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Abstract

We consider an open question in applied price theory: Without a priori

knowledge of a firm's cost function or a consumers indirect utility function,

is it possible to estimate price and sUbstitution elasticities consistently by

observing a demand system? As the work of White (1980), Guilkey, Lovell, and

Sickeles (1981), and others has shown, ordinary flexible functional forms

such as the Translog cannot achieve this objective. We find that if one is

prepared to assume that elasticities of sUbstitution cannot oscillate wildly

over the region of interest then consistent estimation is possible using the

Fourier flexible form provided the number of fitted parameters increases as

the number of observations increases. This result obtains with any of the

commonly used statistical methods, as examples: multivariate least squares,

maximum likelihood, and three--stage least squares. It obtains if the number

of fitted parameters is chosen adaptively by observing the data or chosen

deterministically according to some fixed rule. We approach the problem along

the classical lines of estimability considerations as used in the study of

less than full rank linear statistical models and thereby discover that the

problem has a fascinating structure which we explore in detail.
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1. Introduction and Main Result

Let q denote an N-vector of commodities when a consumer's demand

functions are observed or an N-vector of factor inputs when a firm's derived

demand functions are observed; let p denote the vector of corresponding

prices; and let c = p'q be either the consumer's cost necessary to achieve

utility level u or the firm's cost to achieve output level u.

Suppose that the problem is that of consumer demand and let g(x) with

x=p/c be the consumer's indirect utility function. Then cost shares are

determined by Roy's identity

s. (x) = lX' (a/ox. )g(x)]-l x. (a/ox. )g(x)""'1=

for i= 1,2, •.• ,N • This system is fitted to observed cost shares s.t -
to observed cost normalized prices xit = pit/ct with an eye toward estimating

the elasticities of substitution

_ +

gj gi t n Xngn

where g. = (a/ox. )g(x) and g .. = (o2/ox . ox. )g(x)J Other Cluantities of --

compensated price elasticities, uncompensated price elasticities, and income

elasticities --can be obtained from formulas similar to the above in that

x, (a/ox. )g(x), and (o2/ox . ox .)g(x) are all that must be known. Closer
J

inspection of the formula for O.. (x) reveals that it would be enough to

determine the first derivatives of g(x) within a scalar multiple. That if

gO (x) can be determined such that for some function a(x) >0

i=1,2, ..• ,N

then )gO (:d and (2?/ox i oXj )gO (x) can be used in the for:nula for
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place of the derivatives of g(x) without changing the result. The same is

true of price and income elasticities. Evidently, the object of the

empirical exercise is the determination of some function gO(x) whose

derivatives are proportional to those of g(x).

Suppose that the problem is that of factor demand and let g(x) with

x = (p' ,u) I be the firm I s cost function. Input cost shares are deter:nined by

Shephard I S lemma

s. (x) = IX. ("a/ox. )g(x)rlx. (%x. )g(x)

for i = 1,2, ... ,N. The elasticities of substitution are computed as

where the notation is as before. Again, as before, the quantities of interest

can be computed for a given x the first and second derivatives of g(x).

Again, knowledge of first derivatives to within a scalar multiple will suffice

as if gO(x) is linear homogeneous in its first N arguments and if

(%x. )gO(x) = a(x)(%x. )g(x) then it follows that
1

(o2/ox . ox .)gO(x) = a(x)(o2/ox . ox .)g(x) for i,j=I,2, .•. ,N. To show this, use
J J

the fact that a linear homogeneous function satisfies

which implies that a(x) = gO (x)/g(x)

To allow the consumer's indirect utility function to depend on demographic

or other characteristics as well as cost normalized prices pic, let x have

dimension N, it being understood tha-c the first N componen-cs of x contain

the vector p/c. 1et 7g(x) denote the N-vector obtained by differentiating

respect to f:rst components Jf g(x),
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Similarly for the firm's cost function in which case the first N components

of x contain the vector p and the rest of x contains output and other
k .

Let r denote that subset of R fro:n which the observed xt are to be drawn. vie

shall assume that r is open and convex and that no vector in the

closure i corresponds to a zero price for same commodity.

