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CHAPTER 1. Univariate Nonlinear Regression

The nonlinear regression model with a univariate dependent variable is

more frequently used in applications than any of the other methods discussed

in this book. Moreover, these other methods are for the most part fairly

straightforward extensions of the ideas of univariate nonlinear regression.

Accordingly, we shall take up this topic first and consider it in some detail.

In this chapter, we shall present the theory and methods of univariate

nonlinear regression by relying on analogy with the theory and methods of

linear regression, on examples, and on Monte-Carlo illustrations. The formal

mathematical verifications are presented in subsequent chapters. The topic

lends itself to this treatment as the role of the theory is to justify some

intuitively obvious linear approximations derived from Taylor's expansions.

Thus one can get the main ideas across first and save the theoretical details

until later. This is not to say that the theory is unimportant. Intuition is

not entirely reliable and some surprises are uncovered by careful attention to

regularity conditions and mathematical detail.

As a practical matter, the computations for nonlinear regression methods

must be performed using either a scientific subroutine library such as IMSL or

NAg Libraries or a statistical package with nonlinear capabilities such as

SAS, BMDP, TROLL, or TSP. Hand calculator computations are out of the

question. One who writes his own code with repetitive use in mind will

probably produce something similar to the routines found in a scientific

subroutine library. Thus, a scientific subroutine library or a statistical

package are effectively the two practical alternatives. Granted that

scientific subroutine packages are far more flexible than statistical packages

and are usually nearer to the state of the art of numerical analysis than the

•
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statistical packages, they nonetheless make poor pedigological devices. The

illustrations would consist of lengthy FORTRAN codes with the main line of

thought obscured by bookkeeping details. For this reason we have chosen to

illustrate the computations with a statistical package, namely SAS.



1-1-1

1. INTRODUCTION

One of the most common situations in statistical analysis is that of data

which consist of observed, univariate responses Yt known to be dependent on

corresponding k-dimensional inputs xt • This situation may be represented by

the regression equations

t - 1,2, ••• ,n

where f(x,e) is the known response function, eO is a p-dimensional vector of

unknown parameters, and the et represent unobservable observational or

experimental errors. We write eO to emphasize that it is the true, but

unknown, value of the parameter vector e that is meant; e itself is used to

denote instances when the parameter vector is treated as a variable as, for

instance, in differentiation. The errors are assumed to be independently and

identically distributed with mean zero and unknown variance a2• The sequence

of independent variables {xtl is treated as a fixed known sequence of

constants, not random variables. If some components of the independent

vectors were generated by a random process, then the analysis is conditional

on that realization {xt } which obtained for the data at hand. See Section 2

of the next chapter for additional details on this point and Section 7 of the

next chapter in which is displayed a device that allows one to consider the

random regressor set-up as a special case in a fixed regressor theory.

Frequently, the effect of the independent variable xt on the dependent

variable Yt is adequately approximated by a response function which is linear

in the parameters
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By exploiting various transformations of the independent and dependent

variables, viz.

the scope of models that are linear in the parameters can be extended

considerably. But there is a limit to what can be adequately approximated by

a linear model. At times a plot of the data or other data analytic

considerations will indicate that a model which is not linear in its

parameters will better represent the data. More frequently, nonlinear models

arise in instances where a specific scientific discipline specifies the form

that the data ought to follow and this form is nonlinear. For example, a

response function which arises from the solution of a differential equation

might assume the form

Another example is a set of responses that is known to be periodic in time but

with an unknown period. A response function for such data is

A univariate linear regression model, for our purposes, is a model that

can be put in the form
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A univariate nonlinear regression model is of the form

but since the transformation can be absorbed into the definition of the

dependent variable, the model

is sufficiently general. Under these definitions a linear model is a special

case of the nonlinear model in the same sense that a central chi-square

distribution is a special case of the non-central chi-square distribution.

This is somewhat of an abuse of language as one ought to say regression model

and linear regression model rather than nonlinear regression model and

(linear) regression model to refer to these two categories. But this usage is

long established and it is senseless to seek change now.

EXAMPLE 1. The example that we shall use most frequently in illustration

has the response function

The vector valued input or independent variable is
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and the vector valued parameter is

6 •

so that for this response function k • 3 and p ,.. 4. A set of observed

responses and inputs for this model which will be used to illustrate the

computations is given in Table 1. The inputs correspond to a one-way

"treatment-control" design that uses experimental material whose age (ax3)

affects the response exponentially. That is, the first observation

Xl • (0,1,6.28)

represents experimental material with attained age x3 ,.. 6.28 months that was

(randomly) allocated to the control group and has expected response.

o6.2863f ( 60 ) 602 + 604 exl' ,..

Similarly, the second observation

X2 • (1,1,9.86)

represents an allocation of material with attained age x3 ,.. 9.86 to the

treatment group; with expected response
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Table l- Oa ta Va 1 ues fo r Examp1 e 1.e
t y Xl X2 X3

1 0.98610 1 1 6.28
2 1.03848 0 1 9.86
3 0.95482 1 1 9.11
4 1. 04184 0 1 8.43
5 1.02324 1 1 8.11
6 0.90475 0 1 1. 82
7 0.96263 1 1 6.58
8 1.05026 0 1 5.02
9 0.98861 1 1 6.52
10 1.03437 0 1 3.75
11 0.98982 1 1 9.86
12 1.01214 0 1 7.31
13 0.66768 1 1 0.47
14 0.55107 0 1 0.07
15 0.96822 1 1 4.07
16 0.98823 0 1 4.61
17 0.59759 1 1 0.17
18 0.99418 0 1 6.99
19 1.01962 1 1 4.39
20 0.69163 0 1 0.39
21 1. 04255 1 1 4.73
22 1.04343 0 1 9.42
23 0.97526 1 1 8.90
24 1.04969 0 1 3.02
25 0.80219 1 1 0.77
26 1.01046 0 1 3.31
27 0.95196 1 1 4.51
28 0.97658 0 1 2.65
29 0.50811 1 1 0.08
30 0.91840 0 1 6.11
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and so on. The parameter is, then, the treatment effect. The data of

Table 1 are simulated.

EXAMPLE 2. Quite often, nonlinear models arise as solutions of a system

of differential equations. The following linear system has been used so often

in the nonlinear regression literature (Box and Lucus (1959), Guttman and

Meeter (1964), Gallant (1980» that it might be called the standard

pedagogical example.

Linear System

(d/dx)A(x) • -6 1A(x)

(d/dx)C(x) - 62B(x)

Boundary Conditions

A(x) - 1, B(x) - C(x) = 0 at time x = 0

Parameter Space

Solution, 61 > 62
-6 x

A(x) • e 1

-6 x
C(x) • 1 - (6 1 - 62)-1(61e 2

-6 x1- 6 e )2



A(x) •

Solution, 61 • 62
-61xe
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C(x)

Systems such as this arise in compartment analysis where the rate of flow

of a substance from compartment A into compartment B is a constant proportion

61 of the amount A(x) present in compartment A at time x. Similarly, the rate

of flow from B to C is a constant proportion 62 of the amount B(x) present in

compartment B at time x. The rate of change of the quantities within each

compartment is described by the system of linear differential equations. In

chemical kinetics, this model describes a reaction where substance A

decomposes at a reaction rate of 61 to form substance B which in turn

decomposes at a rate 62 to form substance C. There are a great number of

other instances where linear systems of differential equations such as this

arise.

Following Guttman and Meeter (1964) we shall use the solutions for B(x)

and C(x) to construct two nonlinear models which they assert "represent fairly

well the extremes of near linearity and extreme nonlinearity." These two

models are set forth immediately below. The design points and parameter

settings are those of Guttman and Meeter (1964).
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f(x,6) -

o6 .. (1.4, .4)

{X
t
} - {.2S, .5, 1, 1.5, 2, 4, .25, .5, 1, 1.5, 2, 4}

n - 12

2 2a .. (.025)

Model C

f(x,6) •

-x62 -x6 11 - (61e - 62e )/(6 1 - 62 )

-x61 -x6 11 - e - xt3 e1

60 • (1.4, .4)

{Xt } • {I, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6}

n - 12



Table 2. Data Values for Example 2.

t Y X

Model B

1 0.316122 0.25
2 0.421297 0.50
3 0.601996 1.00
4 0.573076 1. 50
5 0.545661 2.00
6 0.281509 4.00
7 0.273234 0.25
8 0.415292 0.50
9 0.603644 1. 00
10 0.621614 1. 50
11 0.515790 2.00
12 0.278507 4.00

Model C

1 0.137790 1
2 0.409262 2
3 0.639014 3
4 0.736366 4
5 0.786320 5
6 0.893237 6
7 0.163208 1
8 0.372145 2
9 0.599155 3
10 0.749201 4
11 0.835155 5
12 0.905845 6

1-1-9
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2. TAYLOR'S THEOREM AND MATTERS OF NOTATION

In what follows, a matrix notation for certain concepts in differential

calculus leads to a more compact and readable exposition. Suppose that s(6)

is a real valued function of a p-dimensional argument 6. The notation

(a/a6)s(6) denotes the gradient of s(6),

(an61)s(6)
(a/aS2)s(S)

p 1

a p by 1 (column) vector with typical element (a/a6i )s(6). Its transpose is

denoted by

,
(a/a6 )s(6) = [(a/a61)s(6), (a/a62 )s(6), ••• , (a/aSp )s(6)]

1 p

Suppose that all second order derivatives of s(6) exist. They can be arranged

in a p by p matrix, known as the Hessian matrix of the function s(6),

(a2/ asi)s(6)
2(a /as2as 1)s(S)

2(a /as1 aS2)s(6)

...
(a2/ as1 a6p)s(6)

(a2/a62a6p)s(6)

p p



1-2-2

If the second order derivatives of s(8) are continuous functions in 8 then the

Hessian matrix is symmetric (Young's theorem).

Let f(8) be an n by 1 (column) vector-valued function of a p-dimensional

argument 8. The Jacobian of

f(8) •

n 1

is the n by p matrix

(3/a81)f1(8)

(a/a81)f2 (8),
(a/a8 )f(8) =

(a/a82)f 1(8)

(a/382 )f2 (8)

(a/a8p )f 1(8)

(a/a8p )f 2(8)

n

,
Let h (8) be an n by 1 (row) vector-valued function

(a/a8 )f (8)P n

p
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,
(a/aa)h (a) •

(a/aa1)h1(a)

(3/aa2 )h1(a)

(a/aa1)hZ(a) •••

(a/aaz)h2(a)
(a/aa1)hn (a)

(a/aaZ)hn(a)

p

(a/aa )h (a)p n
n

In this notation, the following rule governs matrix transposition:

, ,
[(a/a6 )f(a)] = (a/aa)f (a)

And the Hessian matrix of s(a) can be obtained by successive differentiation

variously as:

= (a/aa)[(a/aa)s(6)]

,
= (a/aa )[(a/aa)s(a)]

, , ,
= (a/a6 )[(a/aa )s(a)]

(if symmetric)

(if symmetric)

One has a chain rule and a composite function rule. They read as follows. If
,

f(6) and h (a) are as above then (Problem 1)

, , , , , ,
(a/a6 )h (6)f(a) = h (6)[(a/aa )f(a)] + f (6)[(a/a6 )h(6)]

1 n p 1 n p
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Let g(p) be a p by 1 (column) vector-valued function of a r-dimensional

argument p and let f(6) as above: Then (Problem 2)

t t t

(a/ap )f[g(p)] m (a/a6 )f(6)!6-g(p) (a/ap )g(p)

n p r

The set of nonlinear regression equations

t"'1,2, ••• ,n

may be written in a convenient vector form

by adopting conventions analogous to those employed in linear regression;

namely

Y1
Y2

Y •

Yn
n 1
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f(x 1, a)
f(x2 ,a)

f(a) .. ···f(x ,a)n
n 1

e 1
e2

·e - ··en
n 1

The sum of deviations

SSE(a) =

of the observed Yt from the predicted value f(xt,a) corresponding to a trial

value of the parameter a becomes

, 2
SSE(a) = [y - f(a)] [y - f(a)] .. Uy - f(a)U

in this vector notation.

The estimators employed in nonlinear regression can be characterized as

linear and quadratic forms in the vector e which are similar in appearance to

those that appear in linear regression to within an error of approximation

that becomes negligible in large samples. Let

,
F(a) = (a/aa )f(a);
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that is, F(6) is the matrix with typical element (a/a6 j )f(xt ,6) where t is the

row index and j is the column index. The matrix F(60) plays the same role in

these linear and quadratic forms as the design matrix X in the linear

regression.

z • xa + e.

Th i 1 i b i d b i f(60) + F(60)6° ande appropr ate ana ogy s ° ta ne y sett ng z • y -

setting X • F(60). Malinvaud (1970, Ch. 9) terms this equation the "linear

pseudo-model." For simplicity we shall write F for the matrix F(6) when it is

evaluated at 6.6°;

Let us illustrate these notations with Example 1.

EXAMPLE 1 (continued). Direct application of the definitions of y and

f(6) yields

0.98610
1.03848
0.95482

y = 1.04184

0.50811

0.91840

30 1



f(6) =

30

Since

6.286361 + 62 + 64e

9.866362 + 64e

9.116361 + 62 + 64e

8.436362 + 64e

0.086361 + 62 + 64e

6.116362 + 64e

1

1-2-7

The Jacobian of f(6) is
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1 1
6.2863 6.286364(6.28)e e

0 1
9.8663 9.866364(9.86)e e

1 1
9.1163 9.116364(9.11)e e

F(6) • 0 1
8.4363 8.436364(8.43)e e

1 1
. 0.0863 0.086364(0.08)e e

0 1
6.1163 6.116364(6.11)e e

30 4

Taylor's theorem, as we shall use it, reads as follows:

Taylor's Theorem: Let s(6) be a real valued function defined over 0.

Let 0 be an open, convex subset of RP; RP denotes p-dimensional Euclidean

space. Let 60 be some point in 0.

If s(6) is once continuously differentiable on 0 then

or, in vector notation,

for some e • A6° + (I-A)6 where 0 ( A ( 1.
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If s(a) is twice continuously differentiable on e then

or t in vector notation t

for some e = xao + (I-X)a where 0 X 1.

Applying Taylor's theorem to f(xtt a ) we have

implicitly assuming that f(x,a) is twice continuously differentiable on some

open t convex set e. Note that e is a function of both x and at e = e(x,e).
Applying this formula row by row to the vector f(e) we have the approximation

where a typical row of R is

alternatively
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Using the previous formulas,

, , ,
(a/a6 )SSE(6) - (a/a6 )[y - f(6)] [y - f(6)]

, , , ,
• [y - f(6)] (a/a6 )[y - f(6)] + [y - f(6)] (a/a6 )[y - f(6)]

, ,
• 2[y - f(6)] [-(a/a6 )f(6)]

,
- -2[y - f(6)] F(6)

The least squares estimator is that value 6 that minimizes SSE(6) over the

parameter space a. If SSE(6) is once continuously differentiable on some open

set eo with 6 e: rJ> a, then 6 satisfies the "normal equations"

, ...
F (6)[y - f(6)] = O.

This is because (a/a6)SSE(6) - 0 at any local optimum. In linear regression,

z • xa + e,

least square residuals e computed as

e • y - xa,

are orthogonal to the columns of X, viz.,
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, A

X e = O.

In nonlinear regression, least squares residuals are orthogonal to the columns

of the Jacobian of f(6) evaluated at 6 - 6, viz.,

, A

F (6)[y - f(6)] ... O.
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PROBLEMS

1. (Chain rule). Show that

, , , , , ,
(a/ae )h (e)f(e) • h (e)(a/ae )f(e) + f (e)(a/ae )h(e)

n
by computing (a/aei ) L by the chain rule for i a 1,2, ••• ,p to obtain

k-1

, , n , n ,
(alae )h (e)f(e). L )fk(e) + L fk(e)(a/ae

ka 1 k-1

, ,
Note that (alae )fk(e) is the k-th row of (alae )f(e).

2. (Composite function rule). Show that

, , ,
(a/ap )f[g(P)] = {(alae )f[g(p)]}(a/ap)g(p)

,
by computing the (i,j) element of (a/ap )f[g(p)], (a/aPj)fi[g(P)] and then

applying the definition of matrix multiplication.



1-3-1

3. STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS

The least squares estimator of the unknown parameter 60 in the nonlinear

model

oy "" f(6 ) + e

is the p by 1 vector 6 that minimizes

I 2
SSE(6) "" [y - f(6)] [y - f(6)] "" lIy - f(6) II •

The estimate of the variance of the errors et corresponding to the least

squares estimator 6 is

In Chapter 4 we shall show that

.. 0 '-1'6 "" 6 + (F F) F e + 0 (1/1n)p

2 I , -1's "" e [I - F(F F) F ]e/(n-p) + 0 (l/n)p

o '0where, recall, F "" F(6 ) "" (a/a6 )f(6 ) "" matrix with typical element
, 0

(a/a6 )f(xt,e). The notation 0 (a ) denotes a (possibly) matrix-valuedp n

random variable X "" 0 (a ) with the property that each element satisfiesn p n

lim p[IXij /a I > €] "" 0
n- n n
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for any € > 0; {a } is some sequence of real numbers. the most frequentn

choices being a = 1. a • 1/1n. and a - l/n.n n n
These equations suggest that a good approximation to the joint

.... 2
distribution of (a.s ) can be obtained by simply ignoring the

terms 0 (1/10) and 0 (l/n). Then by noting the similarity of the equationsp p

.... '1 'a - aO + (F F) - F e

with the equations that arise in linear models theory and assuming normal

errors we have approximately that a has the p-dimensional multivariate normal

o 2 ' -1 -distribution with mean a and variance-covariance matrix a (F F) ;

(n-p)s2/ a2 has the chi-squared distribution with (n-p) degrees of freedom.

2 2 2(n-p)s /a ,." X (n-p);

2 .... .... 2
and s and a are independent so that the joint distribution of (a.s ) is the

product of the marginal distributions. In applications. (F'F)-l must be

approximated by the matrix
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The alternative to this method of obtaining an approximation to the

distribution of 6--characterization coupled with a normality assumption--is to

use conventional asymptotic arguments. One finds that 6 converges almost

surely to 60 , s2 converges almost surely to 0 2 , (1/n)F'(6)F(6) converges
" 0almost surely to a matrix n, and that 10(6 - 6 ) is asymptotically normally

distributed as the p-variate normal with mean zero and variance-covariance

matrix 020-1,

" L 2 -11n(6 - 60 ) -+ N (0,0 0 ).p

The normality assumption is not needed. Let

, "o = (1/n)F (6)F(6).

Following the characterization/normality approach it is natural to write

Following the asymptotic normality approach it is natural to write

2 "( = N (O,s nC) );p

natural perhaps even to drop the degrees of freedom correction and use

"2o = (1/n)SSE(6)
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to estimate 02 instead of s2. The practical difficulty with this is that one

can never be sure of the scaling factors in computer output. Natural

combinations to report are:

a, 2 c;s ,
A 2 2Aa, s , s c;
a, A2 A_1

o , o .,
a, A2 A2 A_1

o , 0 o .,

and so on. The documentation usually leaves some doubt in the reader's mind

as to what is actually printed. Probably, the best strategy is to run the

program using Example 1 and resolve the issue by comparison with the results

reported in the next section.

As in linear regression, the practical importance of these distributional

properties is their use to set confidence intervals on the unknown parameters

••• ,p) and to test hypotheses. For example, a 95% confidence

interval may be found for from the .025 critical value t. 025 of the t-

distribution with n-p degrees of freedom as

o *Similarly, the hypothesis H: ai - ai may be tested against the alternative

A: * a: at the 5% level of significance by comparing
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-with It.02S1and rejecting H when Itil > It. 02S I; cii denotes the i-th

diagonal element of the matrix C. The next few paragraphs are an attempt to

convey an intuitive feel for the nature of the regularity conditions used to

obtain these results; the is reminded once again that they are

presented with complete rigor in Chapter 4.

