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CHAPTER 1. Univariate Nonlinear Regression

The nonlinear regression model with a univariate dependent variable is
more frequently used in applications than any of the other methods discussed
in this book. Moreover, these other methods are for the most part fairly
straightforward extensions of the ideas of univariate nonlinear regression.
Accordingly, we shall take up this topic first and consider it in some detail.

In this chapter, we shall present the theory and methods of univariate
nonlinear regression by relying on analogy with the theory and methods of
linear regression, on examples, and on Monte-Carlo illustrations. The formal
mathematical verifications are presented in subsequent chapters. The topic
lends itself to this treatment as the role of the theory is to justify some
intuitively obvious linear approximations derived from Taylor's expansions.
Thus one can get the main ideas across first and save the theoretical details
until later. This is not to say that the theory is unimportant. Intuition is
not entirely reliable and some surprises are uncovered by careful attention to
regularity conditions and mathematical detail.

As a practical matter, the computations for nonlinear regression methods
must be performed using either a scientific subroutine library such as IMSL or
NAg Libraries or a statistical package with nonlinear capabilities such as
SAS, BMDP, TROLL, or TSP. Hand calculator computations are out of the
question. One who writes his own code with repetitive use in mind will
probably produce something similar to the routines found in a scientific
subroutine library. Thus, a scientific subroutine library or a statistical
package are effectively the two practical alternatives. Granted that
scientific subroutine packages are far more flexible than statistical packages

and are usually nearer to the state of the art of numerical analysis than the
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statistical packages, they nonetheless make poor pedigological devices. The
illustrations would consist of lengthy FORTRAN codes with the main line of
thought obscured by bookkeeping details. For this reason we have chosen to

illustrate the computations with a statistical package, namely SAS.
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1. INTRODUCTION

One of the most common situations in statistical analysis is that of data
which consist of observed, univariate responses Ve known to be dependent on
corresponding k-dimensional inputs x.. This situation may be represented by

the regression equations
o
Ve = f(xt,e ) + e, t =1,2,...,n

where f(x,0) is the known response function, 62 is a p-dimensional vector of
unknown parametgrs, and the e, represent unobservable observational or
experimental errors. We write 6° to emphasize that it is the true, but
unknown, value of the parameter vector O that is meant; O itself is used to
denote instances when the parameter vector is treated as a variable as, for
instance, in differentiation., The errors are assumed to be independently and
identically distributed with mean zero and unknown variance o2, The sequence
of independent variables {xt} is treated as a fixed known sequence of
constants, not random variables. If some components of the independent
vectors were generated by a random process, then the analysis is conditional
on that realization {xt} which obtained for the data at hand. See Section 2
of the next chapter for additional details on this point and Section 7 of the
next chapter in which is displayed a device that allows one to consider the
random regressor set—up as a special case in a fixed regressor theory.
Frequently, the effect of the independent variable Xp on the dependent

variable Yy is adequately approximated by a response function which is linear

in the parameters
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)
£f(x,9) = x 0 = E x,0
1=1 i1
By exploiting various transformations of the independent and dependent

variables, viz.
4 (v,) =i§1cx>i<xit)e1 +e,

the scope of models that are linear in the parameters can be extended
considerably. But there is a limit to what can be adequately approximated by
a linear model. At times a plot of the data or other data analytic
considerations will indicate that a model which is not linear in its
parameters will better represent the data. More frequently, nonlinear models
arise in instances where a specific scientific discipline specifies the form
that the data ought to follow and this form is nonlinear. For example, a
response function which arises from the solution of a differential equation

might assume the form

x63
£(x,0) = 61 + eze .

Another example is a set of responses that is known to be periodic in time but

with an unknown period. A response function for such data is

f(t,0) =6, + 8 cos(64t) + 6

1 2 sin(64t).

3

A univariate linear regression model, for our purposes, is a model that

can be put in the form
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¢0(yt) = i§1¢1(xc)°1 +e..

A univariate nonlinear regression model is of the form

¢O(yt) = f(xt,e) + e,
but since the transformation ¢0 can be absorbed into the definition of the

dependent variable, the model

Ve = f(xt,S) + e
is sufficiently general. Under these definitions a linear model is a special
case of the nonlinear model in the same sense that a central chi-square
distribution is a special case of the non-central chi-square distribution.
This is somewhat of an abuse of language as one ought to say regression model
and linear regression model rather than nonlinear regression model and
(l1inear) regression model to refer to these two categories. But this usage is

long established and it is senseless to seek change now.

EXAMPLE 1. The example that we shall use most frequently in illustration

has the response function

0,.x
x, +0,x,+ 6,e 3 3.

£(x,0) = 8;x, + 0,x,+ 8,

The vector valued input or independent variable is
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and the vector valued parameter is

so that for this response function k = 3 and p = 4. A set of observed

responses and inputs for this model which will be used to illustrate the

computations is given in Table 1. The inputs correspond to a one-way

“"treatment—control” design that uses experimental material whose age (=x3)

affects the response exponentially. That is, the first observation

represents

(randomly)

Similarly,

represents

X, = (0,1,6.28)
experimental material with attained age Xq = 6.28 months that was

allocated to the control group and has expected response.

[o]
£(x.,0°) = 0° + 6° e6'2893
1° 2 T8,

the second observation

X, = (1,1,9.86)

an allocation of material with attained age xq = 9.86 to the

treatment group; with expected response

o o o o 9.8693
f(x2,6 ) = 61 + 62 + 64 e 3




Table 1.

Data Values for Example 1.
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t Y X1 X2 X3
1 0.98610 1 1 6.28
2 1.03848 0 1 9.86
3 0.95482 1 1 9.11
4 1.04184 0 1 8.43
5 1.02324 1 1 8.11
6 0.90475 0 1 1.82
7 0.96263 1 1 6.58
8 1.05026 0 1 5.02
9 0.98861 1 1 6.52
10 1.03437 0 1 3,75
11 0.98982 1 1 9.86
12 1.01214 0 1 7.31
13 0.66768 1 1 0.47
14 0.55107 0 1 0.07
15 0.96822 1 1 4,07
16 0.98823 0 1 4.61
17 0.59759 1 1 0.17
18 0.99418 0 1 6.99
19 1.01962 1 1 4.39
20 0.69163 0 1 0.39
21 1.04255 1 1 4,73
22 1.04343 0 1 9.42
23 0.97526 1 1 8.90
24 1.04969 0 1 3.02
25 0.80219 1 1 0.77
26 1.01046 0 1 3.31
27 0.95196 1 1 4.51
28 0.97658 0 1 2.65
29 0.50811 1 1 0.08
30 0.91840 0 1 6.11
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o

and so on. The parameter 61

is, then, the treatment effect. The data of

Table 1 are simulated. |

EXAMPLE 2. Quite often, nonlinear models arise as solutions of a system
of differential equations. The following linear system has been used so often
in the nonlinear regression literature (Box and Lucus (1959), Guttman and
Meeter (1964), Gallant (1980)) that it might be called the standard
pedagogical example.

Linear System

(d/dx)A(x) = -elA(x)

(d/dx)B(x) = GlA(x) - 62B(x)

(d/dx)C(x) = BZB(x)

Boundary Conditions

A(x) =1, B(x) = C(x) = 0 at time x = 0

Parameter Space

Solution, 91 > 62

-elx
A(x) = e
-0.x -0.x
-1 2 1
B(x) (91 - 62) (ele - Gle )
-0, x -0.x
-1 2 1
C(x) 1 - (B1 - 62) (Gle - Sze )
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Solution, 6. = 8

1 2
—elx
A(x) = e
-elx
B(x) = elxe
—Glx -0.x
C(x) =1~-e - 0. xe

Systems such as this arise in compartﬁent analysis where the rate of flow
of a sﬁbstance from compartment A into compartment B is a constant proportion
8, of the amount A(x) present in compartment A at time x. Similarly, the rate
of flow from B to C is a constant proportion 62 of the amount B(x) present in
compartment B at time x. The rate of change of the quantities within each
compartment is described by the system of linear differential equations. 1In
chemical kinetics, this model describes a reacticn where substance A
decomposes at a reaction rate of 61 to form substance B which in turn
decomposes at a rate 92 to form substance C. There are a great number of
other instances where linear systems of differential equations such as this
arise.

Following Guttman and Meeter (1964) we shall use the solutions for B(x)
and C(x) to construct two nonlinear models which they assert “"represent fairly
well the extremes of near linearity and extreme nonlinearity."” These two
models are set forth immediately below. The design points and parameter

settings are those of Guttman and Meeter (1964).
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Model B

8° = (1.4, .4)

{x.} = {.25, .5, 1, 1.5, 2, 4, .25, .5, 1, L.5, 2, 4}

n =12
o? = (.025)°
Model C
—xez -xel
1 - (ele - Gze )/(61 - 92) 61 # 92
£(x,0) = -x0 -x0
1 1
1 e xBle 91 62

0% = (1.4, .4)
x. } = {1, 2, 3, 4,5 6, 1, 2, 3, 4 5, 6}
n =12

o> = (.025)2




Table 2.

Data Values for Example 2.
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t Y X
Model B
1 0.316122 0.25
2 0.421297 0.50
3 0.601996 1.00
4 0.573076 1.50
5 0.545661 2.00
6 0.281509 4.00
7 . 0.273234 0.25
8 0.415292 0.50
9 0.603644 1.00
10 0.621614 1.50
11 0.515790 2.00
12 0.278507 4.00
Model C
1 0.137790 1
2 0.409262 2
3 0.639014 3
4 0.736366 4
5 0.786320 5
6 0.893237 6
7 0.163208 1
8 0.372145 2
9 0.599155 3
10 0.749201 4
11 0.835155 5
12 0.905845 6
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2. TAYLOR'S THEOREM AND MATTERS OF NOTATION

In what follows, a matrix notation for certain concepts in differential

calculus leads to a more compact and readable exposition. Suppose that s(0)

is a real valued function of a p—dimensional argument 8. The notation

(9/36)s(6) denotes the gradient of s(6),

(3/861)3(0)
(3/862)s(6)

(3/30)s(8) =

\(3/86;)3(6)

a p by 1 (column) vector with typical element (3/361)5(6). Its transpose is

denoted by

(3/36')3(9) = [(a/ael)s(e), (8/362)5(6), seey (3/86p)s(6)] .
1 P

Suppose that all second order derivatives of s(8) exist. They can be arranged

in a p by p matrix, known as the Hessian matrix of the function s(8),

(az/aef)s(e) (az/aelaez)s(e) e (az/aelaep)s(e)
(az/aezael)s(e) (az/aeg)s(e) e (az/aezaep)s(e)
2 1
(3272030  )s(0) = .

2 2 2,.2
8 L X IR 2
. (3773830 )s(8) (37730 30,)s(9) (3%/3% )s(®) i
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If the second order derivatives of s(0) are continuous functions in 6 then the .

