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ABSTRACT

The Fourier form possesses desirable asymptotic properties not

shared by other flexible forms such as the translog, generalized Leontief, and

the generalized Box-Cox. Here we present a Monte Carlo study designed to

assess whether or not these asymptotic properties take hold in situations

commonly encountered in practice. A three-input, homothetic version of the

generalized Box-Cox cost function is used to generate various technologies and

the Fourier cost function is used to approximate the associated elasticities

of each. We find a response curve for bias which is relatively flat in the

design parameters. Since the logarithmic version of the Fourier flexible form

appears to approximate the entire range adequately with a small number of

parameters, we conclude that its superior asymptotic properties do carry over

and that it dominates f1xed-parameter flexible forms in practice •
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ESTIMATING SUBSTITUTION ELASTICITIES WITH THE FOURIER COST
FUNCTION: SOME MONTE CARLO RESULTS

by

James A. Chalfant and A. Ronald Gallant

1. Introduction and Review of Past Work

The specification of "flexible" functional forms in consumer demand or

production studies involves the use of an expression, perhaps derived with a

Taylor's series, Box-Cox transformation, etc., which locally approximates some

unknown function. These flexible forms such as the translog or generalized

Leontief appear to perform well in approximation over certain Tegions of the

parameter space and in some applications, not so well in others. Caves and

Christensen (1980) show that these two forms do not necessarily satisfy the

restrictions of monotonicity and quasi-convexity, for instance,. over the

entire range of prices and income in consumer demand analysis, and that the

ranges of application differ for the two forms. Similarly, Wales (1977) finds

cases in which each outperforms the other in approximating preferences with a

constant elasticity of substitution between two goods, and that both forms can

violate these restrictions. He observes that in view of this possibility,

rejections of consumer theory common in this area may be due to the chosen

form's violation of regularity conditions, rather than an absence of utility-

maximizing behavior. Gallant (1982) argues that rejection of hypotheses may

also be due in some cases to biases induced by the departure of the true

function from the flexible representation chosen, even when the latter

satisfies the relevant theoretical restrictions. It is this problem of

specification error which we consider in this paper.

Other examples of these flexible form comparisons can be found. The
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results of Berndt, Darrough, and Diewert (1977) strongly favor the trans10g on

Bayesian grounds over the generalized Leontief and generalized Cobb-Douglas,

for Canadian expenditure data. A parametric approach is used in the

production study of Berndt and Khaled (1979). They use the generalized Box-

Cox cost function, and test for the other forms as special cases, using U.S.

manufacturing data. 1 They reject the generalized square-root quadratic; the

generalized Leontief cannot be rejected, while results do not seem to favor

the trans1og. The latter cannot be tested through parametric restrictions on

the generalized Box-Cox, since it is a limiting case. However, they find that

the value of the likelihood function drops significantly for values of the

Box-Cox parameter near the trans10g case of zero. Gui1key and Lovell (1980),

White (1980), and Gallant (1981) also provide cases which indicate some

limitations of the trans1og.

The results of Gui1key, Lovell, and Sickles (1981) indicate that the

quality of approximation provided by a translog form deteriorates as partial

elasticities of substitution depart from unity (as do Gui1key and Lovell

(1980) and Wales (1977», or as they depart from one another. However, they

accept the trans10g as the least objectionable of flexible forms tested. The

trans10g dominates the generalized Leontief, they find, except when all Al1en-

Uzawa partial elasticities of substitution are small and positive (a case in

which Wales (1977) found both forms adequate). The generalized Box-Cox is not

included in their study due to computational costs.

The Fourier flexible form possesses desirable asymptotic properties not

shared by these other flexible forms such as globally consistent estimates of

elasticities, asymptotically size a tests, and globally negligible prediction

bias. These results are obtained by letting the number of parameters depend

on the sample size (E1 Badawi , Gallant, and Souza (1982» thus leaving open
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the question as to whether these desirable asymptotic properties take hold

when the model has only a small number of parameters. 2 Comparisons by Kumm

(1981) against the generalized Box-Cox form for a fixed data set suggest that

this is the case. In this paper, we use Monte Carlo methods to examine the

ability or the logarithmic version of the Fourier form, introduced by Gallant

(1982), to approximate each of the technologies listed above, using only a

small number of parameters.

In our analysis, we follow Gui1key, Lovell, and Sickles (1981), who

suggest in their study of cost functions that if properties of functional

forms are of interest, the appropriate criterion is not how well data

generated by unknown technologies are modeled. They choose instead to "begin

with known technology and examine the ability of various forms to track that

technology" (page 2). They consider the trans10g, generalized Leontief, and

generalized Cobb-Douglas, examining the approximation with these forms of an

"almost homothetic" technology.

Our design approach is to choose nine technologies of the generalized

Box-Cox form according to a central composite rotatable design.as described

in, for example, Cochran and Cox (1957). We orient the design so that a

Leontief technology, the generalized square-root quadratic flexible form, two

cases of the generalized Leontief flexible form, and the translog appear as

points in the design. The two dimensions of the layout are a measure of

dispersion in the substitution matrix and the parameter A of the generalized

Box-Cox form. Setting A equal to zero generates the translog, a special case

of the Fourier form, while increasingly larger settings of A depart from this

class and therefore generate technologies that should be increasingly harder

for the Fourier form to track with a modest number of parameters. Then,

following Hendry (1982), fitting a quadratic to the Monte Carlo results allows
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exploration of the entire response surface. By choosing as design points a

variety of technologies we provide a more interesting test of the usefulness

of any flexible as well as indicating how robust the approximation might

be to changes in the underlying technology.

Implicit in the Guilkey, Lovell, and Sickles (1981) approach is the

observation that the standard methodology for fitting demand systems generated

from a cost function generates an errors-in-variables problem, even if the

model is correctly specified. Using the fact that the trartslog is a special

case of the Fourier form, we adjust the variance in the data-generating

mechanism so that the errors-in-variables problem is held at an acceptable

level in that technology. The Monte Carlo experiment is designed to detect

specification error bias over and above the errors-in-variables bias. The

results indicate that if standard methodology is viable at all then the

Fourier form includes, as a practical matter, all technologies and error

settings that can reasonably be anticipated a priori.

