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Chapter 3. A Unified Asymptotic Theory of Nonlinear Statistical Models

After reading a few articles in the nonlinear models literature one
begins to notice that each discussion follows roughly the same lines as the
classical treatment of maximum likelihood estimation. There are some technical
problems having to do with simultaneously conditioning on the independent
variables and subjecting the true parameter to a Pitman drift which prevent
the use of the classical methods of proof, but the basic impression of
similarity is correct. An estimator-- be it nonlinear least squares, three-
stage nonlinear least squares, or whatever-- is the solution of an optimiza-
tion problem. And the objective function of the optimization problem can be
treated as if it were the log-likelihood to derive the Wald test statistic,
the likelihood ratio test statistic, and Rao's efficient score statistic.
Their asymptotic null and non-null distributions can be found using arguments
fairly similar to the classical maximum likelihood arguments. In this chapter
we exploit these observations and develop a unified asymptotic theory for
nonlinear models. That which escapes this unification is that which has
objective function which is not twice continually differentiable with respect
to the parameters - minimum absolute deviations regression for example.

The model that generates the data need not be the same as the model that
was presumed to define the optimization problem. Thus, these results can be
used to obtain the asymptotic behavior of inference procedures under specifi-
cation error. For example, it is not necessary to resort to Monte Carlo
simulation to determine if an exponential fit is robust against other plausible
growth models. The asymptotic approximations we give here will provide an

analytic answer to the question, sufficiently accurate for most purposes.
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An early version of this chapter appeared as Burguete, Gallant, and Souza
(1982) together with comment by Huber (1982), Phillips (1982), and White (1982).

This chapter differs from the earlier work in that the Pitman drift assumption

is isolated from the results on estimation. See especially Phillips (1982)

Comment and the Reply as to the subtle differences this can make.
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1. INTRODUCTION

An estimator is the solution of an optimization problem. It is
necessary to divide these optimization problems into two groups and study
these groups separately. Afterwards, one can ignore this classification
and study inference in unified fashion. These two groups are least mean
distance estimators and method of moments estimators. We shall define
these in turn.

Multivariate nonlinear least squares is an example of a least mean

distance estimator. The estimator for the model

yt=f(x,c,6)+et t=1,2, .., n

where Ve is an M-vector is computed as follows. Firstly, least squares

residuals e,, are obtained by fitting the univariate models

it

]
A
n
=

Vit = fi(xt,e) + ey i t=1,2, ..., n

s aa s , ~“ g% - ~ ’
individually by least squares. Let e,G = (elt’ e2t, cee s eMt) and
T=(1/n) 2. & el .
Tia1 ©t S

The multivariate nonlinear least squares estimator is that value § which
minimizes

(1/n)p; 3y, - £(x,,8) 1 (N v, - £(x,,0)] -

A general description of estimators of this type is: a least mean distance
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estimator is that value Xn which minimizes an objective function of the

form
s, (M) = (I/n)mg_ ;) s(yy,x,,7 50 -

The literature subsumed by this definition is: Single equation nonlinear
least squares - Jennrich (1969), Malinvaud (1970a), Gallant (1973, 1975a,
1975b). Multivariate nonlinear least squares - Malinvaud (1970b), Gallant
(1975¢), Holly (1978). Single equation and multivariate maximum likelihood -
Malinvaud (1970b), Barnett (1976), Holly (1978). Maximum likelihood for
simultaneous systems - Amemiya (1977), Gallant and Holly (1980). M-estimators -
Balet-Lawrence (1975), Grossman (1976), Ruskin (1978). Iteratively rescaled
M-estimators - Souza and Gallant (1979).

Two-stage nonlinear least squares is an example of a method of moments

estimator. The estimator for the ath equation
q,(7y5x0) = e t=1,2, ..., n

of a simultaneous system of M such equations --- Yy is an M-vector --- is

computed as follows. One chooses instrumental variables z, as functions of

the exogenous variables x Theoretical discussions of this choice consume

‘t .
much of the literature, but the most frequent choice in applications is low

order monomials in x viz.

t,

z, = (%, ,x 2 X, )X, 2 Xy XnsXopeoo ).
t 1291 et 2T 22732 t

The moment equations are
mn(e) = (l/n)itl=ltha(yt Sxt,e)

* *
and the true value 8 of 6 is presumed to satisfy Smn(e ) = 0. (Note that

qa(yt,xt,e) is a scalor and z, is a vector.) The two-stage least squares estima',

t
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is defined as the value @ which minimizes
s (8) = n’(8)0 (1/n)E2 .2, ,2/1 " m_(0)
n 2%n t=1t°"t n :

A general description of estimators of this type is as follows. Define

moment equations

mn(k) = (l/n)zi;lp(yt,xt,?n,k)
and a notién of distance

d(m,?n)

where we permit a dependence on a random variable ?n via the argument T in
n(y,x,7,\) and d(m,t) so as to allow preliminary estimates of nuisance
parameters as in three-stage least squares. The estimator is that in which
minimizes

s (V) = dm (A),7,7 .

Estimators which are properly thought of as method of moment estimators,
in the sense that they can be posed no other way, are: The Hartley-Booker
estimator - Hartley and Booker (1965). Scale invariate M-estimators - Ruskin
(1978). Two-stage nonlinear least-squares estimators - Amemiya (197hk).
Three-stage nonlinear least-squares estimators - Jorgenson and Laffont (197h4),
Amemiya (1977), Gallant and Jorgenson (1979).

In both least mean distance estimation and method of moments estimation,
one is led toregard an estimator as the value Xh which minimizes an objective
function sn(k) . This objective function depends on the sample {(yt,xt):
t=1,2,..., n} and possibly on a preliminary estimator ?n of some nuisance
parameters. Now the negative of sn(k) may be treated as if it were a likeli-

hood function and the Wald test statistic Wn’ the likelihood ratio test statistic
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Ln’ and Rao's efficient score test statistic Rn may be derived for a null
hypothesis H: h(\) = O against its alternative A: h()\) # 0. Almost all
of the inference procedures used in the analysis of nonlinear statistical
models can be derived in this way. It is only a matter of finding the
appropriate objective function sn(k).

We emerge from this discussion with an interest in four statistics ===
in’ W, L, R ---all of which depend on sn(k) . We should like to find
their asymptotic distribution in three cases: the null case where the model
is correctly specified and the null hypothesis h()\) = O holds, the non-null
case where the model is correctly specified and the null hypothesis is
violated, and in the case where the model is misspecified. By misspecifi-

cation, one has in mind the following. The definition of an objective

function Sn()‘) which defines the four statistics of interest is motivated .

by a model and assumptions on the error distribution. For example, the
multivariate nonlinear least-squares estimator is predicated on the assumption

that the data follow the model

yt=f(x.t’e)+et, t=l, 2, seey N

and that the errors have mean zero. Misspecification means that either the
model assumption or the error assumption or both are violated. We find that
we can obtain an asymptotic theory for all three cases at once by presuming

that the data actually follow the multivariate implicit model

a(yy>x.svp) = & t=1,2, ..., n

where y, 4, and e are M-vectors and the parameter y may be infinite dimensional.
That is, we obtain our results with misspecification and violation of the null

hypothesis presumed throughout and then specialize to consider correctly .

specified null and non-null situations. The following results are cbtained.
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The least mean distance estimator in s the estimator which minimizes
n ~
Sn(k) = (l/n)zt‘-'-‘l s(yt’x‘b’Tn’)‘) ’

is shown to be asymptotically normally distributed with a limiting variance-
covariance matrix of the form g'legy'l . Consistent estimators jn and 2
are set forth. Two examples --- an M-estimator and an iteratively rescaled
M-estimator --- are carried throughout the development to illustrate the
regularity conditions and results as they are introduced.

Next, method of moments estimation is taken up. The method of moments

estimator Xn s, the estimator that minimizes
Sn()\) = d[mn(k)','rn] [

is shown to be asymptotically normally distributed with a limiting variance-
covariance matrix of the form g'l=9g'l . Again, consistent estimators 3n
and ﬁn are set forth. The example carried throughout the discussion is a
scale invariant M-estimator.

Both analyses --- least mean distance estimation and method of moments
estimation --- terminate with the same conclusion: Xn minimizing sn(k) is
asymptotically normelly distributed with a limiting variance-covariance
matrix that may be estimated consistently by using ﬁn and 3n as intermediate
statistics. As a result, an asymptotic theory for the test statistics Wn’

L , and R.n can be developed in a single section, Section 5, without regard

n

to whether the source of the objective function sn(k) was least mean
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distance estimation or method of moments estimation. The discussion is
illustrated with a misspecified nonlinear regression model fitted by

least squares.
Observe that a least mean distance estimator may be cast into the

form of a method of moments estimator by putting
m () = (1/n)Zf_; (3/30)s (v, s%,7, 50
because \ which minimizes
(1/n)E_18(yy %57 50)

golves

(l/n)ig;l(a/ak)s(yt,xt,;n,k) =0.

If one's only interest is the asymptotic distribution of Xn,then posing the
problem as a method of moments estimator is the more convenient approach as
algebraic simplifigations of the equations mn(k) = 0 prior to analysis can
materially simplify the computation of the parameters of the asymptotic
distribution. However, one pays two penalties for this convenience: the
problem is no longer posed in a way that permits the use of the statistic

Ln » and consistency results are weaker.
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2. THE DATA GENERATING MODEL AND LIMITS OF CESARO SUMS

The objective is to find asymptotic approximations in
situations such as the following. An analysis is predicted on the assumption

that the data were generated according to the model

Iy = f(xt,k)'l- e, t=1,2,...,n
when actually they were generated according to
yt=g’(xt)+et t=l,2,uoo,n

One estimates \ by Xn that minimizes sn(),) over the estimation space A and

tests H: X=)\* by, say,
’ a=l ~ r=li=1
wo=ak -\ @3 TR -\

The estimator in is estimating a value )\° induced by f(x) which is computed
according to formulas given later. Thus, one is actually testing the null
*
hypothesis H: A° =X . Depending on the context, a test of H: \° = )\* when the

data is generated according to

T, = 8(x) + e t=1,2,...5,n
and not according to
Vi = f(xt,k)+et t=1,2,...,n

may or may not make sense. In order to make a judgement as to whether the
inference procedure is sensible it is necessary to have the (asymptotic approxi-
mation to the) sampling distribution of LA

A problem in deriving asymptotic approximations to the sampling distribution

of Wn is that if A° #\* then Wn will reject the null hypothesis with probability
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one as n tends to infinity whence its limiting distribution is degenerate.
The classical solution to this problem is to index the parameter as x; and
subject it to a rate of drift such that vq;(k;-k*) converges to a finite
limit, called a Pitman drift. Thus, we need some mechanism for subjectiné
the true model g(x) to drift so as to induce the requisite drift on X;.

One possible drift mechanism is the following. Suppose that the inde-
pendent variables are confined to a compact set L and that f(x,k*) is continuous
on Y. Then f(x,k*)'has a polynomial expansion

* 1
£(x,\) = z§=o ¥

by the Stone-Weierstrass theorem. If the data is generated according to the

sequence of models

*
Bfx) = vy *+ vy X n=1
* *
géx) =Yy Y, Xt y, 2 n=2
* * * 2 ¥*
g§X)=Y0+YlX+v2X+y3x n=3

* *
then x; will converge to that A specified by H: A=A . Convergence can be
*
accelerated so that lﬁnA/n(x;-x ) is finite by chenging a few details

(Problem 2). The natural representation of this scheme is to put
, _ 0y _ & o 1
gn (x) = g(X:Yn) - zi=o Yinx
and let

* +*
Y3.=‘(YO,Y]-’ 09-°°)

* * *
‘Y;= ('Yo )Yls‘(zyo’ '0-)

* * * *
(Yo :Yl ’Yz :‘Y33O: "-)

3]

Y3
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. We see from this discussion that the theory should at least be general
enough to accommodate data generating models with an infinite dimensional
parameter space. Rather than working directly with an infinite dimensional
parameter space, it is easier to let the parameter space be an abstract metric
space (I ,p) . To specialize to the infinite dimensional case, let I' be the
collection of infinite dimensional vectors and put p(y ,v°)= z:solyi-y;]

or same other convenient metric (Problem 2).
To specialize further to the finite dimensional case, let I'=RS and put

2
p(‘Y ,Yo) = (zisll‘Yi 'Y;l )% .
Moving on to the formal assumptions, we assume that the observed data
(yl’xl) ’ (y2’x2) ’ (y3’x3) 3 eee
is generated according to the model

Q(yt’xt,Y;)’ et t = l, 2, seey n

with x, ¢ 1, yteu, et‘e’ and-ygcr‘ . The dimensions are: x_ is & k- -

vector, y, and e, are M-vectors, and (' ,p) is an abstract metric space with

t
y; some point in I' . The cbserved values of v, are actually doubly indexed and

form a triangular arrey

Y13 n=1
Y12 Y22 n=2
n= 3

V13 Y23 Y33

due to the dependence of y; on the sample size n. This second index will

simply be understood throughout.
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ASSUMPTION 1. The errors are independently and identically distributed
with common distribution P(e) .

Obviously, for the model to make sense, some measure of central tendency
of P(e) ought to be zero but no formal use is made of such an assumption. if
P(e) is indexed by parameters, they cannot drift with sample size as may y; .

The assumption appears to rule out heteroscedastic errors. Actually it
does not if one is willing to presume that the error variance-covariance matrix

depends on the independent variable X,

Cley,ey) = =(x) .
Factor z'l(xt) as R’(xt) R(xt) and write
R(xt)Q(yt’xt’Y;) = R(xt)et .

Then R(xt)et is homosceda-stic. If one is willing to assume a c@on distribution ‘
for R(xt)et as well then Assumption 1 is satisfied. Note that the actual

construction of R(xt) is not required in applications as estimation is based only

on the known function sn(x) . Similarly, many other apparent departures from
Assumption 1 can be accommodated by presuming the existence of a transformation

VEQ(Y:an(l))sst(a)] that will yield residuals that satisfy Assumption 1.

The model is supposed to describe the behavior of some physical, btiological,
economic, or social system. If so, to each value of (e,x,y") there should
correspond one and only one outcome y . This condition and eontinuity are imposed.

ASSUMPTION 2. For each (x,y) ¢ L %X I the equation q(y,x,y) = e defines a
one-to-one mapping of & onto Y denoted as Y(e,x,y) . Moreover, ¥(e,x,y) is
continuous on &€ XX X T and I' is compact.

It should be emphasized that it is not necessary to have a closed form

expression for Y(e,x,y) , Or even to be able to compute it using numerical methods ’
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in order to use the statistical methods set forth here. Inference is based
only on the known function sn(k) . The existence of Y(e,x,y) is needed but
its construction is not required. This point is largely irrelevant to
standard regression models but it is essential to nonlinear simultaneous
equation models where Y(e,x,y) is often difficult to compute. Since I' may
be taken as {y*,yl,ya,... }if desired, no generality is lost by assuming
that ' is compact.

Repeatedly in the analysis of nonlinear models a Cesaro sum such as

(l/n)il f(yt’xt’)\) = (l/n)i):.__l f[Y(et,X_t,‘Yo) ’ xtyk]

must converge uniformly in (y°,k) to obtain a desired result. If results
are to be useful in applications, the conditions imposed to insure this
uniform convergence should be plausiblé and easily recognized as cbtaining
or not obtaining in an application. The conditions imposed here have
evolved in Jennrich (1969), Malinvaud (1970a), Gallant (1977a), Gallant and
Holly (1980), and Burguete, Gallant and Souza (1982).

As motivation for these conditions, consider the sequence of independent
variables resulting from a treatment-control experiment where the response
depends on the age of the experimental material. Suppose subjects are
randomly selected from a population whose age distribution is FA(o) and then
subjected to either the treatment or the control. The observed sequence of

independent variables is

X, = (1, al) treatment
X, = (0, a2) control
X3 = (1, a3) treatment

x), = (o, au) control
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Let Fp(') denote the point binomial distribution with p = % and set
au(x) = dF (x;) x dF, (x,)

Then for any continuous function f£(x) whose expectation exists,

Ma, (1/0) B £(x) = B Giff(L,e)ar (a) = [ £(x) aute)

for almost every realization of {xt} by the Strong Law of Large Numbers. The

null set depends on the function f£{x) which would be an annoyance as the

discussion flows more naturally if one has the freedom to hold a realization of

{xt} fixed while permitting £(x) to vary over a possibly uncountsble collection

of functions. Fortunately, the collection of functions considered later is

dominated and we can take advantage of that fact now to eliminate this dependence

of the null set on f(x). Consider the following consequence of the generalized ‘
Glivenko-Cantelli Theorem.

PROPOSTTION 1. (Gallant and Holly, 1980) lLet V., t =1, 2, ... be a sequence
of independent and identically distributed s-dimensional random variasbles defined
on a complete probability space (Q,qD,Po)with common distribution v. Iet v
be absolutely continuous with respect to some product measure on Rs and let b
be a non-negative function with fbdv < ®, Then there exists E with P(§E) =0

such that if @ £ E

gim(1/n)g 12V (0)] = [£(v) dv(v)

for every continuous function with |f(v)| < b(v) .
The conclusion of this proposition describes the behavior that is reguired
of a sequence v, = x  or v = (et,xt) . As terminology for it, such a sequence

is called a Cesaro Sum Generator.
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DEFINITION. (Cesaro Sum Generator; Gallant and Holly, 1980) A sequence
{vt} of points from a Borel set Ut is said to be a Cesaro Sum Generator with
respect to a probability measure v defined on the Borel subsets of U and a

dominating function b(v) with [bdv < = if

gim | (1/n)Eg_; £(vy) = [£(v) av(v)

for every real valued, continuous function f with |f(v)| < b(v) .

We have seen that independent variables generated according to an experi-
mental design or by random sampling satisfy this definition. Many other
situations such as stratified or cluster sampling will satisfy the definition
as well. We shall assume, below, that the sequence {xt} upon which the re-
sults are conditioned is a Cesaro Sum Generator as is almost every joint
realization {(et,xt)} . Then we derive the Uniform Strong Law of Large Numbers.

ASSUMPTION 3. (Gallant and Holly, 1980) Almost every reaiization of {vt}

with v, = (et,xt) is a Cesaro Sum Generator with respect to the product measure

v(a) = j I IA(e,x) dP(e) du(x)
1é

and dominating function b(e,x) . The sequence {xt} is a Cesaro Sum Generator
with respect to p and b(x) = I b(e,x) dP(e) . For each x ¢ X there is a neigh-

e
borhood N_ such that [ supy b(e,x) dP(e) <.
X
e X
THEOREM 1. (Uniform Strong Law of Large Numbers) Let Assumptions 1
through 3 hold. Let <B,> and <I',p> be compact metric spaces and let
f(y,x,B) be continuous on Y XX X B. ILet

|f(y,x,8)| < | b[Q(y’x,Y)’x” or equivalently |ffY(e,x,y),x,B]|Sb(e,x)

for all (y,x) ¢ Y X X and all (B,y) ¢ B X I' where b(e,x) is given by

Assumption 3. Then both
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(1/n) g5, £(y,sx,,8) and

(l/n) E;l J‘e fEY(esxts‘Y), xt,ﬂ dP(e)
converge uniformly to

ij'e f¥(e,2,y),x,8] dP(e) du(x)

over B X I' except on the event E with PO(E) = 0 given by Assumption 3. Recall
that the uniform limit of continuous functions is continuous.
PROOF. (Jennrich, 1969) Let v = (e,x) denote a typical element of
U=8 XX, let o = (B,y) denote a typical element of A =B X A, and let
{vt} be a Cesaro Sum Generator. The idea of the proof is to use the

Dominated Convergence Theorem and Cesaro summability to show that

hn(a) = (1/n) 2:,1 (v, a)

where

h(V,d) = f[Y(e:ng)’ x!ﬁ]

is an equicontinuocus sequence on A . An squlicontinuous sequence that has a
pointwise limit on a compact set converges uniformly; see, for example,
Chapter 9 of Rayden (1963).

First, in order to apply Cesaro summability, we show that sup oh(v,a)
and infa ] oh(v,a) are continuous for any OCA ; they are ocbviously dominated by
b(e,x) . Put +{a,e’) = Ecg(5,3°)+pz(y,y°)]% whence <A,r> is a compact metric
space. Let v° in U and ¢>Q be given. Let 7 be a compact neighborheood of +°
and let O be the closure of O in <A,+> whence <5,1-> is compact. 3By
assumption, h(v,y) is continuous on ¥ x A so it is uniformly continucus on

7 % 3. Then there is a 5>0 such that for all |v-v°| <4 and a0

h(vg :d) ~e L h(V,a) < h(vo ,a) t e

This establishes continuity (Problem L4).
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A sequence is equicontinuous if for each ¢ > O and @° in A there is
a 8§ > 0 such that r(a,a®) < & implies supnlhn(a) - hn(a°)| < ¢ . When each
hn(a) is continuous over A it suffices to show that supn>N|hn(a) -ht1(a°)| <e
for some finite N. Let ¢>0 and §>0 be given and let 06= {a: r(a,a®)<8} .