In the same vein, it is possible that only a subvector of the cost share

vector St is observed, or in the case of factor demand that costs ct as well

as cost shares are observed. In either event, denote by Yt that which is

observed; Yt is an M-vector where M :nay be larger, smaller, or equal to N •

Many plausible data generating mechanisms can be envisaged. Consider

factor demand. The simplest assumption is that shares follow the model

with xt independent of the errors et . Another possibility is that a fir:n

produces on the basis of a forecast it but that which obtains is xt =it + et
whence shares follow the model

t=1,2, ...

with et being unobservable. In general, assume that the observed data (Yt'xt :

follows some reduced form

t=1,2, ...

and impose:

Assumution 1. The errors are independently and identically distributed

having common distribution p( e) with support e; that is p(e.) =1. 1et

* ) be continuous on e. Xl any fixed g* that 5enerates continuous
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cost share functions upon application of either RQY's identity or Shephard's

lemma.

It is necessary to impose restrictions on the limiting behavior of the

sequence . We use the notion of Cesaro sum generators which had its

beginnings in Jennrich (1969), and Malinvaud (1970), and reached its present

form in Gallant and Holly (1980).

Definition (Gallant and Holly, 1980) A sequence [vt } of points from a

Borel set is said to be a Cesaro sum generator with respect to a probability

measure v defined on the Borel subsets of u and a dominating function bey)

for every real valued continuous function fwith

Assumption 2. (Gallant and Holly, 1980) Almost every realization of

[vt } with vt = (et,xt ) is a Cesaro sum generator with respect to the product

measure

v (A) = SS IA(e,x) dP(e)
Ie

and dominating function b(e,x). The sequence tXt} is a Cesaro sum generator

with respect to and b(x)=S b(e,x) dP(e). For each x E: 1. there is a neigh-
e

borhood N such that S sUP._ b(e,x)dP(e) < CXl. 1. is a bounded, open, convex
x e l'lx

set, if A is an open subset of I then > 0, and if x is in i then x. >0
1

for i = 1,2, ..• ,N where the overbar denotes the closure of I.

The practical consequence of this restriction is that the limit of an

average can be computed as an integral. For example, suppose that cost

shares follow



eigenvector with root zero because shares add to unity.
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and that all shares are observed

Let t be an estimator of scale that converges almost surely to a positive semi-

definite matrix that has rank N-l; the vector 1 = (1,1, ... ,1)' is always an
"',to / 'Let =I: 1 A. f5. 8'.

i=l 1
'"the A. are the non-zero eigenvalues of and e. the corresponding orthonormal

1 1

A • *eigenvectors. Suppose that g to estDnate g is chosen from some class of

functions that are linear homogeneous in the first N arguments by minimizing
diag(pt) Vg(xt )J,A,to[ JYt - g(x

t
) .

For example, might be all functions of the Translog form

k 1 k -k.tng(x)= O(O+E. lCt . .tn(x')+-2!:' 1 L·la .. .tn(xt ) .tn(x.)1= 1 1 1= J= 1J J

illwith r: 10(. = 1, a .. = ia .• , and L 16.. = o. Then what will happen (Burguete,1= 1 1J J 1 1= 1J
Gallant, and Souza, 1982) is that gwill converge surely to that function

gO that minimizes the almost sure limitY

=J e'r.+ e dF(e) +J - - ViZ\XP
erg x g x g' x) gtx

*If both g(x) and g (x) are bounded away from zero, linear homogeneous in the

first N components of x, both continuous, r open, and puts positive mass on

every open subset of r then

-( 0 *) -( * *)s g ,g $ s g ,g

at eveI"'J point in r .

