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Abstract

To determine whether an industry exhibits constant returns to scale,
whether the production function is homothetic, or whether inputs are‘
separable, a common approach is to specify a cost function, estimate its
parameters using data such as prices and quantities of inputs, and then
test the parametric restrictions corresponding to constant returns, a
homothetic technology, or separability. Statistically, such inferences
are valid if the true cost function is a meumber of the parametric class
considered, otherwise the inference is biased. That is, the true rejection
probability is not necessarily adequately approximated by the nominal size
of the statistical test. The use of fixed parameter flexible functional
forms such as the Translog, the generalized Leontief, or the Box-Cox will
not alleviate this problem.

The Fourier flexible form differs fundamentally from other flexible
forms in that it has a variable number of parameters and a known bound,
depending on the number of parameters, on the error, as measured by the
Sobolov norm, of approximation to an arbitrary cost function. Thus it is
possible to construct statistical tests for constant returns, a homothetic
technology, or separability which are asymptotically unbiased by letting the
number of parameters of the Fourier flexible form depend on sample size.
That is, the true rejection probability converges to the nominal size of the
test as sample size tends teo infinity. The rate of convergence depends on
the smoothness of the true cost function; the more times is differentiable
the true cost function, the faster the convergence.

The method is illustrated using the data on aggregate US manufacturing

of Berndt and Wood (1975, 1979) and Berndt and Khaled (1979).



1. Introduction

Recently there has been an interest in testing assumptions that are
routinely imposed in the estimation of consumer or factor demand systems.
An example of the former is Christensen, Jorgenson and Lau (1975) and of
the latter Berndt and Khaled (1979). Flexible functional forms are used
in this work so as to impose minimal a priori assumptions. The idea is
to be certain that it is the economic proposition that is being tested and
not some obscure consequence of specification error. Restated in statis-
tical terminology, the idea is to use a flexible functional form so that
the actual rejection probability of the test agrees closely witﬁ the
nominal rejection probability of the test under any true state of nature
that satisfies the economic proposition. That is, the objective is the
construction of an unbiased test of the economic proposition. Unfortunately,
tests constructed from flexible functional forms are less successful in
controlling bias than one might hope. As an example, compu;ations reported
in Section 7 of Gallant (1981) show that the Translog test of an additive
indirect utility function can be seriously biased in favor of rejection.

In this paper we study the question: Can unbiased tests actually be
constructed? Addressing this question in the context of fitting factor
demand systems, we find that it is possible to construct tests based on a
logrithmic version of the Fourier flexible form that are asymptotically un-
biased. The development of the ideas is as follows.

Setting previous conceptions aside and proceeding from first princi-
ples, we are led to consider which errors in the approximation of the true
cost function g(x) by a flexible form gK(XIG) are important and which

can be neglected. Having determined the relevant approximation errors, we



search for a useful measure of distance -— one which is large under relevant .
approximation errors and which neglects others. We find that the Sobolov

norm is the required measure of distance. Our task now is to find a function

gK(xle) which can approximate g(x) as closely as desired in Sobolov norm.

We find that alogarithmic version of the Fourier flexible form has this prop-

erty. The Fourier flexible form of order K can approximate g to within

llg _ 8K(9N|z’p’u - O(K-m+£+8)

for any € > 0 where m is the number of times is differentiable g, 2 is
the largest order partial derivative regarded as important in the approxima-
tion, and p =1 for an L1 type norm, p =2 for an L2 norm, p=o for a sup norm,
and so on.

To derive tests for a homothetic production technology, or constant
returns to scale, or the separability of a set of factor inputs, our method .
is to impose the parametric constraints which cause the Fourier flexible form
to exhibit homotheticity, or constant returns, or separability and then test
these restrictions statistically, the same as is done with any other flex-
ible form. For the method to be valid according to the preceeding consider-
ations, the imposition of the parametric restriction should not destroy the
ability of the Fourier form to approximate any g(x) that satisfies homo-

theticity, or constant returns, or separability to within

Ib-gK(e)l|2’p,u = O<K—m+2+€)

We find that the Fourier flexible form satisfies this requirement.
Included in this discussion is a study of the limiting behavior of the
tests for a homothetic technology and for constant returns when the sample

size ng 2and the number of parameters py increase with the order K of

the fitted Fourier form gK(x|6). This is equivalent to letting the number



of parameters K depend on the sample size o . We show that, as K
increases, the actual rejection probability tends to the nominal rejection

probability if the null hypothesis is true,
llmK_mP(TK > cK|H) = Q.

The algebraic form of the error bound we obtain indicates that if one's
objective is bias reduction then it is best to fit as large an order of K
as the number of available observations will permit. We assume that the
variance-covariance matrix I of the errors is known in the proof. As
yet we have not overcome the technical difficulties of an extension to
estimated I or to the nonlinear separability test. Nevertheless, we
accept the theoretical results obtained to date as indicative of the
validity of the general principle of large K wvalues and move on to some
applications.

In the first application, we use the data of Berndt and Wood (1975)
and Berndt and Khaled (1979) to test for a homothetic production technology
and constant returns in United States manufacturing. We reject both
homotheticity and constant returns given homotheticity as do Berndt and
Khaled (1979) who use a Box—-Cox flexible form. The lack of fit due to
imposing constant returns after homotheticity accounts for an overwhelming
proportion of the total lack of fit. Comparatively speaking, homotheticity
is a mild restriction.

In the second application, with the same data, we test whether capital
(K) labor (L), and energy (E) inputs are separable from‘materials (M) in
United States manufacturing. The relevance of this hypothesis in the interpreta-
tion of @, estimates based on KLE data obtained by Griffen and Gregory (1976)

KE
and others is discussed in Berndt and Wood (1979). Using a Translog flexible



form, Berndt and Wood (1975) reject the hypothesis of KLE-M separability

at a level of o = .0l. We accept KLE-M separability at a level of a = .10.
In the third application, with the same data, we estimate gy, the

elasticity of substitution of capital for energy, using the Fourier flexible

form. We find for the year 1959 that
Ok = .666134 SE(cKE) = 8.55145

and, with homotheticity imposed, that

Oy = -4-20666  SE(gy,) = 3.49984 .
Taking account of the standard errors, we conclude that these data do not

permit a decision that capital and energy are complements.




2. Arbitrarily Accurate Approximations to a Cost Function

The producers cost function c(p,u) gives the minimum cost of producing
output u during a given period of time using inputs q==(ql,q2,...,qN)' at
prices p==(pl,p2,...,pN)’ . For mathematical convenience we shall assume
throughout that the cost function has continuous partial derivatives at least
up to the third order.

The theory of the firm implies restrictions on the functional form of
the cost function. A list of these restrictions and some plausible hypotheses

is as follows [Diewert (1974) and Blackorby, Primont, and Russell (1978)1].

Ry- Positive linear homogeneity, c(p,u) is a positive valued function
defined on the positive orthant and c(p,u) is homogeneous of
degree one in p, hc(p,u) = c(Ap,u) .

R,. Conmstant returns to scale, c(p,u) = u e(p) .

R,. Homothetic production technology, c(p,u) = v(u)e(p) .

Ry. Homothetically weakly separable, c(p,u) = E[cl(p(l)),p(g),u] where
¢ and ¢y satisfy RO .

