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Abstract

We consider an open question in applied price theory: Without a priori
knowledge of a firm's cost function or a consume?s indirect utility function,
is it possible to estimate price and substitution elasticities consistently by
observing a demand system? As the work of White (1980), Guilkey, Lovell, and
Sickeles (1981), and others has shown, ordinary flexible functional forms
such as the Translog cannot achieve this objective. We find that if one 1is
prepared to assume that elasticities of substitution cannot oscillate wildly
over the region of interest then consistent estimation is possible using the
Fourier flexible form provided the number of fitted parameters increases as
the number of observations increases. This result obtains with any of the
commonly used statistical methods, as examples: mnmultivariate least squares,
maximum likelihood, and three-stage least squares. It obtains if the number
of fitted parameters is chosen adaptively by observing the data or chosen
deterministically according to some fixed rule. We approach the problem along
the clagsical lines of estimability considerations as used in the study of
less than full rank linear statistical models and thereby discover that the

problem has a fascinating structure which we explore in detail.



1. Introduction and Main Result

Let q denote an N-vector of commodities when a consumer's demand
functions are observed or an N-vector of factor inputs when a firm's derived
demand functions are cbserved; let p denote the vector of corresponding
prices; and let c=p’q be either the consumer's cost necessary to achieve
utility level u or the firm's cost to achieve output level u.

Suppose that the problem is that of consumer demand and let g(x) with
x=p/c be the consumer's indirect utility function. Then cost shares are

determined by Roy's identity
s,(x) = [5_x, (3/2x, )&(x)]™ x, (3/0x, )a(x)
i =1"1 i i i

for i=1,2,...,8N. This system is fitted to observed cost shares S, correspen i=s

to observed cost normalized prices Xit==pit/ct with an eye toward estimating

the elasticities of substitution

(2,8, )8, ; R S P B o

gigj gj &; En Xn8pn

cij(X) =

where gi==(a/axi)g(x) and gij==(52/axiaxj)g(x) . Other quantities of interess --
compensated price elasticities, uncompensated price elasticities, and income
elasticities -- can be obtained from formulas similar to the above in that

X, (B/Bxi)g(x), and (az/axiaxj)g(x) are all that must be known. Closer
inspection of the formula for Uij(x) reveals that it would be enough to
determine the first derivatives of g(x) within a scalar multiple. That is if

2°(x) can be determined such that for some function a(x)>0
(a/axi)g°(x) = a(x) (a/axi)g(x) i=1,2,..., N

then (3/5x.)g°(x) and (az/ax:axj)go(x) can te used in the formula for g,,{x) iz
- . o)
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place of the derivatives of g(x) without changing the result. The same is
true of price and income elasticities. Evidently, the object of the
empirical exercise is the determination of some function g°(x) whose
derivatives are proportional to those 6f g(x).

Suppose that the problem is that of factor demand and let g{(x) with
x=(p’,u)’ be the firm's cost.function. Input cost shares are determined by

Shephard's lemma
s, (x) = [5_,x, (3/3x)g(x) 1%, (3/2x, )g(x)
i i=1"1 i i i
for i=1,2,...,N. The elasticities of substitution are computed as

N
0350¢) = (B 158008

g:8.:
ke

J

where the notation is as before. Again, as before, the quantities of interest
can be computed for a given x from the first and second derivatives of g(x).
Again, knowledge of first derivatives to within a scalar multiple will suffice
as if g°(x) is linear homogeneous in its first N arguments and if
(a/axi)g°(x) = a(x)(a/axi)g(x) then it follows that

(Bz/axiaxj)g°(x) = a(x)(aa/axiaxj)g(x) for i,j=1,2,...,N. To show this, use

the fact that a linear homogeneous function satisfies
a(x) = %%, (3/3x,)a(x)
“i=1"1 i

which implies that o(x)=g°(x)/g(x) .