Hessian matrix is symmetric (Young's theorem).
Let £(8) be an n by 1 (column) vector-valued function of a p-dimensional

argument 6. The Jacobian of

£(8) = .

is the n by p matrix

(a/ael)fl(a) (3/362)f1(6) ‘e (8/36p)f1(0)
(3/361)f2(6) (3/362)f2(0) cee (a/aep)fz(e)

(3/30 )£(9) = .

(a/ael)fn(e) (3/362)fn(6) cee (3/69p)fn(6)

Let h'(e) be an n by 1 (row) vector-valued function

h'(8) = [h,(8), by (8), ..., b (®)].



Then

(3/391)h1(9)

(3/38,)h, (9)
(3/30)h (8) =

(3/39p)h1(9)

P

1-2-3

(3/861)h2(6) ces (a/ael)hn(e)

(3/38,)h,(8) (3/38,)n _(8)
(3/39p)h2(9) (a/aep)hn(e)

In this notation, the following rule governs matrix transposition:

[(3/38 )£(8)

1’ = (3/30)¢ ()

And the Hessian matrix of s(0) can be obtained by successive differentiation

variously as:

(3273638 )s(8)

(3/38)[(3/38 )s(0) ]

(3/38)[(3/38)s(8)]

(3/38 ' )[(3/308)s(8)] (1f symmetric)

(3/30 )[(3/30 )s(8)]  (if symmetric)

One has a chain rule and a composite function rule. They read as follows. If

£(0) and h'(e) are as above

then (Problem 1)

(3/36 Yh (8)£(8) = h (8)[(3/38 )E(8)] + £ (8)[(3/30 Ih(6)]

1 n P 1 n P



Let g(p) be a p by 1 (column) vector-valued function of a r-dimensional

argument p and let £(6) as above: Then (Problem 2)

(3/20 )£ [g(p)] = (3/301)E(O) g,y (3130 )g(o)

n p r
The set of nonlinear regression equations
Y, = f(xt,Go) + e, t=1,2,.4.,0
may be written in a convenient vector form

y = f(e°) + e

LY

by adopting conventions analogous to those employed in linear regression;

namely

1-2-4
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£(8) = . ?

The sum of squared deviations

g 2
SSE(8) = ) ly, - £(x,,9)]

t=1

of the observed Yy from the predicted value f(xt,e) corresponding to a trial

value of the parameter 6 becomes

SSE(8) = [y - £(8)] [y - £(8)] = Iy - £(8)12

in this vector notation.

The estimators employed in nonlinear regression can be characterized as
linear and quadratic forms in the vector e which are similar in appearance to
those that appear in linear regression to within an error of approximation

that becomes negligible in large samples. Let

F(8) = (3/36 )E(8);



that is, F(0) is the matrix with typical element (a/aej)f(xt,e) where t is the
row index and j is the column index. The matrix F(6°) plays the same role in
these linear and quadratic forms as the design matrix X in the linear

regression.
z = XB + e.

The appropriate analogy is obtained by setting z = y - f(e°) + F(e°)e° and
setting X = F(8°), Malinvaud (1970, Ch. 9) terms this equation the "linear
pseudo-model.” For simplicity we shall write F for the matrix F(0) when it is
evaluated at 6=6°;

F = 7(8%).

Let us illustrate these notations with Example 1.

EXAMPLE 1 (continued). Direct application of the definitions of y and

£(9) yields

0.98610
1.03848
0.95482
y = | 1.04184 ,

\0.50811/

0.91840
30 1




91 + 62 + 0.,e
9.8663
02 + 64e
9.1103
61 + 62 + 64e
8.4393
f(9) = 62 + 64e
0.0863
61 + 62 + 94e
6.1163
92 + 64e
30
Since
(a/ael)f(x,e) = (3/861)(01x1 + 92x2 + 94e
(a/aez)f(x,e) = (3/362)(911:1 + ezxz + 94e
(a/aes)f(x,e) = (3/363)(61x1 + 92x2 + 64e
(a/aea)f(x,e) = (8/364)(91x1 + 62x2 + e4e

The Jacobian of f(8) is

1-2-7



1=£4—0

6.2883 6.2863

1 1 64(6.28)e e
9.8663 9.8693

0 1 94(9.86)e e
9.1193 9.1193

1 1 04(9.11)e e
8.4393 8.4363

F(8) = 0 1 64(8.43)e e
-0.0893 0.0863

1 1 94(0.08)e e
6.1193 6.1163

0] 1 64(6.11)e e

30 4

Taylor's theorem, as we shall use it, reads as follows:

Taylor's Theorem: Let s(6) be a real valued function defined over ©O.

Let O be an open, convex subset of RP; RP denotes p-dimensional Euclidean
space. Let 6° be some point in ©.

If s(0) is once continuously differentiable on © then

s(8) = (%) + § [(3/38)s(B)1(8, - 89)
i=]
or, in vector notation,

s(8) = s(8°%) + [(3/38)s(8)] (8 - 8°)

for some 8 = A6° + (1-A)0 where 0 < A < 1,
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If s(9) is twice continuously differentiable on © then

s(8) = s(&) + E[(a/aei>s<e°)1(e1 -6+ -;-i

)s(8)1(8, - e§’>
i=]

3

R
L - 8127/,

1

I t~10

1 j

or, in vector notation,

s(8) = s(6%) + [(3/26)s(6%)] (8 - 8% +5 (8- 6%) [(3/3038 )s(8)1( 8- 6°)
for some 6 = A6° 4 (1-A)8 where 0 < A < 1., |

Applying Taylor's theorem to f(x,,9) we have

£0x,6) = £(x, ) + [(3/30)E(x, )] (8 - &)+ (8 - 6°)' [(3%/2638 ), BHI(O - 6°)

implicitly assuming that £(x,8) is twice continuously differentiable on some
open, convex set O. Note that 8 is a function of both x and 8, 8 = 8(x,0).

Applying this formula row by row to the vector £(8) we have the approximation
1
£(8) = £(8%) + [(3/36 )£(8°)1(6 - 8°) + R(8 ~ 8°)

where a typical row of R is

1 1 1 -

r. =4 (8 - 8% [(3%/2038 )E(x, ,8)] ;

t 2 t 5 5( 8

= xt’ )

alternatively

£(8) = £(8°) + F(8°)(0 - 6°) + rR(8 - 6°).
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Using the previous formulas,
(3/38' )SSE(8) = (2/38 )y - £(8)] ly - £(8)]
= [y - £(8)] (3/98 )y - £(8)] + [y - £(8)] (/30 )y - £(8)]
- 2[y - f(e)l'[-ca/ae')f<e);
- -2[y - £(8)] F(0)

The least squares estimator is that value 6 that minimizes SSE(O) over the

parameter space O, If SSE(9) is once continuously differentiable on some open

set & with 6 ¢ & O, then 6 satisfies the "normal equations”
1 A ~
F (8)[y - £(6)] = 0.
This is because (9/99)SSE(®) = 0 at any local optimum. In linear regression,
z = XB + e,
least square residuals e computed as
Y A el 1] _1 1
e =y - XB, B=(XX) Xy

are orthogonal to the columns of X, viz.,
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)

Xe=0.

In nonlinear regression, least squares residuals are orthogonal to the columns

of the Jacobian of £(9) evaluated at 6 = 8, viz.,

F'(8)[y - £(8)] = 0.
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PROBLEMS

1. (Chain rule). Show that

(3730 )h (8)£(8) = h (8)(3/38 YE(O) + £ (8)(3/38 Yh(8)

n

by computing (3/391) ) hk(e)fk(e) by the chain rule for i=1,2,...,p to obtain
k=1

vt n ' n '
(3/38 )h (©0)£(8) = 2 hk(e)(a/ae )fk(e) + X fk(e)(3/39 )hk(e)
k=1 k=1 :

\J )
Note that (3/36 )fk(e) is the k-th row of (3/38 )f(8).

2. (Composite function rule). Show that
(3/30 JE[g(p)] = {(3/36 )YElg(p) 1}(3/3p)g(p)

by computing the (i,j) element of (3/39')f[g(p)], (3/39j)fi[g(p)] and then

applying the definition of matrix multiplication.
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3. STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS

The least squares estimator of the unknown parameter 8% in the nonlinear

model
y = £(6°) + e
is the p by 1 vector 8 that minimizes
' 2
SSE(8) = [y - £(8)] [y - £(0)] = ay - £(8)1°.

The estimate of the variance of the errors e, corresponding to the least

squares estimator 6 is

2 = SSE(a)/(n - p)

In Chapter 4 we shall show that

0 =0+ (FF)IFe+ 0, (1/V)

s2 =e (1 -FE F)IF Je/(n-p) + o (1/n)

]
where, recall, F = F(8°%) = (3/38 )£(8°) = matrix with typical element
L
(9/38 )f(xt,eo). The notation op(an) denotes a (possibly) matrix-valued

random variable Xn = op(an) with the property that each element Xijn satisfies

lim P[|Xijn/an| >e]l =0

n*®
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for any € > 0; {an} is some sequence of real numbers, the most frequent

1]

choices being a 1, a =1//n, and a_ = 1/n.
n n n
These equations suggest that a good approximation to the joint
distribution of (9,82) can be obtained by simply ignoring the

terms op(l//ﬁ) and op(l/n). Then by noting the similarity of the equations
- [ T |
8 =0+ ((F P Fe

s2=e'[I-FEF P e/ - p)

with the equations that arise in linear models theory and assuming normal
errors we have approximately that 6 has the p-dimensional multivariate normal

v -
distribution with mean 6° and variance-covariance matrix GZ(F F) 1;

Y ) -

0 ~ N [18°,0°(F )7 I;
(n—p)32/02 has the chi-squared distribution with (n-p) degrees of freedom,

(n-p)s?/a® ~ ¥2(n-p);

2 and 9 are independent so that the joint distribution of (e,sz) is the

and s
product of the marginal distributions. In applications, (F"F)'1 mst be

approximated by the matrix

¢ = [F (8)F(8)] .

1
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The alternative to this method of obtaining an approximation to the
distribution of O--characterization coupled with a normality assumption--is to

~

use conventional asymptotic arguments. One finds that 6 converges almost

2

[} -~ ~
surely to 6°, s converges almost surely to 02, (1/n)F (8)F(9) converges

almost surely to a matrix @, and that v/n(8 - 60) is asymptotically normally

distributed as the p-variate normal with mean zero and variance-covariance

matrix ozn-l,

L

/(e - 8°) —» Np(O,cz

2.
The normality assumption is not needed. Let
2= (1/n)F (9)F(6).
Following the charactérization/normality approach it is natural to write
o ~x_(s°,5%0) = 16%,s%a/mat )
Following the asymptotic normality approach it is natural to writé
/a(e - %) 2 Np(o,szé'l) ( = Np(o,szné) );
natural perhaps even to drop the degrees of freedom correction and use

- ~

o = (1/n)SSE(8
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2 2

to estimate 0° instead of s“., The practical difficulty with this is that one
can never be sure of the scaling factors in computer output. Natural

combinations to report are:

D> we

and s0 on. The documentation usually leaves some doubt in the reader's mind
as to what 1s actually printed. Probably, the best strategy is to run the

program using Example 1 and resolve the issue by comparison with the results

reported in the next section.