R,. Monotonicity, (a/api) c(p,u) > O where i = 1,2,..., N,

p’(3/3p)e(p,u) = c(p,u) , and (3/3u)c(p,u) > 0.

5° Concavity, (ag/apap')c(p,u) is a negative semi-definite matrix of
rank N -1 with p being the eigenvector of root zero.

The set of cost functions that satisfy RO is denoted by mo s m02 are

those that satisfy RO and R2 and so on. If ¢ in mo is the true model then

the derived demand function will satisfy (Shephard’'s lemma)

q = (3/3p) ¢ (p,u)
One can attempt to determine ¢ statistically by fitting equations of this
sort to observed inputs qt , Prices pt , and outputs 4 t=1,2,..., 2. 1In

such a study, the quantities of interest are usually the elasticities of



c(p,u) (az/apiapj) c(p,u)
g.. =
Y [R/3p;) elpu))(3/3p;) clp,u)]

and the price elasticities (Allen, 1938)

34ng, pj(a/apj) e(p,u)

n = = )
ij ~ 3anp, cij(P’“’ e(p,u0)

We find that the notational burden is considerably reduced if the problem

is restated in logarithmic quantities. Accordingly, let

E=£npi+znai i=1,2, ..., N,

<
]

4n u +!,na.N+l,

and

g(z,v) = 4n c(gzl,gza, ...,QLN, _e_v)

1 % N w1l
where {4 = (21,22,...,LN)’. The !,nai are location parameters to be determined .
later.
Using

(3/3p) c(p,u) = c(p,u) P71 g

(3%/3p3p’) c(p,u) = c(p,u) FLv7g + vev g - diag(vg)]F ™
where

vg = (3/34) g(4,v)
vPg= (3°/a038 )glh,v)
P = diag(p) ,

a list of conditions on g(4,v) equivalent to those on c(p,u) is:




RO‘ Positive linear homogeneity, g(4,v) is a real valued function

+
defined on RV T and g(e+71,v) = 7+g(4,v) where 1 = (1,1,...,1)".
Constant returns to scale, g(4,v) = Zau+ g(4)

R,. Homothetic production technology, g(L,v) = h(v)+g(2) .

R3. Homothetically weakly separable, g(4,v) = éf_'gl(!,(l)), z(é),v]
where é and gy satisfy RO . :
R, - Monotonicity, (a/azi)g(z,v) > O where i = 1,2,..., N,

17(3/32)g(s,v) = 1, and (3/3v)g(s,v) > 0.
Concavity, V2g + VgV'g - diag(Vg) is a negative semi-definite

matrix of rank N ~1 with 1 being the eigenvector of root zero.

. _ ’ _ .
Letting s = (plql, Pydys +ves quN) /(ng:lpiqi) be the N-vector of input
cost shares,Shephard's lemma becomes

s = (3/3s) gla,v) ,
the elasticities of substitution ci,j become the elements of the matrix
7 = [4iag(vg) T (Ve + ve7'g - diag(va)] atag(ve))™ ,
and the price elasticities n.lj become the elements of the matrix
n =y diag (vg)

where the rows of N correspond to inputs and the columns to prices.
The result of the logarithmic transformation i1s to shift the focus to a

determination of g in mo by fitting

s = (3/34)g(2,v)
and possibly
inc = g(L,v)
toc observed shares Sg o 4og prices zt s fog outputs v,_ , and possibly fog costs

in Ci s t=1,2,...,n.



There are several approaches to the determination of c(p,u) or

equivalently g(4,v) . One approach is to determine the derived demand curve

statistically and then solve back to the cost function. A famous study of

this genre is Arrow, Chenery, Minhas and Solow (1965) where the function
=g +
in s; = a b 4n P,

was identified s£atistically (N=2). It implies the CES production function.

A CES production function has a cost function of the CES form. Anothker approach
has been to argue that after a suitable monotonic transformation of the

prices, z = (&(pl),...,e(pN))’ a quadratic expansion in the transformed prices
c(p,u) = £(b’z+32'Bz,u) ought to give a sufficiently accurate approximation

in applications. Some cost functions generated in this fashion are the Translog

@(pi) = zn(pi) , the generalized Leontief @(pi) = V5I , and the Box-Cox
@(pi) = (p} - l)/k . The result of these and other approaches has been to
generate a finite collection of (logarithmic) cost functions '

m#é = {gl,ge’ v :gL}

each of which has performed well in some sense in some application(s). However,

if one assumes that, say, gy in m# is the true cost function then all other cost
functions in mﬁ which do not generate g, as a speclal case will bias statistical
inferences in some undesirable direction (Guilkey, Lovell and Sickeles, 1981). Contin
attacks on the problem along these lines can only lead to an ever larger class

of models each leading to biased inferences if some plausible alternative is

in fact true. The basic problem leading to this state of affairs is that the
problem: Find g ¢ mo by observing s = (3/34) g(4,v) is statistically intractable
because mo is too large a class of mod=ls. We need some sensible method to

reduce mo to manageable size.

One method of reducing mo to a manageable class of models is as follows. .



First, determine which approximation errors are important and which can be
neglected. That is, g* is to be approximated by g and one chooses a norm
He” which is sensitive to important approximation errors e = g*-g . Second,
find a functional form gK(L,vle) with a variable number p, of parameters

g = (gl,ez,...,GpKY such that g is in mo for all § ¢ ® and

zlmK_)m mln@llg 'gKH =0
for every g in mo . That is one finds a conveniently indexed dense subset of mo s

jo
mé = {gK(z,v|g):g g@CRK ;K=1,2,...} c mo .

Mathematically, the smaller class mé can be regarded as equivalent to mo as its clo-
sure contains mo . Statistically, the problem shifts from trying to find g
in mo to trying to detemmine an adequate value of K. Finding an adequate K
is a much more tractable statistical problem. To follow this scheme, we are
led to consider approximation errors.

As noted earlier, the quantities of interest in an empirical study are
the derived demand functions

s =9g,

The elasticities of substitution
_ . "l[ 2 ? . . —l
T = [diag(vg)) [v g + vgv'g - diag(vg)] [diag(vg)]l ™™ ,

and possibly the cost function itself. One can see from these formulas that
it is necessary to approximate g(4,v) accurately, the first partial derivatives
(a/azi) g(4,v) accurately, and the second partial derivatives (az/aziazj) g(4,v)

accurately. Other errors of approximation are irrelevant.
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We anticipate that an approximation over a rectangle in the positive

orthant will suffice. Accordingly, let the boundaries of this rectangle te
O<p:l.'L’<p§I<oo i=112,..., N,
0« uL'< uH~< ®
These choices are at the arbitrary discretion of the investigator. However,
all data values must lie within these limits as well as any values (p,u) for
which predictions are planned. Setting limits slightly larger than anticipated

predictions and the extreme values observed in the data would be a reasonable

choice. Choose the location parameters al’aZ""’aN+l of the transformationl/
L. = 4n p. + 4n a; i=121,2,..., N

v =4nu + L4n aN*l

so that

i4n p? + 4n as >0 i=1,2,..., N,

E)
]

<
1]

LnuL'*' zna.N+1>O .

Then letting

X = (EI:V), s

the region of approximation is
L
L= {x= (z’,v)':z?<£i<£§, v <v<vH}

+
which is an open rectangle in the positive orthant of RN L . The closure

Y is also a proper subset of the positive orthant.
Next we shall define a measure of distance, the Scbolov norm, which is
sensitive to relevant approximation errors over Y . First we need some

additional notation.