*V'g (x)
= g*(x)
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All commonly used econometric estimators exhibit the properties of this

example. To each estimator corresponds same sample objective function s (g).n

The estimator itself may be defined as

g in q that minimizes s (g) .n

The sample objective function s (g) has an almost sure limit s(g,g*) and g isn

consistent for

gO in q that mini:nizes s(g,g*) •

If q= [g(x\e):e eel where corresponding cost shares s.(xle) are continuous in
(x,A) and e is a compact metric space then the almost sure convergence of
sn(g) to s(g,g*) is uniform over q in typical cases. Examples of estimators

with these properties are single equation and multivariate (nonlinear) least

squares, single equation and multivariate maximum likelihood, maximum

for (nonlinear) simultaneous systems, iteratively rescaled M-estimates, scale

invariant M-estimates, two-and three-stage (nonlinear) least squares (Burguete,

Gallant, and Souza, 1982). Whether or not

for same ct(x) >0 depends on the in"Ceraction between the sample objective :'unc"t:'on

*s (g) and the reduced form Y(e,x,g). But it is obviously the minimal identi-n

fication condition to require of a statistical estimation procedure.

Identification Condition. Assumptions 1 and 2 suffice for the sample

objective function s (g) to have almost sure limit s(g,g*) for any g tha"Cn
generates continuous cost share functions upon application of either

lemma or noyls identity. Moreover, this convergence is uniform in g 3ny

family
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*that is indexed by a compact metric space e and for which corresponding

cost shares and derivatives (a/ax)st(xIA) are continuous in (X,8) .

Then the condition is that

*= (x)

for all x s r where O'(x) > 0 on r .
To have a compact notation for high order partial derivatives, let

where

A= (AI' Az"'"
has non-negative integers as components and

is the order of the partial derivatives; when A is the zero vector take

DO g(x) = g(x).

We shall assume that the elasticities of substitution cr •• (x) do not

oscillate wildly over r. This seems innocuous as if one really believed that

elasticities were subject to extreme variation then there would be little

point to trying to estimate them. The easiest way to impose this restriction

is to require that the first order partial derivatives of g(x) are bounded

away from zero and that all derivatives through the third order are bounded

from above in absolute value.

For either consumer or factor demand, prices and quantities can be

rescaled arbitrarily as long as cost shares remain invariant. This rescaling

amounts to no more than a change in the units in which a is
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measured. Also, the units in which output and other covariates a?e measured

is irrelevant. Thus, recalling that I is a bounded, open, convex set, we

can assume without loss of generality that the closure of I is contained in
kthe open cube Xi=l(O,2rr) •

Assumption 3. The closure f of I is a subset of the open cube

For some m 3, DAg*(X) is continuous on I for all A with II..I =5m+ 1 ,

sUPxIDAg*(x) I <CD for A with IA!=m+l, SUP)DAg*(X)I :5b<CD for A with IAls::J.,

and 0 < a =5 inf y ICa/ax. )g*(x) I for i =1,2, ••• , N •xc",
Our main result is that if the Fourier flexible form is used with an

estimation procedure that satisfies the Identification Condition then consistent

estimation of price, and substitution elasticities is possible. The

Fourier flexible form was introduced in Gallant (1981) and may be written as

+ r! leU. cos(jk'x) -v. sin(jk'x)]
OF '-U J=..... Ja a Ja a

with C = 1 Uo k k'. The sequence [k }CD 1 is a sequence of
OF aaa aa=

multi-indexes being vectors k of dimension k whose elements are integers.a .
The rule of formation of the sequence [ka } need not concern us here, it is

set forth in Gallant (1981) and can be automated (Monahan, 1981). K is the

degree of the trigonometric polynomial meaning that

a = 1,2, ... ,A j=1,2, ... ,J.

Thus A and J can be viewed as depending on K and could be written as AK and

Consistent estimation Gbtains by letting the fitted number of

depend on the sample size n. Equivalen'Cly, le'C the degree K of g:<(:.:: 18) depe::i
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on n. Now this dependence may be according to some fixed rule such as

K =.rn or may be adaptive such as letting K depend on the outcome of an n
statistical test. For example, increase K when a lack of fit test rejects

the current model. We refer to the former as a deterministic rule and the

latter as an adaptive rule. In either event, consistency obtains.

