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Abstract

The article discusses the asymptotic theory of method moments estimators

for nonlinear models. The Hartley-Booker estimator, scale invariant M-

estimators, two- and three-stage least squares estimators are examples. The

null and non-null distributions of two companion test statistics are found.

This theory is a convenient general purpose tool and may be used to find the

asymptotic distributions of other estimators such as nonlinear least-squares,

seemingly unrelated regressions, and the normal maximum likelihood estimator

for multivariate nonlinear regression under non-normal errors.

KEY WORDS: Nonlinear regression, method of moments, M-estimators,

simultaneous equations.



1. INTRODUCTION

The Hartley-Booker (1965) estimator is, to our best lmowledge, the

first use of the method of moments per se in nonlinear statistical models.

Their method was proposed for the univariate response nonlinear model

*where e is an unknown p-vector. The space 1. of possible values for the

sequence eXt) is divided into p disjoint sets 'Ii. The moment equations

i= 1,2, ... , P

A

are computed and solved to obtain an estimator 8. They used it as the first

step of a scoring method but we consider it as an esttmator in its own right.

From our point of view, a handier notation results by letting

where ei is the i-th elementary p-vector. The moment equations are now

written as

The Hartley-Booker estimator is, then, the solution of m (8) = 0 .n

A problem with this approach is that the equations m (8) = 0 may notn

have a solution. This problem is eltminated by defining eto be the maxtmum of

That is, redefine the estimator as the solution of an opttmization problem

whose first order conditions tmply m (e) = 0 when the moment equations cann
be solved.

This formulation of the Hartley-Booker estimator eliminates the need to

restrict the number of disjoint subsets of I to exactly p. The vectors Zt
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of the moment equations

may have length greater than p. But in this case, one can argue by analogy

to generalized least squares that an optimization problem with objective

function

will yield more efficient estimators. One notes that this is the optimization

problem which defines the two-stage nonlinear least-squares estimator

(Amemiya, 1974). Only the restriction that Zt be chosen according as xt e Ii

or not prevents the modified Hartley-Booker estimator from being properly

considered a two-stage nonlinear least-squares estimator.

These remarks motivate a general definition of the method of moments

estimator. To permit consideration of iteratively rescaled estimators such

as three-stage nonlinear least squares, both the moment equations

and the objective function
,.

sO.) = dem (t-.),,, ]n n n

of the optimization problem are permitted to depend on a random variable

Tn via the argument,. in m(y,X,,.,A) and in the distance function dem,,.] •

In this article, the asymptotic distribution of an estimator defined as

that which maximizes Sn(A) is found for data generated according to the

multivariate nonlinear model
o

q(Yt'Xt'Yn ) = et
We find that this theory is an exceptionally convenient method for finding the
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asymptotic distribution of estimators which would not ordinarily be thought

of as method of moments estimators such as least squares. Several examples

are included: scale invariant M-estimates, nonlinear least-squares, seemingly

unrelated nonlinear regressions, maximum likelihood for multivariate nonlinear

regression, two-stage nonlinear least-squares, three-stage nonlinear least-

squares.

Two test statistics for the hypothesis

H: = 0 against A: 0

are provided together with their null and non-null asymptotic distributions.

The first requires the unconstrained optimum of s and the other then

optimum subject to the constraint h(A) = o. In applications it often happens

that either the constrained or unconstrained estimator is much easier to

compute than the other. Thus, one or the other of these statistics will be

the more convenient to use.
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2. PRELIMINARIES

The M-variate responses Yt are generated according to

t = 1,2, ... , n

with xt ex', Yt e 1J, et e e, and e r. The sequence (Yt } is actual1¥

doub1¥ indexed as (Ytn} due to the drift with n; the sequences (et }

and (xt } are sing1¥ indexed and the analysis is conditional on tXt} throughout.

Assumption 1. The errors are independent1¥ and identical1¥ distributed

with common distribution p( e) •

Obvious1¥, for the model to make sense, some measure of central tendency

of pee) ought to be zero but no formal use is made of such an assumption. If

Pee) is indexed by parameters, they cannot drift with sample size as may 'Yo .n
The models envisaged here are supposed to describe the behavior of a

physical, biological, economic, or social system. If so, to each value of

(e,x,'Y°) there should correspond one and on1¥ one outcome y. This condition

and continuity are imposed.