We proceed as follows. The generalized Box--Cox cost function and its

special cases are described, and expressions for shares and substitution

elasticities are provided. Next, the logarithmic version of the Fourier form

is described. Our experimental design is then presented, along with the

method by which experimental data have been generated. Finally, the results

of Monte Carlo experiments are examined.

2. The Generalized Box--Cox Cost Function

The generalized Box--Cox cost function is taken from Bernd t and Khaled

(1979). We impose linear homogeneity in prices and homotheticity of the

underlying technology, which simplifies the expression for costs to

C· [(2/A)
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Since interest is in the elasticities of substitution, output y is taken to be

unity. So long as interest centers on the curvature of isoquants and not on

their position, this is justified. In the case of a homothetic technology,

output drops out of the expression for the Allen-Uzawa partial elasticity of

substitution.

Having chosen this case of the generalized Box-Cox cost function, special

cases are obtained as in Berndt and Khaled (1979), by choice of the Box-Cox

parameter A. The generalized square-root quad ratic obtains with A • 2, and is

of the form

C -

The homothetic generalized Leontief results from setting A-I, and

C -

Finally, the translog is a limiting case, when A approaches zero:

\" 1. \" \"ln C - a 0 + i. a i-I.n Pi + 2 i. i. Y iJ· - R.n Pi-I.n Pj •
i i j

Differentiation of the cost function in each case, with re-scaling by

(Pi/C) gives expressions for factor shares

5 -i i-l, ••• n.

Substitution elasticities are likewise obtained, as special cases of
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expressions given: by Berndt and Khaled (1979, page 1225):

and

aii - 1 - A + Yii ;r ·
i

i-l,ooo,n

a ij - 1 - A + Yij ->.c

The corresponding expressions for shares and substitution elasticities in

the translog case are

Yii 1
aii - 1 + "2 - -, i-1,ooo,n;

5i 5i

and

a ij - 1 + S S '
i j

i*j-l, ••• ,no

The share expressions in this section are used along with chosen

parameter values in the generalized Box-Cox cost function to generate

observations on factor shares, given a set of prices. These generated share

and price data are then used to fit the logarithmic version of the Fourier

cost function.

3. The Fourier Cost Function

Unlike other flexible forms found in the literature, the Fourier flexible

form allows a variable number of parameters. Gallant (1982) has suggested
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letting the number of parameters depend on the sample size. For the least

average bias, one should use as large a number of parameters as the data

permit. In this section, the logarithmic version of the Fourier cost function

is described. The discussion is brief; the reader should refer to Gallant

(1981, 1982) and El Badawi, Gallant, and Souza (1982) for complete

description.

The Fourier form is different from other flexible cost functions, in that

the criterion used for goodness-of-fit is the Sobolev norm. Interest in

production studies generally centers on a cost function, factor demands or

share equations, and elasticities of substitution. Therefore, it is important

to closely approximate not only the true cost function, but its first and

second derivatives. Higher-order approximation errors are unimportant. The

Sobolev norm is therefore the relevant measure of distance. The logarithmic

version of the Fourier form serves as a function

which approximates some true cost function

g(x)

as closely as is desired in Sobolev norm3 where Kr denotes the length of the

parameter vector e and x is a vector of logged input prices. We seek close

approximation of g(x), Vg(x), and V2g(x), where

Vg(x) - (3/3x)g(x)

and
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22'7 g(x) - (a laxax )g(x).

The standard cost function

C(PtY)

gives the minimum attainable cost of producing output Y with inputs

,
q1 - (qlt ••• tqn) t

given the factor prices

When the production technology is homothetic t

C(PtY) - h(y)c(p).

If C is the true cost function t then the firm's factor demands are

q • (a la p )C (p t Y) t

by Shephard's Lemma (Diewert (1974)t Varian (1978». Differentiating once

more t the elasticity of substitution
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and (output-constant) price elasticity

are obtained. It is these quantities and their standard errors which may be

estimated with the Fourier cost function.

The restatement of the problem in logarithmic quantities provided by

Gallant (1982) yields equivalent expressions. We work with logged prices and

define

t-l, •.. ,n,

and

v - .t n y + .t n an+1•

The .tn a's are location-shifters, used to make all log prices positive,so that

each price Pi is replaced by

and y by

4

The cost function becomes
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k(x,v) • In

where

•

We have now that

(3/3p)c(p,y) • c(p,y) P-lvk,

and

2' f 12.' 1(3 /3p3p )c(p,y) • c(p,y) P- [Vit + VkVk - diag(Vk)] P- ,

where

Vk • (3/3x)k(x,v),

22'V k • (3 /3xax )k(x,v),

and

P • diag(p);

homotheticity now implies

k(x,v) • h(v) + g(x).
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The vector of shares s is obtained by

s • (3/3x)k(x,v)

which, with homotheticity imposed, becomes

s • (3/3x)g(x).

The elasticities of substitution are obtained as elements of

-1 2_' -1
L. • «aij» • [diag(Vk)] [V"K + VkVk - diag(Vk)] [diag(Vk)]

and

'" • «"'ij» .. L-diag(Vk).

Since only the shape of an individual isoquant is of interest when the

technology is homothetic, '" , L , and s depend only on prices. Output and

total costs are unimportant. 5

We are left, then, with share equations, the coefficients of which may be

estimated statistically to recover information about the underlying parameters

of interest. Approximation to the true cost function g(e) is desired over a

rectangle in the positive orthant, of a size chosen in applications according

to the preferences of the researcher. Once chosen, the rectangle's dimensions

must be rescaled so that no edge is longer than 2II, since the Fourier form is

periodic in prices. We rescale so that all observed prices are contained
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in [D,2II]. This is extremely important, arid cannot be omitted from the

estimation procedure.

