1y lies in a space of dimension n-l, (n
being the number of objects in I). For y>O,
the smallest dimension of an embedding space
can only decrease. We conjecture that within
the class of power transformations of dissimi
larity coefficients on I, the one associated
with Tmax yields the space of smallest dimen
-sion. In any case Ymax is the point the most
far remote from the trivial case y=O.

III .ALGORITHl,j FOR POWER TRAt'lSFORMATION OF DIS
-SIMILARITY COEFFICIENTS INTO DISTANCES

(i)Find the triples (i,j,k) which violate
the triangle inequality axiom (4)
(ii) Determine the corresponding y(i,j ,k)'s

where 'f( i, j ,k) is the largest number so that
d y( i, j , k)

satisfies Axiom (4) for all permutations of
the triple (i,j,k)
(iii) Approximate the smallest of all

these Y(i,j,k) by bisection.
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Function GAM(X,Y,G2)

APPENDIX.
THE FORTRAN N CODE

FUNCTIC"'T Y,(2)
Gl=O.

3 GOLD=i;2
4 SA!-'=C G1+G2)*O.5
IF(AES •L':'. G001)
IF '-:;0"'"'' 1
G2=GftY
GO"'O 3

1 Gl=GPM
G0LD=G!'Y'
(,;0'1'0 4
E!TD

DO 100 I=l,m
Il=I+1
DO 100 J=Il,Nl
J1=J+1
DO lOa'
A=DISS(I,J)
B=DISS(J,K)
C=DISS<I,lO

11
X=A
A=C
c=x

11 IF 22
X=E
B=C
c=x.

22 U=A/C
V=B/C
IFCU**G+17**G.LE.l.-O .1) ..11HU ,v ,G)

100 CONTINUE

PRUIT 3,G
DO 55 I=l,N
DO 57 J=l,H
IF(DISS(!,J).EO.O)GOTO 57
DISSCI,J)=DISS(T,J)**G

57 Cm!TIHUE
55 CmrrI!ltTE

C pl'1t-TrR OF
C DISSIMlLAPITIES nTTt'l DIS7MlCF.S

Dn'ENSrO!r DISS(40 ,40)
1 FORrfAT (I3)
2 rOR!-'AT <lX,40F3,.0)
3 'GArIM,A= I ,F1S. 7)
READ 1,H
DO 10 I=l,N

10 READ 1,(DISS(I,J),J=1,N)
G=l.
f'r2=rT-2
N1=rT-1

ILl"!'U'RN

yes

no

X=B
yes E=C

C=X

X=A
es A=C

(D,_I:.:::::-.j C=X r----

A=DISS(I,J)
E=DISS(J,K)
C=DISS(I,K)
with-I>J>K



A NOTATION FOR SPECIFYmG CONTINGENT EFFECTS

m DESIGNS

Ervin H. Young

Institute for Research in Social Science
University of North Carolina at Chapel Hill

in multi-way analysis-of-variance
such effects, provides an example
The principal advantage claimed

This paper defines contingent effects
designs, presents, a notation for specifying
the notation, and discusses its advantages.
for the notation is its transparency.

Interaction effects, when they cannot be ne-',
glected, give rise to conceptual difficulties in inter-
preting the results of the analysis of variance. When
two or more variables participate in an interaction,
it may not be possible to make a global statement about
the effect of any of them on the response variable, for
the effect of each of them may depend on the combina-
tion of the levels of all the others. To get beyond
the significant interaction, to find out how the effect
of one factor depends on the level of the others, one
needs to recast the model, using effects not found in
the saturated fully-crossed design. I assert here,
with only the justification of a single example, that
the set of all contingent effects, as defined below,
provides a sufficient basis for this recasting of the
model, while the set of all nested effects does noc.
I go on to present a notation for specifying contingent
effects, give an example of the notation, and discuss
its advantages.

Restricted and Contingent Effects Defined
To define contingent effects, it is helpful to be

able to refer to crossed and nested effects. A crossed
effect is produced by one column of the saturated fully
crossed design matrix, which is constructed by taking
the direct matrix product of the indicator matrices for
each factor in the design, in the same order as that
employed in constructing the design table. The design
matrix column for a restricted effect is obtained from
the column for the corresponding-crossed effect by
setting to zero all elements that do not correspond to

proper subset of the. cells of the d.esign table;
such an effect will be said to be restricted to that
subset of the design. The cross-classification of a
proper subset of the factors will be called a marginal

A nested effect may then be defined as
a crossed effect restricted to one cell of the marginal
design table for a non-trivial subset of the factors

of

that do not participate in the crossed effect. A
contingent may be defined as a crossed effect
restricted tc any proper subset of the cells of the
marginal table for a non-trivial subset of the
factors that do not participate in the crossed effect.
Clearly, for any non-trivial design, the set of all
contingent effects is a superset of the set of all
nested effects.

.! Familiar .t?E. Generating Unrestricted Effects
Various simple devices are widely employed for

naming the main and interaction effects in statements
of analysis-of-variance models. Canned regression pro-
grams that permit only main-effects models usually use
the simplest syntax, a list of the symbols for the re-
gressors, with succeeding symbols in the list separated
by blanks, as in the SPSS procedure REGRESSION.
for interaction effects may be constructed by separat-
ing the symbols for the participating factors with as-
terisks, as in the MODEL statement for SAS procedures

and Alternatively, one might choose to en-
close the name of each main or interaction effect in
parentheses; for example, see Goodman (197u). For
maximum emphasis, I have chosen to combine both of
these conventions, using parentheses to surround the
names of effects and asterisks to separate the names
of factors participating in an interaction. For
example, the model that includes the main effects of
factors A, B, and C, and the interaction of Band C,
is specified as

MODEL = (A)(B)(C)(B*C) /
with the slash terminating the model specification.