;/ The definition of v is modified in the last paragraph of this section.




A multi-index is an N*—l-—vector with integer components. The length of

a multi-index k is defined as
* +1
lel® =gy |y -

Letting A be a multi-index with non-negative components, partial differentiation

of a function g(x) is denoted as

NS
DAg(x) = ya x " g(x)
ax L ox 2 ... ox L
1 o 9%

We assume that ng(x) is a continuous function of x whenever this notation is
used. Let u(x) be a continuous distribution function with bounded density
function giving the relative frequency with which values of the independent

variable x, occur as sample size n tends to infinity [Malinvaud (1970),

t
Gallant and Holly (1980)]. We use this notation to define the Sobolov norm.

Sobolov norm. ) Ifl1<p<o let Wm’p(I) denote the

collection of all complex valued functions g(x) with f ID g] dx < o for all

A up to | A | m. Given g ¢ W P(1) define its norm as

el e

Ip*g|Paw)
mpp, |X|*<m \J‘ '

If p= o let Wm;”(x) denote the collection of all complex valued functions g
*
with supXeI|D)‘g(x)| <o forall Aupto |A] <m. Given g e W™ (1) define

its norm as

el su, _ [2a(x)]

m,o p, l)\‘*Sm

We see from the definition that the Scbolov norm is the relevant notion
of distance. Next we show how to construct dense subsets of mo with respect
to this norm. The construction is based on a modification

of a result due to Edmunds and Moscatelli (1977). The discussion will



be brief, see Gallant (1981) for full details.

The construction of mé is based on a sequence of elementary multi-indexes

X' =1{k :a=1,2,...,A}
S

obtained as follows.

Elementary Multi-Indexes . Let

X ={k:lk|*
W1

< K},

+
the set of multi-indexes of dimension N+1 and length | k |*= i=i | ki | <K.

First, delete from K the zero vector and any k whose first non-zero

N1

element is negative. Second, delete any k whose elements have a common

integral divisor. Third, arrange the k which remain into a sequence

X' = {ka to=1,2,...,A}
N+1

l’k2,

decreasing in ¢ . Define J to be the smallest positive integer with

*
such that k . kN-l-l are the elementary vectors and [kal is non-

X c{jk ta=1,2,..., A; j=0, 1,2, ..., £J}.
N1 @
This construction is tedious if attempted by hand for N+ 1>3. FORTRAN

code for constructing {kd} is available in Monahan (1981).

The Fourier flexible form can be used to generate dense subsets of a
Sobolov space. It is defined as follows

Fourier flexible form (Gallant, 1981). Consider as an approximation to

a real valued function geW *2(X)
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J 1i0kgx
= +b’x + Lo’ +
gK(xlﬂ) aq b'x + 3x'Cx zA—lZJ':"Jaja e

where

a, =4, , C= -3

2 '
k
Jor -Jo o=1 aOoz A kor o

and ag s aoa , and b are real valued. The overbar denotes complex conjugation

and i = /-1 . The scaling factor A is computed as
H .
A= (21 - c)/max{xi t1i=1,2,...,N+1}

for some ¢ with O<eg<2l . A reasonable choice is (21 -¢)=6. To obtain the

derivatives of gK(xle) , partition koz and b as
- ’ ! - ’
ka - (rd b 1{N+l) b b - (cﬂrbN_l_l)

where r and c are N-vectors. Then
a .

1jNkgx
J 9%350° )z,

b

v ied
(3/38)g(x[8) = c +xz2=l(-aoakkdx M

2 . _ J .2 ijak’x ’
(3/3038 " g (x]6) = kzrf,:l(aoa gl e L

The purpose of the scaling factor )\ is to be sure that A\X={Ax:x¢X} isa
rectangle with no edge longer than 21 , that 1is
){max{xi txel} - min{xi :xeXl})<2n i=1,2,...,81 . This is the essential
feature of the construction. The location of X in the positive orthant by
choice of ai is only for convenience in applications. It does not affect the
theory as any shift in location can be absorbed into the coefficients ay and b
of the quadratic part and the coefficients a.jcz of the exponential part. What

is essential is that AL has no edge longer than 21 .

Although complex valued exponential representations are more convenient



1

in discussion, in applications sine/cosine representations are easier to

work with. Writing

aoa,=“loa, a=1,2,...,A
aja = ujo:+ ivjo: a=1,2,0e.4, J=12,00., d
a'.ja’= ujo{-ivjo: a=1,2,...,A, j=12,..., 7

. 7
and using ng)\kax =cos(j)\ko'lx) + i gin (j)\ko'lx) one has that

gK(x|6) =uy+b'x+ ix'Cx

J iy At
+ 22=l{uoa+2zj=l[ujacos(3kkax) vja51n(JXkax)]}

(3/32) gy (x|8) =

’ J . R ey 1/ say 7
c - )\Eﬁcl{uoa)\kax + 22j=13[u30!51n(JXKax) + vjacos(J)\kax)]}rd

(3°/2038 " gy (x8) =
2 J .2 . ’ : * ’ /
Y 22=l{'u0cv + 2zj=l'3 [ujacos(g)\kax) - vjasm(g)\kax)]}rara
Letting
_ _ ’ ’
6(0) =b = (C s bN‘"‘l)

-_ !
Q(a) = (u.oa, u.la, Vla, v ey U.Ja, VJQ)

the parameters of gK(xle) are

@ = (o> A(o)> 8(1)> ~+o> Aw))’

which is a vector of length 1+ N+ 1+A(l+2J) .
A verification that the Fourier flexible form can be used to construct a

dense subset of mo depends on the following result.

Theorem 1. [Edmunds and Moscatelli (1977), Corollary 1]. Let the real ()
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valued function g(x) be continuously differentiable up to order =m on an

open set containing the closure of X . Then it is possible to choose a

triangular array of coefficients él s 62 3 eeey éK" .. such that for every

pwithl<p<wo, every £ with 0< 4 <m, and every ¢>0
le - e B, 5. =

as K» = .,

We are now in a position to construct mé but first we need the following

lemma.

Lemma 1. A function which satisfies Ro can be written as

g(Z,V) = zg_]-:lwizi + go(f:l'f:N, s 0y LN_l-ZN ,V)

where zlg_lwi =1.

Proof. The transformation

= (d1,d,,. 5y ,)

(:N Wilkis by =y eeeshy (b V)

is invertable so that there is a function h(d) such that

g(s,v) = h(zN Wik by mdy e zN_l-zN,v) .
If g(4,v) satisfies Ry then
1‘1(2:1.--1 ivi’? zl-zN’ T zN-l-f'N’v)
= g(L ,v)

=rt+tg(l-7v1,v)

N
= -+ h(fi=lwi£i -T ,zl-zN s e ‘ZN-l-zN , V)

In particular set r = 2?:1 w.4; and the result follows. 0

The construction of mé is given by the following theorem.