By the Dominated Convergence Theorem and continuity

dime o .rusuPoah(Vsa) -h(v,e®) dv(v)

f .¢.J‘.m6_.osupo h(v,a) =h(v,a®) dv(v)
v 8

= 0
Then there is a §>0 such that T(«,a’ )<6 implies

[ supy n(v,a) -b(v,e®) av(v) < e/2 .
¥ )
By Cesaro summability, there is an N such that n>N implies
supy b (a) - b (®) = [ supy n(v,a) -u(v,a®) dv(v) < ¢/2
8 ¥ )

whence

hn(cr) - hn(a°) = SuPoahn(a) - hn(a°) <e

for all n > N and all +(a,a°) < 8. A similar argument applied to inf hn(a)
8
yields

-¢ <h (o) - hn(or°) <e

for all n> N and all +(a,a®) < § . This establishes equicontinuity.
To show that

i (a) = (1/n) s_‘.f:=l h(x, a)

where

Fl(x,a) = j&th(e,x,y),x,B] dP(e)
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is an equicontinuous sequence, the same argument can be applied. It is v ‘
only necessary to show that h(x,a) is continuous on X X A and dominated by

b(x) . Now

|B(x,0)| s Ielh(v,a) | ap(e) s j‘e‘o(e,x) dP(e) = b(x)

which establishes domination. By continuity on v X A and the Dominated

Convergence Theorem with supN b(e,x) of Assumption 3 as the dominating function,
(-]
X

HB,0) - (2 00 FO000) = M0 ) 4 (a8 g0 (e %00) 8R(e)
= Ieh(e,x° ,a°) ap(e)
= E(xo ’aO) .

This establishes continuity. [
In typical applications, an error density p(e) and a Jaccbian

IJ(¥,x,¥°) = (3/3y’)aly,x,v°)

are available. With these in hand, the conditional density

p(ylx,y°) = |det J(y,x,¢°)|pla(y,x,y°)]

mey be used for computing limits of Cesaro sums since

j‘rreftY(QstYo)yx,Y] dP(e) du(x)

= [ £(ysxy) p(yix,y°®) &y du(x) .
L'y

The choice of integration formulas is dictated by convenience.
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The main use of the Uniform Strong Law is in the following type of

argument:
. & ¥
im o, A =X,
. *
sim  sup fs (A) -s" (V] = 0,
implies s¥()\) continuous
. I *
Lim s (N )=s ()
because

*, % *
ls,(8) -5 W = |s ;R ) -5 (X)) + s"(R ) -5 ()]
~ ¥*
< sup |5, (M) -s" (W] + |s"(R) - ()]
We could get by with a weaker result that merely stated:

Lim sn(in) =5 (\%)

for any sequence with

*

4im - )‘n = A
For the Central Limit Theorem, we shall make do with this weaker notion of
convergence:

THEOREM 2. (Central Limit Theorem) Let Assumptions 1 through 3 hold.
Let <T',p> be a compact metric space; let T be a closed ball in a Euclidean
space centered at T* with finite, nonzero radius; and let A be a compact
subset of a Euclidean space. Let {y;} be a sequence from I' that converges
to y*; let ﬁn} be a sequence of random variables with range in T that
converges almost surely to 1'*; let {-r;} be a sequence from T with Jﬁ(?n- T;)

bounded in probability; let {X;} be a sequence from A that converges to )\* .

Let f(y,x,T,\) be a p-vector valued function such that each element of
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f(y’x,"")\) s f(Y:X’Ta)\) f'(y,x,T,k) » and (a/aTl)f(y,X,T,)\) is continuous
on Yy XX X T X A and dominated by bla(y,x,y),x] for all (y,x) ¢ Y x X and

all (y,ToA) ¢ I X T X A; b(e,x) is given by Assumption 3. If

<a/a¢)jfr Y (e xy )sx,m5N ] dP(e) du(x) = 0 ,
e

then
~ ¥*
(LWEIEE L2y, 5%, »700) - wav2573,02) 15 (0,17)

where

IJA(X:'Y’T3)\) = IeftY(esx,‘Y),ng’)\] dP(e)

I* = J‘I‘l’ ffY(e,x,y*),x,T*,k*] f'[Y(e,x,y*),x,T*,)\*] dP(e) du(x) 'u*
e

* * x  * * * % .
U= sy st oA ) w(xsy 5T LN ) du(x)
X

I* may be singular.
PROOF. Let
Z(e,X,Y,T,)\)

= fY(e,x,y),x,7,0] -] H¥(e,x,y),x,7,1] aP(e) .
e

Given £ with || £]|=1 consider the triangular array of random variables

Zy, = L'Z(et,xt,y;,'r;,kg) t=1,2,...,0; n=1,2,...

Each Ztn has mean zero and variance

2 — (o] o] o o o [
O = z'fez(e,xt,yn,'rn,)\n) Z’(e,xt,yn,'rn,)\n) dP(e) 4 .

Putting V_=g- . by Theorem 1 and the assumption that f£im__ (v2,7922)=( Ay
n “t=1"tn’ oo Y2 TP /=Y 5T

. Fy ¥4 * . .
it follows that len_m(l/n)vn= 2'T 4 (Problem 5). Now (l/n)Vn is the variance
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*
. ? _ . . . .
of (l/,\/ﬁ)ilztn and if 4’I £ = O then (l/A/E)ZLthn converges in distribution
* *
to N(0,2'TI 4) by Chebyshev's inequality. Suppose, then, that £'I £>0. If

it is shown that for every ¢ > O 4im__ B = O where
n-o 1

B, = (1/n)5_ lj'al

2
C2/Z(e,xv5 570,80 ) W 42 e %, v0 570 ,0) 17 dB(e)

[lzl>e 7]

then zimw(n/vn)Bn=O .  This is the Lindberg-Feller condition (Chung, 1974);

*
it implies that (1/J£)zg=lztn converges in distribution to N(0,4’,I &) .

-, % ¥ *
Let 1> O and ¢ > O be given. Choose a > O such that B(y ,t ,A )<T/2

where
-, ¥ ® _* n * ¥ _* * * _¥,..2
B('Y »T 5N ) =J .,[I I [L’Z(e,x,y sT SA )][zlz(e:st 5T sA )] dP(e) du(x)
1e [lzl >eal
-, ¥ ¥ _¥
This is possible because B(y sT s\ ) exists when a=0. Choose a continuous

function ¢(z) and an Ny such that, for all n>N, ,

I (z) <p(z)S I (z)
[|Z|>Gﬁnj [lz] >ea]

and set

B (v,ms0) = (l/n)zf;:lfacp[z'z(e,xt,y,'r )\)]U'Z(e,xt,v,ﬂ',k)]z dP(e) .

By Theorem 1, ‘E‘n(y,ﬂ',)‘) converges uniformly on T X T X A to, say, B(y,T,\) «

) ) * * %
By assumption (Problem 5) zlmn_m(y;,'r;,)\;) =(y ,T ,\ ) whence

2im B (v2,7°,2°) =B( e k*) .  Then there is an N, such that, for all
nwon'Yn’ n’n Yoot 2 ’

~ * ¥ ¥
n>N,, B (2,13:0) <Bly ,r ,A)+n/2. But for all n > N=max{N,,N,},
o (o] [}
B, < gn(vn"rn’)‘n) whence

¥ ¥ ¥ - * ¥ ¥
an%‘n(yg,r;,)\;) <Bly ;7,0 )+n/2<B(y ,7 ,A )+n/2<n.
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By Taylor's theorem, expanding about 'r; R
(L/WB) g 14 LE (5% T 500 = wlxy v3510500)]
= (1/~/5)’3§=17‘tn
+ [(1/n)T_ 4 (3/a7") £(y,,%,,7 0201 VR (7 -°)

where ;n lies on the line segment joining ;n to 1"1’1; thus ;n converges almost
* o = o * * % ‘
surely to T . The almost sure convergence of (Yn’Tn’)‘n) to (y ,7 ;A ) and

the uniform almost sure convergence of

(l/n)zf::lz ’(B/B'r) f(yt ’xt >Ts\)

over ' X T X A given by Theorem 1 imply that [(l/n)z:___l,c’(a/a-r’)f(yt,xt,?n,)\;)]

converges almost surely (Problem 1) to ‘
» * * *
J J 4’ (a/amfi(e,x,y ) x,m 0" ] aB(e) du(x) = 0.
X e
Since Jn (;n -'r;) is bounded in probebility we have that
n )
(l/JE)Et:l[ f(yt’xt’Tn’)‘;) - u(xt,y;,'f;,k;)]
n
= (1//n)s o Zpn * erp(l)
=5 §(0,2'T"1) .

This holds for every £ with H )/ H =1 whence the desired result obtains. []
In the main, small sample regression analysis is conditional. With a

model such as

Vi = f(xt,e) ey t=1,2,...,n

the independent variables are held fixed and the sampling variation enters

via the errors €15 €55 cer 58 - It seems appropriate, then, to maintain this
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conditioning when passing to the limit. This is what we shall do in the

sequel. One fixes an infinite sequence
x = (xl, X5 oo

that satisfies the Cesaro summability property and all sampling variation

t}:=l . To give an unambiguous description

of this conditioning, it is necessary to spell out the probability structure

enters via the random variables {e

in detail. The reader who has no patience with details of this sort is
invited to skip to the next section at this point.

We begin with an abstract probability space (Q,G.O,PO) on which are
defined random variables {Et]:;l and {Xt}:,--l which represent the errors and
independent varisbles respectively. Nonrandom independent variables are
represented in this scheme by random varisables that take on a single value
with probability one. A realization of the errors can be denoted by an

infinite dimensional sequence
e, = (el, €y ve- )

where et=Et(w) for some w in Q. Similarly for the independent variables

xm=(xl, Koy ees )

m w - s 3 .
Let 6@ = Xt___lﬁ and I,m = Xt=lI so that all joint realizations of the errors
and independent variables take theilr values in Em X Iw and all realizations
of the independent variables take their values in Iw .
Using the Daniell-Kolmogorov construction (Tucker, 1967, Section 2.3),

this is enough to define a joint prcbability space

(em X Im s Ge’x ’ VQ)
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such that if a random variable is a function of (ew, x”) one can perform

all computations withrespect to the more structured space (6‘” X Iw, G‘e x,vm)
b

and one is spared the trouble of tracing pre-images back to the space

(Q,GO,PO) . Similarly one can construct the marginal probability space
(Im,ﬁx,um) .

Assumption 3 imposes structure on both of these probability spaces. The
set on which Cesaro summability fails jointly

@

Fe,x=Ue>oﬂj____OU:___j{(em,xQ):EI f(e,x)| <v(e,x) 3 |(l/n)z:=lf(et,xt) -”‘f dPdu | > e}

has V_ measure zero. And the set on which Cesaroc summability fails marginally

Fx=Us>On§=OU;=j{xoo:3| £(x)] <v(x) 3 [(/n)mg_ 2(x,) - [£au | >¢)

has W measure zero. ‘

By virtue of the construction of (em % Iw, a ,vw) from countable families

e,X
of random variables, there exists (Loeve, 1963, Sec. 27.2, Regularity Theorem)
a regular conditional probability P(A|xm) connecting the joint and the marginal

spaces by

v (a) = IIP(Alxw) au_(x_) .

Recall that a regular conditional probability is a mapping of G.e < X ’I,w into

b
[0,1] such that P(Alxm) is a probability measure on (6@ XX, G, x) for each

b
fixed x_, such that P(Alxw) is a measurable function over (Ioo’ax) for each
fixed A, and such that j‘BP(Alxm) dp.m(xm) = vm[Aﬂ (E‘,m X B)] for every B in G’x .

3 . N (-] [--]

The simplest example that comes to mind is to assume that {Et}t:l and {Xt}t=l

are independent femilies of random variables, to construct (Em,Ge ’Pe)’ and

to put : .
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P(alx ) = J‘e I (e »x.) aP (e ) .

«®
Define the marginal conditional distribution on (€_, Ge) by
Pe‘x(E!xw) = P(EX_|x_) -

All probability statements in the sequel are with respect to Pe|X(E|gm).
Assumption 1 puts additional structure on Pe‘X(E!xb) . It states that
Pelx(EIXB) is a product measure corresponding to a sequence of independent
random variables each having common distribution P(e) defined over measurable
subsets of € . This distribution can depend on x_. For example, {et}:;l
could be a sequence of independently and normally distributed random variables
each with mean zero and variance-covariance matrix Limnem(l/n)2:=lT(xt)T'(xt).
But as indicated by the discussion following Assumption 1, this dependeﬁce
on X is very restricted. So restricted, in fact, that we do not bother to
reflect it in our notation; we do not index P of Assumption 1 by X,

If all probability statements are with respect to Pelx(E|x$) then the

critical question becomes: Does the set where Cesaro summability fails

s (o]
conditionally at X =X,

EZ!X=U‘>OH§=OU§___3{%:E| £(e,x)| <b(e,x) 3 | (1/n)gy_ £(e,,x}) - [[£aPau | >e¢)

have conditional measure zero? The following computation shows that the

answer is yes for almost every choice of x;:
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Pelx elxlx ) = f I (ew) dPe!x(em|x;) (marginal [x°)
€ e|x
= I (e ,x2) aP | (e |x°) (marginal 1x°)
PRRL ) RN .
® “elx
= ‘f I (em,x:) df{(e@,x )21 (Joint |x°)
e XX ¥, x{x°} e e
"o Telx o
= I I (ew,xm) dE[(em,x )lx:] (joint |x°)
e %X F,D‘ X{Xo} @
SI I, (ew,xm) dP[(ew,xe:] (joint |x°)
8(»)(1@ e,x
= P(Fe,xix;) .
Since
v (F, ) = IIP(Fe’xlx: ) dp () = 0
we have
e|x e‘xlx ) = a.e. (Im’am’uw)'

Since the parameter Y?x is subject to drift, it is as well to spell out
a few additional details. For each n, the conditional distribution of the

. n . . .
dependent variables {y_b} 4= 8lven x_ and y‘r’l is defined by
Pn(A|xm,y‘r’1) = Pe‘x{ea el : [Y(et,xl,y;), ces ,Y(en,xn ,y;)] eAiXm}

for each measurable subset A of X?_l:ilj . A statement such as '):n converges
*
almost surely to A means that in is a random varisble with argument

(yl,...,yn,xl,...,xn) , and that Pe‘x(Elxc) = 0 where
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-] o *
E = U oMmUnegleai 1k, -2 | > e}

(yt ’Xt) = [Y(et ,xt ,Y;l) ,x't]
a *
A statement that Jﬁ(xn-k ) converges in distribution to a multivariate

normal distribution N('|6,V) means that for A of the form
A= ('“’, )‘l] X (..m, >\2] X ..o X (_m, )\p]
it is true that

LimWPn(Jﬁ(in - x*) P A|x“,yr°1) = j'AdN(zlé,V) .

One may prefer an analysis that treats x, as random rather than fixed.
The theory that we shall develop is general enough to accommodate this
assumption. The details are spelled out in Section 7.

We shall assume that the estimation space A is compact. Our defense of
this assumption is that it does not cause problems in applications as a
general rule and it can be circumvented on an ad hoc basis as necessary
without affecting the results. We explain.

One does not wander haphazardly into nonlinear estimation. As a rule,
one has need of a considersble knowledge of the situation in order to
construct the model. In the computations, a fairly complete knowledge of
admissible values of A is required in order to be able to find starting
values for nonlinear optimization algorithms. Thus, a statistical theory
which presumes this same knowledge is not limited in its scope of
applications. Most authors apparently take this position, as the assumption
of a compact estimation space is more often encountered than not.

One may be reluctant to impose bounds on scale parameters and parameters

that enter the model linearly. Frequently these are regarded as nuisance
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parameters in an application and one has little feel for what values they
ought to have. Scale parameters are often computed from residuals, so start
values are unnecessary, and, at least for least squares, linear parameters
need no start values either (Golub and Pereya, 1973). Here, then, a compact
parameter space is an annoyance.

These situations can be accommodated without disturbing in the least
the results obtained here as follows. Our results are asymptotic, so if
there is a compact set A’ such that for each realization of {eti there is

an N where n>N implies
supA,sn(X) = supAsn(k)

then the asymptotic properties of Xn are the same whether the estimation

space is A or A’ . TFor examples using this device to accommodate parameters '

entering linearly, see Gallant (1973). See Gallant and Holly (1980) for
application to scale parameters. Other devices, such as the use of an
initial consistent estimator as the start value for an algorithm which is

guaranteed to converge to a local minimum of sn(k), are effective as well.
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PROBLEMS

1. Referring to the discussion following Theorem 2 , show that if

{Xt} and [Et} are independent sequences of random variables, then P (Elx )
elx

does not depend on X, -

2. (Construction of a Pitman drift). Consider the example of the

first few paragraphs of this section where the fitted model is

v, = £lx M) +uy t=1,2, ..., n

but the data actually follows

1"
[
n

-
-
=}

(]
= +
v, = 8lxvy) * e t

where

®

The equality is with respect to uniform convergence. That is, one restriects
*
attention to the set T of y = (YO’ Yys oo ) with

. J J
Lim_  sup l):.'.__ v s X I < @
o0 xe[0,1] 3=0%J

and g(x,y) denotes that continuous function on [0,1] with

. J J
4im_ _sup le(x,y) -55_qpv.x’} = 0.
P e[0,1] 3=07J

Take y as equivalent to y° and write y=v° if g(x,y) = g(x,y°) for all x in
[0,1]. Define
ply,v®) = imy _sup 'Z:jI=O(Y- -Y5 |

xe[0,1] J
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¥* .
Show that (I' ,0) is a metric space on these equivalence classes
(Royden, 1963, Section 7.1l ). If the model is fitted by least squares,
if £(x,\) is continuous over [0,1] XA, and if the estimation space A is

compact we will show later that
2
0 s s ofay oy _
Xn minimizes sn(k) = (l/n)z:=l£g(xt,yn) f(xt,k)] .

Assume that f(x,\) and {xt} are such that s;(x) has a unigue minimum for
n larger than some N. By the Stone-Weirstrass Theorem (Rayden, 1963, Section

9.6 ) we can find a y° in I with
g(x3'Y°) = f(x,x*"’ A/A/E) .

3 *
That is, Lim; _sup lz';=oy3x3- £(x,\ +a/h)| =0 .
Xe[O,l]

Show that it is possible to truncate vy° at some point m such that if
‘Y;= (‘Yo: Yl’ eeny 'Ymns O’ LR )

then
*
%2 - X -aWR [ <1/n
for n> N . Hint: See the proof of Theorem 3. Show that

¥*
Zimn_ﬁp(y;,y ) = 0.

@

=N ° Show that (I'yp) is a compact metric space.

Let T = {v;}

3. {(Construction of a Pitman drift). Let g(x) be once continuously
differentiable on a bounded, open, convex set in Rk containing X . By
rescaling the data,we may assume that X C:X?;IFO,ZHJ without loss of

generality. Then g(x) can be expanded in a multivariate Fourier series.
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Letting r denote a multi-index, a multi-index being a vector with integer

(positive, negative, or zero) components and letting |r| = Zli;llril s @

’
eir X
r

multivariate Fourier series of order R is written ¢ with

|r] <R
o
e’ * = cos(r’x) + i sin(r’x) and i = ,/~1. The restriction Y, =Y_, Where
the overbar denotes complex conjugation will cause the Fourier series to be

real valued. We have (Edmunds and Moscatelli, 1977)

. eir'xl 0.

Lim.  sup. le(x) - £

|r|SR

Construct a Pitman drift using a multivariate Fourier expansion along the

same lines as in Problem 2.
4. Show that if for any €>0 there is a §>0 such that |v-v"]| <5

implies that

h(v° ,a) € < n(v,a) < h(v°,a) + €

for all & in & then SUp_ 6 h(v,a) and infa Y h(v,y) are continuous.

5. Referring to the proof of Theorem 2 , show that

{E'ffY(e,X,v),x,'\',)\]}z < b(e,x) implies that
{I Llf[Y(e,X,'Y),X,T,)\] dP(e)}z < j‘ {L,f[Y(e,X,'Y),x,T,)\J}z dP(e)Sb(x)
€ e

Show that £i (1/n)V_= 2T 8
ow a lmn_m n n-— .

R ~ * ~ ° .
6. Show that if '\'rl converges almost surely to T and "/E(Tn -'rn) is

*
. Py . . o =
bounded in probability then Lim '1'n T
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3. LEAST MEAN DISTANCE ESTIMATORS

Recall that a least mean distance estimator in is defined as the

solution of the optimization problem
s s n -
Minimize: s (\) = (1/n)%_; (¥ %7 s0)

~
where Tn is a random variable which corresponds conceptually to estimators
~d
of nuisance parameters. A constrained least mean distance estimator Xn is

the solution of the optimization procblem

Minimize: sn(x) subject to h(\) = 0

where h()\) maps R® into R%.

The objective of this section is to find the almost sure limit and the

asymptotic distribution of the unconstrained estimator in under regularity
conditions that do not rule out specification error. Some ancillary facts
regarding the asymptotic distribution of the constrained estimator ?% under
a Pitman drift are also derived for use in later sections on hypothesis
testing. In order to permit this Pitman drift, and to allow generality that
may be useful in other contexts, the parameter y; of the data generating
model is permitted to depend on the sample size n throughout. A more con-
ventional asymptotic theory regarding the unconstrained estimator in is
obtained by applying these results with Y; held fixed at a point y* for all
n. These results are due to Souza (1979) in the main with some refinements
made here to center in about a point X; so as to isolate results regarding
A from the Pitman drift assumption.