To allow the consumer's indirect utility function to depend on demographic
or other characteristics as well as cost normalized prices p/c, let x have
dimension x2 N, it teing understood that the first N components of x contain
ﬁhe vector p/b. Let Yg(x) denote the N-vector obtained ty differentiating

with respect to the first N ccmoonents of z(x),



. ve(x) = [(3/0x,)g(x),...,(3/axy)a(x)]" -

Similarly for the firm's cost function in which case the first N componants
of x contain the vector p and the rest of x contains output and other covariates.
Let Y denote that subset of Rk from which the observed x, are to be drawn. Ve
shall assume that X is bounded open and convex and that no vector in the
closure I corresponds to a zero price for some commodity.

In the same vein, it 1s possible that only a subvector of the cost share
vector Sy is observed, or in the case of factor demand that costs cy as well
as cost shares are observed. In either event, denote by vy that which is
observed; Ve is an M-vector where M may be larger, smaller, or equal to N.

Many plausible data generating mechanisms can be envisaged. Consider

factor demand. The simplest assumption is that shares follow the model

‘ s, = diag(z,)ve(x,)/e(x,) + e, t=1,2,...
with Xy independent of the errors e Another possibility is that a firm
produces on the basis of a forecast %t but that which obtains is xt==§ct+et

whence shares follow the model

sy = diag(py -e(yyy) Valxy -ep)/a(x, -ep) t=1,2,..

with e, being unobservable. In general, assume that the observed data (yt,xt:

Tt

follows some reduced form
Ve =Y(e, ,x g*) t=1,2,..
t kRS i =

and impose:

Assumption 1. The errors are independently and identically distributed

naving common distribution P(e) with support € ; that is P(E)=1. Let

. * . . * .
Y(e.x,z ) be continuous on € xX for any fixed g that zenerates continuous



cost share functions upon application of either Roy's identity or Shephard's
lemma.

It is necessary to impose restrictions on the limiting behavior of the
sequence xl,xz,... . We use the notion of Cesaro sum generators which had its
beginnings in Jennrich (1969), and Malinvaud (1970), and reached its present
form in Gallant and Holly (1980).

Definition (Gallant and Holly, 1980) A sequence {vt} of points from a
Borel set U is said to be a Cesaro sum generator with respec% to a probability
measure v defined on the Borel subsets of U and a dominating function b(v)

with J‘ b(v)dv(v)<+w
Zimn*n(l/n)22=lf(vt) = [e(v)auv)

for every real valued continuous function £ with |[f£(v)|<b(v) .

Assumption 2. (Gallant and Holly, 1980) Almost every realization of

{vt} with v, = (et,xt) is a Cesaro sum generator with respect to the product

measure

v (A) = J' f IA(e,x) dP(e) dp(x)
X e

and dominating function b(e,x). The sequence {Xt} is a Cesaro sum generator
with respect to p and b(x)=f b(e,x) dP(e). For each x ¢ I there is a neigh-
borhood N such that IasupNxb%e,x)dP(e) <®. Y is a bounded, open, convex
set, if A is an open subset of X then w(A) > 0, and if x is in ¥ then xi>0
for i=1,2,...,N where the overbar denotes the closure of X.

The practical consequence of this restriction is that the limit of an
average can be computed as an integral. For example, suDppose that cost
shares follow

gy
9

: * *
s, = diag(p.) Vg (x,)/g7(x ) + e



and that all shares are observed

Vi = Sg -
Let § be an estimator of scale that converges almost surely to a positive semi-
definite matrix ¥ that has rank N-1; the vector 1 = (1,1,...,1)’ is always an
eigenvector with root zero because shares add to unity. Let §f==zN l/k 3’8 Wwhers=
the 11 are the non-zero eigenvalues of % and ei the correspondln;—irthonormal

eigenvectors. Suppose that g g to estimate g is chosen from some class G of

functions that are linear homogeneous in the first N arguments by minimizing
: v . v
o (8) = () Ly _dlag(Pt) g(x,) 15y -dlag(pt) a(x,)
n =1-Y% g(xt) £ g(xt)

For example, G might be all functions of the Translog form

I Lk .
ng(x)= ao4-gi=lai£n(xi)+-2 Tiel z?;laijzn(xt) Zn(xj)

N N
i = = = il
with zi=lai 1, aij Sji , and i=laij O . Then what will happen (Burguete,
Gallant, and Souza, 1982) is that % will converge almost surely to that function

g° that minimizes the almost sure llmlt—/

s(g,g ) =sin__s (g)

-f e’ e dP(e)+f (v 5 ] diag(p)r diag(p)[ Vg™ ) Vsz x)] duiz
g \X g (x)

If both g(x) and g*(x) are bounded away from zero, linear homogenecus in the

first N components of x, both continuous, X open, and p puts positive mass on

every open subset of L then

- * *  * . . v} O(Z{) vg (X)
s<go:g ) = (g ) ) lmplles 2:; (X) = gi—(x) y

ut
o

at every point in X .