It states that
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a cost function that satisfies RO can be approximated by the Fourier flexible

form with all terms with :liLl kO deleted and the constraint zlf_l b, =1

imposed. |
Theorem 2. Let the real valued function g(x) satisfy RO and be continuously

differentiable up to order m on an open set contalning the closure of X . Let
J i,j)\ko’[x

= ! 'ox + e

g (4,v|8) = ag+ b'x+ 3x/Cx zlo:—‘-lz,j=- 250

where x = (4’,v)’subject to the following parametric restrictions

’ —
{’c =1 wherebd = (¢’ bN-!-l)

~

230 0 1f1r#0 wherek-(r kl\H-la
Then gK(L,vle) satisfies RO and it is possible to choose a triangular array of ’
coefficients él , 52 y eees éK , «.. such that for every p with 1 S p< =, every

L with 0< 4 <m, and every ¢ > 0 .

le - gg(Blly o, = o™ H)

as K»= . Recall that

aja = g._ﬂ.a 3 C= 'zA_l Oorx k k,
and that ag > aoa , and b are real valued.

Proof. By Lemma 1
g(x) =

N
Tim1"i%s T 8o(Xy mXyp e Xy g - Xp )

where z‘?_v w., = 1. Let

@ = ale) = (g s oo iy =y Hpy)

ixk’d J ij)\ko'{d . .
Now z|k|*SK a, ¢ and 2 J_ joze are equivalent representations
of the exponential vart of the Fourier form, setting coefficients to zero as .
.. ' A ’ .
e . [ — - k - - . 1
necessary. Similarly C zlkl*SK aokk k Z-1 aaokako, for suitably

chosen coefficients. Now apply Theorem 1 to gn(d) to obtain the result that
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ot 14/ % i k’d
o (a[8) = oD d 2O ¥ Ty ey @

ek 0 ,
w4 €) where vw(d) is the distribution of

satisfies Hg-—gKHz’p’v = o(X
d = a(x), that is, [ g(d) av(d) = [ ofd(x)] au(x) for integrable g. In

D X ‘
this expression ok is a multi-index of dimension N and AD = {A\d(x) : xe¢X} is

a rectangle in RN with edges shorter than 2l . Then using

f g(d) av(a) = ,J" gld(x)] du(x) for integrable g we have that
D X

n(xl8) = £_jw.x, + ogfa(x)la]

- 4¥ey  ynat has to be shown is that it

satisfies ||g - hKHL,p,u.. = o(K

is possible to choose the coefficients of the Fourier flexible form subject

to Y'¢=1 and {'r = 0 so that gK(xle) = hK(x|e) .
Considering the linear term, we have

+ 4
Zlillwixi ob’d(x)

i

Ty (v *oby)xy + iy = BIb Dy * oDy

= E?:lcixi * Ol Xl

. . s N l _
making the obvious associations. Then Z;'L=l c; = z:lj_l i ZlL ‘=l obi-— 1
as required. Now consider the term M k’d(x) . If AX 1is a rectangle with edges

shorter than 27 then so is A D. Now

ok’d(x)

-1 N-1
By ok%y - (Bioy ok + ok
LIRS R

k'x

+ -
where k = (r’lﬁ\ﬁ-l) € RN t and 1’'r= 0. Now Slg_]l. °ki is an integer so k is

* *
a multi-index. For some Kwe will have |k| <K provided !o k| < oK as required.

Considering the quadratic term we have
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2(x) 00a(x) = -, 1 o fok’a(0)F

2
“El|* <k (k)

for suitably chosen a, as required. ]

k

For notational convenience, we have made scme overly restrictive

assumptions. These are that v is to be combined with £ 2 ooy 4

1’ %2° N
in computing the common scaling factor )\ and that output is univariate.
Actually, the only variables which require a common scaling factor are those

affected by R, , namely El ,22 s eoey & Output can be measured according

N L]
to any scale of measurement without affecting the analysis so that v can

be defined as

v = XN+1(£n u+ 4n aN+l)

for any positive kN+l ; An A1 is to be chosen as described earlier. We
suggest that xN+l be chosen so that

H . H H H
v £ max {zl s Lo s eees by 1.

The conversion from univariate v to a multivariate measure of log output is
straightforrard increase in dimension from N+ 1 to, say, N+L . The multi-
variate vector v can include variables other than log outputs such as log time.
Of course, these non-output variables would not be subject to the monotonicity

- restriction, Rh'
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. 3.1. Returns to Scale

As noted previously, the Fourier flexible form

PR Vi
- IR Uy J ijak’x
ge(£,v]8) = a_+b'x + Jx'Cx 22: I

will satisfy RO » Positive linear homogeneity, if

/

/
1'c NH_)

1 where b = (c’,b

It

. : /7 O —_ 4 / .
84 0 if ¢ ra# where k (ra ’kN’l‘l,o/)

If, in addition to Ré s

L  (at
bN'l-l-( +;|_) where b = (c ’bN+l)
R?

1
= i = / ’
2y, 0 if kN+l,a £ 0 where ka (ra R kN’"l,a)

/

' is imposed then the Fourier flexible form will satisfy R, , constant returns
to scale. Let the (logarithmic) cost function g(x) satisfy the hypotheses of
Theorem 2, linear homogeneity

RO cgla+r1,v) = rrgle,v),

and correspond to a constant returns to scale production technology
R, - g(,v)=gn u+ g(1).

Then the Fourier flexible form subject to Ré and R]’_ can approximate g(x) to

within

le - g (B Tmite)

= o(K
£,D,1 (

for every ¢ > 0 as K= o in the notation of Theorem 2. The argument is as

follows.



ev

A cost function which exhibits constant returns to scale is written as
g(2,v)=gn u+ g(g) .

By Lemma 1,

S(Z,V)"Zn u + f‘jv:—]-vri‘ei + go(f'l-zN ,4%2 -LN 5 e ey zN"l-zN)

where zg;l wizi = 1., Then, exactly as in the proof of Theorem 2, Theorem 1

is applied to go(zl-zN s hn =4

5 -LN) to obtain the result that

N Ay
-m'*'l'*‘t)

le - e (Bl 5, = (X

Tests of constant returns to scale that are asymptotically free of
specification bias can be constructed using this result. That is, one can
construct a test statistic TK based on, say, share data and find a critical

such that if the true function g(x) satisfies R, and R, then

point c 1

K
Lim, P(TK> cK) =g .

A significant test statistic can thus be attributed to violation of constant
returns to scale rather than specification bias. The specification bias in
tests of this sort using a fixed parameter functiocnal form such as a Translog
can be substantial [Gallant (1981), Section 7]. We shall give a construction
in the case where § is known. With a little extra work this analysis covers
the case where T can be estimated consistently from, say, replicated obser-
vations. We anticipate that these results will extend to T estimated from
regression residuals but. since the number of parameters is increasing, tne
technicai details will nct be trivial.

Assume thnat the observed input cost shares follow

s, = f(xt) * t=1,2,...,n
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where £(x) = (3/34)g(4,v) and the u, are independently and normally distributed
‘with mean zero and variance-covariance matrix § having rank (f) = N-1. The
_approximation to f(x) is (a/az)gK(z,vle) subject to R which is a linear

function of 8 and can be written as
(3/32)g; (2,v[6) = 2’5 .

