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Chapter 3. A Unified Asymptotic Theory of Nonlinear Statistical Models

After reading a few articles in the nonlinear models literature one

begins to notice that each discussion follows roughly the same lines as the

classical treatment of maximum likelihood estimation. There are some technical

problems having to do with simultaneously conditioning on the independent

variables and subjecting the true parameter to a Pitman drift which prevent

the use of the classical methods of but the basic impression of

similarity is correct. An estimator-- be it nonlinear least squares, three-

stage nonlinear least squares, or whatever-- is the solution of an optimiza-

tion problem. And the objective function of the optimization problem can be

treated as if it were the log-likelihood to derive the Wald test statistic,

the likelihood ratio test statistic, and Rao's efficient score statistic.

Their asymptotic null and non-null distributions can be found using arguments

fairly similar to the classical maximum likelihood arguments. In this chapter

we exploit these observations and develop a unified asymptotic theory for

nonlinear models. That which escapes this unification is that which has

objective function which is not twice continually differentiable with respect

to the parameters - minimum absolute deviations regression for example.

The model that generates the data need not be the same as the model that

was presumed to define the optimization problem. Thus, these results can be

used to obtain the asymptotic behavior of inference procedures under specifi-

cation error. For example, it is not necessary to resort to Monte Carlo

simulation to determine if an exponential fit is robust against other plausible

growth models. The asymptotic approximations we give here will provide an

analytic answer to the question, sufficiently accurate for most purposes.
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An early version of this chapter appeared as Burguete, Gallant, and Souza

(1982) together with comment by Huber (1982), Phillips (1982), and White (1982).

This chapter differs from the earlier work in that the Pitman drift assumption

is isolated from the results on estimation. See especially Phillips (1982)

Comment and the Reply as to the subtle differences this can make.
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1. INTRODUCTION

An estimator is the solution of an optimization problem. It is

necessary to divide these optimization problems into two groups and study

these groups separately. Afterwards, one can ignore this classification

and study inference in unified fashion. These two groups are least mean

distance estimators and method of moments estimators.

these in turn.

We shall define

Multivariate nonlinear least squares is an example of a least mean

distance estimator. The estimator for the model

t = 1, 2, ... , n

where Yt is an M-vector is computed as follows. Firstly, least squares
,.

residuals eit are obtained by fitting the univariate models

i = 1, 2, ... , M; t = 1, 2, ... , n

A A A A )'individually by least squares. Let et = (elt , e2t , ..• , 1Mt and

The multivariate nonlinear least squares estimator is that value awhich
minimizes

A general description of estimators of this type is: a least mean distance
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esttmator is that value which minimizes an objective function of then
form

The literature subsumed by this definition is: Single equation nonlinear

least squares - Jennrich (1969), Malinvaud (1970a), Gallant (1973, 1975a,

1975b). Multivariate nonlinear least squares - Malinvaud (197Ob), Gallant

(1975c), Holly (1978). Single equation and multivariate maximum likelihood -

Malinvaud (197Ob), Barnett (1976), Holly (1978). Maximum likelihood for

simultaneous systems - Amemiya (1977), Gallant and Holly (1980). M-esttmators-

Balet-Lawrence (1975), Grossman (1976), Ruskin (1978). Iteratively rescaled

M-estimators - Souza and Gallant (1979).

Two-stage nonlinear squares is an example of a method of moments

estimator. The esttmator for the ath equation

t = 1,2, •.• , n

......

of a simultaneous system of M such equations --- Yt is an M-vector --- is

computed as follows. One chooses instrumental variables Zt as functions of

the exogenous variables xt • Theoretical discussions of this choice consume

much of the literature, but the most frequent choice in applications is low

order monomials in xt ' viz.

The moment equations are

* *and the true value e of e is presumed to satisfy em (e ) = O. (Note thatn

qa(Yt,xt,e) is a scalor and Zt is a vector.) The two-stage least squares
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A

is defined as the value e which minimizes

A general description of estimators of this type is as follows. Define

moment equations

and a notion of distance

where we permit a dependence on a random variable T via the argument T inn

m(y,x,T,A) and d(m,T) so as to allow preliminary estimates of nuisance

parameters as in three-stage least squares.

minimizes

A

The estimator is that A whichn

Estimators which are properly thought of as method of moment estimators,

in the sense that they can be posed no other way, are: The Hartley-Booker

estimator - Hartley and Booker (1965). Scale invariate M-estimators - Ruskin

(1978). Two-stage nonlinear least-squares estimators - Amemiya (1974).

Three-stage nonlinear least-squares estimators - Jorgenson and Laffont (1974),

Amemiya (1977), Gallant and Jorgenson (1979).

In both least mean distance estimation and method of moments estimation,

one is led to :regard an estimator

function Sn(A). This objective

as the value which minimizes an objectiven

function depends on the sample [(Yt'xt ) :

t =1,2, •.. , n} and possibly on a preliminary estimator T of some nuisancen

parameters. Now the negative of s (A) may be treated as if it were a likeli-n

hood function and the Wald test statistic Wn, the likelihood ratio test statistic
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L , and Rao's efficient score test statistic R may be derived for a nulln n

hypothesis H: h().) = 0 against its alternative A: h().) * o. Almost all

of the inference procedures used in the analysis of nonlinear statistical

models can be derived in this way. It is only a matter of finding the

appropriate objective function s ().) .n

We emerge from this discussion with an interest in four statistics ---

Wn, L , R --- all of which depend on s ().). We should like to findn n n
their asymptotic distribution in three cases: the null case where the model

is correctly specified and the' null hypothesis h().) = 0 holds, the non-null
case where the model is correctly specified and the null hypothesis is

violated, and in the case where the model is misspecified. By misspecifi-

cation, one has in mind the following. The definition of an objective

function s ().) which defines the four statistics of interest is motivatedn

by a model and assumptions on the error distribution. For example, the

multivariate nonlinear least-squares estimator is predicated on the assumption

that the data follow the model

Yt = f(xt , e) + et ' t = 1, 2, •.• , n

and that the errors have mean zero. Misspecification means that either the

model assumption or the error assumption or both are violated. We find that

we can obtain an asymptotic theory for all three cases at once by presuming

that the data actually follow the multivariate implicit model

t = 1, 2, ... , n

where y, q, and e are M-vectors and the parameter y may be infinite dimensional.

That is, we obtain our results with misspecification and violation of the null

hypothesis presumed throughout and then specialize to consider correctly

specified null and non-null situations. The following results are obtained.
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The least mean distance estimator , the estimator which minimizesn

is shown to be asymptotically normally distributed with a limiting variance-
-1 -1 ... ?Icovariance matrix of the form 9 J 9 . Consistent estimators J and ifn n

are set forth. Two examples --- an M-estimator and an iteratively rescaled

M-estimator --- are carried throughout the development to illustrate the

regularity conditions and results as they are introduced.

Next, method of moments estimation is taken up. The method of moments

estimator , the estimator that minimizesn

is shown to be asymptotically normally distributed with a limiting variance-
-1 -1 "tocovariance matrix of the form 9 J 9 . Again, consistent estimators .:Jn

...
and 9 are set forth. The example carried throughout the discussion is an
scale invariant M-estimator.

Both analyses --- least mean distance estimation and method of moments

minimizing s (A) isn n

asymptotically normally distributed with a limiting variance-covariance

matrix that may be estimated consistently by using and j as intermediaten n
statistics. As a result, an asymptotic theory for the test statistics W ,n
L , and R can be developed in a single section, Section 5, without regardn n
to whether the source of the objective function Sn(A) was least mean
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distance estimation or method of moments estimation. The discussion is

illustrated with a misspecified nonlinear regression model fitted by

least squares.

Observe that a least mean distance estimator may be cast into the

form of a method of moments estimator by putting

because which minUnizes

solves

If one's only interest is the asymptotic distribution of ,then posing then
problem as a method of moments estimator is the more convenient approach as

algebraic simplifications of the equations m (A) = 0 prior to analysis can• n

materially the computation of the parameters of the asymptotic

distribution. However, one pays two penalties for this convenience: the

problem is no longer posed in a way that permits the use of the statistic

L , and consistency results are weaker.n
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2. THE DATA GENEBATING MODEL AND LIMITS OF CESARO SUMS

The objective is to find aSY'31ptoticapprCllCimations in

situations such as the following. An ana1¥sis is predicted on the assumption

that the data were generated according to the model

t ... 1,2, ... , n

when actually they were generated according to

t = 1,2, ... , n •

One estimates A by tn that mintmizes sn(A) over the estimation space A and
*tests H: A-A by, say,

The estimator is estimating a value AO induced by f(x) which is computed

according to formulas given later. Thus, one is actually testing the null

hypothesis H: AO =A*. Depending on the context, a test of H: AO =A* when the
data is generated according to

t = 1,2, ... , n

and not according to

mayor may not sense. In order to make a judgement as to whether the

inference procedure is sensible it is necessary to have the (asymptotic approxi-

mation to the) sampling distribution of Wn •

A problem in 1eriving asymptotic approximations to the sampling distribution

of Wn is that if AO :I: A* then Wn will reject the null hypothesis with probability
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one as n tends to infinity whence its limiting distribution is degenerate.

The classical solution to this problem is to index the parameter as and

subject it to a rate of drift such that - A*) converges to a finite

limit, called a Pitman drift. Thus, we need some mechanism for subjecting

the true model g(x) to drift so as to induce the requisite drift on .

One possible drift mechanism is the following. Suppose that the inde-

pendent variables are confined to a compact set 1. and that f(x,A*) is continuous

*on 1.. Then f(x,A. ). has a polynomial expansion

* CD * if(x,A ) = 11.=0 Yi X

by the Stone-Weierstrass theorem. If the data is generated according to the

sequence of models

* *="t + Yl x0

* * * 2= YO + Y x + Y2 x1

gjx) * * * 2 * 3= Yo + Yl x + Y2 x + Y3 x

n = 1
n = 2

n = 3

then AO will converge to that A* specified by H: A= A*. Convergence can ben
*accelerated so that lim. - A ) is finite by changing a few details

(Problem 2). The natural representation of this scheme is to put

g (x) = g (x,yO) = r,CDi 0 xin n = l.n

and let

* * 0, ... )

* * *'Y2 = ('YO ,'Yl' 'Y2 ,0, ... )
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We see trem this discussion that the theory should at least be general

enough to accommodate data generating models with an infinite dimensional

parameter space. Rather than working directly' with an infinite dimensional

parameter space, it is easier to let the para:neter space be an abstract metric

space (r ,p). To specialize to the infinite dimensional case, let r be the

collection of int'in1te dimensional vectors and put p (y ,yO). Iy i - yi I

or scme other convenient metric (Problem. 2).
To specialize further to the finite dimensional case, let r =RS and put

p(y,yO) := -yiI2rk .
Moving on to the formal assumptions, we assume that the observed data

is generated according to the :odel

t =1, 2, ... , n

with xt • 1., Yt • 11, et c e, and • r. The dimensions are: xt is a k- .

vector, Yt and et are M-vectors, and (r ,p) is an abstract metric space with

scme point in r. The observed values of Yt are actually' dOUbly' indexed and

form a triangular array

Yl1 l:1= 1

Y12 Y22 n = 2
Y13 Y23 Y33 n= 3

due to the dependence of on the sample size n. This second index will

simply be understood throughout.
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ASSUMPr!ON 1. The errors are independently and identically distributed

with common distribution P(e) •

Obviously, for the model to make sense, some measure of central tendenc,y

of P(e) ought to be zero but no formal use is made of such an assumption. If

P(e) is indexed by parameters, they cannot drift with sample size as may yO •
n

The assumption appears tp rule out heteroscedastic errors. Actually it

does not if one is, willing to presume that the error variance-covariance matrix

depends on the independent variable xt '

Factor t-l(xt ) as R'(Xt ) R(xt ) and write

R(xt)q(Yt'xt,yO) =R(xt)et •
n

Then R(xt)et is homoscedastic. If one is willing to assume a common distribution e
for R(Xt }et as well then Assumption 1 is satisfied. Note that the actual

construction of R(Xt ) is not required in applications as estimation is based only

on the known function sn(;")' Similarly, many other apparent departures from

Assumption 1 can be accommodated by presuming the existence of a transformation

(q(y,x,y(1)),x,y(2)] that will yield residuals that satisfy Assumption 1.

The model is supposed to describe the behavior of some physical, biological,

economic, or social system. If so, to each value of (e,x,yO) there should

correspond one and only one outcome y. This condition and continuity are imposed.

ASSUMPTION 2. For each (x,y) e 1 X r the equation q(y,x,y) = e defines a
one-to-one mapping of e onto denoted as Y(e,x,y) Moreover, Y(e,x,y) is

cont inuous on e X 1:. X rand r is compact.
It should be emphasized that it is not necessary to have a closed form

expression for Y(e,x,y), or even to be able to compute it using numerical
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in order to use the statistical methods set forth here. Inference is based

only on the known function s (A). The existence of Y(e,x,y) is needed butn

its construction is not required. This point is largely irrelevant to

standard regression models but it is essential to nonlinear simultaneous

equation models where Y(e,x,y) is often difficult to compute. Since r
be taken as [y*'Yl'Y2"" J if desired, no generality is lost by assuming
that r is compact.

Repeatedly in the analysis of nonlinear models a Cesaro sum such as

must converge uniformly in (yO ,A) to obtain a desired result. If results
are to be useful in applications, the conditions imposed to insure this

uniform. convergence should be plausible and easily recognized as obtaining

or not obtaining in an application. The conditions imposed here have

evolved in Jennrich (1969), Malinvaud (1970a), Gallant (1977a), Gallant and

Holly (1980), and Burguete, Gallant and Souza (1982).

As motivation for these conditions, consider the sequence of independent

variables resulting from a treatment-control experiment where the response

depends on the age of the experimental material. Suppose subjects are

randomly selected from a population whose age distribution is FA(·) and then

subjected to either the treatment or the control. The observed sequence of

independent variables is

Xl = (1, al ) treatment

(0, a2) control

x = (1, a3) treatment3
x4 = (0, a4) control
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Let Fp(') denote the point binomial distribution with p =t and set

Then for any continuous function f(x) whose expectation exists,

for almost every realization of tXt) by the strong Law of Large Numbers. The

null set depends on the function f(x) which would be an annoyance-as the

discussion flows more naturally if one has the freedom to hold a realization of

tXt} fixed while permitting f(x) to vary over a possib1¥ uncountable collection

of functions. Fortunate1¥, the collection of functions considered later is

dominated and we can take advantage of that fact now to eliminate this dependence

of the null set on f(x). Consider the following consequence of the generalized

Glivenko-Cantelli Theorem.

'.

PROPCSITION1. (Gallant and Holly, 1980) Let Vt , t = 1, 2, ••• be a sequence
of independent and identical1¥ distributed s-dimensional random variables defined

on a complete probability space (O'Cb,Po)with common distribution \). Let \)

be absolute1¥ continuous with respect to some product measure on RS and let b

be a non-negative function with JbciV < CD. Then there exists E with PO(E) = 0
such that if w • E

for every continuous function with If(v)l S b(v) •

The conclusion of this proposition 1escribes the behavior that is required

of a 3equence vt : xt or vt = (et,xt )
is called a Cesaro Sum Generator.

As terminology for it, such a sequence
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DEFmITION. (Cesaro Sum Generator; Gallant and Holly, 1980) A sequence

(vt } of points from a Borel set u is said to be a Cesaro Sum Generator with

respect to a probability measure defined on the Borel subsets of u and a
dominating function b(v) with <: co if

for every real valued, continuous function f with If( v) I S b (v) .
We have seen that independent variables generated according to an experi-

mental design or by random sampling satisfy this definition. Many other

situations such as stratified or cluster sampling will satisfy the definition

as well. We shall assume, below, that the sequence (xt } upon which the re-

sults are conditioned is a Cesaro Sum Generator as is almost every joint

realization (et,xt )}. Then we derive the Uniform Strong Law of Large Numbers.

ASSUMPrION 3. (Gallant and Holly, 1980) Almost every realization of (vt }

with vt = (et,xt ) is a Cesaro Sum Generator with respect to the product measure

and dominating function b(e,x). The sequence (xt } is a Cesaro Sum Generator

with respect to and b(x) = Sb(e,x) dP(e). For each x c I there is a neigh-
e

borhood N such that S sup.._ b(e,x) dP(e) <: co •
x e -l'lx

THEOREM 1. (Uniform Strong Law of Large Numbers) Let Assumptions 1

through 3 hold. Let <B,d> and <T,p> be compact metric spaces and let

f(y,x,6) be continuous on 11 X I XB. Let

If(y,x,s)1 S , b[q(y,x,y),xJI or equivalently If(Y(e,x,y),x,SJ\Sb(e,x)

for all (y,x) c X I and all (S,y) c B X r where b(e,x) is given by
Assumption 3. Then both
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(lin) (.1 f(Y't,xt,a) and

(lin) J f(Y(e,xt,y), xt,J) dP(e)e
converge unif'oI'lD.J¥ to

over B )( r except on the event E with PaCE) = a given by Assumption 3. Recall

that the unif'ozm limit of'continuous functions is continuous.