An example, a correctly specified iteratively rescaled M-estimator, is

carried throughout the discussion to illustrate how the regularity conditions .

may be satisfied in correctly specified situatioms.
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EXAMPIE 1. (Iteratively rescaled M-estimator) The data generating

model is

yt=f(xt,y;)+e t=1,2, ..., n .

t

An estimate of scale is obtained by first minimizing

(1/n) f_; oly, - £(x,,8)]
with respect to § to obtain 6n where

po(u) = 4n cosh(u/2)
and then solving

(1/n) 22 ¥{ly, - £(x,,h )1/} - [ ¥3(e) az(e)
with respect to T to obtain ?n where

¥(u) = (4/au)p(u) = % tanh (u/2)

and & is the standard normal distribution function. The parameters of the

model are estimated by minimizing
sn(x) = (l/n)z.rtl.__l p{[Yt - f(xt :)\-) ]/*n} )

whence

s(y,x,-r,).) = D{[y'f(x,)\)]/"'} .

The error distribution P(e) is symmetric, puts positive probability on

every open interval of the real line and has finite first and second moments.

See Huber (1964) for the motivation. []
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The first question one must address is: What is i‘n to be regarded as .

estimating in a finite sample. Ordinarily, in an asymptotic estimation

theory, the parameter y° of the data generating model is held fixed and

in would be regarded as estimating the almost sure limit 2\¥ of in in each

finite sample. But we have both misspecification and a parameter y; that

is subject to drift and either of these situations is enough to make that

answer to the question unsatisfactory. If we: regarded in as centered about

its almost sure limit k* (Theorem 3), we would find it necessary to impose

a Pitman drift, accelerate the rate of convergence of Cesaro sums generated

"~ *
from {x or impose other regularity conditions to show that VE(Xn-k )

}Q
tit=1"
is asymptotically normally distributed. Such conditions are unnatural in
an estimation setting. A more satisfactory answer to the question is

cbtained if one regards in as estimating x; that is the solution to

Minimize: s;(K) = (l/n)22=l fes[Y(e,xt,y;),xt,T;,x] ar(e) ;

7 is defined later (Assumption 4). With this choice, one can show that
./E(in-x;) is asymptotically normally distributed without unusual regularity
conditions. Moreover, in analytically tractable situations such as a linear
model fitted by least squares to date that actually follow a nonlinear model,
it turns out that X; ig indeed the mean of Xn in finite samples.

We call the reader's attention to scme heavily used notation and then state

the identification condition:




NOTATION 1.
s () = (1/n)g,_ ;8 (¥, 5%, 7, 5M)
so(A) = (l/n)zfcl:lj'ESEY(e,xt,v;),xt,«r;,)\] dP(e)
sT(\) = fxfas[Y(e:X:Y*),x,T*,X] ap(e) au(x)
A, minimizes s (})
%, minimizes s (A) subject to h(X) = O

° e e s o
> minimizes Sn()‘)

*
kn minimizes s;()\) subject to h(\)=0
*

*
A minimizes s (\)

3-3-k
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ASSUMPTION 4. (Identification) The parameter y° is indexed by n and
the sequence {y;} converges to a point y*. The sequence of nuisance parameter
estimators is centered at a point T; in the sense that vﬁ(;n-wg) is bounded
in probability; the sequence {T;} converges to a point T% and {?n} converges
almost surely to 'r* . S*Q) has a unique minimum over the estimation space

* *
A at ) .
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The critical condition imposed by Assumption 4 is that s*(k) must
have a unique minimum over Af . In a correctly specified situation, the
usual approach to verification is to commence with an obviously minimal
identification condition. Then known results for the simple location
problem that motivated the choice of distance function s(y,x,T,\) are
exploited to verify a unique association of X* to y* over A% . We illus-

trate with the example:
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EXAMPIE 1. (Continued) We are trapped in a bit of a circularity
in that we need the results of this section and the next in order to
compute the center 'r‘r’l of the nuisance parameter estimator '?'n and to show
that ,/E(?'n - 'r‘r’l) is bounded in probability. So we must defer verifi-
cation until the end of Section 4. At that time we shall find that
1‘?1, + >0 which fact we shall use now.

To verify that s*()\) has a unique minimum one first notes that it will
be impossible to determine X by observing {yt,xt} if £(x,\) = £(x,y) for
A # y at each x in X that is given weight by the measuvre w . Then a minimal

identification condition is

A Ey = oplx: £(x,0) £ f(x,y)} >0 .

This is a condition both on the function f(x,)\) and the infinite sequence

[ -]
gl -
Now for >0

0(5) = fep[(e+ 5)/7] ap(e)

is known (Problem 9) to have a unique minimum at § =0 when P(e) is symmetric
about zero, has finite first moment, and assigns positive probability to

every nonempty, open interval. Let
8(x) = £(x,y) - £(x,2) .
If \ # vy then ¢f8(x)] = @(0) for every x . Again, if \ # y the identifica-

tion condition implies that ¢[8(x)] > ©(0) on some set A of positive u

measure. Consequently, if A # y
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sﬁmnm=jxiﬂm]@@)>&¢mdum=¢m).

*, % * * *
Now s (M) = s (y »7 »\) so that s (A) > @(0) if X % y and s (\)=(0) if A=y
which shows that s’ ()\) has a unigue minimum at 7\='Y*

A similar argument can be used to compute )‘?1' It runs as follows. Let
2 (y,™5A) = (1/n)g dl8(x.)] = (1/n)zh . @(0) = ¢(0) .
n''’"’ t=1 t t=1
" Since s;()\) = SZ(Y;’T;’)‘)’ s;(k) has a minimum at )\ = y; . It is not

necessary to the theory which follows that k; be unique. Existence is all

that is required. Similarly for 75 . [
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We shall adjoin some technical conditions. To comment, note that the
almost sure convergence imposed in Assumption 4 implies that there is a
sequence which takes its values in a neighborhood of 1'* and is tail
equivalent (Lemma 2) to ;n . Consequently, without loss of generality, it
may be assumed that ?n takes its values in a compact ball T for which r*
is an interior point. Thus, the effective conditions of the next assumption
are domination of the objective function and a compact estimation space A*.
As noted in the previous section, a compac‘.c estimation space 1s not a

serious restriction in applications.
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ASSUMPTION 5. The estimation space A is compact; {;n} and {T;} are
contained in T which is a closed ball centered at T° with finite, nonzero
radius. The distance function s(ysx,T,)\) is continuous on Y XX XT XA* and
|s(¥,2,750) | < blaly,x,v),x] on Y XX XT XA* xT' ; ble,x) is that of

Assumption 3.
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The exhibition of the requisite dominating function b(e,x) is an ad hoc
process and one exploits the special characteristics of an application.

We illustrate with Example 1:
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EXAMPIE 1. (Continued) Now p(u) < (1/2)|u] (Problem 9) so that

pile + £(xyy) - £(x,M) ]/}

ls(y,x,m,0) |
< e + £(x,y) - £(x,)\)|/7

<[lel| + sup|e(x,y)| + supM£(x,2)|]/min T .

Suppose that ' = A* and that sup, |f(x,y)| is p~integrable. Then

b,(e,x) =[| e | + 2 supp|£(x,y)|)/min T

will serve to dominate s(y,x,T,\) . If X is compact then bl(e,x) is
integrable for any w . To see this observe that f(x,y) must be continuous
over I X T to satisfy Assumption 2. A continuous function over a compact
set is bounded so sup, f(x,y) is a bounded, measurable function.

Later (Assumption 6 ) we shall need to dominate

H(B/B)\)s(y,x,'r,)\)n

l¥{Ce + £(x,y) - £(x,2)1/73(3/a0)£(x,2) /7|

< sup[|(3/a)) £(x,\)ll/min T
since |¥(u)] = |(1/2) tanh (u/2)| < (1/2) . Thus
b2(e,x) = sup, 1(d/an) £(x,\)||/min T

serves as a dominating function.
One continues the construction of suitable bl(e,x), bz(e,x), ... to
dominate each of the functions listed in Assumptions 4 and 6 . Then the

overall dominating function of Assumption 3 is

b(e,x) = Zibi(x,e) .
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This construction will satisfy the formal logical requirements of the theory.
In many applications X can be taken as compact and P(e) to possess enough
moments so that the domination requirements of the general theory obtain

trivially. [J
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-~ *
We can now prove that kn is a strongly consistent estimator of A ;

first a lemma, then the proof:
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LEMMA 1. Let Assumptions 1 through 5 hold. Then sn(x) converges almost

* * *
surely to s (\) uniformly on A and s;(k) converges to s (\) uniformly on
*

A

PROOF. We shall prove the result for sn(x). The argument for s;(k)

is much the same (Problem 1). Now
Sup «|s (x)-s*(k)|
L
< supA*| (l/n)):rt::ls[Y(e‘b,xt ,y;) ,xt,:-n,)\]
- J [ sl¥(e,xy) %, 501 aP(e) dn(x)]
1e

+ supA*lj'IfeSEY(e,x,v;),x,?-n,x] dP(e) au(x)

- Ixfes[Y(e,x,y*),X,T*,X] dP(e) du(x)|

IA

supr xT XA*l (l/n)z::l S[Y(et’xt"() sxt"r,X]

- ‘[‘Jl SEY(e:x:Y):x:T:k] aP(e) dp.(X)!
xe

+ supA*\fIfelSEY(e,x,v;),x,rn,k]

- s[¥(e,xy )sxs7 »A1]aP(e) du(x)
= supr xTxA*fn(y,T,x) + supA*g(v;,?rn,x) .
Since ' X T % A* is compact, and s(y,x,r,\) is continuous on % XX X T X A*
with |s(y,x,7,A)| < pla(y,x,y),x] for all (y,x) in U x X and all (y,r,\) in
rxTx A* we have, by Theorem 1, that sup *fn(y,T,X) converges almost
surely to zero. Given any seguence {(Yn,'rnlz):%:})::ﬁat converges to, say,

(v ,7°,2°) we have, by the Dominated Convergence Theorem with 2b(e,x) being

the dominating function, that ‘e’imnamg(vn’Tn’)‘n) = g(y°,1°,%°). This shows
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that g(y,r,A\) is continuous in (y,T,A). Moreover, sup ,g(y,T,A) is

continuous in (Y,T) ; see the proof of Theorem 1 for details. Then, since

A * a
(y;,rn) converges almost surely to (y ;v ), sup *g(Y;,Tn,x) converges almost

surely to zero. [
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THEOREM 3. (Strong consistency) Let Assumptions 1 through 5 hold.
Then in converges almost surely to X* and K; converges to X*.

PROOF. 1If a realization {et} of the errors is held fixed then {&n}
becomes a fixed, vector-valued sequence and {sn(k)} becomes a fixed
sequence of functions. We shall hold fixed a realization {et} with the
attribute that sn(k) converges uniformly to s*(k) on A" ; almost every
realization is such by Lemma 1. If we can show that the corresponding
sequence {in} converges to A then we have the first result. This is the
plan.

* R
Now Xn lies in the compact set A" . Thus the sequence {A } has at

n

least one limit point A and one subsequence {ih 1 with Limmqmi =% . Now,
m m

by uniform convergence (see Prcblem 2),

s () = aim s ()
m m
. *
< gim s )
m
= 5 (3%)

' *
where the inequality is due to the fact that sn(kh) < sn(x ) for every n as
&n is a minimizing value. The assumption of a unique minimum, Assumption 4,
A A *
implies & = A*. Then {% } has only the one limit point X" .

*
An analogous argument implies that X; converges to A (Problem 3). [
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The following notation defines the parameters of the asymptotic

distribution of- )‘n .
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o

NOTATION 2.

(1) =II{Ie(a/ax)s[Y(e,x,y*) %7 ,A] dP(e)) {Ie(B/BX)S[Y<e,X,Y*),X,T*,XJdP(e)]' au(s

j()\) = II'Y {(B/BX)SEY(e,X,Y*),X,T*,)\]}{(B/BX)S[Y(e,X,y*),X,"I‘*,)\]}' dP(e) dl-"(x) 'ﬁ(x
e

3 = [ [ (%0 )sl¥(e,xy ) ,x,7%,0] dB(e) du(x)
p A

*

S =305, & =205, W =u0h

(il
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If this were maximum likelihood estimation with s(y,x,T,\)=-4np(y|x,\),
then J* would be the information matrix and g* the expectation of the
Hessian of the log likelihood. Under correct specification one would have
u¥=0 and g¥=g" (section 7).

We illustrate the computations with the example.
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EXAMPLE 1. (Continued) The first and second derivatives of

s(y,x,T,\) are:

1}

(3/3\)s(y,x,7,0) = (3/a\)p {[y - £(x,0)1/7}

@/7)¥{ly - £(x,0)1/7}(3/a)) £(x,)\)
(az/axax)s(y,x,f,x) = (3/a\)(-1/7)¥{[y - £(x,)\)1/7}(3/3N")£(x,)\)

= (1/7)0' (L - £(x,0) /7Y (3/a0) £(x, 1) T (3/a0)2(x,0) 1
- (1/)¥(Ly - £(x,0)1/r} (% /200 ) £(x,0) .
Evaluating the first derivative at y = f(x,y) + e, T = 'r*, and A = y we have

[ a/an)sl¥(e,xy) 5,7 527 ap(e)|
e vy=2A

('l/**)fev(e/T*) ap(e) (3/3n) £(x,\)

(-1/77)(0)(3/3%) £(x,)\)

=0

because ¥(e/T) is an odd function, that is ¥(u) = ¥(-u), and an odd function
integrates to zero against a symmetric error distribution. Thus, ]f =0. In

fact, u* is always zero in a correctly specified situation when using a

sensible estimation procedure. To continue, writing 6Y2(e/1'*) for erz(e/T*) dP(e)

and 6‘?'(e/'r*) for.f (d/du)‘i’(u)l dP(e), we have
e u=e/t

Je{(a/a)\)S[Y(e s XY ) ,X,T*,)‘,]}{ (B/BX)S[Y(e :X’Y) ’X,T*:)\]} ldP(e) ‘ \
y=

= (/772 ev?(e/r L (/o) £(x, M) T (3/oN) £(x,0) Y/
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and

[ @P/aan sl ¥(e,x,y) A ar(e)|

e Y

= (1/7)2 ¥’ (e/r ) (3/aN) £(x, M) (3/2N) £(x,0)1”

Thus,

I = (1/7%)%e ¥ (e/7)] L(3/3M) £(x,N))IL(3/aN)e(x,07) 1" dulx)

X

and

F = (/7% (e/7")] [ (3/aM)2(x,N) T (3/5M)2(x,N") au(x) . [
X
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In Section 5, the distributions of test statistics are characterized

in terms of the following quantities:
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NOTATION 3.
G (\) = (1/n)E_; {fg(a/BX)S[Y(e,Xt,y;),Xt,T;,X] ap(e)}

X {fe(a/ax)s[Y(e,xt,v;) sX, 575 ,0] dP(e)}’
:gn()\.) = (l/n)th:lJ'g{ (a/aX)S[Y(e,Xt :‘Y;) :xts"';’kj}

X {(3/20)5L¥ (e, y2) %, o7%, AT} AB(e) - T_ (1)
;n()\-) = (l/n)zllfe(az/a)\ax' )S[Y(e,xt 3Y;) ,xt:'r;’)\] dP(e)

£=3,02) 5% =702, =5 ()
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We illustrate their computation with Example 1:
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EXAMPIE 1. (Continued) Let
(1) = ] ¥le+ £lxyg) - 2N/ a(e)
62(A) = yeva{[e+f<x,y;> - £(x,0)1/7%) aB(e) - w20
at(x)=,ﬁgv'{[e+-f(x,y;) - £(x,0)1/7) aB(e) .

2 — a0 [=] - 2 o] - 2 (o]
Note that if one evaluates at A=)} then “‘t()‘n) = 0, o't()\n) =&y (e/'rn) ,
and Bt(k;) =8 Y'(e/‘r‘r’l) which eliminates the variation with t, but, if one
*
evaluates at A= )&1 then the variation with t remains. We have by direct

computation that
B = (1/2)2(1/n) Bf_ 10200 [(/aM) (e, M I (/M) £(x, M)
300 = (1/22)2(2/n) 51050 [ (/3020 M) L (3/3M)£(x M)’
FO) = (1/72)%(1/n) 2, 8, (VL R/M£(x, M) R/ANE(x, M)’

- (1/72)(1/n) 2w, () RZ/ann)e(x M) O
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Some plausible estimators of & and g* -=- or of (J‘I’l, ,9;) and

* ¥
(Jn, gn) respectively depending on one's point of view --- are as follows:
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NOTATION L.
3.(\) = (1/n)si_i[ (3/oN)s(yy -5, 7 M I (3/0M)s(yy 5%, 5w s0) )/
g, () = (1/n)z] (3%/aNN" )s (v, 5%, 57 5M)

3=9,0, 8=9,8, 3= 3,(X), ¥ = 3,0
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We illustrate the computations and point out some alternatives using

Example 1.
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EXAMPIE 1. (Continued) Let
¥, = vily, -£(x 8 )I/7)

¥ = vy, - (xR )1/A,)
then

(/7 )2 /n)E 7 (/a0 £(x, B ) T (/M) 2(x, 3 ) 1

(2
1]

(/3 )2 (1/n)l B (3/a0)£(x, .3 ) T (3/0M)2(x, A )Y/

A
=]
]

- (/F ) (a/m)sl 8 (% /N )e(x, R )

Alternatives that are similar to the forms used in least squares are

6

2y (/)T LR/ e(x, A T (3/aM)E(x, ,5 )1
.= (B /7 )(1/n)g‘;_lc(a/ax)f( AR (xR )T

with



3-3-31

Some additional, technical restrictions needed to prove asymptotic

normality are:
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*
ASSUMPTION 6. The parameter space A contains a closed ball A centered

* .
at A with finite, nonzero radius such that the elements of

(a/ak)S(Y,X,-r,)\), (32/BXBX’)S(Y:X:T:X):(az/a“'ax,)s(y’xff:)\): and

[(3/3N)s(y,x,7,\1[3/3\)s(y,x,r,)\) )/ are continucus and dominated by

*
bla(y,x,y)sx] on Y XL XT XT X A. Moreover, ¢ is nonsingular and

fxfe(az/aﬂ'ak’)SEY(e,x,Y*),x,T*,X*] aP(e) au(x) = 0.
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The integral condition is sometimes encountered in the theory of
maximum likelihood estimation; see Durbin (1970) for a detailed discussion.
It validates the application of maximum likelihood theory to a subset of
the parameters when the remainder are treated as if known in the derivations
but are subsequently estimated. The assumption plays the same role here.

It can be avoided in maximum likelihood estimation at a cost of additional
complexity in the results; see Gallant and Holly (1980) for.details. It
can be avoided here as well but there is no reason to further complicate
the results in view of the intended applications. In an application where
the condition is not satisfied, the simplest solution is to estimate A and

T jointly and not use a two-step estimator. We illustrate with the example:




3-3-34
EXAMPIE 1. (Continued)

(%/aran Vel ¥(e,xy ™) A )| = (/7P ¥(e/n) 4 ¥ (/) (e/T) IR/ 2 (x 0"
* ¥
Y =A

Both ¥(e/v) and ¥/(e/7)(e/r) are odd functions and will integrate to zero for

symmetric P(e) . [
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The derivatives of the distance function plays the same role here as
does the derivative of the log density function or score in maximum likeli-
hood estimation. Hence,we use the same terminology here. As with the scores
in maximum likelihood estimation, their normalized sum is asymptotically

normally distributed:
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THEOREM 4. (Asymptotic normality of the scores) Under Assumptions

1 through €

@/ s, (%)% 1(0,87)

*
d may be singular.

PROOF. By Theorem 2

(/) {(3/aM)s(y, %, 5T 522) -je(a/ax)sEY(e,xt,y;);ct,mg,x;] ap(e)}E(0,47)

Domination permits the interchange of differentiation and integration

(Problem 11) and X; is defined as a minimizing value whence

iZ:l‘l‘a(a/ak)S[Y(e sXy 3"{;) ’x't"ril’k;] dP(e)

ﬁ____,l(a/a)»)fes[l’(e ,X.t :'Y;) ’x‘t ’T;’)\;] dP(e)

=0. (]
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We can now show that in is asymptotically normally distributed.

First we prove two lemmas:
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LEMMA 2. (Tail equivalence). Let {X,} be a sequence of vector-valued
random variables that take their values in A*<: RP and that converge almost
surely to a point k* in A* . Let {sn(x)} be a sequence of real valued random
functions defined on A*. Let g()\) be a vector-valued function defined on A*.
Let A° be an open subset of Rp with x%c AN < A* . Then there is a sequence

{in} of random variables that take their values in A°, that satisfy
g\ )=g(X ) + o (n™¥)
for every o » 0, and such that:
i) If (a/ax)sn(x) is continuous on A° and A, minimizes sn(x) over A*
then
(3/3\)s (X)) = o_(n™)
for every o > O.
ii) If (a/ax)sn(x) and (3/3A’)h(\) are continuous on A%, if (3/3A\’)n(A)
- has full rank at X==k*, and if Xn minimizes sn(k) over A*subject to h{)\)=0,
then there is a vector an of (random) Lagrange multipliers such that

-ay

(3/an" s, (K) + a,a(k )]

os(n

os(n-a)

h(X,)
for every o > O.