Hierarchical Ncn-hierarchical Snecification
Goodman (1970) defines a hierarchical model as a

subset of the fully-crossed design which, for every

395



interaction effect that it includes, also includes the
main effects of the factors that participate in that
interaction, and the interaction of every proper subset
of them. This motivates the definition of a hierar-

specification of a model as one which, for each
interaction that it explicitly includes, generates
also the main effects and lower-order interaction ef-
fects needed to make the model hierarchical. A model
specification that does not provide this service is
naturally called non-hierarchical. Thus a hierarchi-
cal model may be generated not only by a hierarchical
specification, but also by a non-hierarchical specifi-
cation (if the user wants to go to that trouble),
while a non-hierarchical model msut be generated by a
non-hierarchical specification. For example, the model
specified non-hierarchically above as

MODEL· (A) (B) (C) (B*C) /
can be specified hierarchically as

MODEL(R) • (A)(B*C) /
where the parenthesized H after MODEL indicates a
hierarchical specification.

Table 1: An Implementation Example

1 2 3 4 5 6 7 8 9 e------ (A EQ 2 (C WHEN (A EQ 2
! ! .f. ill..ill ill OR B EQ 2) OR B EQ 2»

1 1 1 -1 -1 -1 F 0 0
1 1 2 -1 -1 1 F 0 0
1 2 1 -1 1 -1 T 1 -1
1 2 2 -1 1 1 T 1 1
2 1 1 1 -1 -1 T 1 -1
2 1 2 1 -1 1 T 1 1
2 2 1 1 1 -1 T 1 -1
2 2 2 1 1 1 T 1 1

logical operator arithmetic relation
where an arithmetic relation has the form

Nested Effects
A complete set of nested effects is defined here

as a set of effem produced by rescricting some

and where logical operators are chosen from the set
relational operators are chosen from the set

{EQ,NE,GE,GT,LE,LTI, and the "value" of a factor is
interpreted as the ordinal number of one of its levels.

For an example, consider again the three-factor
model. If one wishes to include the main effects of
A and B, but restrict the main effect of C to those
cells for which either A or B are at their second
levels, one may specify

MODEL = (A)(B)(C WHEN (A EQ 2 OR B EQ 2» / •

Extending E.h! Contingent Effects
A contingent effect was defined above as one

derived from a crossed effect by restricting the
latter to a proper subset of the cells of the mar-
ginal design table for some proper subset of the fac-
tors that do not participate in the crossed effect.
Any such restriction may be specified by a statement
whose truth characterizes only those cells to which the
effect is restricted. A sufficient set of statements
for specifying any such restriction is the set of
statements of the form

MODEL = (A (B*C»

crossed effect to each cell in turn of the marginal
design table of some subset of the factors that do not
participate in the crossed Thus, where B and
C are dichotomies, the effects

(A WHEN (B EQ 1) (A WH!lI (B EQ 2»

MODEL = (A (B»

(A WHEN (B EQ 1 C EQ 1»
(A WHEN (B EQ 2 C EQ 1»
(A WHEN (B EQ 1 AND C EQ 2»)
(A WHEN (B EQ 2 AND C EQ 2»,

but any proper subset of either set is incomplete.
Since it is often convenient to have a shorthand nota-
tion for a complete set of nested effects, I have pro-
vided one:

form a complete set, as do the effects

and

for the two examples just given.

Comoarison of this Notation with Matrix
The example shown here compares the notation pre-

sented above with the input to a program that requires
direct matrix input of design matrices. The syntax
described above is implemented in a forthcoming SPSS
procedure for fitting models to categorical data (see
Young, 1978). The comparison program is GENCAT, a
program for fitting models to categorical data using
weighted least squares (see Landis, et al., 19i6).
The test data were analyzed by Giles, et a1., (19i6)
to compare racial prejudice with social class prejudice
with respect to the strength of their effects on the
probability of parents' engaging in some overt form of
protest against public school desegregation. Figure 2
displays the SPSS statements necessary to replicate
the three models for which Giles, et al., report re-
sults. Figure 1 shows the same three models defined
in input to GENCAT. These inputs have been submitted
to their respective computer programs, and have pro-
duced results in substantial agreement with each other
and (with one minor exception) with those of Giles,
Gatlin, and Cataldo. (1976).

The principal advantage of the notation
here is its transparency. It minimizes the amount of
information that the user must acquire to use the pro-
gram, over and above that which he requires for an
understanding of the program's output. The user who
understands what a main effect parameter may mean, and

logical operator
logical operator

relational operator value

arithmetic relation
arithmetic relation

variable name

Imolementing the Notation
Continuing with the example just given, Table 1

illustrates the implementation of the notation. In
Table 1, the first three columns show the stub of the
design table for a design with three dichotomous fac-
tors A. B, and C. Columns 4 through 6 show the class-
ical analysis-of-variance design matrix columns for
the main effects (A), (B), and (C) respectively. The
next two columns display the truth table for the pro-
position (A EQ 2 OR B EQ 2), in both truth-value nota-
tion (column 7) and numeric notation (column 8). The
last column shows the design matrix column for the con-
tingent effect (C WHEN (A EQ 2 OR B EQ 2», which
was obtained by a dyadic (element by element) multi-
plication of column 6 by column 8.



e
e

e
F
ig
ur
e
1:

GE
NC
AT

In
st
ru
ct
io
n
s
to
R
ep
li
ca
te
R
es
ul
ts
o
f
G
Il
es
,
e
t
a
l.

(1
97
6)
.