As in linear regression, the practical importance of these distributional
properties is their use to set confidence intervals on the unknown parameters
ei (i=1,2,...,p) and to test hypotheses. For example, a 95% confidence
interval may be found for 0: from the .025 critical value t ,5 of the t-
distribution with n-p degrees of freedom as
~ é—-r—-

8 T g5 Y8 C4ye

*
Similarly, the hypothesis H: 9: = 91 may be tested against the alternative

*
A: 9; # 91 at the 5% level of significance by comparing

- " %
Itil = lei = eil
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with |t ;55| and rejecting H when |ti| > |t cyq denotes the i-th

A

.02503

diagonal element of the matrix C. The next few paragraphs are an attempt to
convey an intuitive feel for the nature of the regularity conditions used to
obtain these results; the reader is reminded once again that they are
presented with complete rigor in Chapter 4.

The sequence of input vectors {xt} must behave properly as n tends to
infinity. Proper behavior is obtained when the components Xyt of x. are
chosen either by random sampling from some distribution or (possibly
disproportionate) replication of a fixed set of points. In the latter case,
some set of points ag, 8)sees,ap_) is chosen and the inputs assigned according
to x4, = a(t mod T)* Disproportionality is accomplished by allowing some of
the ay to be equal. More general schemes than these are permitted——see
Section 2 of Chapter 3 for full details——but this is enough to gain a feel for
the sort of stability that {xt} ought to exhibit, Consider, for instance, the

data generating scheme of Example 1.

EXAMPLE 1 (continued). The first two coordinates xy,, X, of

X, = (xlt’ Xop» x3t)' consist of replication of a fixed set of design points

determined by the design structure:

(xl’xz)l = (1,1),
(xl,xz)2 = (0,1),

(xl,xz)t = (1,1), if t is odd

(xl,xz)t = (0,1), if t is even
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That is,

(%15%))¢ = 2(¢ pod 2)

with

ay = o,1),

a = (1,1)
The covariate x4, is the age of the experimental material and is conceptually
a random sample from the age distribution of the population due to the random
allocation of experimental units to treatments. In the simulated data of
Table 1, Xg, Was generated by random selection from the uniform distribution
on the interval [0,10]. 1In a practical application one would probably not
know the age distribution of the experimental material but would be prepared
to assume that X3 was distributed according to a continuous distribution
function that has a density p3(x) which is positive everywhere on some known
interval [0,b], there being some doubt as to how much probability mass was to

the right of b. I

The response function £(x,6) must be continuous in the argument (x,9);

* %
that is, 1if lim (xi,ei) = (x ,0 ) (in Euclidean norm on Rk+p) then
i+»

* &
1im f(xi,ei) = f(x ,0 ). The first partial derivatives (a/aei)f(x,e) must be
{ o

continuous in (x,0) and the second partial derivatives (32/39139 )(x,0) mst

k)
be continuous in (x,0). These smoothness requirements are due to the heavy
use of Taylor's theorem in Chapter 3. Some relaxation of the second

derivative requirement is possible (Gallant, 1973). Quite probably, further

relaxation is possible (Huber, 1982),
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‘ There remain two further restrictions on the limiting behavior of the
response function and its derivatives which roughly correspond to estimability

considerations in linear models. The first is that

. _
s(8) = lim (1/n) [ [£(x,,0) - f(xt.9°)12
n+ t=1

has a unique minimum at 6 = 6° and the second is that the matrix

R = 1im (1/n)F (8°)F(6°)
n>e
be non-singular. We term these the Identification Condition and the Rank
Qualification respectively. When random sampling is involved, Kolmogorov's
Strong Law of Large Numbers is used to obtain the limit as we illustrate with
. Example 1, below. These two conditions are tedious to verify in applications
and few would bother to do so. However, these conditions indirectly impose
restrictions on the inputs x and parameter 9° that are often easy to spot by
inspection. Although 8% is unknown in an estimation situation, when testing
hypotheses one should check whether the null hypothesis violates these
assumptions. If this happens, methods to circumvent the difficulty are given
in the next chapter. For Example 1, either H: Sg = () or H: SZ = 0 will
violate the Rank Qualification and the Identification Condition as we next

show.

EXAMPLE 1 (continued). We shall first consider how the problems with
H: 92 = 0 and H: Bg = 0 can be detected by inspection, next consider how
limits are to be computed, and last how one verifies that

n
s(8) = lim (1/n) [f(xt,e) - f(xt,eo)]2 has a unique minimum at 6 = 0°,

® nre el
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Consider the case H: 8% = 0 leaving the case H: 32 = 0 to Problem 1. If

3
eg = 0 then
F(8) = | 0 1 8,%3, 1
1 1 64X3n_1 1
0 1 64X3n 1

F(6) has two columns of ones and is, thus, singular. Now this fact can be
noted at sight in applications; there is no need for any analysis. It is this
kind of easily checked violation of the regularity conditons that one should
guard against. Let us verify that the singularity carries over to the

limit. Let

) n t
Q (8) = (1/n)F (8)F(8) = (1/n) ) [(3/36)£(x ,0)1{(3/30)£(x,8)]
t=1

The regularity conditions of Chapter 4 guarantee that lim Qn(e) exists and we
nre

shall show it directly below. Put A = (0,1,0,-1). Then

' n '
AR (8)] A = (1/n) ) [A (3/30)f(x,,0) 12 = 0.

6380 t=1 9330

\J
Since zero for every n, A [lim nn(e) JA = 0 by continuity of A AA in A,
n+o 6.=0

3
Recall that {x3t} 18 independently and 1dentically distributed according
to the density ps(x3). Being an age distribution, there is some (possibly

unknown) maximum attained age ¢ that is biologically possible. Then for any
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continuous function g(x) we must have fglg(x)lpB(x)dx < ® go that by

Kolmogorov's Strong Law of Large Numbers (Tucker, 1967)

n
lim (1/n) § g(x,,) = [Sg(x)p,(x)dx
o L B3 T o8Py

Applying these facts to the treatment group we have

n
lim (2/n) ] [£(x,,8) - £(x,,6%1°
n*° t odd

¢ 0,712
= Jolex,8) = £, 001 ptreddny | ey = (1,1

Applying them to the control group we have

n
lim (2/n) ] [£(x,0) - £(x,,8%)1°
n+e t even

c 0y,2
= [QlE(x,0) = £(x,07)]p,(x,)dx, (x;,%,) = (0,1)

Then

n
lim (1/n) § [f(x,,0) - f(xt,6°)]2
ne . t=]

n

= (1/2) 1im 2/n){ ) [f(x

n

0) - £x,, 0017 + ] [£x,,0) - £(x, 6717}

t’

nHe t odd t even
a,n
=2 1 [SIEx,8) - £(x,60)1%,(x )x,
(%, ,x,)=(0,1)

Suppose we let FIZ(XI’XZ) be the distribution function corresponding to the

discrete density
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1/2 (Xl,xz) = (091)

1/2 (xl,xz) = (1,1)
and we let F3(x3) be the distribution function corresponding to p3(x). Let
wx) = Flz(xl,xz)F3(x3) then

(1,1)
[lEx,0) - £, Paucz) = (1/2) ] 1,0 = £(x,6) 1, (x)dx

where the integral on the left is a Lebesque-Steiltjes integral (Royden, 1963,
Ch. 12; or Tucker, 1967, Sec. 2.2). In this notation the limit can be given

an integral representation

n
lin (1/n) ] [£(x,,8) - £(x,,8%1% = [1£(x,0) - £(x,0%)1%autx).
n-+e t=]

These are the ideas behind Section 2 of Chapter 3. The advantage of the
integral representation is that familiar results from integration theory can
be used to deduce properties of limits. As an example: What is required of

£(x,9) such that

n n
(3/38) lim ) £(x,,0) = lim ) (3/30)£(x_,8) ?
n+® t=l n¥® t=]

We find later that the existence of b(x) with |(3/36)£(x,8)| < b(x) and
[b(x)du(x) < « is enough given continuity of (3/38)f(x,8).

Our last task is to verify that

s(0) = [[£(x,8) - £(x,0%)]%du(x)
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(lil)
(xl ,X2)=(0, 1)

(1/2) [S1ECx,0) = £(x,8%)1% 5(x )dx,

c o e3x o ng 2
(1/2) 318, = 85) + 8,6 ° - 67e ~ 1%py(x)dx

c o o e3x o egx 2
(1/2)gl(8; = 8]) + (8, = 82) + 8,6 ° =~ 6je ~ ] p,y(x)dx

+

has a unique minimum. Since s(6) > 0 in general and s(8°) = 0, the question

is: Does s(8) = 0 imply that 6 = 6°? One first notes that Sg = 0 or 92 =0

must be ruled out as in the former case any 9 with 093 =0 and

6, +9, = e; + ez will have s(8) = 0 and in the latter case any 6 with

(o] O
8, = 67, 8, = 60, 6,

89 # 0 and recall that pa(x) > 0 on [0,b]. Now s(8) = 0 implies
4 3

= 0 will have s(8) = 0. Then assume that eg # 0 and

o 93x ng
- - = <
62 62 + 64e 94e 0 0 x <b
Differentiating we have
93x 0.0 ng
6364e - 9394e =0 0<x<b

_ 0Qx0
Putting x = 0 we have 9364 = 6364 whence

(6.-6%)x
337 .1 o0<x<h

which implies 63 = eg. We now have that

o}

s(6) = 0, 63

20,0, #0 => 8, = 83, 8, = @
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But if 6, = eg, 6, = ez, and s(8) = O then

s(8) = (1/2)(8, - 6% + (1/2)1(8; - 69) + (8, = 6D1% = 0

vhich implies 6, = e? and 6, = e;. In summary

s(8) = 0, eg #0, 32 #0 => 6 =8° I

As seen from Example 1, checking the Identification Condition and Rank
Qualification is a tedious chore to be put to at every instance one uses
nonlinear methods. Uniqueness depends on the interaction of £(x,9) and u(x)
and verification is ad hoc. Similarly for the Rank OQualification (Problem
2). As a practical matter, one should be on guard against obvious problems
and can usually trust that numerical difficulties in computing a will serve as
a sufficient warning against subtle problems as seen in the next section.