PROOF. (Jennrich, 1969) Let v = (e,x) denote a typical element of'

lJ = e )( 1., let a = (e ,y) denote a typical element of' A = B X A, and let

[vt } be a Cesaro Sum Generator. The idea of' the proof is to use the

Dominated Convergence Theorem and Cesaro summability to show that

where

h(v,a) = f(Y(e,x,y), x,eJ

is an equicontinuous sequence on A. An equicontinuous sequence that has a

pointwise limit on a compact set converges un1f'orm11; see, for example,

Chapter 9 of Royden (1963).

First, in order to apply' Cesaro summability, we show that sup Oh(v,a)ac
and 1nf' Oh(v,a) are continuous for ars::r OCA; they are obviously' dominated bya.
bee ,x). Put T(a,aO) =Ci( S,1° ) + o2(y ,yO )]t ·l1hence <A, T> is a compact metric
space. Let VO in lJ and I >0 be given. Let Vbe a compact neighborhood of' VO

and let 0 be the closure of 0 in < A, T> whence < 0, T > is compact. By

h(v,a) is continuous on lJ x A so it is uniformly continuous on

V x O. Then there is a 5> 0 such that for all Iv - VO I< 5 and a c 0

This establishes continuit:y' (Problem 4).



A sequence is equicontinuous if for each I > 0 and aO in A there is

a 5 > 0 such that T(a ,aO) < 5 implies sup Ih (a) - h (aO) I < I. When each·n n n

hn(a) is continuous over A it suffices to show that sUP_-.1\Tlh (a) -h.(aO) I<c
u.."11 n n .

for some finite N. Let .>0 and 5>0 be given and let 05= (a: T(a,aO)<5}.

By the Dominated Convergence Theorem and continuity

J,im5-+Q I supo h(v,a) -h(v,aO) dv(v)
l.r 5

= J h(v,a) - h(v,aO) dV(v)
l.r 5

= 0

Then there is a 5 >0 such that T(a,aO) < 5 implies

By Cesaro Summabllity, there is an N such that n>N implies

suPo h (a) -h (aO) -J suPO h(v,a) -h(v,aO) dV(v) < «/2
5 n n l.r 5

whence

for all n > N and all ,.(a,aO) < 5 .

yields

- c < h (a) - h (aO) < cn n

A similar argument applied to infO h (a)
5 n

for all n > N and all ,.(a ,aO) < 5. This establishes equicontin'.lity.

To show that

where

h(x,a) = J' f[Y(e,x,y),x,i] dP(e)
e
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is an equicontinuous sequence, the same argument can be applied. It is

to show that ii(x,er) is continuous on 1 X A and daninated by

b(x). Now

\ii(x,er)\ s J \h(v,er) I dP(e) S J b(e,x) dP(e) • b(x)e e
which establishes domination. By continuity on \t X A and the Dominated

Convergence Theorem with sUllr b(e,x) of Assumption 3 as the dominatizrg function,
XO

J,1m(x,er) .. (XO,ero )h(x,er) • JeL1m(x,a) .. (XO ,ero )h( e ,x,er) dP(e)
• J h(e,r' ,erO) dP(e)e
-( ° 0)• h x ,er •

This establishes continuity. a
In typical applications; an error density pee) and a Jacobian

are available. With these in hand, the conditional density

p(y\x,VO) • \det J(y,x'VO)\p[q(y,x,VO)]

may be used for computing limits of Cesaro sums since

JSf(Y(e,x,vO) ,x,V] dP(e) d..(x)
Ie
· J J f(y,x,v) p(ylx,vO) dy d..(x) .
171

The choice of integration tormulas is dictated by convenience.
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The main use of the Uniform strong Law is in the following type of

argument:

implies

,.. *An =)., ,

suPAlsn ().,) - s*(A)1 = 0,
S*(A) continuous

because

Is ) -s*(A*)1 = Is + -s*(A*)1nn nn n n n

I * I * ,.. * * 1SUPA s (A) - s ().,) + Is (A ) - s (A )
l\ n n n

We could get by with a weaker result that merely stated:

,., * *tim s (A ) = s (A )n n

for any sequence with

tim =).,*n .

For the Central Limit Theorem, we shall make do with this weaker notion of

convergence:

THEOREM 2. (Central Limit Theorem) Let Assumptions 1 through 3 hold.

Let < r ,p > be a compact metric space; let T be a closed ball in a Euclidean

*space centered at T with finite, nonzero radius; and let A be a compact

subset of a Euclidean space. Let [yO} be a sequence from r that convergesn
* ,.,to y ; let (Tn} be a sequence of random variables with range in T that

converges almost surely to T*; let (TO} be a sequence from T with In('T _TO)n n n
a sequence from A that converges to A* .bounded in probability; let (AO} ben

Let f(y,x,T,A) be a p-vector valued function such that each element of
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f(y,X,'1',A), f(y,x,r,),,) f'(y,X,'1',A), and (o/O'1")f(y,x,'1',),,) is continuous

on X I X T X A and dominated by b[q(y,x,y) ,x] for all (y,x) c X I and

all (y ,'1' ,),,) c r X T X A; b (e,x) is given by Assumption 3. If

SS * * *(0/0'1') f(Y(e,x,y ),X,'1' ,)" ] dP(e) = 0 ,
I e

then

where

= S f(Y(e,x,y),X,'1',A] dP(e)
e

* S' * **, * ** *I = J f(Y(e,x,y ) ,X,'1' ,A J f [Y(e,x,y ) ,X,'1' ,)" ] dP(e) - u
Ie

* S *** *** .u = ,'1' ,)" ) ,A )
I

*I may be singular.

PROOF. Let

Z(e,x,y,'1',A)

= f(Y(e,x,y),X,'1',A] -S f(Y(e,x,y),X,'1',),,) dP(e) .
e

Given L with \ILI\=l consider the triangular array of random variables

Zt = L 'Z( et ,xt,yO ,To ,),,0)n n n n t=1,2, ••. ,n; n=1,2, ••.

Each Ztn has mean zero and variance

= dP(e) L •

Jl 2 (0 0 0) (* * *)Putting Vn = 2,;t=1cYtn ' by Theorem 1 and the assumption that Yn,'1'rf>'; = y ,'1' ,)"

*it follows that Lim (l/n)V = L'I L (Problem 5). Now (l/n)V is the variancen n
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of and if t'I*t = 0 then converges in distribution

* *to N(O,t'I t) by Chebyshev's inequality. Suppose, then, that t'I t>O. If

it is shown that for every c > 0 tim B =0 where

B = I [t'Z(e,xt,yO ,'1"0 ,>..O)][t'Z(e,xt,yO ,To ,>..0))2 dP(e)
n n n n n n n

n

then tim (n/V)B = O. This is the Lindberg-Feller condition (Chung, 1974);
IH= n n

it implies that converges in distribution to N(O,t',I*t) .
- * * *Let '11 :> 0 and c > 0 be given. Choose a :> 0 such that B(y ,T ,>.. )<11/2

where

-( * * *) S [ '( * * *) [ , ( * * *) 2 () ()B Y ,T ,>.. = j I t Z e ,x,y ,T ,>.. ) t Z e ,x,y ,'1" ,>.. ] dP e x .
ItClzl>ca]

-( * * *)This is possible because B y ,T ,>.. exists when a =0 .
function q)(z) and an Nl such that, for all n>Nl '

and set

Choose a continuous

By Theorem 1, B (y,'1",>..) converges uniformly on r X T X A to, say, B(y,T,>..) •n
* * *By assumption (Problem 5) tim (yO ,To ,>..0) = (y ,T ,>.. ) whencen n n

'" ",***tim B (yO ,To ,>..0) =B(y ,T ,>.. ). Then there is an N2 such that, for alln n n n
'" (0 ° °) "'( * * *) / }n > N2 , Bn Yn,Tn ,>; < B y ,T ,>.. +h 2. But for all n> N=max[Nl ,N2 '
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By Taylor's theorem, expanding about TO ,n

-where Tn lies on

*surely to T •

the line segment joining T to TO; thusn n
( 0 - 0)The almost sure convergence of y , T ,An n n

the uniform almost sure convergence of

-Tn converges almost
* * *to (y ,T ,A ) and

over r X T X A given by Theorem 1 imply that

converges almost surely (Problem 1) to e·

Since In (;n - is bounded in probability we have that

-

= Ztn + S'p(1)

L N(O,t'I*,t) •

This holds for every t with 1\ t 1\ =1 whence the desired result obtains. 0
In the main, small sample regression analysis is conditional. With a

model such as

t=1,2, ... ,n

the independent variables are held fixed and the sampling variation enters

via the errors el , e2 , •.. ,en. It seems appropriate, then, to maintain this
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conditioning when passing to the limit. This is what we shall do in the

sequel. One fixes an infinite sequence

that satisfies the Cesaro summability property and all sampling variation
00

enters via the random variables (et}t=l. To give an unambiguous description

of this conditioning, it is necessary to spell out the probability structure

in detail. The reader who has no patience with details of this sort is

invited to skip to the next section at this point.

We begin with an abstract probability space (O,GO'po) on which are
defined random variables and which represent the errors and

independent variables respectively. Nonrandcm independent variables are
.

represented in this scheme by random variables that take on a single value

with probability one. A realization of the errors can be denoted by an

infinite dimensional sequence

where et =Et (w) for some W in O. Similarly for the independent variables

Let eoo = and I oo = so that all joint realizations of the errors

and independent variables take their values in e X I and all realizations
00 00

of the independent variables take their values in I
00

Using the Daniell-Kolmogorov construction (Tucker, 1967, Section 2.3),

this is enough to define a joint probability space

(e X I ,G. , \) )
00 00 e,x 00
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such that if a random variable is a function of (e , x ) one can performco IlO

all computations withrespect to the more structured space (e X I ,u ,v)
IlO IlO e ,x co

and one is spared the trouble of tracing pre-images back to the space

(O'Uo,Po). Similarly one can construct the marginal probabillty space

(I ,u ,IJO ) •co X IlO

Assumption 3 imposes structure on both of these probab ility spaces. The

set on which Cesaro 'summability fails jointly

has v measure zero. And the set on which Cesaro summability fails marginally
IlO

has IJo measure zero.
IlO

By virtue of the construction of (e X I ,u ,v) from countable families
co co e , x co

of random variables, there exists (Loeve, 1963, Sec. 27.2, Regularity Theorem)

a regular conditional probability p(Alxco ) connecting the joint and the marginal

spaces by

v (A) =Sp(Alx ) dlJo (x ) .
co I co co co

Recall that a regular conditional probability is a mapping of u X X intoe,x co

[O,lJ such that p(Alx ) is a probability measure on (e Xl, u ) for each
co co co e ,x

fixed x , such that p(Alx ) is a measurable function over (1 ,u ) for eachco co co x
fixed A, and that S P(A\x_) dlJo (x ) = v [A n (e X B)J for every B in u .B - co co co co X

f }co }coThe simplest example that comes to mind is to assume that l.Et t=l and (Xt t=l

are independent families of random variables, to construct (e ,u ,P ), and
co e e

to put
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p(Alx ) = J IA(e ,x ) dP (e ) •
CX) e CX) CX) e CX)

CX)

Define the marginal conditional distribution on (e , u ) by
CX) e

P I (E Ix ) = p(Exl Ix ) .
ex,CX) eo eo

All probability statements in the sequel are with respect to P I (Elx ) .
e x CX)

Assumption 1 puts additional structure on P I (Elx ). It states that
ex· CX)

P I (Elx ) is a product measure corresponding to a sequence of independent
e x CX)

random variables each having common distribution Pee) defined over measurable

subsets of e. This distribution can depend on xeo • For example,

could be a sequence of independently and normally distributed random variables

each with mean zero and variance-covariance matrix •

But as indicated by the discussion following Assumption 1, this dependence

on x is very restricted. So restricted, in fact, that we do not bother to
CX)

reflect it in our n:)tation; we do not index P of Assumption 1 by x •
CX)

If all probability statements are with respect to P I (Elx ) then thee x eo

critical question becomes: Does the set where Cesaro summability fails

conditionally at x = XO
CX) CX)

have conditional measure zero? The following computation shows that the

answer is yes for almost every choice of XO :
CX)



PI (FO l IxO) =J I (e) dP I (e IxO)e x e.x 00 e 00 e,x 00 00

00 e\x

s J L (e ,x ) dI{ (e ,x'lxO]e xx. e,x 00 00 00 "af 00
00 00

= P(F IxO)e,x 00

Since

'I) (F ) =J P(F IxO) (XO) = 0
00 e,x X. e,x 00 00 00

we have

P I IxO) = 0 a.e. (x.exexoo 000000

3-2-18

(marginal IxO)

(marginal !XO)

(joint IxO)

(joint IxO)

(joint IxO)

Since the parameter yO is subject to drift, it is as well to spell outn
a few additional details. For each n, the conditional distribution of the

dependent variables given Xoo and is defined by

P (Alx ,yO) = P \ [e c e : [Y(et,x1,yO), •.. ,Y(e ,x ,y0)J cAlx 1noon e x 00 00 n n n n 00

for each measurable subset A of A statement such as converges

almost surely to A* means that is a random variable with argumentn .

(Yl"" ,yn,xl "" ,xn) , and that Pe\x(Elxoo ) = 0 where
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E = Ue>On;=lU:=j(eCD : - A*I >eJ/ 0'

(Yt'Xt ) =[Y(et,xt,yn ) ,Xt ]

A statement that - A*) converges in distribution to a multivariaten

normal distribution N('\5,V) means that for A of the form

it is true that

. ,. *
.tim p (In(A -A ) cAlx ,yO) = J dN(zI5,V)n CD n A

One may prefer an analysis that treats xt as random rather than fixed.

The theory that we shall develop is general enough to accommodate this

assumption. The details are spelled out in Section 7.

We shall assume that the estimation space A is compact. Our defense of

this assumption is that it does not cause problems in applications as a

general rule and it can be circumvented on an ad hoc basis as necessary

without affecting the results. We explain.

One does not wander haphazardly into nonlinear estimation. As a rule,

one has need of a considerable knowledge of the situation in order to

construct the model. In the computations, a fairly complete knowledge of

admissible values of A is required in order to be able to find starting
values for nonlinear optimization algorithms. ThUS, a statistical theory

which presumes this same knowledge is not limited in its scope of

applications •. Most authors apparently take this as the assumption

of a compact estimation space is more often encountered than not.

One may be reluctant to impose bounds on scale parameters and parameters

that enter the model linearly. Frequently these are regarded as nuisance
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parameters in an application and one has little feel for what values they

ought to have. Scale parameters are often computed from residuals,so start

values are unnecessary,and, at least for least squares, linear parameters

need no start values either (Golub and Pereya, 1973). Here, then, a compact

parameter space is an annoyance.

These situations can be accommodated without disturbing in the least

the results obtained here as follows. Our results are asymptotic, so if

there is a compact set A' such that for each realization of (et } there is

an N where n>N implies

then the asymptotic properties of are the same whether the estimationn

space is A or A'. For examples using this device to accommodate parameters

entering linearly, see Gallant (1973). See Gallant and Holly (1980) for

application to scale parameters. Other devices, such as the use of an

initial consistent estimator as the start value for an algorithm which is

guaranteed to converge to a local minimum of s (A), are effective as well.n
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PROBLEMS

1. Referring to the discussion following Theorem 2, show that if

(Xt } and (Et } are independent sequences of random variables,then P (Elx)
e!x co

does not depend on x .
CD

2. (Construction of a Pitman drift). Consider the example of the

first few paragraphs of this section where the fitted model is

t = 1, 2, ... , n

but the data actually follows

t = 1, 2, ... , n

where

The equality is with respect to uniform convergence. That is, one restricts

*attention to the set r of y = (YO' Yl' ... ) with

and g(x,y) denotes that continuous function on [O,lJ with

Take Y as equivalent to yO and write y =yO if g(x,y) = g(x,yO) for all x in
[O,lJ. Define

ItjJ_o(yo -yC:)xjl .
xc[O,lJ - J J
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*Show that (r ,p) is a metric space on these equivalence classes
(RoYden, 1963, Section 7.1 ). If the model is fitted by least squares,

if f(x,),,) is continuous over [0,1] XA, and if the estimation space A is

compact we will show later that

Assume that f(x,),,) and [xt } are such that has a unique minimum for

n larger than some N. By the Stone-Weirstrass Theorem (Royden, 1963, Section

*9.6 ) we can find a yO in r with

That is,

Show that it is possible to truncate yO at some point m such that ifn

then

° - ( °Yn - Yo' Yl' ••• , Ym ' ,
n

... )

for n > N. Hint: See the proof of Theorem 3. Show that

Let r = (yO }= Show that (r,p) is a compact metric space.n n=N'

3. (Construction of a Pitman drift). Let g(x) be once continuously

differentiable on a bounded, open, convex set in Rk containing I. By

rescaling the data, we may assume that I c 0,2'I'T] without loss of

generality. Then g(x) can be in a multivariate Fourier series.
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The restriction y =y wherer -r
ir'xe = cos(r'x) + i ain(r'x) and i = ",-1 •

Letting r denote a multi-index, a multi-index being a vector with integer

(positive, negative, or zero) components and letting Irl = a

multivariate Fourier series of order R is written t y eir'x with
Irl:5R r

the overbar denotes complex conjugation will cause the Fourier series to be

real valued. We have (Edmunds and Moscatelli, 1977)

Construct a Pitman drift using a multivariate Fourier expansion along the

same lines as in Problem 2.