The sequence of input vectors {xt } must behave properly as n tends to

infinity. Proper behavior is obtained when the components Xit of xt are

chosen either by random sampling from some distribution or (possibly

disproportionate) replication of a fixed set of points. In the latter case,

some set of points aO' al, ••• ,aT-l is chosen and the inputs assigned according

to Xit = aCt mod T)· Disproportionality is accomplished by allowing some of

the ai to be equal. More general schemes than these are permitted--see

Section 2 of Chapter 3 for full details--but this is enough to gain a feel for

the sort of stability that {xt } ought to exhibit. Consider, for instance, the

data generating scheme of Example 1.

EXAMPLE 1 (continued). The first two coordinates Xlt' X2t of
,

xt = (xlt' X2t' X3t) consist of replication of a fixed set of design points

determined by the design structure:

(X1 ,X2)1
(x1 ,x2 )2

(x1 ,X2 )t

(x1 'X2 )t

-
=

--

(1,1),

(0,1),

(1,1),

(0,1),

if t is odd

if t is even
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That is,

with

• a (t mod 2)

•

•

(0,1),

(1,1)

(a/aai)f(x,a) must be
2(a /aai aaj )f(x, a) 1Il1st

The covariate X3t is the age of the experimental material and 1s conceptually

a random sample from the age distribution of the population due to the random

allocation of experimental units to treatments. In the simulated data of

Table 1, X3t was generated by random selection from the uniform distribution

on the interval [0,10]. In a practical application one would probably not

know the age distribution of the experimental material but would be prepared

to assume that x3 was distributed according to a continuous distribution

function that has a density P3(x) which is positive everywhere on some known

interval [O,b], there being some doubt as to how much probability mass was to

the right of b. I

The response function f(x,a) must be continuous in the argument (x,a);

that is, if lim (xi,ai ) - (x*,a*) (in Euclidean norm on Rk+P) then
i+GO * *lim f(xi,ai ) - f(x ,a). The first partial derivatives

i+GO
continuous in (x,a) and the second partial derivatives

be continuous in (x, a). These smoothness requirements are due to the heavy

use of Taylor's theorem in Chapter 3. Some relaxation of the second

derivative requirement is possible (Gallant, 1973). Quite probably, further

relaxation is possible (Huber, 1982).
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There remain two further restrictions on the limiting behavior of the

response function and its derivatives which roughly correspond to estimabi1ity

considerations in linear models.

s(e) • lim (lIn)

The first is that

nI [f(xt,e) - f(x t ,e
O)]2

tal

has a unique minimum at e = eO and the second is that the matrix

g • lim (l/n)F' (eo)F(eo )

be non-singular. We term these the Identification Condition and the Rank

Qualification respectively. When random sampling is involved, Kolmogorov's

Strong Law of Large Numbers is used to obtain the limit as we illustrate with

Example 1, below. These two conditions are tedious to verify in applications

and few would bother to do so. However, these conditions indirectly impose

restrictions on the inputs xt and parameter 6
0 that are often easy to spot by

inspection. Although 60 is unknown in an estimation situation, when testing

hypotheses one should check whether the null hypothesis violates these

assumptions. If this happens, methods to circumvent the difficulty are given

in the next chapter. o 0For Example 1, either H: 63 - 0 or H: 64 = 0 will
violate the Rank Qualification and the Identification Condition as we next

show.

EXAMPLE 1 (continued). We shall first consider how the problems with

H: • 0 and H: • 0 can be detected by inspection, next consider how

limits are to be computed, and last how one verifies that
n 0 2

s(6) = lim (lIn) I [f(xt ,6) - f(x t ,6)] has a unique minimum at 6 = 60 •
tal
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Consider the case H: aO .. ° leaving the case H: aO .. ° to Problem 1• If3 4
aO - ° then3

1 1 a4x31 1

° 1 a4x32 1
1 1 a4x33 1

F(a) - ° 1 a4x34 1

..
1 1 a4x3n-1 1

° 1 a4x3n 1

F(a) has two columns of ones and is, thus, singular. Now this fact can be

noted at sight in applications; there is no need for any analysis. It is this

kind of easily checked violation of the regularity conditons that one should

guard Let us verify that the singularity carries over to the

limit. Let

, n
G (a) - (l/n)F (a)F(a) - (l/n) I [(a/aa)f(x ,a)][(a/aa)f(x ,a)]
n t-1 t t

The regularity conditions of Chapter 4 guarantee that lim G (a) exists and we
n+oo n,

shall show it directly below. Put A - (0,1,0,-1). Then

, n , 2
A Gn(a)1 A - (l/n) I [A (a/aa)f(xt,a)! ] - 0.

a -0 t-1 a -03 3

, ,
Since zero for every n, A [lim Gn(a)l ]A .. °by continuity of AAA in A.

n+ClO a -03
Recall that {x3t } is independently and identically distributed according

to the density P3(x3). an age distribution, there is some (possibly

unknown) maximum attained age c that is biologically possible. Then for any
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continuous function g(x) we must have < so that by

Ko1mogorov's Strong Law of Large Numbers (Tucker, 1967)

n
lim (l/n) L g(x3t ) ,.no+<» t-1

Applying these facts to the treatment group we have

n
lim (2/n) L [f(xt,S) - f(x t ,SO)]2no+<» todd

Applying them to the control group we have

lim (2/n)
no+<»

n
L [f(xt,S) - f(x t ,SO)]2t even

Then

Suppose we let F12(x1,x2) be the distribution function corresponding to the

discrete density
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and we let F3(x3) be the distribution function corresponding to P3(x). Let

(1,1)

f 0 2 '\ -,c 0 2[f(x,6) - f(x,6 )] • (1/2) L JO[f(x,6) - f(x,6 )] P3(x)dx
(x1,x2)-(0,1)

where the integral on the left is a Lebesque-Stei1tjes integral (Royden, 1963,

Ch. 12; or Tucker, 1967, Sec. 2.2). In this notation the limit can be given

an integral representation

0 2 f 0 2lim (l/n) L [f(xt ,6) - f(x t ,6)] - [f(x,6) - f(x,6 )]
n+<» t-1

These are the ideas behind Section 2 of Chapter 3. The advantage of the

integral representation is that familiar results from integration theory can

be used to deduce properties of limits. As an example: What is required of

f(x,6) such that

(a/ as) lim
n+<»

n
L f(x ,6) - lim
t-1 t n+<»

n
L (a/aS)f(xt ,6)?t-1

We find later that the existence of b(x) with l(a/a6)f(x,6)1 ( b(x) and

< is enough given continuity of (a/a6)f(x,6).

Our last task is to verify that

f 0 28(6) - [f(x,6) - f(x,6 )]
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= 0/2)

has a unique minimum. Since s(6) ) 0 in general and s(60) = 0, the question
is: Does s(6) = 0 imply that 6 = 6°? One first notes that = 0 or - 0

must be ruled out as in the former case any 6 with 63 = 0 and

° °62 + 64 = 62 + 64 will have s(6) = 0 and in the latter case any 6 with

61 = 62 = 64 = 0 will have s(6) - O. Then assume that * 0 and
* 0 and recall that P3(x) > 0 on [O,b]. Now s(6) = 0 implies

Differentiating we have

o < x < b

63x 6°3x6 6 6°6° 03 4e - 3 4e = o < x < b

Putting x - 0 we have 6364 ° °= 6364 whence

o < x < b

°which implies 63 = 63, We now have that

s(6) = 0, * 0, * 0 ->
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But if 63 • 64 • and s(6) • 0 then

which implies 61 • and 62 • In summary

s(6) • 0, * 0, * 0 -> 6. 60 •

As seen from Example I, checking the Identification Condition and Rank

Qualification is a tedious chore to be put to at every instance one uses

nonlinear methods. Uniqueness depends on the interaction of f(x,6) and

and verification is ad hoc. Similarly for the Rank Qualification (Problem

2). As a practical matter, one should be on guard against obvious problems

and can usually trust that numerical difficulties in computing 6 will serve as

a sufficient warning against subtle problems as seen in the next section.

An appropriate question is how accurate are probability statements based

on the asymptotic properties of nonlinear least squares estimators in

applications. Specifically one might ask: How accurate are probability

statements obtained by using the critical points of the t-distribution with n-

p degrees of freedom to approximate the sampling distribution of

Monte Carlo evidence on this point is presented below using Example 1. We

shall accumulate such information as we progress.

EXAMPLE 1 (continued). Table 3 shows the empirical distribution of

t i computed from five thousand Monte Carlo trials evaluated at the critical
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Tabular Values Enpirical DistribJtion
-c p(t .. c) P(t1 .. c) P(t2 ) c) P(t3 .. c) P(t4 .. c) Std. Error

-3.707 .0005 .0010 .0010 .0000 .0002 .0003
-2.779 .0050 .0048 .0052 .0018 .0050 .0010
-2.056 .0250 .0270 .0280 .0140 .0270 .0022
-1.706 .0500 .0522 .0540 .0358 .0494 .0031
-1.315 .1000 .1026 .1030 .0866 .0998 .0042
-1.058 .1500 .1552 .1420 .1408 .1584 .0050
-0.856 .200 .2096 .1900 .1896 .2092 .0057
-0.684 .2500 .2586 .2372 .2470 .2638 .0061
0.0 .5000 .5152 .4800 .4974 .5196 .0071
0.684 .7500 .7558 .7270 .7430 .7670 .0061
0.856 .8000 .8072 .7818 .7872 .8068 .0057
1.058 .8500 .8548 .8362 .8346 .8536 .0050
1.315 .9000 .9038 .8914 .8776 .9004 .0042
1.706 .9500 .9552 .9498 .9314 .9486 .0031
2.056 .9750 .9772 .9780 .9584 .9728 .0022
2.779 .9950 .9950 .9940 .9852 .9936 .0010
3.707 .9995 .9998 .9996 .9962 .9994 .0003
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points of the t-distribution. The responses were generated using the inputs

of Table 1 with the parameters of the model set at

,
eO _ (0, 1, -1, -.S) ,

0
2 - .001.

The standard errors shown in the table are the standard errors of an estimate

of the probability p(t < c) computed from SOOO Monte Carlo trials assuming

that t follows the t-distribution. If that assumption is correct, the Monte

Carlo estimate of P[t < c] follows the binomial and has variance

P(t < c) • p(t > c)/SOOO.

Table 3 indicates that the critical points of the t-distribution describe

the sampling behavior of t i reasonably well. For example, the Monte Carlo

estimate of the Type I error for a two-tailed test of H: eO - -1 using the3
tabular values ± 2.0S6 is .OSS6 with a standard error of .0031. Thus it seems

that the actual level of the test is close enough to its nominal level of .OS

for any practical purpose. However, in the next chapter we will encounter

instances where this is definitely not the case.



PROBLEMS

1. Show that H: - 0 will violate the Rank Qualification in

Example 1.

,
2. Show that Q - lim (l/n)F (e)F(e) has full rank in Example 1 if

n+co
eo ... 0 and eO... 03T' 4T'·

1-3-15
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4. METHODS OF COMPUTING LEAST SQUARES ESTIMATORS

The more widely used methods of computing nonlinear least squares

estimators are Hartley's (1961) modified Gauss-Newton method and the Levenberg

(1944)-Marquardt (1963) algorithm.

The Gauss-Newton method is based on the substitution of a first order

Taylor's series aproximation to f(8) about a trial parameter value 8T in the

formula for the residual sum of squares SSE(8). The approximating sum of

squares surface thus obtained is

The value of the parameter minimizing the approximating sum of squares surface

is (Problem 1)

It would seem that should be a better approximation to the least squares

estimator 8 than 8T in the sense that SSE(8M) < SSE(8T). These ideas are

displayed graphically in Figure 1 in the case that 8 is univariate (p=l).

As suggested by Figure 1, SSET(S) is tangent to the curve SSE(S) at the

point ST. The approximation is first order in the sense that one can show

that (Problem 2)

lim ISSE(S) - SSET(S)I/ns - ST" = a
"S-ST D+()
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but not second order since the best one can show in general is that

(Problem 2)

SSE

a

Figure 1. The Linearized Approximation to the Residual Sum of
Squares Surface, an Adequate Approximation

a

It is not necessarily true that aM is closer to a than aT in the sense that

(SSE(aT). This situation is depicted in Figure 2.
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SSE

I

i

a

Figure 2. The Linearized Approximation to the Residual
Sum of Squares Surface, A Poor Approximation

a

But as suggested by Figure 2, points on the line segment joining aT to

that are sufficiently close to aT ought to lead to improvement. This is the

*case and one can show (Problem 3) that there is a A such that all points with

*o < A < A

satisfy

SSE(a) < SSE(aT)
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These are the ideas that motivate the modified Gauss-Newton algorithm which is

as follows:

0)' Choose a starting estimate 60 • Compute

D • [F' (6 )F(6 »)-I F ' (6 )[y - f(6 »).
00000

Find a Ao between 0 and 1 such that

SSE(6 + AD) < SSE(6 ).
000 0

Find a Al between 0 and 1 such that

There are several methods for choosing the step length Ai at each

iteration of which the simplest is to accept the first A in the sequence
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I, .9, .8, .7, .6, 1/2, 1/4, 1/8, •••

for which

as the step length Ai. This simple approach is nearly always adequate in

applications. Hartley (1961) suggests two alternative methods in his

article. Gill, Murray, and Wright (1981, Sec. 4.3.2.1) discuss the problem in

general from a practical point of view and follow the discussion with an

annotated bibliography of recent literature. Whatever rule is used, it is

essential that the computer program verify that SSE(6i + AiDi) is smaller than

SSE(6i ) before taking the next iterative step. This caveat is necessry, when,

for example, Hartley's quadratic interpolation formula is used to find Ai.

The iterations are. continued until terminated by a stopping rule such as

and

where € > 0 and L > 0 are preset tolerances. Common choices are € = 10-5 and
L = 10-3• A more conservative (and costly) approach is to allow the

iterations to continue until the requisite step size Ai is so small that the

fixed word length of the machine prevents differentiation between the values

of SSE(6i + AiDi) and SSE(6 i ). This happens sooner than one might expect and,
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unfortunately, sometimes before the correct answer is obtained. Gill, Murray,

and Wright (1981, Sec. 8.2.3) discuss termination criteria in general and

follow the discussion with an annotated bibliography of recent literature.

Much more difficult than· deciding when to stop the iterations is

determining where to start them. The choice of starting values is pretty much

an ad hoc process. They may be obtained from prior knowledge of the

situation, inspection of the data, grid search, or trial and error. A general

method of finding starting values is given by Hartley and Booker (1965).

Their idea is to cluster the independent variables {xt } into p groups

Xij j-1,2, ••• ,ni ; i-1,2, ••• ,p

and fit the model

where

y -i

for i-1,2, ••• ,p. The hope is that one can find a value 6
0
that solves the

equations

i-1,2, ••• ,p
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exactly. The only reason for this hope is that one has a system of p

equations in p unknowns but as the system is not a linear system there is no

guarantee. If an exact solution cannot be found, it is hard to see why one is

better off with this new problem than with the orginal least squares problem

minimize:
n 2

SSE(6) - (l/n) L [y - f(x t ,6)] •
t-l t

A simpler variant of their idea, and one that is much easier to use with

a statistical package, is to select p representative inputs xt with
i

corresponding responses Yt then solve the system of nonlinear equations
i

i-l,2, ••• ,p

for 6. The solution is used as the starting value. Even if iterative methods

must be employed to obtain the solution it is still a viable technique since

the correct answer can be recognized when found. This is not the case in an

attempt to minimize SSE(6) directly. As with Hartley-Booker, the method fails

when there is no solution to the system of nonlinear equations. There is also

a risk that this technique can place the starting value near a slight

depression in the surface SSE(6) and cause convergence to a local minimum that

is not the global minimum. It is sound practice to try a few perturbations of

60 as starting values and see if convergence to the same point occurs each

time. We illustrate these techniques with Example 1.

EXAMPLE 1 (continued). We begin by plotting the data as shown in Figure

3. A "I" indicates the observation is in the treatment group and a "0"

indicates that the observation is in the control group. Looking at the plot,

the treatment effect appears to be negligible; a starting value of zero for



1-4-9
Figure 3. Plot of the Data of Example 1.

SAS Statements:

DATA WORK01: SET EXAMPLE1:
PX1-'O': IF Xl-I THEN PX1='l':
PROC PLOT DATAotWORK01:
PLOT Y*X3=PX1 / HAXIS • 0 TO 10 BY 2 VPOS - 24:

Output:

STATISTICAL ANALYSIS SYSTEM

PLOT OF Y*X3 SYMBOL IS VA LUE OF PX1

'{ I 0 1 o· 0 0 0
I 0 1 1

1.0 + 0 0 1 o 0 1
I 0 1 1 1 1
I 1 1
I 0

0.9 + 0
I
I
I

0.8 + 1
I
I
I

0.7 + 0
I 1,
I

0.6 + 1
I
I 0,

0.5 + 1
I
--+-------------+-------------+-------------+-------------+-------------+--o 2 4 n 8 10

X3
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61, seems reasonable. The overall impression is that the curve is concave and

increasing. That is, it appears that

and

Since

and

we see that both 63 and 64 must be negative. Experience with exponential

models suggests that what is important is to get the algebraic signs of the

starting values of 63 and 64 correct and that, within reason, getting the

correct magnitudes is not that important. Accordingly, take -1 as the

starting value of both 63 and 64• Again, experience indicates that the

starting values for parameters that enter the model linearly such as 61 and 62

are almost irrelevant, within reason, so take zero as the starting value of

62• In summary, inspection of a plot of the data suggests that

,
6 • (0, 0, -1, -1)

is a reasonable starting value.

Let us use the idea of solving equations
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i=1,2, ••• ,p

for some representative set of inputs

Xt i-1,2, ••• ,p
i

to refine these visual impressions and get better starting values. We can

solve the equations by minimizing

using the modified Gauss-Newton method. If the equations have a solution then

the starting value we seek will produce a residual sum of squares of zero.

The equation for observations in the control group (xl = 0) is

If we take two extreme values of x3 and one where the curve is bending we

should get a good fix on values for 82, 83 , 84• Inspecting Table 1, let us

select

,
x14 - (0, 1, o.on ,

- (0,
r

x6 1, 1.82) ,
,

x2 - (0, 1, 9.86) •

The equation for an observation in the treatment group (xl = 1) is



Figure 4. Computation of Starting Values for Example 1.

SAS Statements:

DATA WORK01; SET EXAMPLE1;
IF T-2 OR T-6 OR T-11 OR T-14 THEN OUTPUT; DELETE;
PROC NLIN DATAooWORK01 METHOD':;AUSS ITER-50 CONVERGENCE-!. OE-5;
PARMS T1-0 T2-0 T3--1 T4--1;
MODEL YaT1*X1+T2*X2+T4*EXP IT3*X3);
DER.T1-X1; DER.T2-X2; DER.T3aT4*X3*EXPIT3*X3); DER.T4-EXPIT3*X3);

Output:
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5 TAT I 5 TIC A LAN A L Y S I 5 SYSTEM 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT Y METHOD: GAUSS-NEWTON

ITERATION T1
T4

0 O.OOOOOOE+OO
-1.00000000

1 -0.04866000
-0.51074741

2 -0.04866000
-0.51328803

3 -0.04866000
-0.51361959

4 -0.04861;000
-0.51362269

5 -0.04866000
-0.51362269

T2

O.OOOOOOE+OO

1. 03859589

1.03876874

1.03883445

1.03883544

1. 03883544

T3

-1.00000000

-0.82674151

-0.72975636

-0.73786415

-0.73791851

-0.73791852

RESIDUAL 55

5.39707160

0.00044694

0.00000396

0.00000000

0.00000000

0.00000000

NOTE: CONVERGENCE CRITERION MET.
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If we can find an observation in the treatment group with an x3 near one of

the x3's that we have already chosen then we should get a good fix on 81 that

is independent of whatever blunders we make in guessing 82, 83, and 84• The

eleventh observation is ideal

,
Xu '" (1, 1, 9.86) •

Figure 4 displays SAS code for selecting the subsample x2' x6' xll' x14 from

the original data set and solving the equations

t=2,6,U,14

by minimizing

using the modified Gauss-Newton method from a starting value of

8 '" (0, 0, -1, -1).

The solution is

-0.04866
...
8 '" 1.03884

-0.73792
-0.51362
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Figure Example 1 Fitted by the Method.

