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Abstract

To determine whether an industry exhibits constant returns to scale,

whether the production fUnction is homothetic, or whether inputs are

a common approach is to specify a cost function, estimate its

parameters using data such as prices and quantities of inputs, and then

test the parametric restrictions corresponding to constant returns, a

homothetic technology, or separability. Statistically, such inferences

are valid if the true cost fUnction is a of the parametric class

considered, otherwise the inference is biased. That is, the true rejection

probability is not necessarily adequately approximated by the nominal size

of the statistical test. The use of fixed parameter flexible functional

forms such as the Translog, the generalized Leontief, or the Box-Cox will

not alleviate this problem.

The Fourier flexible form differs fundamentally from other flexible

forms in that it has a variable number of parameters and a known bound,

depending on the number of parameters, on the error, as measured by the

Sobolov norm, of approximation to an arbitrary cost function. Thus it is

possible to construct statistical tests for constant returns, a homothetic

technology, or separability which are asymptotically unbiased by letting the

of parameters of the Fourier flexible form depend on sample size.

That is, the true rejection probability converges to the nominal size of the

test as sample size tends to infinity. The rate of convergence depends on

the smoothness of the true cost function; the more times is differentiable

the true cost function, the faster the convergence.

The method is illustrated using the data on aggregate US manufacturing

of Berndt and Wood (1975, 1979) and Berndt and Khaled(1979).



1. Introduction

Recently there has been an interest in testing assumptions that are

routinely imposed in the estimation of consumer or factor demand systems.

An example of the former is Christensen, Jorgenson and Lau (1975) and of

the latter Berndt and Khaled (1979). Flexible functional forms are used

in this work so as to impose minimal a priori assumptions. The idea is

to be certain that it is the economic proposition that is being tested and

not some obscure consequence of specification error. Restated in statis-

tical terminology, the idea is to use a flexible functional form so that

the actual rejection probability of the test agrees closely with the

nominal rejection probability of the test under any true state of nature

that satisfies the economic proposition. That is, the objective is the

construction of an unbiased test of the economic proposition. Unfortunately,

tests constructed from flexible functional forms are less successful in

controlling bias than one might hope. As an example, computations reported

in Section 7 of Gallant (1981) show that the Translog test of an additive

indirect utility function can be seriously biased in favor of rejection.

In this paper we study the question: Can unbiased tests actually be

constructed? Addressing this question in the context of fitting factor

demand systems, we find that it is possible to construct tests based on a

version of the Fourier flexible form that are asymptotically un-

biased. The development of the ideas is as follows.

Setting previous conceptions aside and proceeding from first princi-

ples, we are led to consider which errors in the approximation of the true

cost function g(x) by a flexible form gK(xle) are important and which

can be neglected. Having determined the relevant approximation errors, we
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search for a useful measure of distance -- one which is large under relevant

approximation errors and which neglects others. We find that the Sobolov

norm is the required measure of distance. Our task now is to find a function

gK(xle) which can approximate g(x) as closely as desired in Sobolov norm.

We find that a logarithmic version of the Fourier flexible form has this prop-

erty. The Fourier flexible form of order K can approximate g to within

II - (e )11 = 0 (K-m+i+e:)g gK t,P,ll

for any e: > 0 where m is the number of times is differentiable g, i is

the largest order partial derivative regarded as important in the approxima-

tion, and p = 1 for an Ll type norm, p = 2 for an L2 norm, p = co for a sup norm,

and so on.

To derive tests for a homothetic production technology, or constant

returns to scale, or the separability of a set of factor inputs, our method

is to impose the parametric constraints which cause the Fourier flexible form

to exhibit homotheticity, or constant returns, or separability and then test

these restrictions statistically, the same as is done with any other flex-

ible form. For the method to be valid according to the preceeding consider-

ations, the imposition of the parametric restriction should not destroy the

ability of the Fourier form to approximate any g(x) that satisfies homo-

theticity, or constant returns, or separability to within

= o (K-m+i+e:)

We find that the Fourier flexible form satisfies this requirement.

Included in this discussion is a study of the limiting behavior of the

tests for a homothetic technology and for constant returns when the sample

This is equivalent to letting the number

size nK and the number of parameters

the fitted Fourier form

increase with the order K of
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of parameters Ik depend on the sample size We show that, as K

increases, the actual rejection probability tends to the nominal rejection

probability if the null hypothesis is true,

The algebraic form of the error bound we obtain indicates that if one's

objective is bias reduction then it is best to fit as large an order of K

as the number of available observations will permit. We assume that the

variance-covariance matrix E of the errors is known in the proof. As

yet we have not overcome the technical difficulties of an extension to

estimated E or to the nonlinear separability test. Nevertheless, we

accept the theoretical results obtained to date as indicative of the

validity of the general principle of large K values and move on to some

applications.

In the first application, we use the data of Berndt and Wood (1975)

and Berndt and Khaled (1979) to test for a homothetic production technology

and constant returns in United States manufacturing. We reject both

homotheticity and constant returns given homotheticity as do Berndt and

Khaled (1979) who use a Box-Cox flexible form. The lack of fit due to

imposing constant returns after homotheticity accounts for an overwhelming

proportion of the total lack of fit. Comparatively speaking, homotheticity

is a mild restriction.

In the second application, with the same data, we test whether capital

(K) labor (L), and energy (E) inputs are separable from materials (M) in

United States manufacturing. The relevance of this hypothesis the interpreta-

tion of 0KEestimates based on KLE data obtained by Griffen and Gregory (1976)

and others is discussed in Berndt and Wood (1979). Using a Translog flexible
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form, Berndt and Wood (1975) reject the hypothesis of KLE-M separability

at a level of a· .01. We accept KLE-M separability at a level of a· .10.

In the third application, with the same data, we estimate aXE' the

elasticity of substitution of capital for energy, using the Fourier flexible

form. We find for the year 1959 that

aXE = .666134 SE(aXE ) = 8.55145

and, with homotheticity imposed, that

aXE = -4.20666
Taking account of the standard errors, we conclude that these data do not

permit a decision that capital and energy are complements.
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2. Arbitrarily Accurate Approximations to a Cost Function

4It The producers cost function c(p,u) gives the minimum cost of producing

output u during a given period of time using inputs q = (Ql'q2'" . ,qN)' at

prices p = (Pl'P2'" . ,PN)'· For mathematical convenience we shall assume

throughout that the cost function has continuous partial derivatives at least

up to the third order.