Assumption 2. For each (x''Y) e x, X r the equation q(y,x,'Y) = e defines

a one-to-one mapping of e onto 1J denoted as Y(e,x,'Y)' Moreover, Y(e,x,'Y) is

continuous on e X x, X r .
It should be emphasized that it is not necessary to have a closed form

expression for Y(e,x,'Y)' or even to be able to compute it using numerical

methods, in order to use the statistical methods set forth here.

Repeatedly, in the sequel, the uniform limit of a Cesaro sum such as

is required. In the nonlinear regression literature much

attention has been devoted to finding conditions which insure this behavior

yet are plausible and can be easily recognized as obtaining or not obtaining
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in an application (Jennrich, 1969; Malinvaud, 1970a; Gallant, 1977; Gallant

and Holly, 1980). Details and examples may be found in these references;

we follow Gallant and Holly (1980).

Definition. (Gallant and Holly, 1980) A sequence [vt } of points from

a Borel set is said to be a Cesaro sum generator with respect to a probability

measure defined on the Borel subsets of u and a dominating function b(v)

with Jb < co if

for every real valued, continuous function f with If(v)\ S b(v) •

Assumption 3. (Gallant and Holly, 1980) Almost every realization of

[vt } with vt = (et,xt ) is a Cesaro sum generator with respect to the product

measure = J J IA(e,x) dP(e) and a dominating function b(e,x). The
xe

sequence [x.} is a Cesaro sum generator with respect to and b(x) = J b(e,x)dP(e) .. e
For each x e X there is a neighborhood N such that J sun.. b(e,x) dP(E) < co •x e -l\1x

Theorem 1. (Gallant and Holly, 1980) Let Assumptions 1 through 3 hold. Let

f(y,x,p) be continuous on X X X K where K is compact. Let

for all (y,x) e X t and all (p,y) in K X A where A is compact. Then both

(lin) and (lin) f[Y(e,xt,y),xt,p] dP(e) converge uniformly
e

to

S J f[Y(e,x,y),x,p] dP(e)
X e

*except on the event E with P (E) = 0 given by Assumption 3.

In typical applications, a density pee) and a Jacobian

J(y,x,yO) = (a/ay')q(y,x,yO)

are available. With these in hand, the conditional density



may be used for computing limits since

6

The choice of integration formulas is dictated by convenience.
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3• ASYMPrOTIC PROPERTIES

The assumptions are somewhat abstract due to the scope of applications

envisaged. As a counterbalance, an example is carried throughout this section.

The best choice of an example seems to be a robust, scale-invariant, M-

for the univariate model

due to both its intrinsic interest and freedom from tedious notational details.

The error distribution Pee) for the example is assumed to be symmetric

with J \eldP(e) finite and J e2dP(e) > O. The reduced form is
e e

Y(e,x,y) = f(x,y) + e .

Proposal 2 of Huber (1964) leads to the moment equations

with A= (a', cr)' • For specifity let

'l((u) = i tanh (u/2) ,

a bounded odd function with bounded even derivative and let

A

There is no previous estimator T with this example so the argument T ofn

m(y,x,T,A) is suppressed to obtain

m(y,x,A)
= - f(x,el)/a}(%el f(x,el)

'l(2[[y - f(x,a)J/aj -
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The distance function is

d(m) = 1 ,-21ll m ,

again suppressing the argument T, whence the estimator is defined as

that value of Awhich maximizes

= m' (>.) m (>.) •n n

Notation

mn()..) = (l/n)

m(y,T,A) = JSm(Y(e,x,y),X,T,A] dP(e)
xe

sn()..) = d[mn(A)

The identification condition is

*Assumption 4. The sequence yO converges to a point y . The sequencen
converges almost surely to a point T* and ,Jii(''' - T*) is bounded in probabilit -n n

There is an association of A to y, denoted as ).. = g(y) , which satisfies

ID(y,l,g(y)] = 0 •

The sequence = has - >.,*) = 0 where >.,* = g(y*) and 0 is

*finite. The constraint h(A) = 0 is satisfied at >., •

For the example, let 0* solve S dP(e) = a solution exists
e

since G(cr) = 1- S dP(e) is a continuous distribution function if Pee)
e

does not put all its mass at zero. Define g(y) = (y,cr*). Then

Sm[e + f(x,y),x, (y,cr*)] dP(e)
e

= (. Ie :(e/a:) dP(e) (%A) f(X'Y))
S (e/a ) dP(e) - .
e
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As the integral is zero for every x, integration over X. with respect to IJo

must yield

ID(y,g(o)] =

as by Assumption 4.
Notation

M= SS (%A')mCY(e,x,y*),X,T*,A*] dP(e) dlJo(x)
X. E-

D = (o2/omom ') d(O,T*)