The restrictions Rl are zero restrictions on elements of 8 and can be represented

as

(3/30)e(£lp) = z(yp

Let
a(K) ~ b(K)
mean that there exist two positive constants such that

clb(K) < a(K) < c2b(K)

for large enough K. Then from Edmunds and Moscatelli (1977) we have that
PGNK'I\I >

~ g1
Po

length (9)

length (p)

A vector notation is convenient. Let

s 4y f(xl)
S u £(x,)

8 = '2 > u = '2 p] f .2 2
s, u fx_)

each vectors of length nlN , and let
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z! z!
1 1(1)
z! z/
Z = .2 s Z(l) = ?(l) ’
S ’
Zn Zn(1)

matrices of order nN x pG and nN x pp respectively. In this notation
s=f+ u

+
where u~ N(O, I®%). Let ¥ denote the Moore-Penrose g-inverse of %

{Rao (1973), Sec. 16.57, and let
P=(Iey)zlz'(Tey )z] 2/ (10y )

P(l) = (I®z+) Z(l)[ZZl)(I®E+)Z(l)]-lzzl)(I®z+) .

Consider the statistic

Ty = s’(P-—P(l))s

We assume that there are more observations than parameters nKN:»p653 KN and

that the number of observations grow at some polynomial rate with K
~ +
e ~ KN 8 with 82 0 .
Then T, follows the non-central chi-square distribution with
K

Vg = ramk (P-P(l)) A

degrees of freedom and non-centrality parameter
= £ -
T = T (P P(l))f .

Let the two-tailed g-level critical point of the standard normal distribution

be denoted by zg_ . We shall show that if ck = ,,/évK zg and that if the true ‘
2 2
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cost function g(x) is differentiable to an order greater than 1+ (3 + N/2)/2

then

Lim P(TK > cK) = o .

Now T, may be written as [Rao (1973), Sec. 3b.2]
v -1

2 kt oo
Ty = (2, - W)™+ 50 275

where the z, are independent standard normal variates. Suppose that we can
show that (zO - /_K)2/‘/§{. converges 1in probability to zero. Then by the
central limit theorem TK/@ converges in distribution to the unit normal
and the result will follow. As zZg is bounded in probability, 1t suffices to
show that zimK_mTK/ﬁIE =0

Now let 5 be as given by Theorem 1 and let & be the largest eigen value

+
of £ , then

L £/ (p- P(l))f

(£-2(1)0) (- Pq))(£-2 )
< (£-2(199) (182 )(£-2(1 )

1.
£ 5[ (3/a0)a(x,) - (3/30)g, (2, 15)1 T (3/38)e(x,)-(3/30)e(2, |5)]

<5 o % Sl 0/ ex,) - (3/o8, (1,60

<6 nN le- gK(a)Hzl,w,u.

n

o
2.
=

and



2k

- -mtl- ~ o, NF ~2mtr2-N/2+e
W R K2 2 o RII/RA B (BB

whence

TK/JGE - O(K-2m+2ﬂ§+N/2+e).

The homothetic technology restriction

R, g(g,v) = h(v) + g(g)
is a slight generalization of the constant returns to scale restriction;
one writes h(v) for 4n u. The restrictions for constant returns to scale
were derived by applying Lemma 1 and Theorem 2 to g(£4) and, since h(v) = 4n u
was assumed, there was no need to approximate h(v). To obtain the generaliza-
tion to a homothetic production technology, Theorem 2 is applied to h(v).
The result may be stated as follows.

The Fourier flexible form

ijak’x
= a +b'x + ix'Cx + J o
g(2,v|a) ay*thb'x + Zx'Cx EA zj=-J 85y ©

=1

will satisfy Ro s positive linear homogeneity, and R2 , homothetic production

technology, if in addition to R/, the restriction
/ - . - 7 4
RS, 35y 0 if kN*l,a £ 0 and r, ¥ O where kd (ra s kN+l,a)

is imposed. Let the (logarithmic) cost function g(x) satisfy the hypotheses

of Theorem 2, positive linear homogeneity R and correspond to a homothetic

O 2

production technology R Then the Fourier flexible form subject to Ré and

5

Ré can approximate g(x) to within

- O(K-m‘fl’*'e)

Hg B gK(Q)”z Pyl -

for every ¢ > O as K » =,

To comment further on this result, the error bound o(K_m+z+e) was identified
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in the previous paragraphs as being the critical feature of the Fourier
flexible form that permits asymptotically unbiased inference. If inference
is based on share data then the non-centrality parameter of the test étatistic

based on the Pourier flexible form of order K decreases to zero at the rate

g o 2RI/

for every ¢ > O when observations are obtained at the rate n==KNﬂg, recall that
N is the number of inputs. For asymptotically unbiased inference to be possible
at all, the cost function g(x) must be differentisble to an order greater than
1 +(g+N/2)/2. Thus, keeping $ small permits unbiased inference over a wider
class of g(x) . Consequently, contrary to the usual wisdom, one should attempt
to keep the number of parameters large relative to the number of observations

if one's intention is to defend against biased inference. Also, note that if
g(x) is differentiable to a very high order of m then TK/JVE will be small for

low orders of K.
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3.2. A Test of Separability

Let the vector s of cost shares be partitioned into two groups
- 7 ! 1
s = (s(1)» 8(a))

where s( is an Nl-vector and 3(2) is an N.-vector with N= N,+ N, . Let

1) 2 1 "2

the vector g4 of log input prices be partitioned similarly
b= gy o 2(2))" -

As we show next, one practical aspect of separability is that cost shares in
the first sector, reexpressed as cost shares relative to expenditures in the
first sector, can be modeled independently ofz(g). This fact forms the basis

for a test of separability.

A homothetically weakly separable cost function has the form

g(e,v) = éfgl(z(l)) s 1(2) ’ Vj
where é(gl ,2(2),v) and gl(z(l)) catisfy R, - Thus
(3/31y)e(8,v) = (3/3gy)ele) » 45y 5 V) (/3 (1y)e (41))
and, using Shepard's lemma,
/o) = B )eleny
which is independent of 2(2) . But in general
S(l)/1ls(l) = (3/52(1))g(£,v)/1/(3/5£(l))g(£,v)
The idea is to substitute gK(ﬂ,,vle) for g(4,v) , in the general equation, #it

S(l)/1ls(l> = (a/az(l))gK(z>V‘e)/1,(a/az(l))gK(zav\e) 9
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. and test the hypothesis that all terms in gK(z,vle) involving 2(2) and v have zero
coefficients. 1In terms of further parametric restrictions on the form given
in Theorem 2, the restrictions to be tested in the subsystem aré%/
4 —_ - ' ! 7
(c(z), bN+l) = O where b (c(l) > (a)? bN+l)
/
R3 a, = 0if(r! ) #0 where k = (r?/ r! k. )
ja (2)e’ “W1,a o™ (L)’ (2)a” Wl,a

The parameters 0(2), bN*l and those aja for whigh r(l)d==0 are not identified in the

subsystem regression
s(1)/V 's(1) = (3/3%(1))eg(a,v]a)/1"(3/38 1) gyle,v]e)

These parameters are set to zero in the estimation.[Gallant (1981), Section 5].

Thus, the only testable restrictions are

n = if (! B £0 - ’ ’ 1
R3 . aja 0 lf"’(r(Z)q’kl\H'l,a) * O and r(l)a where ka (r(l)q,r(Z)a’kN‘l'l,a)

If the sub-cost function gl(!,(l)) satisfies the hypotheses of Theorem 2
then the Fourier flexible form subject to Ré and Ré can approximate gl(ﬂ,(l))
to within
-nr*'z+s)

- 8 = o(K
for every ¢ > 0 as K » » in the notation of Theorem 2. This result is a direct
consequence of Theorem 2 applied in a lower dimension.