SAS Statements:

-
PROC NLIN DATA-EXAfIlPLEl METHOD-GAUSS ITER-SO CONVERGENCE-!.
PARMS T1--0.04866 T2-1.03884 T3--0.73792
MODEL Y-T 1*X 1+T2*X2+T4*EXP (T 3*X3)

DER.T3-T4*X3*EXP(T3*X3);

Output:

S TAT I S TIC A LAN A L Y SIS SYSTEM 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

ITERATION

DEPENDENT VARIABLE: Y

T1
T4

T2

METHOD: GAUSS-NEWTON

T3 RESIDUAL SS

o

1

2

3

4

-0.04866000
-0.51362000

-0.02432899
-0.49140162

-0.02573470
-0.50457486

-0.02588979
-0.50490158

-0.02588969
-0.50490291

-0.02588970
-0.50490286

-0.02588970
-0.50490296

1. 03884000

1.00985922

1.01531500

1. 01567999

1.01567966

1. 01567967

1. 01567967

-0.73792000

-1. 01571093

-1.11610448

-1.11568229

-1.11569767

-1.11569712

-1.11569714

0.05077531

0.03235152

0.03049761

0.03049554

0.03049554

0.03049554

0.03049554

NOTS: CONVERGENCE CRITERION MET.

STATISTICAL ANALYSIS

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS

SYSTEM

DEPENDENT VARIABLE Y

2

SOURCE

REGRESSION
RESIDUAL
UNCORRECTED TOTAL

(CORRECTED TOTAL)

DF

4
26
30

29

SUM OF SQUARES

26.34594211
0.03049554
26.37643764

0.71895291

MEAN SQUARE

6.58648553
0.00117291

PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 ,
STD. ERROR CONFIDENCE INTERVAL

LOWER UPPER
T1 -0.02588970 0.01262384 -0.05183816 0.00005877
T2 1. 01567967 0.00993793 0.99525213 1.03610721
T3 -1. 11569714 0.16354199 -1.45185986 -0.77953442
T4 -0.50490286 0.02565721 -0.55764159 -0.45216413

ASYMPTOTIC CORRELATION MATRIX OF THE PARAMETERS

T1 T2 T3 T4

T1 1. 000000 -0.627443 -0.085786 -0.136140
T2 -0.627443 1.000000 0.373492 -0.007261
T3 -0.085786 0.373492 1. 000000 0.561533
T4 -0.136140 -0.007261 0.561533 1.000000
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SAS code using this as the starting value for computing the least squares

estimator with the modified Gauss-Newton method is shown in Figure 5a together

with the resulting output. The least squares estimator is

-0.02588970
'"e = 1.01567967

-1.115769714
-0.50490286

The residual sum of squares is

SSE(e) = 0.03049554

and the variance estimate is

SSE(e)/(n-p) = 0.00117291.

As seen from Figure 5a, SAS prints estimated standard errors ai and

correlations Pij •
2'"To recover the matrix sCone uses the formula:

For example,

S2c12 = (0.01262384)(0.00993793)(-0.627443)
= -0.000078716.
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2

Figure 5b. The s C and C· for Example 1.

2
s C

COL 1 COL 2 COL 3 COL 4

ROW 1 0.00015936 -7.87160-05 -0.00017711 -4.40950-05
ROW 2 -7.87160-05 9.87620-05 0.00060702 -1.8514D-06
ROW 3 -0.00017711 0.00060702 0.00235621
ROW 4 -4.40950-05 -1.8514D-06 0.00235621 0.00065829

C

COL 1 COL 2 COL 3 COL 4

ROW 1 0.13587 -0.067112 -0.15100 -0.037594
ROW 2 -0.067112 0.084203 0.51754 -0.00157848
ROW 3 -0.15100 0.51754 22.8032 2.00887
ROW 4 -0.037594 -0.00157848 2.00887 0.56125
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2A

The matrices s C and C are shown in Figure Sb.

The obvious approach to finding starting values is grid search. When

looking for starting values by a grid search, it is only necessary to search

with respect to those parameters which enter the model nonlinearly. The

parameters which enter the model linearly can be estimated by ordinary

multiple regression methods once the nonlinear parameters are specified. For

example, once 83 is specified the model

is linear in the remaining parameters 81, 82 , 84 and these can be estimated by

linear least squares. The surface to be inspected for a minimum with respect

to grid values of the parameters entering nonlinearly is the residual sum of

squares after fitting for the parameters entering linearly. The trial value

of the nonlinear parameters producing the minimum over the grid together with

the corresponding least squares estimates of the parameters entering the model

is the starting value. Some examples of plots of this sort are found toward

the end of this section.

The surface to be examined for a minimum is usually locally convex. This

fact can be exploited in the search to eliminate the necessity of evaluating

the residual sum of squares at every point in the grid. Often, a direct

search with respect to the parameters entering the model nonlinearly which

exploits convexity is competitive in cost and convenience with either

Hartley's or Marquardt's methods. The only reason to use the latter methods
,A A_I

in such situations would be to obtain the matrix [F (8)F(8)] ,which is

printed by most implementations of either algorithm.
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Of course. these same ideas can be exploited in designing an algorithm.

Suppose that the model is of the form

f(p.a) • A(p)a

where p denotes the parameters entering nonlinearly. A(p) is an n by K matrix,

and a is a K-vector denoting the parameters entering linearly. Given P. the

minimizing value of a is

, -1 'a = [A (p)A(p)] A (p)y.

The residual sum of squares surface after fitting the parameters entering

linearly is

{ '-I' }'{ , -I'}SSE(p) • Y - A(p)[A (p)A(p)] A (p)y Y - A(p)[A (p)A(p)] A (p)y •

To solve this minimization problem one can simply view

, -1 'f(p) • A(p)[A (p)A(p)] A (p)y

as a nonlinear model to be fitted to y and use. say. the modified Gauss-Newton

method. Of course computing

, -1 '(3/3p){A(P)[A (p)A(p)] A (p)y}

is not a trivial task but it is possible. Golub and Pereya (1973) obtain an

analytic expression for (3/3p)f(p) and present an algorithm exploiting it that

is probably the best of its genre.
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Marquardt's algorithm is similar to the Gauss-Newton method in the use of

the sum of squares SSET(6) to approximate SSE(6). The difference between the

two methods is that Marquardt's algorithm uses a ridge regression improvement

of the approximating surface

instead of the minimizing value 6M• For all 0 sufficiently large 60 is an

improvement over 6T (SSE(6 0) is smaller than SSE(6T» under appropriate

conditions (Marquardt, 1963). This fact forms the basis for Marquardt's

algorithm.

The algorithm actually recommended by Marquardt differs from that

suggested by this theoretical result in that a diagonal matrix S with the same
,

diagonal elements as F (6T)F(6T) is substituted for the identity matrix in the

expression for 60• Marquardt gives the justification for this deviation in

his article and, also, a set of rules for choosing 0 at each iterative step.

See Osborne (1972) for additional comments on these points.

Newton's method (Gill, Murray, and Wright, 1981, Sec.4.4) is based on

second order Taylor's series approximation to SSE(6) at the point 6T;

The value of 6 that minimizes this expression is
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As with the modified Gauss-Newton method one finds AT with

and takes a - aT + AT(aM - aT) as the next point in the iterative sequence.

Now

where

t-1,2, ••• ,n.

From this expression one can see that the modified Gauss-Newton method can be

viewed as an approximation to the Newton method if the term

,
is negligible relative to the term F (at)F(ST) for ST near 6; say, as a rule

of thumb, when
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, A

is less than the smallest eigenvalue of F (e)F(e) where e t - Yt - f(xt,e). If

this is not the case then one has what is known as the "large residual

problem." In this instance it is considered sound practice to use the Newton

method, or some other second order method, to compute the least squares

estimator rather than the modified Gauss-Newton method. In most instances

2 'analytic computation of (a /aeae )f(x,e) is quite tedious and there is a

considerable incentive to try and find some method to approximate

n - 2 'I e (a /aeae )f(x ,eT)
t-1 t t

without being put to this bother. The best method for doing this is probably

the algorithm by Dennis, Gay and Welsch (1977).

Success, in terms of convergence to e from a given starting value, is not

guaranteed with any of these methods. Experience indicates that failure of

the iterations to converge to the correct answer depends both on the distance

of the starting value from the correct answer and on the extent of over-

parameterization in the response function relative to the data. These

problems are interrelated in that more appropriate response functions lead to

greater radii of convergence. When convergence fails, one should try to find

better starting values or use a similar response function with fewer

parameters. A good check on the accuracy of the numerical solution is to try

several reasonable starting values and see if the iterations converge to the

same answer for each starting value. It is also a good idea to plot actual

responses Yt against predicted responses Yt = f(xt,e); if a 45° line does not

obtain then the answer is probably wrong. The following example illustrates

these points.

EXAMPLE 1 (continued). Conditional on P - e3, the model
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Figure 6. Residual Sum af Squares Plotted Against
Various True Values of 84 .
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has three parameters a m (61 ,62 ,64) that enter the model linearly. Then as

remarked earlier, we may write

where a typical row of A(p) is

and treat this situation as a problem of fitting f(p) to y by minimizing

,
SSE(p) = [y - f(p)] [y - f(p)].

As p is univariate, P can easily be found simply by plotting SSE(P) against p

and inspecting the plot for the minimum. Once p is found,

gives the values of the remaining parameters.

Figure 6 shows the plots for data generated according to

with normally distributed errors, input variables as in Table 1, and parameter

settings as in Table 3. As 64 is the only parameter that is varying, it
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serves to label the plots. The 30 errors were not regenerated for each plot,

the same 30 were used each time so that 84 is truly all that varies in these

plots.

As one sees from the various plots, fitting the model becomes an

increasingly dubious proposition as 1841 decreases. Plots such as those in

Figure 3 do not give any visual impression of an exponential trend in x3 for

1841 smaller than 0.1.

Table 4 shows the deterioration in the performance of the modified Gauss-

Newton method as the model becomes increasingly implausible--as 1841

decreases. The table was constructed by finding the local minimum nearest

p = 0 (63 = 0) by grid search over the plots in Figure 6 and setting 63 = P
and (61, 62 , 84) = e. From the starting value

i=1,2,3,4

an attempt was made to recompute this local minimum using the modified Gauss-

Newton method and the stopping rule: Stop when two successive iterations,

(i)6 and (i+1)6, do not differ in the fifth significant digit (properly

rounded) of any component. As noted, performance deteriorates for small 1641.

One learns from this that problems in computing the least squares

estimator will usually accompany attempts to fit models with superfluous

parameters. Unfortunately one can sometimes be forced into this situation

when attempting to formally test the hypothesis H: 64 - O. We will return to

this problem in the next chapter.
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PROBLEMS

1. Show that

is a quadratic function of e with minimum

One can see these results at sight by applying standard linear least squares

theory to the linear model z - xa + e with z = Y - f(eT) + F(eT)eT•

x = F(eT). and a-a.

2. Set forth regularity conditions (Taylor's theorem) such that

,
SSE(a) = SSE(eT) + [(ajae)SSE(eT)] (a - aT)

Show that

where A is a symmetric matrix.

less than the largest eigenvalue of A in absolute value. maxIAi(A)I. Use

these facts to show that
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lim ISSEca) - SSETca)l/aa - aTu = 0
ua-aTU+()

and

lim sup ISSECa ) - SSETca)l/ua - aTu < maxi AiCA)I.
o+() ua-aTu<o

3. Assume that aT is not a stationary point of SSEca); that is

ca/aa)SSEcaT) * O. Set forth regularity conditions CTaylor's theorem) such

that

Let FT = FCaT), = [y - fcaT)] and show that this equation reduces to

*There must be a A such that

*for all Awith 0 < A < A , why? Thus

*for all Awith 0 < A < A •
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4. (Convergence of the Modified Gauss-Newton Method). Supply the

missing details in the proof of the following result.

Theorem: Let

n 2
o(e). 2 [y - f(xt,e)] •

t-1 t

Conditions: There is a convex, bounded subset S of RP and eo interior to S

such that:

1)

2)

(3/3e)f(x ,e) exists and is continuous over S for t • 1,2, ••• ,n;t

e € S implies the rank of F(e) is p;

3) O(eo) < 0 = inf{O(e): e a boundary point of S};

4) There does not exist e', e" in S such that

, , , " ,
(3/3e)0(e ) • (3/3e)0(e ) = 0 and o(e ) = o(e ).

Construction: Construct a sequence {e 1 as follows:a a-

0) , -1 'Compute DO - [F (eO)F(eO)] F (eO)[y - f(eO)]'

Find AO which minimizes O(eO + ADO) over

AO - {A: 0 < A < 1, eO + ADO € S}.
1) Set el - eO + AODO'

, -1 'Compute 0 1 - [F (eI)F(e I )] F (e 1)[y - f(e I )].

Find Al which minimizes O(e l + AD I ) over

Al • {A: 0 < A < 1, e 1 + AD l € S}.
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Conclusions. Then for the sequence {a 1 it follows that:a a-

1)

2)

3)

aa is an interior point of 5 for a = 1, 2, ••••
The sequence faa} converges to a limit of a* which is interior to 5.

*(a/aa)Q(a ) - o.

Proof. We establish Conclusion 1. The conclusion will follow by

induction if we show that aa interior to 5 and Q(aa) < Q imply Aa minimizing
Q(Sa + ADa) over Aa exists and aa+l is an interior point of 5. Let Sa € 50

and consider the set

5 = {a € 5: a - aa + ADa' 0 ( A ( I}.

5 is a closed, bounded line segment contained in S, why? There is a a' in
,

5 minimizing Q over 5, why? Hence, there is a Aa (a = a + AD)a a a,
minimizing Q(a + AD ) over A. Now a is either an interior point of S or aa a a
boundary point of S. By Lemma 2.2.1 of Blackwell and Girshick (1954, p. 32)

5 and S have the same interior points and boundary points.

boundary point of 5 we would have

,
If a were a
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which is not possible. Then a' is an interior point of S. Since aa+1 - a' we

have established Conclusion 1.

We establish Conclusions 2, 3. By construction 0 ( Q(aa+1) ( Q(aa) hence

*Q(a ) + Q as a +a
{ *aa}B-1 with limit a

The sequence {a } must have a convergent subsequencea
* * * *

€ S, why? Q(aa) + Q(a ) so Q(a ) • Q ,why? a is

either an interior point of S or a boundary point. The same holds for S as we

saw above. * - *If a were a boundary point of S then Q ( Q(a ) ( Q(ao ) which is

impossible because Q(aO) < Q. SO a* is an interior point of S.

The function

is continuous over S, why? Thus

* *lim Da - lim D(aa) - D(a ) - D •
a- a-

* * *Suppose D * 0 and consider the function q(A) = Q(a + AD ) for A € [-n, n]

* *where 0 < n ( 1 and a ± nD are interior points of S.

, '* * *
q (0) - (a/aa )Q(8 + AD )D IA-o

* , * *- (-2)[y - f(8 )] F(a )D

*' '* * *- (-2)D F (a )F(8 )D

< 0,
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,
why? Choose € > 0 so that € < -q (0). By the definition of derivative there

is a A* € (0, 1/2 Tl) such that

* * * * *Q(S + AD) - Q(S ) = q(A ) - q(O)

, *< [q (0) + €]A •

Since Q is continuous for S € S we may choose y > 0 such that
, *-Y > [q (0) + €]A and there is 0 > 0 such that

* * * *nSa + ADa - S - A D H< 0

implies

* * * *Q(Sa + AD) - Q(S + AD) <Y

Then for all a sufficiently large we have

* * , * 2Q(Sa + ADa) - Q(S ) < {q (0) + €}A + Y = -c •

* *Now for a large enough Sa + ADa is interior to S so that A € Aa and we

obtain

* 2Q(Sa+1) - Q(S ) < -c •

* *This contradicts the fact that Q(Sa) + Q(S ) = 0 as a

the zero vector. Then it follows that

+ co·, thus D* must be



* , * *(3/3a)Q(a ) • (-2)F (a )[y - f(a )]

'* * *• (-2)F (a )F(a )D

- o.

Given any subsequence of {a } we have by the above that there is aa ,
convergent subsequence with limit point a € S such that

, *(3/3a)Q(a ) = 0 • (3/3a)Q(a )

and

, * *Q(a ) • Q = Q(a ).
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By Hypothesis 4, a' • a* so that aa
,

+- a as a +- co.
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5. HYPOTHESIS TESTING

Assuming that the data follow the model

oy • f(S ) + e,

consider testing the hypothesis

2e ,.. N(O, a I)

o 0H: h(S ) • 0 against A: h(S ) * 0

where h(S) is a once continuously differentiable function mapping RP into Rq

with Jacobian

,
H(S) = (a/as )h(S)

of order q by p. When H(S) is evaluated at S = S we shall write H,

H = H(S).

and at S = SO write H,

In Chapter 4 we shall show that h(S) may be characterized as
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, 0
where, recall, F • (a/aa )f(a). Ignoring the remainder term, we have

whence

is (approximately) distributed as the non-central chi-square distribution

(Appendix 1) with q degrees of freedom and non-centrality parameter

Recalling that to within the order of approximation 0p(1/n), (n-p)s2/ a2 is

distributed independently of a as the chi-square distribution with n-p degrees

of freedom we have (approximately) that the ratio

follows the non-central F distribution (Appendix 1) with q numerator degrees

of freedom, n-p denominator degrees of freedom, and non-centrality parameter
,

A; denoted as F (q, n-p, A). Cancelling like terms in the numerator and

denominator, we have

A

In applications, estimates Hand C must be substituted for Hand (F'F)-1
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where, recall, C = [F'(8)F(8)]-I. The resulting statistic

is usually called the Wald test statistic.

To summarize this discussion, the Wald test rejects the hypothesis

oH: h(6 ) = 0

when the statistic

exceeds the upper a x 100% critical point of the F distribution with q

numerator degrees of freedom and n-p denominator degrees of freedom; denoted
-1as F (I-a; q, n-p). We illustrate by example.

EXAMPLE 1 (continued). Recalling that

consider testing the hypothesis of no treatment effect

H: 61 = 0 against A: 61 * o.

For this case
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,
H(e) • (a/ae )h(e) • (1.0.0.0)

A

h(e) - -0.02588970

,
H • (a/ae )h(e) = (1.0.0.0)
AAAf

HCH • c11 • 0.13587

s2 • 0.00117291

q - 1

(from Figure 5a)

(from Figure 5b)

(from Figure 5a)

= (-0.02588970)(0.13587)-1(-0.02588970)/(1 x 0.00117291)

- 4.2060

The upper 5% critical point of the F distribution with 1 numerator degree of

freedom and 26 • 30 - 4 denominator degrees of freedom is

-1F (.95; 1. 26) - 4.22

so one fails to reject the null hypothesis.

Of course. in this simple instance one can compute a t-statistic directly

from the output shown in Figure Sa as

t - (-0.02588970)/(0.01262384)

- -2.0509
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and compare the absolute value with

t-1(.975; 26) "" 2.0555.

In simple examples such as the proceeding, one can work directly from

printed output such as Figure 5a. But anything more complicated requires some

programming effort to compute and invert HeH. There are a variety of ways to

do this; we shall describe a method that is useful pedagogically as it builds

on the ideas of the previous section and is easy to use with a statistical

package. It also has the advantage of saving the bother of looking up the

critical values of the F distribution.

Suppose that one fits the model

e :II Fl3 + u

by least squares and tests the hypothesis

H: Hl3 "" h(8) against A: Hl3 * h(S)

The computed F statistic will be

but since

F :II
[Hl3 - h(;»)'[;(;';)-1;')-1[;; - h(;»)/q

A AN' A AX

[e - Fl3] [e - Fl3]/(n-p)

.... , ....
o ,. (a/a8)SSE(8) :II -2F e
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we have

At A _lA,A A

o - (F F) F e - a

and the computed F statistic reduces to

Thus, any statistical package that can compute a linear regression and test a

linear hypothesis becomes a convenient tool for computing the Wald test

statistic. We illustrate these ideas in the next example.

EXAMPLE 1 (continued). Recalling that the response function is

consider testing

or equivalently

1/5 against

We have



h(S) = (-I.11569714)(-0.50490286)e-l.11569714 - 0.2

= -0.0154079303
, ,.