We use in the expressions which follow the concept of a multi-index,

which is simply an n-vector with integer components6

* nwith norm defined as Ikl - L Ikil.
i-I

A multi-index can be used to denote partial differentiation, viz.,

for

,
A - (A 1 ,A 2' •••• ,A n) •

Multi-indexes also provide a convenient means for the expression of

multivariate Fourier series. We consider all elementary multi-indexes of

length less than an arbitrary constant. A set of elementary multi-indexes is

obtained by deleting all multi-indexes which can be expressed as an integer

multiple of a multi-index with smaller norm, plus any multi-indexes in which

the first non-zero entry is negative. To obtain linear homogeneity in prices,

the set is further reduced to those vectors which involve contrasts among the

prices. Reduction to this set of elementary multi-indexes permits more

convenient representations of the Fourier form. See Gallant (1982) for

details and Figure 1 for an illustration.

The following expression represents the Fourier flexible form used as an
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approximation to the true cost function g:

,
- vj sin(jAk x) l}a a

with

A

C_-A 2 LU kk'.
1 OJ a aa-

The derivatives of are

A ,J ,
(3/3x)gIL(xIS) -b -A L {un...A kx+ 2L j[u. sin(jAk x)

-T a-I \"U a j-l Ja a

2' 2 A J 2 '(3 /3xax )glL(xIS) - -A L {un... + 2L j Cu. cos(jAk x)
-T a-I I..U j-l ' Ja a

, ,
- vj sin'tJA k x) l} k k •a .J a a a

A is the scaling factor which is used to keep all prices (and output v, when

it is included) in the interval (0,211). We have chosen

A - 6/ max {Xi}.

The parameters of the Fourier cost function gKT(e) are
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ex = 1, .. j
7= 1, ••• ,J.

When A - 3 and J - 1 the length of e .is 13, and three wIti-ind e2S are

used. When A - 6, the length of e is 22, and six are used •.

It is convenient to think of gt<r (xle) as being the sum of a trans10g

1
U o + b 'x + 2' x 'Cx,

and the sum of A univariate Fourier expansions in the directions determined by

the vectors ka • We impose the homogeneity restriction

n
L bi - 1.
i-I

The cost function associated with the • 22 case is

1 'gt<r (x Ie) • Uo + b 'x + 2' x Cx
+ uOI+ 2 u1 COS[A (x2 - x3 )] - vI sin[A (x2-x3)]

+ u02 + 2 u2 COS[A (Xl - x2 )] - v2sin[A (x l - x2)]

+ u03 + 2 u3 cos[A(x l - x3 )] - v3sin[A(x l - x3)]

+ u04 + 2u4cos[A(x l -2x 2+ x3 )] - v4sin[A(x l - 2x2 + x3)]

+ uos + 2us cos[A(x1+ x2 - 2x3 )] - vs sin[A(x l + x2 - 2x3)]

+ u06 + 2u6cos[A(2x1 - x2 - x3 )] - v6sin[A(2x l - x2 - x3)]·

To reduce the length of e to 13, then, the coefficients



t. .' - 15 -

are set equal to zero.

Figure 1: Multi-ind for the 22-parameter

Fourier cost function

o
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4. Estimation
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Technologies for each of the design points were estimated with the length

of the Fourier parameter vector set at Kr-13 and Kr-22. Theorem 2 of Gallant

(1982) shows that a cost function satisfying positive linear homogeniety can

be approximated by the Fourier flexible form with all multi-indexes which do

not involve contrasts among input prices deleted, and with

This is accomplished by using the multi-indexes in Figure 1. The Kr-13 case

involves the three multi-indexes of norm 2; Kr-22 involves also the next

three, of norm 4.

The estimation procedure is discussed fully in Section 4.1 of Gallant

(1982). The model fitted to share and price data is
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since the model is linear in the parameters. 8 Zellner's (1962) Seemingly-

- Unrelated Regressions technique is used to obtain an estimate for a. We

choose as the estimate of a that vector a which minimizes

1 T "1 'S(8 ,1:) - - L (y - Zta ) t - (y - Zt8 ) ,
T t-1 t t

where t is the covariance matrix associated with the share vector Yt.

The "first-stage" of this procedure is to fit by single equation methods,

finding e to minimize

S(a,I).

t is then estimated by the residuals in this stage, according to

...
and we then find the a which minimizes

...
S (8 ,t ).

In each stage, the minimization of S is constrained by imposing linear

This we accomplish by
1 0
o 1
o 0
o -1 . . . . . . . .

homogeneity in prices.
o
o
o
1

r' •. . .. ,
o R - . . . .

o

letting
o
o
1
-1

•
•
•
•

•
•

o

I
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and then

5. The Design of the Experiment

The central composite rotatable design is our choice of experimental

design. As described by Cochran and Cox (1957), the design is used for

studying two-dimensional response surfaces. We hypothesize, based on the

previous work already summarized, that the two important parameters for our

experiment are the Box-Cox parameter A, and a, a measure of magnitude in the

substitution matrix. 10 The plan shown in Figure 2 is taken from Figure BA.2 of

Cochran and Cox (1957, page 346). Figure 3 is an affine transformation of

Figure 2 and displays the value of a and A associated with the points of the

classic design. Note that we orient the design so that the translog and

Leontief technologies are extreme points: (- ,''2, 0) and (0, - 1'2)

respectively. Any departures away from those points are in the direction of

greater dispersion in the substitution matrix and a larger Box-Cox parameter

(thereby departing from the Fourier class). With this setup, we are able to

analyze the performance of the Fourier" flexible form over the entire surface.

The Box-Cox parameter A varies from 0 to 2, covering the full range of

the generalized Box-Cox; the same range for a covers reasonable magnitudes and

provides some convenient symmetry in the coordinates of the design points.

Our expectations are that the range of a is of less importance than that of A,

since the translog (and therefore the logarithmic Fourier) can involve any

value for a. Given the results of Wales (1977) and Guilkey, Lovell, and

Sickles (1981), however, that the translog approximation deteriorates as a

departs from unity, and as the Allen-Uzawa partial elasticities of

substitution depart from each other, this range does admit some potentially
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interesting vadation in the chosen technologies.