J = M' D S D M

= -M' D M

In(h) = Dn(A) Sn(A) Dn(h) Mn(A)

For the example, direct computation yields
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s = °

M=
F'F

D = -I

where

F'F = J (%e) f(x, e) (%e') f(x, e) d\.L(X)\.. *
I

This the fact that e are odd and ,

are even. If Pee) does not all its mass at zero and F/F is non-singular

then S, M, and D have full rank by
* * *Assumption 5. There are bounded, r, T, A containing y , T , A

for which the elements of m(y,x,T,A), (a/OAi) m(y,x,.,.,>-.) , (02/0AiOAj) m(y,x,T,A,)

are continuous and dominated by on ij I TX AX f ; b(e,x) is
that of 3 and the overbar indicates closure of a set. The distance

function d(m,T) and derivatives (%m) d(m,.,.), (02/om om') d(m,T) are continuous

on X Twhere 6 is some containing the zero vector. The constraining

function h(A,) and its derivative H("-) are continuous on A. The matrix D is

negative definite, (%m) d(O,T) = ° for all .,., and M, H have full rank.

To illustrate the construction of b(e,x), consider for the

\\m(l)(y,x,A)\\ = - f(x,e)J/a11·\\(0/oe) f(x,e)\l

=5 \1(0/06) f(x,e)\\

becaus e (u) I = I tanh (u/2) I =5 What is required then is that
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sUPell(%s) f(x,e)\\ be integrable with respect to 1Jo. Or, since A is compact,

(%e) f(x,e) continuous in (x,e) and r compact would bound \\(%s)f(x,e)\l in

which case b. (e,x) = const. One accumulates b. (e ,x) in this fashion to satisfy
k k

the assumptions. Then b(e,x) of Assumption 3 is b(e,x) = E b.(e,x). Because
k

and its derivatives are bounded, this construction of b(e,x) is not very

interesting. More interesting, and detailed, constructions are given in

Gallant and Holly (1980).

Theorem 2. (Consistency) Let Assumptions 1 through 5 hold. There is a

sequence £tn1 such that for almost every realization of = A* and

there is an N such that (O/OA) s ) = 0 for n > N. Similarly, there is an n
sequence r and associated Lagrange multipliers e such that r = A*n n

_ '">J ("oJ

and (O/OA,)[ sn(Xn) + J = 0, h( An) = 0 for n > N •

Proof: The result will be proved for Fix a sequence Let} • E, this
"fixes 'T .n

(02/0AiOAj) = EetEe(02/ometome)

+

The assumptions suffice for an application of Theorem 1 and the conclusion that

m (A), (O/OA.) m (A), and (h) converge uniformly on A tonk n k' n

m(y*,'T*,;.J, and the domination

required to apply Theorem 1 permits the interchange of differentiation and
- * * *)integration as needed. Since m(y ,'T ,A = 0, one can shrink the radius of

A to AI so that m (A) e B for all A c AI and n suitably large whence s (A) ,n n
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s(y*,·t,AJ, and s(y*,,.*,;..) respectively. As

(%m) d[O,,.*] = °and (o2/omom ') d[O,,.*] is negative definite, (%>.,)s(y*,,.*,;..*) =°
and is negative definite. Thus, one may shrink the radius

-( * * ) * "of A' to A" so that s y ,,.,>., has a unique maximum at >., = on A •

Let A maximize s subject to h(;") =°and;" e A" • Now h(;"*) = °n n
and sn(>") converges uniformly to s(y*,,.*,;..) on A" so that for large n the

solution lie on the boundary of A" • The existence of the Lagrange

multipliers and satisfaction of the first order conditions follows.

As A" is· compact, has at least one limit point let converge to
m

Then, by uniform convergence,

-( * (0"s y ,,. , A. =.tlIIl S Y '''n' Ann nm m m m

.tim s (yO , '
rHCO n nm m m

-( * * *= s y , ,. , ;.. ) .

But ;..* is the unique maximum of s(y*, ,.*, >.,) on A" whence =;..* 0
One may note that the domination in Assumption 5 suffices for several

interchanges of integration and differentiation. One consequence is that

M= (%i!)