PROOF. The idea of the proof is that eventually A is in A°and has,
itself, the desired properties due to the almost sure convergence of xn to X*.
Stating that the residual random variables are of almost sure order os(n-a)
is just one way of expressing the fact that the requisite large n depends

on the realization {et} that obtains; that is, the convergence is not uniform

in {et}.
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We shall prove ii. By Problem 5 (3/3\’)n()\) has full rank on some

*
open set & with A ¢ 6 < A°. Define
*
TSNS 3 N {6

)\nif)\nQG

*
Fix a realization {et} for which zimn_”)\n= A\ ; almost every realization is

n

such. There is an N such that n > N implies )‘n e & for all n> N. Since

6 is open and )"n is the constrained optimum we have that an exists and that

(3/33" s, (M) + B/a(X )] = ©
h(xn) =0
(Bartle, 1964, Sec. 21). Then,trivially,
gim  n%e(X) -e(\ )l =0
gim o*(3/an s (X)) + A/n(X )1l = o,

gim  n¥n(X ) =0.
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IEMMA 3. Under Assumptions 1 through 6, interchange of differentiation

and integration is permitted in these instances:
* * *
(3/an)s"(\) = [ [ (3/aN)sl¥(e,x,y )ox,r7,A] aP(e) au(x),
1 e

(3%/a300")s" (3) = fxfe(aa/axax'>sty(e,x,y*),x,T*,xJ ar(e) au(x),

(3/an) s3(A) = (l/n)z‘;lfe@/ax)su(e,xt,vp,xtn;,u ap(e),

(3%/230)s2(A) = (l/n)zilj”e(ae/axax)sw(e,xt,yg),xt,f;,x] dP(e) .
Moreover:

tim__(3/30)s3(A) = (3/3M)s (A) wniformly on A,

zimn_m(aa/axax’)s;(k) = (3%/a3A")s"(A) unifomly on A,

gin__(3/3\)s_(A) = (3/2M)s"(A) almost surely, wniformly on A,

pin__(2/onn ) (1) = (22/230")s*(2) almost surely, wniformly on A .

*
PROOF. (Interchange) We shall prove the result for (3/3A)s (\), the
argument for the other three cases being much the same. Let A in A and {hm'} be
. \ _ . - ; .th
any sequence with zlmn_m%- 0 and )\ htngi in A where gi is the i— elementary

vector. By the Mean Value Theoren,
{S[Y(e,X,‘y*),X,T*,X] - SEY(e,X,y*),X,T*,)\-hmgi]}/hm
= (a/axi)SEY(e,x,v*),x,'r*,x- By (e,x)g, ]

where |Em(e,x)l <h . (One can show that Bm(e,x) is measurable but it is not
necessary for the validity of the proof as the composite function on the right

hand side is measurable by virtue of being equal to the left.) Thus
* *
[s(A) - s (A-ne,))/n

= .rxj‘e(a/a)\i)S[Y(e:X"\(*):X,T*,X -Em(e’x)gi] dP(e) du,(x) .
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By the Dominated Convergence Theorem, with b(e,x) being the dominating

function, and continuity

(3/ah;)s" (M)

Limmfs*()\) - s*(hhmgi)]/hm

Ixfazimmam(a/axi)sEY(e’X’Y*)’X’T*’X 'ﬁm(e’x)gi]dP(e) du(x)

= Ixje(a/axi)s[Y(e:x,Y*),X,T*,X]dP(e) dp(x) .

(Uniform convergence) The argument is the same as that used in the

proof of Lemma 1. [J
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THEOREM 5. (Asymptotic normality) Let Assumptions 1 through 6 hold.

2 £ *y 1l %, % =1
Jak, - 23)= N0, (3 )T ()T,
" * %*
J converges almost surely to 4 + U
o *
cﬂn converges to & ,
9 converges almost surely to g* s

*
7, converges to g .

PROOF. By Lemma 2, we may assume without loss of generality that

R, 28 ¢ A and that (3/aM)s (R ) =0 (n%), (3/o\)2(X) = o(n™2), see

Problem 6.

By Taylor's theorem
Jad/aM)s (R) = Ja(a/aM)s (R ) + F/a0S -K)
where J has rows
(3/an")(3/ax )s (R, )

S . . o 2 o kY
and kin lies on the line segment Joining Xn to xn . Now both Xn and xn

Then:

* -
converge almost surely to A by Theorem 3 so that xin converges almost surely

to k*. Also, (a/aX')(a/axi)sn(x) converges almost surely to (a/ax')(a/axi)s*(x)

uniformly on A by Lemma 3. Taking these two facts together (Problem 2), 5

*
converges slmost surely to (az/aan')s(x ). By interchanging integration and

. . s . * 2 PRV
differentiation as permitted by Lemma 3, ¢ = (3°/30d3\’)s (X ). Thus we may
~ L
write 5::3*4-03(1) anj as (B/BX)sn(kn) = os(n 2), we may write
* oy _ _ o
[g +o (L)WA(K, -%) = -/a(3/aM)s () + 0 (1) .
The first result fcllows at once from Slutsky's theorem (Serfling, 1980,

Sec. 1.5.4 or Rao, 1973, Sec. 2c.k).
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By Theorem 1, with Assumption 6 providing the dominating function, and
o ~ * % ¥,
the almost sure convergence of (yn,rrn,)\n) to (y >t >\ ) it follows that
~ ~ * * *
. - + . simi
zlmn—aw[‘gn()‘n)’ gn(xn)] (8 +u ,9 ) almost surely (Problem 7). Similar
arguments apply to J_‘;l s and.“g; |
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As illustrated by Example 1, the usual consequence of a correctly
specified model and a sensible estimation procedure is:

o * s s o *
Y, = v for all n implies A, = A for alln .

If k; = )" for all n then we have
RE, -\ a0, (67 5™

But, in general, even if Y(I)I = y* for all n it is not true that
VB -0 s, (55T 8t

for some finite A . To reach the conclusion that JE(Xn-X*) is asymptotically
normally distributed, one must append additional regularity conditions.
There are three options.
The first is to impose a Pitman drift. Estimation methods of the
usual sort are designed with some class of models in mind. The idea is
to imbed this intended class in a larger class Y(e,x,y) éo that any member
of the intended class is given by Y(e,x,y*) for some choice of y* . For

this choice one has
o * . . o *
Y, = vy for all n implies Xn = A foralln .

# such that Y(e,x,y#) is

#

A misspecified model would correspond to some vy
outside the intended class of models. Starting with yi = y" one chooses a
sequence y;, y%, ... that converges to y* fast enough that

Lim JG(X;-X*) = A for some finite A ; the most natural choice would
seem to be A = 0. See Problem 14 for the details of this construction.
Since vy can ve infinite dimensional, one has considerable lattitude in the
#

choice of Y(e,x,y
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*
The second is to hold y; =y and speed up the rate of convergence

of Cesaro sums. If the sequence {x is chosen such that

-}
th=1

sin_ 8 [(3/3M)s2(N) - (3/2A)s (\)] = K(A) uniformly on A
where K()\) is some finite valued function then (Problem 15)
gim_ JB (0 -N) = A
N n -

for some finite A . For example, if the sequence {x consists of

x
t}t=l

replicates of T points --- that is, one puts x for some set

t = % mod T

of points ags 835 cers @ ---then for i=1, 2, ..., P

T-1

sup , /A |(3/32,)s2(0) - (3/3h,)s” (W)
A

< (Ja/n)supA* Iy g J‘s<a/axi>scx<e,aj,y*>,aj,rg,u ap(e) |

whence K(A) = 0.

1]

*
The third is to hold yy =y for all n and assume that the x_ are

t
random variables. This has the effect of imposing k; = X* for all n. See
Section 7 for details.

Next we establish some ancillary facts regarding the constrained
estimator for use in Section 5 under the assumption of a Pitman drift.

Due to the Pitman drift, these results are not to be taken as an adequate

theory of constrained estimation. See Section 8 for that.
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ASSUMPTION 7. (Pitman drift) The sequence {y;} is chosen such that

) o * *y
len__)mA/r_l'(}\n - )\n) = A. Moreover, h()\ ) = 0.
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THEOREM 6. Let Assumptions 1 through 7 hold. Then:

~ *
\_ converges almost surely to A ,

* *
A_ converges to A ,

* _*

Y converges almost surely to d +Uu ,
*

J_ converges to J ,

~ *

J converges almost surely to ¢ ,

g converges to ?* .
Ja/aN)s (0 - Ja(d/aM)s2 (0) Zom(0,7)

VE(B/BK)S%(XZ) converges to -Q*A .

~ *
PROOF. The proof that Xn converges almost surely to A is nearly word
for word the same as the proof of Theorem 3. The critical inequality
" &, ) < 4 ()
1mmﬁmsnm n_ < Aim s_ (N

mxe n
m

*
obtains by realizing that both h(xn } = 0 and h(XA ) = O under the Pitman
m
drift assumption.
* *
The convergence properties of 3 s Jn ,'i s gn follow directly from

~ *
the convergence of kn and xn using the argument of the proof of Theorem 5.
Since domination implies that (Problem 1l1)

(a/ak)s;(XZ) =(l/n)zf;lj‘e(a/a)\)s[Y(e,xt,y‘r’l) ,xt,'\‘;,)\:] dP(e) .
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We have from Theorem 2 that

J@R/3)s () - JB(3/aM)s% (A )-am(0,57) .

* *
Note that convergence of {)\n} to A is all that is needed here; the rate

*
Limwﬁ(k; - )‘n) is not required up to this point in the proof.

1
‘By Taylor's theorem, recalling that (B/a)\)s;()\;) = o(n"23) ,
* -
J@/aNS () = o(1) + 7 EOS -22)

z - *

where 7 is similar to 7 in the proof of Theorem 5 and converges to § for
*

similar reasons. Since Jﬁ(kn - )\‘r’l) converges to -A by Assumption 7, the

last result follows. []
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PROBLEMS

) s * *
1. Prove that Sn()‘) converges uniformly to s (\) on A .

2. Hold an {et} fixed for which zimwsupA*Hgn(k) _ g*()\)” = 0 and

Lim_ X\ =}\* . Show that gim g (%) = g*()\*) if g*¥(\) is continuous.
nxo’n n-e®n 'n

¥*
3. Prove that )\;’1 converges to A .

L, Prove Part i of Lemma 2.
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5. Let (3/3)\')h()\) be a matrix of order q X p with g < p such that each
element of (3/dA’)h()\) is continuous on an open set A° containing },*. Let
(3/30")n()\) have rank g at )\=)\*. Prove that there is an open set containing
7»* such that rank [ (3/3)\’)h(N\)])=q for every \e¢® . Hint. There is a matrix

K’ of order (p-q) X p and of rank p-q such that

(3/3\")n())
A(\) =

KI

*
has rank A(A ) = p, why? Also, det A(\) is continuous and &= {\:ldet A(A)]| >0}

is the requisite set, why?
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o

6. Verify the claim of the first line of the proof of Theorem 5. The
essence of the argument is that one could prove Theorem 5 for a set of random
variables Xn’ in’ and so on given by Lemma 2 and then ﬁ ')ln=,\/r_1 in + os(l) s
A/E(a/a)\)sn(x‘;l) = Jﬁ(a/ax)sn(in) + o (1), and so on. Make this argument

rigorous.
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7. Use Theorem 1 to prove that [Jn(}\), gn(x)] converges almost surely,
uniformly on A and compute the uniform limit. Why does (y;,frn,in) converge
% * ¥* ~ "
almost surely to (y ,t ,\ )? Show that [Jn(kn), gn(xn)] converges almost surely

to (J* ,9*) .
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8. Show that Assumption 6 suffices to dominate the elements of

je(a/ax)s[Y(e,x,y),x,f,x] aP(e) [ (3/an")s[¥(e,x,y),x,7,0] dP(e)
€

*
by b(x). Then apply Theorem 1 to show that u;lconverges tou .
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9. Show that if p(u) = gn cosh (u/2) and P(e) is symmetric, has finite
first moment, and assigns positive probability to every nonempty, open
interval then o(8) = I o(e+8) dP(e) exists and has a unique minimum at
§=0. Hint, rewrite p(i) in terms of exponentials and show that p(u)<z|ul .
Use the Mean Value Theorem and the Dominated Convergence Theorem to show
that ©’(5) = jew(e+ &) dP(e). Then show that ¢’(0) = 0, ©’(§) <0 if §< O ,

and 9’ (6) > 0if 6> 0 .
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10. Suppose that &‘n is computed by minimizing
s (\) = (/n)mp_ 100y, - £(x ) 1/7 )
n P L A
*
where ¢ > O is known but that the data are actually generated according to
= °) +
vy = alxvp) + e o

Assuming that s‘;(k) has a unique minimum )\‘; which converges to some point

* o
A , compute u;,_.ﬁ;, and 7 .
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11. Prove that under Assumptions 1 through 6,

Jl (B/BX)S[Y(e,X,y),X,T,)\] dP(e)
e
= (a/a)\-)j S[Y(e,x:‘Y):X:T’)\] dp(e) .
€

Hint. See the proof of Lemma 3.
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*
12. Suppose that G, is a matrix with (a/ax’)h(xn)c}n = 0 and

Lim G =G. Show that under Assumptions 1 through 6

* *
n(kn)-—s—»N(O,G'J G);

J/n GI’l(B/B)\)s

Assumption 7 is not needed. Hint: There are Lagrange multipliers Bn

such that (3/3\')[ sn(x:) + er'lh(x:)] =0.
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13. Suppose that there is a function m(k) such that

h(X\)
o))

a
i}

©
it

is a once continuously differentiable mapping with a once continuously

differentigble inverse

A= ¥(Tp) .
Put
glp) = ¥(0,p) ,
p; = v(X:) )
B = (3/A)n(X)) ,
6, = (a/2") &loy) -

Show that Gn is the matrix required in Problem 12. Show also that

GI
rank Hn =P .
n
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14. (Construction of a Pitman drift) Fill in the missing steps and

supply the necessary regularity conditions. Let

k;(y) minimize s;(y,k) = (l/n)Zil:l‘res[Y(e,xt,y),xt,'r;,)\] dpP(e) ,

and let

A (y) minimize s (y,\) [ sLY(e k) s%,7 5A] dP(e) du(x) -
Xe

Suppose that there is a point y* in ' such that
* .
Y; =y all n implies X;(y*) = k*('v*) all n.

¥*
Suppose also that I' is a linear space and that (3/3a) Y(e,x,y +ay#) exists
#

for 0< o<1l and for some point v" in I' . Note that I' can be an infinite
dimensional space; a directional derivative of this sort on a normed, linear
space is called a Gateauderivative (Luenberger, 1969, Sec. 7.2 or Wouk, 1979,

Sec. 12.1). Let

y (@) =y*+ orv# s

#

A (e) = X;[Y**‘ ay" )

and

#

N (a) = )\*[v**‘av 1.

Under appropriate regularity conditions, (B/ao())\;(a) exists and can be

computed from

0= (l/n)z::l“ra(az/akay,)s{Y[ eaxt Y (01) j’xt ,T;,K;(d)}(a/ad)Y[e,Xt "Y(Q’)-J dP(e)

+ (/330 )sy(@)s M) (3/2e)M(a)
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Again under appropriate regularity conditions,

sim_supg [l RReNg (@) - (3/2)N (@) = 0.

Then by Taylor's theorem, for i =1, 2, ..., p,
o o _ o (=
Ja (A () - 23 ,(0)] = Vb o (3/3a) 2, (a;)
' 1° i =
where 0 < @, Sao. Let {an’n:l be any sequence such that.zlmnqﬁJﬁan )

with & finite. Since x;(O) = 2*(0) for all n and (B/aa)k;(a) converges

uniformly to (a/aa)x*(a) we have
tin__Ja [3(e) - N(0)] = 6(3/2a)%"(0)
eV LA Loy o :
, . o _ ¥ #
If the parameters of the data generating model are set to Yp =Y 4-any » then
gim_ 2 (38 -2) = A
e N x'n

for some finite A as required. Note that oy, can be chosen so that A= 0.

Suppose that the parametric constraint h()\) = O can be equivalently
represented as a functional dependency k==g(p) 5 see Problem 13 or
Section 6 for the construction. Wiat is required of g(p) so that

sin, B (o5 -p") = 87 Put ) = glo}) . What is required of glp) so

. ; * O K, ¥ . o ¥y _ * .
that 2im_ ./n (A, -2) =2 9 Note that zlmn_)wJE (X -X)) = 4-4 in this

=30

case.
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15. Use Taylor's theorem twice to write
Ja (/05" (08) - (3/a0)s2(N)1 = [2 &+ o(1)] /& (0 -2) 5

*,, *
recall that (3/3\)s (A ) = (B/Bk)s;(k;) = 0. Referring to the comments
following Theorem 5, verify that speeding up the rate at which Cesaro

sums converge will cause ./ (xn-k*) to be asymptotically normally

distributed.
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L. METHOD OF MOMENTS ESTIMATORS

Recall that a method of moments estimator in is defined as the

solution of the optimization problem

Minimize: sn(k) = d[mn(k),;n]

~

where d[m,T] is a measure of the distance of m from zero, Th is an estimator

. of nuisance parameters, and
mn(k) = (l/n)zi;lp(yt,xt,Tn,k) .

The constrained method of moments estimator'xn is the solution of the opti-

mization problem
Minimize: sn(k) subject to h(A) = 0.

The objective of this section is to find the almost sure limit and
the asymptotic distribution of the unconstrained estimator in under regularity
conditions that do not rule out specification error. Some ancillary facts
regarding the asymptotic distribution of the constrained estimator'xn under
a Pitman drift are also derived for use in the later sections on hypothesis
testing. This section differs from the previous section in detail but the
general pattern is much the same. Accordingly the comments on motivations,
regularity conditions, and results will be abbreviated. These results are
due to Burguete (1980) in the main with some refinements made here to
isolate the Pitman drift assumption. ,

As before, an example ~--- a correctly specified scale invariant

M-estimator --- is carried throughout the discussion to illustrate how the

regularity conditions may be satisfied in applications.
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EXAMPIE 2. (Scale Invariant M-estimator) The data generating model
is
yt=f(xt,y;)+et t=1,2, ..., n.
Proposal 2 of Huber (1964) leads to the moment equations

N

\
| ‘f( :e)] }(a ae)f( ,9) )
mn()\) = (l/n)zrcl:l ( {[Yt X /a}(d/ Xy

! Yz{[yt -fKXt,e)]/U} -P

\

with A = (8',0)’ . TFor specificity let
¥(u) = £ tanh (u/2),

a bounded odd function with bounded even derivative and let

8= ¥2 () ab(e) o
where & is the standard normal distribution function. There is no preliminary

estimator $n with this example so the argument T of m(y,x,T,\) is suppressed

to obtain
Y{[y - f(x,e)]/c}(a/ae)f(xye)

Y2 ([y - £(x,8)1/0) - B

m(y,x’x) =

The distance function is

d(m) = $o'm,

again suppressing the argument T, whence the estimator in is defined as

that value of A which minimizes
- L
s,(\) = zm (3) m (A) .

The error distribution P(e) is symmetric and puts positive probability on

every open interval of the real line. ]
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We call the reader's attention to some heavily used notation and

then state the identification condition.

3



344
NOTATION 5,

m (A) = (1/n)5 my, %, 7))
RN S CENARNESVEO)
m(\) = III€N£Y(G,X,Y*),X,T*,X] aP(e) du(x)
s.(\) = dlm_(A),7 ]

20 = (1),

s (V) = dlm*(A), "]

Xn minimizes sn(k)

ld

A

minimizes sn()\) subject to h(A) = O

o]

X; minimizes s‘r’l(k)
*

A, minimizes s;(k) subject to h(\)=0

X* minimizes s (\)
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ASSUMPTION 8. (Identification) The parameter y° is indexed by n and

the sequence {y;} converges to a point y*. The sequence of nuisance parameter
estimators is centered at a point T;l in the sense that A/E(':\-n - -r;) is bounded
in probability; the sequence {q-;} converges to a point 'r* and {?n} converges
almost surely to 1-*. Either the solution )\* of the equations m*()\) =0 is
unique or there is one solution )\* that can be regarded as being naturally

. *
associated to y* . Further, (B/ak')m*(k ) -has full column rank (=p).



3-U-6

The assumption that m*(k*) = 0 is somewhat implausible in those
misspecified situations where the range of mn(x) is in a higher dimension
than the domain. As sensible estimation procedures will have m*(x*) =0
if Y(e,x,y*) falls into the class of models for which it was designed one
could have both m*(k*) = O and misspecification with a Pitman drift.
Problem 14 of Section 3 spells out the details; see also Problems 2 and
3 of Section 2. But this is not really satisfactory. One would rather
have the freedom to hold y; = y* for all n at some point y* for which
m*(l*) ¥ O. Such a theory is not beyond reach but it is more complicated
than for the case m*(k*) = 0. As we have no need of the case m*(k*) ¥ 0
in the sequel, we shall spare the reader these complications in the text;
the more general result is given in Problem 6.