All commonly used econometric estimators exhibit the properties of this
example. To each estimator corresponds some sample cbjective function sn(g).

The estimator itself may be defined as
g in G that minimizes sn(g).

The sample objective function sn(g) has an almost sure limit s(g,g" ) and gz is

consistent for
Q . - - . - *
g° in G that minimizes s(g,g ) .

If Q=={g(x|e):e ¢ ©)} where corresponding cost shares si(xle) are continuous in
(x,4) and ® is a compact metric space then the almost sure convergence of

sn(g) to s(g,g") is uniform over G in typical cases. Examples of estimators
with these properties are single equation and multivariate (nonlinear) least
squares, single equation and multivariate maximum likelihood, maximum lixelihcod
for (nonlinear) simultaneous systems, iteratively rescaled M-estimates, scale
invariant M-estimates, two-and three-stage (nonlinear) least squares (Burguete,

Gallant, and Souza, 1982). Whether or not
- * - % ¥, ) *
s(g°,8 ) < s(g ;g ) implies Vg’ (x) = a(x) Yg (x)

for some a(x)>0 depends on the interaction between the sample objective Function
*

sn(g) and the reduced form Y(e,x,g ). But it is obviously the minimal identi-

ficdtion condition to require of a statistical estimation procedure.

Identification Condition. Assumptions 1 and 2 suffice for the sample

- *
objective function sn(g) to have almost sure limit s(g,g ) for any g that
generates continuous cost share functions upon application of either Shephard’:

lemma or Roy's identity. Moreover, this convergence is uniform in g cver any

family



¥*
that is indexed by a compact metric space ® and for which corresponding
cost shares si(x|e) and derivatives (a/ax)st(x|g) are continuous in (x,8) .

Then the condition is that
- * - * ¥* . . *
s(g°,g ) < s(g”,g ) implies Vg°(x) = a(x)vg (x)

for all x ¢ X where o{(x) > O on X .

To have a compact notation for high order partial derivatives, let
51l

axll ax2 . axk

prg(x) =

where

A= (s Agsees Ay)

has non-negative integers as components and
1

I = = 1
is the order of the partial derivatives; when A\ is the zero vector take
D°g(x) = g(x).

We shall assume that the elasticities of substitution cij(x) do not
oscillate wildly over X . This seems innocuous as if one really believed that
elasticities were subject to extreme variation then there would be little
point to trying to estimate them. The easiest way to impose this restriction
is to require that the first order partial derivatives of g(x) are bounded
away from zero and that all derivatives through the third order are bounded
from above in absolute value.

For either consumer or factor demand, prices and quantities can be
rescaled arbitrarily as lcng as cost shares remain invariant. This rescaling

amounts to no more than a change in the units in wnich a3 commedity is



measured. Also, the units in which output and other covariates are measured
is irrelevant. Thus, recalling that X is a bounded, open, convex set, we
can assume without loss of generality that the closure of X is contained in
the open cube Xlii__l(O,Zn) . .

Assumption 3. The closure X of X is a subset of the open cube xli‘=l(o,2ﬁ) .