F
ig
ur
e
1.
co
nt
in
ue
d.

o
0
0
0
0
0
0
0
0
0

1
R
'I
S
H

&
C
'I
S
H

IN
I*
E

1
1
1
1
1
1
1
1
1
1
1

1
0
1
0
1
0
1
0
1
0
1

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0

o
0

0
(3
6
F
2
.0
)

o
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

o
0

0
(3
6
F
2
.0
)

o
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

o
0

0
(3
6F
2.
O
)

0
0
0

1
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

o
0

0
(3
6
F
2
.0
)

o
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

o
0

0
(3
6
F
2
.0
)

0
0
0
0
0

1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0

o
0

0
(3
6F
2.
O
)

o
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

o
0

0
(3
6
F
2
.0
)

0
0
0

0
0
0
0

1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

o
0

0
(3
6
F
2
.0
)

o
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

o
0

0
(3
6
F
2
.0
)

0
0
0

0
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0

o
0

0
(3
6
F
2
.0
)

o
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

o
0

0
(3
6
F
2
.0
)

o
0
0
0
0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0

o
0

0
(3
6
F
2
.0
)

o
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

0
0
0
0

0
o

0
0

(3
6
F
2
.0
)

o
0
0
0
0
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0
0

o
0

0
(3
6
F
2
.0
)

o
0
0
0
0
0
0
0
0
0
0
0
0
0

1
0
0
0
0
0
0
0
0
0

o
0

0
(3
6
F
2
.0
)

0
0
0

0
0
0
0

0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

0
o

0
0

(3
6F
2.
O
)

00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0

o
0

0
(3
6F
2.
0)

o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
0
0
0

0
0
0

o
0

0
C
36
F
2.
0)

o
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
1
0
0
0

0
0

o
0

0
(3
6
F
2
.0
)

o
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0

o
0

0
(3
6
F
2
.0
)

o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0

o
0

0
(3
6
F
2
.0
)

o
0
0
0
0
0

0
0
0
0

0
0
0
0
0
0
0
0
0
0
0

1
0
0

o
0

0
C
36
F
2.
0)

O'
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0

o
0

0
C
36
F
2.
0)

o
0
0
0

0
0
0
0
0
0
0
0
0

1
(3
2
F
2
.0
)

1
1
1
1
1
1
1
1
1
1
1
1
1

o
1
0
1
0
1
0
1
0
1
0
1
0

0
0
0 1

0
0
0 1

0
0
0 1 o
0 1

0
0
0 1

0
0
0 1

0
0
0 1

0
0
0 1

0
0
0 1

0
0
0 1

0
0
0 1

0
0
0 1

0
0
0 1

0
0
0 1

0
0
0 1

0
0
0 1

0
0
0 1

0
0
0 1

0
0
0 1

o
0
0
0

1
o
0
0
1

0
0
0 1

0
0
0 1

0
0
0

10
1

1
1

1
0
1

o
0 1

o
0 1

o
0 1
0
0
0

1
o
0 1

o
0 1

o
0 1

o
0 1

o
0 1

o
0 1

o
0 1

o
0 1

o
0 1 o 1

o
0 1

o
0 1

o
0 1

o
0 1

o
0 1

o
0 1

o
0 1

o
0 1

o
0 1

o
0 1 1 o

0
0
0 a

0
0
0 8

0
0
0 a

0
0
0 8

0
0
0 8

0
0
0 8

0
0
0 8

0
0
0 8

0
0
0 a

0
0
0 8

0
0
0 8

0
0
0 8

0
0
0 8

o
0
0
0

8
0
0
0 8

0
0
0 8

0
0
0 8

0
0
0 8

0
0
0 8

0
0
0 8

0
0
0 8

0
0
0 a

0
0
0 8

0
0
0 7

1
1

1
0
1
0

SA
TU
RA
TE
D

FU
LL
Y

C
R
O
SS
D

1
1
1
1
1
1

1
1
1
1

o
1
0
1
0
1
0
1
0
1

1
1
0
0

1
1
0
0

1
1

1
1
0
0
0
0
1

1
1
1

0
0
1

1
1
1
1
1

1
1

1
1
1
1
1
1
1
1
1
1

o
1
0
0
0

1
0
0
0

1
o
1
0
0
0
0
0
1
0

1
0
0
0
1
0

1
0

1
0
1

o
1
0
1
0

1
0
1
0
1

1
1
0
0
0
0
0
0
1
1

o
0
0
0

1
1
0
0

1
1

1
1
0
0

1
1
0
0

1
1

o
0
0
0
0
0
1
1
1
1

1
1
0
0

0
0
1
1
1
1

0
0
1
1
1
1
1

1
1
1

o
1
0
0
0
0
0
0
0

1
o
0
0
0

0
1
0
0
0

1
o
1
0
0
0

1
0
0
0

1
o
0
0
0
0
0
0
1
0
1

o
1
0
0
0
0
0
1
0
1

0
0
0

1
0
1
0
1
0
1

o
0
0
0
0
0
0
0
1

1
1
1
0
0
0
0
0
0
1
1

0
0
0
0
1
1
0
0

1
1

o
0
0
0
0
0
1

1
1
1

o
0
0
0
0
0
0
0
0
1

o
1
0
0
0
0

0
0
0
1

o
0
0
0
0
1
0
0
0

1
o
0
0
0
0
0
0

1
0
1

o
0
0
0
0
0
0
0
1
1

0
0
0

0
0
0
0
0
0
1

(3
2F
2.
O
)

1
1
1
1

1
1
1

1
0
1

0
1
0
1

1
0
0

1
1
0
0

1
0
0
0
0

1
1

1
0
0
0

0
0
0

o
I
I
I

1
1
1

1
0
0
0

1
0
0

1
0
0
0
0
0
1

1
0
0

0
0
0
0

0
0
1

0
1
0

1
1
0
0
0
0
0
0

1
0
0
0
0
0
0

0
0
0

1
1
0
0

1
0
0
0
0
0
0

o
0
0
0
0

1
1

o
0
0
0
0
0
0

1
0
0
0
0
0
0

1
0
0
0
0
0
0

o
0
0
0
1
0
0

1
0
0
0
0
0
0

o
0
0
0
0
0
1

o
0
0
0
0
0
0

1
0
0

0
0
0
0

0
0
0

0
0
0
0

0
0
0

0
()
0
0

o
0
0
0
0
0
0

1
0
0
0

-
0
0

0
0
0
0
0
0
0

o
0
0
0
0
0
0

o
0
0
0
0
0
0

o
0
0
0
0

()
0

o
0
0
0
0
0
0

(3
6
F
2
.0
)

o
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0

(3
6
F
2
.0
)