*
For the example, m (N ) = O :
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*
EXAMPIE 2. (Continued) Let ¢ solve f Yg(e/c)dP(e)==B; a solution
e

exists since G(g) = I Yz(e/c)dP(e) is a continuous, decreasing function
e

*
with G(0) = 1 and G(«) = O. Consider putting A = (y’,0 )’ . With this
choice

J rLY (), ',6 )71 aB(e)

i Ism[“ £(x,y) %, (y"50" )] dB(e)

j‘ew(e/o*) dP(e) (3/28)f(x,y)

) Iewz(e/c*)dP(e)-e

0

0

*, *
As the integral is zero for every x it follows that m (A ) = O at

* ¥, ¥y s 0 (40 _ o _ (ot ¥
A =y ',0)’. Similarly mn(kn) = 0 at kn = (Yn ,a ) . 0
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The following notation defines the parameters of the asymptotic
distribution of in .  The notation is not as formidable as it looks; it

merely consists of bresking a computation down into its component parts.
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NOTATION 6.

i(x) = jxj’emty(e,x,y*),x,-r*,x] dP(e)jem'ty(e,x,y),x,T*,x] dP(e) du(x)
() = jxjemcy(e,x,yf‘),x,ﬁ,um' [¥ (e, )3, A @B(e) du(x) - K(N)
fi(n) = J'Idre(a/a)\’)m[Y(e,x,y*),X,T*,)\] ar(e) du(x)

B(A) = (3%/amdm’ ) m (A),7 ]

500 = /00 DY 5O B /()

200 = 1) D) &)

(V) = #7(x) B(A) R BO) ()

32305, 5% = 309, v = G0M)

s = 305, ¥ = KO, 0 = 50, € = RO
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We illustrate the computations with the example:
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*
EXAMPIE 2. (Continued) For A = (y’,0 )’ we have

m Y(e,x,y),x,\] dP(e)
j'e €,X,y),X e ‘)\=(Y':U*)'

er(e/d*)dP(e)(a/ae)f(x,y)

IéYz(e/d*)dP(e) -8

Y

-, % *
thus K(\ ) = O whence U = O . Further computation yields

) [ ¥?(e/c*) ap(e) 33 0
s =) ©
o’ j’e[\rz(e/c*) - 812 ar(e)

_ (1/6")f ¥'(e/a") ar(e) 3’5 0
A(N') = &
OI

-a(l/a*)zjev(e/c*w(e/c*>e ap(e)

D(x*) = I

where

33 = IIE(a/ae)f(x,e)lt(a/ae)f(x,e)]'du(x)
6=y

* ¥\ - *, ¥, .o
As will be seen later, it is only V = (¢ )T 87 (9°)" that is needed.

Observing that M(\) is invertible we have
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*)-l *, %=1

Vo= (g SN

WO EONT )t

(67)° exP(e/a) (3@t 0
Lev’(e/a®)?
i o’ (0'*))4 3[‘1’2(9/0'*) '512 . D

e e¥(e/a¥)¥’(e/c*) 2
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In Section 5, the distributions of test statistics are characterized

in terms of the following quantities:
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NOTATION 7.

R (\) = (1/n)zf;=ljemcy(e,xt,ygl )%, 572 ,A]dP(e) J‘em’[Y(e,xt,y;),xt,T; ,\]aP(e)
S (\) = (l/n)zf;lj'em[Y(e,xt,y;),xt,'r‘r’l,k]m’[Y(e,xt,v;),xt,'r;,k]dl’(e) -k (\)
ft_(A) = (1/n)z§=lje(a/ax')m[Y(e,xt,Y;),xt,f;,deP(e)

B_(\) = (3°/amdm’) almd(A),72]

3,(0) = (0 B () §,(A) B (A) M (A)

7,00 = ®(\) (0 ® (A)

u,(A) =¥ () B (\) K (A) B (M) & (3)

5 =3,08), & = 7,08), w3, = 6,03

I =3 (), gr= 3,000, ur =G (\)
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We illustrate the computations with the example:
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EXAMPIE 2. (Continued) Computations similar to those for J* and

7 yield
-1 oy=1
Vo= (BT () (F)
()2 ev?(e/d*) (r'm)t 0
[ey’(e/d*) P
) 0’ (c*)h e[¥°(e/d") -8T°
uLe ev(e/a*)¥’ (e/a*) TP
where

F'F = (1/n)gg_,[ (3/20)£(x,,6° )10 (3/38)£(x,,62)1" . [0
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* *
Some plausible estimators of 4 and § are as follows:
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NOTATION 8.
s,(\) = (1/n)s_im(y, %7 0m (7%, 57 50)
M (A) = (l/n)z§=l(a/ax')m(yt,xt,?n,x)
p_(A) = (3%/amdm’)alm_(A),7_]
9, () =M (W\)p (W)s (WD (WM (\)

Fo(\) =Mz (D (WM (N)

(VP8 ]

= =9n($\n), ’:j = Jn(’xn)
§=9,8),%=9,x)
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For Example 2, there are alternative choices:
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EXAMPIE 2. (Continued) Reasoning by analogy with the forms that
obtain from Notation 6, most would probably substitute the following
estimators for those given by Notation 8:

’A

(1/n)z§=lwz(%t/3) FE 0
5, =
o (1/0)Z [¥(2,/3) -8
(@A) BF 0
Mn =
o ~(2/6°) (1/n)E] ¥ (e, /)Y (e, /3)e,
D =1
n

where

>
|

g = Ty - Exg8)

=iy
rxp
]

(1/n)gf_ [ (3/28)2(x,8, )X (3/28)2(x,,8,)1" - D
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We shall adjoin some technical assumptions. As before, one may
assume that ?n takes its values in a compact ball T for which T* is an
interior point without loss of generality. Similarly for the parameter
space I' . This leaves domination as the essential condition.‘ We have
commented previously (Section 2) on the implications of a compact esti-
mation space Af . In the previous section we commented on the construction

of the requisite dominating function b(e,x) .
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ASSUMPTION 9. There are closed balls A* and T centered at A" and
T* respectively with finite, nonzero radii for which the elements of
m(y,x,T,k),(a/ali)m(y,x,T,k),(32/3liakj)m(y,x,7,x) are continuous and
dominated by bla(y,x,y),x] on Y x X x T X A % I'; b(e,x) is that of
Assumption 3. The distance function d(m,t) and derivatives (3/3m)d(m,T),
(az/amaf')d(m,T), (Bz/amam')d(m,T) are continuous on F X T where & is

some closed ball centered at the zero vector with finite, nonzero radius.
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The only distance functions that we shall ever consider have the
form
d(m,7) = m’¥(r)m
with ¥(7) positive definite over T . There seems to be no reason to
abstract beyond the essential properties of distance functions of this

form so we impose:
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ASSUMPTION 10. The distance function satisfies: (3/3m) d(0,7) = O
for all T in T (which implies (3%/3md7’)a(0,7) = O for all = in T), and

(32/3mam’)d(0,T) is positive definite for all t in T.
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If the point X* that satisfies m*(k) = O is unigue over A*, then
s*()\) will have a unique minimum over A* for any distance function that
increases with n mH . In this case the same argument used to prove
Theorem 2 can be used to conclude that in converges almost surely to
k* . But in many applications, the moment equations are the first order
conditions of an optimization problem. In these applications it is
unreasonable to expect m*(X) to have a unique root over some natural

estimation space A* . To illustrate, consider posing Example 1 as a

method of moments problem:
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EXAMPIE 1. (Continued) The optimization problem
Minimize: s () = (1/n)_; e {[y, - £(x,,M)1/7 )
has first order conditions mn(Xn) = 0 with

n (V) = (1/n) ¥(ly, - £(x, M) /7, (/M) 2(x,0) -

We have seen that it is quite reasonable to expect that the almost sure
limit s*(k) of sn(x) will have a unique minimum A" minimum over A" . But,
depending on the choice of f(x,6), s*(k) can have local minima and saddle
points over A* as well. In this case m ()\) will have a root at A" but
m*(k) will also have roots at each local minimum and each saddle point.

Thus, if Example 1 is recast as the problem
. . . . — 1
Minimize: sn(k) = (l/Z)mn(k)mn(k)

*
we cannot reasonably assume that s ()A) will have a unigue minimum. ]




3-L-27

*

Without the assumption that m ()\) has a unique root, the best

consistency result that we can obtain is that sn(X) will eventually
*

have a local minimum near A . We collect together a list of facts

needed throughout this section as a lemma then prove the result:
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IEMMA 4. Under Assumptions 1 through 3 and 8 through 10, interchange of

differentiation and integration is permitted in these instances:

(a/axi)m:(x) = jlj'e(a/aki)maEY(e,xav*),x,-r*,k]dP(e) dp(x)
(3% /20 ), (A) = Ixfa(az/akiakj)md[Y(e,x,y*),x,T*,X]dP(e) an(x)
3/ Jm® (A) = (l/n)z’t;lj‘&(a/ax:.L Im [¥(e,x,v3) %57, ]dP(e)
(3%/3h; 0 m? (A) = (1/n)z§j=lje(az/axiaxj Jm [¥(e,x,y°),%,70,0]aP(e)

There is a closed ball A centered at X* with finite nonzero radius
such that:
*
zimn_mn%()‘,) =m ()\) uniformly on A,
pim__(3/3))mC(A) = (a/axgi?(x) uniformly on A,
zimm(az/axiaxj)m;(x) = (ae/axiaxj)m*(x) uniformly on A,

*
zimn_mmn()\) =m (\) almost surely, uniformly on A,

‘imn»w(a/BNanKX) = (a/axgnf(x) almost surely, uniformly on A,

tim (3P/30@h I (1) = (3%/6ApA Ju*(A) almost surely, uniformly on A,

!,imn_ms;(k) = s () uniformly on A,

sim_ (3/30)s2(A) = (3/oM)s™ (M) wniformly on A,

sin__ (3%/2300)s3(0) = (2%/30")s (A) wniformly on A,

gin__s (A) = s (A) almost surely, uniformly on A,

gim _(3/3M)s (A) = (3/3M\)s” (\) almost surely, uniformly on A,

tim__(3°/33)")s_(A) = (3°/aNar)s" () almost surely, wnifornly on A,
and

M= (3/an )m (N),

(3/a0)s” (W) = o,

(3%/a0)s (W) = ¢

*
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PROOF. The arguments used in the proof of Lemma 3 may be repeated to
show that interchange of differentiation and integration is permitted on A*
and that the sequences involving m;(X) and mn(K) converge uniformly on A*.
So let us turn our attention to sn(x) = d[mn(x),}n].

Differentiating, we have for mn(x) e ¥ that

(d/34;)s, (M) = £ (3/2m )alm (A), 7, I(3/aAs Jm (M),
and

(az/axiaxj )s (A) = zaze(ae/amaamﬁ)d[mn(x) 57, 1(3/3A Im (M) (3/3% 4 )mg  (A)

+ 5 (3/am )alm (1),5,1%/a0 0 m (M) -

-~ ¥*
Fix a sequence {et} for which T, converges to + and for which mn(k) converges
* * . *, %
uniformly tom ()\) on A ; almost every {et} is such. Nowm (\ ) = O by
*
assumption and m (\) is continuous on the compact set A% as it is the uniform

limit of continuous functions. Thus there is a § > O such that
* *
-2 ll<s=lm(Mfl<n

where T is the radius of the closed ball & given by Assumption 9. Then there

is an N such that

n>W, A=<= llm (V<.

set A= [h:fn-2" < 63 .

Now (a/amd)d(m,T) is a continuous function on the compact set & x T so
it is uniformmly continuous on F %X T, see Problem 1. Then since mn(x) converges
uniformly to m*(k) and ;n converges to + it follows that (a/ama)d[mn(x),;n]
converges uniformly to (a/ama)d[m*(k),v*] 5 similarly for d[mn(x),;n] and
(az/amdama)d[mn(x),;n] . The uniform convergence of sn(k), (B/Bxi)sn(x) and

(az/akiakj)sn(X) follows at once. Since the convergence is uniform for almost
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every {et} it is uniform almost surely. Similar arguments apply to s;(x).

* *, ¥
By the interchange result M = (3/3A’)m ()\ ). Differentiating,
*, * *, ¥ * *, ¥
(3/3ry)s (A7) = £ (3/om Ja[m"(A"),7 J(3/ah Im (A7) .
*, ¥ ¥* *, *
Asm (A ) =0 and (3/2m)d(0,r ) = 0, (3/3A\)s (A ) = O. Differentiating once
more,
(3%/a030)8" (A7)
2 * *, * *, %
= 1,2, (3°/3m 3mg)a(0,7 ) (3/2h; Jm (A7) (3/2 Jmg (A7)
*,,.2 *, %
+1_(3/3m )a(0,7)(3 /axiax‘j m (A7) -

*
The second term is zero as (3/3m)d(0,t ) = O whence

(2/aa\ )s (W) = [/ )m (A7) (3% /amam’ )d(0,1 )(3/aA u’ (A")

™) D= g5 . [
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THEOREM 7. (Existence of consistent local minima) Let Assumptions 1
through 3 and 8 through 10 hold. Then there is a closed ball A centered at N
with finite, nonzero radius such that the seguence {Xn} of Xn that minimize

*
sn(x) over A converges almost surely to A and the sequence {k;} of k; that
¥*
minimize s;(k) over A converges to \ .
*, ¥
PROOF. By Lemma 4 and by assumption, (3/3A)s (A ) = O and
2 2y Fol k. s s s s . ’
(3°/3%d\")s (N ) is positive definite. Then there is a closed ball A
* *
centered at )\ with finite, nonzero radius on which s ()\) has a unigue
minimum at A=X" (Bartle, 196k, Sec. 21). Let A" be the set given by
Lemma L4 and put A = A’NA" . Then s*(k) has a unique minimum on A and both
*
sn(k) and s;(k) converge almost surely to s (\) uniformly on A . The
argument used to prove Theorem 3 may be repeated here word for word to

obtain the conclusions of the theorem. ]



3-L4-32

The following additional regularity conditions are needed to obtain
asymptotic normality. The integral condition is similar to that in

Assumption 6 ; the comments following Assumption € apply here as well.
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ASSUMPTION 1l. The elements of m(y,x,t,\) m’(y,x,T,\) and (3/3+¢')
*
m(y,x,t,\) are continuous and dominated by bla(y,x,y),x] on Y XL XT XA XT;
b(e,x) is that of Assumption 3. The elements of (Ba/a«ram’)d(m,'r) are

continuous on FXT.

j'rl"e(a/af’)m[Y(e,x,v*),x,T*,k*] dpP(e) dw(x) = 0.
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Next we show that the "scores" (B/Bk)sn(k;) are asymptotically
normally distributed. As noted earlier, we rely heavily on the

*
assumption that m*(x )= 0. To remove it, see Problem 6.
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THEOREM 8. (Asymptotic normality of the scores) Under Assumptions

1 through 3 and 8 through 11
Ja (B/BX)sn(x‘r’l)—‘s—»N(o,.s*) )

J* may be singular.

PROOF. By Lemma 2, we may assume without loss of generality that
in and )f;l lie in the smallest of the closed balls given by Assumptions 9
and 11, Lemma Y4, and Theorem 7 and that (a/ax)sn(in) = os(n'%) and
(B/B)\)s;()\;) = o(n-%) .

A typical element of the vector ,n(3/3m) d[mn(k;),$n] can be expanded

about [m‘;l(x;),fgj to obtain
Jn (3/3111&) d[mn()\;),‘?'n]
= Ja (3/em ) alwd (33),72) + (3/27/)(3/2m ) a(m,TIWA(T, - 72)

+ (3/om")(3/om ) a(m,T) WA [m (3)) - m3(37)]

- . e s oy 2 O (40 ()
where (m,T) is on the line segment joining [mn()‘n)’Tn] to [mn()\n),'rn] .
- - * *  *
Thus (m,T) converges almost surely to (m*,r ) wherem =m ()\*) . Noting

that h (?n- T?l) is bounded in probability by Assumption 8 and that
Ji [ (3°) - m2(3°)1Ew(0,5%)
n'"n n'"n ?

by Theorem 2 we may write (Problem 3)
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J (3/am) dlm (02), 7]
= /i (3/3m) dLul(A2),72] + (3%/amdr)a(m*,r*) VA(T, - 1°)

+ (ae/amam’)d(m*,T*) N [mn(x;) -mp ()] + Op(l) .
Then

Ja(3/30)s, () = JE(d/30)s, (A) + E(2/3M)sS(A) + o (1)
= M) (a/am) dlm (08),7 1+ A ﬁé(x;)(a/am)d[m;(x;),wgl + o (1)
= B [M () - 1 00) ] (3/am)alul (32) 73]
+ 107 () [(3%/omdr")a(m™,7*)] Va(F - 72)
+ MO0 (3% /omdm Ja(m' 7)1 VR [0 (8) - ()T + 0 (1) (@

Note that by Theorem 2 +n [Mn(X;) - ﬁn(x;)] is also bounded in probability

so that we have (Problem 3) the critical equation of the proof:

«/H (a/ak)sn();’l) = ,\/E [Mn(}\;) - ﬂn()\;)]'(a/am)d(m*,q-*)
+ (M*)'[(ae/amaT')d(m*,Tf)] Ja (}n._T;)

LW ) 0 (30
+ ()7 D7 VA [m,08) - m(9)] + o (1)
We assumed that m*==0 so that the first two terms on the right hand side

drop out by Assumption 10. Inspecting the third term, we can conclude at

once that

Ja (3/30)s, (32)-Eaa 0, (") D5 ™D W)

In general the first two terms must be taken into account (Prcblem 6). []
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Asymptotic normality of the unconstrained method of moments estimator

follows at once:
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THEOREM 9 . Let Assumptions 1 through 3 and 8 through 11 hold.

Then:

*

Ja(R, -3 0, (9 (g,

a *
4 converges almost surely to S +u ,

*
J; converges to d ,

~

*
J converges almost surely to ¢ ,

*
2; converges to ¢ .

*
J may be singular.

)‘n

PROOF. By Lemma 2, we may assume without loss of generality that

,» and X; lie in the smallest of the closed balls given by Assumptions

~ i
9 and 11, Lemma 4, ‘and Theorem'7 and that (B/ak)sn(kn) ='os(n 2y,
1
oy _ _1
(B/BX)S;(Xn) = o(n"23) .

By Teylor's theorem and arguments similar to the previous proof

Ja(a/an)s (08) = Ja(a/aN)s,(R) + [ + 0 (L)UA(S -1)

0g(1)+[g +o (WA0E - &)

Then by Slutsky's theorem (Serfling, 1980, Sec. 1.5.4 or Rao, 1973,

Sec. 2c.l)

(S - R )0, (3 (g

This establishes the first result.

- * *
We shall show that J converges almost surely to d + U .

The arguments for J;, 3, and g; are similar. Now 3 is defined as

3=m G (K)s G (K m ()
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Since the Cesaro sum
n -
(l/n)zt=fm[Y(et,xt,y),xt,T,X]m'LY(et,xt,y),xt,T,k]

converges almost surely to the integral
J‘ Jleth(e’x’Y)’x:Ta)\] m’[Y(e,X,Y),X,"\',)\] dP(e) dp’(x)
X
uniformly on I' X T X A by Theorem 1 with Assumption 1l providing the

dominating function and since (y;,;n,kn) converges almost surely to

* ¥*
v o7, 2*) we have that

J"xj‘ mY (e k)X, A 1 m LY (e x,y )%, 0 ] dP(e) du(x)
e

* *
s +K

almost surely. A similar argument shows that Mn(xn) converges almost surely
* . 2 ' X . . R

toM . Since (3°/3mdm’)d(m,r) is continuous in (m,T) by Assumption 9 and

[mn(xn),$n] converges almost surely to (O,T*) by Lemma 4, Theorem 7, and

~ *
Assumption 8 we have that Dn(kn) converges almost surely to D . Thus

. ~ *,, %, ¥ *, ¥ ¥
tim d=(M)D(S +K)DM
* *
=43 +u

almost surely. [
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The variance formula

9'13 g'l = (M'pM)" T (M'DsDM) (MDM)T

is the same as that which would result if the generalized least squares
estimator

8= DM tuDy
were employed for the linear model

y=MB + e, e~ (0,8) .
Thus, the greatest efficiency for given moment egquations results when
p = (st

A construction of 'r; for Example 1 was promised:
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EXAMPIE 1. (Continued) Assume that f, p, and P are such that
Assumptions 1 through 6 are satisfied for the preliminary estimator

én . Then §n has a center 9:1 such that Jﬂ(@n -9;) is bounded in

*
PR : o
probability and £im en =+~ . Let

m(y,x,8,7) = ¥°{{y - £(x,8)1/7} - J ¥3(e) aé(e)
and

m () = (1/n)g_jm(y,,x,8,,7) -
The almost sure limit of m (r) is

m (1) = [ Jemw(e,x,y*),x,y*,ﬂ ap(e) au(x)
X

-_-j‘ Yz(e/-r) dP(e) - J‘ ‘1’2(8) aé(e) .
v & . )

Since 0 < [ Yz(e)dé(e) < 1 and G(7) = J' Yz(e/'r) dP(e) is a continuous,
- e

*
decreasing function with G(0) = 1 and G(») = O there is a v withm (r ) = 0.
Assume that f, p, and P are such that Assumptions 8 through 11 are
satisfied for Sn(T) = (3) mi(‘r) . Then by Theorem 7 and 9, ;n has a center

o ~ o . . e . o _ *
70 such that Jﬁ(Tn 'rn) is bounded in probability and fim 0 = T . 0
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The argument used in the example is a fairly general approach for
verifying the regularity conditions regarding nuisance parameter estimators

Typically, a nuisance parameter estimator solves an equation of the form

m (1) = (1/n)5_n(y, %, 8, ,7)

A

where §

~

eIZI.

minimizes an sn(e) that is free of nuisance parameters. As such

comes equipped with a center 9; as defined in either Section 3 or 4.
Let

) - ) o
m () = (l/n)L‘::lIen{Y(e,xt,yn),xt,en,wj aP(e)
let d(m) = m'm/2 , then the appropriate center

(o} . N © - (o}
73 minimizes sn('r) = d[mn('r)] .
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Next we establish scme ancillary facts regarding the constrained
estimation under a Pitman drift for use in Section 5. As noted previously,
these results are not to be taken as an adequate theory of constrained

estimation; that is found in Section 8.