H = (a/as )h(S)

z (0, 0, 0.0191420895, -0.365599176)

1-5-7

(from Figure 5a)

(from Figure 5a)

(from Figure 7)

s2 = 0.001172905

W z 3.6631

(from Figure 5a or 7)

(from Figure 7 or by division)

-1 ( )Since F .95; 1, 26 = 4.22 one fails to reject at the 5% level. The p-value

is 0.0667 as shown in Figure 7; that is 1 - F(3.661; 1, 26) • 0.0667.

Also shown in Figure 7 are the computations for the previous example as

well as computations for the joint hypothesis.

H: SI z 0 and

The joint hypothesis is included to illustrate the computations for the case

q > 1. One rejects the joint hypothesis at the 5% level; the p-value is

0.0210.

We have noted in the somewhat heuristic derivation of the Wald test that

W is distributed as the non-central F distribution. What can be shown

rigorously (Chapter 4) is that

W = y + 0 (l/n)p



Figure 7. Illustration of Wald Test Computations with Example 1.

SAS Statements:

DATA WORKOl; SET EXAMPLE1;
TI--0.02588970; T2-1.01567967; T4--0.S0490286;
E-Y- CT 1*Xl+T 2*X2+T4*EXP (T 3*X 3) ) ;
DER TI-Xl; DER T2-X2; DER T3-T4*X3*EXP DER T4-EXP (T3*X3);

REG DATA-WORKOl; MODEL E ,. DER T1 DER T2 DER-T3 DER T4 / NOINT;
FIRST: TEST DER TI-0.02588970; - - - -
SECOND:TEST 0.oT91420895*DER T3-0.365599l76*DER T4--0.0154079303;
JOINT: TEST DER TI-0.02588970, -

Output:

1-5-8

STATISTICAL ANALYSIS

DEP VARIABLE: E

SYSTEM 1

SUM OF MEAN
SOURCE OF SQUARES SQUARE F VALUE PROB>F

MODEL 4 3.29597E-17 8.23994E-18 0.000 1.0000
ERROR 26 0.030496 0.001172905
U TOTAL 30 0.030496

ROOT MSE 0.034248 R-SQUARE 0.0000
DEP MEAN 4.13616E-11 ADJ R-SQ -0.1154
C. V. 82800642118

NOTE: NO INTERCEPT TERM IS USED. R-SQUARE IS REDEFINED.

PARAMETER STANDARD T FOR HO:
VARIABLE DF ESTIMATE ERROR PARAMETER-O PROB > IT I

DER Tl 1 1. 91639E-09 O. 0.000 1.0000
DER-T2 1 -6.79165E-10 0.009937927 -0.000 1. 0000
DER-T3 1 1.52491E-10 0.163542 0.000 1. 0000
DER-T4 1 -1. 50709E-09 0.025657 -0.000 1. 0000

TEST: FIRST NUMERATOR: .0049333 DF: 1 F VALUE: 4.2060
DENOM INATOR : .0011729 OF: 26 PROB >F : 0.0505

TEST: SECOND NUMERATOR: .0042964 DF: 1 F' Vll. LUE : 3.6631
DENOMINATOR: .0011729 DF: 26 PROS >F : 0.0667

TEST: JOINT NUMERATOR: .0052743 DF: 2 F VALUE: 4.4968
DENOM INATOR : .0011729 DF: 26 PROB >F : 0.0210
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,
y F (q, n-p, A)

That is, Y is distributed as the non-central F distribution with q numerator

degrees of freedom, n-p denominator degrees of freedom, and non-centrality

parameter A (Appendix 1). The computation of power requires computation of A

and use of charts (Pearson and Hartley, 1951; Fox, 1956) of the non-central F

distribution. One convenient source for the charts is Scheffe (1959). The

computation of A is very little different from the computation of W itself and

one can use exactly the same strategy used in the previous example to obtain

and then multiply by q/(202) to obtain Ao Alternatively one can write code in

some programming language to compute Ao To add variety to the discussion, we

shall illustrate the latter approach using PROe MATRIX in SASe

EXAMPLE 1 (continued). Recalling that

let us approximate the probability that the Wald test rejects the following

three hypotheses at the 5% level when the true values of the parameters are

,
eO = (.03, 1, -1.4, -.5)

0
2 = .001.



Figure 8. Illustration of Wald Test Power Computations with 1.

SAS Statements:

PROC MATRIX; FETCH X DATA-EXAMPLE1IKEEP-XI X2 X3);
Tl-.03; T2-l; T3--1,4; T4--.5; S-.OOl; N-30;
Fl-XI,l); F2-XI,2); F3-T4*IXI,3HEXPIT3*XI,3»); F4-EXPIT3*XI,3»;
F-FIIIF21IF311F4; C-INVIF'*F);
SMALL HI-Tl; Hl-l 0 0 0;
LAMBDA-SMALL Hl'*INVIH1*C*Hl')*SMALL Hl'/(2*S); PRINT
SMALL H2- IT3'JTUEXP IT3)-11/5); H2-oT10 IIT4i (1+T3) JEXP IT3) IITHEXP IT3);
LAMBDA-SMALL H2'*INVIH2*C*H2')*SMALL H21/12*S); PRINT LAMBDA;
SMALL H3-SMALL Hl//SMALL H2; H3-Hl/7H2;

*SMALL_HH/ 12*S); PRINT LAMBDA;

1-5-10

Output:

S TAT I S TIC A L ANALYSIS SYSTEM 1

LAMBDA COLl

RCAoIl 3.3343

LAMBDA COLl

RCAoIl 5.65508

LAMBDA COLl

RCAoIl 9.88196
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The three null hypotheses are:

PRoe MATRIX code to compute

for each of the three cases is shown in Figure 8. We obtain

Al = 3.3343 (from Figure 8)

A2 = 5.65508 (from Figure 8)

A3 = 9.88196 (from Figure 8)

Then from the Pearson-Hartley charts of the non-central F distribution in

Scheffe (1959) we obtain

I
1 - F (4.22; 1, 26, 3.3343) = .70,

I
1 - F (4.22; 1, 26, 5.65508) = .90,

I
1 - F (3.37; 2, 26, 9.88196) = .97.

For the first hypothesis one approximates P(W > Fa) by P(Y > Fa) = .70 where
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F - F-1(.95; 1, 26} - 4.22, and so on for the other two cases.a

The natural question is: How accurate are these approximations? In this

instance the Monte Carlo simulations reported in Table 5 indicates that the

approximation is accurate enough for practical purposes but later on we shall

see examples showing fairly poor approximations to P(W > Fa} by p(Y > Fa}.
Table 5 was constructed by generating five thousand responses using the

response function

and the inputs shown in Table 1. The parameters used were 82 - 1, 84 - -.5,

and a2 - .001 excepting 81 and 82 which were varied as shown in Table 5.

Power for a test of H: 81 - 0 and H: 83 = -1 is computed for p(Y > Fa} and

compared to P(W > Fa} estimated from the Monte Carlo trials. The standard

errors in the table refer to the fact that the Monte Carlo estimate of

P(W < Fa} is binomially distributed with n = 5000 and p = p(Y > Fa}. Thus,

P(W > Fa} is estimated with a standard error of
{P(Y > F }[1 - P(Y > F })/5000} Ih. These simulations are described ina a

somewhat more detail in Gallant (1975b).

One of the most familiar methods of testing a linear hypothesis

H: RB - r against A: RB * r

for the linear model

y • XB + e
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is: First, fit the full model by least squares obtaining

... ,
SSEfull ... (y - Xa) (y - Xa)

... '-1'
a • (X X) X Y

Second, refit the model subject to the null hypothesis that Ra ... r obtaining

,
SSEreduced • (y - Xa) (y - Xa)

Third, compute the F statistic

(SSE d d - SSEf ll)/qF ... re uce u
CSSEfull)!Cn - p)

where q is the number of restrictions on a (number of rows in R), p is the

number of columns in X, and n the number of observations--full rank matrices

being assumed throughout. One rejects for large values of F. If one assumes

normal errors in the nonlinear model

y ... f(6) +e

and derives the likelihood ratio test statistic for the hypothesis

H: h(6) • 0 against A: h(6) * 0
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one obtains exactly the same test as just described (Problem 1). The

statistic is computed as follows.

First, compute

,
6 minimizing SSE(6) = [y - £(6)] [y - £(6)]

using the methods of the previous section and let

SSEfull = SSE(6).

Second, refit under the null hypothesis by computing

6 minimizing SSE(6) subject to h(6) = 0

using methods discussed immediately below, and let

SSE = SSE(6).reduced

Third, compute the statistic

(SSEreduced - SSEfull)/q
L • (SSEfull)!(n - p)

Recall that h(6) maps RP into Rq so that q is, in a sense, the number of

restrictions on 6. One rejects H: h(60 ) = 0 when L exceed the a x 100%

critical point Fa of the F distribution with q numerator degrees of freedom
-1and n-p denominator degrees of freedom; Fa = F (1 - a; q, n - p). Later on,

we shall verify that L is distributed according to the F distribution if
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h(So) • O. For now, let us consider computational aspects.

General methods for minimizing SSE(S) subject to h(S) • 0 are given in

Gill, Murray, and Wright (1981). But it is almost always the case in practice

that a hypothesis written as a parametric restriction

H: h(S) • 0 against A: h(S) * 0

can easily be rewritten as a functional dependency

H: SO • g(p) for some pO against oA: S * g(p) for any p.

Here p is an r-vector with r • p-q. In general one obtains g(p) by augmenting

the equations

h(S) • L

by the equations

• p

which are chosen such that the system of equations

h(S) - L

- p

is a one-to-one transformation with inverse



Then imposing the condition

6 •

is equivalent (Problem 2) to imposing the condition

h(6) • 0

so that the desired functional dependency is obtained by putting

6 • g(p).

But usually g(p) can be constructed at sight on an ad hoc basis without

resorting to these formalities as seen in the later examples.

The null hypothesis is that the data follow the model

and that 60 satisfies

oh(6 ) • O.

Equivalently, the null hypothesis is that the data follow the model

1-5-17
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and

o 0a - g(p) for some p •

But the latter statement can be expressed more simply as: The null hypothesis

is that the data follow the model

In vector notation,

y • f[g(p») + e.

This is, of course, merely a nonlinear model that can be fitted by the methods

described previously. One computes

,
p minimizing SSE[g(p») - {y - f[g(p»)} {y - f[g(p»)}

by, say, the modified Gauss-Newton method. Then

SSEreduced - SSE[g(P»)

because a • g(p) (Problem 3).

The fact that f[x,g(p») is a composite function gives derivatives some

structure that can be exploited in computations. Let
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,
G(p) - (a/ap )g(p),

that is, G(p) is the Jacobian of g(p) which has p rows and r columns. Then

using the differentiation rules of Section 2,

, ,
(a/ap )f[x,g(p)] = (a/as )f[x,g(p)]G(p)

,
(a/ap )f[g(p)] = F[g(p)]G(p)

These facts can be used as a labor saving device when writing code for

nonlinar optimization as seen in the examples.

EXAMPLE 1 (continued). Recalling that the response function is

f(x,S)

reconsider the first hypothesis

H: = o.

This is an assertion that the data follows the model

Fitting this model to the data of Table 1 by the modified Gauss-Newton method

we have
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Figure 9a. of Ratio Test with 1.

SAS Statements:

PROC NLIN DATA-EXAMPLE1 METHOD-GAUSS ITER-50 CONVERGENCE-l.OE-13;
PARMS T2-l.01567967 T3--1.11569714 T4--0.50490286; T1-0;
MODEL Y-T1*X1+T2*X2+T4*EXP fT3*X3);
DER.T2-X2; DER.T3-T4*X3*EXPfT3*X3); DER.T4-EXPfT3*X3);

Output:

STATISTICAL ANALYSIS SYSTEM 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON

ITERATION

o
1
2
3
4
5
6
7

T2

1.01567967
1. 00289158
1. 00297335
1. 00296493
1. 00296604
1. 00296590
1.00296592
1.00296592

T3

-1.11569714
-1.14446980
-1.14082057
-1.14128672
-1. 14122778
-1.14123524
-1.14123430
-1.14123442

T4

-0.50490286
-0.51206647
-0.51178607
-0.51182738
-0.51182219
-0.51182285
-0.51182276
-0.51182277

RESIDUAL SS

0.04054968
0.03543349
0.03543299
0.03543298
0.03543298
0.03543298
0.03543298
0.03543298

NOTE: CONVERGENCE CRITERION MET.

S TAT I S TIC A LAN A L Y SIS SYSTEM 2

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS

SOURCE

REGRESSION
RESIDUAL
UNCORRECTED TOTAL

fCORRECTED TOTAL)

OF

3
27
30

29

SUM OF SOUARES

26.34100467
0.03543298
26. 37li43764

0.71895291

DEPENDENT VARIABLE Y

MEAN SQUARE

8.78033489
0.00131233

PARAMETER

T2
T3
T4

ESTIMATE

1. 00291';592
-1.14123442
-0.51182277

ASYMPTOTIC
STD. ERROR

0.00813053
0.17446900
0.02718622

ASYMPTOTIC 95 %
CONFIDENCE INTERVAL

LOWER UPPER
0.98628359 1.01964825
-1.49921245 -0.78325638
-0.56760385 -0.45604169

ASYMPTOTIC CORRELATION MATRIX OF THE PARAMETERS

0.400991 -0.120866
1.000000 0.565235
0.565235 1.000000

T2
T3
T4

T2

1. 000000
0.400991
-0.120866

T3 T4
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SSEreduced = 0.03543298 (from Figure 9a)

Previously we computed

SSEfull = 0.03049554 (from Figure 5a).

The likelihood ratio statistic is

(SSE d d - SSEf ll)/qre uce u
L = (SSE d d)/(n - p)re uce

(0.03543298 - 0.03049554)/1
= 0.03049554/26

= 4.210.

Comparing with the critical point

-1F (.95; 1,26) = 4.22

one fails to reject the null hypothesis at the 95% level.

Reconsider the second hypothesis

which can be rewritten as
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Then writing

g(p) -

an equivalent form of the null hypothesis is that

o 0H: S - g(p) for some p •

One can fit the null model in one of two ways. The first, fit directly the

model

The second,

1. Given P, set S - g(p).

2. Use the code written previously (Figure Sa) to compute f(x,S) and
,

(0/ as )f(x, S) given S.

3. Use

, ,
(a/ap )f[x,g(p)] - {(a/as )f[x,g(p)]}G(p)

to compute the partial derivatives with respect to p; recall that
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,
G(p) = (a/ap )g(p).

We use this second method to fit the reduced model in Figure 9b. We have

1 0 0

0 1 0
G(p) =-

0 0 1

0 0
P3 -2 P3 P3

-(SP3e ) (Se + SP3e )

If

,
(a/as )f(x,S) = (DER_Tl, DER_T2, DER_T3, DER_T4)

then to compute

,
(a/ap )f[x,g(p)] = (DER.Rl, DER.R2, DER.R3)

one codes

DER.Rl = DER Tl

DER.R2 = DER T2

DER.R3 =- DER T3 + DER T4 * (-T4**2) * (S*EXP(R3) + S*R3*EXP(R3»

where
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Figure 9b. Illustration of Likelihood Ratio Test Computations with Example 1.

SAS Statements:

PRce NLIN DATA-EXAMPLE1 METHOD-GAUSS ITER-60 CONVERGENCE-1.0E-a,
PARMS R1--0.02588970 R2-1.01567967 R3--1.11569714,
T1-R1; T2aR2, T3-R3, T4-1/(5*R3*EXP (R3»;
MODEL YaT1*X1+T2*X2+T4*EXP (T3*X3),
DER T1-X1, DER T2-X2; DER T3aT4*X3*EXP (T3*X3); DER T4-EXP (T3*X3),

T1;-DER.R2aDER-T2; -
DER.R3aDER:T3+DER_T4*C-T4T*2)*C5*EXPCR3)+5*R3*EXPIR3}),

Output:

STATISTICAL ANALYSIS SYSTEM 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

ITERATION

DEPENDENT Y

R1 R2

METHOD: GAUSS-NEWTON

R3 RESIDUAL SS

o
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

-0.02588970
-0.02286308
-0.02314184
-0.02291862
-0.02309964
-0.02295240
-0.02307276
-0.02297427
-0.02305506
-0.02298878
-0.02304322
-0.02299850
-0.02303525
-0.02300504
-0.02302988
-0.02300946
-0.02302625
-0.02301245
-0.02302380
-0.02301447
-0.02302214
-0.02301583
-0.02302102
-0.02301675
-0.02302026
-0.02301738
-0.02301975
-0.02301780
-0.02301940
-0.02301808
-0.02301917
-0.02301828

1. 01567967
1. 01860305
1. 02019397
1. 01903284
1. 02003652
1. 01926378
1. 01992190
1.01940189
1. 01984017
1. 01948877
1. 01978274
1. 01954494
1. 01974282
1.01958186
1. 01971 531
1. 01960636
1. 01969645
1.01962272
1. 019683 58
1.01963370
1. 01967482
1.01964108
1. 01966888
1. 01964605
1. 01966484
1. 01964941
1.01966211
1.01965167
1.01966026
1. 01965320
1. 01965901
1.01965423

-1.11569714
-1.19237581
-1.13249955
-1.18159656
-1.14220257
-1.17465123
-1.14831568
-1.17003037
-1.15230734
-1.16691829
-1.15495732
-1.16481311
-1.15673110
-1.16338723
-1.15792350
-1.16242136
-1.15872697
-1.16176727
-1.15926909
-1.16132448
-1. 15963516
-1.16102482
-1.15988247
-1.16082207
-1.16004961
-1.16068492
-1.16016258
-1.16059216
-1.16023895
-1.16052942
-1.16029058
-1.16048699

0.03644046
0.03502362
0.03500414
0.03497186
0.03496229
0.03495011
0.03494536
0.03494040
0.03493808
0.03493597
0.03493486
0.03493394
0.03493341
0.03493301
0.03493276
0.03493258
0.03493246
0.03493238
0.03493233
0.(13493229
0.03493227
0.03493225
0.03493224
0.03493223
0.03493223
0.03493222
0.03493222
0.03493222
0.03493222
0.03493222
0.03493222
0.03493222

NOTE: CONVERGENCE CRITERION MET.

5 TAT I S TIC A LAN A L Y SIS

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS

SYSTEM

DEPENDENT VARIABLE Y

2

SOURCE

REGRESSION
RESIDUAL
UNCORRECTED TOTAL

(CORRECTED TOTAL)

OF

3
27
30

29

SUM OF SQUARES

26.34150543
0.03493222
26.37643764

0.71895291

MEAN SQUARE

8.78050181
0.00129379

ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 %
STD. ERROR CONFIDENCE INTERVAL

LOWER UPPER
R1 -0.02301828 0.01315496 -0.05000981 0.00397326
R2 1. 01965423 0.010091;76 0.99893755 1.04037092
R3 -1.16048699 0.16302087 -1.49497559 -0.82599838
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as shown in Figure 9b.

We have

SSEreduced = 0.03493222

SSEfull - 0.03049554

L _ (0.03493222 - 0.03049554)/1
0.03049554/26

- 3.783.

(from Figure 9b)

(from Figure 5a)

As F-1(-.95; 1, 26) - 4.22 one fails to reject the null hypothesis at the 5%

level.

Reconsidering the third hypothesis

and

which may be rewritten as

H: eO _ g(p) for some pO

with

o

g(p) - P2

P3

1/( 5P3/3)

we have
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Fiqure 9c. Illustration of Likelihood Test Computations with Example 1.