An appropriate question is how accurate are probability statements based
on the asymptotic properties of nonlinear least squares estimators in
applications. Specifically one might ask: How accurate are probability
statements obtained by using the critical points of the t—distribution with n-~
p degrees of freedom to approximate the sampling distribution of

£, = (0, - 0 /fs%c,,
Monte Carlo evidence on this point is presented below using Example 1. We
shall accumulate such information as we progress.

EXAMPLE 1 (continued). Table 3 shows the empirical distribution of

ty computed from five thousand Monte Carlo trials evaluated at the critical




Table 3. Empirical Distribution of t

i

Compared to the t-distribution
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Tabular Values

Empirical Distribution

c P(t €¢) P(E1 <e) P(;2 2 c) P(g3 <c) P(g4 < ¢) Std. Error
-3.707 .0005 .0010 .0010 .0000 .0002 .0003
-2.779 .0050 .0048 .0052 0018 .0050 .0010
-2.056 .0250 .0270 - .0280 .0140 .0270 .0022
-1.706 .bSOO .0522 .0540 .0358 .0494 .0031
-1.315 .1000 .1026 .1030 .0866 .0998 .0042
-1.058 .1500 .1552 1420 .1408 .1584 .0050
-0.856 «200 .2096 .1900 .1896 .2092 .0057
-0.684 +2500 «2586 »2372 +2470 .2638 .0061

0.0 . 5000 «5152 .4800 4974 .5196 .0071

0.684 .7500 .7558 7270 7430 7670 .0061

0.856 .8000 .8072 .7818 .7872 .8068 .0057

1.058 .8500 .8548 8362 .8346 8536 .0050

1.315 . 9000 .9038 .8914 .8776 . 9004 .0042

1.706 .9500 +9552 .9498 9314 +9486 .0031

2,056 +9750 .9772 .9780 . 9584 .9728 .0022

2.779 .9950 .9950 .9940 .9852 .9936 .0010

3.707 +9995 . 9998 +9996 .9962 +9994 .0003
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~

points of the t-distribution. The responses were generated using the inputs
of Table 1 with the parameters of the model set at

6° = (0, 1, -1, -.5) ,

o® = .00l.

The standard errors shown in the table are the standard errors of an estimate
of ghe probability P(E < ¢) computed from 5000 Monte Carlo trials assuming

that E follows the t—distribution. If that assumption is correct, the Monte
Carlo estimate of P[E < c] follows the binomial distribution and has variance

P(t < c) « P(t > c)/5000.

Table 3 indicates that the critical points of the t-distribution describe
the sampling behavior of ;i reasonably well., For example, the Monte Carlo
estimate of the Type I error for a two-tailed test of H: 9; = —~] using the
tabular values % 2.056 is .0556 with a standard error of .0031l. Thus it seems
that the actual level of the test is close enough to its nominal level of .05

for any practical purpose. However, in the next chapter we will encounter

instances where this is definitely not the case.
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PROBLEMS

1. Show that H: 02 = () will violate the Rank Qualification in
Example 1.

1
2. Show that € = 1im (1/n)F (8)F(8) has full rank in Example 1 if

o o n>e
63 # 0 and 94 # 0.
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4., METHODS OF COMPUTING LEAST SQUARES ESTIMATORS

The more widely used methods of computing nonlinear least squares
estimators are Hartley's (1961) modified Gauss-Newton method and the Levenberg
(1944)-Marquardt (1963) algorithm.

The Gauss-Newton method is based on the substitution of a first order
Taylor's series aproximation to f£(0) about a trial parameter value 6y in the
formula for the residual sum of squares SSE(®). The approximating sum of

squares surface thus obtained is
2
SSET(G) ly - f(eT) F(GT)(S eT)n .

The value of the parameter minimizing the approximating sum of squares surface
is (Problem 1)

r (e ly - £(8)1.

\ -
Oy = 0p + [F (8,)F(8,)]
It would seem that SM should be a better approximation to the least squares
estimator 6 than ST in the sense that SSE(GM) < SSE(ST). These ideas are
displayed graphically in Figure 1 in the case that 0 is univariate (p=1).
As suggested by Figure 1, SSEp(8) is tangent to the curve SSE(9) at the

point GT. The approximation is first order in the sense that one can show

that (Problem 2)

lim  |SSE(®) - SSE(8)|/10 - 8,1 =0
19-0,,10
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but not second order since the best one can show in general is that

(Problem 2)

lim  sup |SSE(8) - SSEL(8)]/18 = 8,47 < =,
820 16-8,1<8

SSE

Figure 1. The Linearized Approximation to the Residual Sum of
Squares Surface, an Adequate Approximation

It is not necessarily true that Oy is closer to 9 than Op in the sense that

SSE(GM) < SSE(OT). This situation is depicted in Figure 2.
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SSE

Figure 2. The Linearized Approximation to the Residual
Sum of Squares Surface, A Poor Approximation

But as suggested by Figure 2, points on the line segment joining O to O
that are sufficiently close to 8; ought to lead to improvement. This is the
case and one can show (Problem 3) that there is a A* such that all points with

8 = 0, + A(8, - 8 0 <A<

T T)

satisfy

SSE(8) < SSE(8r)



These are the ideas that motivate the modified Gauss-Newton algorithm which is

as follows:

0

1)

2)

There are several methods for choosing the step length ki at each

iteration of which the simplest is to accept the first A in the sequence

Choose a starting estimate 0,. Compute

| _1 ]
D, = [F (8 )F(8 )I7'F (8 )y - £(8 )]

Find a Xo between 0 and 1 such that
SSE(Go + AODO) < SSE(SO).

Let 61 = eo + AODO. Compute

' -1
D, = [F (8)F(8))]

Find a Al between 0 and 1 such that

SSE(G1 + AlDl) < SSE(SI).

Let 62 e]. + AIDI

F (el)[y - f(el)]-

1-4-4
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1, .9, .8, .7, .6, 1/2, 1/4, 1/8, ...
for which
SSE(®4 + AD;) < SSE(6y)

'as the step length Ai. This simple approach is nearly always adequate in
applications. Hartley (1961) suggests two alternative methods in his

article. Gill, Murray, and Wright (1981, Sec. 4.3.2.1) discuss the problem in
general from a practical point of view and follow the discussion with an
annotated bibliography of recent literature. Whatever rule 1s used, it is
essential that the computer program verify that SSE(Gi + AiDi) is smaller than
SSE(ei) before taking the next iterative step. This caveat 1is necessry, when,
for example, Hartley's quadratic interpolation formula is used to find Ai.

The iterations are. continued until terminated by a stopping rule such as

uei - ei+1u < e(nein + 1)

and

|ssa(ei) - SSE(8, )] <€ [SSE(8,) + 7]

i+1
where € > 0 and T > 0 are preset tolerances. Common choices are € = 10_5 and
T= 10_3. A more conservative (and costly) approach is to allow the
iterations to continue until the requisite step size Ai is so small that the
fixed word length of the machine prevents differentiation between the values

of SSE(8; + A;D;) and SSE(Gi). This happens sooner than one might expect and,
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unfortunately, sometimes before the correct answer is obtained. G111, Murray, ‘

and Wright (1981, Sec. 8.2.3) discuss termination criteria in general and
follow the discussion with an annotated bibliography of recent literature.
Much more difficult than- deciding when to stop the iterations 1is
determining where to start them. The choice of starting values is pretty much
an ad hoc process. They may be obtained from prior knowledge of the
situation, inspection of the data, grid search, or trial and error. A general
method of finding starting values is given by Hartley and Booker (1965).

Their idea is to cluster the independent variables {xt} into p groups

X j=1,2,¢0.,n

13 i=1,2,¢..,P

i’

and fit the model

where

oy

y, = (l/ni) jzlyij

Yy

Ei(e) = (1/n) jZlf(xij,e)

for i=1,2,...,p. The hope is that one can find a value Bo that solves the

equations

§i = fi(e) i=1,2,c00,p
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exactly. The only reason for this hope is that one has a system of p

equations in p unknowns but as the system is not a linear system there is no
guarantee., If an exact solution cannot be found, it is hard to see why one is

better off with this new problem than with the orginal least squares problem

n
minimize: SSE(8) = (1/n) ) [yt - f(xt,e)]z.
t=]

A simpler variant of their idea, and one that is much easier to use with
a statistical package, is to select p representative 1nputs xti with

corresponding responses yti then solve the system of nonlinear equations

y = f(x ,B) i=1,2,-..,p
£ 1

for 9, The solution is used as the starting value. Even if iterative methods

must be employed to obtain the solution it is still a viable technique since
the correct answer can be recognized when found. This is not the case in an
attempt to minimize SSE(8) directly. As with Hartley-Booker, the method fails
when there is no solution to the system of nonlinear equations. There is also
a risk that this technique can place the starting value near a slight
depression in the surface SSE(9) and cause convergence to a local minimum that
is not the global minimum. It is sound practice to try a few perturbations of
90 as starting values and see if convergence to the same point occurs each

time. We illustrate these techniques with Example 1.

EXAMPLE 1 (continued). We begin by plotting the data as shown in Figure
3. A "1" indicates the observation is in the treatment group and a "0"

indicates that the observation is in the control group. Looking at the plot,

the treatment effect appears to be negligible; a starting value of zero for .
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Figure 3. Plot of the Data of Example 1,

SAS Statements:

DATA WORKO0l; SET EXAMPLEL;

PX1='0'; LIF Xl=1 THEN PXl='l';

PROC PLOT DATA=WORKOLl;

PLOT ¥Y*X3=PX1l / HAXIS = 0 TO 10 BY 2 VPOS = 24;

Qutput:
STATISTICAL ANALYSTIS SYSTEM
PLOT OF Y*X3 SYMBOL IS VALUE OF PX1
Y | 0 10 0 0 0

! 0 1 1

1.0 + 0 0 1 00 1
] 0 1 11 1
| 1 1
I 0

0.9 + 0
|
!
|

0.8 + 1
|
' .
!

0.7 + 0
| 1
!
|

0.6 + 1
I
10
!

0.5 + 1
1
-—— +-= ————te— + + +

0 2 4 6 8 10

X3
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61, seems reasonable. The overall impression is that the curve is concave and .

increasing. That is, it appears that

(3/8x3) f(x,8) > 0,

and
(3%/ex2) £(x,8) < 0.
Since
83%,
(3/3x3) £(x,8) = 6364e >0
and
8,.x
(3%/3x2) £(x,0) = 020,e 33 <o
we see that both 63 and 94 must be negative. Experience with exponential .

models suggests that what is important is to get the algebraic signs of the
starting values of 63 and 04 correct and that, within reason, getting the
correct magnitudes is not that important. Accordingly, take -1 as the
starting value of both 63 and 64. Again, experience indicates that the
starting values for parameters that enter the model linearly such as 61 and 9,
are almost irrelevant, within reason, so take zero as the starting value of
62. In summary, inspection of a plot of the data suggests that

\J

8 = (0, 0, -1, -1)

is a reasonable starting value.