0
0
0

0
0
0
0

0
0
0
0
0
0
0
0
0
0

(3
6
F
2
.0
)

o
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0

(3
6
F
2
.0
)

0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0

(3
6F
2.
0)

o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

(3
6
F
2
.0
)

o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

(3
6
F
2
.0
)

o
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0

(3
6
F
2
.0
)

o
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

(3
6
F
2
.0
)

1
1
1
1
1
1
1

1
0
1
0
1
0

o
1
1
0
0

1
0
0
0
1
1

1
1
1
1
1
1
1

o
0
0
0
0

0
o
0
1
0
0
0

o
0
0
0
1

0
1
0
1
0
1
0

o
0
0
0
0
0

o
0
0
0
0
1

o
1
1
0
0

1
o
0
0
0
0
0

0
0
0

1
1
1

0
0
0

0
0
0

o
0
0
0
0
0

o
0
0
0

0
0

o
0
1
0
0
0

o
0
0
0
0
0

o
0
0
0

1
0

o
0
0
0

0
0

o
0
0
0
0
0

o
0
0
0
0

1
o
0
0
0
0

0
o
0
0
0
0
0

o
0
0
0
0
0

0
0
0

0
0
0

o
0
0
0
0
0

o
0
0
0
0

0
0
0
0

0
0
0

o
0
0
0
0
0

o
0
0
0
0
0

0
0
0

o
0
0
0
0
0

0
0
0

o
0
0
0
0
0

0
0
0

o
0
0
0
0

0
0
0
0

o
0
0
0
0
0

0
0
0

o
0
0
0
0
0

0
0
0

o
0
0
0
0
0

0
0
0

o
0
0
0
0
0

0
0
0

o
0
0
0
0
0

0
0
0

32 1
1
1

0
1
0

1
1
0

1
1
0

0
0
1

0
0
0

0
1
0

0
1
0

0
0
0

0
0
0

1
1
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
1
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

1
0
0
0

1
0
0
0

1
o
0
0
0

1
0
0
0

1
o
0
0
0

1
0
0
0

1
1
0
0

1
0
1
0

1

1 1
1

o
1

o
0

1
1

o
0

o
0

o
0

o
1

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

o
0

1 o
0

1 o
0

1 o 1 o
0

1 1 1 o 1 o
0

1 o
0

1

7
1
1
1
1

o
1
0
1

0
0
1

1
o
0
0
0

o
0
0
0

0
0
0

0
0
0
0

1
o
0
0
0

0
0
0

0
o
0
0
0

0
0
0

0
0
0
0

0
0
0
0

0
o
0
0
0

o
0
0
0

o
0
0
0

o
0
0
0

o
0
0
0

0
0
0

0
o
0
0
0

o
0
0
0

o
0
0
0

o
0
0
0

\>
J
O
O
O
O

0
0
0
0

o
0
0
0

o
0
0
0

o
0
0
0

o
0
0
0

o
0
0
0

o
0
0
0

o
0
0
0

8 0
0
0

8
o
1
0
0

8
o
0
1
0

8
0
0
0

1
8

o
0
0
0

a
0
0
0

0
8

o
0
0
0

8
o
0
0
0

8



Fi
gu
re
1,
co
nc
lu
de
d.

Fi
gu
re
2:

SP
SS

In
st
ru
ct
io
ns

to
R
ep
li
ca
te
R
es
ul
ts
of
G
il
es
,
et
al
.
(1
97
6)
.

0
0
1
1
0
0

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
o
0
0
0
1
1
1
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0

0
0
0
0
0
0
0

1
1
0
0

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0
1
1
1
1
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0

RU
N

NA
M
E

RA
CE

&
CL
AS
S
PR
EJ
U
D
IC
E,
G
IL
ES

ET
A
L
.,A
S
R
41
(4
/7
6)
,2
80
-2
B
B

o
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0

1
1
0
0
0
0
0
0
0
0

VA
RI
AB
LE

L
IS
T

PR
O
TE
ST
R
r.B
LA
CK

RA
CI
SM

CL
A
SS
IS
M

IN
CO
M
E
ED
UC
AT
IO
N

o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0

IN
PU
T

M
ED
IU
M

TA
PE

0
0
0

0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
1
1
0
0

1
1

N
OF

CA
SE
S

UN
KN
OW

N
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0

1
1
1
1

AL
LO
CA
TE

TR
AN
SP
AC
E
=
10
00

8
1

1
0

0
0

C
36
F2
.0
)

VA
R
LA
BE
LS

PR
O
TE
ST
R
D
IS
A
PP

D
ES
EG
'N

HN
DL
G
&
SA
ID

SO
TO

SC
H
O
FF
IC
LS
I

1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

7.B
LA
CK

CH
AN
GE

IN
K
ID
S'

SC
H

7.
BL
AC
K

FR
OM

71
-7
2

fO
72
-7
31

8
1

1
0

0
0

C
36
F2
.0
)

RA
CI
SM

SU
M
M
ED

RA
CI
AL

PR
EJ
U
D
IC
E
SC
OR
E

1
o
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

CL
A
SS
IS
M

SU
M
M
ED

CL
A
SS

PR
EJ
U
D
IC
E
SC
OR
E

1
S

1
1

0
0

0
C
36
F2
.0
)

VA
LU
E
LA
BE
LS

PR
O
TE
ST
R
C
l)N
O

(2
)Y
E
S

1
0
0
1

0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

7.B
LA
CK

Cl
)O
TH
ER

(2
)<
30
7.
71
-2
,)
30
7.
72
-3

1
8

1
1

0
0

0
C
36
F2
.0
)

RA
CI
SM

CL
AS
S
IS
M

Cl
)B
EL
O
W

M
ED
IA
N

(2
)A
BO
V
E
M
ED
IA
N
/

o
O.
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

IN
CO
M
E
C
l>
<=
$1
49
99

(2
)$
15
00
0+

1
8

1
1

0
0

0
C
36
F2
.0
)

ED
UC
AT
IO
N
(1
)<
=H
S
D
IP
LO
M
A
(2
)D
EY
O
N
D

HS
/

o
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0

0
0
0
0
0
0

CR
OS
ST
AB
S

V
A
RI
A
BL
ES

=
PR
OT
ES
TR

TO
ED
UC
AT
IO
N
C
l,
2)