SAS Statements:

PRQC NLIN DATA-EXAMPLEI METHOD-GAUSS ITER-60 CONVERGENCE-l.OE-8,
PARMS R2-1.01965423 R3--1.16048699, RI-0;
TI-Rl; T2-R2; T3-R3; T4-1/C5*R3*EXPCR3»;
MODEL Y-Tl*Xl+T2*X2+T4*EXP CT3*X3);
DER TI-Xl; DER T2-X2; DER T3-T4*X3*EXPCT3*X3); DER T4-EXPCT3*X3);
DER7R2-DER_T2;-DER.R3-DER:T3+OER_T4*C-T4**2)*C5*EXPCR3)+5*R3*EXPCR3»;

Output:

STATISTICAL ANALYSIS SYSTEM 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT Y METHOD: GAUSS-NEWTON

ITERATION R2 R3 RESIDUAL SS

0 1.01965423 -1.16048699 0.04287983
1 1. 00779498 -1.17638081 0.03890362
2 1. 00807441 -1.16332560 0.03890234
3 1.00784845 -1.17411590 0.03890127
4 1. 00803764 -1.16523771 0.03890066
5 1.00788362 -1.17257272 0.03890018
6 1. 00801199 -1.16653150 0.03889989
7 1.00790702 -1. 17152084 0.0388991;7
8 1.00799423 -1.16740905 0.03889954
9 1.00792271 -1.17080393 0.03889944
10 1. 00798200 -1.16800508 0.03889937
11 1.00793329 -1.17031543 0.03889933
12 1.00797361 -1.16841024 0.03889930
13 1.00794043 -1.16998265 0.03889928
14 1. 00796787 -1.16868578 0.03889926
15 1.00794527 -1.16975601 0.03889925
16 1.00796394 -1.16887322 0.03889925
17 1. 00794856 -1.16960168 0.03889924
18 1.0079612f'i -1.16900077 0.03889924
19 1.00795079 -1.16949660 0.03889924
20 1. 00795944 -1.1n908756 0.03889923
21 1. 00795231 -1.16942506 0.03889923
22 1.00795819 -1.16914663 0.03889923
23 1. 00795334 -1.16937636 0.03889923
24 1.00795735 -1.16918683 0.03889923

NOTE: CONVERGENCE CRITERION MET.

STATISTIC A L ANALYSI S SYSTEM 2

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT Y

SOURCE DF SUM OF SQUARES MEAN SQUARE

REGRESSION 2 26.33753f141 13.16876921
RESIDUAL 28 0.03889923 0.00138926
UNCORRECTED TOTAL 30 2f'i.37643764

(CORRECTED TOTAL) 29 0.71895291

PARAMETER

R2
R3

ESTIMATE

1. 00795735
-1.16918683

ASYMPTOTIC
STD. ERROR

0.00769931
0.17039162

ASYMPTOTIC 95 ,
CONFIDENCE INTERVAL

LOWER UPPER
0.99218613 1.02372856
-1.51821559 -0.82015808

ASYMPTOTIC CORRELATION MATRIX OF THE PARAMETERS

R2 R3

R2 1.000000 0.467769
R3 0.4677f'i9 1.000000



SSEreduced = 0.03889923

SSEfull = 0.03049554

(SSE d d - SSEf ll)/(P - r)L • re uce u
(SSEfull)!(n - p)

(0.03889923 - 0.03049554)/(4 - 2)
(0.03049554)/(30 - 4)

• 3.582.
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(from Figure 9c)

(from Figure 5a)

Since F-1(.95; 2, 26) = 3.37 ,one rejects the null hypothesis at the 5%

level. I

It is not always easy to convert a parametric restriction h(S) • 0 to a

functional dependency S - g(p) analytically. However, all that is needed is

the value of S for given p and the value of (a/ap)g(p) for given p. This

allows substitution of numerical methods for analytical methods in the

determination of g(p). We illustrate with the next example.

EXAMPLE 2 (continued). Recall that the amount of substance in

compartment B at time x is given by the response function

f(x,S)

By differentiating with respect to x and setting the derivative to zero one

has that the time at which the maximum amount of substance present in

compartment B is
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The unconstrained fit of this model is shown in Figure lOa. Suppose that we

want to test

H: x • 1 against A: x * 1.

This requires that

be converted to a functional dependency if one is to be able to use

unconstrained optimization methods. To do this numerically, set 82 • P. Then

the problem is to solve the equation

for 81, Stated differently, we are trying to find a fixed point of the

equation

z • R.nz + const.

But tnz + const. is a contraction mapping for z ). 1--the derivative with

respect to z is less than one--so that a fixed point can be found by

successive substitution
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Figure lOa. Illustration of Likelihood Ratio Test with Example 2.

SAS Statements:

PROC NLIN DATA-EG2B METHOD-GAUSS ITER-50 CONVERGENCE-I. E-10;
PARMS T1-1.4 T2-.41
MODEL Y-T 1* (EXP (-T 2*X) -EXP I-T 1*X) ) / IT1-T2) 1
DER. T1--T 2* IEXP I-T 2*X) -EXP I-T 1*X) ) / (T1-T2) **2+T1*X *EXP (-T 1*X) / (T1-T2);
DER. T2-T1* (EXP I-T2*X) -EXP (-T 1*X) ) / (T1-T 2) **2-T 1*X*EXP (-T2*X) / (T I-T2);

Output:

STATISTICAL ANALYSIS SYSTEM 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT VARIABLE: Y METHOD: GA US SooN EWTON

ITERATION T1 T2 RESIDUAL S8

0 1.40000000 0.40000000 0.00567248
1 1. 37373983 0.4021;6678 0.00545775
2 1. 37396974 0.40265518 0.00545774
3 1. 37396966 0.40265518 0.00545774

NOTE: CONVERGENCE CRITERION MET.

STATISTICAL ANALYSIS

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS

SYSTEM

DEPENDENT VARIABLE Y

2

SOURCE

REGRESSION
RESIDUAL
UNCORRECTED TOTAL

(CORRECTED TOTAL)

OF

2
10
12

11

SUM OF SQUARES

2.68129496
0.00545774
2.68675270

0.21359486

MEAN SQUARE

1.34064748
0.00054577

PARAMETER

Tl
T2

ESTIMATE

1. 37396966
0.40265518

ASYMPTOTIC
STD. ERROR

0.048641;22
0.01324390

ASYMPTOTIC 95 ,
CONFIDENCE INTERVAL

LOWER UPPER
1.26557844 1.48236088
0.37314574 0.43216461

ASYMPTOTIC CORRELATION MATRIX OF THE PARAMETERS

T1 T2

Tl 1.000000 0.236174
T2 0.236174 1.000000
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Figure lOb. Illustration of Likelihood Ratio Test Computations with Example 2.

SAS Statements:

PROC NUN DATA-EG2B METHOD-:>AUSS ITER-SO CONVERGENCE-l. E-10;
PARMS RHO-.402655l8;
T2-RHO;
Zl-1.4; Z2-0; CaT2-LOGIT2);
Ll: IF ABSIZ1-Z2»l.E-13 THEN DO; Z2-Zl; Zl-LOG(Zl)+C; GO TO Ll; END;
Tl-Z 1;
NU2aT 1* IEXP (-T 2*X) -EXP (-T 1*X) ) / (T1-T2) ;
DER Tl--T2* (EXP (-T 2*X) -EXP (-T 1*X) ) / (T l-T 2) **2i'l' 1*X*EXP (-T 1*X) / (T1-T 2);
DER-T 2aT1* (EXP (-T 2*X) -E XP I-T 1*X) ) / IT1-T 2) **2-T1 *X*EXP (-T 2*X) / IT1-T 2);
DER-RHO-DER Tl*(1-l/T2)/(1-1/T1)+DER T2;
MODEL Y-NU2; DER.RHO-DER_RHO; -

Output:

STATISTICAL ANALYSIS SYSTEM 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT Y METHOD: GAUSS-NEWTON

ITERATION

o
1
2
3
4
5
l'i

RHO

0.40265518
0.46811176
0.47688375
0.47750162
0.47754034
0.47754274
0.47754289

RESIDUAL SS

0.07004386
0.04654328
0.04621215
0.04621056
0.04621055
0.04621055
0.04621055

NOTE: CONVERGENCE CRITERION MET.

STATISTICAL ANALYSIS SYSTEM 2

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS

SOURCE

REGRESSION
RESIDUAL
UNCORRECTED TOTAL

(CORRECTED TOTAL)

DF

1
11
12

11

SUM OF SQUARES

2.64054214
0.04621055
2.68675270

0.21359486

DEPENDENT Y

MEAN SQUARE

2.64054214
0.00420096

PARAMETER

RHO

ESTIMATE

0.47754289

ASYMPTOTIC
STD. ERROR

0.03274044

ASYMPTOTIC 95 ,
CONFIDENCE

LOWER UPPER
0.40548138 0.54960439

AS'iMPTOTIC CORRELATION MATRIX OF THE PARAMETERS

RHO

RHO 1.000000



z1 !nzo + const.
z2 !nz1 + const.

•
•

•
•
•

This sequence {zi+1} will converge to the fixed point.

To compute (a/ap)g(p) we apply the implicit function theorem to

We have

or

Then the Jacobian of 8 = g(p) is

, (1 -1/P)/[11 - 1/81(P)])
(a/ap )

and
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These ideas are illustrated in Figure lOb. We have

SSEfull - 0.00545774 (from Figure lOa)

SSEreduced - 0.04621055 (from Figure lOb)

(SSE d d - SSEf ll)/qre uce u
L· (0.00545774)/(12 _

- 74.670.

As F-1(.95; I t 10) - 4.96 one rejects H.

Now let us turn our attention to the computation of the power of the

likelihood ratio test. That iSt for data that follow the model

2e t iid. n(Ot O )t

t • 1t 2, ••• t n t

we should like to compute

the probability that the likelihood ratio test rejects at level a given eO t
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0 2 , and n where F F-10 - a; q, n-p). To do this, note that the test thata

rejects when

(SSE d d - SSEf ll)/qL .. re uce u > F
(SSEfull)!(n - p) a

is equivalent to the test that rejects when

(SSE d d)/(SSEf 11) > cre uce u

where

In Chapter 4 we shall show that

where

1 ' -1'PF .. I - F(F F) F;

Recall that F .. (3/36)f(60 ). Then it remains to obtain an approximation to

(SSEreduced)/n in order to approximate (SSEreduced)/(SSEfull)' To this end,

let
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where

minimizes I {f(xt ,60 ) - f[x t ,g(p)]}2.t=l

Recall that g(p) is the mapping from Rr into RP that describes the null

hypothesis--H: 60 - g(p) for some po; r ... p-q. *The point 6 may ben

interpreted as that point which is being estimated by the constrained

- *estimator 6 in the sense that 1n(6 - 6 ) converges in distribution to then n n
multivariate normal distribution; see Chapter 3 for details. Under this

interpretation,

may be interepreted as the prediction bias. We shall show later (Chapter 4)

that what one's intuition would suggest is true. l

where

1 " -1"PFG - I - FG(G F FG) G F ,

lOne's intuition mighi also suggest that the Jacobian F(6) - (a/a6')f(6)
ought to be evaluated at 6n rather than 60 , especially in view of Theorems 6
and 13 of Chapter 3. Th1s is correct, the discrepancy caused by the
substitution of 60 for 6n has been absorbed into the 0 (lin) term in order to
permit the derivation of the small sample distributionPof the random variable
X. Details are in Chapter 4.



G -
, 0

(a/ap )g(p ).n
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It follows from the characterizations of the residual sum of squares for the

full and" reduced models that

(SSE d d)/(SSEf 11) • X + 0 (l/n)re uce u p

where

The idea, then, is to approximate the probability P(L > F I eO, a2 , n) by thea
o 2probability P(X > c Ie, a ,n). The distribution function of the randoma

variable X is for x > 1 (Problem 4).

where q(t;V,A) denotes the non-central chi-square density function with v

degress of freedom and non-centrality parameter A and G(t;V,A) denotes the

corresponding distribution function (Appendix 1). The two degrees of freedom

entries are

v • q • p - r1
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Table 6. Continued.

).1

).2
30 .5 1 2 4 5 6 8 10 12

,.. v1=3, v2=lO'3.

0.0 .050 .094 .145 .255 .368 .477 .576 .662 .794 .881 .933
.0001 .050 .094 .145 .255 .368 .477 .576 .662 .794 .881 .933
.001 .• 050 .095 .145 .255 .368 .477 .576 .662 .794 .881 .933
.01 .051 .095 .146 .256 .369 .478 .577 .662 .795 .881 .934
.1 .056 .103 .155 .267 .381 .489 .586 .670 .800 .884 .935

H. v1=3, v2=20

0.0 .050 .104 .165 .300 .436 .561 .668 .755 .874 .940 .973
.0001 .050 .104 .165 .300 .436 .561 .6fi8 .755 .874 .940 .973
.001 .050 .104 .165 .300 .437 .561 .668 .755 .874 .940 .973
.01 .051 .105 .166 .302 .438 .562 .669 .755 .875 .940 .973
• 1 .057 .114 .178 .316 .452 .574 .679 .763 .878 .942 .973

I- v1=3, v2=30

0.0 .050 .107 .173 .318 .462 .591 .699 .785 .897 .954 .981
.0001 .050 .107 .173 .318 .462 .591 .699 .785 .897 .954 .981
.001 .050 .107 .173 .318 .462 .592 .699 .785 .897 .954 .981
.01 .051 .108 .175 .320 .464 .593 .700 .785 .897 .954 .981
.1 .058 .119 .187 .335 .478 .605 .710 .792 .900 .956 .981
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v • n - p2

and the non-centrality parameters are

where , -1'
PF • F(F F) F, " -1" 1PFG - FG(G F FG) G F , and PF • I - PF• This

distribution is partially tabulated in Table 6. Let us illustrate the

computations necessary to use these tables and check the accuracy of the

approximation of P(L > Fa) by p(X > ca ) by Monte Carlo simulation using
Example 1.

EXAMPLE 1 (continued). Recalling that

let us approximate the probability that the likelihood ratio test rejects the

following three hypotheses at the 5% level when the true values of the

parameters are

eO • (.03, 1, -1.4, -.5)',

2a • .001.

The three null hypotheses are:
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and

The computational chore is to compute for each hypothesis:

n
minimizing L {f(xt,eo) - f[xt,g(p)]}

t=1

With these, the non-centrality parameters

are easily computed. As usual, there are a variety of strategies that one

might employ.

To compute 0, the easiest approach is to notice that minimizing

n
L {f(xt,eo ) - f[xt,g(p)]}

t=1

is no different than minimizing
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n
L {Yt - f[xt,g(p)]}·
t-1

One simply replaces Yt by f(xt,SO) and uses the modified Gauss-Newton method,

the Levenberg-Marquardt method, or whatever.
,

To compute 0 FFo one can either proceed directly using a programming

language such as PROC MATRIX or make the following observation. If one

regresses 0 on F with no intercept term using a linear regression procedure

then the analysis of variance table printed by the program will have the

following entries

Source d.f. Sum of Squares

Regression p O'F(F'F)-lF 'o

,
.:. O'F(F'F)-lF 'oError n - p o 0

,
Total n o 0

One can just read off

, '"o FFo • 0 F(F F)F 0

from the analysis of variance table. Similarly for a regression of 0 on FG.

Figures 11a, lIb, and lIe illustrate these ideas for the hypothesis HI'

HZ' and H3•
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For the first hypothesis we have

,
o 0 - 0.006668583 (from Figure 11a)
,
o PFO - 0.006668583 (from Figure 11a)
,

3.25 x 10-9o PFGo - (from Figure 11a)

whence

Al - (O'PFO - 0'PFGO)/(2a
2)

- (0.006668583 - 3.25 x 10-9)/(2 x .001)

- 3.3343

A2 - (0'0 - 0'PFo)/(2a
2)

- (0.006668583 - 0.006668583)/(2 x .001)

- 0

c a -1+qFa /(n-p)

• 1 + (1)(4.22)/26

- 1.1623

Computing 1 - H(1.1623; 1, 26, AI' A2) by interpolating from Table 6

we obtain

as an approximation to P(L > Fa). Later we shall show that tables of the non-
central F will usually be accurate enough so there is usually no need for
special tables or special computations.



Figure lla. Illustration of Likelihood Ratio Test Power Computations
wi th Example 1.

SAS Statements:

DATA WORKOl; SET EXAMPLE1; T1-.03; T2 ..1; T3"-1. 4; T4--.5;
YDUMMY-Tl*Xl+T2*X2+T4*EXP (T3*X3)
Fl"Xl; F2..X2; F3-T4*X3*EXP (T3*X3) F4=EXP (T3*X3);
DROP Tl T2 T3
PROC NLIN DATAaWORKOl METHOD-GAUSS ITER-50 CONVERGENCE=1. OE-13;
PARMS T2-1 T3--1.4 T4--.5; TI-0;
MODEL YDUMMY-Tl*X1+T2*X2+T4*EXP (T3*X3)
DER.T2-X2; DER. T3-T4*X 3*EXP (T3*X3) DER. T4-EXP (T3*X3);

Output:
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STATISTICAL ANALYSIS SYSTEM 1

ITERATION

o
1
2
3
4
5
6

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT VARIABLE: YDUMMY METHOD: GAUSS-NEWTON

T2 T3 T4 RESIDUAL SS

1.00000000 -1.40000000 -0.50000000 0.01350000
1. 01422090 -1.3971 7572 -0.49393589 0.00666859
1. 01422435 -1.39683401 -0.49391057 0.00666858
1. 01422476 -1.396791538 -0.49390747 0.00666858
1. 01422481 -1.39679223 -0.4939071 S 0.00666858
1. 01422481 -1.39679178 -0.49390709 0.00666858
1.01422481 -1.39679173 -0.49390708 0.00666858

NOTE: CONVERGENCE CRITERION MET.

SAS Statements:

DATA SET WORKOll
T4--0.49390708;

DELTA-YDUMMY- (T1*Xl+T2*X2+T4*EXP (T3*X3.)
DROP T1 T2 T3

PROC REG MODEL DELTA-F1 F2 F3 F4 / NOINT;
PROC REG DATA=WORK02; MODEL DELTA-FG1 FG2 FG3 /

Output:

S TAT ISTICAL ANALYSIS SYSTEM

DEP VARIABLE: DELTA

SUM OF MEAN
SOURCE OF SQUARES SQUARE F VALUE PROB>F

MODEL 4 0.006668583 0.001667146 999999.990 0.0001
ERROR 26 2.89364E-13 1. 11294E-14
U TOTAL 30 0.006668583

S TAT I S T I CAL A N A L Y S I S SYSTEM 2

DEP VARIABLE: DELTA

SUM OF MEAN
SOURCE OF SQUARES SOUARE F VALUE PROB>F

MODEL 3 3.25099E-09 1. 08366E-09 0.000 1. 0000
ERROR 27 0.00666858 0.0002469844
U TOTAL 30 0.006668583
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0'0 - 0.01321589 (from Figure llb)
,
a PFo = 0.013215 (from Figure lIb)
, ,a a - a PFo - 0.00000116542 (from Figure llb)
,
a PFGo - 0.0001894405 (from Figure lIb)

whence

, , 2
Al = (0 PFo - a PFGo)/(2a )

= (0.013215 - 0.0001894405)/(2 x .001)

- 6.5128

A2 = (0' a - 0'PFO)/(2 x a2 )

- (0.00000116542)/(2 x .001)

- 0.0005827

ca - 1 + qFa/(n - p)

- 1 + (1)(4.22)/26

- 1.1623

Computing 1 - H(1.1623; 1, 26, AI' A2) as above we obtain

p(X > c ) - .935a

as an approximation to pel > Fa).
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Figure 11b. Illustration of Likelihood Ratio Test Power

wi th Ex amp1 e 1.

SAS Sta tements:

DATA WORK01; SET EXAMPLE1; T1-.03; T2-1; T3--1.4; T4--.5;
YDUMMYaT 1*X1+T 2*X2+T4*EXP IT 3*X3) ;
n-X1; F2-X2; F3=T4*X3*EXPIT3*X3); F4-EXPIT3*X31;
DROP T1 T2 T3 T4;
PROC NLIN OATA=WORK01 METHOD-GAUSS ITER-50 CONVERGENCE=I. OE-13;
PARMS R1=.03 R2-1 R3--1.4;
T1-R1; T2=R2; T3=R3; T4-1/C5*R3*EXPIR3»;
MODEL YDUMMYaT 1*X1+T2*X2+T4*EXP IT3*X 3) ;
DER T1-X1; DER T2-X2; DER T3aT4*X3*EXP CT3*X3); DER T4=EXP IT3*X31;
DER7'R1:DER T1;-DER.R2=DER-T2; -
DER.R3=DER:T3+DER_T4*C-T4**2}*C5*EXPCR3)+5*R3*EXPCR3});

Output:

STATISTICAL ANALYSIS SYSTEM 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT YDUMMY

ITERATION R1 R2

0 0.03000000 1.00000000
1 0.03363136 1.01008796
2 0.03440842 1. 00692167
3 0.03425560 1.01002926
4 0.03435915 1. 00968253
5 0.03433517 1.00977877
6 0.03434071 1.00977225
7 0.03433948 1. 00978190
8 0.03434008 1.00978565
9 0.03433966 1.00978700
10 0.03433976 1.00978669
11 0.03433973 1.00978677
12 0.03433974 1.00978675
13 0.03433974 1.00978675
14 0.03433974 1. 00978675

NOTE: CONVERGENCE CRITERION 'lET.