3=-b-lh

ASSUMPTION 12. (Pitman drift) The sequence {y;} is chosen such

. o *\ *
that len_mﬁ(kn - )‘n) = A. Moreover, h(\ ) =0.
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THEOREM 10. Let Assumptions 1 through 3 and 8 through 12 hold.
*
Then there is a closed ball A centered at A with finite, nonzero
radius such that the constrained estimator Kn converges almost surely
* * *
to A and )‘n converges to A . Moreover:
~ * *
d converges almost surely tod +u ,
* *
Jn converges to J ,

*
7 converges almost surely to ¢ ,

* *
gn converges to ¢ ,

A/E(a/ax)sn(kz) - ﬁ(a/ax)s;(xZ)faN(o,s*) )
ﬁ(a/ax)sg(x’;) converges to -y*A . .

PROOF. The argument showing the convergence of {Xn} and {)\:} is the
same as the proof of Theorem 7 with the argument modified as per the proof
of Theorem 6 . The argument showing the convergence of 3 s J; R 7 , and
2: is the same as in the proof of Theorem 9. The same argument used in

the proof of Theorem 8 may be used to derive the equation
JB (3/2M)s () - VB (3/3M)s2(n))
=/ (M (W) - B (A)] (3/am)a(m”,r )
+ (W)L (2%/amdTda(n’,7) ] VA (7 - 1)

+ () DR [m (V) = w2 ()] + 0 (1)
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*
We assumed that m = O so that the first two terms on the right hand

side drop out. By Theorem 2,
* 0/ ¥ a & *
Vo lm () - m (A )]=N(0,s")

whence

~WB (3/aM)s (A)) - 4a (a/ak)s;(k:)-s—)NEO,(M*)’D*S*D*M*]

and the first result follows.
*
The argument that A (a/ax)s;(x:) converges to -J A is the same as

in the proof of Theorem 6. []
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. PROBLEMS

1. A vector valued function f(x) is said to be uniformly continuous
on X if given ¢ > O there is a § > O such that for all x,x’ in X with
lx -x’|| <8 we have Hf(x)-—f(x’)“-< ¢. If f(x) is a continuous function
and X is compact then £(x) is uniformly continuous on X. (Royden, 1963,
Ch. 9). Let gn(t) take its values in X and let {gn(t)} converge uniformly
to g(t) on T. Show that {ffgn(t)]} converges uniformly to f{g(t)] on T .

2. Prove that zimhﬁmm;(k)=xﬂ*(x) uniformly on A*. Prove that
Zimnqws;(x) = s*(k) uniformly on Ax.

3. A (vector-valued) random variable Yn is bounded in probability if
given any ¢ > O and § > O there is an M and an N such that P(\\Yn“ >M)<§ for
alln>N. Show that if Yn4§» N(w,V) then Y 1is bounded in probability.
Show that if Xn is a random matrix each element of which converges in
probability to zero and Yn is bounded in probability then XﬁYn converges in
probability to the zero vector. Hint, see Rao (1973, Sec. 2c.k4).

¥
L. Prove that §° convergesto J and that converges almost surely to
n

5. Compute Kn(k), ﬁn(X), and §n(x) for Example 2 in the case A % X; .
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6. Let Assumptions 1 through 3 and 8 through 11 hold except that
*, %
m (A )% O; also, (3/3m)da(0,r) and (az/amax')d(o,v) can be nonzero.

Suppose that the nuisance parameter estimator can be written as

B Gy ert) = 8, Q) By 2lr i 85) + 0,02

*

» * > .
where zimnqwe; =0 , zlmnqun = A almost surely, and f(y,x,8) satisfies

* *, %
the hypotheses of Theorem 2. Letm =m (A ) and define:

m[Y(e’x,'Y*) ,x,"l’*,)»,*]
Z(e,x) = | vec (B/Bx)m'EY(e,x,y*),X,T%,K*]

* *
f{Y(e,x,y )sX,8 )

K= [ (] 2(e,x) aP(e)}[ Z(e,x) aP(e)} du(x)
L & e

a* - Z(e,x) 2’ (e,x) dB(e) 4 ¥
J ] 2(em) 2/ (e.x) aBle) auta) - x

*

G

L") D" : (3/am’)a(m o) @ I F )7 (32 /amar ! )a(m®,+*)a™]

*

*, *
S =g 87

7 = (3%/an)s (A)
Show that
Ja s, (%) 5(0,57)

® =1 %, * -1

Ja G- Zato, (g9 ST (O™

Hint: Recall that if A of order r by c¢ is partitioned as

A= [al; a5t ...t ac] then
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vec A =

and vec AB = (B’ ® Ir) veéc A where ® denotes the Kronecker product of
two matrices. See the proofs of Theorems 8 and 9 .

7. Under the same assumptions as in Problem 6 show that
(/305 (00) - WE (/6058 (N) S (0,87)

*
where d is defined as in Problem 6.
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5. TESTS OF HYPOTHESES

Both paths lead to the same results. At first the path follows
Assumptions 1 through 3 which describe the data generating process. Then

the road forks. One can follow the least mean distance estimation path with

Notations 1 through 4 defining the quantities:
2 ~ *
Ay» A> A, and A 3
o .
sn(k) and Sn()‘) 3
*
(o]
3,3, £, and g
- *
3,7, £, ena g
U , and U* .
n n
Or, one can follow the method of moments,estimation path with Notations 5

through 8 defining these quantities. In either case the results are the

same and may be summarized as follows:
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SUMMARY. Let Assumptions 1 through 3 hold and let either Assumptions L
*
through 7 or 8 through 12hold. Then on a closed ball A centered at )\ with
finite, nonzero radius:

Sn()‘) and s;()\) converge almost surely and uniformly on A to s*()\) :

(a/ax)sn(x) and (a/ax)sg(x) converge almost surely and uniformly on
A to (3/aN)s™ (M) 3

(az/axax')sn(x) and (32/3)‘3)‘1)321()‘) converge almost surely and uniformly
on A to (az/axax')s*(x) , and (aa/axb)\')s*()\*) = g*;

Ja(a/aM)s (K2) - JE(3/aM)s () W(0,5%) 5
R -32) S w0, (97 ()™ 5
,\/ﬁ()\;-ktl) converges to A, Jﬁ(a/ax)s;(xz) converges to -;*A;

v * *
and A converge almost surely to A and h(\ ) =0;

>

n

- * _* *
Jd and J converge almost surely to d +u , J; and J: converge to d
a % *

4 and 7 converge almost surely to 7 , g;’l and gn converge to 7 .

u; and u: converge to w
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3

Taking the Summary as the point of departure, consider testing

H: h(x;’l) = 0 against A: h(x‘r’l) 0.

Three tests for this hypothesis will be studied: +the Wald test, Rao's
efficient score test (Lagrange multiplier test), and an analog of the likeli-
hood ratio test. A full rank assumption is imposed which is not strictly
necessary. However, the less than full rank case appears to be of no
practical importance and a full rank assumption eliminates much clutter from

the theorems and proofs.
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NOTATION 9.

o= (@) RV = @) Sgh

n

A B A e
i =n), HA) = (3/a1")n(A)
= B(2), H = HOX)
B =5}, ¥=8X)

Theorem 11l:

V=V,3=8,9=g,u=u, H=H

Theorems 12, 13, 14, and 15:

* * ¥* * *
V=V ,d=3,, =G, u=u, H=H_
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ASSUMPTION 13. The function h()\) that defines the null hypothesis
H: h()‘;) = 0 is a once continuously differentiable mapping of the estimation
space into RY. Its Jacobian H{)\) = (3/3%\’)h()\) has full rank (=q) at
A= 7\* . The matrix V = 9-13 9-1 has full rank. The statement "the null
hypothesis is true"” means that h(x;) =0 for all nor, equivalently, that

*
Ay = A, for all n sufficiently large.
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The first statistic considered is the Wald test statistic
W=n ﬁ'(ﬁ?]ﬁ")—lﬁ

which is the same idea as division of an estimator by its standard error or
studentization. The statistic is simple to compute and may be computed
solely from the results of an unconstrained optimization of sn(k) . It has
two disadvantages. The first, its asymptotic distribution is a poorer
approximation to its small sample distribution than for the next two statistics
if Monte Carlo simulations are any guide (Chapter 1). The second, it is not
invariant to reparameterization. With the same data and an equivalent model
and hypotheses, two investigators could obtain different values of the test

statistic. (Problem 6).

The second statistic considered is Rao's efficient score test statistic
nd -1 A ~ =1 Avmv=1
R=n£(a/BX)sn(>\n)]’3 H ®VE) ™ HY [(a/ax)sn(in)].
Since (B/BX)[sn(xn) + %;n(iﬁ)] = O for large n, an alternative form is

~SY Ay g, =] Ay =1 A
R=n gr'ln'y L@V Ty L 2e

which gives rise to the term Lagrange multiplier test. Quite often

"L 5o that I™1 could be substituted for ¥ and Y "l in these

V=J'1=g
formulas resulting in a material simplification. The statistic may be
computed solely from a constrained optimization of sn(x) . Often, the
minimization of sn(x) subject to h(\) = O is considerably easier than an
unconstrained minimization; H: X; = Q for example. In these cases R is

easier to compute than W. There are several motivations for the statistie

R of which the simplest is probably
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the following. Suppose that the quadratic surface
a(n) = s, (X)) + @/an)s (R ) -%)) + 30 - ) F( %)

is an accurate approsimation to the surface sn(k) over a region that

~

includes xn . The quadratic surface is minimized at
~ -1 -~
M= =T R/ (X))
so that

X -h 2 TS (X))

Thus, 7‘1(a/ax)sn(xn) is the difference between'lxn and in induced by the
constraint h(\) = O and R is a measure of the squared length of this
difference. Stated differently,'y-l(a/ak)sn(xn) is a full Newton iterative
step from'xn (presumably) toward in and R is a measure of the step-length.

The third test statistic considered is an analog of the likelihood ratio
test

L= 2n[sn(3:n) - sn(in)] .

The statistic measures the increase in the objective function due to the
constraint h(xn) = 0; one rejects for large values of L. The statistic is
derived by treating sn(k) as if it were the negative of the log likelihood and
applying the definition of the likelihood ratio test.

Our plan is to derive approximations to the sampling distributions of
these three statistics that are reasonably accurate in applications. To
illustrate the ideas as we progress, we shall carry along a misspecified model

as an example:
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EXAMPIE 3. One fits the nonlinear model
Vo= £xoA) +u, t=1,2,...,n

by least squares to data that actually follow the model
y‘b = g(xth;) + et s t=1,2,...,n

where the errors ey are independently distributed with mean zero and

variance 02. The hypothesis of interest is
. 0 _ ¥ . . A0 *
H: =" against A: T ¥T
where
A= (p', T,)'
p is an r-vector, and T is a q-vector with p= r+q . As in Chapter 1, we

can put the model in a vector form:
y=1fA) +u,y=gl)+e, F(A) = (3/20)£(2) .

We shall presume throughout that this model satisfies Assumptions 1 through 7,

and 13. Direct computation yields:

S(yt:xt,)\) = [yt- f(xt’)\)]z ’
sp(M) = (1/n) lly - 20N = (1/n)ly - £(M 1Ty - £(V)7

(3/a7)s (M) = (-2/n)F'(MLy - £(A)] ,
L) = o+ (1/m) le?) -2,
(/M) (M) = (-2/n)F' (M[e(v}) - £(M)],
A minimizes (1/n) [la(y2) - £,

Sn minimizes (1/n) |y - f(p,'r*)l_l2 R
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o, minimizes (1/n) Hg(y;) - f(p,‘f*)nz s

o= (op )

F = F(X) , F: = F(k;) ) f‘=F(in) , F=F(X))

I(N) = (4a®/n)F’ (ME(A)

g\ = (2/n)F (MFQ) - (2/n)g)_,Lalx,v3) - £(x, M) 1(%/30N )2 (x, ,0) 5
u(N) = (u/m)EL Lalx, ) - £(xg M) 1R/N £(x, AL (3/3M)2(x, )17

3= (u/n)xh_ [y, - £(x,, 8 ) 100/0M) £(xy R N0 (2730 £(x, 58 )7,
§ = (2/n)FF - (2/n)Eh_ [y, - £(x .} )12/ )2(x R ) 5

H=[0: Iq], Iq is the identity matrix of order q .

The estimator ‘

= @Tap?
obtained according to the general theory is not that customarily used in nonlinear
regression analysis as we have seen in Chapter 1. It has an interesting property
in that if the model is correctly specified, that is y and A have the same
dimension and g(x,y) = f£(x,y), then V will yield the correct standard errors
for in even if Var(et) = cg(xt) . White (1980) terms ¥ the heteroscadastic
invariant estimator of the variance-covariance matrix of in for this reason.

The estimator customarily employed is

Q=n sz(ﬁ’ﬁ)-l
with

= (@-p)Hy -G I
We shall substitute { for v in what follows mainly to illustrate how the general

theory is to be modified to accomodate special situations. [] ‘
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The limiting distributions that have been derived thus far have been
stated in terms of the parameters J*, 9*, and u* . To use these results,
it is necessary to compute J*, ,7*, and u* and to compute them it is necessary
to specify the limit of Xﬂ and $n and to specify the limiting measure y on
X . Most would prefer to avoid the arbitrariness resﬁlting from having to
specify what is effectively unknowsble in any finite sg.mple. More appealing
is to center in at )fr’l rather than at )\*, center ;n at 'r; , and use the
empirical distribution function computed from {xt}fcl:l to approximate u .
What results is &;’1, 9;’1, and u; as approximations to &, 9*, and U . The
next theorem uses a Skorokhod representation to lend some formality to this
approach in approximating the finite sample distribution of W. For the

example we need an approximation to the limit of .



3-5-11

EXAMPLE 3 (Continued)

The almost sure limit of {) is

Q= {02+fx[s(x,v*) - £(x,0%) Pan ) II(B/BX)f(x,X*)du(x)]'l .

* *
Following the same logic that leads to the approximation of J , g* and U

by ’3?1’ 2‘;1,' and u‘;l we obtain

a() = wLe?+ 2 lg2) - sMIPLF OF()I™
and

@ = n(e® + £ [latyd) - 20D (@ )

where ‘r"‘r’_,l = F()\;) . 0
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THEOREM 11. Let Assumptions 1 through 3 hold and let either Assumptions
4 through 7 or 8 through 12hold. Let
W = oo’ (80E/) 71 .
Under Assumption 10,
W~Y + o (1
o(1)
where
Y= 20w te+wytE 2
and
Z~Muha(X), HE]D.
Recall: V = V‘;l, J==9;, 2=9‘;, u=u‘r’1, and H = H"r’1 If W =0 then Y has the
non-central chi-square distribution with g degrees of freedom and non-centrality
parameter o = nh'()fr’l) (HV'H')-lh()\;)/Z . Under the null hypothesis o = O.
PROOF. By Lemma 2, we may assume without loss of generality that
~ » i i
[} = =2 O (y0 - 2 1
Ays A) € A and that (a/ax)sn(xn) = os(n ),(B/a)\)sn()\n) = o(n®) . By Taylor's

theorem

Jiln (R) -0, ()1 = (3/ah)h, (A, WAGR -X)  1=1,2,....a

where “iin' )\;l\sllin - )\;” . By the almost sure convergence of X} and Xn to
N, am (K, -%"|| = 0 almost surely whence gim__(3/30)n; (R, ) = (3/3\)8, (\)

almost surely. Thus we may write
Y oV _ Fut S _so
Jala(h) - 6] = [ + o (LI Wa(h -1]) .
Since ﬁ(in -)\;)-f?‘-v N(O,V*), we have

JTa%) -8(2) 15 N(o,E V) .
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By Problem 3, ZimMJﬁ h()\;) = HA so that h(in) is bounded in probability.
Now BVE’ converges almost surely to H*(g*)-l(J*+ u*)(g*)"l[{*’ which is
nonsingular whence

(B7E)™ = [ s+ wg ™ w1 o (1)
Then

W= o/ (R)IH@+w)g H TRA) + o (1) .
By the Skorokhod representation theorem (Serfling, 1980, Sec. 1.6), there are
random variables Yn with the same distribution as ./n h(Xn) such that
Y_ -8 B(A2) = Y+o_(1) where Y ~ N(O,H'V'H '), Factor KV H as KVH '=FP "
and for large n factor HVH'=QQ’ (Problem 1). Then
Y, = /2 R(2) + Q(F) T Y+ [1-a(F) M + 0 (1) .
Since Y is bounded in probability and [I -Q(P*)'l] = 0(1) (Problem 1) we have ‘
Y = JER(S) +a(F) Y + o (1)
n n Y

K\ - -
where Q(P ) lya N(O,HVH’) . Let 2z =,h h(x;) + Q(P*) 1Y and the result

follows. []




1

3-5-1k

Occasionally in the literature one sees an alternative form of the Wald
test statistic
w=n(h -X )R/ (ER)ER -X) .

~

The alternative form is obtained from the approximation h= ﬁ(kn -'i‘n) which

is derived as follows. By Taylor's theorem
n(k,) = n(X)) + 8O, %)

where H has rows (a/ax')ni(x) and A is one the line segment joining 'Xn to in .

0 and approximating H by H one has that h = ﬁ(xn-'i'n) .

"

By noting that h('xn)

Any solution of h()\) = O with (3/d\")H(A) = H would serve as well as Kn by

this logic and one sees other choices at times.
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As seen from Theorem ll,an asymptoticly level ¢ test in a correctly
specified situation is to reject H: h(k;) = O when W exceeds the upper o X 100%
critical point of a chi-square random variable with q degrees of freedom. In
a conditional analysis of an incorrectly specified situation, U, h(x;) , and
o will usually be non zero so nothing can be said in general. One has a

quadratic form in normally distributed random variables. Direct computation

for a specified q(y,x,y;) is required, see Section for details.

We illustrate with the example.
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EXAMPIE 3 (Continued) The hypothesis of interest is
. o _ * v . o *
H: =T against A: Tn ¥
where
A= (0,37,)’
Substituting 8 for ¥ the Wald statistic is
~ * A A - - PS ¥*
W= (Tn-T Y [H(F'F) ]'H’] l('rn-'r )/s2
where H = [0 ! Iq] . Thus H(F’ﬁ)-lH’ is the submatrix of (ﬁ’ﬁ)-l formed by
deleting the first r rows and columns of (ﬁ'ﬁ)-l . W is distributed as
WA~Y + o (1
Xed
where:
- Vs i , - = 2 1 o o 2
Y = 2THGE F/F0) 172/ + Hletvd) - 201D

Z ~ WA -r'), HVE’]

v=glsgt
3 = (4P /m)F 'F
¢ = (2/n)Fy 'F, - (2/n)2fcl=l[g(xt,v;) - f(xt,xg)](az/axax')f(xt,x;l) .