Let us use the idea of solving equations
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y, = f(x_,
ty ty

e) i=1,2,oo.,P
for some representative set of inputs
X i=1,2,...,p

to refine these visual impressions and get better starting values. We can
solve the equations by minimizing
\ 2
) [y, - £(x, ,0)]
i=1 i i
using the modified Gauss-Newton method. If the equations have a solution then
the starting value we seek will produce a residual sum of squares of zero.

The equation for observations in the control group (xl = 0) is

Oy%4

£f(x,8) =6, + 8,e

2 4
If we take two extreme values of x4 and one where the curve is bending we
should get a good fix on values for 0,, 05, 6,. Inspecting Table 1, let us

select

xy4 = (0, 1, 0.07),
xg = (0, 1, 1.82)",

xy = (0, 1, 9.86) .

The equation for an observation in the treatment group (xl = 1) is
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Figure 4. Computation of Starting Values for Example l.

SAS Statements:

DATA WORKO1l; SET EXAMPLEL;

IF T=2 OR T=6 OR T=11 OR T=14 THEN OUTPUT; DELETE;

PROC NLIN DATA=WORKOl1 METHOD=GAUSS ITER=50 CONVERGENCE=l.0E-5;
PARMS T1=0 T2=0 T3=-1 T4=-1;

MODEL Y=T1*X1+T2*X2+T4*EXP (T3*X3);

DER,Tl=X1l; DER.T2=X2; DER,.T3=T4*X3*EXP(T3*X3); DER.T4=EXP(T3*X3);

OQutput:
STATISTICAL ANALYSTIS SYSTEM 1
NCN~-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON

ITERATION T1 T2 T3 RESIDUAL SS
T4

0 0.00000Q0E+00 0.000000E+00 ~1,00000000 5.39707160
-1.00000000

1 -0.04866000 1.03859589 -0,.82674151 0.00044694
-0.51074741

2 -0.04866000 1.03876874 -0.72975636 0.00000396
-0,51328803

3 -0.04866000 1.03883445 -0,73786415 0.00000000
-0.51361959

4 -0.0486A000 1.03883544 -0,73791851 0.00000000
-0.51362269

5 ~0.04866000 1.03883544 -0.73791852 0.00000000

-0.51362269

NOTE: CONVERGENCE CRITERION MET.
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£(x,8) = 61 + 92 + e4e .
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If we can find an observation in the treatment group with an Xq near one of

the x3's that we have already chosen then we should get a good fix on B1 that

is independent of whatever blunders we make in guessing 92, 63, and 94.

eleventh observation is ideal

1
x,, = (1, 1, 9.86) .

11

The

Figure 4 displays SAS code for selecting the subsample X9, Xg, X11s Xy4 from

the original data set and solving the equations
Y, = f(xt,e) t=2,6,11,14
by minimizing

Iy, - £(x,,0)1°
t=2,6,11,14

using the modified Gauss-Newton method from a starting value of
e = (0, 0, _1, -1)0
The solution is

-0.04866
6 =1 1.03884
-0.73792
-0.51362
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Figure Sa. Example 1 Fitted by the Modified Gauss-Newton Method.

SAS Statements:

PROC NLIN DATA=EXAMPLEl METHOD=GAUSS ITER=50 CONVERGENCE=l,(0E-13;
PARMS T1=-0.04866 T2=1,03884 T3=-0.73792 T4=-0.51362;

MODEL Y=T1*X1+T2*X2+T4*EXP(T3*X3);

DER.Tl=X1l; DER.T2=X2; DER.T3=T4*{3*EXP(T3*X3); DER,T4=EXP(T3*X3);

Qutput:
STATISTICATL ANALYSTIS SYSTEM 1
NON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON
ITERATION Tl T2 T3 RESIDUAL SS
T4
0 -0,04866000 1.03884000 -0.73792000 0.05077531
-0.51362000
1 -0.02432899 1.00985822 -1.01571093 0.03235152
-0.49140162
2 -0.02573470 1.01531500 ~1.11610448 0.03049761
~0.50457486
3 -0.02588979 1.01567999 -1.11568229 0.03049554
-0.50490158
4 -0.02588969 1.01567966 -1.11569767 0.03049554
-0.50490291
s ~0.02588%70 1.01567967 -1.11569712 0.03049554
-0.50490286 ‘
6 ~0.02588970 1.01567967 -1.1156A9714 0.03049554

~-0,50490286

NOTZ: CONVERGENCE CRITERION MET.

STATISTICAL ANALYSTIS SYSTEM 2

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y

SOURCE DF SUM OF SQUARES MEAN SQUARE
REGRESSION 4 26,.34594211 6.58648553
RESIDUAL 26 0.03049554 0,00117291
UNCORRECTED TOTAL 30 26.37643764
(CORRECTED TOTAL) 29 0.71895291
PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 %
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
Tl ~0.02588970 0.01262384 -0.0518381+6 0.00005877
T2 1.01567967 0.00993793 0.99525213 1.03610721
T3 -1.11569714 0.16354199 -1.45185986 -0.77953442
T4 -0,50490286 0.02565721 -0.55764159 -0.45216413

ASYMPTOTIC CORRELATION MATRIX OF THE PARAMETERS

Tl T2 T3 T4
Tl 1,000000 -0.627443 -0.085786 -0.136140
T2 -0.627443 1.000000 0.373492 -0,007261
T3 -0.085786 0.373492 1.000000 0.561533
T4 -0.136140 -0.007261 0.561533 1.000000
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SAS code using this as the starting value for computing the least squares
estimator with the modified Gauss-Newton method is shown in Figure 5a together

with the resulting output. The least squares estimator is

~0.02588970
o =| 1.01567967

-1.115769714

-0.50490286

The residual sum of squares is

SSE(8) = 0.03049554

and the variance estimate is

s = SSE(8)/(n-p) = 0.00117291.

As seen from Figure 5a, SAS prints estimated standard errors Gi and

~ ~

correlations p,,. To recover the matrix sZC one uses the formula:

i3

26 ~ A ~
87c;, = (°1)(°j)(°1j)‘

For example,

s2c;, = (0.01262384)(0.00993793)(~0.627443)

= -0.,000078716.



2

Figure 5b, The Matrices s C

corL 1 coL 2

1 0.00015936 -7,.8716D-05
2 -7.8716D-05 9.8762D-05
3 -0.00017711 0.00060702
4 -4.,4095D-05 -1.8514D-06

C
cor 1 coL 2
1 0.13587 -0.067112
2 -0,067112 0.084203
3 -0.15100 0.51754
4 -0.037594 -0.00157848

and C for

coL 3

-0.00017711
0.00060702
0.026746
0.00235621

coL 3

-0.15100
0.51754
22.8032
2.00887
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Example 1.

coL 4

-4.4095D-05
-1.8514D-06
0.00235621
0.00065829

CoL 4

-0.037594
-0.00157848
2.00887
0.56125
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The matrices sZE and 6 are shown in Figure 5b. |
The obvious approach to finding starting values is grid search. When
looking for starting values by a grid search, it is only necessary to search
with respect to those parameters which enter the model nonlinearly. The
parameters which enter the model linearly can be estimated by ordinary
multiple regression methods once the nonlinear parameters are specified. For

example, once 63 is specified the model

Ve = elxlt + 92x2t + 64e + e
is linear in the remaining parameters 61, 62, 64 and these can be estimated by
linear least squares. The surface to be inspected for a minimum with respect
to grid values of the parameters entering nonlinearly is the residual sum of
squares after fitting for the parameters entering linearly. The trial value
of the nonlinear parameters producing the minimum over the grid together with
the corresponding least squares estimates of the parameters entering the model
is the starting value. Some examples of plots of this sort are found toward
the end of this section.

The surface to be examined for a minimum is usually locally convex. This
fact can be exploited in the search to eliminate the necessity of evaluating
the residual sum of squares at every point in the grid. Often, a direct
search with respect to the parameters entering the model nonlinearly which
exploits convexity 1is competitive in cost and convenience with either
Hartley's or Marquardt's methods. The only reason to use the latter methods
in such situations would be to obtain the matrix [F'(a)F(a)]_l, which is

printed by most implementations of either algorithm.
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Of course, these same ideas can be exploited in designing an algorithm.

Suppose that the model is of the form
£(p,B8) = A(p)B

where p denotes the parameters entering nonlinearly, A(p) is an n by K matrix,
and B is a K-vector denoting the parameters entering linearly. Given p, the

minimizing value of 8 is
~ 1 _1 1]
B=[A (P)A(P)] "A (p)y.

The residual sum of squares surface after fitting the parameters entering

linearly is

SSE(p) = {y - A(P)[A (A1 1A (0)y} [y - A [A (p)ACo) 17 1A (p)y].
To solve this minimization problem one can simply view
£(p) = A(P)IA (MA(P)] 1A (p)y

as a nonlinear model to be fitted to y and use, say, the modified Gauss-Newton

method. Of course computing

(3/30) {A(P) (A (2)A(P)]1 ™ A (p)y)

is not a trivial task but it is possible. Golub and Pereya (1973) obtain an

analytic expression for (9/3p)f(p) and present an algorithm exploiting it that

is probably the best of its genre.
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Marquardt's algorithm is similar to the Gauss-Newton method in the use of
the sum of squares SSE;(8) to approximate SSE(8). The difference between the
two methods is that Marquardt's algorithm uses a ridge regression improvement

of the approximating surface
0, =0_ + [F ' 0. )F(O + 81T lF ' 0 y - £(0

instead of the minimizing value GM. For all § sufficiently large 05 is an
improvement over BT (SSE(95) is smaller than SSE(GT)) under appropriate
conditions (Marquardt, 1963). This fact forms the basis for Marquardt's
algorithm.

The algorithm actually recommended by Marquardt differs from that
suggested by this theoretical result in that a diagonal matrix S with the same
diagonal elements as F'(GT)F(ST) is substituted for the identity matrix in the
expression for 85, Marquardt gives the justification for this deviation in
his article and, also, a set of rules for choosing 8 at each iterative step.
See Osborne (1972) for additional comments on these points.

Newton's method (Gill, Murray, and Wright, 1981, Sec.4.4) is based on

second order Taylor's series approximation to SSE(8) at the point Oq;
. ]
SSE(0) = SSE(GT) + [(3/36 )SSE(eT)](e - eT)

1 'rral '
+~7 (9 - Qr) [(3 /36238 )SSE(GT)](B -86.).

T

The value of 6 that minimizes this expression is

2 ! -1
OM = Qr + [=(3%/236239 )SSE(GT)] (B/BQ)SSE(6T).
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As with the modified Gauss-Newton method one finds AT with
SSE[ST + AT(SM - ST)] < SSE(ST)

and takes 0 = ST + XT(SM - OT) as the next point in the iterative sequence.