Another approach to testing separability is to begin with the condition that
(3/38)g(4,v|e)

(a/af;<2>) =
(3/32 ;g (4,v]8)

0

o -

7 . ? -
1 and R3 taken together imply 1 c(l) = 1.
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deduce the corresponding parametric restrictions on 6, fit the full system,
and then test these restrictions [Blackorby, ?rimont, and Russell(1978),

Sec. 8.2.27. This approach leads to messy algebra with the Fourier flexible
form and so we abandoned it in favor of the simpler approach of fitting only
to S(l)/1ls(l) . There may be an efficiency pgnalty but simplicity and
tidiness of the theoretical defense of thertest are the dominant considerations
in our opinion. If we had an interest in estimating the full system subject
to a separability constraint, which we do not,.it would probably be more

sensible to attack the problem directly with an approximating cost function of

the form gK[gK (Z(l)lp), 2(2), vial .
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3.3. Curvature Restrictions

The imposition of monotonicity

RY, - (a/axi)gK(xle) >0 allxeX, i=1,2,...,N+1

or concavity

2 . . .
Ré . v gK(e) + VgK(G) V'gK(e) - dlag(VgK(Q)) negative semi-

definite for all x ¢ X

or both will not affect the ability of the Fourier flexible form to approximate

a function which satisfies'Rh or R_ or both respectively on I. The argument

5
depends on continuity and consists of a verification that eventually the
constraint is not binding.
Consider a function g(x) which satisfies Rh on T and the hypotheses of

Theorem 2 for m =2 2. Then, setting ¢ = 1, the triangular array {aK} of Theorem

2 satisfies

supxl(a/axi)g(X) - (3/ax ey (x|a )| = o(x°17 €

As (3/3x)g(x) is continuous on the compact set X , (B/axi)g(x) > § > O for some
8 onX . Thus for all K large enough (a/axi)gK(x|aK)f> §/2 > 0. The argument
for the restriction R’ is the same. Let m = 3 and note that the determinants
of the principal minors of V2g + V’/gVg - diag(Vg) are continuous functions of
Vg and V2g . N

The restriction Rh is usually irrelevent in applications. The coefficients

of the Fourier form are estimated, at least in part, from the regression -
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s, = VgK(xtle) +e

Since the components of the vector of shares Sy are between zero and one a
reasonably close fit to data will require that the predicted shares VgK(xtle)
te between zero and one as well. In the applicaticns considered to date,

this has been the case. Monotonicity follows as a matter of course.
Concavity is not of much interest in hypothesis testing, the subject
of this paper, so we have not devoted a great deal of energy to finding
necessary and sufficient conditions for the concavity of the Fourier form
which are simple enough to be used in applications. Tractable sufficient
conditions can be obtained by noting that
V%K + VgKV’gK - diag(VgK)
is negative semi-definite provided that the components of VgK are between

zero and one and that vng is negative semi-definite. V2 can be made

&k
negative semi-definite by using the restrictions of Section 5 of Gallant
(1981) and then changing sign. However, the data used for illustration,

described next, strongly reject these restrictions, so we have been unable

to follow this aporoach here.




31
4,1, An Illustration: Determining Returns to Scale

To illustrate the statistical methods, we reexamine some issues that
are discussed in Berndt and Wood (1975, 1979) and Berndt and Khaled (1979)
using their annual data on the U.S. manufacturing sector from 1947 to 1971.
Total input cost (C), input prices of capital (K), labor (L), energy (E),
and materials (M), and the corresponding cost shares are taken from Tables
1 and 2 of Berndt and Wood (1975). The output series (Y) is taken from
Table 1 of Berndt and Khaled (1979). These data are transformed as shown
in Table 1.

We shall ignore technical change in the analysis which is equivalent
to imposing the maintained hypothesis that there has been none. The reasons
are as follows. Technological progress is primarily a stochastic phenomenon
and is probably best modeled by viewing the parameters of gK(xtle ) as the
realization of a stochastic process indexed by time. Thus observed data
would follow s_ = VgK(xtle ) for £=1,2,...,n. An adequate formulation
of this approach is beyond the scope of this paper. If technological change
is modeled as depending deterministically on time then our approach can be
applied directly by including time as a variable treated similarly to output
as noted earlier. However, this would lead to a model with more parameters
than these data can support and is thus not practical here. A model such
as that used by Berndt and Khaled (1979), gK(x|e ) + t(T-+ZTi{1), is
feasible but will lead to the sort of biases that our approach seeks to
avoid. Moreover, Berndt and Khaled found only marginal significance for
TsTyreeesTy with these data and with the generalized Box-Cox cost function
replacing gK(xle ). Thus, even if we followed their approach, the results

would probably be uninteresting.
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With technical change ignored, the statistical model is

Sor = 8 (X, 18) + g,
S ™ (a/a&l) 8K(xtle) +eg,

Sy = (3/34y) gy(x |6) + ey,

S

3¢ = (3/343) gK(xtle) +e3

where the share equation for S)4 is discarded due to the restriction that

2?:1 Sip = 1 [Theil (1971), Section 7.7]. Recall that
g (x|8) = ug+ v'x + Ix'Cx
+ ZA {u, + ZZJ Cu, cos(Jrk’x) - v, sin(Jrk’x)]}
a=1" O J=1" "o o Ja o
(3/32) g(x]8) =
¢ - {u, \k’x + 2y’ Jlu, sin(§ik’x) + v, cos(Jak’x)])r
o=1""0u" o J=1"" “ja o Ja a o
where
e(o) = b = (c 2 bN“'l)
) T (an’ U Vgt tr Uget Vi)
a = (395 8(0) 8(1)> =+ (a))
and
2 ’
¢ = '22=1 Upg M KKy

The restriction R6 is imposed as a maintained hypothesis
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The set of multi-indexes that satisfy 24 k, = 0 and have norm ]k [* <3
i=1 Tig o .

are displayed in Table 2. For this set A=19, and we take J=1, whence §
is a vector of nominal length 63. The effective number of parameters is
53 due to the following restrictions.

1

effective parameters by one. The remaining restrictions are due to

The nonhomogeneous restriction 2:= bi = ] reduces the number of

overparameterization of the matrix C. To see this, think of the model as

the sum of a Translog

’ l ’
u0 + b'x + 2 x°Cx

plus the sum of A =19 univariate Fourier expansions along the directions}%

r J -y . o3
Z.A + 2% u, cos(j )\kax ) - v 31n(jlkax )_j .

=1 Yoo j=1 Yjo jo

The matrix C of the Translog portion is a 5 x 5 symmetric matrix which
Z

satisfies five homogeneous restrictions 2j=1 cij =0 (i=1,2,3,4,5). Thus

C can have at most ten free parameters and in the parameterization

C = -219 u kz k k', ten of the u, are free parameters and nine must
=1 O« oo Oa

be set to zero. 1In sum, 6 is subject to one nonhomogeneous restriction
and nine homogeneous restrictions which reduces the number of parameters
from 63 to 53.

The model may be written in a vector notation
Ve = f(xtle) + e, t=1,2,...,25

1 - 4 P
with Ve (SOC’slt’SZt’SBt) and similarly for £ and e, where we assume
that the errors are independently distributed each with mean zero and

variance-covariance matrix Z. As f(xtle) is linear in the parameters,

Y
£(x |6) = 2/8

where zé is of order Nx1+N+1+A(1+2J), this is a multivariate linear
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regression model. We use the seemingly Unrelated Nonlinear Regression
estimation method (Zellner, 1962) but, as a priori identification of those

u to be set to zero in order to impose the nine homogeneous rest;ictions

O

would be tedious, we identify them automatically in the course of the

computations as follows.