4It We make the following assumptions, to characterize the matrix of

-substitution elasticities with just one parameter. The (compensated) own-

price elasticities are assumed to be equal to -v for all factors. Therefore,

each diagonal element of E depends only 'on the share of the corresponding

input, so that

The off-diagonals, or partial elasticities of substitution, are then assumed

to each have the same magnitude, a. A negative sign is randomly allocated at

each design point to one of the three off-diagonal terms (say, aZ3)' to give

us a lower triangle of the form

a
( ) .
a

This allows our experiment to consider technologies outside the constant

elasticity of substitution (CES) class. The effect is that two of the

relationships between factors represent substitutability, the third

complementarity.

Given a price vector and then assigning the value of a to that price

vector, one finds that the rest of the substitution matrix is determined

entirely by the placement of the negative sign because of the conditions

imposed by "adding-up." Starting from the structure

E •



- 19 -

.
THE CLASSICAL CENTRAL COMPOSITE LAYOUT
e

1.00000 - <>

Bax
cax4 0.00000
A
R
A
M
E
T
E
R

-1. 00000 - <> <>

0.00000

SUBSTITUTION PARAMETER
-1. 00000-1. 'lH21

-L,-.-----.,...------+-.-----.,..T------r-.
1.00000

FIGURE 2



- 2) -

THE REORIENTED CENTRAL COMPOSITE DESIGN
e.ooooo -

.1. 70711 -

Box
cox
_. 00000
P
A
R
A
M
E
T
E
R .

0.29289 -

2.000001. 707111.00000

o. 00000 .--,- +-
I T I

0.00000 0.29289

SUBSTITUTION PARAMETER

FIGURE 3



- 21 -

we know by one of the Euler conditions that

Similarly,

and

Solving these expressions simultaneously with

we find that these four expressions hold only if

v • (2a /5).

So, as ° goes from 0 to 2, the (compensated) own-price elasticity of factor

demam goes from 0 to 0.8. Also, shares are determined by these conditions.

The general rule is, for 0ij negative, Si and Sj are .2, while is .6. 11

These results are used to solve for the parameter values of the various

generalized Box-Cox cases, in order to provide technologies which yield these

elasticities and shares at a certain price vector.

6. Experimental Data

We have used ·U. S. manufacturing data (Berndt and Wood (1975), Berndt and

Khaled (1979» to generate our experimental data. The time series these
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authors have used includes four factors: labor. capital. energy. and

materials. To reduce to three goods. we aggregate the latter two inputs.

weighted according to the share of each input in total costs for each

period. We generate observations for this aggregate input A by

PA • (5 P + 5 P )/(5 + 5 )e e til til e til

and

The share of input A is then the SUtll of the energy and materials shares. We

construct a price index of the form

P • TIC/Q

where TIC is total input cost and Q is output. We then are interested only in

the three variables

and

In order to create data sets of arbitrary length that are structured

sitll1larly to these data. we assume that the Berndt-Wood prices are generated

by a first-order autoregressive process. such that the vector of logged real

prices in period t is
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with

where et .... N3 (0,5).

This process was fitted to the modified 1947-1971 data set. We find

, ,
B • (X1'X2'X3) • (.09760778, -.00721513, .37572201) ,

and

5 •

0.000162509 0.00011140 -0.000014491

0.00703273 0.000040986,

0.000793996

R •

0.56627

0.13356

-0.14791

0.055096

0.502859

0.110825

-0.01754

0.129266

0.934661

With these estimates in hand, one can create data sets of arbitrary

length similar to that of Berndt and Wood (1975) as follows: 12 Generate normal

(O,I) errors using the GGNML program of IMSL (1979). Then convert these to

observations on a multivariate normal vector et with
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where g-FF, by pre-multiplication of vectors of length three by

F •
·e

(

-0.00135824
0.00067686
-0.01265727

Finally, apply the expression for the

to create a series of prices.

-0.08386093
0.00017299
0.00206979

observed prices

-0.00054760 ]
-0.02817099
-0.00030284

in each period

The parameters of the generalized Box-Cox cost function at each design

point were chosen such that at the price

the elasticity of substitution matrix assigned to that design point

obtained. To do this, one solves the nonlinear system

and

i-1, ••• ,n,

i-1, ••• , n,

Figure 4 displays the results of these computations.
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1. Translog: .tIC - a O + t ai.tn Pi + ! ! Yij .tnPi .tnPj
i i j

aO - 0.756928, a1 • 0.191614, a2 • 0.208386, a3 • 0.6
Y11 - 0.08, Y12 - -0.08, Y22· 0.08, Y13 -Y23 -Y33 - 0

2. Gen. Leontief: C· (2L LY ij Pi
1
/2 Pj

1
/2) (A-I, a-l)

i j
Y11 • 0.1088, Y12 • 0.2294, Y13 • 0.1894
Y22 • 0.0403, Y23 • -0.0665, Y33 • 0.0275

3. A - 1.70711, a • 1.70711

Y11 • -0.0667, Y12 • 0.3142, Y13 • 0.2266
Y22 • -0.0937, y 23 • -0.0342, Y33 • -0.0487

4. Gen. Square Root Quadratic (A • 2, a • 1)

Y11 • -0.0329, Y12 • 0.0, Y13 • 0.1495
Y22 • -0.0406, Y23 • 0.1660, Y33 • 0.0566

5. A· 1.70711, a • 0.29289

Y11 • 0.2699, y 12 • 0.1302, Y13 • 0.0939
Y22 • 0.0405, Y23 • 0.0142, Y33 • 0.0211

6. A· 0.29289, a • 0.29289

Y11 • 0.7896, Y12 • -0.2696, Y13 • -0.3167
Y22 - 0.8143, Y23· -0.3216, Y33· 1.1456

7. A· 0.29289, a • 1.70711

Y11 • -1.0095, Y12 • 0.8086, Y13 • 0.7645
Y22 • 0.0401, Y23 • -0.6248, Y33 • 0.0358

8. Gen. Leontief (A • 1, a • 2)

Y11 • -0.1088, Y12 • 0.4588, Y13 -0.1263
Y22 • -0.3626, Y23 • 0.3992, Y33 • -0.0824

9. Leontief (A • 1, a • 0)

Y11 • 0.1814, Y22 • 0.6043, Y33 • 0.1374
Y12 • Y13 • Y23 0. 0.0

Figure 4: Technologies Assigned to Each Design Point
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Errors in Variables: Expected and Actual Prices