Now
2 1 ]
- (3°/3020 )SSE(6,)
1 ] n ~ 2 1]
= 2 F (8,)F(8,) - 2 tzl et(B /3636 )E(x,,0,)

where

e - f(xt,e,r) t’l,z,coo,no

t - Yt
From this expression one can see that the modified Gauss-Newton method can be

viewed as an approximation to the Newton method if the term

n « 2 '
tzl e (3°/3098 )f(x,,8.)

~

1
is negligible relative to the term F (Ot)F(BT) for O, near 9; say, as a rule

of thumb, when

n ~ R 1/
(5 % ¥ e o200, 00 yeex,8)12} 2
t=l {=1 j=1 °© 137 e
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is less than the smallest eigenvalue of F'(a)F(s) where ét =Y. " f(xt,g). If
this 1s not the case then one has what is known as the "large residual
problem."” 1In this instance it is considered sound practice to use the Newton
method, or some other second order method, to compute the least squares
estimator rather than the modified Gauss-Newton method. In most instances
analytic computation of (32/3639')f(x,6) is quite tedious and there is a

considerable incentive to try and find some method to approximate

n .
T e (3273096 )£(x_,8.)
£=1 t t
without being put to this bother. The best method for doing this is probably
the algorithm by Dennis, Gay and Welsch (1977).

Success, in terms of convergence to 5 from a given starting value, is not
guaranteed with any of these methods. Experience indicates that failure of
the iterations to converge to the correct answer depends both on the distance
of the starting value from the correct answer and on the extent of over-
parameterization in the response function relative to the data. These
problems are interrelated in that more appropriate response functions lead to
greater radili of convergence. When convergence fails, one should try to find
better starting values or use a similar response function with fewer
parameters. A good check on the accuracy of the numerical solution is to try
several reasonable starting values and see if the iterations converge to the
same answer for each starting value. It is also a good idea to plot actual
responses y, against predicted responses ;t = f(xt,a); if a 45° line does not
obtain then the answer is probably wrong. The following example illustrates

these points.

EXAMPLE 1 (continued). Conditional on p = 84, the model
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83x4
f(x,9) = Glxl + 62x2 + Sae

has three parameters B = (91,92,94) that enter the model linearly. Then as

remarked earlier, we may write
£(p) = A(®) (A ()A(P)] 1A o)y

where a typical row of A(p) is

Dx3t

a;(p> = (x)ps Xy @ )

and treat this situation as a problem of fitting £(p) to y by minimizing
)
SSE(p) = [y - £(p)] [y - £(p)].

As p is univariate, P can easily be found simply by plotting SSE(p) against p

and inspecting the plot for the minimum. Once p is found,
~ A a_l'a
B =1[A (p)A(P)] "A (P)y

gives the values of the remaining parameters.

Figure 6 shows the plots for data generated according to

yt = elxlt + 92x2t + 94e + et

with normally distributed errors, input variables as in Table 1, and parameter

settings as in Table 3. As 6, is the only parameter that is varying, it
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serves to label the plots. The 30 errors were not regenerated for each plot,
the same 30 were used each time so that 9, is truly all that varies in these
plots,

As one sees from the various plots, fitting the model becomes an
increasingly dubious proposition as !64| decreases. Plots such as those in
Figure 3 do not give any visual impression of an exponential trend in Xq for
|84| smaller tham O.l.

Table 4 shows the deterioration in the performance of the modified Gauss-—
Newton method as the model becomes increasingly implausible—-as |64|
decreases. The table was constructed by finding the local minimum nearest

p=20 (03 = 0) by grid search over the plots in Figure 6 and setting 93 = p

Y A

and (91, 62, 64) = B, From the starting value

A

%

(0)61 - 0.1 i=1,2,3,4

an attempt was made to recompute this local minimum using the modified Gauss-
Newton method and the stopping rule: Stop when two successive iterations,

(1)9 and (i+1)6, do not differ in the fifth significant digit (properly

rounded) of any component. As noted, performance deteriorates for small |94
One learns from this that prﬁblems in computing the least squares
estimator will usually accompany attempts to fit models with superfluous
parameters. Unfortunately one can sometimes be forced into this situation
when attempting to formally test the hypothesis H: 0, = 0. We will return to

this problem in the next chapter. i



1-4-26

PROBLEMS

1. Show that
2
SSET(G) = jy - f(eT) - F(eT)(e - GT)H
is a quadratic function of 6 with minimum

_ 1 _,1 1] _

8y = 8 + [F (8)F(8)1TF (8 )y - £(8y)]

One can see these results at sight by applying standard linear least squares
theory to the linear model z = XB + e with z =y - f(eT) + F(OT)GT,

X = F(GT), and B = 6,

2. Set forth regularity conditions (Taylor's theorem) such that

SSE(8) = SSE(8,) + [(a/ae)ssx(eT)l'(e - 0,)

1 ' 2 ' 3
+ 7—(9 - ST) [(3°/386236 )SSE(ST)](S - GT) + o(l0 - OTM )
Show that

SSE(8) - SSEL(8) = (8 - eT)'A(e - 8,) + o(n8 - eTn3)

t
where A 1s a symmetric matrix. Show that |[( - OT) A(B - eT)|/ue - eTuz is

less than the largest eigenvalue of A in absolute value, max|k1(A) . Use

these facts to show that
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lim  |SSE(8) - SSET(6)|/u6 - 0.1 =0

T
18 GTH+O

and

.

1im sup |SSE(8) - SSET(6)|/N6 -9

< maxlki(A)
§+0 ﬂe—eTﬂ<5

T

3. Assume that Op is not a stationary point of SSE(6); that is
(B/BG)SSE(BT) # 0. Set forth regularity conditions (Taylor's theorem) such

that
SSE[eT + A(SM - BT)]

' 2
= SSE(GT) + A[(a/ae)SSE(eT)] (eM - eT) + o(1%)

"~

Let FT = F(GT), ep = [y - f(eT)] and show that this equation reduces to
8 8 9 'F (FF) I e 2y /AJA
SSE[ T + A(SM - T)] = SSE( T) + [—zeTFT(FfFT) FTgT + o(A7)/A]

There must be a X* such that
Ay ] -1 " 2
[-ZeTFT(FTFT) FTeT + o(A°/N]1 KO0
for all A with 0 < A < X*, why? Thus
SSE[BT + x(eM - eT)] < SSE(ST)

for all A with 0 < A < A%,
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4, (Convergence of the Modified Gauss-Newton Method). Supply the

missing details in the proof of the following result.

Theorem: Let

g 2
Q(8) = [y, - £(x_,06)]",
ot t

Conditions: There is a convex, bounded subset S of RP and 90 interior to S

such that:

1) (3/30)f(xt,e) exists and is continuous over S for t = 1,2,...,n;
2) 8 € S implies the rank of F(8) is p;

3) (8, <= 1nf{Q(8): 8 a boundary point of S};

4) There does not exist 6', o'’ in S such that

(3/38)0(8') = (3/38)Q(8 ') = 0 and Q(8') = Q(8 ).

Construction: Construct a sequence as follows:

Qo
{ea a=]

] _1 ]
0) Compute Dy = [F (8,)F(8)] "F (8,)[y - £(8)].
Find Ay which minimizes 0(60 + ADO) over

Ay = {a: 0 <2<, 8, + XD, € §}.

1) Set 6. = 0.+ A D

1 0 0°0°
Compute D, = [F (8)F(8 )1 T'F (8 )[y - £(8))].

Find Al which minimizes 0(91 + ADI) over

Ay ={x0<ar<1, 8 +20 e 5]
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‘ 2) Set 02 = 61 + XlDl.

Conclusions. Then for the sequence {ea}:=1 it follows that:
1) 04 18 an interior point of S for a =1, 2, ... .
2) The sequence {Ga} converges to a limit of 0* which is interior to S.

3)  (3/38)0(8”) = 0.

Proof. We establish Conclusion 1. The conclusion will follow by
induction if we show that 8, interior to S and Q(ea) < Q imply Ay minimizing
Q(ea + XDa) over Aa exists and 6a+1 is an interior point of S. Let Ba e s°
and consider the set

~

s={ee§:e=ea+xna,o<x<1}.

§ is a closed, bounded line segment contained in §, why? There is a o' in

§ minimizing Q over g, why? Hence, there is a A (5' =8, + AaDa)

minimizing Q(Oa + ADa) over Aa' Now 8' 1s either an interior point of S or a
boundary point of S. By Lemma 2.2.1 of Blackwell and Girshick (1954, p. 32)

S and S have the same interior points and boundary points. If 8' were a

boundary point of S we would have

Q<ae) < a8, < Q
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which is not possible. Then ' is an interior point of S. Since 6y, = o' we
have established Conclusion 1.

We establish Conclusions 2, 3. By construction 0 < Q(9a+1) < Q(Ga) hence
O(BQ) > Q* as a * ® The sequence {ea} mist have a convergent subsequence
{0,15.; with limte 0" ¢ §, why? a(8g) + a(8") so a(8™) = Q*, why? % 1s

either an interior point of S or a boundary point. The same holds for S as we
saw above., If o* were a boundary point of S then 6 < Q(e*) < Q(6°) which is
impossible because 0(90) < 6. So 8% is an interior point of S.

The function

1

D(8) = [F (B)F(8)]™IF (&) [y - £(6)]

is continuous over S, why? Thus

1im D

B

* *
= 1im D(GB) =D(0 )=D.

B+

B

Suppose D* # 0 and consider the function q(A) = 0(6* + AD*) for A € [-n, n]

where 0 < n €1 and o* + nD* are interior points of S.
' ' * * %
q (0) = (3/38 )Q(8 + XD D |, 4
k' k%
= (-2)[y - £(8 )] F(® )D
£t V% * %
= (-2)D F (8 )F(8 )

<o,
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‘ why? Choose € > 0 so that € < —q'(O). By the definition of derivative there

is a 2\ ¢ (0, 1/2 n) such that
* * * * *
Q6 +AD)-qQ(®)=q(x) - q(0)
' *
< [q (0) +elx.

Since Q is continuous for O € S we may choose Y > 0 such that

-Y > [q'(O) + e]k* and there is § > 0 such that
19, + A"py - 0% = A*p"™1 < 8
implies
Q(eB + A*D) - Q(e* + A*D*) <Y
Then for all B sufficiently large we have

Q(98 + A*bs) - Q(G*) < {q'(O) + e})‘* by = _cz'

*
Now for B large enough GB + A*DB is interior to S so that A € AB and we

obtain
* 2
8, 1) - Q87) < —c*.

* *
This contradicts the fact that Q(GB) +Q(6 ) =Q as B + °; thus D* must be

. the zero vector. Then it follows that
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(3/38)Q(87) = (=2)F (8" ) [y - £(87)]
= (-2)F (8*)F(8* )"
= o.

Given any subsequence of {Ba} we have by the above that there is a

convergent subsequence with limit point 9' € S such that

(3/30)0(8 ) = 0 = (3/38)q(8™)

and

' * *
Q6 ) =q = Q8 ).