Theorem 1. Let Assumptions 1 through 3 hold and let the estimation

procedure sn(g) satisfY the Identification Condition. Let K be either an

deterministic or an adaptive rule for choosing the number of parameters of the

Fourier flexible form gK(xle). Let 8n minimize sn[ gK (13)] subject to
n

sup ylDAgK for all IA\::::m and as; inf y/(%x.)gK (xls)l forXSk XCkn n
i =1,2, ... ,N. Let cr (x) be an elasticity of substitution computed fromn

gK (x Ien) and O'*(x) be computed from g*(x). If =CD almost surely
n

then

.tim sup y \0 (x) - c*(x) I = 0XSk n

almost surely. A similar result holds for shares, for price elasticities, and

for income elasticities.

When the Fourier form is used to approximate a cost function, a log

transformation of the data is convenient (Gallant, 1982); let

1,. (x) = .tn x. + l,n a.
l l l

and set

i = 1,2, ... , k

In this case

....D, r + ? ...J r+ L. U...., - L. , L U •et=l- \...let Jet c:os(jAk'1,(x)) - v. sin(jAj.' Z(x))Ja Ja a
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with C = uA-
o
A2k k'; Ais scaling factor chosen so that Al(x) is inor-=l VI.X ex ex

kthe cube Theorem 1 remains valid if this alternative form is

used.

The reader who has no interest in detail may stop at this point as the

rest of the paper is primarily a proof of Theorem 1.

2. Structure of the Problem

The Fourier flexible form is linear in its parameters and can be written

as
PK

gK(xle) = 18.m .(x).J= J""J

The parameters represent uO' the b. , the u. , and the v. written down inJex Jex
some order, exactly what order need not concern us. The represent the

J

constant function, the linear terms x;, the quadratic terms x.x., and the... J

sine and cosine

correspond with

terms cos(jk'x) and sin(jk'x) written down in an order toex ex
the 8 .•g! The process of constructing these and 8. can

J J J

be continued indefinitely as K increases so we can imagine a parameter vector

A of infinite extent

e = (81 , 82 , ••. )

and view the Fourier flexible form as depending on the leading PK terms of

this infinite dimensional vector

The parameter A is to be thought of as being infinite dimensional hereafter.

Assumptions 1 3 permit application of the Corollary of 1

*of Gallant (1981) to that there is a par2meter 'lector 8 such that
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*This result implies that for our purposes we can accept 8 as representing

g*(x). Knowing e* we can compute the .pointwise limit

* *gO) (x 18 ) = Lim..r;:..,ct)gK(x Ie)

and recover g*(x) and its derivatives as DAg(x) = DAgO)(xl e*) for all IAl $m •

Alternatively, we can differentiate and then take the limit since

Moreover, truncated expansions DAgK(xle*) can be used to obtain approximations

to DAg*(x) that are uniformly accurate over I . *The parameter A is not unique

and we accept any infinite dtmensional vector e# with

* *as equivalent to e In summary, any information that we require of g (x)

can be recovered from e*, and in several different ways to suit our convenience.l!

Intuition is guided by the analysis of the less than full rank

linear model

y = X e+ e

where e is a p-vector, X has n rows and p columns, and rank (X) < p. Let

Xl' x;:J' ••• ,X be a basis for the row space of X; that is, any row x' of X can_ r t

be written as x t = la.x.. In the classical analysis, attention is focused
l= l l

on the estimation space

f)': la.x. : (3.1 ,3.2 ' ... ,a )
C-l= l l r

The classical is this:

Rr ,.E: •
J

One is per.nitted to cbserve at selected pcin'ts

x'- in eSL:im.aticn space the values
v v

plu3
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t=1,2, ... ,n.

One wishes to find some function

such that x'S is unbiased for any x in the estimation space.

Now, one can of a point x in the estimation space either as a point

in RP or as a point a in Rr given by a= (al ,a2 , ••• ,a ) with x=r.: la.x. itr
makes no difference. rNhen passing to the infinite dimensional case it is

essential to take the latter view and focus on the coordinates (al, .•• ,ar )

of a point in the estimation space. Also, one can think of e as being a vector

in RP or as being a linear defined over the estimation space by

r '!2<a,6> = t. la.x. IioI

Again, when passing to the infinite dimensional case, it is the latter view

that is the more useful. If we adopt these two points of view: a point in the

estimation space is represented by its coordinates a, not by its components x,

and e is to be thought of as a linear functional, not as a point in RP , then

the classical problem is restated as: One is permitted to observe a linear

functional e evaluated at selected points at in the estimation space plus error

t = 1,2, ... ,n.
,.