The theory of the firm implies restrictions on the functional for.n of

the cost function. A list of these restrictions and some plausible hypotheses

is as follows [Diewert (1974) and Blackorby, Primont, and Russell (1978)l.

RO' Positive linear homogeneity, c(p,u) is a positive valued function

defined on the positive orthant and c(p,u) is homogeneous of

degree one in p, Ac(p,u) = c(;"p,u) .

1].

Constant returns to scale, c(p,u) = u c(p) •

Homothetic production technology, c(p,u) = b(u)c(p) .

Homothetically weakly separable, c(p,u) = c[cl (P(1)),P(2)'u] where
c and c1 satisfy RO .

Monotonicity, (a/op.) c(p,u) > 0 where i = 1,2, ... , N ,
1

p'(a/ap)c(p,u) = c(p,u), and (a/au)c(p,u) > 0 .
?R5. Concavity, (a-/apap')c(p,u) is a negative semi-definite matrix of

rank N-1 with p being the eigenvector of root zero.

The set of cost functions that satisfy RO is denoted by sre

those that satisfy RO and R2 and so on. If c in Ino is the true model then

the derived demand function will satisfy (Shephard's lemma)

q = (%p) c (p,u)

One can attempt to determine c statistically by fitting equations of this

n.sort to observed inputs qt' prices Pt , and outputs ut ' t =1,2, ... ,
such a stUdy, the quantities of interest are usually the elasticities of

substitution (Uzawa, 1962)

In
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2c(p,u) (0 /op.oP.) c(p,u)
1. J

and the price elasticities (Allen, 1938)

o.tnq. P.(%p.) c(p,u)
hij = = (jij (p,u) J

J

We find that the notational burden is considerably reduced if the problem

is restated in logarithmic quantities. Accordingly, let

1, i = .tn Pi + .tn ai i = 1, 2, ..• , N ,

v =.tn u +.tn 1 '

and
1,1 1,2 .tN, ...
al a2 aN+I

where 1, = (.t I ,.t2 , ..• ,.tN)'. The .tna i are location parameters to be determined

later.

Using

(%p) c(p,u) = c(p,u) p-l \/g

(02/opop ') c(p,u) = c(p,u) + \/gv'g - diag(\7g)]p-l

where

\/g = (0/01,) g(.t,v)

2 2\7 g= (0 /o.to.t')g(J.,v)

p = diag(p) ,

a list of conditions on g(.t,v) equivalent to those on c(p,u) is:



7
Positive linear homogeneity, g(i,v) is a real valued function

defined on and g(i+T1,v) = T+g(i,v) where 1 = (1,1, ... ,1)'.
Constant returns to scale, g(i,v) = tn u+ get)
Homothetic production technology, g(i , v) = h( v) + g(i) •

Homothetically weakly separable, g(t, v) = &: gl(l (1»' t (2)' v]
where g and gl satisfY RO .

R4. Monotonicity, (%li )g(t, v) ;. 0 where i = 1,2, ... , N ,

1'(%l)g(t,v) = 1, and (%v)g(i,v) > 0 •

R5. Concavity, 72g + 7g7'g - diag(7g) is a negative semi-definite

matrix of rank N -1 with 1 being the eigenvector of root zero.

cost shares, Shephard's lemma becomes

s = (%t) g(i,v) ,

the elasticities of substitution a. . become the elements of the matrix

and the price elasticities h ij become the elements of the matrix

h = i: diag (7g)

where the rows of h correspond to inputs and the columns to prices.

The result of the logarithmic transformation is to shift the focus to a

determination of g in by fitting

s = (%i)g(l"v)

and possibly

l,n c = g(l" v)

to observed shares St' l,og prices l,t' outputs vt ' and poss ibly l,og costse inct , t=1,2, ... ,n.
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There are several approaches to the determination of c(p,u) or

equivalently g(t,v). One approach is to determine the derived demand curve

statistically and then solve back to the cost function. A famous study of

this genre is Arrow, Chenery, Minhas and Solow (1965) where the function

was identified statistically (N=2). It implies the CES production function.

A CES production function has a cost function of the CES form. Another approach

has been to argue that after a suitable monotonic transformation of the

prices, z = ... a quadratic expansion in the transformed prices

c(p,u) = ought to give a sufficiently accurate approximation

in applications. Some cost functions generated in this fashion are the Translog

= tn(Pi) , the generalized Leontief = , and the Box-Cox
= - l)/A. The result of these and other approaches has been to

generate a finite collection of (logarithmic) cost functions

generate gl as a special case will bias statistical

each of which has performed well in some sense in some application(s). However,

in is the true cost function then all other costif one assumes that, say, gl

functions in which do not

inferences in some undesirable direction (Guilkey, Lovell and Sickeles, 1981). Continuer

attacks on the problem along these lines can only lead to an ever larger class

of models each leading to biased inferences if some plausible alternative is

in fact true. The basic problem leading to this state of affairs is that the

problem: Find g c by observing s = (a/at) g(t,v) is statistically intractable

because is too large a class of We need some sensible method to

reduce to manageable size.

One method of reducing to a manageable class of models is as follows.
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First, determine which approximation errors are important and which can be

*neglected. That is, g is to be approximated by g and one chooses a norm

Ilell which is sensitive to important approximation errors e = g*-g. Second,

find a functional form gK(t, v Ie) with a variable number PK of parameters

e = (A1'82 ,··· ,8 )' such that gK is in rnO for all e e ® and
PK

for every g in rno ' That is one finds a conveniently indexed dense subset of rno '
PKrna = [gK(t,V\A):8 c®cR ; K=1,2, ... } c rna •

Mathematically, the smaller class rna can be regarded as equivalent to rno as its clo-
sure contains rnO • Statistically, the problem shifts from. trying to find g

in rnO to trying to determine an adequate value of K. Finding an adequate K

is a much more tractable statistical problem. To follow this scheme, we are

led to consider approximation errors.