FPor some m 2 3, ng*(x) is continuous on X for all A with Iklsnr+l s
* ¥*
supX|D)‘g (x)| <= for A with |\|=mn+1, supxleg (x)] = b < for A with |A|=2,

and 0 < a < inf_ (a/axi)g*(x)l for i=1,2,...,N.

cIl
Our main result is that if the Fourier flexible form is used with an

estimation procedure that satisfies the Identification Condition then consistent

estimation of price, income, and substitution elasticities is possible. The

Fourier flexible form was introduced in Gallant (1981) and may be written as

g (%]8) = uy*b’x + 3x’Cx

J .y 7 . . !
2"\ + -
+ -] {u: 223_] uJ. ccS(Jk x) vJ. sin(jk x)]

with C = -zﬁ‘r:l uoakakc; . The sequence {ka}::l is a sequence of multi-indexes.

multi-indexes being vectors kcr of dimension k whose elements are integers.
The rule of formation of the sequence {ka} need not concern us here, it is
set forth in Gallant (1981) and can be automated (Monahan, 1981l). K is the

degree of the trigoncmetric polynomial meaning that

ol

lax | =3 o_,lx | =k, a=1,2,...,4, Jj=1,2,...,0 .

Thus A and J can be viewed as depending on K and could be written as AK and J.,.

-

Consistent estimation cbtains by letting the Titted number of Darameters

depend on the sample size n . Equivalently, let the degree K of g, (:c]g) depenz

X



on n. Now this dependence may be according to some fixed rule such as
Kn=A/;; or may be adaptive such as letting Kh depend on the outcome of a
statistical test. For example, increa;e K when a lack of fit test rejects
the current model. We refer to the former as a deterministic rule and the
latter as an adaptive rule. In either event, consistency obtains.

Theorem 1. Let Assumptions 1 through 3 hold and let the estimation
procedure sn(g) satisfy the Identification Condition. Let K.n be either a
deterministic or an adaptive rule forchoosing the number of parameters of the
Fourier flexible form gK(xle) . Let én minimize sanK (9)] subject to

n
sup (z|a)|<b for all |A|<m and a< infx‘II(a/axi)gKn(xle)l for

A
erlD 2x
n
i=1,2,...,N. Let an(x) be an elasticity of substitution computed from
1a * *7 . s -
gKn(Alen) and ¢ (x) be computed from g’ (x) . If Lim K =« almost surely
then
£im sup o (x) - c*(x)| =0
e  xegl'n
almost surely. A similar result holds for shares, for price elasticities, and
for income elasticities.

When the Fourier form is used to approximate a cost function, a log

transformation of the data is convenient (Gallant, 1982); let

zi(x) = 4n x; ¥ 4na, i=1,2,..., k
and set

z(X) = [a@l(x)a EE(X), ey Zk(x)]/

In this case

oz (x|a) = Uy * b/a(x) + 47 (x) ¢ 2(x)

a J - . A
+ z&=l{uoa+-22:=l uja cos(JX&éz(x)) -VjaSln\JX£;Z(x))]
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3 A is scaling factor chosen so that \4(x) is in

. - - ’ . . s
with C = -3 - anx k k!
Theorem 1 remains valid if this alternative form is

the cube x 1(02m) .
The reader who has no interest in detail may stop at this point as the

used.
rest of the paper is primarily a proof of Theorem 1

2. Structure of the Problem
The Fourier flexible form is linear in its parameters and can be written

0’ the b, , , and the v, written down in
1 Jo
. The o9.(x) represent the
J
, and the

as
2
K
L.\X) .
5218595 (x)

g (x[g) =
the u.
Ja

The parameters ej represent u
some order, exactly what order need not concern us

constant function, the linear terms x., the quadratic terms x.x
sine and cosine terms cos(jk’x) and sin(jkéx) written down in an order to
’ J

correspond with the 8 —/ The process of constructing these © (x) and @. can

. 2
J
be continued indefinitely as K increases so we can imagine a parameter vector

g of infinite extent

8= (91, 62’ .. )
and view the Fourier flexible form as depending on the leading Py terms of

this infinite dimensional vector
D
K
gK(X|9) iy f505(x)
The parameter 9 is to be thought of as being infinite dimensional herearter.
wwough 3 permit application of the Corollary of Theorem 1
*
iz a parameter wvector f such that

Assumptions 1 t
) to ccnclude that aere i

of Gallant (1981
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. A* A *
. leK—mmaxl)\ISm suchI\D g (x) - Dg(x|e )| =0

*
This result implies that for our purposes we can accept A as representing

*
g (x) . Knowing 9* we can compute the pointwise limit
* . *
g,(x]p") = gin g (x]6”)
* . . . A A *

and recover g (x) and its derivatives as D"g(x) = D gm(xle ) for all |)\|$m .
Alternatively, we can differentiate and then take the limit since

* }\ *
g (x]67) = D"g (x) .