If the model is correctly specified then g(xt,y;) = f(xt,x;) and these equations

simplify to:
- 4 _:_L_ 7 - 7= 2
Y = 2[uE )] 7/,
o _ ¥ 2.1 o r0y-Lis
Z ~ N ia(r) 'r),cH(nF‘r’lF‘I’l)lH]
whence Y is distributed as a non-central chi-square random variable with g degrees

of freedom and non-centrality parameter

o= (1) [HEF) RIS -7 P L D
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The statistic R is a gquadratic form in (B/B)\)sn(xn) and, for n large
enough that yn(x) can be inverted in a neighborhood of ’in s, the statistic L
is also a quadratic form in (B/a)\)sn('xn) (Problem 8). Thus, a characterization
of the distribution of (a/a)‘)snan) is needed. We shall divide this derivation
*
into two steps. First (Theorem 129, a characterization of (a/ax)sn()\n) is
obtained. Second (Theorem 13), (a/a)\)sn(ﬁ);) is characterized as a projection

* *
of (a/ax)sn(xn) into the column space of H_ .
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THEOREM 12. Let Assumptions 1 through 3 hold and let either Assumptions
4 through 7 or 8 through 12hold. Then

*
Ja(a/an)s (W) ~ X+ op(l)
where
0, ¥y %
X ~ Mu/n(a/aM)s) (A ):9 7.
PROOF. By either Theorem 6 or Theorem 10,

J(@/3M)s Ay - JE(3/30)2 (h)5> W(0,87)

By the Skorokhod representation theorem (Serfling, 1980, Sec. 1.6), there are
*
random varisbles Y with the same distribution as ﬁ(a/ax)sn(xn) such that
* * *
Y -Jﬁ(a/ax)s;(xn)=y+ os(l) where Y ~ N(0,d ). Then factor " as 4¥=P (P )’

and for large n factor JZas J:= QQ’ (Problem 1) then
Y =/A(3/0M)s2(N) + Q(E) Y + [T-a(F) I + o (1) .

Let X = ﬁ(a/ax)s;(xZ) + Q,(P*)-]Y whence X ~ N[A/ﬁ(a/ak)s;(k-;) ,{]and, since
gim__ Q=P (Problem 1), [I-q(F")™']Y = 0 (1) . D
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Note from Theorem 5 that if snO‘) corresponds to a least mean distance
*
estimator without nuisance parameters then J n is the exact, finite sample
*
variance of Jh (B/B)\)sn()\n) . In this case, Theorem 12 is no more than a
*
suggestion that the exact variance of ,/n (b/ak)sn(kn) be used in computations

instead of the asymptotic variance. Next we characterize ., (a/a)\)sn(&) .
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THEOREM 13. Let Assumptions 1 through 3 hold and let either Assumptions
4 through 7 or 8 through 12hold. Under Assumption 13,
, - - -1 *
J (3/an)s (R ) = B/ (g™ H) THTLE (/aM)s (8) + o (1)
* * '
where 7 = gn and H = Hn .
PROOF. By Lemma 2, we may assume without loss of generality that X n? Xn’

* 1
k;, A\, A By Taylor's theorem

B (3/an)s (X)) = /B (3/an)s,(n) + BB (Ry -3

Jaa(X) = JEn(x) + R.A X, - %)
where J has rows

(a/ax')(a/axi)sn(iin) i=1,2,.00, D

and A has rows
¢ N j=1,2,...5a
(3/ax )hj(kan)

with iin and ijn on the line segment joining Kn to ); . By Lemma 2, +a h('in) =o (1)
Recalling that Jn h()\Z) =0, we have Bv/n (’i’n -)\:) = os(l). Since Tn and )\:

converge almost surely to )\*, each Xin’ xjn converges almost surely to k* whence

5 converges almost surely to 2* by the uniform almost sure convergence of
(az/axax’)sn(x); g converées almost surely to vl by the continuity of H()\).

Thus =g+ os(l) and H=H+ os(l) . Moreover, there is an N corresponding

to almost every realization of {et} such that det(7) > O for all n>N . Defining

3 L arbitrarily when det(3) =0 we have
FY R (o) =4E Gy -ay)

o *
. for all n> N. Thus, 7 ly Jo an-)‘n) =/ (i'n -)\:) + os(l) . Combining

these observations, we ray write
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I:II\/E (Xn-)\:.) = OS(l)
B (R -hg) = FTUB /aM)s, (%) - 3R (3/aM)s, () + o (1)
whence

LR (/an)s (K ) = BTUE (3/on)s (A1) + o (1) .

. *
Since J/n (a/ax)sn(xn) converges in distribution it is bounded in probability

whence

BLE (0/a0)s, (X)) = BB (3/aM)s (M) + o (1) .

By Lemma 2, there is a sequence of Lagrange multipliers '\e'n such that
’ -
K a/on)s (K ) + BUET = o (1) .

Substituting into the previous equation we have

% BT = B LR (3/0M)s. () + o (1) .
n n‘*n D

By Slutsky's theorem (Serfling, 1980, Sec. 1.5.4% or Rao, 1973, Sec. 2¢c.4), .,/ ’E)‘n
converges in distribution. In consequence, both JE’éJn and /n (B/a)\)snﬁn)

are bounded in prdoability and we have

B (T H) TR (3/00)s (M)
w577 TR (3/a0)s, (X)) + o, (1)
B (7)Y TR B+ o (1)

“H'./fa B +
H'\/n A, op(l)

Ja (3/an)s (R ) + o (1) . O
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A characterization of the distribution of the statistic R follows

immediately from Theorem 1h4:



3-5-23

THEOREM 1l4. Iet Assumptions 1 through 3 hold and let either Assumptions

4 through 7 or 8 through 12hold. Let
R = o (/o0)s, (%) 1F T EGVA) T HY L (o/a0)s, (R )T -

Under Assumption 13

R~7Y+ op(l)
where

Y = z'g'lﬁ’[Hg'l(J+ u)g']‘ﬁ']'lH;l‘lz
and

7~ WL (3/30)82(01),9] -
Recall: V=V*, J=J*, 2=2*, u=u*, and H=H* .

n n n n n

If u = O then Y has the non-central chi-square distribution with g degrees of
freedom and non-centrality parameter o= n[(a/a)\)s;()\Z)]’y-lH'(H VH’)-]'Hgl-l

X [(a/ax)s;(xN*)]/z . Under the null hypothesis, a=0 .

PROOF. By Lemma 2, we may assume without loss of generality that fi‘n €A -

By the Summary,
7RO GVR)THY T = g ey W) T - o (1)
By Lemma 5, J/n (a/ax)sn('{n) is bounded in probability whence we have
R = o (3/eM)s, ()17 BT 9+ W m T L (a/an)s, ()T + o (1)

= o (3/30)s, (N )19 BTRY™H(9+ w)g T T (/05 ()] + 0, (1) -
The distributional result follows by Theorem 13. The matrix

Q-J"H'[Hg- Jg-lH']-lH;-lJ is idempotent so Y follows the non-central chi-square

distribution if u=0. []
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The remarks following Theorem 1l apply here as well. In a correctly
specified situation one rejects H: hO‘;) = 0 when R exceeds the upper
o X 100% critical point of a chi-square random variasble with q degrees of
freedom. Under correct specification and A: h(k‘r’l) + O then one approximates
the distribution of R with the non-central chi-square distribution. Under
misspecification one must approximate with a quadratic form in normally
distributed random variables.

In many applications 7_1 = aV for some scalar multiple a . In this
event the statistic R can be put in a simpler form as follows. Since rank(?-f)

= q and " is q by p one can always find a matrix T of order P by r with
rank(?}') =r=7p-q and '1“1?;‘ = 0. For such G we shall show in the next

section that
~’ NG NS - ~ - A - ~ Pdam | A - [ X
§EVE) LY - L@ ) eyt
Recalling that there are Lagrange multipliers AeJn such that

(a/on)s, (X)) = %

we have
oy oemley=1 _ [y
¥ Y NS, (X)) = a THTF_= 0.

Consequently we may substitute V-l for ?I’@IV?I’)'LI:I* in the formula for R to

obtain the simpler form
R = a“n (3/30)s, (X )1’ VL (3/aM)s (X )1 -

We illustrate with Example 3:
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EXAMPIE 3 (Continued) Substituting
T=n ?2@“ F )-l
with
¥ - (m-pra) Uy - 2®)IP
for V and substituting
T = (e/n)F F)

for ? . We have

whence

R= (1/3%)0y - tR)V¥E F) 7 F Ty - (R )] -

Putting
* *
Fn = F()\.n) .
R is distributed as
R~Y + o (1
p( )

where
Y = z’J'lH'(HQH’)']‘HJ'lz
Il (n/2)(F E) T
q=n®+ 2 lle2) - OB FD™

H=[0 ¢ Iq]’ Iq is the identity matrix of order q ,

z ~ M (-2/JR)F Ta(y?) - £(A)1, 91,

* o *, %
Jn = (Lo /n)Fn F -
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When the model is correctly specified, these equations reduce to
Y ~ an(_n/hcz)z'(Fz'F:)']H’[H(F’;’FZ)'J‘H’]‘lH(F:'F:)‘lz
z ~ N (-2/4R) FaL208) - 201, (40P /m)(F)/F))]

a = M+ 21 £02) - 2O0IR .

n

Y/an is distributed as a non-central chi-square random variable with g degrees

of freedom and non-centrality parameter
a=[£(x)) - f();)]’Fz(F:'F:)'lH'[ H(F:'FZ)'J'H']'J‘H(FZ'F:)']F:’[f(x;) - f()\::)]/(&:2
The non-centrality parameter may be put in the form (Problem 9)
o = [2(8) - £(0) ) Fn (P2 ) TEL L2 (N2) - £(hn) IA207)

‘ Let x2, (th,o:) denote the probability that a non-central chi-square random
variable with g degrees of freedom and non-centrality parameter o exceeds t .
One approximates the probability that R rejects H: T; = 'r* at critical point

¢ by

.

PR>»c) = P(Y > ¢)

P(Y/an > c/an)

X&' (c/aylasa) -

In applications, the critical point is chosen so that xz'(clq,o) = .05, say,
and since c/an > ¢ when ¢ # O the power of the test is reduced from that

which could be achieved if an =1. If

2 = (n-p) My - 25X )2

is substituted for '52 in computing R then a, = 1. Thus, even though the
computation of 52 entails an extra minimization to obtain f\l, it is probably

‘ worth the bother in most instances in order to cbtain the increase in power. (]
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THEOREM 15. Let Assumptions 1 through 3 hold and let either Assumptions

4L through 7 or 8 through 12 hold. Let
L= 2ncsn(‘i'n) - sn(xn)J .
Under Assumption 13,

L~Y+ op(l)
where

Y =z'gm (mgte) tug s
and

Z ~ B (3/30)200,), 91

. * * * * ¥*
Recall: V=Vn’ J=Jn,;=9n,u=un, and H=Hn .

IfHVH = Hy'lH’ then Y has the non-central chi-square distribution with

q degrees of freedom and non-centrality parameter
a= n(a/ak)s;()‘:)?-]?i"(H?-lH’ )-]'}Iﬂ-l(a/ak)s;(}:)/& Under the null hypothesis,
a=0.

PROCF. By Lemma 2 we may assume without loss of generality that

~d

;‘n’ )‘n ¢ A. By Taylor's theorem

2als (X)) -s (X )1
= 2ol (3/aM)s (R )17 (%, - R ) + a(X_ -3 ) T(R%/a%M)s (R)DIE_ - %)
where [|X_-% |l = |X -8 | . By the Sumary, (X , X ) converges almost surely
to (A", A") and (2%/2301")s_(A) converges almost surely unifomly to s (1)
unifornly on A which implies (3%/33A")s (X)) = [§+0_(1)]. By Lemna 2,
2n[(a/ax)sn(in)]'(’fn-in) = o (1) whence

2 s (X ) -s ()1 =n(k -8)Tg+0 (DIR - )+o (1)
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Again by Taylor's theorem
(g4 o (L WR(X, -K) =.a (3/aM)s (R ) -

Then by Slutsky's theorem (Serfling, 1980, Sec.>l.5;h»or Rao, 1973, Sec. 2c.h)
JE(Vn-Xn) converges in distribution and is therefore bounded.
Thus
2nf sn('i'n) -5, (R )1 = nﬁn - in) ‘9 &, - in) + op(l)
JE_-%) = g7HRG/aNs (K ) + o (1)
whence
anls (X)) -5 (8 )7 = ol (3/20)s (X)) 17970 (3/aM)s (K )1+ 0,(1)

and the distributional result follows at once from Theorem 13. To see that
Y is distributed as the non-central chi-square when HVH' = Hy-lH' note that

?-lH’(Hg-lH’)-lHy-ld is idempotent under this condition. []
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The remarks immediately following Theorems 11 and 14 apply here as
well. One rejects when L exceeds the upper o X 100% critical point of a
chi-square with ¢ degrees of freedom and so on.

In the event that $ = a J + o(1) for some scalar multiple a, the
'"likelihood ratio test statistic” can be modified as follows. Let ;n be a
random varigble that converges either almost surely or in probability to a.
Then

anL~ ay + op(l)
where
ays= z'J'lH’(m'lH')']m'l .
Since J-J"I-I'(I-U-IH’)I-LS-J'J is an idempotent matrix, a¥Y is distributed as the

non-central chi-square distribution with q. degrees of freedom and non-

centrality parameter
a=n(a/o0")s3 (N0 (a7 ) s (a/an)s2 () /2 -

We illustrate with the example:
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EXAMPIE 3 (Continued) Assuming that the model is correctly specified,
d = (hga/n)F:'F:
g = (2/n)F,'F. - (2/n)zh [£(x, ) - £(x, M) 1(32/2000 )2 (x, AY)
By Taylor's theorem, for some Xn on the line segment joining k; to k:

Jn a

13 = B (R/a)Eg (L 8(xg00) = £l sA) 1% /0000 )£k, o0))

(0, - a0 (/) (3002, ) 02/, )2, 1)
whence

. ’ * 2 *
tim B8 =2 4 J’I(a/ax)f(x,x )(@7/23 )£(x,) Jau(x)

by Theorem 1. Thus'we have
7= (289 g9+ 6(1/F) .
An estimator of 02 is
s° = (n-p)'l\ly-f(in)ll2 -
The modified "likelihood ratio test statistic” is
(2s2)™1 = (25%) M en)l (1/m)lly - £ X)I - (@/wlly - 2R IF]
Clly - N2 - iy - £GIPY/2

A further division by g would convert (232)-1L to the F-statistic of the
previous chapter. Assuming correct specification, (2s2)-lL is distributed to
within op(l) as the non-central chi-square distribution with q degrees of

freedom and non-centrality parameter (Problem 9)

o = [£00) - () VEL(ELF0) I T202) - £(00) 1/ (267)
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Under specification error
(2s2)-lL ~aY + op(l)
where:

a¥ = z'g 7w (g H) "y 2/ (267 + & |le(v?) - 2B
J = (2/n)EE - (2/n)Eh Lalx, ) - £(x, ,0e) 17 (322000 ) £(x, o)

Z o~ W (-2/fR)F, Te(vd) - £0)], (bP/)E L] - O




3-5-32

PROBLEMS

1. (Cholesky factorization) The validity of the argument in the
proof of Theorems 1landl3 depends on the fact that it is possible to
factor a symmetric, positive definite matrix A as A = R’R in such a way

that R is a continuous function of the elements of the matrix A. To see

that this is so observe that

'
n  *1)
A=lo o ale = -
]
(1) Azz_J
o [ ] 1 = -
L 0 1 :O G'll : o 'rlp
- - . =- R R | N T
= ' \
r12 ] '
1 ' |
. i I 0 Dl 0 ‘ I
* 1 [} {
r
8 1p 4 L 1 _J a ' N
where
Tl T Ve1n
Ty = alk/‘/all k=2,...,p

1 = Ay - (Magydagyaiyy -

The Ty are continuous elements of A and Dl is a symmetric, positive definite

matrix whose elements are continuous functions of the elements of A, why?

This same argument can be applied to Dl to obtain

pr— | pr— ' —— p— ]
ryq 0 ‘O 1 0 g r11 Tio : rl3"'rlpj
' {

Ae rl2 r22 , 0 1 . 0 r22 : r23.. r2p
O l ——————— L—— --—-—--'.—.—--—-
1

. . { i
. . l
* II © j D2 0 ] I
| -~
| "1p Tep! L N R
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with continuity preserved. Supply the missing steps. This argument
can be repeated a finite number of times to obtain the result. The

recursion formula for the Cholesky square root method is

Ty = 894 /T k=1,2,3,...,p

= (r ey -Tily rygm)  32,3,0.00

rjk i=1 13 1k
k=3,j+1,...,p

Observe that on a computer A can be factored in place using only the upper
triangle of A with this recursion.

2. Suppose that e; converges to 9* and én converges almost surely to
8" . Iet 2(8) be defined on an open set ® and let g(0) be continuous at

o €® . Define g(8) arbitrarily off ® . Show that
A _ o
g(8,) = g(g)) + o (1) -

Let 8 be a square matrix and g(a) a matrix valued function giving the
inverse of § when it exists. If e* is nonsingular show that there is an
open neighborhood ® about 9* where each 6§ ¢ ® is nonsingular and show that
g(8) is continuous at 9* . Hint: Use HGH"[Elaela]Z ”8”“[2 jg ]%
determinant of a matrix is continuous, and an inverse is the product of the
adjoint matrix and the reciprocal of the determinant. Show that if

N (B/ak)s (X ) converges in distribution then #/n (a/ak)s (X ) is bounded in

prdbability. Show that

(H+0_ (1)Ig+ o, 1717} h (3/3N)s, (n 0 = Hy A (a/ax)sn(xflhop(l) .

3. Expand J/n h(x;) in a Taylor's series and show that

im0 0() =
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4. Verify that if the linear model
Vg = xRt ey
is estimated by least squares from data that actually follows
Ve = elrgovy) *+ ey

with et independently and normally distributed and one tests the linear

hypothesis
H: RB = r against A: RB ¥ r

then
JB (3/a0)s, (M) ~ MR (3/3M)sS(X0), 907 -

That is, Theorem12 gives the correct answer, not an approximation.
5. Verify that o =0 when the null hypothesis is true in Theorem 1L.

6. (Invariance) Consider a least mean distance estimator
S .. _ n A
A minimizes sn(k) = (l/n)2t=l S(Yt,Xt,Tn,X)
and the hypothesis

L ho o ¥ . o *
H: Xn = A against A: xn C 2 WS
Let g(p) be a twice differentiable function with twice differentiable inverse

o = ®(A) . Then an equivalent formulation of the problem is
~ PR n ~
p minimizes s [g(p)] = (1/n)z_; sly,-x.,7 .e(p)]
and the hypothesis
*
H: p; = ¢(0*) against A: p; + o()\) .
Show that the computed value of the Wald test statistic can be different for

these two equivalent problems. Show that the computed value of the Lagrange

multiplier and "likelihood ratio" test statistics are invariant to this

reparameterization.
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7. (Equivalent local power) Suppose that J* = g* and that U* = 0
so that each of the three test statistics -- W, R, L -~ is distributed as a
non-central chi-square with non-centrality parameter o Show that
sl = A’H'(HVH')'lHA/z in each case with H = (a/ax')h(x*) and

ve (gt s enH .

£im

8. PFix a realization of the errors. For large enough n, in and'i'n must
be in an open neighborhood of \* on which (az/axax')sn(x) is invertable. Why?
Use Taylor's theorem to show that for large enough n, L is exactly given as a
quadratic form in (B/Bk)sn(xn).

9. Using the identity derived in Section 6 verify the alternative form
for o given in the examples following Theorems 14 and 15.

10. Verify the claim in Assumption 13 that h(k;) = 0 for all n implies

that there is an N with )2 = x: for alln>N.
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6. ALTERNATIVE REPRESENTATION OF A HYPOTHESIS

The results of the previous section presume that the hypothesis is

stated as a parametric restriction

H: h())) = O against A: h(x;) 0.
As we have seen, .at times it is much more natural to express a hypothesis
as a functional dependency

H: X = g(p) for some p in R against A: k; * glp) for any p in R .

Suppose these two hypotheses are equivalent in the sense that there is a

once differentiable function ¢()\) defined on A such that the transformation

h(\)
()

T

p
has a once differentiable inverse

A= Y¥(p,T)
with

glp) = ¥(p,0) .
The set A is the set over which sn(X) is to be minimized when computing in'

Thus,

R={p:p=2ew(d), b(A) = 0, X in A}

is the set over which g(p) is defined; T is a g-vector and p is an r-vector
with p = r+q. To see that the existence of ©()\) implies that the two

formulations of the null hypothesis are equivalent note that
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{A:h(\) = 0, A\ in A}

= {A:x=glp), p in R}r-

Similarly, both formulations of the alternative hypotheses define the same
set of admissi:ble values for A .

Since Theorem ll is of little use without actually having h(\) at hand,
we shall pass on to Theorems 14t and 15 and show that all the required
computations can be performed knowing only g(p) . ?‘n .can be computed by
minimizing the composite function sn[ g(p)] over R to obtain B’n and putting
'"xn = g(gn) .  Similarly, k: can be computed by minimizing s°n[ g(p)] over R to
obtain p‘; and putting )\: = g(p‘;l) . The statistics R and L, the vector
(a/ax)s;(x’;) , and matrices &, ¥, U and V can now be computed directly. What

remains is to compute matrices of the form H'(HA H')-lH where A is a computable, ‘

positive definite, symmetric matrix and H = (B/B)\')h()\:) . lLet

G = (3/30")e(p}) -

We shall show that

1 1

H'(HAH')-lH = A" - A'lG(G'A‘lG)'lG’A'

for any positive definite symmetric A.