A plausible scenario (Rossi, 1982) is that producers choose input and

output quantities on the basis of expected prices Pt. Ex-post one observes

actual prices Pt which differ from expected prices by a random error vt • The

observed input shares St correspond to the unobservable Pt. The regression of

observed St on observed Pt by Seemingly Unrelated Regressions represents an

error-in-variables problem.

One would be hard pressed to describe a scenario that would produce a

data structure conforming to the formal assumptions of the Seemingly Unrelated

Regressions method. Rossi (1982) discusses this point in detail. Implicit in

the widespread use of the Seemingly Unrelated Regressions method in demand

analysis must be an assumption that the errors-in-variables problem is not

severe enough to matter. We accommodate this situation as follows.

In each period, the innovation Ut follows

where et is the multivariate normal vector of the previous section. Then,

actual prices are assumed to be

while expected prices follow



- 27 -

where Vt ,. S - Yt with Yt ... N3(0, .1- I 3).

Refer to the translog as a base case and recall that the logarithmic

version of the Fourier form includes this form as a special case (all the

sine/cosine terms have zero coefficients). We set the errors-in-variables

p'l:'oblem and the variation induced in our prices over time at levels which

allow reasonable accuracy in the translog case. The same environment is then

used for the other eight technologies fitted with the Fourier form.

Comparisons are therefore possible, over the points of our design, of the

ability of the Fourier form to approximate each technology.

8. Monte Carlo Results

Guilkey, Lovell, and Sickles (1981) calculate the mean absolute deviation

of their estimates for the various flexible forms they test. This involves

averaging the absolute differences between true and estimated elasticities

over the observations on prices in their simulations, and provides a

convenient summary statistic. Since our experiment features elasticities

calculated only at one point, the bias in our estimate is the same as the mean

absolute deviation of Guilkey, Lovell, and Sickles (1981).

The tables in Appendix 1 summarize, for the nine design points, the means

of our Monte Carlo estimates and true values for the six substitution

elasticities of interest•. We present first the KT ,. 13 cases; these feature
sample size T-25, replicated over 5000 trials.

Our next step was to estimate the same technologies for KT-22 and

(according to a chosen growth rule), T_48. 13 We find, however, that there is

not a significant reduction in bias. Indeed, some of the parameters were

estimated with slightly greater bias. This indicates that most of the bias

present in the KT-13 cases can be attributed to the errors-in-variables bias,

with the specification error having been made very small by even a few Fourier
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parameters.

Using the results obtained from the Monte Carlo trials, we fit a response

surface to the measured bias in our estimates of substitution elasticities.

According to the central composite rotatable design, we regress the bias on a

quadratic response in our two variables A and a. The results of fitted

response curves are displayed in Appendix 2. Guilkey, Lovell, and Sickles

(1981), Wales (1977), and others have evaluated the estimation by flexible

forms of cross-partial elasticities of substitution. We present results from

our Monte Carlo simulations both for all elasticities estimated and for the

"cross-partials" only. For each case, we have regressed both the absolute

bias and the absolute percentage bias on a quad ratic. in A and a, the

parameters of our central composite design.

As is evident from the results displayed in Appendix 2, the response

curves are somewhat flat in a and A. At least, the situation does not seem to

indicate a dramatic decrease in the performance of the Fourier form. Our

expectations were that if the surface were anything but flat, it would likely

be increasing in A, as this would measure departure from the translog (and

therefore misspecification). While we do observe increases in predLcted bias

as A becomes large, the situation does not appear to deteriorate

dramatically. From the fitted quadratic response curves, one can see that the

bias does not appear to become very large; the surface seems flat. Although

the fit of the quadratic is not particularly good from the standpoint of

significant coefficients, the lack-of-fit tests performed in all eight

regressions indicate that the problem is "within-point" variation in fitted

elasticities, rather than a surface which cannot be fit with a quadratic in A

and a. One can see from the Monte Carlo results that this within-point

variation does not seem to be systematic.
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9. Summary and Conclusions

In a three-input case we have estimated a set of technologies with the

logarithmic version of the Fourier flexible form cost function. Monte Carlo

results indicate that. after setting the bias in estimated substitution

elasticities at a reasonable level for the translog case. the degree of bias

does not change much as we depart from the translog. Since the translog is a

special case of the logarithmic Fourier while other technologies fitted

are not. this indicates that this form is useful for a wide range of

technologies. Bias appears to be due not to misspecification, but to errors

in our price variables.

We see important implications. For technologies which are likely to be

well-approximated by the generalized Box-Cox, the Fourier flexible form is

successful in approximation. Given several advantages of the latter, it is a

superior alternative to the generalized Box-Cox. Secondly, and more

importantly, our results show that in analyses of production technologies,

there is no reason to fit anything but a logarithmic Fourier form. The

technolgies we have fitted include the commonly-used flexible forms, and the

logarithmic Fourier form has approximated each at a level of error which is

clearly acceptable in applications.

Our results provide evidence that the Fourier form may be used with even

a small number of parameters, without inducing sizeable specification

errors. As long as the situation is one in which other types of specification

error (errors-in-variables, for instance) are not so devastating as to make

estimation with a flexible form meaningless, it can be expected to outperform

all commonly-used fixed-parameter forms (translog, generalized Leontief,

etc.). The hypothesis that the Fourier flexible form is only a good idea in

technologies resembling the translog, with increasing specification error as
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the translog 1s further from the truth, 1s rejected by our results.