I
S

1
1

0
0

0
(3
6F
2.
0)

TA
BL
ES

=
PR
O
TE
ST
R

BY
7.B
LA
CK

BY
RA
CI
SM

BY
CL
A
SS
IS
M

0
0
0
0
0

1
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

BY
IN
CO
M
E

BY
ED
UC
AT
IO
N

1
8

1
1

0
0

0
(3
6F
2.
0>

ES
TI
M
A
TE

=
lol
LS

I
RE
SP
O
N
SE

=
LI
N
EA
R
/

\>
I

o
0
0
0
0
0

1
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0

M
OD
EL
CH
)
=
SA
TU
RA
TE
D

1
\0

8
1

1
0

0
0

C
36
F2
.0
)

M
OD
EL

=
(M
EA
N)

(Z
BL
A
CK
)

CO
o
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

CR
AC
IS
M

W
IT
H
IN

CI
NC
OM

E*
ED
UC
AT
IO
N»

8
1

1
0

0
0

C
36
F2
.0
)

(C
LA
SS
IS
M

W
IT
H
IN

<I
NC
OM

E*
ED
UC
AT
IO
N»

1
o
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

M
On
EL

=
CM

EA
N)

(Z
BL
A
CK
)

8
1

1
0

0
0

C
36
F2
.0
)

<R
AC
IS
M

W
HE
N

<I
NC
OM

E
EU

1
AN
D
ED
UC
AT
IO
N

EU
1»

o
0
0
0
0
0
0
0
0
1

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0

CR
AC
IS
M

W
HE
N

CC
IN
CO
M
E
EO

1
AN
D
ED
UC
AT
IO
N

EO
2)

OR
7

1
5

1
(3
2F
2.
0)

FI
N
A
L

M
OD
EL

CI
NC
OH
E
EO

2
AN
D
ED
UC
AT
IO
N

EO
1
»
)

a
l
l

1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1

CC
LA
SS
IS
M

W
HE
N
(IN
CO
M
E

EO
2

AN
D
ED
UC
AT
IO
N

EU
2
»
1

0
1
0

1
0
1
0

1
0
1
0
1
0
1
0
1
0
1
0

1
0
1
0
1
0
1
0
1
0
1
0
1

O
PT
IO
N
S

11
0
0
1
1
0
0

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

ST
A
TI
ST
IC
S

16
o
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
·0

0
1
1
0
0
0
0
0
0
0
0

o
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
1
1
1

S
1

1
0

0
0

(3
6F
2.
0)

ZB
LA
CK

M
AI
N
EF
FE
CT

o
1
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

8
1

1
0

0
0

(3
6F
2.
0)

R
'I
SH

W
HE
N
IN
C=
ED
=L
O

o
0
1
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
8

1
1

0
0

0
<3
6F
2.
0>

R
'IS
H

W
HE
N
IN
C
NO
T=

ED
0
0
0

1
0
0
0
0

0
0
0
0
0
0
0
0
0
0
'0
0
0
0

0
0
0
0
0
0
0
0
0
0

S
1

1
0

0
0

C
36
F2
.0
)

C
'IS
H

W
HE
N
IN
C=
ED
=H
I

0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

e
e

e



who understands how a large interaction parameter ren-
ders the main effects of participating factors mean-
ingless, will be able to employ the syntax presented
here to analyze the dependency of some factors' effects
on the levels of other factors, using only the rudi-
mentary formal logic that he presumably already knows.
As an ancillary benefit, since the specification of a
contingent effect parameter also states its interpre-
tation. the specification syntax itself can be used to
label the parameter on the program output.

It might be thought from a cursory inspection of
Figures 1 and 2 that another major advantage of this
notation is brevity. the Figures more close-
ly, however, one will notice that the last of the three
models, the only one that requires for its specifica-
tion the notation for contingent effects that is novel
to the work reported here, requires 168 non-blank key-
strokes is SPSS versus 305 in GENCAT. On the other
hand. the second model. which includes two complete
sets of nested effects. requires 87 non-blank key-
strokes in SPSS vs. 640 in GENCAT. and the saturated
fully-crossed model requires 49 keystrokes in SPSS vs.
2109 in GENCAT. Thus, in specifying the contingent
effects model, the user has gained an advantage of .
less than 2 to 1 with respect to physical effort,
whereas the advantage is of the order of 7 to 1 for
the nested model and 40 to 1 for the saturated model.
For this reason, brevity is not claimed as the major
advantage of the notation for contingent effects.

One should also note GENCAT's versatility with
respect to the variety of models that can be fit. The
syntax presented here is not intended to capture the
full generality of GENCAT.

Summary
This paper defines contingent effects in the

analysis of variance, and presents a notation for
specifying such effects in computer program input.
The principal advantage of the notation is its trans-
parency. It prOVides a self-interpreting cnemonic
Qyntax that even a relatively unsophisticated user
can employ to carry a traditional analysis of variance
to its conceptual completion.
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EDIT AND IMPUTATION PROCEDURES AT STATISTICS CANADA

Len Baniuk, J. H. Johnson, G. Sande
Statistics Canada

Displays concerning three aspects of the editing and imputation of statis-
tical data will be made. (1) The methods of Fellegi and Holt for coded data
which has been used for census data processing. (2) Imputation of survey data
to an administrative data frame which has been used in the place of ratio esti-
mation methods. (3) A numerical data edit and imputation test system which is
under development. Each of these uses a hot deck to supply donated values in
the imputation. For numerical data, the matching is done by examining nearest
neighbours. The use of imputation methods, rather than ratio estimation, yields
consistent subpopulation values and uses the frame data to compensate for survey
biases. Methods from operations research are used to identify minimal edits and
the fields to impute in the numerical data test system.