As noted earlier, the quantities of interest in an empirical study are

the derived demand functions

s = 'Vg ,

The elasticities of substitution

and possibly the cost function itself. One can see from. these formulas that

it is necessary to approximate g(t,v) accurately, the first partial derivatives

(a/at.) g(t,v) accurately, and the second partial derivatives (a2/at.at.) g(t,v)J

accurately. Other errors of approximation are irrelevant.
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We anticipate that an approximation over a rectangle in the positive

orthant will suffice. Accordingly, let the boundaries of this rectangle be

L Ho < p. < p. < CD

L HO<:u <u <CD

i=1,2, ... ,N,

These choices are at the arbitrary discretion of the investigator. However,

all data values must lie within these limits as well as any values (p,u) for

which predictions are planned. Setting limits slightly larger than anticipated

predictions and the extreme values observed in the data would be a reasonable

choice. Choose the location parameters of the transformation!!

t; = tn p. + tn a....

v = tn u + tn 1

so that

= tn L+ tn a. > 0Pi

L L
> 0v = tn u + tn .

Then letting

x = (t' , v) , ,

the region of approximation is

i = 1,2, ... , N

i = 1,2, ... , N ,

L H L H1 = (x = (t', v)' : t. < t. < t. , v < v < v }

which is an open rectangle in the positive orthant of RN+l

i is also a proper subset of the positive orthant.

The closure

Next we shall define a measure of distance, the Sobolov norm, which is

sensitive to relevant approximation errors over 1. First we need some

additional notation.

Y The definition of v is modified in the last paragraph of this section.



11

A multi-index is an N+ 1- vector with integer components. The length of

a multi-index k is defined as

*I k I = '"1=1 I k i I .

Letting A be a multi-index with non-negative components, partial differentiation

An g(x).
'''N+l

... °XN+l

g(x) is denoted as
*olA I

of a function

We assume that DAg(x) is a continuous function of x whenever this notation is

used. Let be a continuous distribution function with bounded density

function giving the relative frequency with which values of the independent

variable xt occur as sample size n tends to infinity [Malinvaud (1970),

Gallant and Holly (1980)J. We use this notation to define the Sobolov norm.

Sobolov norm. If 1 P < 00 let denote the

collection of all complex valued functions g(x) with S IDAgl d x < 00 for all
* 1A up to IA I m. Given g e define its norm as

. A p lipII g\lm p II. = (r l * SID gl
, ,,. AI m 1

If P = 00 let (1) denote the collection of all complex valued functions g

with sup yIDAg(x)! < 00 for all A up to I A 1* m. Given g define
XeJv

its norm as

Il g!1 = 1: * sup XIDAg(x) I .m,oo,lI. I I x,. A. ...

We see from the definition that the Sobolov norm is the relevant notion

of distance. Next we show how to construct dense subsets of with respect

to this norm. The construction is based on a modification

of a result due to Edmunds and Moscatelli (1977). The discussion will
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be brief, see Gallant (1981) for full details.

The construction of is based on a sequence of elementary multi-indexes

X' = [k :Ci=1,2, ... ,At
N+l Ci .

obtained as follows.

Elementary Multi-Indexes. Let

*1£ = [k: , k I S K} ,
N+l

the set of multi-indexes of dimension N+l and length I k 1*= ,ki I :S K •

First, delete from 1£N+1 the zero vector and any k whose first non-zero

element is negative. Second, delete any k whose elements have a common

integral divisor. Third, arrange the k which remain into a sequence

X' = [k :Ci=1,2, ... ,A}
N+l Ci

*such that k l , k2 , •.. , 1 are the elementary vectors and 'kCi I is non-

decreasing in Ci. Define J to be the smallest positive integer with

X C [j k : Ci = 1,2, ... , A; j = 0, ± 1, ± 2, ... , ± J} .
N+l Ci

This construction is tedious if attempted by hand for N+ 1>3

code for constructing (k } is available in Monahan (1981).
Ci

FORTRAN

The Fourier flexible form can be used to generate dense subsets of a

Sobolov space. It is defined as follows

Fourier flexible form (Gallant, 1981). Consider as an approximation to

a real valued function g g
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J>. J . ''''k'gK(xIA) = a +b'x + -be'ex + r: a. --axo 2 0=1 J=-J JO(

where

a. = a . ,JO( -JO( c = a ",2 k k'0=1 Oa 01 0(

and aO ' aaa' and b are real valued. The overbar denotes complex conjugation

and i = ..f-l . The scaling factor '" is computed as

'" = (2I1 - : i = 1,2, ... ,N+ l}
.

for some e with 0< c < 2II. A reasonable choice is (2I1 - c) =6. To obtain the

derivatives of gK(x!e), partition kO( and b as

where rand care N-vectors. Then
0(

= c + J ja.J=- JO( 0(

The purpose of the scaling factor'" is to be sure that'"X =(A.x : x CX} is a

rectangle with no edge longer than 2I1, that is

A[max(x. : x I:!} - min(x. : Xc f} ] < 2I1 i = 1,2, ..• ,N+l. This is the essential
l l

feature of the construction. The location of X in the positive orthant by

choice of a. is only for convenience in applications. It does not affect the

theory as any shift in location can be absorbed into the coefficients aO and b

of the quadratic part and the coefficients a. of the exponential part. WhatJO(
is essential is that At has no edge longer than 2II .

Although complex valued exponential representations are more convenient
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in discussion, in applications sine/cosine representations are easier to

work with. Writing

= uQlt a = 1,2, ... ,A

a. = u. + iv. a = 1,2, •.. ,A , j = 1,2, h •• ' JJa Ja Ja

a = u. - iv. a = 1,2, ••. ,A j = 1,2, ..• , J-ja Ja Ja
,

and using eij,,"* =cos(j;"k'x) i sin (jAk'x) one has thata a

+ + leu. cos(j;"k'x) - v. sin(j;..k'x)]}
\A- '-U J= Ja a Ja a

c - l[url_.;"k'x + lj[u. sin(j;"k'x) + v. cos(j;"k'x)l}ra= '-U a J= Ja a Ja a"· a

(02/otot ')gK(x!e) =

- +

Letting

lj2[u. cos(jA,k'x) - v. sin(j;"k'x)J}r r' .J= Ja a Ja a a a

e(0) = b = (c', bN+1) ,

the parameters of gK(x\e) are

which is a vector of length 1 + N+ 1 + A(1 + 2J) .

A verification that the Fourier flexible form can be used to construct a

dense subset of depends on the following result.

Theorem 1. [Edmunds and Moscatelli (1977), Corollary lJ. Let the real
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valued function g(x) be continuously differentiable up to order :n on an

open set containing the closure of I. Then it is possible to choose a

triangular array of coefficients 81 , 82 ' •.. , 8K, ..• such that for every
p with 1 < p S CI:I, every 1. with 0 S 1. < m, and every c> 0

as K CI:I •

We are now in a position to construct m6 but first we need the following
lemma.