The 13-parameter form has been shown in the presence of errors-in-

variables to provide nearly unbiased estimates for a range of technologies.

One is free in applications to fit more parameters when the data permit.

Previous papers have illustrated the properties of global (Sobolev)

flexibility, asymptotically unbiased and size a tests, and consistent

estimation; results here indicate that for a typical number of parameters, the

Fourier form behaves nicely. In view of previous work which indicates that

fixed-parameter flexible forms will not accomplish the same degree of

approximation, we see no reason to fit any other flexible form.
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APPENDIX 1

Means of Monte Carlo Estimates: K.r - 13.

a-I, A-o DESIGN POINT ONE
(Translog)

true mean standard error
var n value estimate of the mean bias

all 5000 -2 -1.99851989 0.00173043 +0.0014801
al2 5000 -1 -1.00220683 0.00169691 -0.00220683
a 13 5000 1 1.00023445 0.00014149 +0.00023445
a22 5000 -2 -1.99935197 0.00253645 +0.0006480
a23 5000 1 1.00052783 0.00061691 +0.00052783
a33 5000 -.6666 -0.66692274 0.00020918 -0.0002561

a-I, A-I DESIGN PO1NT TWO
(Generalized Leontief)

true mean standard error
var n value estimate of the mean bias

all 5000 -.6666 -0.66686550 0.00012525 -0.0001988
al2 5000 1 1.00025598 0.00038172 +0.00025598
a13 5000 1 1.00026432 0.00033843 +0.00026432
a22 5000 -2 -1.97893199 0.02830558 +0.0210681
a23 5000 -1 -1.03642765 0.02963974 -0.03642765
a33 5000 -2 -1.94360121 0.03723246 +0.0563988

a-1.70711, A-1.70711 DESIGN POINT THREE

true mean standard error
var n value estimate of the mean bias

all 5000 -1.13807 -1.14153691 0.00106713 -0.0034669
a 12 5000 1.70711 1.70413064 0.00285015 -0.0029794
al3 5000 1. 70711 1.71917575 0.00179385 +0.0120657
a22 5000 -3.41422 -3.41617236 0.01976116 -0.0019523
a23 5000 -1. 70711 -1.69444985 0.01700956 +0.0126602
a33 .5000 -3.41422 -3.46263018 0.01765935 -0.0484101'
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e a-I, "-2 DESIGN POINT FOUR
(Generalized Square-Root Quadratic)

true mean standard error
var n value estimate of the mean bias

aU 5000 -2 -2.01187159 0.00285970 -0.01187.
a12 5000 -1 -0.99982509 0.00171917 +0.00018
a 13 5000 1 1.00395219 0.00077736 +0.00395
a22 5000 -2 -1.99428069 0.00687460 +0.00572
a23 5000 1 0.99780458 0.00215681 -0.00220
a33 5000 -.6666 -0.66721793 0.00077364 -0.00055

a-0.29289, "-1.70711 DESIGN POINT FIVE

true mean standard error
var n value estimate of the mean bias

all 5000 -0.19526 -0.19449171 0.00099703 +0.00077
a12 5000 0.29289 0.29341973 0.00119453 +0.00045
a13 5000 0.29289 0.28967853 0.00312843 -0.00321
a22 5000 -0.58578 -0.56504704 0.01830686 +0.02073
a23 5000 -0.29289 0.31854790 0.01922044 -0.02566
a33 5000 -0.58578 -0.54720311 0.02646510 -0.03858

a-o.29289, "-0.29289 DESIGN POINT SIX

true mean standard error
var n value estimate of the mean bias

all 5000 -0.58578 -0.60008659 0.00725947 -0.01431
a12 5000 -0.29289 -0.29569265 0.00352104 -0.00280
a 13 5000 0.29289 0.29843250 0.00262177 +0.00554
a22 5000 -0.58578 -0.53660596 0.04605583 +0.04917
a23 5000 0.29289 0.28537908 0.00862959 -0.00751
a33 5000 -0.19526 -0.19527744 0.00281018 -0.00002



· . - 33 -

e 0-1.70711, X=0.29289 DESIGN POINT SEVEN

true mean standard error
var n value estimate of the mean bias

°11 5000 -1.13807 -1.13900661 0.00093683 -0.00093
° 12 5000 1.70711 1.71071391 0.00276631 -H).00360
°13 5000 1.70711 1.70672610 0.00115887 -0.00038
°22 5000 -3.41422 -3.42881709 0.01896029 -0.014597
°23 5000 -1.70711 -1.69972698 0.01631455 +0.00738
°33 5000 -3.41422 -3.42716223 0.01763584 -0.01294

0-2, X-I DESIGN POINT EIGHT
(Generalized Leontief)

true mean standard error
var n value estimate of the mean bias

°11 5000 -4 -4.00013174 0.01038219 -0.00013
°12 5000 2 1.99920592 0.00329683 -0.00079
°13 5000 -2 -1.99703949 0.00402267 +0.00296
°22 5000 -1.3333 -1.33533043 0.00221755 -0.00200
°23 5000 2 2.00631372 0.00589196 +0.00631
°33 5000 -4 -4.02230158 0.01878602 -0.02230