A

. A
2 mK—wD

*
Moreover, truncated expansions D"g_(x|6 ) can be used to cbtain approximations
X

% *
to Dkg (x) that are uniformly accurate over X . The parameter § is not unique

#

and we accept any infinite dimensional vector §" with
*
zimmeaxIXISm supx‘IID)‘g (x) - D)‘gK(xlg#H =0

*
as equivalent to e* . In summary, any information that we require of g (x)

can be recovered from § , and in several different ways to suit our conven:\.ence.i/

Intuition is guided by the classical analysis of the less than full rank

linear model

y=XB+e

where 8 is a p-vector, X has n rows and p columns, and rank (X) < p. Let

Xy Xy R be a basis for the row space of X ; that is, any row xé of X can

f=t

. r . . . .
be written as X, = zi—laixw' . In the classical analysis, attenticn is focused

-

on the estimation space

r r
fv. .a.x, :{(a,,a ,...,a2 ) € R
k—ni:_l 171 ( l’ 29 2 r) J

The classical problem is this: One is Dermitted to cbserve at selected pcints

. %, in the estimation space the corresponding values x 8 dlus error
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yt=x£3+et R t=1,2,...,n.

One wishes to find some functiocn

B = E(yl’ ce syn)

such that x’8B is unbiased for any x in the estimation space.
Now, one can think of a point x in the estimation space either as a point

r

a.x. ; it
i=17171

in RP or as a point a in R given by a= (al,ag,...,ar) with x=7%
makes no difference. When passing to the infinite dimensicnal case it is
essential to take the latter view and focus on the coordinates (al,...,ar)

of a point in the estimation space. Also, one can think of B as being a vector

in RP or as being a linear functional defined over the estimation space by

a8 = T35

Again, when passing to the infinite dimensional case, it is the latter view
that is the more useful. I we adopt these two points of view: a point in the
estimation space is represented by its coordinates a, not by its components x,
and 8 1s to be thought of as a linear functional, not as a point in Rp, then
the classical problem is restated as: One is permitted to cbserve a linear

functional 8 evaluated a2t selected points a, in the estimation space plus error

yt=Qt,S>+et s t=l,2,...,n.

-~

One wishes to find some marping 8 of the observations into the space of linear
functionals on the estimation space such that <a,§> is unbiased for <a,® at
all points a in the estimation space.

These are the thoughts that guide intuition and lead us to pose the
vroblem of consistent sstimation of a price, income, or substituticn elasticity

as follows.
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‘ Define the infinite dimensional vectors

DY = (Dho,(x), Doy(x), oo )

recalling that when A\ is the zero vector

Dowx=cpx= (o (x)5 @(x), oo )
A

Thinking of the D P, as basis vectors, represent a point d in the estimation

space D by

_ I A
d= Z!XlSm Zio1 axi,)‘oD q’xi

A point d in D may be thought of as a function d(x,\) defined cn X ka that
is zero everywhere except at a finite number of points (xi,)\) where it takes
on the value a, A A linear combination d=adl+ de would be that function
. d(x,\) having alfinite number of jumps as determined by d(\,x) = adl()\,x)+ de()\,x)

Clearly D is a linear space and, by defining
ol =y g Thmglng o)

D becomes a normed linear space. Now DX¢(X) can be thought of as an infinite
dimensional vector or as a basis vector. Strictly speaking, in the latter case
we should write 1o Dx¢(x) but we shall not and we take Dxm(x) to mean either
as determined by context.

Let D* denote the bounded linear functionals on D. A linear functional
d* is determined by the values it takes on at the Basis vectors since

*_ T A *
<d,d >—2‘M‘-<_m Z*L:laxi,)\d) cpx,d >.

*
The norm ¢ a linear functional 4 1is, in general,



1k

lld*\l = supy g, |<d,d*>

but by defining

* \ *

lla Hm’w’u = max)y | SUP oy |<D P, »d >
we have
* *

Lewna 1. [la"] = "l ., -
Proof.