4. Show that if for any E> 0 there is a 0> 0 such that Iv - Vo , < I)

implies that

for all in $ then sup and inf are continuous.

5. Referring to the proof of Theorem 2 , show that

[J,'f[Y(e,x,y),x,'I',A.]12:5 b(e,x) implies that

J 2 J 2[ J,'f[Y(e,x,y),x,'I',A.] dP(e)}:5 [J,'f[Y(e,x,y) ,X,'I' ,A.]} dP(e):5b(x) .
e e

6. Show that if;' converges almost surely to 1'* and - 1'0) isn n n
*bounded in probability then J,im ,.0 = l' •
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3. LEAST MEAN DISTANCE ESTIMATORS

,.
Recall that a least mean distance estimator is defined as the

solution of the optimization problem

,.
where T is a random variable which corresponds conceptually to esttmatorsn
of nuisance parameters. A constrained least mean distance estimator!n is

the solution of the opttmization problem

Minimize: s (A) subject to h(A) = 0n

where h( A) maps RP into RCl .

The objective of this section is to find the almost sure limit and the
,.

asymptotic distribution of the unconstrained estimator under regularity

conditions that do not rule out specification error. Some ancillary facts

regarding the asymptotic distribution of the constrained estimator under

a Pitman drift are also derived for use in later sections on hypothesis

testing. In order to permit this Pitman drift, and to allow generality that

may be useful in other contexts, the parameter yO of the data generatingn
model is permitted to depend on the sample size n throughout. A more con-

ventional asymptotic theory regarding the unconstrained esttmator is

obtained by applying these results with yO held fixed at a point y* for alln
n. These results are due to Souza (1979) in the main with some refinements

,.
made here to center about a point so as to isolate results regarding
,.
An from the Pitman drift assumption.

An example, a correctly specified iteratively rescaled M-estimator, is

carried throughout the discussion to illustrate how the regularity conditions

may be satisfied in correctly specified situations.
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EXAMPLE 1. (Iteratively rescaled M-esttmator) The data generating

model is

t = 1,2, ... , n.

An estimate of scale is obtained by first minimizing

with respect to a to obtain en where

p(u) = tn cosh(u!2)

and then solving

with respect to T to obtain T wheren

= (d!du)p(u) = t tanh (u!2)

and is the standard normal distribution function. The parameters of the

model are estimated by minimizing

whence

S(y,x,T,)..) = p([y - f(X,A)]/T} •

The error distribution Pee) is symmetric, puts positive probability on

every open interval of the real line and has finite first and second moments.

See Huber (1964) for the motivation. 0
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The first question one must address is: What is to be regarded asn
estimating in a finite sample. Ordinarily, in an asymptotic estimation

theory, the parameter'.,o of the data generating model is held fixed and

would be regarded as estimating the almost sure limit ).* of in each

finite sample. But we have both misspecif1cat1on and a parameter VO thatn
1s subject to drift and either of these situations is enough to make that

answer to the question unsatisfactory. If we· regarded as centered aboutn
*its almost sure limit). (Theorem 3), we would find 1t necessary to impose

a Pitman drift, accelerate the rate of convergence of Cesaro sums generated
c A *from (Xt}t=l' or impose other regularity conditions to show that -). )

is asymptotically normally distributed. Such conditions are unnatural in

an estimation setting. A more satisfactory answer to the question is

obtained if one regards as estimating that is the solution to

TO 1s defined later (Assumption 4). With this choice, one can show thatn
is asymptotically normally distributed without unusual regularity

conditions. Moreover, in analytically tractable situations such as a linear

model fitted by least squares to data that actually follow a nonlinear model,

it turns out that ).0 is indeed the mean of in finite samples.n n
We call the reader's attention to some heavily used notation and then state

the identification condition:



NOTATION 1.

Sn(A) =

= dP(e)e
* J * *s (A) = J s[Y(e,x,y ),X,T ,A] dP(e)

1. e
minimizes s (A)n n

t minimizes Sn(A) subject to h(A) = 0n

)..0 minimizesn

* subject to h(A) =0A minimizesn
* *A minimizes s (A)

3-3-4
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ASSUMPTION 4. (Identification) The parameter yO is indexed by nand

the sequence (yO} converges to a point y*. The sequence of nuisance parametern

estimators is centered at a point TO in the sense that .;neT - TO) is boundedn n n
in probability; the sequence converges to a point T* and converges

* s* f\)almost surely to T. V" has a unique minimum. over the estimation space

* *I\. at A •
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The critical condition imposed by Assumption 4 is that S*(A) must

*have a unique minimum over A . In a correctly specified situation, the

usual approach to verification is to commence with an obviously minimal

identification condition. Then known results for the stmple location

problem that motivated the choice of distance function S(y,x,T,A) are
* * *exploited to verify a unique association of A to y over A . We illus-

trate with the example:
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EXAMPLE 1. (Continued) We are trapped in a bit of a circularity

in that we need the results of this section and the next in order to

compute the center TO of the nuisance parameter estimator T and to shown n
that .lii(T - TO) is bounded in probability. So we must defer verifi-. n n

cation until the end of Section 4. At that time we shall find that

*TO T > 0 which fact we shall use now.n'
*To verif¥ that s (A) has a unique minimum one first notes that it will

be impossible to determine Aby observing (Yt'xt } if f(x,A) = f(x,y) for
A * y at each x in X. that is given weight by the measure Then a minimal

identification condition is

A * y = f(x,A) * f(x,y)} > 0

This is a condition both on the function £(X,A) and the infinite sequence

Now for T>O

cp (0) =Jp[(e + 0 )iT] dP(e)
e

is known (Problem 9) to have a unique minimum at I:> = 0 when Pee) is symmetric

about zero, has finite first moment, and assigns positive probability to

every nonempty, open interval. Let

I:>(x) = f(x,y) - f(x,A) .

If A * y then cp[ I:> (x)] ;;:: cp( 0) for every x. Again, if A * y the identifica-
tion condition implies that q{1:>(x)] > ep(O) on some set A of positive

measure. Consequently, if A* Y
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* *** * * * . *Now s (),,) = s (y ,'I" ,),,) so that s (),,) > cp(O) if A* y and s (A) "" cp(O) J.f )" = Y

which shows that S*(A) has a unique minimum at A= y* •

A similar argument can be used to compute It runs as follows. Let

Since SO(A) = SO(yO,'I"0,),,), SO(A) has a minimum at A = yO. It is notn n n n n n
necessary to the theory which follows that be unique. Existence is all

that is required. Similar1¥ for 0
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We shall adjoin some technical conditions. To comment, note that the

almost sure convergence Unposed in Assumption 4 implies that there is a

*sequence which takes its values in a neighborhood of T and is tail

equivalent (Lemma 2) to;' • Consequently, without loss of generality, itn

may be assumed that Tn takes its values in a compact ball T for which T*

is an interior point. Thus, the effective conditions of the next assumption

are domination of the objective function and a compact estUnation space A*.

As noted in the previous section, a compact estUnatian space is not a

serious restriction in applications.
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* A }ASSUMPTION 5. The estimation space A is compact; and are

contained in T which is a closed ball centered at with finite, nonzero

radius. The distance function is continuous on 16XX.XTXA* and

Is(y ,)..) I S b[q(y ,x,y) ,x] on 16 xx. XT XA* xr; b(e,x) is that of
Assumption 3.
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The exhibition of the requisite dominating function b(e,x) is an ad hoc

process and one exploits the special characteristics of an application.

We illustrate with Example 1:

e"
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EXAMPLE 1. (Continued) Now p (u) :5 (1/2) lui (Problem 9) so that

Is(y,x,'i,'}.JI = p[[e + f(x,y) - f(x,).)J/'i)

s + f(x,y) - f(x,).) I/'i

S [ 1 e I + suPr ' f(x,y) I + sup;1 f(x,'}..) IJ/min T •

Suppose that r = A* and that sUPr If(x,y)1 is Then

bl(e,x) =[1 e 1+ 2 SUPrlf(x,y)IJ/min T

will serve to dominate s(y,X,'i,).,). If X is compact then bl(e,x) is

integrable for any To see this observe that f(x,y) must be continuous

over X X r to satisfy Assumption 2. A continuous function over a compact

set is bounded so sUPr f(x,y) is a bounded, measurable function.

Later (Assumption 6 ) we shall need to d::>minate

\I (%).)s(y,X,'i,).)\1

= \I'f[[ e + f(x,y) - f(x,).,)]/'i}(%).,)f(x,).,)/'ill

:5 sUPrl\ (a/a).,) f(x,).,)I\/min T

since l'f(u) I = I(1/2) tanh (u/2) I :5 (1/2). Thus

serves as a dominating function.

One continues the construction suitable bl(e,x), b2(e,x), ... to

dominate each of the functions listed in Assumptions 4 and 6. Then the

overall dominating function of Assumption 3 is

b(e,x) = I:.b. (x,e) .
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This construction will satisfY the formal logical requirements of the theory.

In many applications X can be taken as compact and P(e) to possess enough

moments so that the domination requirements of the general theory obtain

trivially. 0
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We can now prove that is a strongly consistent estimator of A*;n
first a lemma, then the proof:
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LEMMA L Let Assumptions 1 through 5 hold. Then sn(),,) converges almost
* * *surely to s (),,) uniformly on I\. and SO(A) converges to s (),,) uniformly onn

*I\. .

PROOF. We shall prove the result for s (),,). The argument for SO(A)n· n
is much the same (Problem 1). Now

sup *ls (),,) - s*(),,) II\.'n

S

- SS ,A] dP(e)
I e n n

+ sup *IS S s[Y(e,x,yO),X,T ,A] dP(e)
I\. Ie n n

SS * * \- s[Y(e,x,y ),X,T ,),,] dP(e)
Ie

s sup s[Y(et,xt,y),Xt,T,AJr )(T )(A

- SS s[Y(e,x,y),X,T,),,] dP(e)
Ie

+ sup S ,A]
I\. Ie n n

* *- s[Y(e,x,y ),X,T ,),,]\dP(e)

= sup *fn(y,T,A,) + supr )(T )( I\. I\.

* *Since r )( T X I\. is compact, and s (y ,x, T, AJ is continuous on 1j X I X T X I\.

with ls(y,x,T,A)1 S for all (y,x) in U XI and all (y,T,A) in

*r X T X I\. we have, by Theorem that sup *f (y,T,A) converges almost
r XT xl\. n

surely to zero. Given any converges to, say,

(yO ,TO ,AO) we have, by the Dominated Convergence Theorem with 2b(e,x) being

the dominating function, that .tim g(y ,T ,A) = g(yO,TO,AO). This shows
lHCO nnn
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Moreover, sup *g(y,T,A) is
A

continuous in (y,T); see the proof of Theorem 1 for details. Then, since

(yO,T) converges almost surely to (y*'T*)' sup ,A) converges almostnnAnn
surely to zero. 0
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THEOREM 3. (Strong consistency) Let Assumptions 1 through 5
,. * 0 *Then A converges almost surely to A and A converges to A •n n
PROOF. If a realization [et } of the errors is held fixed then

becomes a fixed, vector-valued sequence and (Sn(A)} becomes a fixed

sequence of functions. We shall hold fixed a realization (et } with the

* *attribute that sn (A) converges uniformly to s (A) on A ; almost every

realization is such by Lemma 1. If we can show that the corresponding
,. *sequence converges to A then we have the first result. This is the

plan.

*Now lies in the compact set A . Thus the sequence } has atn
Ita #Itt #lit ,.

least one limit point A and one subsequence (A } with .tim A =A. Now,n J:!HCO nm m
by uniform convergence (see Problem 2),

* ,. ,.
s (A) = .timlIl"'kDsn (An)

m m

*S (A )
m

o
,. *Then (A } has only the one limit point A •n

*An analogous argument implies that AO converges to A (Problem 3).n

is a minimizing value.n
.. *implies A = A •

.. *where the inequality is due to the fact that Sn(An) S Sn(A ) for every n as

The assumption of a unique minimum, Assumption 4,
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The following notation defines the parameters of the asymptotic
A

distribution of An
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NOTATION 2.

fi(>..) =S [J (%),.)s[Y(e,x,y*),x,r*,i..] dP(e)} [S (%i..)s[Y(e,x,y*),x,"'*,i..]dP(e)}' dJ,J.(x)
lee

j(A) = SS [(O/OA)S[Y (e,x,y*) ,x,.,.* ,i..]H (O/OA)S[Y( e,x,y*) ,X,'"* ,i..]}' dP(e) dJ,J.(x) - ij(i..)
I e

- S 2 * *,(>..) = S (0 /OAoi..')s[Y(e,x,y ),x,T ,A] dP(e) dJ,J.(x)
I e

* : * * - * *: *J = J(A ) , 9 = '(A) , u =U(i.. )
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If this were maximum likelihood estimation w'i th s(y ,X,T ,).) = -.en p(ylx'A) ,

then J* would be the information matrix and the expectation of the

Hessian of the log likelihood. Under correct specification one would have

u* =0 and J* = (Section 7).

We illustrate the computations with the example.
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EXAMPLE 1. (Continued) The first and second derivatives of

S(y,X,T,A) are:

(O/OA)S(y,X''',A) = (%).)p [[y-f(x,).)]/T}

= (oi./T )'f[[Y - f(x,).) ]/T} (0/0).) f(x,).)

= (1/T2)'f'([y - f(X,).)]/T}[ (%).)f(x,).)J[ (%).)f(x,).)J'

- (l/T)'f[[y - f(X,A)]/T}(02/0).0).')f(x,i..) •

*Evaluating the first derivative at y = f(x,y) + e, l' = ,. , and). = y we have

S (%).)s[Y(e,x,y),X,T*,).] dP(e)l
e y=A

* *= (-1/1' )S 'f(e/T ) dP(e) (O/OA) f(x,).)
e

*= (-1/1' )(0)(0/0).) f(x,).)

= 0

because 'f(e/T) is an odd function, that is 'feu) = 'f(-u), and an odd function
*integrates to zero against a symmetric error distribution. Thus, U = o. In

*fact, U is always zero in a correctly specified situation when using a

sensible esttmation procedure. To continue, writing e'f2(e/,.*) for S 'f2(e/T*) dP(e)
* eand e'f'(e/T ) for S (d/dU)Y(U)! *dP(e), we have

e u =efT

S [(0/0).)s[Y(e,x,y),X,T*,).]}[(0/0).)s[Y(e,x,y),X,T*,A]1'dpee)'
e y=).

= (1/,.*)2 ey2(e/T*)[(0/OA)f(X,A)][(0/0)')f(X,).)]'



and

Thus,

and
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2 * Is (0 /OAOA')s[Y(e,x,y),X,T ,A] dP(e)
e y=A

* 2 *= (l/T) )[(O/OA) f(X,A)][(O/OA) f(X,A)]'

J* = (1/T*)2e [(O/OA) f(X,A*)][(O/OA)f(X,A*)J'
x.

= [(%A)f(x,A*)][ (O/OA)f(X,A*)]' 0
x.
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In Section 5, the distributions of test statistics are characterized

in terms of the following quantities:



NOTATION 3.
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nO _ n ('I. 0) 1.40 _ ii ('I. 0 )
'ffn-tFnl\n' n- nl\n



We illustrate their computation with Example 1:
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EXAMPLE 1. (Cont inued ) Let

'i'([e+f(x,yO) -f(x,A)J/,.O} dP(e) ,e n n

=.r 'i'2([e+ - dP(e) - ,
e

I:lt(A)=S 'i"([e+f(x,yO) - f(x,A)J/,.O} dP(e) .e n n

Note that if one evaluates at 1.= then = 0, = e. ,

and Bt(AO) = e 'i"(e/,.O) which eltminates the variation with if onen n
*evaluates at 1.= "n then the variation with t remains. We have by direct

computation that

U(A) = [(%A)f(Xt , 1.)][ (%A)f(Xt , A)J' ,

J(>..) = [(%A)f(xt,A)][ (%A)f(xt,>..)J' ,

9{A) = et(A)[ (%A)f(xt,A)J[ (%A)f(xt,A)]'

-' (o2/oAOA')f(Xt,A). 0



Same plausible esttmators of J* and --- or of (Jo ,n n
*) respectively depending on one's point of view --- aren
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and

as follows:
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NOTATION 4.

JnCA) =

9nCA) =

j = JnC P=9nC ') = Jn = 9ncrn)
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We illustrate the computations and point out same alternatives using

Example 1.

0_
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EXAMPLE 1. (Continued) Let

then

jn =

9n =
- .

Alternatives that are similar to the forms used in least squares are

with
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Some additional, technical restrictions needed to prove asymptotic

normality are:



ASSUMPrION 6.
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*The parameter space A contains a closed ball A centered

*at A with finite, nonzero radius such that the elements of

(O!OA)S(y,X,T,A), (02!OAOA')S(y,X,T,A),(o2!OTOA')S(y,X,T,A), and

continuous and dominated by

*b[q(1 ,x ,y ) ,x] on 11 )( I )( r )( T )( A. Moreover, is nons ingular and

SI 2 * * *(0 !OTOA')s[Y(e,x,y ),X,T ,A J dP(e) = O.
I e
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The integral condition is somettmes encountered in the theory of

maxUnum likelihood estimation; see Durbin (1970) for a detailed discussion.