Lemma 1. A function which satisfies RO can be written as

Nwhere I;. lW' = 1 •
1= 1

Proof. The transformation

d =

= wi1. i' 1.1 - t N ' ••• ,1.N _ 1 - 1.N , v )

is invertable so that there is a function h(d) such that

If g(1.,v) satisfies RO then

= g(1. ,v)

= ,.+ g(1. -,. 1, v)
N= ,.+ h(E"i=lwi1. i -,.,1.1 -.tN' ..• , 1.N_l -.tN' v)

NIn particular set ,. = t: 1 TN.1.. and the result follows. 0
- 1.= 1. 1

The of is given by the following theorem. It states that
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a cost function that satisfies RO can be approximated by the Fourier flexible

fonD. with all terms with J:! 1 k. * 0 deleted and the constraint 1 b. = 1

imposed.
Theorem 2. Let the real valued function g(x) satisfy RO and be continuously

differentiable up to order m on an open set containing the closure of I. Let

J.. J . ')"k'
gK(.e,v\e) = aO + b'x + + I:_ Itj - ..a. ."Q'x

0/= --J Ja

where x = (.e',v)'subject to the following parametric restrictions

1 'c = 1 where b = (c' ,bN+-l) ,
R'0

a. = 0 if 1 'r *0 where k =(r' , 1 ) , •
Ja a a a

Then satisfies RO and it is possible to choose a triangular array of t

- - - <coefficients 81 , A2 , ... , 8K , •.. such that for every p with 1 - P S CXI, every

.e with 0 S t < m, and every c > 0

II (- )1\ o(K-m:+t+C)g - gK 8K t ,p ,\.It =

as K-+=. Recall that

a. = a.Ja "ila

and that aO ' aaa' and b are real valued.

Proof. By Lemma 1

Nwhere t": 1·w. = 1. Let

of the exponential of the Fourier form, setting coefficients to zero as

S · '1 1. C k k'- ...A ,necessary. ar y = -Lo! kl * S K aok . - -L.cr-l aCtOkCtka for suitably

chosen coefficients. NO".v apply Theorem 1 to gO( d) to obtain the result that
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, l' iAok'd
= ob d + oC d + L:I kl*< K8 k eo _0 0

satisfies Ilg - gK11 n = o(K-m+i,+e ) where \led) is the distribution ofx.,p,'J
d = d(x) , that is, J g(d) d\l(d) = J g(d(x)] for integrable g. In

D I
this expression 0 k is a multi-index of dimension N and AD = [)"d(x) : x c I} is

a rectangle in RN with edges shorter than 2TI. Then using

J g(d)
D

d\l(d) = J g(d(x)] for integrable
I

= +

g we have that

satisfies IIg - h..-11 n . = o (K-m+i,+e ). What has to be shown is that it
-1<

is possible to choose the coefficients of the Fourier flexible form subject

to 1 'c = land 1 'r = 0 so that gK(xle) = hK(xle) .

Considering the linear term, we have

lW'x. + ob'd(x)

= !!!-1l (w. +ob. )x. + (WN - r!!-rlob. )x._ + ob•.x.-'l
1\1 1\1 11J"T

N N N-lmaking the obvious associations. Then 1 c. = L:, lW' + I:, lob. - lob. = 1

as required. Now consider the term Aok'd(x) If AI is a rectangle with edges

shorter than 2TI then so is A. D. Now

-N 1 N-l)
o k'd(x) = 0 kix i - (!:i=l 0 k i xN + 0 YN+l

= + xN+l

= k'x

RN+l N-lwhere k = (r,lc l ) '" and 1 'r = O. lok.-1\1+ 1= 1

*a multi-index. For someKwe will have Ikl :SK provided

Considering the quadratic term we have

is an integer so k is

*10 k I :S 0 K as required.
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for suitably chosen ak as required. 0

For notational convenience, we have made sane overly restrictive

assumptions. These are that v is to be canbined with t l , t 2 ,···, tN
in computing the common scaling factor Aand that output is univariate.
Actually, the only variables which require a common scaling factor are those

affected by RO ' namely t l ' t 2 ' •.. , tN. Output can be measured according

to any scale of measurement without affecting the analysis so that v can

be defined as

v = (tn u + tn

for any positive An+l; tn is to be chosen as described earlier. We

suggest that be chosen so that

H • ["H "H "H iv = max Xll' Xl 2 ,···, XlN J

The conversion from univariate v to a multivariate measure of log output is

increase in dimension from N+ 1 to, say, N+ L. The multi-

variate vector v can include variables other than log outputs such as log time.

Of course, these non-output variables would not be subject to the monotonicity

. restriction, R4.
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3·1. Returns to Scale

As noted previousLy, the Fourier flexible form

( I) ,1 , A J ijAk 'xgK JIJ, V e = a + b x + 2X ex + I: . II:· J a. e eto ct= J=- Jet

will satisfy R , positive linear hPmogeneity, ifo

{

I
1 'c = 1 where b = (c' ,bN+l)

a. ::: o if 1 'r *0 where k == (r' , )'.Jet et et et ,et

If, in addition to R' ,o

R'1

I

where b = (c' ,bN+l )

is imposed then the Fourier flexible form will satisfy Rl , constant returns

to scale. Let the (logarithmic) cost function g(x) satisfy the nypotheses of

Theorem 2, linear homogeneity

RO ' g(.t + T 1 , v) = T + g(.t , v) ,

and correspond to a constant returns to scale production technology

Rl · g(.t, v) =.tn u + g(l,) •

Then the Fourier flexible form subject to R6 and Ri can approximate g(x) to
within

for every C > 0 as K in the notation of Theorem 2. The argument is as

follows.
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A cost function which exhibits constant returns to scale is written as

g(t,v) =tn \1"+ get) •

By Lemma 1,

where r! 1 w. t. = 1. Then, exactly as in the proof of Theorem 2, Theorem 1
J.= J. J.

is applied to go (t l - tN ' t 2 - LN ' ••• , LN_l - LN) to obtain the result that

Tests of constant returns to scale that are asymptotically free of

specification bias can be constructed using this result. That is, one can

construct a test statistic TK based on, say, share data and find a critical

point cK such that if the true function g(x) satisfies Ro and Rl then

A significant test statistic can thus be attributed to violation of constant

returns to scale rather than specification bias. The specification bias in

tests of this sort using a fixed parameter functional form such as a Translog

can be substantial [Gallant (1981), Section 7J. We shall give a construction

in the case where t is known. With a little extra work this analysis covers

the case where r can be estimated consistently from, say, replicated obser-

vations. We anticipate that these results will extend to t estimated from

regressi'Jn residuals but since the number of parameters is increasing, "the

teclli1ical details will not be trivial.