1
By Hypothesis 4, o' = 8* so that Sa >0 as a + »,
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5. HYPOTHESIS TESTING
Assuming that the data follow the model
y = £(8°) +e, e~N(O, o’1)
consider testing the hypothesis
H: h(6°) = 0 against A: h(e°) +0

where h(6) is a once continuously differentiable function mapping RP into RY

with Jacobian
)
H(6) = (3/36 )h(9)
of order q by p. When H(6) is evaluated at 6 = 8 we shall write H,
H = H(O).
and at 6 = 08° yrite H,
B = H(8),
In Chapter 4 we shall show that h(9) may be characterized as

h(é) = h(e®) + H(F'F)-IF'e + op(l/n/E)



1 ]
where, recall, F = (3/936 )f(e°). Ignoring the remainder term, we have
) ' -1 !
h(8) < N_[n(e%), o%Hu(F F) lu ]
whence
L =L .-l ., 2
h (8) [H(F F) 'H ] "h(®)/c

is (approximately) distributed as the non-central chi-square distribution

(Appendix 1) with q degrees of freedom and non-centrality parameter
] 1] — ' o
A =h (%) [H(F F) 'H 1 Th(8%)/ (20%).

Recalling that to within the order of approximation op(lln), (n--p)sz/o2 is
distributed independently of © as the chi-square distribution with n-p degrees

of freedom we have (approximately) that the ratio

n' () E ) ') h8)/ (qo?)
(n=p)s2/ [ (a=p)a?]

follows the non-central F distribution (Appendix 1) with q numerator degrees
of freedom, n-p denominator degrees of freedom, and non—centrality parameter
A; denoted as F'(q, n-p, A). Cancelling like terms in the numerator and

denominator, we have
T A ? _1 ’ _1 ~ 2 r
h (8)[H(F F) 'H] "h(8)/(qs”) ~F (q, n-p, A)

In applications, estimates H and C must be substituted for H and (F'F)—1




~ ' ~ ~ -
where, recall, C = [F (0)F(8)] 1. The resulting statistic

A A l A

we=n(@)@cta) o)/ qsd)

is usually called the Wald test statistic.

To summarize this discussion, the Wald test rejects the hypothesis
H: h(8®) =0

when the statistic

LXK o\_l

W o=h (8)(H CH) 'h(8)/(qs?)

exceeds the upper a x 100% critical point of the F distribution with q
numerator degrees of freedom and n-p denominator degrees of freedom; denoted

as F-l(l—a; q, n-p). We illustrate by example.
EXAMPLE 1 (continued). Recalling that

0.x

X, +0,x,+ 06,e 33

£(x,0) = 0 x, %27 Y

consider testing the hypothesis of no treatment effect
H: 91 = 0 against A: 91 # 0.

For this case

h(8) =6



H(®) = (3/30 )h(8) = (1,0,0,0)

h(8) = -0,02588970 (from Figure 5a)

H = (3/36 )n(8) = (1,0,0,0)

Anny ~

HCH = ¢y = 0.13587 (from Figure 5b)
s2 = 0.00117291 (from Figure 5a)
q=1

W="h (8)(HCH ) "h(8)/(qs”)

(-0.02588970)(0.13587)-1(-0.02588970)/(1 x 0.00117291)

4.2060

The upper 5% critical point of the F distribution with 1 numerator degree of

freedom and 26 = 30 - 4 denominator degrees of freedom is

F 955 1, 26) = 4.22

so one fails to reject the null hypothesis.
Of course, in this simple instance one can compute a t-statistic directly

from the output shown in Figure 5a as

t = (-0.02588970)/(0.01262384)

= -2,0509



and compare the absolute value with
t~1(.975; 26) = 2.0555. |

In simple examples such as the proceeding, one can work directly from
printed output such as Figure 5a. But anything more complicated requires some
programming effort to compute and invert ﬁéﬁ'. There are a variety of ways to
do this; we shall describe a method that is useful pedagogically as it builds
on the ideas of the previous section and is easy to use with a statistical
package. It also has the advantage of saving the bother of looking up the

critical values of the F distribution.

Suppose that one fits the model
; = EB + u
by least squares and tests the hypothesis
H: ﬁB = h(5) against A: ﬁB + h(é)

The computed F statistic will be

p o 1H8 - 0o HEH ) He - h(®)1/g
[e - FB] [e - FB]/(n-p)

but since

Ap A

0 = (3/36)SSE(6) = -2F e



we have

ApA IA'A "

O=(FF) Fe=28

and the computed F statistic reduces to

AAA

Wo=h (8)(HCH ) Lh(0)/(qs?).

Thus, any statistical package that can‘compute a linear regression and test a
linear hypothesis becomes a convenient tool for computing the Wald test

statistic. We illustrate these ideas in the next example.
EXAMPLE 1 (continued). Recalling that the response function is

8y%4

£f(x,0) = lel + szz + 64e .

consider testing

H: (3/3x3)f(X.9) % #1/5

331 = 1/5 against A: (8/3x3)f(x,9) x3=1

or equivalently

v 8

3 3
H: 9364e = 1/5 against A: 6364e # 1/5.

We have

%
h(8) = 8,8,e > - 1/5



1-5-7

' ®, %,
H(O) = (3/38 )h(8) = [0, 0, 8,(1 + 8 )e >, 8¢ °]
h(8) = (~1.11569714)(=0.50490286)e 1+11569714 _ 4 , (from Figure 5a)
= -0.0154079303
~ ' ~
H = (3/38 )h(8)
= (0, 0, 0.0191420895, -0.365599176) (from Figure 5a)
1 ~ ﬂﬁh' — ~
h (8)(HCH ) Yh(8)/1 = 0.0042964 (from Figure 7)
s = 0.001172905 (from Figure 5a or 7)
W = 3.6631 (from Figure 7 or by division)

Since F_l(.95; 1, 26) = 4,22 one fails to reject at the 5% level. The p-value
is 0.0667 as shown in Figure 7; that is 1 - F(3.661; 1, 26) = 0.0667.
Also shown in Figure 7 are the computations for the previous example as

well as computations for the joint hypothesis.

© 6
. - 32 .
H: 91 0 and 9364e = 1/5 against A: 61 #0 or 6364e

3 4 1ys.

The joint hypothesis is included to illustrate the computations for the case
q > 1. One rejects the joint hypothesis at the 5% level; the p-value is

0.0210. |

We have noted in the somewhat heuristic derivation of the Wald test that
W 1s distributed as the non—-central F distribution. What can be shown

rigorously (Chapter 4) is that

W=Y+ op(l/n)



L=D=U
Figure 7. 1Illustration of Wald Test Computations with Example 1.

SAS Statements:

DATA WORKOl; SET EXAMPLEl;

T1=-0.02588970; T2=1.01567967; T3=-~1.11569714; T4=-0.50490286;

E=Y= (T1*X14T2*X 24T 4*EXP (T3*X3));

DER T1=X1; DER_T2=X2; DER_T3=T4*X3*EXP(T3*X3); DER_T4=EXP(T3#*X3);

PROC REG DATA=WORK01l; MODEL E = DER_T1 DER_TZ2 DER_T3 DER_T4 / NOINT;

FIRST: TEST DER_T1=0.02588970;

SECOND: TEST 0.0T91420895*DER_T3-0.365599176*DER_T4=-0.0154079303;

JOINT: TEST DER_T1=0.02588970,
0.0T91420895*DER_T3-0.3655991 76 *DER_T4=~0.0154079303;

Qutput:
STATISTICAL ANALYSTIS SYSTEM

DEP VARIABLE: E

SUM OF MEAN

SQURCE DF SQUARES SQUARE F VALUE PROB>F
MODEL 4 3,29597E-17 8,23994E~-18 0.000 1.0000
ERROR 26 0,030496 0.001172905
U TOTAL 30 0.030496

ROOT MSE 0.034248 R~-SQUARE 0.0000

DEP MEAN 4.13616E-11 ADJ R-SQ -0.1154

c.v. 82800642118

NOTE: NO INTERCEPT TERM IS USED. R-SQUARE IS REDEFINED.

PARAMETER STANDARD T FOR HO:
VARIABLE ©DF ESTIMATE ERROR PARAMETER=( PROB > IT!
DER_T1. 1 1.91639%E-09 0.012624 0.000 1.0000
DER_T2 1 -6.79165E-10 0,009937927 -0.000 1.0000
DER_T3 1l 1.52491E-10 0.163542 0.000 1.0000
DER_T4 1 -1.50709E-09 0.025657 -0.000 1.0000
TEST: FIRST NUMERATOR: .0049333 DF: 1 F VALUE: 4.2060

DENOMINATOR: .0011729 DFf: 26 PROB >F : 0.0505
TEST: SECOND NUMERATOR: .0042964 DF: 1 F VALUE: 3.6631

DENOMINATOR: .0011729 DF: 26 PROB >F : 0.0667
TEST: JOINT NUMERATOR: .0052743 D°Pf: 2 F VALUE: 4,4968

DENOMINATOR: .0011729 DF: 26 PROB >F : 0.0210




'
Y~F (qs n-=p, >‘)

A = (8% {E(®) [F (0°)F(6%)] T E (%)} h(8%)/ (267)

That is, Y is distributed as the non—central F distribution with q numerator
degrees of freedom, n-p denominator-degrees of freedom, and non-centrality
parameter A (Appendix 1). The computation of power requires computation of A
and use of charts (Pearson and Hartley, 1951; Fox, 1956) of the non-central F
distribution. One convenient source for the charts is Scheffe (1959). The

computation of X is very little different from the computation of W itself and

one can use exactly the same strategy used in the previous example to obtain
' a0 o ' a0 o,,-1.'" 0,11 _,.0
h (8°){H(e%)[F (8°)F(8”)] H (8°)} "hm(8%)/q

and then multiply by q/(202) to obtain A. Alternatively one can write code in
some programming language to compute A. To add variety to the discussion, we

shall illustrate the latter approach using PROC MATRIX in SAS.
EXAMPLE 1 (continued). Recalling that

93%3
£(x,0) = Slxl + 92x2 + 64e

let us approximate the probability that the Wald test rejects the following

three hypotheses at the 5% level when the true values of the parameters are

8° '
= (003, 1, _1.4, -05)

o = .001.
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Figure 8. 1Illustration of Wald Test Power Computations with Example 1.