It validates the application of maximum likelihood theory to a subset of

the parameters when the remainder are treated as if known in the derivations

but are sUbsequently estimated. The assumption plays the same role here.

It can be avoided in maximum likelihood estimation at a cost of additional

complexity in the results; see Gallant and Holly (1980) for details. It

can be avoided here as well but there is no reason to further complicate

the results in view of the intended applications. In an application where

the condition is not satisfied, the simplest solution is to estimate Aand
T jointly and not use a two-step esttmator. We illustrate with the example:
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EXAMPLE 1. (Continued)

2, * *1 2 *(0 /OTO)" )s[Y(e,x,y ) ,X,T ,).. ) J = (l/T )['l:'(e/T) + 'l:" (e/THe/T) J(%)")f(x,).. )
* *y =)..

Both 'l:'(e/T) and 'l:"(e/T) (e/T) are odd functions and will integrate to zero for

symmetric P(e). 0
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The derivatives or the distance runction plays the same role here as

does the derivative or the log density runction or score in likeli-

hood estimation. Hence,we use the same terminology here. As with the scores

in maxtmum likelihood esttmation, their normalized sum is asymptotically

normally distributed:
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THEOREM 4. (Asymptotic normality of the scores) Under Assumptions

1 through 6

*J may be singular.

PROOF. By Theorem 2

Domination permits the interchange of differentiation and integration

(Problem 11) and is defined as a minimizing value whence

= O. 0
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We can now show that i is asymptotically normally distributed.n
First we prove two lemmas:
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LEMMA 2. (Tail Let be a of vector-valued

random variables that take their values in A* C RP and that converge almost

* *surely to a point A in A • Let [sn(A)} be a of real valued random

* *functions defined on A. Let g(A) be a vector-valued function defined on A •

Let AO be an open subset of RP with A*. AO C A*. Then there is a sequence

of random variables that take their values in AO, that satisfy

for ever,y a 0, and such that:

*i) If (O/OA)Sn(A) is continuous on AO and minimizes Sn(A) over A

then

for ever,y a > 0.
on AO, if (%A')h(A)

*sn(A) over A subject to h(A) =0 ,
ii) If (O/OA)Sn(A) and (%A')h(A) are continuous

*full rank at A= A , and if >-n minimizeshas

then there is a vector A of (random) Lagrange multipliers such thatn

(O/OA')[S ) + a'h(r )] = 0 (n-a )n n n on s

for ever,y a > 0.

PROOF. The idea of the proof is that eventually An is in AOand has,

*itself, the desired properties due to the almost sure convergence of A to A .n

Stating that the residual random variables are of almost sure order 0 (n-a)s
is just one way of expressing the fact that the requisite large n depends

on the realization ret} that obtains; that is, the convergence is not uniform
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We shall prove ii. By Problem 5 (0/0).,' )h().,) has full rank on some

*open set with)., c c !l.0 • Define

*Fix a realization [et } for which =)., ; almost every realization is

such. There is an N such that n > N implies A C for all n> N. Sincen

is open and An is the constrained optimum we have that An exists and that
=).,n n

(%).,')[sn().,n) + = 0

= 0

(Bartle, 1964, Sec. 21). Then,trivially,

Lim - g(\ )1\ =0n-tea n "n

LimlHCClnall (0/0).,')[ sn().n) + = 0,

Lim = O. 0''11
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LEMMA 3. Under Assumptions 1 through 6, interchange of differentiation

and integration is permitted in these instances:

* * *(%),,)s (),,) =SS (%),,)s[Y(e,x,y ),X,T ,),,] dP(e)
'Ie

2 * SS 2/ * *(0 /o)"o),,')s (),,) = (0 o)"o),,')s[Y(e,x,y ),X,T ,),,] dP(e)
X e

(0/0),,) = dP(e),
e

= dP(e) •
e

Moreover:

*Lim (%),,)So(),,) = (%),,)s (),,) uniformly on A,IHCO n

Lim (02/0),,0),,')sO(),,) = (02/0),,0),,')s*(),,) uniformly on A,IHCO n

*Lim (%),,)s (),,) = (%),,)s (),,) almost surely, uniformly on A,
Il-7CO n

Lim (02/0),,0),,')s (),,) = (02/0),,0),,')s*(),,) almost surely, uniformly on A.n

*PROOF. (Interchange) We shall prove the result for (%),,)s (),,), the

argument for the other three cases being much the same. Let)" in A and [h } bem
any sequence with =0 and)" - in A where is the i th elementary

vector. By the Mean Value Theorem,

* * * *[s[Y(e,x,y ),X,T ,),,] - s[Y(e,x,y ),X,T ,)"

= (%)".)s[Y(e,x,y*),X,T*,),,- h-lll

where 15. (e,x)1 =::; h • (One can show that h (e,x) is measurable but it is notm m m
necessary for the validity of the proof as the composite function on the right

hand side is measurable by virtue of being equal to the left.) Thus

* *[s ( ),,) - s ()" - h ) ]/hm m

=SS (%)".)s[Y(e,x,y*),x,t,)" -5. (e,x)s·] dP(e)
X e m
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By the Dominated Convergence Theorem, with b(e,x) being the dominating

fUnction, and continuity
* * *(o/OA.i)s (A.) = (A.) - s O,"hm!;i)]/hm

=SS tim (o/OA..)s[Y(e,x,y*),x,t,A.-fi d\.lo(x)xe 1. m 1.

* *=SI (O/OA..)s[Y(e,x,y ),X,T ,A.]dP(e) d\.lo(x) •
X e 1.

(Uniform convergence) The argument is the same as that used in the

proof of Lemma 1. 0
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THEOREM 5· (Asymptotic normality) Let Assumptions 1 through 6 hold. Then:

A * *J converges almost surely to J + tL

° *J converges to J ,n

converges almost s;;u:ely to ,

*1:. converges to .n

PROOF. By Lemma 2, we may assume without loss of generality that
All
An' c A and that (o/OX)Sn(An ) = °s(n-

2) , = 0(n-2), see

Problem 6.

By Taylor's theorem

where has rows

and};,. lies on the line segment joining AO to . Now both AO and i1n n . n n n
* -converge almost surely to A by Theorem 3 so that A. converges almost1n

to ),,*. Also, converges almost to (O/OA')(O/OAi)s*(X)

uniformly on A by Lemma 3. Taking these two facts together (Problem 2),

converges almost surely to (02/0),,0),,')s(;"*). By interchanging integration and

differentiation as permitted by Lemma 3, = (02/0;"OA')S*(t). Thus we may
_ * A_1.

write:; =:; + 0 (1) an::!, as (%;")s ()" ) = 0 (n we may writes n n s

+ 0 (1) - lO) = -jD.(O/OA)S (XO) + 0 (1) •s n On n n s

The first result follows at once from Slutsky's theorem (Serfling, 1980,

Sec. 1.5.4 or Rao, 1973, Sec. 2c.4).
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By Theorem 1, with Assumption 6 providing the dominating function, and

( 0'" ,..) (* * *)the almost sure convergence of y ,T ,A to y ,T ,A it follows thatn n n
,.. ,.. * * *tim [J (A ), (A ) ] = (J + u. ) almost surely (Problem 7). Similarn n n n

arguments apply to JO , aDiJ..1:, • Cln n

'-'
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As illustrated by Example 1, the usual consequence of a correctly

specified model and a sensible estimation procedure is:

* *yO =Y for all n implies AO = A for all nn n

*If AO = A for all n then we haven

But, in general, even if yO == Y* for all n it is not true thatn

L(" *) £:11.'11" (*)-1 *( *)-lJ",n An - A J

for some finite 6 • *To reach the conclusion that - A ) is asymptoticallyn
normally distributed, one must append additional regularity conditions.

There are three options.

The first is to impose a Pitman drift. Estimation methods of the

usual sort are designed with some class of models in mind. The idea is

to imbed this intended class in a larger class Y(e,x,y) so that any member

* *of the intended class is given by Y(e,x,y ) for some choice of y . For

this choice one has

O _ * 0 *y =y for all n implies A = A for all n .n n

See Problem 14 for the details of this construction.

some finite 6; the most natural choice would

A misspecified model would correspond to some y# such that Y(e,x,y#) is

outside the intended class of models. Starting with yi = y# one chooses a

*converges to y fast enough thato 0sequence Y2' Y3' ... that

Lim ./D.(AO - A*) = 6 forn
seem to be 6 = 0 •
Since y can be infinite dimensional, one has considerable lattitude in the

choice OfY(e,x,y#).
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*The second is to hold yO == Y and speed up the rate of convergencen

of Cesaro sums. If the sequence is chosen such that

where K().,) is some finite valued function then (Problem 15)

*J.imIl:-il» Jii -)., ) =

for some finite For example, if the sequence consists of

replicates of T points --- that is, one puts xt = at mod T for some set
of points aO' al , .•. , aT_l --- then for i = 1, 2, •.. , P

sup * In l(o!o).,.)sO().,) - (o!o).,.)s*().,)1A n

(In!n)sup * (o!o).,.)s[Y(e,a.,y*),a.,To ,).,] dP(e) I
A J- e J J n

whence K().,) == 0 .

*The third is to hold == y for all n and assume that the xt are

*random variables. This has the effect of imposing ==)., for all n. See

Section 7 for details.

Next we establish some ancillary facts regarding the constrained

estimator for use in Section 5 under the assumption of a Pitman drift.

Due to the Pitman these results are not to be taken as an adequate

theory of constrained estimation. See Section 8 for that.
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ASSUMP.rION 7. (Pitman drift) The sequence is chosen such that

* *- An) = A. Moreover, h(;" ) = 0 •



3-3-47

THEOBEM 6. Let Assumptions 1 through 7 hold. Then:

r *converges almost surely to A-n

A-* *converges to A- ,n

') * *converges almost surely to J +u ,

* *I n converges to J ,

/'OJ *converges almost surely to ,

* *converges to ,n

* *JQ(o/OA-)SO(A- ) converges to 6 .n n

/'OJ *PROOF. The proof that A- converges almost surely to A- is nearly wordn

for word the same as the proof of Theorem 3. The critical inequality

'" *.tim s (A- ) S .tim s (A-)m-lm n n In-lOO nm m m

obtains by realizing that both ) = 0 and h(A-*) = 0 under the Pitmannm
drift assumption.

The convergence properties of J, J:, follow directly from
/'OJ *the convergence of A- and A using the argument of the proof of Theorem 5·n n

Since domination implies that (Problem 11)
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We have from Theorem 2 that

* *Note that convergence of to is all that is needed here; the rate

*.tim - A ) is not required up to this point in the proof.n n

* - *In(o/o)..)SO ) = 0(1) + 9 - lO)n n "n

- *where' is similar to , in the proof of Theorem 5 and converges to 9 for

*similar reasons. Since - converges to -A by Assumption 7, then n
last result follows. 0
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PROBLEMS

* *1. Prove that converges uniformly to s (A) on A •

2. Hold an (et } fixed for which Lim sup *"9: (A) - g*(A)1I = 0 and
A"""Il

Lim = A*. Show that Lim g ) = g*(A*) if g*(A) is continuous.
IHCO n n-tal n n

*3. Prove that converges to X, •

4 . Prove Part i of Lemma 2.
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5. Let (%A')h(A) be a matrix of order q X P with q < P such that each

*element of is continuous on an open set AO containing A. Let

*(O/OA')h(A) have rank q at A= A. Prove that there is an open set containing

*A such that rank [(O/OA' )h(A)] = q for every Hint. There is a matrix

K' of order (p - q) X P and of rank p - q such that

[

O/OA' )h(AJ
A(A) =

K'

*has rank A(A, ) = p, why? Also, det A(A) is continuous and (A: Idet A(A) I >o}
is the requisite set, why?
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6. Verify the claim of the first line of the proof of Theorem 5. The

essence of the argument is that one could prove Theorem 5 for a set of random

variables , , and so on given by Lemma 2 and then In i =In + 0 (1) ,n n "n n s
.../n(%).,)sn = In(o/o).,)sn + Os (1), and so on. Make this argument

rigorous.



7.
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Use Theorem 1 to prove that [J (A), (A)] converges almost surely,n n

Show that [J ), )] converges almost surelyn n n n

uniformly on !I. and compute the uniform limit. Why does (yO , ,l ) convergen n On
* * *almost surely to (y ,T ,A )1

. * *)to .
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8. Show that Assumption 6 suffices to dominate the elements of

J (O/OA)s[Y(e,x,y),X,T,A] dP(e) J (O/OA')s(Y(e,x,y),X,T,A] dP(e)
e e

*by b(x). Then apply Theorem 1 to show that Wconverges to u .. n
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9· Show that if p(u) = tn cosh (u/2) and P(e) is symmetric, has finite

first moment, and assigns positive probability to every nonempty, open

interval then ejt(6) =Sp(e+ 6) dP(e) exists and has a unique minimum at
e

6=0. Hint, rewrite p(u) in terms of exponentials and show that p(u)=::;tlu! •

Use the Mean Value Theorem and the Dominated Convergence Theorem to show

that CD'(6) = S1f(e+ e,) dP(e). Then show that cp'(O) = 0, cp'(6) < 0 if 6 < 0 ,
e

and q:l' (6) > 0 if 6 > 0 •



10. Suppose that is computed by mintmizingn
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*where T > 0 is known but that the data are actually generated according to

Assuming that SO 0,,) has a unique minimum "A0 which converges to some pointn n
* 0 0 0"A , compute U ,J ) and 9 .n n n



11. Prove that under Assumptions 1 through 6 ,

S (a/a).,,) s[Y (e ,X,y ) ,x,T, AJ dP( e)
e

= (%)..)S s[Y(e,x,y) ,X,T,A] dP(e) .
e

Hint. See the proof of Lemma 3.
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*12. Suppose that G is a matrix with (%A')h(A )G = ° andn n n
.tim G = G. Show that under Assumptions 1 through 6

* s., *JD. G'(O/OA)S (A )--+N(O,G'c9 G) ;n n n

Assumption 7 is not needed. Hint: There are Lagrange multipliers en
* *such that (O/OA')[S (A ) + e'h(A )] = 0.n n n n
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13. Suppose that there is a function such that

'i = h(A)

p =

is a once differentiable mapping with a once

differentiable inverse

Put

g(p) = 'i'(O,p) ,

Hn = (o/oA ')h(A:) ,

*.Gn = (o/oP') g(Pn ) •

Show that G is the matrix required in Problem 12. Show also thatn
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14. (Construction of a Pitman drift) Fill in the missing steps and

supply the necessary regularity conditions. Let

minimize

and let

* * SS [ *A (y) minimize s (y,).,) = s Y(e,x,y),X,'i ,).,] dP(e) dlJo(x) •
I e

Suppose that there is a point y* in r such that

yO == y* all n implies ;"O(y*) = A*Cy*) all n.
n n

Suppose also that r is a linear space and that (0/00') Y(e,x,y* + ay#) exists

for 0 So'S 1 and for some point y# in r. Note that r can be an infinite

dimensional space; a directional derivative of this sort on a nonned, linear

space is called a Gateau derivative (Luenberger, 1969, Sec. 7.2 or Wouk, 1979,

Sec. 12 .1) . Let

and
* * * #A (a) = A[y + av ] .

Under appropriate regularity conditions, (0/00')).,°(0') exists and can ben

computed frcm

o= (02/0).,Oy') s[Y[ e ,xt ,y (a) 1,xt (a)H%a)Y[ e ,xt ,y(a)l dP( e)e
+ (0/00');"(0') •
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Again under appropriate regularity conditions,

Then by Taylor's theorem, for i = 1, 2, ... , p,

where 0 ai a. Let (an};=l be any sequence such that Limn-'taJJn an= 0

with 0 finite. Since = A*(O) for all n and converges

*uniformly to (o/ea)A (a) we have

o * #If the parameters of the data generating model are set to y = Y + a y , thenn n

for some finite A as required. Note that a can be chosen so that A = 0 .n

Suppose that the parametric constraint h(A) = 0 can be equivalently

represented as a functional dependency A=g(p); see Problem 13 or

Section 6 for the construction. What is reqUired of g(p) so that

LimfHl»Jn - p*) = e? Put = What is required of g(p) so

* * * * *that Lim In (>. - A ) = A? Note that Lim In (AO - A ) = A- A in thisn-'taJ n n-'taJ n n
case.
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15. Use Taylor's theorem twice to write

* * * *In [(%)..)s - )J = [2 + o{l)J ,In A ) ;

* *recall that (%).)s (). ) = = O. Referring to the comments

following Theorem 5, verify that speeding up the rate at which Cesaro

1::" *sums converge will cause "In (An - A ) to be asymptoticalJ..;y' n:>rmalJ..;y'

distributed.
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4. METHOD OF MOMENrS ESTIMATORS

Recall that a method of moments estUnator is defined as then
solution of the optUnization problem

MinUnize: s ()...) = d[m ]n n n

..
where d[m,T] is a measure of the distance of m from zero, T is an estimatorn
of nuisance parameters, and

'"The constrained method of moments estimator)... is the solution of the opti-n
mization problem

Minimize: s ()...) subject to h()...) = 0 •n

The objective of this section is to find the almost sure limit and
,.

the asymptotic distribution of the unconstrained estUnator )...n under regularity

conditions that do not rule out specification error. Some ancillary facts
r>Jregarding the asymptotic distribution of the constrained estimator A undern

a Pitman drift are also derived for use in the later sections on hypothesis

testing. This section differs from the previous section in detail but the

general pattern is much the same. Accordingly the comments on motivations,

regularity conditions, and results will be abbreviated. These results are

due to Burguete (1980) in the main with same refinements made here to

isolate the Pitman drift assumption.