A FAST ALGORITHM FOR ESTIMATING THE NUMBER OF
POLYNEUTRONS DETECTED IN THE PRESENCE OF POISSON NOISE

W. A. Beyer
Los Alamos Scientific Lab., Los Alamos, NM

C. Qualls
Department of Mathematics and Statistics
University of New Mexico, Albuquerque, NM

An experiment was conducted by Turkevich et al ['Search for Particle-Bound
Polyneutron Systems', Phys. Rev. Lett. 38, 1129-1131 (1977)J to measure the
number of polyneutrons produced in the reaction: 800 MeV protrons + target
polyneutrons + fragments. The detection of possible decays of polyneutrons

is complicated by similar decays arising from noise (an unknown amount of con-
tamination is introduced). Maximum likelihood estimates of the number of poly-
neutrons present can be obtained in an implicit manner by the use of a computer.
However, in order to obtain these estimates within a reasonable mnount of com-
puter time, a probability generating function idea is applied reSUlting in a fast
computing algorithm. A goodness of fit result is also obtained. (Both the decays
of polyneutrons and the decays of contaminates are modeled by pure death processes

with known Poisson decay rates. )
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as SEX WITHIN AGE _,
of those four

RUMMAGE - A DATA ANALYSIS SYSTEM

G. Rex Bryce, Del T. Scott and Melvin W. Carter
Brigham Young University, Provo, Utah

This paper outlines unique approach to the analysis of nonorthogonal data
sets and it1s implementation in the Rummage package. Starting with the simple
cell means model a straight forward reparameterization yields a model which is
analogous to the usual overparameterized model but which retains the full rank
properties of the cell means model. Using English like commands, the testing of
most hypotheses of interest in a designed experiment and the estimation of margin-
al means under various model assumptions are demonstrated. This includes exact
methods in the case of fixed models and approximate methods for mixed and random
models.

One of the most important features of the Rummage package is the inclusion
of expected mean square coefficients with each Allova table. This additional
information allows one to ascertain which factors in the model are contaminating
each mean square. In mixed and random models this information is used directlY
to indicate appropriate test ratios. In the fixed model the terminology
lIexpected mean square coefficient ll is actuallY a misnomer. However, the coeffi-
cients are still extremely useful to show the degree of contamination with other
marginal means in each means square.

A PREVIEW OF P-STAT 78
Roald Buhler and Shirrell Buhler

Princeton University Computer Center
87 Prospect Ave.

Princeton, N. J., USA

P-STAT 78, a new version of P-STAT now being tested, has substantial changes
. ,

in interactive use, cross-tabulation and data display.
Interactive support now allows automatic screen holding. There is also an

increased amount of prompting. HELP has been implemented in all new commands and
is graduallY being incorporated into the rest of the system.

Cross-tabulation changes include: (1) nested tables, such
BY URBAN.RURAL WITHL.1' EDUCATION, which provides a two way table
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variables - the levels of SEX appear within each level of AGE, etc. and; (2)
an interactive dialog mode that permits a table to be defined, displayed, some
of its levels combined, re-displayed and optionally converted into a P-STAT file.

LIST, a new data display program, prints a file as neatly as possible while
using a minimum page or screen width. Its features include: (1) deciding
automatically how many decimal places a variable has and only printing that many;
(2) printing score labels instead of values whenever possible; (3) providing
optional sub-group headings wi thin the listing, and; (4) parsing of labels to
be readable in various column widths.

Examples of output from these programs will be shown.

GRAPHICS FOR SEASONAL TIME SERIES ANALYSIS

William S. Cleveland, Douglas M. Dunn, and Irma J. Terpenning
Bell Laboratories, Murray Hill, N. J.

The analysis of seasonal time series often presents problems because of the
two-way structure in the data. Looking across months (i.e., observations within
a cycle) one is interested in the long-term (trend) properties of the data.
Analysis of the data for a given month (i.e., across cycles) provides insight
into the form of the seasonal behavior. Seasonal adjustment algorithms can often
aid in the analysis of seasonal data by decomposing it into trend, seasonal, and
irregular components.

Graphical methods are presented which both summarize and display the within
and across months structure of seasonal data. Alternative plotting procedures as
well as different types of displays are developed and contrasted. Displays are
presented to aid in the evaluation of a seasonal adjustment decomposition with
attention focused on detecting "1eakage ll of one component (e.g., seasonal) into
another (e.g., trend).

Various sets of seasonal macroeconomic data are used to illustrate the
methods and displays. All procedures are implemented using portable graphics
software.
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MODULAR PROGRAMMING
IN

NUMERICAL AND STATISTICAL ANALYSIS

W. H. Connelly
Babcock and Wilcox Power Generation Group

Nuclear Power Generation Division
P. O. Box 1260, liYnchburg, Virginia 24505

General requirements for constructing a useful system of computer programs
for performing numerical and statistical analyses are given. Although the overall
system becomes "computer-dependent", the major portions· of the calculations are
shown to be based on computer-independent, or portable, FORTRAN subroutines. The
modular structure utilizing overlays, dynamic storage allocation and free format
input, is illustrated by construction on a CDC-7600. The desirable character-
istics which result are viewed from a programmer's viewpoint and from a user's
viewpoint. Replacement of outdated algorithms, expansion of existing capabil-
ities and addition of new ones are discussed. Examples are taken from numerical
and statistical techniques such as least squares and spline interpolation. The
one-to-one correspondence possible when documenting input and output requirements
of the modules is illustrated. The use of such a system in construction, testing
and verifying large scale engineering and other scientific application programs
is also illustrated.