* *
la'll = supy gy, |<dsa™>|

< su z st la, .|, ,aS
= S0Pllall= 1 #(M e 211 % NS P

< (supHdH___l Z!XISm-l 2§___llaxi,)\l )”d*nm,w,u

*
= llall, ., -
Now Dkbx is a particular instance of d in D with Hd”=l.whence
* *
N, ., < a0

We are only concerned with those linear functionals that correspond to
an admissible indirect utility function or cost function. Accordingly, let

® denote those infinite dimensional vectors 4 such that

Lim, max

Koo sup

P
K o A .
e e 11 S5219,0 0 ()] <

[\ |<m
and define

P-
A s X AL
Do ,A> = Lim, ijl QJ.D c:JJ.(x.) .

Note that

z (xla) = <o .8>

- X
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that

Dkgm(XIn) = <D>‘cpx,e>

and that

”e”m,w,u = maxyy) o SUB g |D>‘gm(x|e)| .

* *
We see that when the norm ||d n of a linear functional in D is applied to §

in ® its value is the Sobolev norm (Gallant, 1981) ng(Q) " of the cost

g,
or indirect utility function that corresponds to 8§ .

The parallel with linear models theory is nearly exact. The values
<D>“:px ,nﬁ> or some function of the values that a linear functional e* takes on
at sezected points Dk¢x in the estimation space D can be observed subject to
error. An estimator antmapping the observed data into the space of bounded
linear functionals D* is cobtained by minimizing a sample:objective function
sanK (s)] . But instead of unbiasedness, the property we seek is uniform

n

strong consistency

£im max sup, 1<D>"cp a> - <D>\- 9*>| =0
- IMS.m—l xel X’ Py

almost surely.
As mentioned earlier, typical estimation methods have a sample cbjective
function sn(g) that converges uniformly over an indexed family

G= {gw(X‘G) :fq ¢®*} , Vviz

[g_(8)] - Sl _(a),g 1| = 0 almost surely,

i *
2in SUP, ¢ g |sn

*
provided that ® 1is compact in a metrizable topology J and that the vector of

shares s(x|g) correspending to gw(x‘e) are continuous in the product topology
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. generated by the Euclidean norm on X and this topology J on ®* . Maximum
likelihood methods may require that (3/3x’) s(x|g) be continuous as well as
the Jacobian of the shares can appear in the likelihood.

Lemma 2 which follows gives the co'nstruction of the set ®* and extends
the definition of gm(x|9) to this set so that the requisite compactness of the
parameter space and continuity of the shares obtains. Basically what Lemma 2
says is that the Fourier form with derivatives to the third order bounded
above by b and first derivatives bounded below by a can be suitably indexed
provided some annoying details regarding limiting operations are accounted for.

One should note that as we progress derivatives are lost. In Assumption 2
we assumed that an admissible indirect utility function or cost function g(x)

A

possessed derivatives to order m+ 1. To obtain the representation ng(x) =D gm(x,e
one order was lost and equality holds only for' A with Ikl <m. This fact requires
that we work with the norm ”d*um,w,u on D* . In reading Lemma 2, note that to

~ obtain a compact parameter space ®* we lose one more order of differentiation

and the norm that we shall work with thereafter is

Y *
max supXeI l<D cpx,d >| .

™) =

la m-l,o,u |\ |<m-1

Another consequence of Lemma 2 is that if d* is in G)* then Hd*”m—l ®,p can also
2D

be written as

* 'y *
nd Hm'lamzu B maxixlg‘n_l Supx EIlD gm(x!d )l
Lemma 2. ILet

€.
®O={m®:!\a§|mm <b, inf |<D l“’x’”' 2a, i=1,2,...,N}
bl b <

W xeX

N - . . - . un
wnere a and b are ziven by Assumption 3 and €5 denotes the i elementary
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- * * ¥*
vector. Let @o denote those d e¢D such that 4 is the pointwise limit of

some sequence {en} from ®, in the sense that

Lim <'D>‘

> = <Dk d*
U LML

for all xe¢X and all IX|Sm; stated differently, (:)O is the closure of ®O in

* * * -
the weak topology on D . For d in @o define
¥*.
gm(x|d ) = <bx,d#>.