One wishes to find some mapping e of the observations into the space of linear
...

functionals on the estimation space such that is unbiased for <8,6> at

all points a in the esti:na"tion space.

These are the thoughts tha"t guide intuition and lead us to pose the

problem of csnsistent es"tima"tion of a price, income, or substitution elasticity

as follo",.;s.
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Define the infinite vectors

recalling that when is the zero vector

o
D CPx = CPx = (CPl(x), CP2(x) , ) .

Thinking of the as basis vectors, represent a point d in the estimation

space D by

A point d in D may be thought of as a function defined on X. Xlk that

is zero everYWhere except at a finite number of points (x. where it takes

on the value a 'Ix. ,1\
having a finite number of jumps as determined by d(A,X) = ed2(A,x) •

Clearly D is a linear space and, by defining

D becomes a normed linear space. Now can be thought of as an infinite

dimensional or as a basis vector. Strictly speaking, in the latter case

we should wTite 10 but we shall not and we take to mean either

as determined by context.

*Let D denote the bounded linear functionals on D. A linear functional

*d is determined by the values it takes on at the basis vectors since

* I A *<d,d >= 1:1'11< '1<0 CD ,d > .
1\ sm .l..- x.. 1\ X

,

*of a linear d is, in general,
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* *lid 1\ = sUPl\dl\= 1 l<d ,d >1
but by defining

IId*1I = maxI" 1"""_ sup I I<J)Acp ,d*>1
1\ .=a X C X

we have

Proof.

* *lid II = sUPl\dll= 1 l<d ,d >1
I! II A * I$; sUPlldll=l i:IAISn i:i=l aXi,A <D :Pxi,d >

$; ( SUPlIdl\=l i:IAISn-l ,AI

= .

Now D\l) is a particular instance of d in D with Ildll= 1 whencex

We are only concerned with those linear functionals that correspond to

an admissible indirect utility function or cost function. Accordingly, let

® denote those infinite dbnensional vectors q such that

and define

Note that
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that

A I AD g (x A) =<D cp ,e>CD x

and that

11811 = sup I IDAg (xla)!.m,CD,lJ. 1\ X C CD

* *We see that when the norm. lid II of a linear functional in D is applied to a

in e its value is the Sobolev -norm (Gallant, 1981) Ilg (q)1I of the costco m,CD,lJ.

or indirect utility function that corresponds to e .
The parallel with linear models theory is nearly exact. The values

in the estimation space D can be observed subject to

is obtained by minimizing a function

<DAep ,A*> or somext
at selected points

*function of the values that a linear functional 8 takes on

the observed data into the space of bounded

DAepx
t

An estimator 8 mappingn
*functionals D

error.

linear

sn[gK (Ii)J. But instead of unbiasedness, the property we seek is uniform.
n

strong consistency

almos t surely.

As mentioned earlier, typical estimation methods have a sample objective

function s (g) that converges uniformly over an indexed familyn

[gco(XIA) : Ii ee*} , viz

.tim sup * Is [g - s[g (A),g*JI = 0 almost surely,Bee n CD <Xl

*provided that e is compact in a metrizable topology J and that the vector of

shares s(x\8) corresponding to goo(xle) are in the product topology
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Maximum

likelihood methods may require that (a/ox') s(xle) be continuous as well as

the of the shares can appear in the likelihood.

*Lemma 2 which follows gives the construction of the set e and extends

the definition of goo(xle) to this set so that the requisite compactness of the

parameter space and continuity of the shares obtains. Basically what Lemma 2

says is that the Fourier form with derivatives to the third order bounded

above by b and first derivatives bounded below by a can be suitably indexed

provided some annoying details regarding limiting. operations are accounted for.