-( * * *) (/ ) ( )whence, since m y ,'T';l = ° and 0 om dO,,. = °,

Assumption 6. The elements of m(y,x,,.,>.,) m'(y,x,,.,;") and

are continuous and dominated by b[q(y,x,y) ,x] on X 1, X T X AX r; b(e,x) is
that of Assumption 3. The elements of (*/o,.om')d(m,,.) are continuous on X T
where (9 is some open sphere containing the zero vector
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The first integral condition is central to our results and is apparently

an intrinsic property of reasonable estimation procedures. It was verified

for the example as an intermediate step in the verification of Assumption 4.

The second integral condition is sometimes encountered in the theory of

maximum likelihood estimation; see Durbin (1970) for a detailed

It validates the application of maximum likelihood theory to a subset of the

parameters when the remainder are treated as if known in the derivations but

are subsequently estimated. The assumption plays the same role here. It can

be avoided in maximum likelihood estimation at a cost of additional complexity

in the results; see Gallant and Holly (1980) for details. It can probably be

avoided here but there is no reason to further complicate the results in view

of the intended applications. For the example, there is no dependence on T

hence nothing to verifY. Had an iteritively rescaled estimator been considered,

m(y,x,T,A) = - f(x,S)]/T}(%A)f(x,S) with T supplied by a previous fit,n
the condition would have been satisfied as the off-diagonal corner of our

*previously computed M is zero for any cr

Theorem 3. (Asymptotic Norn'lality of the Moments) Under As sumptions 1

S may be singular.

Proof. Given 1- with \\1,\1 = 1 consider the triangular array of random
variables



Choose a continuous

14

Each Ztn has mean, JeZtn(e) dP(e), zero by assumption and variance

= •

By Theorem l and the assumption that = (y*,,,,*) it follows that

(l/n)V = 'S wheren

Now (l/n)Vn is the variance of (l/Jn)t:=lZtn and if = a then
converges in distribution to by Chebyshev's inequality.

Suppose, then, that > a. If it is shown that for every va

B = a where

B = I CZt (e)]Zt
2 (e) dP(e)n "'t"- Je [ Iz I>eJVnJ n n

then (n/V)B = a. This is the Lindberg-Feller condition (Chung, 1974);n n
it implies that converges in distribution to •

Let h> a and e > a be given. Choose a > a such that B(Y*,X*) < h/2 where

x e ,x,y*) ,x, T*, '"*]f dP( e) d\.J.(x)

-( * *)This is possible because B y,t.. exists when a = a .

function cp(z) and an Nl such that, for all n > Nl

I (z) < cp(z) $ I (z)
[lzl>eJVJ Clzl>ea]n

and set
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Bn(y,A) =
e-

x tt'm[Y(e,x,y),xt ,T*,A]12dp(e) .

By Theorem 1, 'B'n(y ,A) converges uniform1¥ on f* X X* to, say, B(y, A) • By

** f'J f'J**assumption tim (yO ,1°) = (y ,A ) whence tim B (yO ,AO) = B(y ,>., ) • Then
!HCXl n'"n !HCXl n n n

there is an N2 such that, for all n> N2 , B (yO ,>.,0) < !f(y*,x.*) + h/2. But,n n n
for all n > N = maxtNl,N2},B :5 13 (yO ,AO) whencen n n n

Now T is tail equivalent to a sequence contained in T. Thus , withoutn
loss of generality 10 may be taken to be in T and Taylorts theorem applied ton

obtain

where liT - T*\I :5 \IT - T*\I. By Theorem 1, the almost sure convergence of"" ,n n n
A *and Assumption 6, the vector multip1¥ing In(T - T ) converges almost sure1¥ ton

zero. This and the assumed probabil..ty bound on - T*) imp1¥ that then

last term converges in probability to zero whence

This holds for every t with Ilt\l = 1
whence the first result obtains.

( OOA") ****The sequence y ,A ,T ,>., converges almost sure1¥ to (y ,A ,T ,A ) •n n n n It

is then tail equivalent to a sequence with values in r X A X T X A. Without

loss of generality let (yO ,>.,0 'T S ) e r X A X T X A. By Taylor ts theoremn n n n
and Theorem 1,

- * '- '- *In m (A) = ",n m (AO) + eM + 0 .. (l)J ",n(A - AO)n n n .i:>. n
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*which establishes the second result as J:n(A - - 0 by assumption. 0
Theorem 4. Let Assumptions 1 through 6 hold. Then

converges almost surely to p .
* * * *to (y ," ,T ,A ),

J ) converges almost surely to J and P )n n n n
Proof: By the almost sure convergence of (yO ,1 )n n n "n

tail equivalence, Taylor's theorem, and Theorem 1

". *= ,y'n[M + 0 (l)]'[(%m)d(O,T ) + [-D + 0 (l)J m 0. ))s n s - n

*= eM + 0 (1) J'[ -D + 0 (1) ] £: m (" ).s S A/ll n

The first result follows from Theorem 3.