Let
0 1000 !
0 0100 !
0 0010 !
r =] 0 R ={ 0001 | 0
1 0-1-1-1 |
-eawsw [} ey o e e .L -----
0 0 '
- ~ 1 ~ 58

and let A~ denote that gz-inverse of a positive semi-definite matrix A

described in Goodnight (1979). _Then

1 AR .

% . n ’ - ’ ’ -1 !
8 =r+R <2t=1R th ztR/ 2t=1R th (yt ztr)

minimizes

1 n 7 7 ‘1 I'd
$(8:2) = o Ty G =2 07T G268

subject to the nonhomogeneous constraint Z:=1 bi = 1 and the nine homo-
geneous constraints. The procedure generalizes; in the general case, r is
the N+ 1 st elementary vector of order 1+N+1+A(1+2J), the north-west
corner of R is the identity of order N bordered below by the N-vector

(0,-1,-1,...,=1), and the south-east corner of R is the identity of order

1+A(1+27).

3/ Machine readable FORTIRAN code to compute z, directly for given ), A, J

t

and Xt is available from the author at the cost of reproduction and postage.




The Seemingly Unrelated Regressions estimator 8 is computed as follows.

First compute

f to minimize s(8,I) subject to Ré

using the formula of the previous paragraph with I replacing 2-1. Next

estimate X by

& n

—l ! A an! 2V
D=SE g -z OG-z, 8) .

Finally, compute

A Y

f to minimize s(e,i) subject to Ro

using the formula of the previous paragraph with 51 replacing L. For

these data we obtain
ns (é,g) = 63.6110, 53 parameters.
The hypothesis of a homothetic production technology

’ _ = . = ’
R) uja = Vja 0 if kN+1,a # 0 and T, # 0 where ka (ra’kN+l,a)

is equivalent to the deletion of

k8,k9,...,k19

from the list of multi-indexes given in Table 2, The hypothesis Ré can
be viewed as analogous to the hypothesis of no interaction in an experi=-
mental design. To see this write
2 r 12

k
AT ( ax)

| 1 ZA
= ’ - -
gK(xle ) u, + b'x 5 Zo=1 Yoo

r ‘on ey ]
+ 2Aa=1 Lan + 22‘;=1 uja cos (j Akax) vjasun & Akax) I

One can view kég as a measure of the covariance of x with the vector ka

and the Fourier flexible form as the sum of additive effects in (kéx).



38

Under homotheticity, it suffices to consider main effects only, those due

to kl’kz""’k7' Under nonhomotheticity there is an interaction with output

and the interaction effects, those due to k8,k9,...,k19, must be taken into
account, We find an analysis of variance interpretation of our procedures
helpful as our approach to bias minimization using Fourier series expansions
as large as the data will support comes closer to the ideas of experimental
design than it does to parsimonious parametric modeling. The estimate 8
subject to Ré and Ré is computed as follows.

To compute

[

6 to minimize s (8,8) subject to Ré,R2

one uses the previous scheme for the minimization of s (6,Z) subject to

R6 but using the partial set of multi-indexes k.,...,k., instead of full

1’ 7

set k,,...,k,.; r is a vector of length 27 and R is 27 x 26. As
1 19

C=- 1 ZA u fi k’ will admit of 11 free parameters and there are only
2 "o=1 00" o«

7 available, there are no homogeneous restrictions. We obtain
ns(é,i) = 138.3487, 26 parameters.

The difference
ns(8,%) -ns(d,8) = 74.7377, 27 d.t.

is asymptotically distributed as chi-square random variable provided that
the same estimate of I is used to compute both 6 and é (Burguete, Gallant
and Souza, 1982). Presumed also is that pe is held fixed as sample size
increases. As noted earlier, we expect that our results with pe depending
on n for known I will carry over to estimated I but we have no proof as
yet. A chi-square of 74.7377 with 27 degrees of freedom is significant at

a level of p=.0005 thus homotheticity is rejected. This agrees with
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Barndt and Khaled's (1979) finding (a chi-square of 43.1162 with 3 d.f.).
Moreover, the same result obtains if the computations are repeated assuming
a first-order diagonal autoregression on the errors.

Constant returns to scale implies homotheticity so it too will be -
rejected. Letting 5 denote the estimate obtained by minimizing s(e,i)

subject to R/ and R/ we obtain

0

-~

ns(8,5)

1193.6333, 22 parameters.

This is computed using the same computational scheme by replacing ) with
s0 -fnu and using the six multi-indexes kz,k3,...,k7 to define the
Fourier flexible form. Testing constant returns to scale against a homo-

thetic technology we have
ns(8,5) -ns(d,5) = 1055.2846, 3 d.f.

Thus, we strongly reject constant returns to scale even assuming homo-
theticity as the maintained hypothesis. Berndt and Khaled (1979) reject
this hypothesis as well but not as strongly (a chi-square of 66.017 with

2 d.f.).
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4.2, An Illustration: Testing Separability

Berndt and Wood (1979) list some recent studies which have estimated
the cross~price elasticity between capital and energy. These divide into
two groups, those estimated from data on capital, labor and energy (KLE)
alone, and those estimated from data on capital, labor, energy and
materials (KLEM). If the cost function is homothetically weakly separable
then cross-price elasticities obtained from KLE data and KLEM data can be
related. 1If not, cross-price elasticities estimated from KLE data would
saem to defy interpretation. See Berndt and Wood (1979) for detailsE/.
These considerations motivate a test that KIE is homothetically weakly
saparable from M.

Recall that the logic of the inference procedure runs as follows.

Under the null hypothesis the regression

s;/(s;+8,+8,) = (3/32)) g (41,4,,4,]0) + ¢,

32/(s1+s2+s3) (3/34,) gK(Ll,Lz,L3|e) + e,

will adequately represent the data; Table 1 defines the variables and, as
before, we have deleted the equation for 33/(s1-+sz-+33). A plausible

alternative model which contains the null model as a special case is
_ ' 3
s;/(s;+s,+s5) = (3/34,) 8 (L,v[0)/Z]_, (3/34,) g (L,v[6) + e,

(i=1,2). The idea is to test the null model against the plausible alter-
native. However, the formal logic of a statistical test of a null hypothesis

requires only that the alternative model contain the null model as a

H'-/Berndt: and Wood (1979) impose linear homogeneity on the implied sub-production

function whereas we only impose homotheticity; see Theorem 3.8 of Blackorby,
Primont, and Russell (1978).
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special case., Plausibility is not required. Therefore, we can arbitrarily
impose homotheticity Ré on gK(L,vle) without affecting the validity of the
test. Power may be lost but not validity. We shall impose Ré as there

is not enough data to support the full alternative model. Moreover, this
will permit a direct comparison with Berndt and Wood (1975).