Assume that the obse:r-ved input cost shares fallow

t = 1,2, ... , n
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where f(x) == (a/at)g(t,v) and the ut are independently and normally distributed

with mean zero and variance-covariance matrix I: having rank (r:) == N -1. The

. approximation to f(x) is (a/at)gK(t,vle) subject to Ro which is a linear

function of e and can be written as

The restrictions Rl are zero restrictions on elements of e and can be represented

as

Let

a(K) b(K)

mean that there exist two positive constants such that

for large enough K • Then from Edmunds and Moscatelli (1977) we have that

length (8) == p8

length (p) == pp rr-l
A vector notation is convenient. Let

s == u == f

f(x )n

each vectors of length nN, and let



I ,
zl zl(l), ,

Z = z2 Z(l) = z2(1)
.
z' ,
n zn(l)

matrices of order nN x and tiN x Pp respectively.

s = f + u

22

In this notation

where u ...... N(O, I®I:). +Let I: denote the Moore-Penrose g-inverse of I:

[Rao (1973), Sec. 16.5J, and let

Consider the statistic

We assume that there are more observations than parameters Z and

that the number of observations grow at some polynomial rate with K

Then TK follows the non-central chi-square distribution with

degrees of freedom and non-centrality parameter

Let the two-tailed a-level critical point of the standard normal distribution

be denoted by za . We shall show that if cK = za and that if the true
2 2
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cost function g(x) is differentiable to an order greater than 1+ (g + N/2 )/2

then

Now TK may be written as [Rao (1973), Sec. 3b.2J

2 vK-l 2
TK = (zo + L:i=l zi

where the z. are independent standard normal variates. Suppose that we can

show that (zo - )';;)2/JV;;. converges in probability to zero. Then by the

central limit theorem TK/J2vK converges in distribution to the unit normal

and the result will follow. As z is bounded in probability, it suffices too

show that TK/J'V;. = 0

Now let p be as given by Theorem 1 and let 0 be the largest eigen value
+of L: , then

TK = f/(P - P(l))f

= (f-Z(l)P)/(P-P(l))(f-Z(li)

(f - Z(l)P) I (I I8l L:+ ) (f - Z(1)0)

n
= (a/at )g(xt ) - (a/at )gK(tt \0) ] I Ltc (a/at )g(xt )- (a/at )g(tt 10)]

s 0 r!!=l[ (a/at. )g(xt ) - (a/at. )gK(tt 1p )]2t=l

s 0 1\ g -

=

and
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/
' c- tV -N/2 ( -m+l-N/2+C) tV uN+3 (K·2m+2-N/2+C)

T At/VT, fV T K = n 0 K fV r- 0KKK K

whence

/
' r::- _ (-2m+2+g+N/2+C)

T ",;vv - 0 K •K K

The homothetic technology restriction

R2 • g(.t,v) = h(v) + g(.t)

is a slight generalization of the constant returns to scale restriction;

one writes h(v) for .tn u. The restrictions for constant returns to scale

were derived by applying Lemma 1 and Theorem 2 to g(.t) and, since h(v) =.tn u
was assumed, there was no need to approximate h(v). To obtain the generaliza-

tion to a homothetic production technology, Theorem 2 is applied to h(v).

The result may be stated as follows.

The Fourier flexible form

g(.t,vlq) = ao+b'x + + r! 1 J a.or- J=- Jei

ij )"k'x
eie

will satisf'y RO ' positive linear homogeneity, and R2 , homothetic production

technology, if in addition to the restriction

R'2'

is imposed. Let the (logarithmic) cost function g(x) satisfY the hypotheses

for every e > 0 as K <:X) •

of Theorem 2, positive linear homogeneity RO ' and correspond to a homothetic

production technology R2 . Then the Fourier flexible form subject to Roand
R' can approximate g(x) to within2

II ( )\\ o(K-m+.t+e)g - gK q .t ,p ,\.lo =

. ( -m+.t+e) eTo further on result, the error bound 0 K was identified
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in the previous paragraphs as being the critical feature of the Fourier

flexible form that permits unbiased inference. If inference

is based on share data then the non-centrality parameter of the test statistic

based on the Fourier flexible form of order K decreases to zero at the rate

for every > 0 when observations are obtained at the rate n = recall that

N is the number of inputs. For unbiased inference to be possible

at all, the cost function g(x) must be differentiable to an order greater than

I +(g+N/2)/2. Thus, keeping g small permits unbiased inference over a wider

class of g(x). Consequently, contrary to the usual wisdom, one should attempt

to keep the number of parameters large relative to the number of observations

if one's intention is to defend against biased inference. Also, note that if

g(x) is differentiable to a very high order of m then -rJJV:;;. will be small for
low orders of K •
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3.2. A Test of Separability

Let the vector s of cost shares be partitioned into two groups

s =

where s (1) is an Nl-vector and s (2) is an N2-vector with N = Nl + N2 • Let

the vector t of log input prices be partitioned similarly

As we show next, one practical aspect of separability is that cost shares in

the first sector, reexpressed as cost shares relative to expenditures in the

first sector, can be modeled independently of .t(2). This fact forms the basis

for a test of separability.

A homothetically weakly separable cost function has the form

and, using Shepard's lemma,

which is independent of t(2) . But in general

The idea is to substitute gK(t,vIS) for g(t,v) , in the general equation, fit
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and test the Qypothesis that all terms in gK(t,v\e) involving t(2) and v have zero

coefficients. In terms of further parametric restrictions on the form given

in Theorem 2, the restrictions to be tested in the subsystem

R'3

The parameters c(2)' bN+l and those ajQ' for which r(l)Q' =0 are not identified in the
subsystem regression

These parameters are set to zero in the estimation [Gallant (1981), Section 5J.

Thus, the only testable restrictions are

R"3 .

satisfies the Qypotheses of Theorem 2

then the Fourier flexible form subject to ROand R3can approximate gl(t(l))
to within

for every e > 0 as K in the notation of Theorem 2. This result is a direct

consequence of Theorem 2 applied in a lower dimension.