By the same type of argument

By Theorem 2

" *= 0 (1) + [P + 0 (1) ] In(';'. - A )s s n

and the second result follows from the first.

**** ""(y ,A ,T ,A ) it follows that [8n("n)'
... ""

[In(''n)' Pn(An)] (J, p). 0

( 00'" ")By Theorem 1 and the almost sure convergence of y.. ' 'AU ,T ,A ton 'n n n

(8, M, D) whence

To obtain results for estimation one holds yO fixed at y*. Then forn

the example



A *e - yn

The variance formula

,
(a*)2 ey2((e/a*) (F'F)-l

eey' (e/(1*)]2

o

o

17

is the same as that which would result if the generalized least squares estimator

were employed for the linear model

y =Me + e, e - (0,5) •

-1Thus, the greatest efficiency for given moment equations results when D = S .
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4. EXAMPlES

Scale Invariant M-Estimators

Recent literature:

Ruskin (1978)

Model:

e is distributed symmetrically about zero

Moment equations:

mn (A,) = (l/n)

)... = (a', a) ,
'Y(u) is an odd function, 0 < < 1 .

Distance function:

o

o

S =

M=

Asymptotic distribution parameters:

S,¥2(e/cr*) dP(e) F'F
e

D = -I
F'F =S (%e) f(x,e*) (%e') f(x,a*)
* X. 2cr solves J '¥ (e/a) dP(e) =

e



v=
(0*)2 ey2(e/o*) (F'F)-l

ceY'(e/a*)f
o

o

19



Single Equation Nonlinear Least-Squares

Recent literature:

Jennrich (1969), Malinvaud (1970a), Gallant (1973, 1975a, 1975b)

Model:

Yt = + et

e(et ) =0, e(et 2) = (cr*)2
Moment equations:

Distance function:

20

(
_F/F

M=
o

D = -I

Comment:
Under sYmmetry e(e3) = 0 •
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Maximum Likelihood for Multivariate Nonlinear Regression

Recent literature:

Malinvaud (197Gb), Barnett (1976), Holly (1978)

Model:

Moment equations:

,"

vec([Yt - f(xt,a)][Yt - f(xt,a)J' - t}

>.. = (e', 0")'

a' = (all' 012 , a23 , 000' aIM' cr2M ' 00" upper triangle of t

vec(t) = Ao, A an M2 XM(M+l)/2 matrix of zeroes and ones

Distance function:

d(m) = 1 ,
-2Ill m

Asymptotic distribution parameters:

S = " 1
e[vec(ee')e'Jt- f

f 'E-le[e vee' 'J J) .
Var[ vec( ee') ]

D = -I
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= (%e') f(x,e*)
1

V=
(A 'A) -lA 'Van vec(ee') ]A(A 'A)-l

Comment:

Under normality e[ vec(ee')e 'J = 0, A'Var[ vec(ee')]A = 2A' .



Seemingly Unrelated Nonlinear Regressions

Recent literature:

Ma1invaud (197Ob), Gallant (1975c), Hol1¥ (1978)

Model:

23

Moment equations:

*= !:

A. = e
Distance function:

,.
et are single equation residuals

d(m) = 1 I-2!U m

Asymptotic distribution parameters:

D = -I

V = S-l



Two-stage Nonlinear Least-Squares

Recent literature:

Amemiya (1974), Gallant and Jorgenson (1979)

System:

24

*= l:

Equation of interest:

Moment equations:

*= cr
CiCi

A.= ((::,,1 cr )'
"Q" 0101

Zt = Z(Xt ) , z(x) continuous

Distance function:

Asymptotic distribution parameters:

(

*cr Z/Z
S _0101

Z 1

(

Z/Q
M = 01

C'



Z'Z = sz(x)z'(x)
1

z =J z(x)
1

Z'Q =JJ z(x)(%e') q [Y(e,x,e*),x,e ] dF(e) I *
ale a Ct a a e =e

a a
C' = 2 SJ e (%a') q [Y(e,x,e*),x,A ] dF(e) I *

1 e Ct a a a <t a =e
a a

25

(

-1
= ACta

C'A-1
Q.O/

_A-
1
C )aa

1 + C'A-1Caa



Three-stage Nonlinear Least-Squares

Recent literature:

Jorgenson and Laffont (1979), Gallant (1977), Amemiya (1977),

Gallant and Jorgenson (1979)

Model:

= et

e(et )= 0, = t*

Moment equations:

A= 8

Zt = z(xt ) ,z(x) continuous

Distance function:

( ) 1,-1d m,T = T m

" (/)n "", "t = 1 n Lt=l etet ; et are two-stage least-squares residuals

Asymptotic distribution parameters:

* *S = t ® (Z'Z) = t ® J z(x) z'(x) dlJ.(x)
X

M=Q 0 Z = S (a/ae') q[Y(e,x,e*), x,8]® z(x) djJo(x) I *
X e=e

-1
D = -S

26
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5. TESTS OF HYPOTHESES

Tests of the hypothesis

H: h(A,°) = 0 against A: h(>"O) * 0
are considered here. A full rank assumption is imposed below which is not

strictly necessary. However, the less than full rank case appears to be of

no practical importance and a full rank assumption eliminates much clutter

from the theorems and proofs.

Notation:

maximizes sn(>") subject to heX) = 0

;} = I n 'J = I n

p = pn = Pn(rn )
-1 -1 '" "'-1'" "'-1 rv N-l /"oJ N-lv=p Jp ,v=p Jp ,v=p Jp

H(X) = (the Jacobian of h of order r x p)

h =

H=

* '" ... rvh(X ), h = ), h = h\A ) ,n n

* '" '" rvH(X ), H = H =

Assumption 7. The r-vector valued function heX) defining the hypothesis

H: h(XO) = 0 is continuously differentiable with Jacobian = (o!oA,')h(X) ;

H(X) has full rank at X = X*. The matrix V = P-1J p-l has full rank. The

statement "the null hypothesis is true" means that = 0 for all n .n
Theorem 5. Under Assumptions 1 through 7 the statistics

W=

R=

converge in distribution to the non-central chi sCluare distribution with r degrees
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of freedom and noncentrality parameter ex 0:: 0 'H' (H V H' Under the

null hypothesis, the limiting distribution is the central chi square with r

degrees of freedom.

Proof. (The statistic W) By Theorem 2 there is a sequence which is tail

equivalent to and takes its values in A. The remarks refer to the tail

equivalent sequence but a new notation is not introduced. Taylor's theorem

applies to this sequence whence

i = 1, 2, ... , r

where \IX. - A*\I s Iii - "'*11. By Theorem 2 tim \IX. - "'*\1 = 0 almost surely'n
whence tim = almost surely. Now, in addition,

- 1 1

h(A*) = 0 so the Taylor's expansion may be written jn ) = [H + 0 - ",*) •n s n
Then by Theorem 4 ) has the same asymptotic distribution as - A*) •n n

1
Now H')-2 exists for n sufficiently large and converges almost surely to

1 ,. 1 1 ,. * e(H V H')-2 whence (H VH')-2jn h(t.n ) and (H V H')-2HJh ("'n- A ) have the same

asymptotic distribution. But

whence W converges in distribution to the non-central chi-square.

When the null hypothesis is true, it follows from Taylor's theorem that

Taking the limit as n tends to infinity this equation becomes

*o = (%A')h. (A )0 whence Ho = 0 and ex = 0 .

(The statistic H) By Theorem 2 there is a sequence which is tail equivalent
f"'Jto A and takes its values in A. The remarks below refer to the tail equivalentn

sequence but a new notation is not introduced. By Taylor's theorem
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= (O/OAi)Sn(A*) + A*)

hj C1:n) = hj (>'*) + - A,*)

* - * *where IIXtn - A II, \\A.jn - >. II S \\'Xn - A II for i = 1, 2, ... , p
j = 1, 2, ••• , r. By Theorem 2 there is for every realization of {etJ an N

such that h(\) = 0 for all n > N. Thus h('\) = Os (l/Jn) and recall that
*h(A ) = O. Then the continuity of H(A,), the almost sure convergence of An

*to >. given by Theorem 2, and Theorem 1 permit these Taylor's expansions to

be rewritten as

These equations may be reduced algebraicly to

[H + 0 (l)It? + 0 (l)rl (o/OA)Sn0: ) = [H + 0 (l)JCt? + 0 (l)]-l(o/OA,)s (A,*)+ 0 (l/Jn) .s sn s s n· s

Then it follows from Theorem 4 that

The continuity of H(A), Theorem 2, and Theorem 1 permit the conclusion that

whence R converges in distribution to the non-central chi-square.
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