One should note that as we progress derivatives are lost. In Assumption 3

we assumed that an admissible indirect utility function or cost function g(x)

possessed derivatiyes to order m+ 1. To obtain the representation DAg(x) = DAgc:D(xl

one order was lost and equality holds on1¥ for A with \>..1:5 m. This fact requires

that we work with the norm IId*ll on D*. In reading Lemma 2, note that tonJ.,c:D,1..Io
*obtain a compact parameter space e we lose one more order of differentiation

and the norm that we shall work with thereafter is

* A *lid 1\ 1 = maXI '1 ....._ 1 sup Y 1<D cp ,d >1 .m- ,c:D, 1..10 fI. =- xc"", x

Another consequence of Lemma 2 is that if d* is in e* then \Id*\Im_1,c:D,1..Io can also

be written as

Lemlna 2. I.et
e.

e =fACe:IIA\\ :;;b, inf 1<D ,A>I a,o - ":U,OO,1Jo xcI x i =1,2, ... ,N}

'tlhere a and b gi'len by Assu;nption 3 and e.
1.
denotes the e le:nenT.a ry
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* * *vector. Let 80 denote those d I: D such that d is the pointwise limit of

some sequence [en} from 60 in the sense that

. >.. >.. *.hm <D q> ,8 > = <D cp ,d:>x n ·x

for all x e1. and all I>..1 stated differently, eO is the closure of 60 in
* * *the weak topology on D . For d in 80 define

I *' *-d ) = <CPx,d >.

Suppose that is not continuously differentiable to order or

does not satisf'y = <D>"CP ,d*> for all x in 1. and all >.. with IAIx
* * * *Then d can be replaced by dO in D with continuously differentiable

to order IAI Sm-l and with = <DAcpx,d*> a.e. 1-1. for all A with IAI $m-l .

* - *Let e be the set eO with these replacements made as necessary. Then 8 is

compact in the relative topology on 6* generated by the norm Ild*H 1 . Them- ,00,1-1.

shares

*s. (x Id ) N * -1 *= IX. (a/ax.)g (xld)J x. (a/ax.)g (xld )00

and their first partial derivatives in x are continuous in the product topology

*generated by the Euclidean norm on r and the norm HAll 1 on 6 .m-

Proof. By Alaoglu I s theorem (Royden, 1963, Ch. 10) the ball [d*cD* : II d
* * - *is compact in the weak topology on D. As eO is a weak closed subset of this

* *ball, eO is compact. In the event that d is in 90 but not in 60 , ) may

not possess derivatives in the conventional sense. What we shall do is prove

does possess weak derivatives (Adams, 1975, Ch. 1) and moreover

denotes the ,'leak derivative of g::o(xld*) then

Let t(:c) be a test is a 0hat is infinitely =any ti=es

continuously differentiable and compact support in the 2uclidean
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on I. Let 8n in 60 converge pointwise to d*. Since t(x) nAgco(xI 8n ) is
dominated by b. t(x) for all A with IAI we have by the Dominated Convergence

Theorem and integration by parts that

tim St(x) DAg (x18 ) dx
n"""= I co n

= tim (-1)IA1S [DAt(x)J g (x18 ) dx
I co n

= (-1)IA1S [DAt(x)] g (xld*) dx .
I co

On the other hand

=S t(x)[tim <l)Aep,8 >1 dxI x n·

= S t(x) <l)Acp ,d*> dx •
I x

The equality

which holds for every test function shows that the weak derivative DAgco(xld*)

exists and that DAgco(xld*) = <1)Aep ,d*>. Now let p>k and define the pseudonormx -

* * *Again by the Dominated Convergence Theorem if d in e converges weak to dn 0
then tim !ld* - d*\\ = O. Thus, the relative topology on eo generated b.y

the TIseudonorm 11 d*11 , call it g, is wea:Ker than the weak* topology ·...Thence- -,

eo is compact in this topology as well.
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*By the Sobolev tmbedding theorem (Adams, 1975, Ch. 5), for each d in

®o the corresponding
measure zero so that

*g (xld )co
*gco(xld )

can be modified (if necessary) on a set of

and its derivatives DAgco(xld*) up to order

IAI $ m-l are continuous on X. and

*where the bound c is independent of d • Stated different.1¥, there is a

continuous mapping from the compact topological space

generated by thespace (e*,d) where d is the topology

*this mapping is onto, (e ,d) must be compact.