0-0, X-I DESIGN POINT NINE
(Leontief)

true mean standard error
var n value estimate of the mean bias

°11 5000 0 -0.01179970 0.00693466 -0.01179
012 5000 0 0.00085424 0.00165078 0.00085
°13 5000 0 0.00839825 0.00706013 0.00840
°22 5000 0 -0.00591069 0.00511371 -0.00591
°23 5000 0 0.01344565 0.01562308 0.01345
°33 5000 0 -0.04082633 0.05508760 -0.04083
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e MEANS OF MONTE CARLO ESTIMATES WITH K.r - 22

a-I, X-O DESIGN POINT ONE
(Translog)

true mean standard error
var n value estimate of the mean bias

aU 5000 -2 -1.99515887 0.00124979 +0.00484
a12 5000 -1 -1.00382673 0.00112039 -0.00383
a 13 5000 1 0.99966593 0.00016176 +0.00033
a22 5000 -2 -1.99866640 0.00131713
a23 5000 1 1.00081631 0.00024547 +0.00082
a33 5000 -.6666 -0.66682416 0.00008597 -0.00016

a-I, X-I DESIGN POINT TWO
(Generalized Leontief)

true mean standard error
var n value estimate of the mean bias

aU 5000 -.6666 -0.66642939 0.00012870 +0.00024
a 12 5000 1 0.99913564 0.00056276 -0.00086
a13 5000 1 1.00012969 0.00054956 +0.00013
a22 5000 -2 -1.99829392 0.01064387 +{).00171
a23 5000 -1 -1.00046690 0.01063388 -0.00047
a33 5000 -2 -1.99878873 0.01120892 +{).00121

a-1.70711, X-1.70711 DESIGN POINT THREE

true mean standard error
var n value estimate of the mean bias

all 5000 -1.13807 -1.13844172 0.00085888 -0.0003717
a12 5000 1.70711 1.70503529 0.00233526 -0.0020748
a13 5000 1.70711 1.71082237 0.00165366 +{).0037123
a22 5000 -3.41422 -3.40455996 0.01056636 +0.0096601
a23 5000 -1. 70711 -1.71012598 0.00762072 -0.0030159
a33 5000 -3.41422 -3.42484569 0.00901968 -0.0106256
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e
a-I, :\-2 DESIGN POINT FOUR

(Generalized Square Root Quadratic)

true mean standard error
var n value estimate of the mean bias

all 5000 -2 -2.00542183 0.00258027 -0.00542183

a12 5000 -1 -1.00516471 0.00186577 -0.00516471

a13 5000 1 1.00328455 0.00066141 +0.00328455

a22 5000 -2 -1.99343450 0.00312732 +0.0066566

a23 5000 1 0.99929709 0.00089895 -0.0007030

a33 5000 -.6666 -0.66737055 0.00040677 -0.0007039

a-0.29289, :\-1.70711 DES IGN POINT FIVE

true mean standard error
var n value estimate of the mean bias

(111 5000 -0.19526 -0.19518331 0.00077394 +0.0000767
a12 5000 0.29289 0.29498221 0.00170444 +0.0020922
a13 5000 0.29289 0.29044410 0.00271260 -0.0024459
a22 5000 -0.58578 -0.58613951 0.00913800 -0.0003595
a23 5000 -0.29289 -0.29924516 0.01005323 -0.0063551
a33 5000 -0.58578 -0.57123219 0.01567305 +0.0145479

a-0.29289, :\=0.29289 DESIGN POINT SIX

true mean standard error
var n value estimate of the mean bias

all 5000 -0.58578 -0.59169745 0.00611421 -0.0059174

a12 5000 -0.29289 -0.28820892 0.00565599 +0.0046811

a 13 5000 0.29289 0.29336741 0.00301707 +0.000477

a22 5000 -0.58578 -0.58788002 0.00995556 -0.0021

a23 5000 0.29289 0.29240219 0.00407014 -0.0004879

a33 5000 -0.19526 -0.19548328 0.00212500 -0.0002232
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e a-1.70711, A-0.29289 DESIGN POINT SEVEN

true mean standard error
var n value estimate of the mean bias

all 5000 -1.13807 -1.13779816 0.00078823 +0.0002719
a12 5000 1.70711 1.70560957 0.00222715 -0.0015005
a 13 5000 1.70711 1.70799009 0.00136689 +0.000879
a22 5000 -3.41422 -3.42119718 0.01033958 -0.0069771
a23 5000 -1.70711 -1.69643752 0.00722716 +0.0106725
a33 5000 -3.41422 -3.42758948 0.00796646 -0.0133694

a-I, A-1 DESIGN POINT EIGHT
(Generalized Leontief)

true mean standard error
var n value estimate of the mean bias

all 5000 -4 -4.00172708 0.00877313 -0.00172708
a 12 5000 2 2.00187013 0.00256611 -+<>.00187013
a13 5000 -2 -2.00427133 0.00487244 -0.00427133
a22 5000 -1. 3333 -1.33375191 0.00119964 -0.0004186
a23 5000 2 1.99980450 0.00255049 -0.0001955
a33 5000 -4 -3.99646526 0.00885382· -+<>.0035348

a-O, ).-1 DESIGN POINT NINE
(Leontief)

true mean standard error
var n value estimate of the mean bias

all 5000 0 0.00199572 0.00684097 0.00199572

a 12 5000 0 -0.00043965 0.00249818 -0.00043965

a13 5000 0 -0.00102451 0.00870260 -0.00102451

a22 5000 0 0.00117429 0.00207352 0.00117429

a23 5000 0 -0.00320273 0.00667987 -0.00320273

a33 5000 0 0.01070212 0.02512006 0.0107212
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APPENDIX 2

Response Surfaces for Predicted Bias

1. ABSOUJTE BIASES, CROSS PARTIAL SUBSTITUl'ION ELASTICITmS*

Thirteen Parameter Fits

Bias • -0.00194 + + 0.0083la - 0.0090n2 - + 0.00047(1A
(.0086) (.0129) (.0129) (.0058) (.0058) (.0050)

R2 • 0.1397 SSPE· 0.00145, 18 d.f. FLF • 0.44

Twenty-Two Parameter Fits

Bias • 0.00237 - - 0.00177(1 + 0.00242>. 2 + 0.0019012 - 0.001587A
(.0024) (.0036) (.0036) (.0016) (.0016) (.0014)

2R • 0.1697 SSPE III 0.000115

2. ABSOUJTE BIASES, AU. SIX SUBSTITUTION ELASTICITmS

Thirteen Parameter Fits

* 2Bias • 0.00271 + 0.02690 A + 0.0069la - 0.01360 - 0.00644a + 0.00263OA
(.0099) (.0148) (.0148) (.0068) (.0068) (.0057)