METHOD: GAUSS-NEWTON

R3

-1.40000000
-1.12533963
-1.28648656
-1.25424342
-1.27776231
-1. 27229450
-1.27354293
-1.27325579
-1.27338768
-1. 27329144
-1. 27331354
-1. 27330847
-1.27330963
-1.27330936
-1. 27330943

RESIDUAL S5

0.01867856
0.01588546
0.01344947
0.01325389
0.01321800
0.01321601
0.01321590
0.013215119
0.01321589
0.01321589
0.01321589
0.01321589
0.01321589
0.01321589
0.01321589

SAS

DATA WORK02; SET WORK01;
R1-0.03433974; R2-1.00978675; R3--1.27330943;
T1=R1; T2=R2; T3-R3; T4-1/ C5 *R3*EXP IR3) );
DELTA-YDUMMY- CT1*X1+T 2*X2+T4*EXP IT 3*X3) I;
FG1-P1; PG2-P2; FG3-F3+F4*C-T4**21*C5*EXPCR3)+5*R3*EXPIR3»;
DROP T1 T2 T3 T4;
PROC REG DATAKWORK02; MODEL DELTA-P1 F2 F3 F4 / NOINT;
PROC REG DATA-WORK02; MODEL DELTA-FG1 FG2 FG3 / NOINT;

Output:

S TAT ISTICAL A N A L Y 5 I S SYSTEM

DEP VARIABLE: DELTA

SUM OF MEAN
SOURCE OF SQUARES SQUARE F PROB>F

MODEL 4 0.013215 0.003303681 73703.561 0.0001
ERROR 26 .00000116542 4.48239E-08
U TOTAL 30 0.013216

1

STATISTICAL ANALYSIS

DEP VARIABLE: DELTA

SYSTEM 2

SOURCE DF
SUM OF
SQUARES

,.,EAN
SQUARE F PROB>F

MODEL
ERROR
U TOTAL

3 0.0001894405 .00006314682
27 0.013026 0.0004824611
30 0.013216

0.131 0.9409



Figure 11c. Illustration of Likelihood Ratio Test Power Computations
with Example 1.

SAS Statements:

DATA WORK01; SET T1-.03; T2-1; T3--1.4; T4--.5;
YDUMMYaT1*X1+T2*X2+T4*EXP IT3*X3);
FI-X1; F2-X2; F3aT4*X3*EXP IT3*X3); F4-EXP IT3*X3);
DROP T1 T2 T3 T4;
PROC NLIN DATAaWORKOl ITER-50 CONVERGENCE-1.0E-13;
PARMS R2-1 R3--1.4; R1-0;
t'l-R1; T2-=R2; T3aR3; T4-1/15*R3*EXPIR3»;
MODEL YDUMMYaT1*X1+T2*X2+T4*EXP IT3*X3);
DER T1-X1; DER T2-X2; DER T3aT4*X3*EXP IT3*X3); DER T4-EXP (T3*X3);
DER7R2aDER T2;- DER.R3-DER T3+DER- - . -
Output:
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STATISTICAL ANALYSIS SYSTEM 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT YDUMMY METHOD: GAUSS-NEWTON

ITERATION R2 R3 RESIDUAL SS

0 1.00000000 -1.40000000 0.04431091
1 1.02698331 -1.10041642 0.02539361
2 1. 02383184 -1.26840577 0.02235554
3 1. 02719587 -1. 25372059 0.02205576
4 1. 02705467 -1.26454488 0.02204817
5 1. 027091 54 -1. 26197184 0.02204774
6 1.02708616 -1.26258128 0.02204771
7 1. 02708920 -1.26243671 0.02204771
8 1. 02708937 -1. 26247100 0.02204771
9 1. 02709018 -1.26245473 0.02204771
10 1. 02709003 -1. 2f'i246672 0.02204771
11 1. 02709006 -1. 26246388 0.02204771
12 1. 02709005 -1. 2624f'i455 0.02204771
13 1. 02709006 -1.2f'i246439 0.02204771

NOTE: CONVERGENC E CRITERION MET.

SAS Statements:

DATA WORK02; SET WORK01;
R1-0; R2-1.02709006; R3--1.26246439;
T1-R1; T2aR2; T3-R3; T4-1/15*R3*EXPIR3»;

IT 1 *X 1+T 2*X 2+T4*EXP IT 3*X 3) ) ;
FG1-F 2; FG2-F 3+F4* I-T4**2) * (5 *EXP (R 3) +5*R3*EXP IR3) );
DROP T1 T2 T3 T4;
PROC REG DATAaWORK02; MODEL DELTA-F1 F2 F3 F4 / NOINT;
PROC REG DATAaWORK02; MODEL DELTA-FG1 FG2 / NOINT;

Output:

S TAT I S TIC A LAN A L Y SIS

DEP VARIABLE: DELTA

SYSTEM 1

SOURCE: OF
SUM OF
SQUARES

MEAN
SQUARE F VALUE PROB>F

MODEL
ERROR
U TOTAL

4 0.022046 0.005511515
26 .00000164811 6.33888E-08
30 0.022048

86947.729 0.0001

STATISTICAL ANALYSIS

DEP VARIABLE: DELTA

SYSTEM 2

2 0.0001252535 .00006262677
28 0.021922 0.0007829449
30 0.022048

SOURCE

MODEL
ERROR
U TOTAL

OF
SUM OF
SQUARES

MEAN
SQUARE F

0.080

PROB>F

0.9233



For the third hypothesis we have
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0'0 = 0.02204771 (from Figure llc)
,°pFo ". 0.022046 (from Figure llc)

0'0 -
,°PFo ". 0.00000164811 (from Figure llc)

,°PFGo ". 0.0001252535 (from Figure llc)

whence

A1 ". (O'PFO - 0'PFGO)/(2a
2)

= (0.022046 - 0.0001252535)/(2 x .001)

.. 10.9604

, ,
A2 .. (0 0 - °PFO)/(2 x .001)

= (0.00000164811)/(2 x .001)

". 0.0008241

ca = 1 + qFa/(n - p)

.. 1 + (2)(3.37)/(26)

.. 1.2592

Computing 1 - H(1.2592; 2, 26, A1' A2) as above we obtain

Once again we ask: How accurate are these approximations? Table 7

indicates that the approximations are quite good and later we shall see
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several more examples where this is the case. In general, Monte Carlo

evidence suggests that the approximation P(L > c ) P(X > c ) is verya a
accurate over a wide range of circumstances. Table 7 was constructed exactly

as Table 5.

In most applications AZ will be quite small relative to Al as in the

three cases in the last example. This being the case, one sees by scanning

the entries in Table 6 that the value of P(X > ca ) computed with AZ = 0 would

be adequate to approximate P(L > Fa). If AZ - 0 then (Problem 5)

,
H(c a ; vI' vz' AI' 0) = F (Fa; vI' vz' AI)

with

,
Recall that F (x; vI' vz' A) denotes the non-central F-distribution with vI
numerator degrees of freedom, Vz denominator degrees of freedom, and non-

centrality parameter A (Appendix 1). Stated differently, the first rows of

Parts A through I of Table 6 are a tabulation of the power of the F-test.

Thus, in most applications, an adequate approximation to the power of the

likelihood ratio test is

P(L > F )a
. ,
= 1 - F (F a; vI' VZ' AI)

The next example explores the adequacy of this approximation.
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Table 8. MOnte-Carlo Power Estimates for an Exponential MOdel e
Power

Parameters Non-centralities Monte-Carlo
" A

81 82 A2 P[X > c ] p SEep)
Ol

·5 ·5 0 0 .050 .0532 .00308

·5398 ·5 ·9854 0 .204 .2058 .00570

.4237 .61349 ·9853 .00034 .204 .2114 .00'570

·5856 ·5 4·556 0 ·727 ·7140 .00630

·3473 .8697 4·556 .00537 ·728 ·7312 .00629

.62 ·5 8·958 0 ·9'57 ·9530 .00237
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EXAMPLE 3. Table 8 compares the probability p(X > ca) to Monte Carlo

estimates of the probability of P(L > Fa) for the model

Thirty inputs {x }301 were chosen by replicating the points 0 (.1) .7 three
t t-

times and the points .8 (.1) 1 twice. The null hypothesis is H: eO - (1/2,
1/2). For the null hypothesis and selected departures from the null

hypothesis, 5000 random samples of size thirty from the normal distribution

were generated according to the model with a2 taken as .04. The point
A

estimate p of P(L > Fa) is, of course, the ratio of the number of times L
A

exceeded Fa to 5000. The variance of p was estimated by

Var(p) = p(X > c ) p(X c )/5000. For complete details see Gallant (1975a).a a
To comment on the choice of the values of eO * (1/2, 1/2) shown in Table

8, the ratio A2/Al is minimized (=0) for eO * (1/2, 1/2) of the form (e1, 1/2)
and is maximized for eO of the form (1/2, 1/2) ±

Three points were chosen to be of the first form and two of the latter form.

Further, two sets of points were paired with respect to AI. This was done to

evaluate the variation in power when A2 changes while Al is held fixed.

These simulations indicate that the approximation of P(L > Fa) by
P(X > ca) is quite accurate as is the approximation,
p(X > c a ) 1 - F (Fa; q, n-p, AI).

EXAMPLE 2 (continued). As mentioned at the beginning of the chapter, the

model
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was chosen by Guttman and Meeter (1965) to represent a nearly linear model as

measured by measures of the coincidence of the contours of Ily - f(8)n 2 with
A ,A

the contours of (8 - 8) C(8 - 8) introduced by Beale (1960). The model

is highly nonlinear by this same criterion. The simulations reported in Table

9 were designed to determine how the approximations

hold up as we move from a nearly linear situation to more nonlinear

situations. As we have hinted.at all along, the approximation

deteriorates badly while the approximation

holds up quite well. The details of the simulation are as follows.

The probabilities p(W > Fa) and P(L > Fa) that the hypothesis
H: 80 = (1.4, .4) is rejected shown in Table 9 were computed from 4000 Monte

Carlo trials using the control variate method of variance reduction (Hammersly

and Handscomb, 1964). The independent variables were the same as those listed
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in Table 2 and the simulated errors were normally distributed with mean zero

and variance 02 • (.025}2. The sample size in each of the 4000 trials was

n - 12 as one sees from Table 2. An asterisk indicates that P(W > Fa) is
significantly different from p(Y > Fa} at the 5% level; similarly for the

likelihood ratio test. For complete details see Gallant (1976).

If the null hypothesis is written as a parametric restriction

and it is not convenient to rewrite it as a functional dependency 6 • g(p} the

following alternative formula (Section 6 of Chapter 3) may be used to compute

* n 26 minimizes I [f(x ,60 } - f(x t ,6}] subject to h(6} = 0
n t-1 t

* I *H • H(6 } • (0106 }h(6 )n n

We have discussed the Wald test and the likelihood test of

o 0H: h(6 } • 0 against A: h(6 } * 0,

equivalently,

H: 60 - g(p} for some po against oA: 6 * g(p} for any p



There is one other test in common use, the Lagrange multiplier (Problem 6) or

efficient score test. In view of the foregoing, the following motivation is

likely to have the strongest intuitive appeal. Let

S minimize SSE(S) subject to h(S) - 0,

equivalently,

S - g(p) where p minimizes SSE[g(P)]

- -Suppose that S is used as a starting value, the Gauss-Newton step away from S

(presumably) toward S is

- -,- -1-'
D - (F F) F [y - f(S)]

,
where F = F(S) = (a/as )f(S). Intuitively, if the hypothesis h(So) = 0 is
false then minimization of SSE(S) subject to h(S) = 0 will cause a large
displacement away from Sand D will be large. Conversely, if h(So) is true

then D should be small. It remains to find some measure of the distance of D

from zero that will yield a convenient test statistic.

Recall that

S* minimizes
n

equivalently,

n

n
where minimizes L {f(xt,So) - f[x t ,g(p)]}2t=1



and that

where G - (a/ap')g(po). Equivalently,
n

where H • (a/ae')h(e*). We shall show in Chapter 4 thatn

-, -,- - ,
D (F F)D/n - (e + 0) (PF -PFG)(e + o)/n + 0p(1/n),

,
SSE(6)/n - (e + 0) (I - PFG)(e + o)/n + 0p(1/n),

,
SSE(6)/n • e (I - PF)e/n + 0p(1/n).

These characterizations suggest two test statistics

-, -,- -
D (F F)D/qR1 = A

SSE(6)/(n - p)

and
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... , ... ,- ...
R2 • n D (F F)D/SSE(6)

The second statistic R2 is the customary form of the Lagrange multiplier test
-and has the advantage that it can be computed from knowledge of 6 alone. The

A _

first requires two minimizations, one to compute 6 and another to compute 6.

Much is gained by going to this extra bother. The distribution theory is

simpler and the test has better power as we shall see later on.

The two test statistics can be characterized as

where

,
(e + 0) (PF - PFG)(e + o)/q

e (I - PF)e/(n - p)

The distribution function of Zl is (Problem 7)

where
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That is, the random variable ZI is distributed'as the non-central F-

distribution (Appendix 1) with q numerator degrees of freedom, n-p denominator

degrees of freedom, and non-centrality parameter AI. Thus RI is approximately

distributed as the (central) F distribution and the test is: Reject H when RI
-1exceeds F • F (1 - a; q, n - p).a

The distribution function of Zz is (Problem 8) for z < n

t t
F [(n-p)(z)/(q)(n-z); q, n-p, AI' AZ]

where

t t
and F (t; q, n-p, AI' AZ) denotes the doubly non-central F-distribution

(Appendix 1) with q numerator degrees of freedom, n-p denominator degrees of

freedom, numerator non-centrality parameter Al and denominator non-centrality

parameter AZ (Appendix 1). If we approximate

•P(RZ > d) • P(ZZ > d)

then under the null hypothesis that h(eo ) • 0 we have 0 • 0, Al - 0, and

AZ • 0 whence

•= 0) • 1 - F[(n-p)(d)/(q)(n-d); q, n-p]
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Letting Fa denote the a x (100%) critical point of the F-distribution t that is

then that value da of d for which

P(R > d IA m A := 0) := aa 1 2

is

or

The test is then: Reject H: h(So) := 0 if > da• With this computation of

,
:= 1 - F (Fa; qt n-Pt AI)

, ,
( 1 - F (Fa; qt n-Pt AI' A2)
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and we see that to within the accuracy of these approximations, the first

version of the Lagrange multiplier test always has better power than the

second. Of course as we noted earlier, in most instances A2 will be small

relative to A1 and the difference in power will be negligible.

In the same vein, judging from the entries in Table 6 we have (see

Problem 10)

,
1 - F (Fa; q, n-p, A1) ( 1 - H(ca ; q, n-p, A1, A2)

whence

,
) 1 - F (Fa; q, n-p, A1)

Thus the likelihood ratio test has better power than either of the two

versions of the Lagrange multiplier test. But again, AZ is usually small and

the difference in power negligible.
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To summarize this discussion, the first version of the Lagrange

multiplier test rejects the hypothesis

when the statistic

-, .... ,- -
D (F F)D/qR1 = A

SSE(S)/(n-p)

exceeds F = F-1(1-a; q, n-p). The second version rejects when the statistica

-, -,- -
RZ = nD (F F)D/SSE(S)

exceeds

As usual, there are various strategies one might employ to compute the

statistics R1 and RZ• In connection with the likelihood ratio test, we have

already discussed and illustrated how one can compute by computing the
A

unconstrained minimum p of the composite function SSE[g(P)] and setting

= g(p). Now suppose that one creates a data set with observations

-, r
f t = (a/as )f(xt,S)

t=1,Z, ••• ,n

t=1,Z, ••• ,n
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Or in vector notation

,
e - y - f(8), F = (ajae )f(8)

,
Note that F is an n by p matrix; F the n by r matrix (ajap )f[g(p)].

If one regresses e on F with no intercept term using a linear regression

procedure then the analyssis of variance table printed by the program will

have the following entries

Source d.f. Sum of Squares

Regression
... ,- .. ,,... -1---''''

p e F(F F) F e

-,- -,- -,- -,-
Error n-p e e - e F(F F)F e

Total n -,-
e e

One can just read off

N, .. , .... - ... , - ... , .... -1 .... ' ...
D (F F)D - e F(F F) F e

from the analysis of variance table. Let us illustrate these ideas.

EXAMPLE 1 (continued). Recalling that the response function is

reconsider the first hypothesis



Figure 12a. Illustration of Lasranse Multiplier Test Co&Putations
wi th L:all'p Ie 1.

DATA WORK01, SET EXAMPLE1;
Tl=O.O; T2=1.00296592' T3=-1.14123442; T4=-0.51182277;
E=Y-(Tl*Xl+T2iX2+T4*EXP(T3*X3»;
Fl=Xl; F2=X2, F3=T4*X3*EXP(T3*X3); F4=EXP(T3*X3);
DROP T1 T2 T3 T4,
PROC REG DATA=WORK01; MODEL E=Fl F2 F3 F4 I NOINY;

(Jul,pu t:
S TAT I 5 TIC ALAN AL YSIS S YS T E H

DEF' VARIABLE: E

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

hGDEL 4 0.004938382 0.001234596 1.053 0.3996
ERROR 26 0.030495 0.001172869
U TOTAL 30 0.035433

ROOT MSE 0.034247 R-SQUARE 0.1394e DEP MEAN -5.50727E-09 ADJ R-SQ 0.0401
C.lJ. -621854289

NOiEt NO INTERCEPT TERM IS USED. R-SQUARE IS REDEFINED.

PARAMETER STANDARD T FOR HO:
W,RIABLE DF ESTIMATE ERROR PARAMETER=O PROD )- :r:
r:'i 1 -0.025888 0.012616 -2.052 0.0504I ...

r'" 1 0.012719 O.00987H81 1.288 0.2091-,;;,

F3 1 0.026417 0.165440 0.160 0.8744
F4 1 0.007033215 0.025929 0.271 0.7883
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H: 6Y • o.

Previously we computed

0.0

M

6 :::
1.00296592

-1.14123442

-0.51182277

(from Figure 9a)

SSE(6) - 0.03543298

A

SSE(6) • 0.03049554

(from Figure 9a or Figure 12a)

(from Figure 5a)

M

We implement the scheme of regressing e on F in Figure 12a (note the

similarity with Figure 11a) and obtain

D (F F)D - 0.004938382

The first Lagrange multiplier test statistic is

(from Figure 12a)

R :81

.. , .. ,- -
D (F F)D/q

"SSE(6)/(n-p)

(0.004938382)/(1)
:8 -7'(""0• 7-J(

- 4.210.

Comparing with the critical point



one fails to reject the null hypothesis at the 95% level.

The second Lagrange multiplier test statistic is

_, ... , _ IW

R2 = no (F F)D/SSE(6)

= (30)(0.004938382)/(0.03543298)

= 4.1812

Comparing with the critical point

= (30)(4.22)/[(26)/(1) + 4.22]

= 4.19

One fails to reject the null hypothesis at the 95% level.

Reconsider the second hypothesis

which can be represented equivalently as
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Fisure 12b. Illustration of Lasranse Test
with E>:aIlIF-le 1.

SAS Slalerrlents:

DATA WORK01; SET EXAMPLElj
Rl=-O.OZ3018ZBj R2=1.01965423j R3=-1.16048699j
Tl=Rlj T2=R2j T3=R3j T4=1/(5*R3*EXP(R3»j
E=Y-(Tl*Xl+TZ*X2+T4*EXP(T3*X3»;
Fl=Xl; FZ=X2j F3=T4*X3*EXP(T3*X3)j F4=EXP(T3tX3)j
DROF' T1 TZ T3 T4;
PROC REG DATA=WORKOlj MODEL E=F1 F2 F3 F4 / HOINTj

Outpu t:
S TAT 1ST I CAL ANAL Y 5 I 5 5 Y5 T E H

liEF' E

SUM OF MEAN
:3QlJRCE DF SQUARES SQUARE F VALUE PROB>F

MODEL 4- 0.004439308 o.001109827 0.946 0.4531
ERROR 26 0.030493 0.001172804
UTOTAL 30 0.034932

ROOT riSE 0.034246 R-SQUARE 0.1271
DE? MEAN 7.59999E-09 AD.J R-SQ 0.0264

"' 450609078L.Ii.