Another approach to testing separability is to begin with the condition that

Ri and R3 taken together imply 1 'c(l) = 1 .
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deduce the corresponding parametric restrictions on 8, fit the full system,

and then test these restrictions [Blackorby, Primont, and Russell(1978),

Sec. 8.2.2J. This approach leads to messy algebra with the Fourier flexible

form and so we abandoned it in favor of the simpler approach of fitting only

to S(1)/1's(1) • There may be an efficiency penalty but simplicity and

tidiness of the theoretical defense of the, test are the dominant considerations

in our opinion. If we had an interest in estimating the full system subject

to a separability constraint, which we do not, it would probably be more

sensible to attack the problem directly with an approximating cost function of
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3.3. Curvature Restrictions

The imposition of monotonicity

or concavity

definite for all x c X

or both will not affect the ability of the Fourier flexible form to approximate

a function which satisfies °R4 or R5 or both respectively on i. The argument

depends on continuity and consists of a verification that eventually the

constraint is not binding.

Consider a function g(x) which satisfies R4 on f and the hypotheses of

Theorem 2 for m 2. Then, setting L = 1, the triangular array [AK} of Theorem
2 satisfies

As (a/ax)g(x) is continuous on the compact set i, (a/ax. )g(x) > 6 :> 0 for some
1.

6 on X. Thus for all K large enough (a/axi )gK(X IAK) > 6/2 > o. The argument

for the restriction R5is the same. Let m 3 and note that the determinants

of the principal minors of + - are continuous functions of
2and g

The restriction R4 is usually irrelevent in applications. The coefficients

of the Fourier form are estimated, at least in part, from the regression °
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Since the components of the vector of shares St are between zero and one a

reasonably close fit to data will require that the predicted shares vgK(xtIS)

be between zero and one as well. In the applications considered to date,

this has been the case. Monotonicity follows as a matter of course.

Concavity is not of much interest in hypothesis testing, the subject

of this paper, so we have not devoted a great deal of energy to finding

necessary and sufficient conditions for the concavity of the Fourier form

which are simple enough to be used in applications. Tractable sufficient

conditions can be obtained by noting that

+ vgKV'gK - diag(vgK)

is negative semi-definite provided that the components
2zero and one and that V gK is negative semi-definite.

of VgK are between
2V gK can be made

negative semi-definite by using the restrictions of Section 5 of Gallant

(1981) and then changing sign. However, the data used for illustration,

described next, strongly reject these restrictions, so we have been unable

to follow this approach here.
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4.1. An Illustration: Determining Returns to Scale

To illustrate the statistical methods, we reexamine some issues that

are discussed in Berndt and Wood (1975, 1979) and Berndt and Khaled (1979)

using their annual data on the U.S. manufacturing sector from 1947 to 1971.

Total input cost (C), input prices of capital (K), labor (L), energy (E),

and materials (M), and the corresponding cost shares are taken from Tables

1 and 2 of Berndt and Wood (1975). The output series (Y) is taken from

Table 1 of Berndt and Khaled (1979). These data are transformed as shown

in Table 1.

We shall ignore technical change in the analysis which is equivalent

to imposing the maintained hypothesis that there has been none. The reasons

are as follows. Technological progress is primarily a stochastic phenomenon

and is probably best modeled by viewing the parameters of gK(xtle ) as the

realization of a stochastic process indexed by time. Thus observed data

would follow St = yrgK(xtle t) for t= 1,2, ••. ,n. An adequate formulation

of this approach is beyond the scope of this paper. If technological change

is modeled as depending deterministically on time then our approach can be

applied directly by including time as a variable treated similarly to output

as noted earlier. However, this would lead to a model with more parameters

than these data can support and is thus not practical here. A model such

as that used by Berndt and Khaled (1979), gK(xle ) + t(T+L:Ti .{1)' is

feasible but will lead to the sort of biases that our approach seeks to

avoid. Moreover, Berndt and Khaled found only marginal significance for

T,Tl, ..• ,TN with these data and with the generalized Box-Cox cost function

replacing gK(xl e). Thus, even if we followed their approach, the results

would probably be uninteresting.
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With technical change ignored, the statistical model is

SOt • + eOt

SIt • + e lt

SZt • (%-!.z) gK (x t Ie) + e2t

S3t = Ie) + e3t

where the share equation for S4t is discarded due to the restriction that
4Ei=l Sit • 1 [Theil (1971), Section 7.7J. Recall that

+ r! IfUf'\... + 2tjJ I[ u. cos (jAk'x) - v. sin(jA,k 'x) J}QI= '-Q' = Jet et Jet et

(a/aL) gK(xla) =

C - + 2tj
J Ij[u. sin(jA,k'x) + v. cos(jA,k'x)l}r

QI= '-Q' et = Jet et Jet et" et

where

a(0) =b' = (c', bN+1 )

and

c = -z!cr-l U A2k k'00' a Ct

The restriction RO is imposed as a maintained hypothesis

4 b. 1 andL:. 1 = ,
( 1= 1

R' 1. 40 0 if k. 1: 0u. = v = L:i=lJCt ja lCt
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The set of multi-indexes that satisfy kia = 0 and have norm Ikal* s 3

are displayed in Table 2. For this set A= 19, and we take J = 1, whence e

is a vector of nominal length 63. The effective number of parameters is

53 due to the following restrictions.

The nonhomogeneous restriction bi = 1 reduces the number of

effective parameters by one. The remaining restrictions are due to

overparameterization of the matrix C. To see this, think of the model as

the sum of a Translog

1
Uo + b'x + 2' x' C x

plus the sum of A= 19 univariate Fourier expansions along the directions ka

The matrix C of the Translog portion is a 5 x 5 symmetric matrix which
4satisfies five homogeneous restrictions Cij = 0 (i = 1,2,3,4,5).

C can have at most ten free parameters and in the parameterization

C = uOa A2 ten of the uOa are free parameters and nine must

be set to zero. In sum, e is subject to one nonhomogeneous restriction

and nine homogeneous restrictions which reduces the number of parameters

from 63 to 53.

The model may be written in a vector notation

t = 1,2, ••• ,25

with Yt = (sOt,Slt,S2t,S3t)' and similarly for f and e t where we assume

that the errors are independently distributed each with mean zero and

variance-covariance As f(xtle) is linear in the parameters,

where is of order Nxl+N+l+A(1+2J), this is a multivariate linear
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V
regression model. We use the seemingly Unrelated Nonlinear Regression

method (Zellner, 1962) but, as priori identification of those

uaa to be set to zero in order to the nine homogeneous restrictions

would be tedious, we identify them automatically in the course of the

computations as follows.