CONFIDENTIALITY PROCEDURES IN STATISTICAL AGENCIES

L. H. Cox
Statistical Research Division
U.S. Bureau of the Census

G. Sande
Business Survey Methods Division

Statistics Canada

Statistical agencies must insure that none of their published data can be
related to identifiable individuals. Differing methods are used to achieve this
end in the cases of (1) microdata files for public use, (2) tabulations from
population census and (3) tabulations from economic censuses .. The various tech-
niques used include identifier suppression, detail suppression, data perturbation,
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random rounding, category roll up, cell and table suppression, range publication
and delayed publication. These actions may be carried out directly by the statis-
tical agencies or required by them of the users of their confidential data. In
this poster we seek to illustrate the techniques used and some analysis of their
impact. Many interesting problems remain concerning the impact of statistical
analysis on the confidentiality of data collected by statistical agencies.

URWAS
UNIVERSITY OF ROCHESTER WEIGHTED P:NOVA SYSTEM

Michael L. Davidson and Jerome D. Toporek, University of Rochester

The question of why different Analysis of Variance programs give different
results for the same problem has been asked and discussed many times in recent
years. The concept of cell weighting has been presented as a unified explanation
of this problem. URWAS, the University of Rochester Weighted P:NOVA System is a
generalized JiliOVA program which provides the user with the ability to perform
tests of hypotheses and estimation of parameters based on explicitly requested
cell weighting, rather than on program imposed sample size related cell weighting.

URWAS is now available for distribution. The current version of the program
along with associated documentation is presented. Information on distribution

implementation is also given.

ESTIMATING LATENT SCORE REGRESSIONS WHEN MEASUREMENT
ERROR VARIANCES ARE KNOWN

Noel Dunivant, Ph. D., Assistant Professor
Psychology Department, New York University

6 Washington Place, 7th Floor, New York, NY 10003

The purpose of this paper is to briefly review four statistical methods for
estimating errors-in-variables models, to describe the properties of the estima-
tors produced by these methods, and to compare several computing algori tbms for
determining the estimates. These methods share three Characteristics: (1) they
require a priori information about the variance structure of the measurement
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errors; (2) they are appropriate for the mUltiple regression or analysis of
covariance situations; and (3) errors in equations as well as errors in variables
are permitted. The first method, developed by Stouffer (1936a,b), Koopmans (1937)
and Lindley (1947), produces maximum likelihood estimators, and a likelihood ratio
test can be derived for testing hypotheses about coefficients of the structural
relations. Stroud (1968, 1972, 1974) used Wald1s (1943) method of unrestricted
maximum likelihood to devise an asymptotic chi square test of the hypothesis of
equality of conditional true score means for two groups. Fuller (1977) and his
associates have developed consistent estimators of the true score parameters from
a covariance matrix which is constrained to be positive definite. In addition,
the principle of k-class estimators is incorporated into the estimation equations
to produce estimates in small samples which have smaller mean square error. For-
mulas for large sample confidence intervals are given which include information
about the sampling distribution of the measurement error variances, if available.
In the last procedure standard psychometric formulas are employed to estimate
true scores for each person; then the usual regression analysis is performed
(Porter & Chibucos, 1974). In the paper I demonstrate how each of the four
methods can be computed using FORTRAN programs and statistical computing languages
such as OMN"ITAB II and SPSS. Primary emphasis is devoted to a comparison of the
performances of the following programs in terms of accuracy, speed, and ease of

"use: Fuller1s SUPER CARP, Joreskog1s LISREL, SPSS, and OMN"ITAB II.

PATIENT PROFILING SYSTEMS THROUGH A MINICOMPUTER

Turkan K. Gardenier, Ph. D.
Columbia University and Teka Trends, Inc.

The paper will present a multi-module computer package with applications to
health evaluation facilities in an outpatient clinic. The system has been de-
signed to incorporate patients I demographic characteristics as well as to gener-
ate continuous indices of improvement over time. Statistical techniques designed
by the authors to monitor changes in enzyme levels, physician1s global evaluation
of improvement and the co-occurrence of various health status indices are comput-
erized to summarize the physical status of the patient.

Demonstrations will be provided of the case-by-case applications of the
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profiling systems associated with charts and superimposed graphs of summary status
over time. Characteristics of the system are reminiscent of the profiling depicted
by SMA-12 summaries.. They further provide diagnostic profiling of a patient's
status by reference to correlations of status with probability of future outome.

A summary of system efficiency will be presented through trade-offs of the
sort-merge algorithm used in this system with those of extended core space in
a larger scale computer.

BMDP-77 GRAPHICAL DISPLAYS AND RECENT PROGRAM RELEASES

MaryAnn Hi11
Health Sciences Computing Facility) UCLA) and
Brentwood VA Hospital Statistical Research Unit

The developers of BMDP-77 believe that graphical displays are an integral
part of data analysis and the communication of results. Displays include) for
example)

a matrix of shaded symbols representing correlation size;
side-by-side histograms of data for each cell in analysis of variance;
side-by-side plots for four variables of cell means for multifactor
data structures;
plots of factor loadings) factor scores and canonical variable scores;
multiway contingency tables;
user-defined symbols to represent additional variables in bivariate
scatter plots

There are many types of plots for residuals:
residuals vs. predicted values
squared residuals vs. predicted values
residuals vs. residuals of deleted cases
y - y + bx. vs. x.
residuals vs. cumulative normal

In one program the residuals to be plotted can be standardized) weighted) or for
deleted cases. A plot is also available for both the observed and the predicted
value versus each independent variable.



New programs available in BMDP-77 include
P2F Two-Way Tables - Empty Cells and Departures from Independence

Analyzes a subset of cells in a frequency table or identifies the
outlier cells that contribute most to a significant chi-square test.

P3F Multiway Frequency Tables -- The Log-Linear Model
Forms and fits a log linear model to multiway frequency. tables.