To fit the model, we use the Seemingly Unrelated Nonlinear Regressions

method (Gallant, 1975). Write

s;/(s;+s,+385) = (3/34)) gK(£,VIe)/22=1 (3/34)) g (4,v]0) + e

3
sy/(s1+8,+5,) = (3/34,) gK(L,VIe)/Ei=1 (3/3L;) g (4,v[0) + e,
as the multivariate nonlinear model

yt = f(xtle) + eti

s, = 25 [y, -t o ] 5 [y, - fx 0]

Under the alternative, gK(L,v[e) is subject to linear homogeneity Ré and
homotheticity Ré. Additionally, multi-indexes with r(l)a==0 are deleted.
Thus, under the alternative gK(L,vle) is computed using the multi-indexes

k, through k. of Table 2. The parameters uj, and b, ,bs of gK(xle) do not

2 7

appear in the regression equations. Further,f&(xle) is the ratio of two
linear models and is therefore homogencous of degree zero in the remaining
parameters, Consequently, f(xle) is not identified without a normalization
rule. We impose b1+b2+b3 = 1. The number of free parameters in the
alternative model is thus 2+6(1+2) = 20 for J=1, As before, we compute

8 to minimize s(6,I), set



“o

a _ 1 ) - oo - ,
=32 22=1 [yt f(xt‘e):] RE f(xtle)] ’

and compute é to minimize s(e,i). We obtain
ns(é,ﬁ) = 40.6307, 20 parameters .

To fit the null model, fix £ and use only the multi-indexes kz,k3 and

k4 to compute gK(xle) the rest is as for the alternative model. We obtain

ns(9,%) = 54.3196, 11 parameters.
The difference
ns(8,8) -ns (8,5) = 13.6889, 9 d.f.

is asymptotically distributed as a chi-square random variable (Burguete,
Gallant and Souza, 1982). Separability is accepted at a level of p=.10.
This conclusion differs from that of Berndt and Wood (1975) who reject

separability at a level of .01,
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4.3. An Illustration: Estimating Elasticities

Standard errors for estimated price elasticities and estimated
elasticities of substitution are fairly easy to obtain using the Fourier
flexible form because it is linear in its parameters. Recall that for

given fog prices Zo s

bip= Py *ina,
and given fog output \
Vo = Mgy {dn ug* ooy )

the first and second order partial derivatives of the Fourier form at

— I 4
xo = (455 V)

are
(3/32) gy (x,le) =
c - XZA {u, Ak’x + 22J jlu. sin(jak’x.)+ v, cos(jrak’x )1}r
o=1""0a" & O =1 "jo o O Jo o O o
2 p
(3°/3832 )gK(xIG) =
2 J .2 ca 1 . ca s ’
- A Z:Fl{uoa+ ZEJ.___lJ [ujacos(,])\kaxo) —vjasn.n(g)\kaxo)]}rard
Letting

8oy =P = (e’ byyq)’
8q) = (Uog? UB1g2 Vig 2ot o gy Vo)’
8 = (uo, e{o)’ e{l) ,...,e(A)),

then a first order partial is a linear function of the form
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o) i _ ?

and a second order partial is a linear function of the form

32 ) g
5%, g (xo18) = b,

where g; » hij

Using this notation, an elasticity of substitution and its derivative

, and @ are vectors of length L+ N+ 1+A(L+2J) .

with respect to 8are for i* j
-1 =1
=1+ (g! ’ /
3;5(8) = 1+ (g/8) " (g]0) " (ny ;)

_ ray=Lls s\
(3/28)9,,(8) = (g(8) ™ (gjn)™"n,
ta\=2( ra\=L(1 s
- ’ -1 ’ -2 ’
(g{8) "(g28) (h{,8)e;
and for i=j
0,,(8) = 1+ (g/8)2(nl.0) - (g/a)™"
ii i ii i
- 1 aN=2 '3 ’
A =2
+ (g{8) g
A cross price elasticity and its derivative arefor i j
— 7 -l / !
- 7 - ’ -2 ’
(3/20)0;5(8) = (g]6) ™ nyy - (8) 2 (n],8)e; + &,

where 1 indexes factor inputs and j indexes factor prices. An own price

elasticity and its derivative are
n,,(8) = (g/6)""(n!.a) + (gla) -1
ii i ii i

(3/30)M;, (8) = (g/8)™'n; - (8!8)2(nl,0)g, +&, -
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Let A denote the Seemingly Unrelated Regression computed as described

in Section b4.1. Its estimated variance-covariance matrix is
8 = R(z® R’z i-lz'R)-R'
t=1 t %
in the notation of Section 4.1 . Then an estimate of, say, a cross price

elasticity is obtained by evaluating nij(e) at 8,

and its standard error is computed as
1
a - A -1
SE(fl; ;) = [(3/38") m;;(8) @ (3/ea) M,5(8)] .

Similarly for own price elasticities and elasticities of substitution.é/

Following this procedure, we obtain estimated elasticities and standard
errors as shown in Table 3 for two cases: non-homothetic production
technology (multi-indexes ks Kys oenns klg) and a homothetic production
technology (multi-indexes k., k2, veey k7) . In the latter case, Q) was
estimated from residuals from the value of A that minimizes s(A,I) subject to
Ré and Ré . These results may be compared with Table 5 of Berndt and
Khaled (1979).

To comment, with homotheticity imposed, Fourier form estimates are
roughly comparable to the Box-Cox form estimates cobtained by Berndt and
Khaled (1979). With homotheticity relaxed, they are not. As discussed in
Berndt and Wood (1979), the question as to whether capital and energy are

substitutes or complements is a matter of some interest. We find that,

2/ Machine readable FORTRAN code to compute these estimates and standard
errors directly for given Xq> 8§, and ﬁ is available from the author at

the cost of reproduction and postage.



Table 3. Fourier Flexible Form Estimates of Allen Partial Elasticities
of Substitution and Price Elasticities, U. S. Manufacturing, 1959.

Non-homothetic Homothetic
Elasticity Estimate Std. Err. Estimate Std. Err.
Ok - 6.5321 9.9222 -27.4646 6.9830
Oy, .3288 1.8962 1.2554 .3232
- .6613 8.5515 - L4.2067 3.4998
T 4545 1.4758 2.3081 .7301 -
o1, - .2813 L7291 - 1.7437 .1391
O 4.5678 3.5918 - .0787 4763
S - .2ho2 .3611 6626 .0648
Opp -28.5133 . 36.2705 - 7.5178 10.1295
Sy - .0157 3.5003 .9858 .9338
CY .06L2 .3583 - .5817 .1135
Nk - .ho13 .6022 - 1.5839 .3892
% .0908 .5238 .3456 .0897 ‘
e .0300 .3879 - 1945 .1605
Nkt .2806 .9118 1.4328 L5k45
Mk .0202 .1165 .0724 .0184
iy, - 0776 .2015 - .Lgo1 .0385
Nz .2069 .1622 - .0036 .0220
Ty - .1kos .2230 4113 .0403
Tex . 0406 .5255 - .2h26 .2003
Ter, 1.2608 .9911 - .0217 .1311
New - 1.2917 1.6353 - 3477 1658
et - .0097 2.1606 .6119 .5802 -
Tk .0279 .0902 .1331 .0Lk10
T, - .0668 .0996 .1824 L0177
e - .0007 .1586 .0Ls56 .0L28

nMM .0396 2211 - .3611 L0708




for 1959,

&KE = .666134
SE(&KE) = 8.55145

and, subject to homotheticity, that

~

Okg

-4.20666 ,

SE(EKE) 3.4998L

Taking account of the standard errors, we conclude that these data do not

answer the question.
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