Let

0 1 000
0 o 100
0 o 0 1 0

r = 0 R = 000 1 0
1 0-1-1-1

-----------r-----
0 0 I I• - 58I

and let A- denote that gz-inverse of a positive semi-definite matrix A

described in Goodnight (1979). Then

minimizes

s(S,!:) = l!:n (y _ z' S)' !:-l(y - z' S)n t=l t t t t

subject to the nonhomogeneous constraint !:;=1 bi = 1 and the nine homo-

geneous constraints. The procedure generalizes; in the general case, r is

the N+l st elementary vector of order 1+N+l+A(1+2J), the north-west

corner of R is the identity of order N bordered below by the N-vector

(0,-1,-1, ••• ,-1), and the south-east corner of R is the identity of order

l+A(l+ZJ).

11 Machine readable FORTRAN code to compute Zt directly for given A, A, J

and xt is available from the author at the cost of reproduction and postage.
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The Seemingly Unrelated Regressions estimator eis computed as follows.

First compute

e to minimize s(8,1) subject to RO
-1using the formula of the previous paragraph with I replacing L • Next

estimate L by

Finally, compute

eto minimize subject to RO
-1using the formula of the previous paragraph with L replacing L • For

these data we obtain

n s (8,L) = 63.6UO, 53 parameters.

The hypothesis of a homothetic production technology

R'2 u = v. = 0jO' JO' if 0 and rO' 0 where kO' = (r' )0" 0'

is equivalent to the deletion of

from the list of multi-indexes given in Table 2. The hypothesis R2can
be viewed as analogous to the hypothesis of no interaction in an experi-

mental design. To see this write

+ 2f 1 rUo + 1 uj cos (j Ak' x) - v. sin (j Ak' x) l .
Ct= ... 0' J= 0' 0' JO' 0''';

One can view k'x as a measure of the covariance of x with the vector k
0' 0'

and the Fourier flexible form as the sum of additive effects in (k'x).
0'
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Under homotheticity, it suffices to consider main effects only, those due

to k1,k2, ••• ,k7• Under nonhomotheticity there is an interaction with output

and the interaction effects, those due to k8 ,k9, ••• ,k19 , must be taken into

account. We find an analysis of variance interpretation of our procedures

helpful as our approach to bias minimization using Fourier series expansions

as large as the data will support comes closer to the ideas of experimental

design than it does to parsimonious parametric modeling. The estimate e
subject to ROand is computed as follows.

To compute

eto minimize s (e,f) subject to

one uses the previous scheme for the minimization of s (e,E) subject to

RObut using the partial set of multi-indexes kl , ••• ,k7 instead of full
set kl , ••• ,k19; r is a vector of length 27 and R is 27 x 26. As

C = - -21 I uo k' will admit of 11 free parameters and there are only
OF a aa

7 available, there are no homogeneous restrictions. We obtain

= 138.3487,26 parameters.

The difference

ns(e,f) -ns(S,f:) = 74.7377,27 d.£.

is asymptotically distributed as chi-square random variable provided that

the same estimate of E is used to compute both e and e (Burguete, Gallant
and Souza, 1982). Presumed also is that Pe is held fixed as sample size

increases. As noted earlier, we expect that our results with Pe depending

on n for known E will cRrry over to estimated E but we have no proof as

yet. A chi-square of 74.7377 with 27 degrees of freedom is significant at

a level of p = .0005 thus homotheticity is rejected. This agrees with
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Berndt and Khaled's (1979) finding (a chi-square of 43.1162 with 3 d.f.).

M)reover, the same result obtains if the computations are repeated assuming

a first-order diagonal autoregression on the errors.

Constant returns to scale implies homotheticity so it too will be .

rejected. Letting edenote the estimate obtained by minimizing s(S,E)

subject to R' and R' we obtaino 1

n s(S,E) = 1193.6333, 22 parameters.

This is computed using the same computational scheme by replacing So with
So - ..f.n u and using the six multi-indexes k2 ,k3 , ••• ,k7 to define the

Fourier flexible form. Testing constant returns to scale against a homo-

the tic technology we have

1::1 A _ '"

ns(S,L:) -ns(S,L:) = 1055.2846,3 d.f.

Thus, we strongly reject constant returns to scale even assuming homo-

theticity as the maintained hypothesis. Berndt and Khaled (1979) reject

this hypothesis as well but not as strongly (a chi-square of 66.017 with

2 d.f.).
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4.2. An Illustration: Testing Separability

Berndt and Wood (1979) list some recent studies which have estimated

the cross-price elasticity between capital and energy. These divide into

two groups, those estimated from data on capital, labor and energy (KLE)

alone, and those estimated from data on capital, labor, energy and

materials (KLEM). If the cost function is homothetically weakly separable

then cross-price elasticities obtained from KLE data and KLEM data can be

related. If not, cross-price elasticities estimated from KLE data would

to defy interpretation. See Berndt and Wood (1979) for

These considerations motivate a test that KLE is homothetical1y weakly

separable from M.

Recall that the logic of the inference procedure runs as follows.

Under the null hypothesis the regression

sl / (sl +s2 +s3) = (0/0.(,1) + e 1

s/(sl +s2+ s3) = (o/o-!.z) + e2

will adequately represent the data; Table 1 defines the variables and, as

before, we have deleted the equation for s3/ (sl + s2 + s3)' A plausible

alternative model which contains the null model as a special case is

(i =1,2). The idea is to test the null model against the plausible alter-

native. However, the formal logic of a statistical test of a null hypothesis

requires only that the alternative model contain the null model as a

and Wood (1979) impose linear homogeneity on the sub-production
function whereas we only impose homotheticity; see Theorem 3.8 of Blackorby,
Primont, and Russell (1978).
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special case. Plausibility is not reqlJired. Therefore, we can arbitrarily

impose homotheticity RZ on gK(.("vI S) without affecting the validity of the
test. Power may be lost but not validity. We shall impose RZ as there

is not enough data to support the full alternative model. Moreover, this

will permit a direct comparison with Berndt and Wood (1975).