As before, an example --- a correctly specified scale invariant

M-estimator --- is carried throughout the discussion to illustrate how the

regularity conditions may be satisfied in applications.
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EXAMPLE 2. (Scale Invariant M-esttmator) The data generating model

is
t = 1, 2, ... , n •

Proposal 2 of Huber (1964) leads to the moment equations

with A = (S',o)'. For specificity let

'feu) = tanh (u/2) ,

a bounded odd function with bounded even derivative and let

where i is the standard normal distribution function. There is no preliminary

estimator T with this example so the argument T of m(y,x,T,A) is suppressedn

to obtain

( 'I.) _ ('f[[Y - f(X,S)]/OHO/OS)f(X,S))m y,X,h -
'f2([y _ f(x,S) ]/01 -

The distance function is

d(m) =
,.

again suppressing the argument T, whence the estimator An is defined as

that value of Awhich minimizes

The error distribution Pee) is symmetric and puts positive probability on

every open interval of the real line. 0
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We call the reader's attention to some heavily used notation and

then state the identification condition.



NOTATION 5.

mn(A) =

mO (A) = (1/n)I:t
n_1J m[Y(e ,xt ,yO ) ,Xt '1'° 'AJ dP(e)n - e n n

* SS * *m (A) = n{Y(e,x,y) ,X,1' ,A] dP(e) dlJo(x)
Ie

Sn(A) = d(mn(A),TnJ

=
S*(A) = d[m*(A) ,1'*J

minimizes Sn(A)

X minimizes S (A) subject to h(A) = 0n n
minimizes

*A minimizes SO (A) subject to h(A) =0n n

A* minimizes S*(A)

3-4-4

e·
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ASSUMPl'ION 8 . (Identification) The parameter yO is indexed by nand

*the sequence converges to a point y . The sequence of nuisance parameter

estimators is centered at a point .,.0 in the sense that _.,.0) is boundedn n n
in probability; the sequence [.,.O} converges to a point .,.* and [T } convergesn n

almost surely to .,.*. Either the solution of the equations m*(A)=O is

*unique or there is one solution that can be regarded as being naturally

associated to y*. Further, (%f.')m*(A*).haS :full column rank (=p).
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The assumption that m*O.*) = 0 is somewhat implausible in those
misspecified situations where the range of m (A) is in a higher dimensionn

* *than the. domain. As sensible estimation procedures will have m (A ) = 0
* .if Y(e,x,y ) falls into the class of models for which it was designed one

could have both m*(A*) = 0 and misspecification with a Pitman drift.
Problem 14 of Section 3 spells out the details; see also Problems 2 and

3 of Section 2. But this is not really satisfactory. One would rather

*for all n at some point y for which

Such a theory is not beyond reach but it is more complicated

* * * *than for the case m (A ) = O. As we have no need of the case m (A ) * 0

*have the freedom to hold yO == Yn
* *m (), ) * 0 .

in the sequel, we shall spare the reader these complications in the text;

the more general result is given in Problem 6.
* *For the example, m (A ) = 0 :
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EXAMPIiE 2. (Continued) Let a* solve S vl(e/O') dP(e) =e; a solution
e

exists since G(O') =S dP(e) is a continuous, decreasing function
e

*with G(O) = 1 and G(CXl) = O. Consider putting A= (y/,O' )'. With this

choice

Sm[Y(e,x,y),x,(y/,O'*)JdP(e)
e

= Sm[ e + f(x,y) ,x, (y I ,0'*)] dP(e)
e

{

e dP(e) (%8)f(X,y)\

S dP(e) - e )
e

* *As the integral is zero for every x it follows that m (>.. ) = 0 at
>..* = (y*I,O'*)/. Similarly mO(>..O) = 0 at >..0 = (yOI,O'*) • 0n n n n
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The following notation defines the parameters of the asymptotic
,.

distribution of '" • The notation is not as formidable as it looks; itn

merely consists of breaking a computation down into its component parts.
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NOTATION 6.

R(A) =JJm[Y(e,x,y*),x,r*,;'] dP(e) Jm'[Y(e,x,y),X,'I"*,>..] dP(e) dlJo(x)
lee

§(A) = JJm[Y(e,x,y*) ,X,'I"* ,>..]m' [Y(e,x,y*) ,X,'I"* ,AJ dP(e) dlJo(x) - R(A)I e -
-. * *M(A) =Sr (a/a>..')m[Y(e,x,y ),X,'I" ,A] dP(e) dlJo(x)

"l°e
- 2 * *D(A) = (a /amam')<{ m (A),'I" J

- - - -
J(A) =M'(A) D(A) seA) D(A) M(A)
- -
'(A) =M'(A) D(A) M(A)
- - -
fiCA) = M'(l) D(A) R(A) D(A) i(A)

* = *) * = *) * =( *)J = J(A , = 9(A , U =U A

* =( *) * =( *) * =( *) * =( *)s = sA, M =M A ,D = D A ,K = K A



We illustrate the computations with the example:
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*EXAMPLE 2. (Continued) For)" = (y',a)' we have

Sm[Y(e,x,y) ,x,),,] dP(e) I *
e )" = (y' ,a )'

=

.r '¥(e/a*) dP(e) (%8)f(x,y)
e
S,¥2(e/(/) dP(e) -
e

- * *thus R()" ) = 0 whence U = O. Further computation yields

o

* 2S * *-2(1/0) ,¥(e/a )'¥' (e/a )e dP(e)
e

0'

S ,¥2(e/a*) dP(e) :;'3
§(),,*) = e

0' S [,¥2(e/a*) - eJ2 dP(e)
e

(l/a*)S '¥'(e/a*) dP(e)J':J 0
- *M()" ) = e

where

J'J = S[(%8)f(x,8)J[ I *.
I 8=y

As will be seen later, it is only v* = (9*)-1 J*(9*)-1 that is needed.
Observing that M(),,) is invertible we have
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=

(a*)2 ey2 (ela*) (3'3)-1
[ey' (ela*) J2

0'

o

(a*)4 e(y2(ela*) _SJ2

4(e eY(ela*)Y'(ela*)f
. 0
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In Section 5, the distributions of test statistics are characterized

in terms of the following quantities:
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NOTATION 7.

Kn(A) =

Sn(A) = em[Y(e ,xt - Kn(A)

Mn(A) = - e
Dn(A) = (o2/omom ')

fi (A) =M'(A) D (A) K (A) D (A) M(A)n n n n n n



We illustrate the computations with the example:
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EXAMPLE 2. (Continued) Computations similar to those for J* and

* yield

where

=

(0*)2 ey2(e/a*) (F'F)-l
CeY'(e/a*)f

0'

o

* 4 2 * 2(a) e[Y (e/a ) - eJ
4[e eY(e/a*)Y'(e/a*)f



e·

* *Some plausible estimators of J and are as follows:

•
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NOTATION 8.

=

=

2/ ,.,= (0
J =M' ().)D ()..)S ().)Dn n n n n n

=

j = In()'n), J =
= =

3-4-18



For Example 2, there are alternative choices:
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EXAMPLE 2. (Continued) Reasoning by analogy with the forms that

obtain from Notation 6, most would probably substitute the following

estimators for those given by Notation 8:

§
n

..
M =n

..
D = In

where

0'
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We shall adjoin some technical assumptions. As before, one may

assume that T takes its values in a compact ball T for which T* is ann
interior point without loss of generality. Similarly for the parameter

space r. This leaves domination as the essential condition. We have

commented previously (Section 2) on the implications of a compact esti-

*mation space A • In the previous section we commented on the construction

of the requisite dominating function b(e,x) .



ASSUMPrION 9.
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* *There are closed balls A and T centered at and

*T respectively with finite, nonzero radii for which the elements of

m(y,X,T,A),(O!OAi )m(y,X,T,A),(o2!OAi OAj )m(y,X,T,A) are continuous and

*dcminated by b[q(y,x,y) ,x] on 11 X I X T X A X r; b(e,x) is that of
Assumption 3. The distance function d(m,T) and derivatives (o!om)d(m,T),

(o2!omOT')d(m,T), (o2!omom')d(m,T) are continuous on X T where 3 is

some closed ball centered at the zero vector with finite, nonzero radius.
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The only distance functions that we shall ever consider have the

form

with positive definite over T. There seems to be no reason to

abstract beyond the essential properties of distance functions of this

form so we impose:
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ASSUMPTION 10. The distance function satisfies: (%m) d(O,T) =°
for all T in T (which implies (o2/omoT /)d(0,T) = ° for all T in T), and
(o2/omom ')d(0,T) is positive definite for all T in T •
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* * *If the point A that satisfies m (A) = a is unique over A ,then
* *s (A) will have a unique minimum over A for any distance function that

increases with \I m\I. In this case the same argument used to prove

Theorem 2 can be used to conclude that converges almost surely to

'I. * .h But in many applications, the moment equations are the first order

conditions of an optimization problem. In these applications it is

unreasonable to *expect m (A) to have a unique root over some natural

estbnation space A*. To illustrate, consider posing 1 as a

method of moments problem:
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EXAMPLE l. (Continued) The optimization problem

has first order conditions m ) = 0 withn n

We have seen that it is quite reasonable to expect that the almost sure
* * *limit s 0,,) of sn (),,) will have a unique minimum)., minimum over A . But,

*depending on the choice of f(x,S), s ().,) can have local minima and saddle

points over A* as well. In this case m*().,) will have a root at ).,* but

m*().,) will also have roots at each local minimum and each saddle point.

Thus, if Example l is recast as the problem

*we cannot reasonably assume that s ().,) will have a unique minimum. 0
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*Without the assumption that m (A) has a unique root, the best

consistency result that we can obtain is that s (A) will eventuallyn
*have a local minimum near A • We collect together a list of facts

needed throughout this section as a lemma then prove the result:
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!EMMA 4. Under Assumptions 1 through 3 and 8 through 10, interchange of

differentiation and integration is per.mitted in these instances:

* * *(%A.)m (A) = JJ (%A.)m [Y(e,x,y ),X,'I' ,A]dP(e)
a r,e. a

2 * 2 * *(0 /OA.oA.)m (A) = J J (0 [Y(e,x,y ),X,'I' ,A]dP(e)
J a r,e. J a

(O/OA. )mO = 1S (%A.)m [Y(e,x'YnO),X''I'°n,A]dP(e)an. l';= e. a

(02/0A.oA.)mO ().)= r [Y(e,x,yO),x''I'0,A]dP(e)
J an e. Jan n

*There is a closed ball A centered at). with finite nonzero radius

such that:

*tim nf (A) = m unifor.mly on A,n--= n
*= unifor.ml.y on A,

(A) = (02 unifor.mly on A,

*tim m ()...) = m (A) almost surely, unifor.ml.y on A,

*= (A) almost surely, uniformly on A,

tim (02/oA ]A.)m (A) = almost surely, unifor.mly on A,":lJn "fJ

*tim SO = s ().) unifor.ml.y on A,
Il-te:o n

*tim (O/OA)SO(A) = (O/OA)S (A) uniformly on A,n
tim = unifor.mly on A,

.IHlJ) n
*tim s (A) = s (A) almost surely, unifor.mly on A,

IHcD n
*tim (O/OA)S (A) = (A) almost surely, unifor.mly on A,

Il-te:o n

tim (02 ')S = (02/ 0).OA ')S* (A) almost surely, unifor.ml.y on A ,n
and

* * *M = (O/OA ')m (A ),

* *(O/OA)S (A ) = 0,
2 * * *(0 /0AOA. I ) s (A ) = •
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PROOF. The arguments used in the proof of Lemma 3 may be repeated to

*show that interchange of differentiation and integration is permitted on A

and that the sequences involving mO('A) and m ('A) convergen n
So let us turn our attention to s ('A) = d[m ('A),T 1.n n n-

Differentiating, we have for m ('A) c a thatn

and

*uniformly on A •

(02/o'Ai 0'Aj )sn('A) =

+ •

*Fix a sequence fet1 for which T converges to T and for which m ('A) convergest . n n
* * * *uniformly to m ('A) on A ; almost every ret} is such. Now m ('A ) = 0 by

assumption and m*('A) is continuous on the compact set A* as it is the uniform

limit of continuous functions. Thus there is a 0 > 0 such that

where 11 is the radius of the closed ball a given by Assumption 9. Then there

is an N such that

n> N, ll'A - 'A*1I s 0 I\mn ('A)1I < 11 •

Set A = ['A:II'A - 'A*1I S o} •

Now (a/om )d(m,T) is a continuous function on the compact set a x T soa
it is uniformly continuous on a x T, see Problem l. Then since mn('A) converges

uniformly to m*('A) and T converges to t it fellows that (a/om )d[mnan
converges uniformly to (a/om )d[m*('A),T*J; similarly for d[m J andann

The uniform convergence of sn('A), (%'Ai)sn('A) and

(o2/o'A.o'A.)s ('A) follows at once. Since the convergence is uniform for almost
J n
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every tet} it is uniform. almost sureiy. Similar arguments apply to .
* * *By the interchange result M = Differentiating,

= t (%m .
01 01 01

* * * * *As m ()" ) = °and (%m)d(O,T ) = 0, ()" ) = 0. Differentiating once

more,
2 * *(0 )

2 ) *) / * * / * *= tOlte(o /omOiome d(O,T (0 )(0 )

+ t (%m .
01 01 01

*The second term. is zero as (%m)d(O,T ) = °whence
2 * ** 2 * **(0 /o)"o),,')s (),,) = ()" )J'(o /omom')d(O,T ()" )

* '*:..* *= (M )'D M = • 0
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THEOREM 7. (Existence of consistent local minima) Let Assumptions 1

through 3 8 through 10 hold. Then there is a closed ball A centered at A*

1 of that minimizen n
sequence of that*s (A) over A converges almost surely to A and then

*minimize SO (A) over A converges to A •n
* *PROOF. By Lemma 4 and by assumption, (O/OA)S ()., ) = 0 and

with finite, nonzero radius such that the sequence

(a2/OAO).,/)S*().,*) is positive definite. Then there is a closed ball A'

* *centered at A. with finite, nonzero radius on which s (A.) has a unique

minimum at A=)"* (Bartle, 1964, Sec. 21). Let All be the set given by

*Lemma 4 and put A = A' nAil. Then s (A) has a unique minimum on A and both

*s (A.) and SO (A.) converge almost surely to s (A) uniformly on A. Then n
argument used to prove Theorem 3 may be repeated here word for word to

obtain the conclusions of the theorem. 0
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The following additional regularity conditions are needed to obtain

asymptotic normality. The integral condition is similar to that in

Assumption 6; the ccmments following Assumption 6 apply here as well.
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ASSUMPTION 11. The elements of and (O/OT')

m(y,x,T,A) are continuous on

b(e,x) is that of Assumption 3. The elements of (o2/oTom ')d(m,T) are

cont inuous on aXT•
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To remove it, see Problem 6.

Next we show that the "scores" (%A)s (AO) are asymptoticallyn n
As noted earlier, we rely heavily on thenormally distributed.

* *assumption that m (A ) = 0 •
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THEOREM a (Asymptotic normality of the scores) Under Assumptions

1 through 3 and 8 through 11

J* may be singular.
PROOF. By Lemma 2, we may assume without loss of generality that

and AO lie in the smallest of the closed balls given by Assumptions 9n n
,. 1

and 11, Lemma 4, and Theorem 7 and that (O/OA)S (A ) = 0 (n-2 ) andn n s
1

= o(n-2 ) .

A typical element of the vector jn(%m) d [m (AO),;' ] can be expandedn n n
about [mO(lO),.,.O] to obtainn 'n n

In d[mn n]

= In (%m) d[mO(AO),,.°l + (o/O,./)(%m) d(m,T)Jn(; _,.0)ex n n n" ex n n

where (m,;:) is on the line segment joining [m (AO),T ] to [mO(lO),,.°l .n n n n nn n-
(- -) (* *) * *( *)Thus m," converges almost surely to m ,'" where m = m A • Noting

that In (; _.,.0) is bounded in probability by Assumption 8 and thatn n

by Theorem 2 we may write (Problem 3)
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Then

Note that by Theorem 2 JD. [M (,,-0) - M (,,-0) ] is also bounded in probabilityn n n n
so that we have (Problem 3) the critical equation of the proof:

We assumed that m*=° so that the first two terms on the right hand side

drop out by Assumption 10. Inspecting the third term, we can conclude at

once that

l * ****JD. (%"-)s 0..0 0, (M ) 'n S D M ]n n -

In general the first two terms must be taken into account (Problem 6). 0



•
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Asymptotic normality of the unconstrained method of moments esttmator

follows at once:
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THEOREM 9. Let Assumptions 1 through 3 and 8 through 11 hold.

Then:

,. * *J converges almost surely to J + lJ ,

*JO converges to J ,n

converges almost surely to ,

*converges to •n

*J may be singular.