By differentiating the equations
0= n[glp)]
o =9lglp)]
and evaluating the derivatives at p =p: we have

0= HG

I= (3/ar Yo(r,)G

which implies that rank (G) = r; recall that rank (H)=q by assumption.
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Factor A as A = PP’ (Problem 1 of Section 5). Trivially HPP-J‘G-: O which implies
that there is a non-singular matrix B of order q and there is a non-singular
1

matrix C of order r such that @l = P’H'B has orthonormal columns, @2 = P GC

has orthonormal columns, and the matrix 6 = [@li @2] is orthogonal. Then

- . ’
I=[6:6,1]6

%
= 6,6] + 6,6]
= 6,(678))7Ye! + ©,(8]6,) T
- P'H/B(B'HPP'H'B) B'HP
+ P‘ch[c'G’(P’l)’P'ch]‘ c’G'(P'l)’
= pr/(gAE)HHP + Ple(e’ale) e 2y .

Whence

b
1

L eheEh

g (gan’) tu + ate(ea o) et .
To illustrate, suppose that 4 = 7 in Theorem 15. Then the non-centrality

parameter is

o

n(d/an" ) (n)g ! (59~ m) HHg (3 /a0)s2 (05)

n(3/3h)sS (N JL9 T - G(6'96) "6 1(3/aM)s% (1)

n(3/a0")s2 (M)~ (3/aM)s2 (A)

. Q * ? . . .
since (a/ax)sn(xn) = H’8 where 8 is the Lagrange multiplier.
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7. RANDOM REGRESSORS

As noted earlier, the standard assumption in regression analysis is

that the observed independent varisbles {x are fixed. With a model

n
t}t=l

such as

vy = &xpvp) + ey t=1,2, ..., n

. . n
the independent variables {Xt}t=l

enters via sampling variation in the errors {et}

are held fixed and the sampling variation

to1 + If the independent

variables are random variables then the analysis is conditional on that

realization {xt}:=l that obtains. Stated differently, the model
yt=g(xt’Y;.)+et t=l’ 2’ ""n

defines the conditional distribution of {yt}2=l given {x and the analysis

n
t}t=l

is based on the conditional distribution.
An alternative approach is to assume that the independent variables

X }n are random and to allow sampling variation to enter both through the
t t=1

n n
t t=1 t=1"

theory developed thus far is general enough to accomodate an assumption of

errors {e and the independent variables {xt} We shall see that the

random regressors and that the results are little changed save in one instance,
that instance being the misspecified model. Therefore we shall focus the
discussion on this case.

We have seen that under the fixed regressor setup the principal conse-
quence of misspecification is the inability to estimate the matrix J* from
sample information because the obvious estimator 3 converges almost surely to
J*4-u* rather than to J* . As a result, test statistics are distributed

asymptotically as general quadratic forms in normal random variables rather
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than as non-central chi-square random variables. In contrast, a consequence
of the assumption of random regressors is that U¥=0. With random regressors
test statistics are distributed asymptotically as the non-central chi-square.
Considering least mean difference estimators, let us trace through the details
as to why this is so. Throughout, J = J;, g = 9;, and U = ug -

With least mean distance estimators, the problem of non-zero u* originates

with the variables

(3/eM)s{¥ (e 5%, 5vp)s X, 570 5A] t=1,2, ..., n

that appear in the proof of Theorem 4. In a correctly specified situation,
sensible estimation procedures will have the property that at each x the

minimum of

J‘estx(e,x,y;),x,v;,udp(ei

will occur at A\ = k; . Under the regularity conditions, this implies that

o
[l

(B/BK)IES[Y(e 3X9Y;) ;X,T;sk;]dP(e)

Ie(a/ax)s[Y(e,x,y;),x,T;,X;]dP(e) .

Thus, the random variables
—_ o (o] [e]
Zt(et) - (B/BK)SEY(et ’x.t)"{n) 3Xt’Tn’Xnt\
have mean zero and their normalized sum

(1 )5p 2, ()

has variance-covariance matrix
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3= (/n)mg_, j‘ezt(e)z;;(e)dP(e)

which can be estimated by 3 . But in an incorrectly specified situation the
mean of Zt(et) is

U't = Jne(a/a)\)s[Y(e,xt,y;) ,Xt,T;,)\;]dP(e) .

In general e ¥ 0 and By varies systematically with x Under misspecification,

£

the normalized sum
n
(1/Va) 2,2,
has variance-covariance matrix

J = (1/n>z§=ljeczt<e> - Xz, (e) - b, YaB(e)

~
as before but J is, in essence, estimating

3+ (L/n)E why

Short of assuming replicates at each point X » there seems to be no way to

form an estimate of
1 ’
U= (1/n)g_qw b/ -

Without being able to estimate U, one cannot estimate J .

The effect of an assumption of random regressors is to convert the
deterministic variation in By to random variation. The By become independently
distributed each having mean zero. From the point of view of the fixed
regressors theory, one could argue that the independent variables have all
been set to a constant value so that each observation is now a replicate. We

illustrate with Example 3 and then return to the general discussion.
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EXAMPLE 3 (Continued) To put the model into the form of a random
regressors model within the framework of the generél theory, let the data

be generated according to the model
- (o]
y(l)t = g(Y(z)t’ Yn) + e(l)t 3

V(2)t = %(2) ¥ ()t °

which we presume satisfies Assumptions 1 through 3 with X, = 1 and p the measure

putting all its mass at x = 1 ; in other words, Xy enters the model trivially.

The y(z)t are the random regressors. Convention has it, in this type of

analysis, that y(z)t and e(l)t are independent whence P(e) is a product measure

dP(e) = dP(l)(e(l)) X dP<2)(e(2)) .
The fitted model is
y(l)t = f(y(Z)t’X) tou, t=1, 2, -'-; n

and A is estimated by in that minimizes

' 2
Sn()\) = (l/ﬂ)gilEY(l)t - f(y(z)t,)\)] .
Let v be the measure defined by

Iu S(Y(z))dv(y(z)) = I& 8(“(2) +e(2))dP(2)(e(2))
(2) (2) :

where u(z) is the set of admissible values for the random variable y(z) . We

have:
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s(¥53:0) = [y(1y - 275y, M 17

o 2 o 2
s5(0) = 0y + IU Lely(p)vp) - £(y(p)s M T av(y 5y)

(2)
(a/aX)S;(K) = =2 IU [8(Y(2):Y;) - f(Y(z):l)]Z(a/ak)f(Y(z)sl)dV(Y(a))
(2) | |
X; minimizes Iu [g(y(z),vg) - f(y(e),x)lzdv(y(z))
(2)

The critical change from the fixed regressor case occurs in the computation
of
- [o]
J z (e)ar(e) = | (3/3M)s[ ¥ (e,x,5v7 ) »x 5N JaP(e) [
e e x=1
t

Let us decompose the computation into two steps. PFirst compute the conditional
mean of Zt(e) given that Y(2) = Y(2)t

we = J o ZyleqryreayiBa)(eqr))

. &)

= [S(Y(a)t,Y;) - f(Yﬁz)t,K;)](a/ak)f(Y(g)t,X;) .

Second compute the mean of by

Iu uth(Y(z))
(2)

Iu [S(Y(z):vg) - f(Y(2):X;)](3/aX)f(Y(2),X;)dv(y(z))
(2)

(3/3X)s;(x;)

=0
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because )‘(;1 minimizes s‘r’l(x) . Consegquently

\

jazt(e)dp(e) =0

*
and W=U = 0. One can see that in the fixed regressor case the conditional

mean b, of s[Y(e,x,y;),x,)\;] given the regressor is treated as deterministic

t
quantity whereas in the random regressor case the conditional mean “'t is
treated as a random variable having mean zero.
Further computations yield:
2
= d f N (d/an! °)dv
J “"u)fu( )< [N 23512 (3/30 )Gy ()X )8V(5 ()
2

g = ZIU( )(a/ak)f(y(z),k‘:l)(a/a)\')f(y(z),k;)dv(y(z))
2

-2 IU( )Eg(y(é)w;) - f(y(a),X;)](BZ/BXBX’):E'(Y(Z),k‘r’l)dv(y(z)) .
2
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Returning to the general case, use the same strategy employed in the

exemple to write

Q(Y:X,Y;) = e(l) = Q(l)(Y(l):Y(z):Y;)
(2) Y(2) = *(2)

with x = 1 and

y(z) is the random regressor. The reduced form can be written as
Ya) = Tl Ye) v

V(2) = %2) " %(2) -

Let v be the measure such that

J g(y(z))dv(y(z)) = [ (b (p) +e(2))dP(2)(e(2))
¥(2) (2

where U(z) is the set of admissible values of the random regressor y(2).
The distance function for a least mean distance estimator will have the

form

S(Y(l):Y(z):T,)\) .

Since the distance function depends trivially on x_, we have

t

S;(K;) = IGSEY(l)(e(l)’p(Z) + 3(2)’Y:): ON (2)? T;,k;]dP(e)

= .,ru(z)j'e(l)s[Y(l)(e(l),Y(z)’Y;):Y(e):“';:x;] dP(l)(e(l))d\)(y(2)) .



A

3-7-8

A

Since (B/ak)s;(k;) = 0 and the regularity conditions permit interchange of‘\
differentiation and integration we have

‘fu(z)‘ra(l) (a/a)\)S[Y(l) (e(l) ’y(2) :Y;) 9Y(2) ,T;,)\;]dP(l) (e(l))d\’(y(g) )=0

*
whence W =U = 0. Other computations sssume a gimilar form, for example

(o]
b

g = J‘u( )I e, )(az/axax’)sty(l)(e(l),y(z),v;),y(z),'rn W18R 1) (e(1))av( (5))
2 1

Sample quantities retain their previous form, for example

3 = (l/n)itl__:l(az/a)*a)\’)S(y(l)t’y-(a)t’:rn’in) .

For a method of moments estimator, in typical cases one can exploit the

structure of the problem and show directly that

Iu(a)ja(z)m[Y(l)(e(l):Y(g):Y;),Y(g),Tg,k;]dP(l)(e(l))dv(y(a)) =0.

*
This implies that K= K = O whence U = W =0. The remaining computations

are modified similarly to the foregoing.
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8. CONSTRAINED ESTIMATION

Throughout we shall assume that the constraint has two equivalent

representations:

*
Parametric restriction: h(A\) = 0, XA in A ,

Functional dependency: X\ = g(p), p in® ,

where h: RP - R% s 8 RS > RP s and r+gq = p. They are equivalent in the

sense that the null space of h(\) is the range space of g(p) :
*
Ag={x:n(X) =0, xin A} = {a: A =2glp), p inR} .

We also assume that both g(p) and h(\) are twice continuously differentiable.

From
@

Welp)) = 0

we have

(3/37\" )L g(p)I(3/3p )glp) = HG = O

If rank [H’ ! G] = p,we have from Section 6 that for any symmetric, positive

definite matrix &
sc'ge) o’ = ¢t - golwr e tu) tugt

Section 6 gives a construction which lends plausibility to these assumptions.
Let the data generating model satisfy Assumptions 1 through 3. Let
the objective function sn[g(p)] satisfy either Assumptions 4 through € or

Assumptions 8 through 11. Let
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”

P, minimize s [g(p)] ,
p; minimize s‘;l[g(p)] R
p* minimize s*[g(p)] .

Then from either Theorem 3 or Theorem 7 we have that

*
2 p almost surely ,

. ~
1mn_)mpn

[t}

. *
Lim p; p almost surely ,

and from either Theorem 5 or Theorem 9- that
ry o 8 ¥ =1l ¥, ¥.-1
o (B, -pR)-=000, (7))77 3 (7)™

The matrices J: and ,7: are of order r by r and can be computed by direct
application of Notation 2 or Notation 6. In these computations one is
working in an r-dimensional space not in a p-dimensional space. We
emphasize this point with the p-subscript: .;9: ) 9: , and u* . To

p
illustrate, computing according to Notation 2 one has:

LI.: = Ij‘ {(a/ap)S[Y(E,X,y*),x,'r*,g(p*)] dP(e)}
xe

x {fe(a/ap)SEY(e,x,v*),X,T*,g(p*)]dP(e)}'du-(X)

9= [ [ 1@/ )l(esny ), a6 )

x [(3/3p)sl¥(e,xy ) ,x,m 58(p )1} aB(e) du(x) - u:
¥ _ 2 I\ ¥ *
7 = (3 /aoap)s [elo )] -
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* *
Estimators of Jp and gp are computed according to Notation 4 or Notation

9. To illustrate, computing according to Notation 4 one has:

3
e
%

(1/n)eh_{ (3/30)sLy, »x, 7 »8(0 )1} (3/2p)sLyy 5%, »T 88 ,) 1Y

n

(1/n)5p_, (3% /303 )sly, »%,,7 60 ) ]

As to testing hypotheses, the theory of Section 5 applies directly.
The computations according to Notation 3 or Notation 8 are similar to
those illustrated above.

Often results reported in terms of
X, = 86))
-are more meaningful than results reported in terms of 5n . As an instance,
one wants to show the effect of a restriction by presenting in and its

(estimated) standard errors together with’xn and its (estimated) standard

errors in a tabular display. To do this, let

A = &(p?)
W = gl

By continuity of g(p)

Limnam ?; = k# almost surely
. * L #
zlmnaw kn =\ .
#

Note that A" is not equal to k* of either Section 3 or Section 4 unless the

Pitman drift assumption is imposed. From the Taylor series expansion




3-8-k
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gp.) - &%) = (6" +o (1)1 4R (B_-p2)
* *
where G = (3/3p’)g(p ) we have that
*, £ *, % -1 %, ¥ -1 %,
B (R -2 =oN00,67(F) 78 ()6 1D
The variance-covariance matrix is estimated by
~ =1 ~ =1a,
G2l G
0" 30)
where & = (3 /ap')g(an) . Let ’é‘n be the Lagrange multiplier for the minimi-

zation of sp(A) subject to h(A)=0 and let
2 , ~ ;. o
T = %/ s (X)) + T n(X))

One can show that (Problem 1)
2 =8'T6
P
and using the chain rule with either Notation 4 or Notation 9 one finds that
3 =638
p
where J = Jn(kn) . Thus
" -1 ~ A, An, N _lk,rg,. A, _lhl
G(Qp) 39(90)01 =G(6'Te)"G6'IG(E’'¥e) 6

Using the identity given earlier on, bne has

= ¥ RO RIS -2 (rE M) Tt

Where ® = (a/ax')h(xn) . The right hand side of this expression can be

computed from knowledge of sn(x) and h(}\) alone.
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Similarly, if

N

*
minimizes s (A\) subject to h(\) = O

with Lagrange multipliers B#

*, ®=1 ¥, k-1 ¥,
G (,?p) Jp(?p) G

s romas e tag e -t e (us~tw )y tt

where
H= (a/ax')h(x#)
£ = (/) [* (W) + ')
g =307 .

Under a Pitman drift, 8 = O and the expression that one might expect from

the proof of Theorem 13 obtains.
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PROBLEMS
1. sShow that the equation h[g(p)] = O implies
2
£5-1(3/3%,) b [&(p)] (3°/3p;30 ), (p)

= -5y (%200 [a(p)](3/20)e, (0) (3/20; ), o) -

Suppose that X = g(p) minimizes s(\) subject to h(A) = O and that § is

the corresponding vector of Lagrange multipliers. Show that
£, (3/38,)s0(5)1(2%/30 ;30 ,)g, (5)
’ ~ 2 el A PS
= Th) Ty Tay 8,(37/30 20,00 (M) (3/20,)e, (5)(3/20,)8,(5) -

Compute (az/apiapj)s[ g(a)] and substitute the expression above to cbtain

(3% /3030 )s[e(8) 1 = [ (3/30")8(8) 1 (32 /3xar ) s(X) +B'u(R) T (3/30 )e(5)] -
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Almost sure convergence

defined, 3-5-18
Assumption 1,
Assumption 2,
Assumption
Assumption
Assumption
Assumption
Assumption
Assumption
Assumption 9,
Assumption 10,
Assumption 11,
Assumption 12, 3-4-44
Assumption 10, 3-5-5
Asymptotic normelity

consequences of misspecification, 3-3-44

of least mean distance estimetors, 3-3-42

of method of moments estimators, 3-4-38, 3-4-48
Asymptotic normality of scores

least mean distance estimators, 3-3-36

method of moments estimators, 3-4-35
Centering nuisance parameter estimators, 3-4-42
Central Limit Theorem, 3-2-11
Cesaro Sum Generator

alternative computational formulas, 3-2-10

consequence of accelerated convergence in misspecified

situations, 3-3-44

defined, 3-2-7

introductory discussion, 3-2-5

probability of conditional failure, 3-2-17
Cholesky factorization, 3-5-32
Compact parameter space

discussion, 3-2-19
Conditional analysis

defined, 3-2-14

detailed discussion of probability structure, 3-2-15
Conditional distribution

of the dependent variables, 3-2-18

of the errors, 3-2-17
Consistency

of least mean distance estimators, 3-3-15

of method of moments estimators, 3-4-31
Constrained estimation

asymptotic normality, 3-8-2, 3-8-4

consistency, 3-8-2, 3-8-3

variance formulas, 3-8-2, 3-8-5
Constraint

equivalent representations, 3-6-1], 3-8-1
Convergence in distribution

defined, 3-2-19
Data generating model

defined, 3-2-3
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for least mean distance estimators, 3-3-6
for method of moments estimators
defined, 3-4-1
discussed, 3-4-23
Efficiency of method of moments estimators, 3-4-40
Efficient score test
asymtotic distribution, 3-5-23
discussed, 3-5-6
Equicontinuity
defined, 3-2-9
Equivalent local power of Wald, likelihood ratio, and
efficient score tests, 3-5-34
Estimaeted parameter
discussed, 3-3-3
Estimation space
defined, 3-2-1, 3-3-5
Fixed regressors, 3-7-1
Functional dependency, 3-6-1, 3-8-1
General inference problem
introductory discussion, 3-2-1
Hartley-Booker estimator, 3-1-3
Heteroscedastic errors
reduction to cannonical form, 3-2-4
Identification condition
least mean distance estimators
defined, 3-3-5
example, 3-3-7
method of moments estimators
defined, 3-4-5
discussed, 3-4-6
example, 3-4-7
Infinite dimensional parameter space
examples, 3-2-21, 3-2-22
Instrumental veriable estimator
example, 3-1-2
Lagrange multiplier test
asymptotic distribution, 3-5-23
defined, 3-5-6
discussed, 3-5-6
Least mean distance estimator
constrained, 3-3-4
defined, 3-1-1, 3-3-1, 3-3-4
introductory discussion, 3-1-1
summary of results, 3-5-2
Likelihood ratjio test
alternate form, 3-5-29
asymptotic distribution, 3-5-27
defined, 3-5-7
discussed, 3-5-7
M-estimator
Iteratively rescaled M-estimator
example, 3-3-2, 3-3-7, 3-3-12, 3-3-21, 3-3-26,
3-3-30, 3-3-34, 3-4-26
Scale invariant M-estimator
example, 3-4-2, 3-4-7, 3-4-11
Method of moments estimator,
constrained, 3-4-1
defined, 3-1-3, 3-4-1
introductory discussion, 3-1-2
summary of results, 3-5-2




Misspecification
defined, 3-1-1
example, 3-5-8, 3-5-11, 3-5-16, 3-5-25, 3-5-30
Nonlinear least squares under specification error
example, 3-5-8, 3-5-11, 3-5-16, 3-5-25, 3-5-30
Notation 1, 3-3-4
Notation
Notation
Notation
Notation
Notation
Notation
Notation 8,
Notation 9,
Null hypothesi
defined, 3-5-1
Parameter space
defined, 3-2-3
Parametric restriction
defined, 3-6-1, 3-8-1
Pitman drift
consequence of in constrained estimation, 3-3-45, 3-4-44
consequence of in misspecified situations, 3-3-44
examples 3-2-21, 3-2-22, 3-3-59
introductory discussion, 3-2-1
Random regressors
consequence of in misspecified situations, 3-3-44, 3-7-1
Regular conditional probsability ,
defined, 3-2-16
example, 3-2-16
Sample objective function
for least mean distance estimators
almost sure limit, 3-3-4
defined, 3-3-4
expectation, 3-3-4
for method of moment estimators
almost sure limit, 3-4-4
defined, 3-4-1
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Score
defined, 3-3-35
see also asymptotic normality of the scores
Specification error
see misspecification
Tail equivalence
defined, 3-3-38
Theorem 1, 3-2-7
Theorem 2, 3-2-11
Theorem 3, 3-3-17
Theorem 4, 3-3-36
Theorem 5, 3-3-42
Theorem 6, 3-3-47
Theorem 7, 3-4-31
Theorem 8, 3-4-35
Theorem 9, 3-4-48
Theorem 10, 3-4-45
Theorem 11, 3-5-12
Theorem 12, 3-5-18
Theorem 13, 3-5-20
Theorem 14, 2-5-23
Theorem 15, 3-5-27
Underlying probability space
formal description 3-2-20
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Underlying probability space
formal description 3-2-20
Uniform Strong Law of Large Numbers, 3-2-7
Wald test statistic
alternative forms, 3-5-14
asymptotic distribution, 3-5-12
defined, 3-5-6
discussed, 3-5-6
lack of invariance of, 3-5-6, 3-5-35