To fit the model, we use the Seemingly Unrelated Nonlinear Regressions

method (Gallant, 1975). Write

sl/(sl +s2 +s3) = (o/o.r,.) (o/o.(,i) gK(-!.,vIS) + e l

s/(sl +s2 +s3) = CoIotz.) (0/0.(,1) gK(.(,'v!S) + e2

as the multivariate nonlinear model

and let

Under the alternative, gK(-!.,vIS) is subject to linear homogeneity ROand
homotheticity R2• Additionally, multi-indexes with r (1)0' = 0 are deleted.

Thus, under the alternative gK(-!.,vI S) is computed using the multi-indexes

k2 through k7 of Table 2. The parameters Uo and b4 ,bS of gK(xI S) do not
appear in the regression equations. Further, fi(xI S) is the ratio of two

linear models and is therefore homogeneous of degree zero in the remaining

p3rameters. Consequently, f(xIS) is not identified without a normalization

rule. We impose bl + b2 + b3 = 1. The number of free parameters in the

alternative model is thus 2 + 6 (1 + 2) = 20 for J = 1. As before, we compute

e to minimize s(S,I), set
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!: = 1 1 [y - f (x 16) ] Lry - f (x 16) ] 'n t= t t t t

and compute e to minimize s(e,!:). We obtain

ns(e,f:) = 40.6307, 20 parameters

To fit the null model, fix and use only the multi-indexes k2,k3 and

k4 to compute gK(xl e) the rest is as for the alternative model. We obtain

_ A

ns(e,E) = 54.3196, 11 parameters.

The difference

n s(S,f:) - n s (a,!:) = 13.6889, 9 d.£.

is asymptotically distributed as a chi-square random variable (Burguete,

Gallant and Souza, 1982). Separability is accepted at a level of p = .10.

This conclusion differs from that of Berndt and Wood (1975) who reject

separability at a level of .01.



4.3. An Illustration: Estimating Elasticities

Standard errors for estimated price elasticities and estimated

elasticities of substitution are fairly easy to obtain using the Fourier

flexible form because it is linear in its parameters. Recall that for

given .tog prices .to '

and given .tog output vo '

the first and second order partial derivatives of the Fourier form at

are

(%.t) gK(xoIA) =

c - + lj[u. sin(jAk'xo) + v. COS(jAk'xo)]}r
vu "" J= JOf Of JOf Of et

(02/ 0.tO.t' )gK(x Ie) =

- A2r! lj2[u. COS(jAk'xO) -v. sin(jAk'xo)]}r r'or- J= Jet et JOf Of Of et

Letting

then a first order partial is a linear function of the form
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and a second order partial is a linear function of the form

-::.2
o (!A) = hi 8ox.ox. gK Xo ij

J

where g., h.. , and e are vectors of length 1+ N+ 1+ A(l+ 2J) •

Using this notation, an elasticity of substitution and its derivative

with respect to e are for i *j

(0/08)Oij(e) =
( I )-2( I )-l( I )- gie gjA hijA gi

- .e)g.
J

and for i =j
0H (A) = 1+ .S) _......

(0/08) a.. (e) = .. - e)g.

A cross price elasticity and its derivative are for i *j
1) .. (A) = .A) +

J

(O/OA)1)ij(e) = - (g{A)-2(hi j A)gi + gj

where i indexes factor inputs and j indexes factor prices. An own price

elasticity and its derivative are
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,.
Let A denote the Seemingly Unrelated Regression computed as described

in Section 4.1. Its estimated variance-covariance matrix is

in the notation of Section 4.1. Then an estimate of, say, a cross price

elasticity is obtained by evaluating 11 •. (A) at a,
.. = 11 .. (A)

and its standard error is computed as
1

SE ( .) = [( 0/0e') 11. . (e) (2 (0/0A) 11.. (e)]2" •

Similarly for own price elasticities and elasticities of sUbstitution.2I
Following this procedure, we obtain estimated elasticities and standard

errors as shown in Table 3 for two cases: non-homothetic production

technology (multi-indexes k2 , ••. , k19) and a homothetic production

technology (multi-indexes kl , k2 , In the latter case, 0 was

estimated from residuals from the value of A that minimizes s(8,I) subject to

Rb and These results may be compared with Table 5 of Berndt and

Khaled (1979).

To comment, with homotheticity imposed, Fourier form estimates are

roughly comparable to the Box-Cox form estimates obtained by Berndt and

Khaled (1979). With homotheticity relaxed, they are not. As discussed in

Berndt and Wood (1979), the question as to whether capital and energy are

substitutes or complements is a matter of some interest. We find that,

21 Machine readable FORTRAN code to compute these estimates and standard
,.

errors directly for given xO' e, and 0 is available from the author at
the cost of reproduction and postage.
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Table 3. Fourier Flexible Form Estimates of Allen Partial Elasticities
of Substitution and Price Elasticities, U. S. Manufacturing, 1959.

Non-homothetic Homothetic .
Elasticity Estimate Std. Err. Estimate Std. Err.

O'KK - 6.5321 9·9222 -27.4646 6·9830
aKL ·3288 1.8962 1.2554 ·3232
O'KE .6613 8.5515 - 4.2067 3.4998
aKM .4545 1.4758 2·3081 .7301
O'LL - .2813 .7291 - 1. 7437 .1391
aLE 4.5678 3.5918 - .0787 .4763
O'IM - .2422 .3611 .6626 .0648
O'EE -28.5133 36.2705 - 7.5178 10.1295
OEM - .0157 3·5003 .9858 ·9338

.0642 ·3583 .5817 .1135

TlKK .4013 .6022 - 1.5839 .3892
TlKL .0908 .5238 .3456 .0897
TlKE .0300 ·3879 - .1945 .1605
TlKM .2806 ·9118 1.4328 .4545
TlLK .0202 .1165 .0724 .0184
TILL - .0776 .2015 - .4801 .0385
TILE .2069 .1622 - .0036 .0220
TIm .1495 .2230 .4113 .0403

.0406 ·5255 - .2426 .2003
1.2608 ·9911 - .0217 .1311

- 1.2917 1.6353 - ·3477 .4658
.0097 2.1606 .6119 .5802

TkK .0279 .0902 .1331 .0410
\1L .0668 .0996 .1824 .0177
\m .0007 .1586 .0456 .0428

\w .0396 .2211 ·3611 .('708



•

47

for 1959,

a = .666134KE

and, subject to homotheticity, that
,.
O'KE = -4.20666 ,

Taking account of the standard errors, we conclude that these data do not

answer the question.
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