PROOF. By Lemma 2, we may assume without loss of generality that

e'
given by Assumptions

1
that (%>..)s ) =' 0 (n-"2) ,n n s

x. , and >..0 lie in the smallest of the closed ballsn n
9 and 11, Lemma 4, .and Theorem' 7 and

1
= o(n-"2) .

By Taylor's theorem and arguments similar to the previous proof

*= 0 (1) + + 0 (l)).fri(>..o - ) •s s n n

Then by Slutsky's theorem (Serfling, 1980, Sec. 1.5.4 or Rao, 1973,

Sec. 2c.4)

This establishes the first result.
,. * *We shall show that J converges almost surely to J + lJ •

The arguments for J O , and are similar. Now j is defined asn n

j = M' )D )S )D (5. )M ) •n n n n n n n n n n
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Since the Cesaro sum

converges almost surely to the integral

JSm[Y(e,x,y),X,'I',A] m/[Y(e,x,y),X,'I',AJ dP(e) d\.L(x)
r e

uniformly on r X T X A by Theorem 1 with Assumption 11 providing the

( 0" ")dominating function and since y ,'l' ,A converges almost surely ton n "'n
* * *(y , 'I' , A ) we have that

SS *) * * I *) * *] )= m[Y(e,x,y ,X,'I' ,A ] m [Y(e,x,y ,X,'I' ,A dP(e) d\.L(x
r e
* *= S + K

almost surely. A similar argument shows that M (A ) converges almost surelyn n

to M*. Since (a2famam ')d(m,'l') is continuous in (m,'I') by Assumption 9 and

[m ),T ] converges almost surely to (0,'1'*) by Lemma 4, Theorem 7, andn n n
" *Assumption 8 we have that D (A ) converges almost surely to D • Thusn n

" * * * * * *.tim J = (M ) 'D (S + K ) D M

* *= J + U

almost surely. 0
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The variance formula

is the, same as that which would result if the generalized least squares

estimator

were employed for the linear model

y =Me + e, e '" (O,s) .

Thus, the greatest efficiency for given moment equations results when

n* = (s*)-l .
A construction of TO for Example 1 was promised:n
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EXAMPLE 1. (Continued) Assume that f, and P are such that

Assumptions 1 through 6 are satisfied for the preliminary estimator
A A 0 r.: A 0e . Then e has a center e such that ....n(e - €I )n n n - n n

*probab ility and Lim €10 = y . Let
I:t*D n

is bounded in

and

The almost sure limit of m (,.) isn

* SS * *m (,.) = m[Y(e,x,y ),x,y ,,,] dP(e)
x,e

=S V.2 (e/,.) dP("e) - S v.2 (e) dHe)
e

Since 0 < r < 1 and G(") =S V.2 (e/,.) dP(e) is a continuous,.. e
* * *decreasing function with G(O) = 1 and G(lXl) = 0 there is a 'T' with m ('T' ) = 0 •

Assume that f, and P are such that Assumptions 8 through 11 are

satisfied for sn(") = Then by Theorem 7 and 9, has a center

,.0 such that .;n(T _,.0) is bounded in probability and tim ,.0 = ,.*. 0n n n
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The argument used in the example is a fairly general approach for

verifYing the regularity conditions regarding nuisance parameter estbnators.

Typically, a nuisance parameter estimator solves an equation of the form

where e minimizes an s (e) that is free of nuisance parameters. As suchn n

e cames equipped with a center eO as defined in either Section 3 or 4 .n n

Let

let d(m) = m'm/2, then the appropriate center
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Next we establish some ancillary facts regarding the constrained

estDnation under a Pitman drift for use in Section 5. As noted previously,

these results are not to be taken as an adequate theory of constrained

estDnation; that is found in Section 8.
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ASSUMFTION 12. (Pitman drift) The sequence [yO} is chosen suchn
* *that.tim .}n()...o - A ) = t::.. Moreover, h(A ) = 0 .n n



3-4-45

THEOREM 10. Let Assumptions 1 through 3 and 8 through 12 hold.

*Then there is a closed ball A centered at A with finite, nonzero

radius such that the constrained estimator r converges almost surelyn
* * *to A and A converges to A . Moreover:n

* *J converges almost surely to J + u ,

J: converges to J* ,

*converges almost surely to 9 ,

* *9 converges to 9 ,n

* *In(O/OA)SO (A ) converges to -9 .n n

*PROOF. The argument showing the convergence of ();:n) and (An) is the

same as the proof of Theorem 7 with the argument modified as per the proof

of Theorem 6. The argwnent showing the convergence of J, J* , andn
*9 is the same as in the proof of Theorem 9. The same argument used inn
the proof of Theorem 8 may be used to derive the equation

L * - * * *= [M (A ) - M (A )]'(%m)d(m ,T )n n n n

+ (M*)'[(o2/omo'l"')d(m*,'I"*)] In (;. _'1"0)
n n

* * * *+ (M )'DJn[m (A) - mO(l)] + 0 (1) .n n n "n p
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*We assumed that m = ° so that the first two terms on the right hand
s ide drop out. By Theorem 2,

* * s. *JnCm ().) - moe). )]----+N(O,S)n n n n

whence

* * s. * ****.;n (O/OA)S (A ) -.;n (o/O)..)SO(A )---.N(O,(M )'D S D M ]. n n n n

and the first result follows.

The argument that In converges to is the same as

in the proof of Theorem 6. 0
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PROBLEMS

1. A vector valued function f(x) is said to be uniformly continuous

on X if given e > 0 there is a 6 > 0 such that for all x,x' in X with

Ilx-x'\! < [) we have I\f(x) -f(x')\! < •. If f(x) is a continuous function

and X is compact then f(x) is uniformly continuous on X. (Rqyden, 1963,

Ch. 9). Let take its values in X and let [gn(t)} converge uniformly

to g( t) on T. Show that [f[ g (t )J} converges uniformly to 1'[ g( t)J on T .n
* *2. Prove that tim mO(A) =m (A) uniformly on A. Prove that

Il-t"O n
= s*(A) uniformly on A* .

3. A (vector-valued) random variable Y is bounded in probability ifn

given any c '> 0 and 6 > 0 there is an M and an N such that P(\\Yn \! >M) <6 for

all n ';> N. Show that if Y .L N(\Jt,V) then Y is bounded in probability.n n
Show that if Xn is a random matrix each element of which converges in

probability to zero and Y is bounded in probability then X Y converges inn n n

probability to the zero vector. Hint, see Rao (1973, Sec. 2c.4).
*4. Prove that converges to J and that converges almost surely to

* .
5· Compute K (A), M (A), and S (A) for Example 2 in the case A* AO •n n n n
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6. Let Assumptions 1 through 3 and 8 through 11 hold except that

m*O,,*) * 0; also, (%m)d(O,'l') and (02/omoA ')d(O,'i) can be nonzero.
Suppose that the nuisance parameter estimator can be written as

* *where = a , l.imn-ttoAn = A almost surely, and f(y,x,e) satisfies
* * *t he hypotheses of Theorem 2. Let m =m (A ) and define:

* * *m[Y(e,x,y ) ,X,'i ,A. ]

Z(e,x) = vec (%X)m'[Y(e,x,y*),X,'i*'A*J

* *ftY(e,x,y ) ,x,e J

= J [J Z(e,x) dP(e)}[J Z(e,x)
lee

g* = J J Z(e,x) Z'(e,x) dP(e) -
I e

* * * ** * 2 ***a = [(M )'D : (%m')d(m ,'i ) Ip i(M )'(0 /omO'i')d(m ,'i )A ]

Show that

'- (" 0) s,_-,,,,(" (*)-1 *( *)-lJA/n An - X; 0, J .

Hint: Recall that if A of order r by c is partitioned as
. .a2 : ... : a ] thenc
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vec A =

and vec AB = (B' @ I ) ve'c A where @ denotes the Kronecker product ofr

two matrices. See the proofs of Theorems 8 and 9.

7. Under the same' assumptions as in Problem 6 show that

*where J is defined as in Problem 6.
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5. TESTS OF HYroTHESES

Both paths lead to the same results. At first the path follows

Assumptions 1 through 3 which describe the data generating process. Then

the road forks. One can follow the least mean distance estimation path with

Notations 1 through 4 defining the quantities:

A "'" ° *An' An' An' and An
sO·,,) and SO (A) ;n n

j , J, J O *and Jn ' n
A

, *p , and pn
lAo *and lA .n ' n

Or, one can follow the method of moments ,estimation path with Notations 5

through 8 defining these quantities. In either case the results are the

same and may be summarized as follows:
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SUMMARY. Let Assumptions l through 3 hold and let either Assumptions 4

through 7 or 8 through l2 hold.

finite, nonzero radius:

*Then on a closed ball A centered at >.. with

*s (>..) and SO (>..) converge almost surely and uniformly on A to s (;,,) ;n n

(%;,,)sn(;") and converge almost surely and uniformly on

A to (%;,,)s*(;,,) ;

(02/0;,,0;,,')Sn(A) and converge almost surely and uniformly

on A to (02/0;,,0;,,')s*(;,,), and (02/0;,,0;,,')s*(;,,*) =

- N(O,J*) ;

JIi( - AO )-S r{ 0, (n*) -lJ*(n* )-lJ ;. n n (f (f

* * *- AJ converges to f:!., (AJ converges to f:!. ;

A r>J * ( *)A and A converge almost surely to A and h A =0;n n

A ""If * * ° * *J and CJ converge almost surely to J +U ,J and J converge to J ;n n .

A ?{ * ° *and it converge almost surely to , n and converge to .

* *UO and u converge to un n
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Taking the Summary as the point of departure, consider testing

H: h(AO
) = 0 against A: h(x.°) :1= 0 •n n

Three tests for this hypothesis will be studied: the Wald test, Rao's

efficient score test (Lagrange multiplier test), and an analog of the likeli-

hood ratio test. A full rank assumption is imposed which is not strictly

necessary. However, the less than full rank case appears to be of no

practical importance and a full rank assumption eliminates much clutter

the theorems and proofs.



NOTATION 9.

v = j V= J

h = H(A) = (%A')h(A)

H = ), 11 = Hc"X )n n

Theorem 11:

Theorems 12, 13, 14, and 15:

3-5-4
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ASSUMPrION 13. The function h(A) that defines the null hypothesis

Its Jacobian H(A) = (%A')h(A) has full rank (=q) at
-1 -1The matrix V =9 J 9 has full rank. The statement "the null*A= A •

H: h(AO) = 0 is a once continuously differentiable mapping of the estimationn

space into Rq •

hypothesis is true" means that = 0 for all n or, equivalently, that

*= An for all n sUfficiently large.
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The first statistic considered is the Wald test statistic

which is the same idea as division of an estUnator by its standard error or

studentization. The statistic is simple to compute and may be computed

solely from the results of an unconstrained optUnization of s (>,,). It hasn
two disadvantages. The first, its asymptotic distribution is a poorer

approxUnation to its small sample than for the next two statistics

if Monte Carlo simulations are any guide (Chapter 1). The second, it is not

invariant to reparameterization. With the same data and an equivalent model

and hypotheses, two investigators could obtain different values of the test

statistic. (Problem 6).
The second statistic considered is Rao's efficient score test statistic

Since (%>..)[s CK ) + )] = 0 for large n, an alternative form isn n n n
,.,; / .., ?!,-l I ("''''; '" I ) -1 "'?f -1 ,.,;:,.,;R = n 8 H n HV H He,n n

which gives rise to the term Lagrange multiplier test. Quite often
-1 -1 N -1 ?f -1V = J = 9 so that J could be substituted for v and in these

formulas resulting in a material simplification. The statistic maybe

computed solely from a constrained optUnization of s (>..). Often, then
minimization of S (A) subject to h(>") = 0 is considerably easier than ann
unconstrained minimization; H: = 0 for example. In these cases R is

easier to compute than W. There are several motivations for the statistic

R of which the simplest is probably
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the following. Suppose that the quadratic surface

is an accurate approsimation to the surface s (A) over a region thatn

includes The quadratic surface is minimized at

so that

Thus, is the difference between and induced by the

constraint h(A) = 0 and R is a measure of the squared length of this
difference. Stated differently, ) is a full Newton iterativen n

A

step fram A (presumably) toward A and R is a measure of the step-length.n n
The third test statistic considered is an analog of the likelihood ratio

test

L = 2n[s (1: ) - s )J •n n n n

The statistic measures the increase in the objective function due to the

constraint hex ) = 0; one rejects for large values of L. The statistic isn
derived by treating s (A) as if it were the negative of the log likelihood andn
applying the definition of the likelihood ratio test.

Our plan is to derive approximations to the sampling distributions of

these three statistics that are reasonably accurate in applications. To

illustrate the ideas as we progress, we shall carry along a misspecified model

as an example:
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EXAMPLE 3. One fits the nonlinear model

by least squares to data that actually follow the model

where the errors et are independently distributed with mean zero and

variance ,i. The hypothesis of interest is

o * 0 *H: = T against A: T * Tn n

where

A = (p', T')'

P is an r-vector, and T is a q-vector with p = r+ q. As in Chapter 1, we

can put the model in a vector form:

y = f(A) + u, y = g(yO) + e, F(A) = (o/oA')f(A) .n

We shall presume throughout that this model satisfies Assumptions 1 through 7,

and 13. Direct computation yields:

S(Yt,Xt,A) = [Yt - f(Xt ,A)]2 ,

s (A) = (lin) lIy - f(A)11 2 = (l/n)[y - f(A)]'[y - f(A)] ,n

(o/oA)s (A) = (-2/n)F'(A)[y - f(A)] ,n

SO (A) = rl + (lin) IIg(yO) - f()..)11 2 ,n n

= - f(A)] ,

AO minimizes (lin) IIg(yO) _ f(A)1I 2 ,n n

On minimizes (lin) lIy - f(p ,.,.*)1\2 ,

- ("'" */)''" - P ,'" ,n n
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.. * = ( *, T*')'I\n Pn , ,

o ( 0) * (*) " (") A')F = FA, F = FA, F =FA, .lr=FI.I\.n n n n n n

J(A) = (4a2/n)F'(1.)F(1.)

9(1.) = (2/n)F'(1.)F(1.) - - f(Xt'1.)1(o2/o1.01.')f(Xt'1.)'

u(1.) = - (%1.)f(xt,1.)]' ,

j = t - [(%1.)f(XtSn) J' ,

= (2/n)F'F - - ,

H = [0 : I ], I is the identity matrix of order q •q q

The estimator

obtained according to the general theory is not that customarily used in nonlinear

regression analysis as we have seen in Chapter 1. It has an interesting property

in that if the model is correctly specified, that is y and A have the same

dimension and g(x,y) = f(x,y), then Vwill yield the correct standard errors
for even if Var(et ) = a2(xt ). White (1980) terms V the heteroscadastic

"invariant estimator of the variance-covariance matrix of A for this reason.n

The estimator customarily employed is

n= n s2(F'F)-1
with

We shall substitute 0 for Vin what follows mainly to illustrate how the general

theory is to be modified to accomodate special situations. 0
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The limiting distributions that have been derived thus far have been

* *stated in terms of the parameters J*, , and U . To use these results,

* * *it is necessary to compute J , , and U and to compute them it is necessary

to specify the limit of \ and Tn and to specify the limiting measure \.L on

X. Most would prefer to avoid the arbitrariness resulting from having to

specify what is effectively unknowable in any finite sample. More appealing

A *is to center at rather than at A , center Tn at and use the

empirical distribution function computed from [xt}:=l to approximate \.L •

What results is JO, and UO as approximations to J*, and U*. Then n n

next theorem uses a Skorokhod representation to lend some formality to this

approach in approximating the finite sample distribution of W. For the

example we need an approximation to the limit of :
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EXAMPLE 3 (Continued)

The almost sure limit of is

* c2 J * * 2 }[ J *-1n = U1 + [g(x,y) - f(x,).. )] (o!o)..)f(x,).. •
1 1

Following the same logic that leads to the approximation of J*, 9* and tl.*

by cf-n , 1:., and tl.0 we obtainn n

and

where = 0
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THEOREM 11. Let Assumptions 1 through 3 hold and let either Assumptions

4 through 7 or 8 through 12 hold. Let

Under Assumption 10,

w,.... y + 0 (1)
P

where

and

z ,.... N[Jii h(i..°) , HVH'].n

Recall: v = VO, J = J O , 9 = u = u0 , and H = If .n n n n n If u = 0 then Y has the

non-central chi-square distribution with q degrees of freedom and non-centrality

parameter ex = Under the null hypothesis ex = O.n n
PROOF. By Lemma 2, we may assume without loss of generality that

,. ,. 1 1
i..n , c A and that (O/OA)Sn(An ) = °s(n-2 ), = 0(n2 ). By Taylor's

theorem

where - i..0 1I:s - A0 II. By the almost su.re convergence of AO and ton n nn On n
A*, .tim IIA. -A*II=o almost surely whence .tim (%i.,)h.(),.) = (%i.,)h.(i..*)

IH'Xl m Il"'+GD

almost surely. Thus we may write

r:: ,. s., *Since we have

,./ii ) - h(i.,°)J..s N( O,H*V*H* ') •n n
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By Problem 3, .tim In h(i,,°) = !fA so that JD. ) is bounded in probability.n n
AA * * -1 * * * -L_*Now 1WH:' converges almost surely to H (p) (J +u )(p ) !I ' which is

nonsingular whence

Then

By the Skorokhod representation theorem (Serfling, 1980, Sec. 1.6), there are

random variables Y with the same distribution as In ) such thatn n
Y - In h(i,,°) = Y+ 0 (1) where Y ,.... N(O,H*V*H*'). Factor H*V*H* as H*V*H*' =p*p*,n n s
and for large n factor lMI' =QQ' (Problem 1). Then

Since Y is bounded in probability and [I _Q(p*)-l] = 0 (1) (Problem 1) we haves

Y =In h(i,,°) + Q(p*)-l Y + 0 (1)
n n p

where Q(p*)-l Y ,.... N(O ,lMI'). Let Z = In h(AO
) + Q(P*) -1 Y and the result

n

follows. 0



By noting that )n
Any solution of heX)
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Occasionally in the literature one sees an alternative form of the Wald

test statistic

A ,-..",,; I A I "AA, to f"!tJ

W= n(X - A ) H (HVH ) Il(A - X ) .n n n n

The alternative form is obtained from the approximation Ii ,;, - t ) whichn n
is derived as follows. By Taylor's theorem

where H has rows (%X')h.(X) and is one the line segment to •n n
= 0 and approximating Hby Ii one has that h,;, - \.)