*In this appendix, FLF denotes the calculated F-statistic for 1ack-of-fit
tests, SSPE the "pure " error sum of squares, and one, two, and three asterisks
denote significance levels of 10%, 5% and 1%, respectively. Standard errors
of parameter estimates are in parentheses. The regressions for absolute bias
include all nine design points; the percentage bias results do not include the
ninth design point, as percentages are meaningless for the Leontief case.
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SSPE • 0.00888, 45 d.f. FLF " 0.77

TwentrTwo Para.Dl!ter Fits

Bias • 0.00374 - 0.0036Cl - 0.003441 + 0.0028U 2 + 0.002Sg,2 - O.0013:C)'
(.0025) (.0038) (.0038) (.0017) (.0017) (.0015)

R2 • 0.0949 SSPE· 0.0005653, 45 d.f. FLF • 1.46

3. PERCENTAGE BIAS, CROSS PARTIAL ELASTICITY OF SUBST1TI1rION

Thirteen Para.Dl!ter Fits

Bias • 0.02127 + 0.0276Cl - 0.03177a - 0.0089& 2 + 0.010281 2 - 0.0061la)'
(.0197) (.0270) (.0326) (.0122) (.0136) (.0103)

2R • 0.3056 SSPE • 0.00548, 16 d.f. FLF • 0.33

Twenty-Two Para.Dl!ter Fits

** ** 2 **2Bias • 0.111 - 0.0000796.\ - 0.01666 a + 0.00237A + 0.00721 a - 0.0034(»),
(.0047) (.0064) (.0075) (.0029) (.0032) (.0024)

R2 • 0.4976 SSPE • 0.0003, 16 d.f.

4. PERCENTAGE BIAS, ALL SIX SUBST1TI1rION ElASTICITIES

Thirteen Para.Dl!ter Fits

** ** 2 2Bias • 0.03453 + 0.0221& - 0.04736 a - 0.OO89U + 0.014291 - 0.0020"a).
(.0135) (.0185) (.0216) (.0084) (.0093) (.0070)
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2R • 0.3453 SSPE • 0.0122, 40 d.f.

'rwnty-Two Paraueter Fits

Bias • 0.00964*** - 0.OOO3U - 0.01424**0 + 0.00202). 2 + 0.0060512 - 0.002610).
(.0034) (.0047) (.0055) (.0021) (.0024) (.0018)

2R • 0.3536 SSPE • 0.00079, 40 d.f.
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Footnotes

1The generalized Box-Cox is a generalization of functional forms used by
Denny (1974) and Kiefer (1976). Denny, in a production study, specifies the
"generalized quadratic" functional form. This gives the cost function

C • (1: 1: b
ij

P 6y P 6 (1-,) )1/6 h(Y)
i j i j

f(P i/m) •

1which, with y • 2' ' is the form we use to generate
utility function involves a Box-Cox transformation
normalized prices (Pi/m). This isAaccomplished by

(Pi/m) - 1

data. Kiefer's indirect
(Box and Cox (1964) of the

with A + 0 causing f(e) to behave as the natural log. That is, the limit of
the indirect-utility function as A+O is a translog indrect utility function
(Christensen, Jorgensen, and Lau (1975».

2Substitution elasticities must not oscillate wildly over the region of
interest and the number of fitted parameters is allowed to increase as the
number of observations increases. Any of the common estimation procedures
(multivariate least-squares, maximum likelihood, and three-stage least-
squares) produce consistency if these conditions are met. The interested
reader should consult El Badawi, Gallant, and Souza (1982) for details.

3See Gallant (1982) for a discussion of "Sobolev flexibility" as opposed
to "Diewert flexibility" and a demonstration that the Fourier form has the
former characteristic.

4rrom each term in the series of logged prices for input i, we have
subtracted the smallest observation, and an adjustment factor, 10-5•
Each series is thereby adjusted so that 10- 1s the smallest observed price of
each input. The same would be applied to output. We therefore have
ln ai • - min(Xi) + 10 •

SIn our hypothetical technologies, we have not attempted to equate total
costs across the design, since substitution elasticities are invariant to
changes in the measure of costs. Convenient normalization rules were used to
obtain parameters in the generalized Box-Cox cost function which produced the
desired substitution matrix; these produce different values for C at the same
prices. Since interest centers only upon relative prices, this is of no
consequence.

6Gallant (1982) uses vectors of dimension n + 1, in order to include
output in the expression for the cost function, as element n + 1 of x, for n
inputs. Since interest here is only in the n prices, the definition of multi-
indexes reflects this. The choice of multi-indexes has been computerized, as
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it becomes tedious for large numbers of inputs; see Monahan (1981) for FORTRAN
code to handle this process.

7uO is zero because we fit only shares, not total costs.

80ne share is deleted, as is customary when tq.e system is singular in n
shares; f(xtIS) is linear in the parameters and Zt is a 2 by 13 (or 22)
matrix used to represent this fact.

9The generalized inverse is that described by Goodnight (1979), and is
used to automatically adjust for the overparameterization of the matrix c. C
has only three free parameters, and the generalized inverse automatically
identifies that subset of (u01' u02, ••• ,uOA) to be set to zero. See Gallant
(1982) for details.

10Dy restricting the fot'lll of I:, the substitution matrix, we are able to
characterize it with one parameter. Other forms would be no less interesting,
but would complicate our response surface, increase the number of design
points, and contribute little to understanding the behavior of the Fourier
form. Details of the structure of the substitution matrix are given below.
See Appendix 1 for the placement of the complementarity relationship in each
technology.

llFor the A-I, a-O case, we obtain a Leontief technology. In that case,
the minus sign is used to choose which share is the larger of the three.

matrix R has eigenvalues 0.9662, 0.40966, and 0.6278, indicating
that the autoregressive process is not an explosive one.

13El Badawi, Gallant, and Souza (1982) show that whether parameters grow
at a deterministic rate, or are chosen adaptively, consistency obtains. We
allow

K.rlim_+ 0 but
T+GI T

by choosing

K.r - r 8

lim Kr + ao
T+GI
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