*
Suppose that gm(x|d ) is not continuously differentiable to order I)\|sn-l or

*
does not satisfy Dkgw(x]d ) = <D>‘cox,d*> for all x in X and all A with lkl <m-1l.

* * * *
Then d can be replaced by d, in D with gm(x|do) continuously differentiable

. A * A * .
to order |A|<m-1 and with D gw(}_:ido) = <D, ,d > a.e. u for all \ with [A] €m-1 .

* - *
Let ® De the set ®,. with these replacements made as necessary. Then ® is

0

*
compact in the relative topology on 0" generated by the norm ||d I The

m'lamsu )

shares

* , %, ~1 *
s (xla”) = [ yx; (3/ax, Je_(x]d7)] x, (3/3x, Jg, (x]a")

and their first partial derivatives in x are continuocus in the product tcpology

*

generated by the Euclidean norm on X and the norm He“m 10,0 on ®
et hal}

A

* K *
Proof. By Alaoglu's theorem (Royden, 1963, Ch. 10) the ball {d ¢D :||d | =
3 >

* * - *
is compact in the weak +topology on D . As @O is a weak closed subset of this

- * - #*
vall, ®. is compact. In the event that d 1is in &, but not in @O, gm(x‘d ) may

0 0

not possess derivatives in the conventional sense. What we shall do is prove

*
that gm(:cld ) does possess weak derivatives (Adams, 1975, Ch. 1) and moreover

A

-

. ’ * . N . . ~ *\ )\ *\ A ¥
if D gm\:{‘d ) denotes the weak derivative of gm(:c‘d ) then D gm(x‘d ;=<0 2,4 > .

Let +(x) bve 2 test function, *that is a functicn that is infinitely nany times

continucusly differentiable and has ccmpact supocrt in the Zuclidean topclicgy
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*
onX. Let g in @, converge pointwise to d . Since t(x) ngw(xlen) is

0
dominated by b . t(x) for all A with |X|5§m we have by the Dominated Convergence

Theorem and integration by parts that

100

s, [ +0) Dg_(x|p ) dx

sia_, (-1)|*|jxtnlt(x)] g (x]o ) ax

(-l)'k‘f [Dxt(x)] gm(x]d*) ax .
XL

On the other hand
sin__[ t(x) Dg_(x|s ) ax
X

J‘It(x)[zimmn)‘gm(xlen)] dx

]

A
. -8 >] dx

fxt(x)ﬂzimnaa<D

A *
cpx,d> ax .

t(x) <D
[ o

The equality

(-l)mf [ DM (x)] g (x]a™) ax = | t(x) <D)‘cpx,d*> dx
X 1 :

*
which holds for every test function shows that the weak derivative Dkgm(xld )

* *
exists and that Dkgm(xld ) = <®x¢x,d >. Now let p>k and define the pseudonorm

on ®O by

AN CRP LR TSI RS

* - * *
Again by the Dominated Convergence Theorem if dn in @o converges weak to d

* * -
then £im Hd -d H = 0. Thus, the relative topology on &, generated by
18 R ¢ Ny,Ds4M 0 :
3 *
the pseudonorm Hd Hm p.u’ call it §, i1s weaker than the weak <*ovology whence
) b

@O is ccmpact in this topology as well.
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*
By the Sobolev imbedding theorem (Adams, 1975, Ch. 5), for each 4 in
- *
8, the corresponding gm(x|d ) can be modified (if necessary) on a set of
* . — A *
measure zero so that gm(xld ) and its derivatives D g@(x|d ) up to order

|A\]| <m-1 are continuous on X and

2 * *
NPT suchIID g (x|a )] < clla ”m,p,u.