= 0 with (%X' )H(X) ,;, if would serve as well as \. by

this logic and one sees other choices at times.
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As seen from Theorem 11, an asymptoticly level a test in a correctly

specified situation is to reject H: = 0 when Wexceeds the upper a X 100%

critical point of a chi-square random variable with q degrees of freedom. In

a conditional analysis of an incorrectly specified situation, u, and

a will usually be non zero so nothing can be said in general. One has a

quadratic form in normally distributed random variables. Direct computation

for a specified q(y,x,yO) is required, see Section for details.n

We illustrate with the example.
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EXAMPLE 3 (Continued) The hypothesis of interest is

* *H: TO = T against A: TO *Tn n

where

'\ - (' ')'fI. - p,T .

Substituting for Vthe Wald statistic is
W= (T _T*)/s2

n n

where H = [0 : I ]. Thus is the sUbmatrix of (F'F)-l formed byq

deleting the first r rows and columns of (1' 'F) -1. Wis distributed as

WfV Y + 0 (1)
P

where:

v = 9-1J 9-1

J = (4ri/n)JfJ 'Fon n

9 = - - •

If the model is correctly specified then = and these equations

simplify to:

y = ,

Z fV N(Jn(TO - T*), iH(! t' 'JfJn n n n

whence Y is distributed as a non-central chi-square random variable with q degrees

of freedom and non-centrality parameter
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The statistic R is a quadratic form in (O/OA)S ) and, for n largen n
enough that 9n(A) can be inverted in a neighborhood the statistic L

is also a quadratic form in (Problem 8). Thus, a characterization

of the distribution of is needed. We shall divide this derivation

*into two steps. First a characterization of is

obtained. Second (Theorem 13), is characterized as a projection

* *of (O/OA)S (A ) into the column space of Hn n n
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THEOREM 12. Let Assumptions 1 through 3 hold and let either Assumptions

4 through 7 or 8 through 12 hold. Then

In(o/oi..)s (i..*) '" X+ 0 (1.)n n p

where

PROOF. By either Theorem 6 or Theorem 10,

By the Skorokhod representation theorem (Serfling, 1980, Sec. 1.6), there are

*random variables Y with the same distribution as In(o/oi..)s (i.. ) such thatn n n
r:: * * * * **Y - A/n(%i..)SO (i.. ) = Y+ 0 (1) where Y '" N(O,J ). Then factor J as J = P (p ) In n n s

* *and for large n factor J as J:= Q,Q I (Problem 1) thenn n

Yn := .. + Q(P*)-ly + [1 _Q,(p*)-l]Y + 0g(l) •

Let X = In(o/oi..) SO (i..*) + Q,(p*)-ly whence X'" NC)n(%i..) SO (i..*),cfJand, sincen n n n n
.tim Q=P* (Problem 1), [1 _Q(p*)-lJY = 0 (1) • 0

n-+co p
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Note fram Theorem 5 that if Sn(A) corresponds to a least mean distance

*estimator without nuisance parameters then I n is the exact, finite sample

*variance of jn In this case, Theorem 12 is no more than a

*suggestion that the exact variance of jn (O/OA)S (A ) be used in ccmputationsn n

instead of the asymptotic variance. Next we characterize JQ .
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THEOREM 13. Let Assumptions 1 through 3 hold and let either Assumptions

4 through 7 or 8 through 12 hold. Under Assumption 13,

* *·l1here = and H = Hn .
PROOF. By Lemma 2, we may assume without loss of generality that

*A ell.. By Taylor I s theorem
n

Aoln (O/OA)Sn(rn) ="In (O/OA)Sn(A:) + Un - ).:)

"Tn = In h().:) + H.Tn - A:)
where has rows

i=1,2, ••• ,p

j=1,2, ••. ,q

and H has rows

(0/0).' )hj

ith \ and>: on the line se.g:nent joining'l to).*. By Lemms.2, In h(Xn) = °s(l).w jn n

Recalling that In h(A*) == 0, we have fi./Ii 0: - A*) =0 (1). Since t and A*n n n s n n
* *converge almost surely to A , converges almost surely to A whence1.n In

- *converges almost surely to by the uniform almost sure convergence of

(02/0AOA ')Sn(A); H almost surely to H* by the continuity of H(A).

Thus = + 0 (1) and H= H+ 0 (1). Moreover, there is an N correspondings s
to almost every realization of [et } such that > 0 for all n>N. Defining

-1 arb i trarily when det (,9) =°we have
f'-1- - *) - r: I>:' *)
f/ '9 In \A:n - An = olD. \Xn - An

for all n > N. Thus, fi-lfi 'n '1: - A*n) =..in I':\' - A*) + 0 (1) • b'tF tF 0II.l \. An ... \An n s Co::!. J.ning

these observations, we n;.ay write
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ifn <t -"A*n) = 0 (1)n s

Jii a: -"A*) =9-l jD. (a/a"A)s a: )- (a/a"A)s ("A*) + 0 (1), n n nn nn s

whence

iW-l.hi (a/a"A)s a.. ) = fW-l,/ii (a/a"A)s ("A*) + 0 (1) ., n n . n n s

Since In (a/a"A)s converges in distribution it is bounded in probabilityn n
whence

'"By Lemma 2, there is a sequence of Lagrange multipliers e such thatn

In (a/a"A)s 0: ) + 'H'Jii = 0 (1) •n n n s

Substituting into the previous equation we have

By Slutsky's theorem (Serfling, 1980, Sec. 1.5.4 or Rao, 1973, Sec. 2c.4), .lnAn
converges in distribution. In consequence, both ,JD. e and,iii (a/a"A)s 0: )n n n
are bounded in prObability and we have

(a/a"A)sn("A:)

= (a/a"A)sn(1'n) + 0p(l)

= en + 0p(l)

= B + 0 (1)n p

= Jii (a/aA)S a: )+ 0 (1) • 0n n p
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A characterization of the distribution of the statistic R follows

immediately fran Theorem 14:
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THEOREM 14. Let Assumptions 1 through 3 hold and let either Assumptions

4 through 7 or 8 through 12 hold. Let

Under Assumption 13

R fV Y + 0 (1)
P

where

and

Recall: * * * * *V = V , J =J , 9 =9 , u. =u. , and H=H •n n n n n

If u. = 0 then Y has the non-central chi-square distribution with q degrees of

freedom and non-centrality parameter ex = n[ (0/0).,) SO C).,*)] (H VH,)-l..--ln n .t1YI
*)( [ J/2. Under the null hypothesis, ex = 0 .

PROOF. By Lemma 2, we may assume without loss of generality that r c/\.n
By the Summary,

N

By Lemma 5, JD. (%).,)s ()., ) is bounded in probability whence we haven n

The distributional result follows by Theorem 13. The matrix

is idempotent so Y follows the non-central chi-square

distribution if U. = O. 0
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The remarks following Theorem 11 apply here as well. In a correctly

specified situation one rejects H: h(AO ) = 0 when R exceeds the uppern
a X 100% critical point of a chi-square random variable with q degrees of

freedom. Under correct specification and A: h(AO ) * 0 then one approximates. n

the distribution of R with the non-central chi-square distribution. Under

misspecification one must approximate with a qladratic form in normally

distributed random variables.

In many applications ,,-1 = a'V for some scalar multiple a. In this

event the statistic R can be put in a simpler form as follows. Since rankeR)

= q and 'it is q by P one can always find a matrix G of order p by r with
t"';:I f""IJ ""J I"Jrank"G) = r = p - q and HG = o. For such G we shall show in the next

section that

,..,.' ...... ,..,., )-1 "'" ,..,.-1 ""'-1""')-1"",,""-1H "HV H H = v - V G"G V G G V

Recalling that there are Lagrange multipliers e such thatn

(O/OA)S (1 ) = 'H' en n n

we have

Consequently we may substitute -y-l for H' (jfv'H') -1'H in the formula for R to

obtain the simpler form

R = a2n[ (O/OA)S C'>:: )J''V[ (O/OA)S )J .n n n n

We illustrate with Example 3:



EXAMPLE 3 (Continued) Substituting

= n s \..1:' F

with

,..,.
for V and substituting

= (2/n) (F'

for We have

""oJ = 2s n
whence

R = - f0: )]''F(F'F' )-1F' '[y - f('): )] .n n

Putting

* *F = F().. ) ,n n

R is distributed as

R,..,. Y + 0 (1)
P

where

Y =

J-1= (n/2)(F*'F*)-1
n n

o = n(,l + ! Ilg(yO) - f()..*)11 2 )(F*'F*f1n n n n n

H = [0 : I q], I q is the identity matrix of order q,

z,...., N(-2/Jn)F*'[g(yO) - f()..*)], J*J ,n n n n

09* = (4a2/n)F*'F* .n n n

3-5-25
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When the model is correctly specified, these equations reduce to

an. n n n n n n
* * 2 * *Z N((-2/jii) F '[f(;"O) -f(l )], /n)(F 'F )Jn n 'n n n

an = /[ + \I _ .

Y/an is distributed as a non-central chi-square random variable with q degrees

of freedom and non-centrality parameter

The non-centrality parameter may be put in the form (Problem 9)

* * * * -L* * 2a= [f(lO)-f(l )]'F (F'F) '[f(>..O)-f(>" )J;'(2a).nn 'n n n n n n n

Let x2 '(tlq,a) denote the probability that a non-central chi-square random

variable with q degrees of freedom and non-centrality parameter a exceeds t •

One approximates the probability that R rejects H: 'j0 = 'j* at critical pointn
c by

P(R> c) - p(Y > c)

= P(Y/an > clan)

= x2 '(c/an lq,a) .

In applications, the critical point is chosen so that x2 '(c!q,0) = .05, say,

and since cia > c when a * 0 the power of the test is reduced from thatn

which could be achieved if a == l. Ifn

is substituted for i2 in computing R then a - l. Thus, even though then
computation of s2 entails an extra minimization to obtain it is probably

worth the bother in most instances in order to obtain the increase in power. 0
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THEOEEM 15. Let Assumptions 1 through 3 hold and let either Assumptions

4 through 7 or 8 through 12 hold. Let

...
L =2r( set) - s (A )J •n n n n

Under Assumption 13,

L,..., Y + 0 (1)
P

where

and

Recall:

If HVH' = then Y has the non-central chi-square distribution with

q degrees of freedom and non-centrality parameter

a:l n(%A)SO (1*Y2. Under the null hypothesis,n 1.:1 n On
a =0 •

PROOF. By Lemma 2 we may assume without loss of generality that
... ,.....
An' An cA. By Taylor I s theorem

2",r sa:) - s )1
-"I. n n n n"

= 2n( (O/OA)Sn + n(\ - i n )'[ (0
2/ 0AOA ' )sn ](1:n -

where - A II s lit - II. By the Summary, , ) converges almost surelyn n "n n n n
* * 2 *to (A , A ) and (0 /OAOA')S (A) converges almost surely unifor.mly to s (A)n

uniformly on A which implies (02/0AOA ')S ) = 0 (1)]. By Lemma 2,n n s
2n( (O/OA)Sn J' C1'n - = Os (1) whence

2I( s 0: ) - s ) J = n(t - 1 )'[ + 0 (1)] (t - i ) + 0 (1)n n n n n n s n n s
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Again by Taylor's theorem

[t? + 0 (l) )Jna: - ) =.Tn a: ) .s 'n n' n n

Then by Slutsky's theorem. (Serfling, 1980, Sec. l.5 ..4·or Rao, 1973, Sec. 2c.4)

Jnrt. - ) converges in distribution and is therefore bounded.n n

Thus

2n[ s (r ) - s )) = - ) 't?a: -1 ) + 0 (l)n 'n n "'n n n n 'n p

whence

2n[ sa:) - s ) J = n[ (?{ ) J (1 )) + 0 (l)n "n n n n \ "'n . n 'n p

and the distributional result follows at once from Theorem 13. To see that

Y is distributed as the non-central chi-square when HVH' = note that

, .v is idempotent under this condition. 0
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The remarks immediately following Theorems 11 and 14 apply here as

well. One rejects when L exceeds the upper a X 100% critical point of a

chi-square with q degrees of freedom and so on.

In the event that 9 = a J + 0(1) for some scalar multiple a, the
A

'''likelihood ratio test statistic" can be modified as follows. Let a be an

random variable that converges either almost surely or in probability to a.

Then

where

Since )H.9-l J is an idempotent matrix, a Y is distributed as the

non-central chi-square distribution with degrees of freedom and non-

centrality parameter

We illustrate with the example:

•
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EXAMPLE 3 (Continued) Assuming that the model is correctly specified,

2 * *J = (4(7 /n)F 'Fn n

- ° *By Taylor's theorem, for some A on the line segment joining A to An n n

whence

by Theorem 1. Thus we have

An estimator of 02 is

2 -111" \12s = (n-p) y-f(An )

The modified "likelihood ratio test statistic" is

= (2s2)-1(2n)[ (l/n)\\y - f{Xn) 1\2 - (l/n)l\y -

'" 2 ,. 2 2
= [I\y - f(An )1\ -I\y - ]/s •

A further division by q would convert to the F-statistic of the

previous chapter. Assuming correct specification, is distributed to

within opel) as the non-central chi-square distribution with q degrees of

freedom and non-centrality parameter (Problem 9)

* * * * -L* * 2ex = [f(AO) -f(A. )]/F (F 'F ) --:F '[f(AO) -f(A. )]/(20' )."n n nnn n n n
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Under specification error

where:

a Y = + I\g('l) - fO.o )112 ) ,n n n

/ ** 0 *22 *9 = (2 n)Fn'Fn - (2 n)'4;:l g(xt,yn ) - f(Xt,An )] (0 /OAOA')f(Xt,"-n)

z .-.; N[ (-2/J!i)F:'[ - f(A:)] , (4(l /n)F: 'F:] . 0



k=2, ••• ,p
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PROBLEMS

1. (Cholesky factorization) The validity of the argument in the

proof of Theorems lland13 depends on too fact that it is possible to

factor a symmetric, positive definite matrix A as A =R'R in such a way

that R is a continuous function of the elements of the matrix A. To see

that this is so observe that

r ll 0 1 '0 r ll I r 12•..r lpI I
I 1

-1- - - I - - - - - - - - -= I'e r12 I
I
I I 0 Dl 0 I

r lp
I,

where

r ll =Jall
r lk = alk/ Jall .

Dl = A22 - (l/all)a(l)a(l) .

The r lk are continuous elements of A and Dl is a symmetric, positive definite

matrix whose elements are continuous functions of the elements of A, why?

This same argument can be applied to Dl to obtain

r ll 0 1 0 r ll r 12 r 13 • •. r lp'0 0
I 0 1 0

A=
r12 r 22 I

r 22 r23 • •. r 2p
- - -1- ______ J. __ -- - - - -.- - - - - --Ir 13 r23 I I I

I
II

I
0 I D2 0 I

I
r lp r2 I Ip. I
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This argument

can be repeated a finite number of times to obtain the result. The

recursion formula for the Cholesky square root method is

r lk = alk/rll

rJok = (l/r oo)(a jk r ..r. k)JJ

k=1,2,3, .•• ,p

j=2,3,·.·,p
k=j,j+l, ... ,p

Observe that on a computer A can be factored in place using only the upper

triangle of A with this recursion.

2. Suppose that converges to e* and an converges almost surely to

e*. Let g(e) be defined on an open set l8) and let g(e) be continuous at

*e c e. Define g( e ) arbitrarily off l8). Show that

Let e be a square matrix and g(A) a matrix valued function giving the

inverse of 8 when it exists. If e* is nonsingular show that there is an

*open neighborhood l8) about e where each 8 e l8) is nonsingular and show that

*g(8) is continuous at e • Hint:

determinant of a matrix is continuous, and an inverse is the product of the

adjoint matrix and the reciprocal of the determinant. Show that if

In (O/OA)Sn(A:) converges in distribution then (O/OA)Sn(A:) is bounded in

probability. Show that

3. Expand In in a Taylor's series and show that

J. imn-teoJn h( = H6 •
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4. Verit;y that if the linear model

y = XiS + et t t

is esttmated by least squares from data that actually follows

with et independently and normally distributed and one tests the linear

hypothesis

H: RS = r against A: RS * r
then

That is, Theorem12 gives the correct answer, not an approxtmation.