NOiE; NO INTERCEPT TERM IS USED. R-SQUARE IS REDEFINED.

PARAMETER STANDARD T FOR HOt
\JARIABLE DF ESTIMATE ERROR PARAMETER=O PROB )- ITl

Fi 1 -0.00285742 0.012611 -0.227 0.8225
F2 • -0.00398546 0.009829362 -0.405 0.6885.Lr- 1 0.043503 0.156802 0.277 0.7836
F4 1 0.045362 0.026129 1.736 0.0944
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H: 60 - g(p) for some po

with

g(p) ..

Previously we computed

-0.02301828

p .. 1.01965423

-1.16048699

(from Figure 9b)

.
SSE(6) .. 0.03493222

A

SSE(6) .. 0.03049554

.
Regressing e on F we obtain

-, -,. -
D (F F)D .. 0.004439308

(from Figure 9b or Figure 12b)

(from Figure 5a)

(from Figure 12b)

The first Lagrange multiplier test statistic is

R ..1

.... , ... ,....
D (F F)D/q

A

SSE(6)/(n-p)



(0.004439308)/(1)
• • 9'"5""'5""4"'")

• 3.7849

Comparing with

F(.95; 1, 26) • 4.22

we fail to reject the null hypothesis at the 95% level.

The second Lagrange multiplier test statistic is

-, "Wt- --

R2 • nO (F F)D/SSE(6)

• (30)(0.004439308)/(0.0349322)

• 3.8125

Comparing with

d • oF /[(n-p)/q + F Ia a a

- (30)(4.22)/[(26)/(1) + 4.22]

• 4.19

we fail to reject at the 95% level.

Reconsidering the third hypothesis
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H: 81 ... 0 and

which may be rewritten as

1-5-69

H: 80 - g(p) for some po

with

o

g(p) ...

Previously we computed

(
... ( 1.00795735)

P3 -1.16918683

H

SSE(8) ... 0.03889923

H

SSE(8) ... 0.03049554

H

Regressing e on F we obtain

..... , .... ,- -
D (F F)D ... 0.008407271

(from Figure 9c)

(from Figure 9c or Figure 12c)

(from Figure Sa)

(from Figure 12c)



Figure 12c. Illustration of Lagrange Test
with 1e 1.

SAS Siaielilen is:

DATA WORK01; SET EXAMPLE1;
Rl=O; R2=1.00795735; R3=-1.169186B3;
Tl=Rl; T2=R2; T3=R3; T4=1/(5*R3*EXP(R3»;
E=Y-(Tl*Xl+T2*X2+T4*EXP(T3*X3»;
Fl=Xl; F2=X2; F3=T4*X3*EXP(T3*X3); F4=EXP(T3*X3);
DROP T1 T2 T3 T4;
PROC REG DATA=WORK01; MODEL E=F1 F2 F3 F4 / NOINT;

S TAT I S TIC ALAN AL YSIS S YS T E H

LiEF' '·JARIABLE: E

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F

i'iODEL 4 0.008407271 0.002101818 1.792 0.1607
ERROR 26 0.030492 0.001172768
UTOTAL 30 0.038899
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1

ROOT MSE 0.034246
DE? MEAN -2.83174E-09
C.V. -1209350370

R-SQUARE
ADJ R-SQ

0.2161
0.1257

NOTE: NO INTERCEPT TERM IS USED. R-SQUARE IS REDEFINED.

PARAMETER STAt-lDARD T FOR HO:
!.JARI ABLE DF ESTIMATE ERROR PARAMETER=O PROB > :1:
I:: t 1 -0.025868 0.012608 -2.052 0.05041

F2 1 0.007699193 0.00980999 0.785 0.4396
F3 1 0.052092 0.157889 0.330 0.7441
f"' 1 0.046107 0.026218 1.759 0.0904-'io



The first Lagrange multiplier test statistic is

... , -, - ...
D (F F)D/qR1 .. "
SSE(6)/(n-p)

(0.008407271)/(2)
.. -;.(7("0• 9""S""'S'""4-.r')';'7;"'(

.. 3.5840

Comparing with

F-1(.95; 2, 26) .. 3.37

we reject the null hypothesis at the 5% level.

The second Lagrange multiplier test statistic is

... , ow, ......
R2 .. no (F F)D/SSE(6)

.. (30)(0.008407271)/(0.03889923)

.. 6.4839

Comparing with

d .. of [(n - p) / q + F ]a a a

.. (30)(3.37)/[(26)/2 + 3.37]

lIZ 6.1759

we reject at the 95% level.
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As the example suggests, the approximation

.. , "",.... "" .
D (F F)D m SSE(6) - SSE(6)

is quite good so that

in most applications. Thus, in most instances, the likelihood ratio test and

the first version of the Lagrange multiplier test will accept and reject

together.

To compute power, one uses the approximations

and

The non-centrality parameters AI' and A2 appearing in the distributions of Zl

and Z2 are the same as those in the distribution of X. Their computation was

discussed in detail during the discussion of power computations for the

likelihood ratio test. We illustrate

EXAMPLE 1 (continued). Recalling that
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let us approximate the probabilities that the two versions of the Lagrange

multiplier test reject the following three hypotheses at the 5% level when the

true values of the parameters are

,
eO,. (.03, 1, -1.4, -.5)

The three hypotheses are the same as those we have used for the illustration

throughout:

In connection with the illustration of power computations for the likelihood

ratio test we obtained

A2 ,. 0.0005827

A2 ,. 0.0008241.



For the first hypothesis

,
= 1 - F (Fa; q. n-p. AI)

,
- 1 - F (4.22; I, 26, 3.3343)

= .700 ,

, ,
- 1 - F (Fa; q. n-p. AI' A2)

, ,
- 1 - F (4.22; 1. 26. 3.3343, 0)

= .700

the second

,
- 1 - F (Fa; q. n-p. AI)

,
- 1 - F (4.22; 1. 26, 6.5128)

= .935
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and the third

, ,
= 1 - F (Fa; q, n-p, AI' A2)

, ,
= 1 - F (4.22; 1, 26, 6.5128, 0.0005827)

= .935

,
= 1 - F (Fa; q, n-p, AI)

,
= 1 - F (3.37; 2, 26, 10.9604)

= .983

, ,
- 1 - F (Fa; q, n-p, AI' A2)

, ,
= 1 - F (3.37; 2, 26, 10.9604, 0.0008241)

= .983
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Again one questions the accuracy of these approximations. Tables lOa and

lOb indicate that the approximations are quite good. Also, by comparing

Tables 7, lOa and lOb one can see the beginnings of the spread

P(L > F ) > P(RI > F ) > P(R2 > d )a a a

as A2 increases which was predicted by the theory. Tables 9a and 9b were

constructed exactly the same as Tables 5 and 7.
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PROBLEMS

1. Assuming that the density of y is p(y; 6,a) =
exp{-(1/2)[y - f(6)]'[y - f(6)]/a2} show that

... -n/2max6 p(y; 6, a) = exp(-n/2),a

- -n/2
6, a) ... exp(-n/2),

presuming, of course, that f(6) is such that the maximum exists. The

likelihood ratio test rejects when the ratio

is small. Put this statistic in the form: Reject when

[SSE(6) - SSE(6)]/q
x

SSE(6)/(n-p)

is large.

2. If the system of equations defined over 0

h(6) ... T

cj>(6) = p

1-5-79
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has an inverse

show that

{6 € a: h(6) - o}

- {6: 6 - for some P in R}

where R - {P: P - for some 6 in a}.

3. Referring to the previous problem, show that

max{SSE(6): h(6) - 0 and 6 in a}

- P in R}

if either maximum exists.

4. (Derivation of H(x; vI' v2' AI' A2»' Define H(x; vI' v2' AI' A2)

to be the distribution function given by
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0,

x > 1.

where g(t; v, A) denotes the non-central chi-square density function with v

degrees of freedom and non-centrality parameter A and G(t; v, A) denotes the

corresponding distribution function (Appendix 1).

Fill in the missing steps. Set z = (l/o)e, r = (1/0)00' and
R = P - Pl. The random variables (zl' z2' ••• , zn) are independent with

density n(t; 0, 1). For an arbitrary constant b, the random variable
,

(z + br) R(Z + br) is a noncentral chi-squared with q degrees freedom and

noncentrality b2r'Rr/2, since R is idempotent with rank q. Similarly,
, 1

(z + br) P (z + br) is a noncentral chi-squared with n - p degrees freedom

and noncentrality b2r'p1r/2. These two random variables are independent

because Rp1 = 0.
Let a > 0.

, 1 ' 1P[X> a + 1] = p[(z + r) PI (z + r) > (a + l)z P z]

, , 1 ' 1 ' 1= P(z + r) R(z + r) > az P z - 2r P z - r P r]

, -1 '1 -1 -1 '1= p[(z + r) R(z + r) > a(z - a r) P (z - a r) - (1 + a )r P r]
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-1 '1 -1= OP[t >a(z - a y) P (z - a y)

-1 '1 '- (l + a )y P y]g(t; q, y Ry/2)dt

-1' 1 -1- OP[(z - a y) P (z - a y)

-1 '1 '< (t + (l + a )y P y)/a]g(t; q, y RY/2)dt

roo '1 2 ' 1 2 '- JOG[t/a + (a + l)y P y/a ; n - p, y P y/(2a )]g(t; q, y RY/2)dt.

, , 1
By substituting x - a-I, Al = Y RY/2. and A2 = Y P y/2 one obtains the form

of the distribution function for x > 1.
The derivations for the remaining cases are analogous.

5. Show that if A2 • 0, then

Referring to Problem 4. why doees this fact imply that

6. (Alternative motivation of the Lagrange multiplier test). Suppose

that we change the sign conventions on the components of the vector valued

function h(6) so that



minimize SSE (S)

subject to h(S) < 0

is equivalent to the problem

minimize SSE(S)

subject to h(S) = O.

The vector inequality means inequality component by component.

Now consider the problem

minimize SSE(S)

subject to h(S) = x

and view the solution S as depending on x. Under suitable regularity

conditions there is a vector x of Lagrange multipliers such that

, -,
(a/as )SSE(S) = A H(S)

, -
and (a/ax )S(x) exists. Then

h[S(x)] = x

implies

, -
H(S)(a/ax )S(x) = I

1-5-83
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whence

,
)SSE[e(x)]

, , M

- (a/ae )SSE[e(x)](a/ax )e(x)

M' , M= AH[e(x)](a/ax )e(x)

M,
• A •

The intuitive interpretation of this equation is that if one had one more unit

of the constraint hi then SSE(e) would increase by the amount Ai' Then one

should be willing to pay Ai (in units of SSE) for one more unit of hi' Stated

differently, the components of the vector A can be viewed as the prices of the

constraints.

With this interpretation any reasonable measure d(A) of the distance of
M

the vector A from zero could be used to test

H: h(e) • 0 against A: h(e) * O.

One would reject for large values of d(A). Show that if

M

is chosen as the measure of distance where Hand F denote evaluation of e = e
then
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-, -,- -
d(A) - D (F F)D

where, recall, D = (i'i)-1i'[y - f(6)].

,
7. Show that Z1 is distributed as F (z; q, n-p, A1). Hint:

8. Fill in the missing steps. If z < n

P(Z2 < z)

, ,
= P[(e + 0) (PF - PFG)(e + 0) < (z/n)(e + 0) (I - PFG)(e + 0)]

,
(e + 0) (PF - PFG)(e + o)/q < (n - p)z]

- p[ , I
(e + 0) PF(e + o)/(n _ p) q(n - z)

, ,
- F [en - p)(z)/(q)(n - z); q, n-p, A1, A2].

9. (Relaxation of the Normality Assumption). The distribution of e is

spherical if the distribution of Qe is the same as the distribution of e for

every n by n orthogonal matrix Q. Perhaps the most useful distribution of

this sort other than the normal is the multivariate Student-t (Zellner,

1976). Show that the null distributions of X, Z1' and Z2 do not change if any

spherical distribution is substituted for the normal distribution. Hint:

Jensen (1981).



10. Prove that P(X > ca ) ) P(Zl > Fa). Warning: this is an open

question!

1-5-86
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6. CONFIDENCE INTERVALS

A confidence interval on any (twice continuously differentiable)

parametric function y(6) can be obtained by inverting any of the tests of

H: h(6) = 0 against A: h(6) * 0

described in the previous section. That is, to construct a 100 x (l-a)%

confidence interval for y(6) one lets

h(6) = y(6) _ yO

and puts in the interval all those yO for which the hypothesis H: h(6) = 0 is

accepted at the a level of significance (Problem 1). The same is true for

confidence regions, the only difference being that y(6) and yO will be q-

vectors instead of being univariate.

The Wald test is easy to invert. In the univariate case (q=l), the Wald

test accepts when

where

A ,A ,

H = (0/06 )[y(6) - yO] = (0/06 )y(6)

-1
= t (1 - a/2; n-p); that is, t a / 2 denotes the upper a/2 critical
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point of the t-distribution with n-p degrees of freedom. Those points yO that

satisfy the inequality are in the interval

2 A A A, If,
y(6) ± t a / 2 (s HCH ) 2.

The most common situation is when one wishes to set a confidence interval on

one of the components 6i of the parameter vector 6. In this case the interval

is

where cii is the i-th diagonal element of - [F' We illustrate

with Example 1.

EXAMPLE 1 (continued). that

let us set a confidence interval on 61 by inverting the Wald test. One can

read off the confidence interval directly from the SAS output of Figure 5a as

[-0.05183816, 0.00005877]

or compute it as

61 • -0.02588970

,.
c ll - .13587

(from Figure 5a)

(from Figure 5b)



s2 = 0.00117291

t-1(.975; 26) = 2.0555

1-6-3

(from Figure 5b)

,. /, 2x
61 ± t a / 2 Vs c11 = -0.02588970 ± (2.0555) ((0.00117291)(.13587)

= -0.02588970 ± 0.0259484615

whence

[-0.051838, 0.000588].

To put a confidence interval on

y(6)

we have

,
H(6) = (a/a6 )y(6)

y(6) = (-1.11569714)(-0.50490286)e-1.11569714

= 0.1845920697

H = (0, 0, 0.0191420895), -0.365599176)

(from Figure 5a)

(from Figure 5a)

HeH = 0.0552562 (from Figures 5b and 13)



Fisure 13. Wald Test Confidence Interval Construction Illustrated with
Exam?le 1.

SAS Statements:

PROC MATRIX;
C = 0.13587 -0.067112 -0.15100 -0.037594/

-0.067112 0.084203 0.51754 -0.00157848/
-0.15100 0.51754 22.8032 2.00887/
-0.037594 -0.00157848 2.008B7 0.56125;

H: 0 0 -0.365599176;
HCH =H*C*H'; PRINT HCH;

S TAT 1ST I CAL ANAL Y5 I 5 5 Y5 T E M

HCH COLl

ROW1 0.0552563

1-6-4

1



s2 = 0.00117291

Then the confidence interval is

2"''''''' If.y(6) ± t (s HCH) 2
0./2

1-6-5

(from Figure 5a)

= 0.184592 ± (2.0555)[(0.00117291)(0.0552563)] V2

= 0.1845921 ± 0.0165478

or

[0.168044, 0.201140].

In the case that y(6) is a q-vector, the Wald test accepts when

0' '-1 '" 0 2
[y ( 6 ) - y ] (HCH) [Y( 6 ) - y ] / (q s ) " F •a.

The confidence region obtained by inverting this test is an ellipsoid with

center at y(6) and the eigenvectors of HCH as axes.

To construct a confidence interval for y(6) by inverting the likelihood

ratio test, put

h(6) = y(6) _ yO

with yO being a q-vector and let
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The likelihood ratio test accepts when

< Fa

-1 Awhere. recall. Fa .. F (1-a; q. n-p) and SSEfull a SSE(S) = min SSE(S). Thus.

a likelihood ratio confidence region consists of those points yO with

L(Yo ) < Fa. Although it is not a frequent occurrence in applications. the

likelihood ratio test can have unusual structural characteristics. It is

possible that L(Yo) does not rise above Fa as IlyOn increases in some diretion

so that the confidence region can be unbounded. Also it is possible that

L(Yo) has local minima which can lead to confidence regions consisting of

disjoint islands. But as we said. this does not happen often.

In the univariate case. the easiest way to invert the likelihood ratio

test is by quadratic interpolation as follows. Take three trial values yy.
Y3 around the lower limit of the Wald test confidence interval and compute

the corresponding values of L(YY). L(YZ)' Fit the quadratic equation

i=1,2,3

to these three points and let x solve the equation

F a a ax2 + bx + c

One can take x as the lower limit or refine the estimates by taking three
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,..
trial values yy. around x and repeating the process. The upper

confidence limit can be computed similarly. We illustrate with Example 1.

EXAMPLE 1 (continued). Recalling that

let us set a confidence interval at 61• We have

SSEfull 0.03049554 (from Figure 5a)

By simply reusing the SAS code from Figure 9a and embedding it in a MACRO

whose argument yO is assigned to the paramter 61 we can easily construct the

following table from Figure 14a.

yO SSE 0 L(Yo)
y

-.052 0.03551086 4.275980

-.051 0.03513419 3.954837

-.050 0.03477221 3.646219

-.001 0.03505883 3.890587

.000 0.03543298 4.209581

.001 0.03582188 4.541151

Then either by hand calculator or by using PROC MATRIX as in Figure 14b one

can interpolate from this table to obtain the confidence interval

[-0.0518. 0.0000320].
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14a. Likelihood Ratio Test Confidence Interval Construction Illustrated

with le 1.

%MACRO SSECGAMMA);
PROC NlIN DATA=EXAMPLEl METHOD=GAUSS ITER=50 CONVERGENCE=1.0E-13;
F'ARMS T2=1.01567967 T3=-1.11569714 T4=-0.50490286;
MODEL Y=TliX1+T2*X2+T4*EXPCT3*X3);
DER.T2=X2; DER.T3=T4*X3*EXP(T3*X3); DER.T4=EXP(T3*X3);
I.I'\EN'D SSE;
%55E(-.052) r.55E(-.051) 7.SSE(-.050) 7.SSE(-.OOl) r.SSE( .000) %S5E(.001)

Ou tF--U t.:
NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON

ITERATION T2 T3 14 RESIDUAL SS

6 1.02862742 -1.08499107 -0.49757910 0.03551086

5 1.02812865 -1.08627326 -0.49786686 0.03513419

5 1.02763014 -1.08754637 -0.49815400 0.03477221
... 1.00345514- -1.14032573 -0.51156098 0.03505883I

7 1.00296592 -1.14123442 -0 .51182277 0.03543298

7 1.00247682 -1.14213734 -0.51208415 0.03582188

L.
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Fisure 14b. LiKelihood Ratio Test Confidence Interval Construction Illustrated
with E}(auIPle 1.