(®o,g) to the topological
norm Ild*lIm_1 ,CO,IJo' As

Let ttm x = x in the Euclideann
*norm on X. and let ttm lid - dill = o. As m-l 2 we have that

n-+co n m- ,c:o, IJo
(%x.)g (xld*) converges uniformly to (%x.)g (xld*). Then (a/ox; )g_(Xnldn*)n .....

converges to (%x.)g (xld*). Similar.1¥ (o2/ox . ax .)g (x Id ) converges to
CD J CD n n

(o2/ox . Ox .)g (xld*). As is bounded away from zero, shares'J CD· '.

and their first derivatives are continuous. 0
3. Uniform Strong Consistency

We can now prove Theorem 1. Let be a realization such that

ttm K = 00 andn---:o n

o .,

recall that n denotes the sample size. Almost every realization is such by

* * *hYPothesis. Recall also that to g (x) there corresponds a point e s8 n a
such that

3.nd set;



)

where

*•.. , 8p ,0,0, ...
Kn

PK is the last term of the series gK (xle)
n n

have zero componfilnts past PK
n

A

Similarly let an
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in

A = (qln' e2 , ... , q ,m' 0, 0, ••. )n n PK
n

and minimize sn[gK (e)J over ®* n®. Note that gco(x\Sn) = gK (xl An) and

g (xle*) = gK n
co n

n
Let a(xle) denote an elasticity of substitution computed from

for ac®*. Thus 0- (x) = ) and a*(x) = a(xla*) with 8 and a* in ®*ne.n n n
Note that by the definition of ®*

sUPe c8* sUPxcI Is(x/a)1 < co •

Thus the sequence

[sup y Ia (x) - a*(x) I}CO 1xc ..... n n=

lies in a closed and bounded interval and has at least one limit point

n. be a sequence such that

°T • Let

-.. (0) *JsLoz e ,g = .tim.
"-'co J-')CXl

.tim. sup y 1& (x) - a*(x) I = TO •xc..... n.

*Now is a sequence in the compact set e and has at least one limitn i
"Doint '1°. Let n. be a subsequence of n. with .tim. - eO II 1 = 0 .J J-')CXl j m- ,CO,
Then by uniform convergence

Sn .[ gco (8n . )J
J J

= .tim. s [6K (e )]J-')CXl n .. n .
J J

u
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*enough n., A is
J nj

By the Identification Condition

where the inequality follows from the fact that An. minimizes sn.[gK (8)J
J J n.

* J *in e because A is* *over e ns while 8 does not; for largen.
* *J *in e and Lim IIA - e II = a •on.

J
*'Vg (x 1eO) = CXO (x) 'Vg (x) at every point x in X for some CXO (x) > a .

00 "

be the elasticity of substitution computed from g (xleO). As the meaning of

LimIH<D IIAn. - is that
J

maxI AI m-l sup X' DA.'Z (x 18 ) - DAg (x lAo )1= aXc 000 n.
J

we have that

tim. sup xl& (x) - crO(x)1 = o.
X$ nj

*But crO(x) = 0 (x) so we have

sup X'\& (x) - ct(x) I = a .xc nj

Since n. is a subsequence from. n. we must have that TO =a which proves theJ

result since every limit point of

*
f sup xl& (x) -0 (x)11 1t xc n . n=

must be zero. 0
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Footnotes

1. The consistency proof given by Burguete, Gallant, and Souza (1982) requires

that the class q consist of parametric functions of the form g(xle) where

e is restricted to some finite dimensional, compact set e. Effectively,

the contribution of this paper will be to eliminate the restriction that

e be finite dimensional.

2. The process of constructing these (and for given x can be

automated and FORTRAN code for constructing them can be obtained from the

authors at the cost of reproduction and postage.

3· To state this differently, if \Igl1 = maxI Al :=;;m-l suPx c I Ig(x) I and
lIell = .timv maxl'l < 1 sup le.D\l'.(X)I then the normed linearf\.._m- xc).. J= J J

space (g : I\g\l <CD} is isometrically isomorphic to the normed linear space

(e : IIAII <co} •
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