¥*
where the bound ¢ is independent of 4 . Stated differently, there is a
continuous mapping from the compact topological space (@O,S) to the topological

*
space (®*,3') where § is the topology generated by the norm “d “ As

m=-1,o,4 )

* .
this mapping is onto, (® ,J) must be compact. Let zimn_mxn=x in the Euclidean

norm on L and let zimn_m”d =0. As m-122 we have that

n-d ”m-l,w,u
(a/axi)gm(xld:) converges uniformly to (a/axi)gw(x[d*) . Then (B/axi)gm(xn‘d:)
converges to (a/axi)g (xld*). Similarly (az,/axiaxﬂ.)gw(xnldn) converges to

@ J
(aa/axiaxj )g@(x|d*) . As xi(a/ax.l)gm(xld*) is bounded away from zero, shares =

and their first derivatives are continuous. D

3. Uniform Strong Consistency
We can now prove Theorem l. Let {(et’xt)}:;l be a realization such that

Lim K =o and
N n

- *
.Zlmn__m supgee)*lsn[gw(e)] -s[gm(e),g ]I =0;

recall that n denotes the sample size. Almost every realization is such by

* * *
hypothesis. Recall also that to g (x) there corresponds a point § ¢® N
such that

. A *. A *\y o
Ay o By | < SUPL oy D% (x) - D gKn<x[” ) =0

and set
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* *

( * * 0.0 )
‘ qn 913 92: s BPK H] 3y e
n

where D is the last term of the series g (x|g) . Similarly let 'én in
. n : n
® N® have zero components past Py

n

. qn=(qln, ean,...,-qu o’ 0, 0, «.. )
n

(8) “Ne . Note that 8) =g, (x|3)
and minimize sn[gKE(E ] over ® N® . ote tha gm(xlen = gKn xlen and

*
g (x18.) = g, (x]e7).

n

Let o(x|8) denote an elasticity of substitution computed from g_(x|6)

for 66@* . Thus &_(x) = o(x|8 ) and 0*(x) = o(x|6") with §_ and 6% in 6" Ne .

Note that by the definition of @

8

SUD, g* SUP. .y |s(x|8)| <

8

Thus the sequence
® ; e
{sup, ¢16,(x) - o ()|} _;

lies in a closed and bounded interval and has at least one limit point . Let

ni be a sequence such that

] - * o
Lim,_ Supxc1|°ni(x) -0 (x)] = .

*
Now én is a sequence in the compact set ® and has at least one limit

i
. o : . A o _
point 47 . Let nJ. be a subsequence of n with ij—mnenj -9 ”m-l,m,u. = 0.

. Then by uniform convergence

éfgw(ec ) ag*]

i}
=~
e
B

c%..
1)
[»]
.
1
oQ
8
P
D
=)
r
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where the inequality follows from the fact that 'én minimizes S, [gK (9)]

J J n,

* . * * . . * J *
over ® N® while 9, does not; for large enough nJ., A, 1is in ® because a4 1is
. * . * * .j . ses
in ® and 2im He -9 H = 0. By the Identification Condition

', m,®,

J
*
ng(x]6°) = o¢°(x) Vg (x) at every point x in X for some oa°(x) > 0. Let ¢°(x)

be the elasticity of substitution computed from gw(x|9°) . As the meaning of

-eoll L , s that
<m-1 sup |D)‘ (Xlé )-Dkg (x|8°)] =0

we have that

Lmj-m SUPr e

I3, () - =) = 0.
J
o *
But ¢°(x) = ¢ (x) so we have
gim, sup |6 (%) - c*(x)l = 0.
g X e X nj
Since n. is a subsequence from n, we must have that 1° =0 which proves the
result since every limit point of

~ * =

must be zero. ]
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Footnotes

The consistency proof given by Burguete, Gallant, and Souza (1982) requires
that the class G consist of paramefric functions of the form g(xle) where

9 is restricted to some finite dimensional, compact set ® . Effectively,
the contribution of this paper will be to eliminate the restriction that

® be finite dimensional.

The process of constructing these ¢j(x) (and waj) for given x can be
automated and FORTRAN code for constructing them can be obtained from the
authors at the cost of reproduction and postage.

To state this differently, if ||g]| = NPT supx‘IIg(x)l and

lle]| = gim

X A .
maxlkl UPX:‘I|EJ=lejD ¢j(x)| then the normed linear

Koo <m-1l s

space {g :Hg“<:w} is isometrically isomorphic to the normed linear space

{6 :[lall <=} .
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