PlL Life Tables and Survival Functions
PAM Description and Estimation of Missing Data
P9R All Possible Subsets Regression

With residual analysis.
PAR Derivative-free Nonlinear Regression
P3V General Mixed Model Analysis of Variance

With parameter estimation by maximum likelihood or by restricted maximum
likelihood.

Copies of the BMDP-77 manual are available for inspection. It has been total-
ly rewritten and includes a comprehensive description of the new programs listed
above in addition to the 26 programs released in 1975. Current and past issues of
BMD Communications are also available.

BMDP PROGRAMS UNDER DEVELOPMENT AND HSCF TECHNICAL REPORTS

MaryAnn Hi11
Health Sciences Computing Facility, UCLA, and
Brentwood VA Hospital Statistical Research Unit

A Stepwise Logistic Regression program and a k-Means Clustering program are
scheduled for release in late 1978 by BMDP. Output and documentation for these
programs are displayed.

The Logistic Regression program proceeds in a stepwise manner to estimate
the parameters of the linear logistic model. In this model the dependent variable
is dichotomous (e.g., success or failure) and the independent variables are cate-
gorical or continuous. The program generates design variables for the categorical
variables and their interactions. In the stepping process the design variables
for each categorical variable (or interaction term) are considered as a set at
each step, a continuous variable or one set of design variables is added to or
removed from the model. The program estimates the parameters to maximize the
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likelihood function. Several graphical displays and tabulations are available to
augment the analysis.

The k-Means Clustering program defines initial cluster centers (seeds) and
assigns each case to the closest center. The seed is redefined after all cases
are allocated, and the process is repeated until there is no further change. A
metric inequality is applied to the distances between the present cluster centers
and the original centers and the distances between cases and the original seeds,
greatly reducing the number of distance computations necessary. Usually, for
each iteration, only distance to cluster centers that are close to the case need
recomputation. Winsorization is used in computing cluster centers and variances
-- differences exceeding a threshold are truncated to the threshold. Missing
values are treated in distance calculations as if they are very large; they are
ignored in computing centers and variances. Graphical displays and comparative
statistics are available for deciding the number of clusters justified by the
data.

A sampling of HSCF Technical Reports on display and available for discussion
include
8. Annotated Computer Output for Factor Analysis Using Professor Jarvik 1 s

Smoking Questionnaire (1974) - James Frane and MaryAnn Hill.
23. Asymptotic Standard Errors and Their Sampling Behavior for Measures of

Association and Correlation in the Two-Way Contingency Table: I. Testing
the Null HYPothesis; II. Power and Confidence Limits (1976) - Morton B.
Brown and Jacqueline Benedetti.

24. LSD: Linear System Function and Derivatives Subroutine (1976) - R. I.
Jennrich and A. D. Thrall.

28. Randomization or Minimization in the Treatment Assignment of Patient Trials:
Validity and Power (1977) - A. B. Forsythe and F. W. Stitt.

29. Dud, A Derivative-Free Algorithm for Nonlinear Least Squares (1977) -
M. L. Ralston and R. I. Jennrich.

30. Robust Estimators of Location for Biomedical Applications (1977) - MaryAnn
"'Hill.

32. Ridge Regression, Bayes Estimation, Variance Components and the General Mixed
Model (1977) - R. I. Jennrich.

34. Letting BMD08V Tell Us Something About Randomized Blocks, Repeated Measures
and Split Plots (1977) - R. 1. Jennrich.

35. Methods in BMDP for Dealing with Ill-Conditioned Data (Interface, 1978)
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- James W. Frane.
36. Some Problems Faced in Making a Variance Component Algori thIn into a General

Mixed Model Program (Interface, 1978) - R. I. Jennrich and P. F. Sampson.
37. A Computer Program for Model Building with Stepwise Logistic Regression

(Interface, 1978) - L. Engelman.

A COIvlPARISON OF THE CALCULATION OF SAIvlPLE MOMENTS
IN BMDP, SAS AND SPSS

F. Kent Kuiper, Senior Statistician
Boeing Computer Services Company

Seattle, Washington

The computational accuracy of BMDP, SAS and SPSS are compared in their cal-
culation of the sample mean, standard deviation and correlation. Identical
experiments were run on all three packages, and in the case of BMDP and SPSS,
they were run on both IBM and CDC computers. The results are compared to similar
results in a previously published article on the IBM versions of BMDP and SPSS, 4It
which showed inaccuracies in computation of the correlation coefficients
using Pearson Corr in SPSS. These inaccuracies appear to be corrected in the
latest versions of this package.

DATA ANALYTIC DISPLAYS FOR RIDGE REGRESSION

R. L. Obenchain
Bell Laboratories
Holmdel, New Jersey

Ridge regression reveals the possible effects of ill-conditioning among
regressor variables upon the relative magnitudes and signs of fitted regression
coefficients. But, in addition to the ridge trace plot of coefficients, one
also needs to examine various summary statistics and estimated mean-squared-
error traces to develop a well informed opinion about which ridge estimators are
Ilbetter ll than the least squares solution. This approach is illustrated by out-
put from a Fortran program, REL.A.XR, that implements techniques from my published
and unpublished papers.
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A COMPARISON OF FOUR ALGORITHMS FOR COMPUTING EXPECTATIONS,
VARIANCES AND COVARIANCES OF .MEAN SQUARES

F. M. Speed, A. T. Coleman, L. W. Murray
Mississippi State University

This paper considers the following algorithms: i) the procedure in Rummage;
ii) VARCOMP - the SAS procedure; iii) "SYNTHESIS" - Hartley's Method; and
iV) the procedure suggested by Hocking and Speed. (Biometrics, 1974). Points of
comparison include i) which algorithms calculate which moments, ii) what type
models are allowed by each algorithm, iii) core size requirements of each algo-
rithm.

In addition, certain computational techniques are discussed. These include
i) the use of the Cholesky decomposition in finding the moments of the mean
squares and ii) a method of efficiently generating the covariance matrix.

Finally, there is a discussion of the lack of uniformity of expected mean
square tables.
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