H<QC MATRIX;
A= 1 -.052 .002704 i

1 -.051 .002601 /
1 -.050 .002500 ;

TEST= 4.275980 ; 3.954837 / 3.646219; B=INVCA)*TEST;
ROOT=(-BC 2,1)+SQRTCBC2,1)tBC2,1)-4tBC3,1)tCBC 1,1)-4.22 »)t/C2tBC3,1»;

ROOT;
ROOT=C-B(2,1)-SQRTCBC2,1)tBC2,1)-4tBC3,1)tCBC1,1)-4.22»)t/C2tBC3,1»;
PRINT ROOT;

1 -.001 •000001 /
1 .000 .000000 /
1 .001 .000001 ;

TEST= 3.890587 I 4.209581 / 4.541151 ; B =INVCA)*TEST;
;:;:OOT=( -B( 2,1 HSQRTC BC 2rl )nC 2rl )-4tBC 3,1 )t( BC 1r 1 )-4.22 )»t/C 2tBC 3d ) );
PRINT ROOr;

-BC 2,1 )-SQRT< Be 2rl )tBC 2r1 )-4tBC 3,1 )t( B( 1r1 )-4.22» )t/C 2tBC 3,1 ) H
PRItH ROOT;

Outpu t:

S TAT 1ST I CAL ANAL Y 5 ISS YS T E H

ROOT COLl

ROWl 0.000108776

ROOT COLl

ROW1 -0.0518285

ROOT COLl

ROW1 .0000320109

ROOT COLl

ROW1 -0.0517626

1
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Next let us set a confidence interval on the parametric function

As we have seen previously, the hypothesis

can be rewritten as

Again, as we have seen previously, to compute SSE 0 let
y

g o{p) =
y

and SSE 0 can be computed as the unconstrained minimum of SSE[q o{p»). Usingy y
the SAS code from Figure 9b and embedding it in a MACRO whose argument yO

replaces the value 1/5 in the previous code the following table can be

constructed from Figure 14c.
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Figure 14c. LiKelihood Ratio Test Confidence Interval Construction Illustrated
with EXilllf'le 1.

SAS Statements:

SSE<GAMMA};
PROC NUN DATA=EXAMPLE1 METHOD=GAUS5 ITER=60 CONVERGENCE=1.0E-B;
PAAMS Rl=-O.02588970 R2=1.01567967 R3=-1.11569714; RG=l/&GAMHA;
Tl=Rl; T2=R2; T3=R3; T4=1/(RG*R3*EXP<R3}};
MODEL Y=Tl*Xl+T2*X2tT4*EXP(T3*X3);
DER_Tl=X1; DER_T2=X2; DER_T3=T4*X3*EXP(T3iX3); DER_T4=EXP<T3*X3);
DER.R1=DER_T1; DER.R2=DER_T2;
DER.R3=DER_T3+DER_T4*<-T4**2}i<RG*EXP(R3}+RG*R3iEXP(R3»;

SSE:;
.166) ZSSE( .167) ZSSE( .168} ZSSE( .200} i.SSE( .201} i.5SE( .202)

Output:

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON

ITERATION R1 R2 R3 RESIDUAL 5S

8 -0.03002338 1.01672014 -0.91765508 0.03591352

8 -0.02978174 1.01642383 -0.93080113 0.03540285

8 -0.02954071 1.01614385 -0.94412575 0.03491101

31 -0.02301828 1.01965423 -1.16048699 0.03493222

+3 -0.02283734- 1.01994671 -1.16201915 0.03553200
i,," -0.02265799 1.02024775 -1.16319256 0.03617013iJ
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Fisure 140. LiKelihood Ratio Test Confidence Interval Construction Illustrated

with E}:aIfIP le 1.

PROC MATRIX;
A: 1 .166 .027556 /

1 .167 .027889 /
1 .168 .028224 ;

TES7= +.619281 / 4.183892 / 3.764558; B=INV(A)*TEST;
ROOT=(-B(2,1)+SGRT(B(2,1)IB(Z,1)-4tB(3,1)t(B(1,1)-4.Z2»)I/(2IB(3,1»;
PRINT Roon
ROOT:(-B(2,1)-SQRT(B(2,1)IB(2,1)-4tB(3,1)I(B(1,1)-4.22»)I/(2IB(3,1»;
PRINT ROOT;
A= 1 .200 .040000 /
1 .201 .040401 /
1 .202 .040804 ;

TEST= 3.782641 / 4.294004 / 4.838063 ; B =INV(A)*TEST;
ROOT=(-B(2,1)+SQRT<B(2,1)IB(2,1)-4tB(3,1)t(B(I,1)-4.22»)I/(2IB(3,1»;
PRINT Roon
EOOT=( -B( Z, 1 )-SQRT( B( 2J1 )tB( 2d )-4tB( 3,1 )t( B< 1d )-4.22) »1/( 2tB( 3,1 »;
PRINT ROOT;

S TAT I 5 TIC A l AN A l Y 5 ISS Y 5 T E H

ROOT COll

ROWl 0.220322

ROOT COll

ROWl 0.166916

ROOT COll

ROW1 0.200859

ROOT COLl

ROW1 0.168861

1
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SSE ° L(Yo)
Y

.166 0.03591352 4.619281

.167 0.03540285 4.183892

.168 0.03491101 3.764558

.200 0.03493222 3.782641

.201 0.03553200 4.294004

.202 0.03617013 4.838063

Quadratic interpolation from this table as shown in Figure 14d yields

[0.1669, 0.2009].

To construct a confidence interval for y(6) by inverting the Lagrange

multiplier tests, let

h(6) = y(6) _ yO

6 minimize SSE(6) subject to h(6) = 0

,
F = F(6) = (a/a6 )f(6)

... t -,..., - A

R1(yo) = [D (F F)D/q]/[SSE(6)/(n-p)]

-, -,- -
R2(Yo) = nD (F F)D/SSE(6).
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The first version of the Lagrange multiplier test accepts when

and the second when

-1where F • F (I-a; qt n-p)t d = nF /[(n-p)/q + F ]t and q is the dimensiona a a a
of yo. Confidence regions consist of those points yO for which the tests

accept. These confidence regions have the same structural characteristics as

likelihood ratio confidence regions except that disjoint islands are much more

likely with Lagrange multiplier regions (Problem 2).

In the univariate case t Lagrange multiplier tests are inverted the same

as the likelihood ratio test. One constructs a table with R1(Yo) and R2(YO)

evaluated at three points around each of the Wald test confidence limits and

then uses quadratic interpolation to find the limits. We illustrate with

Example 1.

EXAMPLE 1 (continued). Recalling that

let us set Lagrange multiplier confidence intervals on a1• We have

A

SSE(a) • 0.03049554 (from Figure 5a)

- -Taking a and SSE(S) from Figure 14a and embedding the SAS code from Figure 12a



Fisure • co_
.L.Jo. Lasranse Test Confidence

Illuslrated with Exafuple 1.
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%MACRO DFFDCTHETA1,THETA2,THETA3,THETA4,SSER};
DATA UORK01; SET EXAMPLE1;
T1 THETA1, T2=HHETA2 ; T3=&THETA3; T4=&THETA·4j
E=Y-( T1*Xl+T2*X2+T4*EXPCT3*X3});
Fl=Xl, F2=X2, F3=T4*X3*EXPCT3*X3); F4=EXP(T3*X3};
DROP T1 T2 T3 H;
eRoe REG DAiA=WORf.:01; MODEL E=F1 F2 F3 F4 / NOINH
i;liWD DFFrI;
%DFFDC-.052, 1.02862742, -1.08499107, -0.49757910, 0.03551086)
%DFFD(-.051, 1.02812865, -1.08627326, -0.49786686,0.03513419)
%DFFDC-.050, 1.02763014, -1.08754637, -0.49815400, 0.03477221)
%DFFD(-.001, 1.00345514, -1.14032573, -0.51156098, 0.03505883)
%DFFD( .000, 1.00296592, -1.14123442, -0.51182277, 0.03543298)
::-::DFFD( .001, 1.00247682, -1.14213734, -0.51208415, 0.03582188}

SUM OF MEAN
;'3GURCE !IF SQUARES SQUARE

i10DEL '" 0.005017024 0.001254256
ERROR ,." 0.030494 0.00117284i.Qe u TOTAL 30 0.035511

iionEl 4- 0.004640212 o•001160053
26 0.030494 0.001172845

II TOTAL 30 0.035134'...

:";OOEL , 0.004278098 0.001069524't"
,." 0.030494 0.001172851

" TOTAL 30 0.03·U72

liOnEL , 0.004-564169 0.001141042'l'

ERROR 26 0.030495 0.001172871
U TOTAL 30 0.035059

liOnEL. 4- 0.004938382 0.001234596
ERROR ,.,. 0.0304-95 0.001172869;.;0
I' !OTA:" 30 0.035433.J

i'iODEL. 4- 0.005327344 0.001331836
26 0.030495 0.001172867

;1 TOTAL 30 0.035822u

F VALUE

1.069

0.989

0.912

0.973

1.053

1.136

PROB>F

0.3916

0.4309

0.4717

0.4392

0.3996

0.3617
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in a MACRO as shown in Figure 15a we obtain the following table from the

entries in Figure 15a:

-.052

-.051

-.050

-.001

.000

.001

-, ... ,- ...
D (F F)D

0.005017024

0.004640212

0.004278098

0.004564169

0.004938382

0.005327344

4.277433

3.956169

3.647437

3.891336

4.210384

4.542001

4.238442

3.962134

3.690963

3.905580

4.181174

4.461528

Interpolating as shown in Figure 15b we obtain

R1: [-0.0518. 0.0000345]

R2: [-0.0518. 0.0000317]

In exactly the same way we construct the following table for

from the entries of Figures 14c and 15c.



Figure 15b. Lagranle Multiplier Test Confidence Interval Construction
Illustrated with Example 1.

PROC MATRIX;
A= 1 -.052 .002704 I

1 -.C51 .002601 I
1 -.050 .002500 ;

TEST= 4.238442 I
3.956169 3.962134 I
3.647437 3.690963; B=INVCA)*TEST;

F:OOT:;. =( -Be 2, 1 HSQRT< BC 2,1 )tBC 2,1 )-4tBC 3,1 )tc BC 1,1 )-4.22» )t/C 2tBC 3,1»;
ROOT2=(-B(2,1)-SQRTCBC2,1)tBC2,1)-4tBC3,1)tCBC1,1)-4.22»)t/C2tBC3,1»;
RCOT3=(-BC2,2)+SGRTCBC2,Z)tB(Z,2)-4tBC3,2)t<BC1,2)-4.19»)t/C2tBC3,2»;
ROoT4=(-BC2,2)-SQRTCB(2,2)tBC2,2}-4tBC3,2}tCBC1,2}-4.19)})t/C2tBC3,2»;
PRINT ROOTl ROOT2 ROOT3 ROOT4;
A= 1 -.COl .000001 /
1 .000 .000000 I
1 .,jOl .000001 ;

TEST= 3.891336 3.905580 /
4.210384 4.181174 i
4.452001 4.461528; B=INVCA)iTEST;

ROOT1=( - B( 2f1 HSQf;;TC BC 2,1 )tBC 2r1 )-4tBC 3r1 )tc B( 1f1 )-4.22 )})t/C 2tB<3, 1 ) );
)-SQRTCBC2,1)tB(2,1)-4tB(3,1)tCB(1,1)-4.22»)t/(2tBC3,1»;

RODT3=(-B(2,2)+SQRTCB(2,2)tBC2,2)-4tBC3,2)tCBC1,2)-4.19)})I/C2tB(3,2»;

PRINT ROOT1 ROOT2 ROOT3 ROOT4;

S TAT I 5 T rCA L ANALYSIS S Y S T E Ii

ROOTl COLl
ROWl .0000950422

ROOT2 COLl
ROWl -0.0518241

Roon COLl
ROWl 0.0564016

ROOT4 COll
ROWl -0.051826

ROOTl COll
ROWl .0000344662

ROOT2 COll
ROWl 0.00720637

ROOT3 COLl
ROWl .0000317425

ROOT4 COLl
ROWl -0.116828
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Fisure 15c. Lagranse Multi?lier Test Confidence Interval Construction

Illustrated with ExaID?le 1.

SAS Sta telilen t·;:

0.03591352 )
0.03540285 )
0.03491101 )
0.(3493222)
o.03553200 )
0.03617(13)

-0.91765508,
-0.93080113,
-0.94412575,
-1.16048699,
-1.16201915,
-1.16319256,

1.01672014,
1.01642383,
1.01614385,
1.01965423,
1.01994671,
1.02024775,

-0.03002338,
-0.02978174,
-0.0295407b
-0.02301828,
-0.02283734,
-0.02265799,

.200,

.201,
+202,

:;:DFFD(

XDFFD(

hMACRO
DATA WORK01; SET EXAMPLE1;
Tt=&r.:H011 T2=&RH02; T3=&RH03; H=1/( &RH03*EXP( &RH03 )/&GAHHA);
E=Y-(Tl*X1tT2*X2+T4*EXP(T3*X3»;
Fl=Xl; F2=X2; F3=T4*X3*EXP(T3*X3); F4=EXP(T3*X3);
IIROP T1 12 13 H;
PROC REG DATA=WORK01; MODEL E=Fl F2 F3 F4 / NOINT;
';MWn IIFFIl;

.166,
XliFFD( .167,

.168,

SUM OF MEAN
SGUF:CE DF SQUARES SQUARE

liODEl. 4 0.005507692 0.001376923
ERROR 26 0.030406 0.001169455
U TOTAL 30 0.035914

MOIlEl.. 4 0.004986108 0.001246527
ERROR 26 0.030417 0.001169375
U TOTAL 30 0.035403

;'jGIiEl.. 4 0.00448346'1' o•001120867
E.RROR 26 0.030428 0.00117029
U TOTAL 30 ij .034-911

hODEL. 4- 0.004439308 o•001109827
26 0.030493 0.001172804

U TOTAL 30 0.034932

i'iOIiEL 4- 0.00503'1249 0.001259812
26 0.030493 o.001172798

:1 iOTAL 30 0.035532\01

4- 0.005677511 0.001419378
26 0.030493 0.001172793

U TOTAL 30 0.036170

F VALUE

1.177

1.066

0.958

0.946

1.074

1.210

PROB)F

0.34-38

0.3935

0.4471

0.4531

0.3894

0.3303
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.166

.167

.168

.200

.201

.202

D' (F'F)D

0.005507692

0.004986108

0.004483469

0.004439308

0.005039249

0.005677511

4.695768

4.251074

3.822533

3.784882

4.296382

4.840553

4.600795

4.225175

3.852770

3.812504

4.254685

4.709005

Quadratic interpolation from this table as shown in Figure 15d yields

R1: [0.1671,0.2009]

R2: [0.1671, 0.2009]

There is some risk in using quadratic interpolation around Wald test

confidence limits to find likelihood ratio or Lagrange multiplier confidence

intervals. If the confidence region is a union of disjoint intervals then the

method will compute the wrong answer. To be completely safe one would have to

plot L(Yo), R1(Y
O), or R2(Y

O) and inspect for local minima.

The usual criterion for judging the quality of a confidence procedure is

expected length, area, or volume depending on the dimension q of y(e). Let us

use volume as the generic term. If two confidence procedures have the same

probability of covering y(eo) then the one with the smallest expected volume

is preferred. But expected volume is really just an attribute of the power

curve of the test to which the confidence procedure corresponds. To see this,

let a test be described by its critical function



ISd. LaSrange Multiplier Test Confidence Interval Construction
Illustrated with 1.

1 I
·1 .167 .027889 I
; .1 ,S8 .028224 ;

TEST= 4 "S95768 4.600795 I
4.251074 4.225175 ;
3.822533 3.852770; B=INV(A)*TEST;

G:COT 1=( - B( 2r1 HSQRT< B( 271 ltB( 271 )-UB( 3,1 )t( B( 1f1 )-4.22» )./( 2tB( 3,1 »;
2=( - B( 2d )-SQRT< B( 2d ltB( 2,1 )-4tB( 371 )t( B( 1f1 )-4.22» )'1/( 2tB( 3,1 »;

1:-':00T3=( -B( 2,2 HSORT< B( 2,2 ltB( 2,2 )-4tB( 3,2 )t( B( 1,2 )-4.19» )./( 2tB( 3,2»;

PRINT ROOil ROOT2 ROOT3 ROOT4;
A= 1 .200 .040000 /
1 .201 .040401 J
1 .202 .040804 ;

TEST= 3.784882 3.812504 j
4.296382 4.254685 /
4.840553 4.709005; B=INV(Al*TEST;

RDOT1=(-BC2,11+S0RT(B(2,1)tB(2,1)-4.B(3,1)t(B(1,1)-4.22»)t/(2tB(3,1»;
-B( 2, 1 I-SORT< B( 2,1 )tB( 2,1 )-4tB( 3,1 )'1< B( 1,1 )-4.22» )'1/( 2tB( 3, 1) H

ROOT3=(-B(2,2)+SQRT(B(2,2)tB(2,2)-4tB<3,2)t<B(1,2)-4.19»)t/(2tB(3,2»;
ROOT4=(-B(2,2)-SORT<B<2,2)tB(2,2)-4tB(3,2)t(B(1,2)-4.19»)t/(2tB(3,2»;
PRINT ROCTl ROQT2 RGOT3 ROOT4;

1-6-20

Cu!"},:;ut:

S T AT I S TIC AL ANAL '( 5 I 5 5 '( S T E Ii 1

ROOTl Call
ROWl 0.220989

ROOT2 Call
ROW1 0.167071

ROOT3 Call
ROWl 0.399573

ROOT4 Call
ROWl 0.167094

ROOTl COLl
ROW1 0.200855

ROOT2 Call
ROW1 0.168833

ROOT3 COLl
ROWl 0.200855

ROOT4 COLl
ROWl 0.127292
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oreject H: y(6) • y

oaccept H: y(6) = y

The corresponding confidence procedure is

R • {y : ) = OJ.y 0 0

Expected volume is computed as

As Pratt (1961) shows by interchanging the order of integration

f I 0 2= = 0 6, a ]dy
R

The integrand is the probability of covering y,

and is analogous to the operating characteristic curve of a test. The

essential difference between the coverage function and the operating

characteristic function lies in the treatment of the hypothesized value y and

the true value of the parameter eO. For the coverage function, 60 is held



1-6-22

fixed and Y varies; the converse is true for the operating characteristic

function. If a test has better power against H: • yO than the

test for all yO then we have that

010 2< ) = 0 a, a ]

which implies

Expected volume < Expected volume

In this case a confidence procedure based on is to be preferred to a

confidence interval based on

If one accepts the approximations of the previous section as giving

useful guidance in applications then the confidence procedure obtained by

inverting the likelihood ratio test is to be preferred to either of the

Lagrange multiplier procedures. However, both the likelihood ratio and

Lagrange procedures can have infinite expected volume; Example 2 is an

instance (Problem 3). oBut for y * y(6 ) the coverage function gives the

probability that the confidence procedure covers false values of y. Thus,

even in the case of infinite expected volume, the inequality <

implies that the procedure obtained by inverting is preferred to that

obtained by Thus the likelihood ratio procedure remains

preferable to the Lagrange multiplier procedures even in the case .of infinite

expected volume.
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Again t if one accepts the approximations of the previous section t the .

confidence procedure obtained by inverting the Wald test has better structural

characteristics than either the likelihood ratio procedure or the Lagrange

multiplier procedures. Wald test confidence regions are always intervals t

ellipses t or ellipsoids according to the dimension of y(6) and they are much

easier to compute' than likelihood ratio or Lagrange multiplier regions.

Expected volume is always finite (Problem 4). It is a pity that the accuracy

of the approximation to the probability p(W > Fa) by p(Y > Fa) of the previous
section is often inaccurate. This makes use of Wald confidence regions risky

as one cannot be sure that the actual coverage probability is accurately

approximated by the nominal probability of I-a short of Monte Carlo simulation

at each instance. In the next chapter we shall consider methods that are

intended to remedy this defect.
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PROBLEMS

1. In the notation of the last few paragraphs of this section show that

p{<jl[y, y(ao )] .01 aO , a} • fR dN[y; f(ao ), ill.
y

2. (Disconnected confidence regions.) Fill in the missing details in

the following argument. Consider setting a confidence region on the entire

parameter vector a. Islands in likelihood ratio confidence regions may occur

* *because SSE(a) has a local minimum at a causing L(a ) to fall below Fa. But

* * * *if a is a local minimum then R1(a ) • R2(a ) = 0 and a neighborhood of a
must be included in a Lagrange multiplier confidence region.

3. Referring to Model B of Example 2 and the hypothesis IT: aO • yO show

that the fact that 0 < f(x,y) < 1 implies that p(X > ca ) < 1 for all y in
A = {y: 0 < Y2 < Yl} where X and ca are as defined in the previous

section. Show also that there is an open set E such that for all e in E we

have

owhere o(y) • f(a ) - fey). Show that this implies that peL > Fa) < 1 for all
y in A. Show that these facts imply that the expected volume of the

likelihood ratio confidence region is infinite both when the approximating

random variable X is used in the computation and when L itself is used.



4.
, 0

Show that if y F [q, n-p, A(Y )] where

1-6-25
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