5. Verify that ex =0 when the nuJ.l hypothesis is true in 'theorem 14.

6. (Invariance) Consider a least mean distance estimator

and the hypothesis

* *H: AO = A against A: )..0 * A •n n

Let g(p) be a twice differentiable function with twice differentiable inverse

p = Then an equivalent formulation of the problem is

and the hypothesis

H: po = *) against A: r/ * *) .n n

Show that the computed value of the Wald test statistic can be different for

these two equivalent problems. Show that the computed value of the Lagrangee multiplier and "likelihood ratio" test statistics are invariant to this

reparameterization.
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* * *Suppose that 09 = 9 and that u = 0
so that each of the three test statistics -- W, R, L -- is distributed as a

non-central chi-square with non-centrality parameter 0/ • Show thatn
.timIHCDO/n = in each case with H = (%)"/)h().,*) and

V = (9*)-1 09*(9*)-1 .

8. Fix a realization of the errors.

*be in an open neighborhood of)., on which

10

For large enough n,)., and A mustn n
(o2/0AO ).,/)s ().,) is invertable. Why?

n
Use Taylor I s theorem to show that for large enough n, L is exactly given as a

quadratic form in (%).,)s (! ) .n n

9. Using the identity derived in Section 6 verify the alternative form

for 0/ given in the examples following Theorems 14 and 15.

10. Verify the claim in Assumption 13 that h().,O) = 0 for all n impliesn

that there is an N with = ).,: for all n > N .
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6. ALTERNATIVE REPRESENTATION OF A HYPOTHESIS

The results of the previous section presume that the is

stated as a parametric restriction

H: = 0 against A: * 0 .

As we have seen, .at times it is much more natural to express a hypothesis

as a functional dependency

H: = g(p) for some p in against A: * g(p) for any p in •

Suppose these two hypotheses are equivalent in the sense that there is a

once differentiable function defined on A such that the transformation

l' = h(i.)
p =

has a once differentiable inverse

with

g(p) = 'i'(p,O) •

The set A is the set over which s (i.) is to be minimized when computing .n n

Thus,

= [p:p = h(A) = 0, A in A}

is the set over which g(p) is defined; l' is a q-vector and p is an r-vector

withO p = r +q. To see that the existence of cp (A) implies that the two

formulations of the null hypothesis are equivalent note that
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[A:h(A) = 0, A in A}

= [A:A = g(p), P in R} •

Similarly, both formulations of the alternative hypotheses define the same

set of admissible values for A .

Since Theorem 11 is of little use without actually having h(A) at hand,

we shall pass on to Theorems 14 and 15 and show that all the required

computations can be performed knowing only g(p). 1: ·can be computed byn
minimizing the compos i te function s [g(p)] over R to obtain p and puttingn n

= g(p ). Similarly, A* can be computed by minimizing SO[g(p)J over R ton n n n
obtain pO and putting A* = g(pO). The statistics Rand L, the vectorn n n

*(O/OA)SO(A ), and matrices J, u and V can now be computed directly. Whatn n

remains is to compute matrices of the form H'(HAH,)-lH where A is a computable,

positive definite, symmetric matrix and H = (O/OA')h(A:). Let

We shall show that

for any positive definite symmetric A.

By differentiating the equations

°= h[ g(p)]
p =cp [g(p) J

*and evaluating the derivatives at p =p we haven

°= HG

I = (O/OA' )cp(A:)G

which implies that rank (G) = r; recall that rank (H) = q by assumption.
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Factor A as A = PP' (Problem 1 of Section 5). Trivially HP P-1G" 0 which implies

that there is a non-singular matrix B of order q and there is a non-singular
I I -1matrix C of order r such that = P H B has orthonormal columns, = P GC

has orthonormal columns, and the matrix = is orthogonal. Then

I = ]

= +

( I ) -1. I (') -1 I= &1&1 \91 + &2

=

+ p-1GCCC/G/(p-l)'p-1GC)-lC/G/(p-l)I

= + P-1G(G/A-1G)-lG'(p-l),

Whence

To illustrate, suppose that J = in Theorem 15. Then the non-centrality

parameter is

a =

=

=

*since = H'e where e is the Lagrange multiplier.
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7. RANDOM REGRESSORS

As noted earlier, the standard assumption in regression analysis is

that the observed independent variables are fixed. With a model

such as

t = 1, 2, ... , n

the independent variables are held fixed and the sampling variation

enters via sampling variation in the errors If the independent

variables are random variables then the analysis is conditional on that

realization that obtains. Stated differently, the model

Yt = + et t = 1,2, ... , n

defines the conditional distribution of given and the analysis

is based on the conditional distribution.

An alternative approach is to assume that the independent variables

are random and to allow sampling variation to enter both through the

errors and the independent variables We shall see that the

theory developed thus far is general enough to accomodate an assumption of

random regressors and that the results are little changed save in one instance,

that instance being the mfsspecified model. Therefore we shall focus the

discussion on this case.

We have seen that under the fixed regressor setup the principal conse-

quence of misspecification is the inability to estimate the matrix J* from

sample information because the obvious estimator j converges almost surely to

J* +u* rather than to J*. As a result, test statistics are distributed

asymptotically as general quadratic forms in normal random variables rather
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than as non-central chi-square random variables. In contrast, a consequence

of the assumption of random regressors is that u* =o. With random regressors

test statistics are distributed asymptotically as the non-central chi-square.

Considering least mean difference estimators, let us trace through the details

as to why this is so. Throughout, 09 = 09° , 9 = 9°, and U = UO .n n n
*With least mean distance estimators, the problem of non-zero u originates

with the variables

that appear in the proof of Theorem 4. In a correctly specified situation,

sensible estimation procedures will have the property that at each x the

minimum of

Ss[Y(e,x,yO) ,X,To ,A]dP(e)e n n

will occur at A= AO. Under the regularity conditions, this implies thatn

a = (O/OA)S
e

=S (O/OA)s[Y(e,x,yO),X,TO ,AO]dP(e) .e n n n

Thus, the random variables

have mean zero and their normalized sum

has variance-covariance matrix
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which can be estimated by j. But in an incorrectly specified situation the

In general * 0 and varies systematically with xt • Under misspecification,

the normalized sum

has variance-covariance matrix

as before but j is, in essence, estimating

Short of assuming replicates at each point xt ' there seems to be no way to

form an estimate of

Without being able to estimate U, one cannot estimate J .

The effect of an assumption of random regressors is to convert the

deterministic variation in to random variation. The become independently

distributed each having mean zero. From the point of view of the fixed

regressors theory, one could argue that the independent variables have all

been set to a constant value so that each observation is now a replicate. We

illustrate with Example 3 and then return to the general discussion.
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EXAMPLE 3 (Continued) To put the model into the form of a random

regressors model within the framework of the general theory, let the data

be generated according to the model

which we presume satisfies Assumptions 1 through 3 with xt =1 and the

putting all its mass at x = 1; in other words, xt enters the model trivially.

The y(2)t are the random regressors. Convention has it, in this type of

analysis, that y(2)t and e(l)t are independent whence Pee) is a product measure

The fitted model is

t = 1, 2, ... , n

and A is estimated by that minimizesn

Let v be the measure defined by

where is the set of admissible values for the random variable y(2) •

have:

We
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s(y,x,X) = [Y(l) -f(Y{2),X)]2

= (1(1) + S -f(Y(2),X)]2d\l(Y(2))
Y(2)

= -2 S - f(Y(2),X)]2(O/O)..)f(Y(2),)..)d\l(Y(2))
Y(2) ,

minimizes S - f(Y(2),)..)]2d\l(Y(2))
Y(2)

The critical change from the fixed regressor case occurs in the computation

of

SZt(e)dP(e) =S (O/O)..)s[Y(e,xt,yO) ,xt,XO ]dP(e) Ie e n n x=l
t

Let us decompose the computation into two steps. First compute the conditional

Second compute the mean of

=

= 0
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because >.0 minimizes SO ("J. Consequentlyn n

*and u =u = O. One can see that in the fixed regressor case the conditional

mean of given the regressor is treated as deterministic

quantity whereas in the random regressor case the conditional mean is

treated as a random variable having nean zero.

Further computations yield:

J = 4cr(l)S
lJ(2)

9 = 2S
1J(2)

-2 S Q
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Returning to the general case, use the same strategy employed in the

example to write

q(y,x,yO) =n

with x == 1 and

y(2) is the random regressor. The reduced form can be written as

Let v be the measure such that

where is the set of admissible values of the random regressor y(2) •

The distance function for a least mean distance estimator will have the

form

Since the distance function depends trivially on xt ' we have



\

\

Since (O/OA)SO (AO) = 0 and the regularity conditions permit interchange of "n n
differentiation and integration we have

*whence u = u = o. other computations assume a similar form, for example

Sample quantities retain their previous form, for example

For a method of moments estimator, in typical cases one can exploit the

structure of the problem and show directly that

* *This implies that K = K = 0 whence u = u = o. The remaining computations

are modified similarly to the foregoing.
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8. CONSTRAINED ESTIMATION
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Throughout we shall assume that the constraint has two equivalent

representations:

*Parametric restriction: h(>J = 0, A in A ,

Functional dependency: A = g(p), p in a ,

where h: RP Rq , g: Rr W'; and r+ q = p. They are equivalent in the

sense that the null space of h(A) is the range space of g(p) :

*AH = [A: h(A) = 0, A in A } = [)..: A= g(p), P in R} •

We also assume that both g(p) and h(A) are twice continuously differentiable.

Frcm

h[ g(p)] = 0

we have

(a/aA')h[g(p)](a/ap')g(p) = HG = 0

If rank [H' : G] = P, we have from Section 6 that for any symmetric, positive

definite matrix l

Section 6 gives a construction which lends plausibility to these assumptions.

Let the data generating model satisfy Assumptions 1 through 3. Let

the objective function sn[g(p)J satisfy either Assumptions 4 through 6 or

Assumptions 8 through 11. Let
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...
sn[ g(p) J ,Pn minimize

0 minimize g(p)]Pn

* *p minimize s [g(p)]

Then from either Theorem 3 or Theorem 7 we have that

... *Pn = p almost surely ,

*.tim po = p almost surely ,
IHCO n

and from either Theorem 5 or Theorem 9 that

* *The matrices J and 9 are of order r by r and can be computed by directp p
application of Notation 2 or Notation 6. In these computations one is

working in an r-dimensional space not in a p-dimensional space. We

* * *emphasize this point with the p-subscript: Jp ' 9 , and u .p p
illustrate, computing according to Notation 2 one has:

To

u* =SS[(%p )s(Y(e,x,y*) ,X,T* ,g(p*)J dP(e))
p :L e

X tS
e

* * * *J =SS[(o/Op )s[Y(e,x,y ) ,X,T ,g(p )]}
P :L e

* * *X [(%p)s[Y(e,x,y ),X,T. ,g(p )]}'dP(e) *- up
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* *Estimators of J p and 9p are computed according to Notation 4 or Notation

9. To illustrate, computing according to Notation 4 one has:

As to testing hypotheses, the theory of Section 5 applies directly.

The computations according to Notation 3 or Notation 8 are similar to

those illustrated above.

Often results reported in terms of

A = g(p'" )n n

. are more meaningful than results reported in terms of p . As an instance,n

one wants to show the effect of a restriction by presenting and itsn

(estimated) standard errors together and its (estimated) standardn

errors in a tabular display. To do this, let

By continuity of g(p)

.tim t = A# almost surelyn

Note that A# is not equal to A* of either Section 3 or Section 4 unless the

Pitman drift assumption is imposed. From the Taylor series expansion
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* *where G = (%p')g(p ) we have that

The variance-covariance matrix is estimated by

where G= (o/ap' )g(Pn)' Let in be the Lagrange multiplier for the minimi-
zation of Sn(A) subject to h(A)=O and let

1 = (02/0AOA ')[S ) + e'h(1:' )Jn n n'n

One can show that (Problem 1)

= 6':t'Gp

and using the chain rule with either Notation 4 or Notation 9 one finds that
lilt ",",,-.,.,;,,

J = G JG
P

Using the identity given earlier on, 6ne has

)-1 j )-la,
p p p

= 1-lcI _!t'(Hl-l'H,)-l'Hl'-lJ'J[I _rl'H' (Hl-l'H')'H]!-l

Where 'H = The right hand side of this expression can be

computed from knowledge of s (A) and h(A) alone.n
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Similarly, if

A# minimizes S*(A) subject to h(A) = 0

with Lagrange multipliers e#

*( *)-1 *( *)-1 *G9 J9p G'p p

= '£-1: I - H' (Ho£- l H') J [I - o£- l H' (Ho£-l H' )H]o£-l

where

H = (O/OA')h(A#)
o£ = (o2/0AOA ,) [s*(A#) + e#'h(A#)]

J = .

Under a Pitman drift, A# = 0 and the expression that one might expect from
the proof of Theorem. 13 obtains.
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PROBLEMS

1. Show that the equation h[ g(p ) ] = 0 implies

tf=l(O/OA.t) hJg(p)J (02/0PiOPj)g.e(p)

= - (02/0AkOA.e)hJg(p)](0/Opj)gk(P)(0/OPi)g.e(P).

Suppose that = g(p) minimizes SeA) subject to h(A) = 0 and that e is
the corresponding vector of Lagrange multipliers. Show that

(O/OA.e)S[ g(p)] (02/ op i op j )g.eG;)

= Su(02/0AkoA.e)hu<'):) (%Pj)gk(P)(o/Opi)g.e(P) •

Compute (02/oPiOpj)s[g(p)] and substitute the expression above to obtain

(02/ opap I )s[ g(p)J = [(%p I )g(p)] I (02/ 0AOA ')[ s fA) + (%p I )g(p)] .
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Lagrange multiplier test
asymptotic distribution, 3-5-23
defined, 3-5-6
discussed, 3-5-6

Least mean distance estimator
constrained, 3-3-4
defined, 3-1-1, 3-3-1, 3-3-4
introductory discussion, 3-1-1
summary of results, 3-5-2

Likelihood ratio test
alternate form, 3-5-29
asymptotic distribution, 3-5-27
def ined, 3-5-7
discussed, 3-5-7

M-estimator
Iteretive1y rescaled M-estimator

examp1 e, 3-3-2, 3-3-7, 3-3-12, 3-3-21, 3-3-26,
3-3-30, 3-3-34, 3-4-26

Scale invariant M-estimator
example, 3-4-2, 3-4-7, 3-4-11

Method of moments estimator,
constrained, 3-4-1
defined, 3-1-3, 3-4-1
introductory discussion, 3-1-2
summary of results, 3-5-2
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Misspecification

defined, 3-1-1
example, 3-5-8, 3-5-11, 3-5-16, 3-5-25, 3-5-30

Nonlinear least squares under specification error
example, 3-5-8, 3-5-11, 3-5-16, 3-5-25, 3-5-30

Notation 1, 3-3-4
Notation 2, 3-3-19
Notation 3, 3-3-24
Notation 4, 3-3-28
Notation 5, 3-4-4
Notation 6, 3-4-9
Notation 7, 3-4-14
Notation 8, 3-4-18
No ta tion 9, 3-5-4
Null hypo thesis

defined, 3-5-1
Pa rameter space

defined, 3-2-3
Parametric restriction

defined, 3-6-1, 3-8-1
P i tmand r i f t

consequence of in constrained estimation, 3-3-45, 3-4-44
consequence of in misspecified 3-3-44
examples 3-2-21, 3-2-22, 3-3-59
introductory discussion, 3-2-1

Ra ndom reg resso rs
consequence of in misspecified situations, 3-3-44, 3-7-1

Regular conditional probability
defined, 3-2-16
examp1 e, 3-2-16

Sample objective function
for least mecn distance estimators

almost sure limit, 3-3-4
def ined, 3-3-4
expectation, 3-3-4

for method of moment estimators
almost sure limit, 3-4-4
defined, 3-4-1

Score
defined, 3-3-35
see also asymptotic normality of the scores

Specification error
see misspecification

Tail equivalence
d e fin ed, 3- 3- 3 8

Theorem 1, 3-2-7
Theorem 2, 3-2-11
Theorem 3, 3-3-17
Theorem 4, 3-3-36
Theorem 5, 3-3-42
Theorem 6, 3-3-47
Theorem 7, 3-4-31
Theorem 8, 3-4-35
Theorem 9, 3-4-48
Theorem 10, 3-4-45
Theorem 11, 3-5-12
Theorem 12, 3-5-18
Theorem 13, 3-5-20
Theorem 14, 3-5-23
Theorem 15, 3-5-27
Underlying probability space

formal description 3-2-20



Underlying probability space
formal description 3-2-20

Uniform Strong Law of Large Numbers, 3-2-7
Wald test statistic

alternative forms, 3-5-14
asymptotic distribution, 3-5-12
defined, 3-5-6
discussed, 3-5-6
lack of invariance of, 3-5-6, 3-5-35
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