SAS Statements:

PROC MATRIX; FETCH X DATA=EXAMPLE] (KEEP=X1 X2 X3);

Tl=.03; T2=1; T3=-1.4; T4=-.5; S=.001; N=30; .
Fl=X(,1); F2=X(,2); F3=T4*(X(,3)$EXP(T3*X(,3))); F4=EXP(T3I*X(,3));
F=F1||F2}{1F3|IF4; C=INV(F'*F);

SMALL H1=T1l; Hl=l 0 0 O;

LAMBDA=SMALL H1'*INV(H1*C*H1')*SMALL H1#/(2*%S); PRINT LAMBDA;

SMALL H2=(TI¥T4#EXP(T3)-14#/5); H2=0T|0|IT4#(1+T3)4EXP(T3) | |TI4EXP(T3);
LAMBDA=SMALL H2'*INV(H2%C*H2') *SMALL_H2#/(2*S); PRINT LAMBDA;

SMALL H3=SMALL H1//SMALL _H2; H2=H1//H2;

LAMBDA=SMALL _HI'*INV(H3*C*H3')*SMALL_H3$/(2*S); PRINT LAMBDA;

Qutput:
STATISTICAL ANALYSTIS SYSTEM

LAMBDA coLl
ROW1 3.3343
LAMBDA CoLl
ROW1 5.65508
LAMBDA coLl

ROW1 9,88196




The three null hypotheses are:
H,: 6,8,e ~ =1/5,

H,: 8, =0 and 6,0,e ~ = 1/5.

PROC MATRIX code to compute

1

A =h (0°){H(8®)[F (8°)F(8%)]™

for each of the three cases is shown in Figure 8.

A; = 3.3343
Ay = 5.65508
Ay = 9.88196

1 (6%} h(e®)/ (20%)

We obtain
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(from Figure 8)
(from Figure 8)

(from Figure 8)

Then from the Pearson-Hartley charts of the non-central F distribution in

Scheff; (1959) we obtain

1 - F (4.22; 1, 26, 3.3343) = .70,
1 - F (4.22; 1, 26, 5.65508) = .90,
1 - F (3.37; 2, 26, 9.88196) = .97.

For the first hypothesis one approximates P(W > F,) by P(Y > F ) = .70 where
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Fo = F_l(.95; 1, 26) = 4,22, and so on for the other two cases.

The natural question is: How accurate are these approximations? 1In this
instance the Monte Carlo simulations reported in Table 5 indicates that the
approximation is accurate enough for practical purposes but later on we shall
see examples showing fairly poor approximations to P(W > F,) by P(Y > F,).
Table 5 was constructed by generating five thousand responses using the

response function

93%3
£f(x,98) = elxl + 62x2 + 64
and the inputs shown in Table l. The parameters used were 0, = 1, 8, = =5,
and 0? = .001 excepting 91 and 62 which were varied as shown in Table 5.

Power for a test of H: 8; = 0 and H: 65 = -1 is computed for P(Y > F,) and
compared to P(W > Fa) estimated from the Monte Carlo trials. The standard
errors in the table refer to the fact that the Monte Carlo estimate of
P(W < Fa) is binomially distributed with n = 5000 and p = P(Y > Fa)' Thus,
P(W > Fa) is estimated with a standard error of

{p(x > FOIL - P> Fa)]/SOOO}]/z. These simulations are described in

somewhat more detail in Gallant (1975b). |

One of the most familiar methods of testing a linear hypothesis
H: RB = r against A: RB #r
for the linear model

y =XB + e
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is: First, fit the full model by least squares obtaining
~ 1 ~
SSE; 11 = (v — XB) (v - XB)
a ' -1
B=(XX) Xy
Second, refit the model subject to the null hypothesis that RSB = r obtaining

~ -
SSEreduced = (y - X8) (v - XB)

B =g+ (x'X)'IR'[R(x'X)'IR']"l(r - Ré);

Third, compute the F statistic

(SSE o quced ~ SSEgy11?/d

(SSE¢ ;,)/(n = p)

where q is the number of restrictions on B (number of rows in R), p is the
number of columns in X, and n the number of observations~-full rank matrices
being assumed throughout. One rejects for large values of F. If one assumes

normal errors in the nonlinear model
2
y = £(8) +e e ~ Np(O, o°1)

and derives the likelihood ratio test statistic for the hypothesis

H: h(8) = 0 against A: h(8) # 0




one obtains exactly the same test as just described (Problem 1).

statistic is computed as follows.

First, compute
~ 1
8 minimizing SSE(8) = [y - £(8)] [y - £(8)]
using the methods of the previous section and let

SSE = SSE(6).

full
Second, refit under the null hypothesis by computing

8 minimizing SSE(8) subject to h(8) =0

using methods discussed immediately below, and let

Ereduced = SSE(6).
Third, compute the statistic
L = (SSEreduced - SSEfull)/q
(SSE,_ )/ (8 - )
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The

Recall that h(9) maps RP into RY so that q 1s, in a sense, the number of

restrictions on 9. One rejects H: h(8°) = 0 when L exceed the a x 100%

critical point F, of the F distribution with q numerator degrees of freedom

and n-p denominator degrees of freedom; Fa = F_l(l - a3 q, n - p). Later on,

we shall verify that L is distributed according to the F distribution if
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h(6%) = 0. For now, let us consider computational aspects.

General methods for minimizing SSE(6) subject to h(8) = 0 are given in
Gill, Murray, and Wright (1981). But it is almost always the case in practice
that a hypothesis written as a parametric restriction

H: h(8) = 0 against A: h(8) # 0
can easily be rewritten as a functional dependency

H: 6° = g(p) for some 0° against A: 0% = g(p) for any p.

Here p is an r-vector with r = p-q. In general one obtains g(p) by augmenting

the equations

h(8) =t

by the equations

$(8) = p

which are chosen such that the system of equations

h(8) = 1

$(8) = p

is a one-to-one transformation with inverse .



6 = (o, 1),
Then imposing the condition
8 = ¥(p,0)
is equivalent (Problem 2) to imposing the condition
h(6) = 0
so that the desired functional dependency 1s obtained by putting
8 = g(p).
But usually g(p) can be constructed at sight on an ad hoc basis without
resorting to these formalities as seen in the later examples.
The null hypothesis is that the data follow the model
Ve = f(xt,.eo) + e,
and that 8° satisfies

n(e%) = o.

Equivalently, the null hypothesis is that the data follow the model
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1=0=1%

o
Ve = f(xt, 87) + e,

and
68° = g(p) for some p°.

But the latter statement can be expressed more simply as: The null hypothesis

is that the data follow the model
y, = £lx_,g(p%)] + e .
t t? t
In vector notation,

y = £lg(p)] + e.

This is, of course, merely a nonlinear model that can be fitted by the methods

described previously. One computes

~ |

p minimizing SSE(g(p)] = {y - £lg(p)1} {y - £ig(e)1}
by, say, the modified Gauss-Newton method. Then

SSEreduced = SSElg(m)]
because 6 = g(p) (Problem 3).
The fact that £[x,g(p)] is a composite function gives derivatives some

structure that can be exploited in computations. Let
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G(p) = (3/3p )g(p),

that is, G(p) is the Jacobian of g(p) which has p rows and r columns. Then

using the differentiation rules of Section 2,

(3/30 YElx,g(p)] = (3/30 )E[x,g(p)1G(p)

(3/30 )E[g(p)] = Flg(p)1G(0)

These facts can be used as a labor saving device when writing code for

nonlinar optimization as seen in the examples.
EXAMPLE 1 (continued). Recalling that the response function is

85%3
£f(x,8) = elxl + 92x2 + 94e .

reconsider the first hypothesis

This is an assertion that the data follows the model

0.x
373t
yt ezx,)t + 34e + et-

Fitting this model to the data of Table 1 by the modified Gauss-Newton method

we have
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Figure 9a. Illustration of Likelihood Ratio Test Computations with Example 1.

SAS Statements:

PROC NLIN DATA=EXAMPLEl METHOD=aGAUSS ITER=50 CONVERGENCE=l.0E-~13;
PARMS T2=1.01567967 T3=-1,11569714 T4=-~0.50490286; T1=0;

MODEL Y=T1*X1+T2#*X2+T4*EXP(T3*X3);

DER.T2=X2; DER.T3=aT4*X3*EXP (T3*X3); DER.T4=EXP (T3*X3);

Qutput:
STATISTICAL ANALYSTIS SYSTEM 1
NON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON
ITERATION T2 T3 T4 RESIDUAL SS
0 1.01567967 -1.11569714 -0.50490286 0.04054968
1 1.00289158 -1.14446980 -0.51206647 0.03543349
2 1.00297335 -1.14082057 -0.51178607 0.03543299
3 1.00296493 -1.14128672 -0.51182738 0.03543298
4 1.00296604 -1.14122778 -0.51182219 0.03543258
5 1.00296590 -1.14123524 -0,51182285 0.03543298
6 1.00296592 -1.14123430 ~0,51182276 0.03543298
7 1.00296592 -1,14123442 ~0,51182277 0.03543298

NOTE: CONVERGENCE CRITERION MET.

STATISTICAL ANALYSTIS SYSTEM 2
NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y
SOURCE DF SUM OF SOQUARES MEAN SQUARE
REGRESSION 3 26.34100467 8,78033489
RESIDUAL 27 0.03543298 0.00131233
UNCORRECTED TOTAL 30 26.376R43764
(CORRECTED TOTAL) 29 0.71895291
PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 %
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
T2 1.00294592 0.00813053 0.98628359 1.01964825
T3 ~1.14123442 0.17446900 -1.49921245 -0,.78325638
T4 -0.51182277 0.02718622 -0.56760385 -0,45604169

ASYMPTOTIC CORRELATION MATRIX OF THE PARAMETERS

T2 T3 T4
T2 1.000000 0,400991 -0.120866
T3 0.400991 1.000000 0.565235
T4 -0.120866 0.565235 1.000000
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SSEreduced = 0.03543298 (from Figure 9a)
Previously we computed
SSEfull = 0.03049554 (from Figure 5a).

The likelihood ratio statistic is

L = (SSEreduced - SSEfull)/q
€ Ereduced)[(n -p)

_ (0.03543298 - 0.03049554)/1
0.03049554/26

= 4,210.

Comparing with the critical point

Fl.95; 1, 26) = 4.22

one fails to reject the null hypothesis at the 957 level.

Reconsider the second hypothesis

H: 0,.0,e

39, = 1/5

which can be rewritten as

%
H: 94 = 1/(503e ).



Then writing

P1

g(p) = P2
1/(505e°3)

an equivalent form of the null hypothesis is that
H: 8° = g(p) for some 0°.

One can fit the null model in one of two ways. The first, fit directly the

model

P, (%, -1)
-1 "3 73t
Ve = P1¥e Py Tt (593) ¢ te.

The second,
1. Given p, set 6 = g(p).

2. Use the code written previously (Figure 5a) to compute f(x,0) and

(3/38' )£(x,8) given 6.
3. Use
(3/3p YElx,g(p)] = {(3/30 )Elx,g(p)]1}C(p)

to compute the partial derivatives with respect to p; recall that




E O R

G(p) = (3/3p )g(p).

We use this second method to fit the reduced model in Figure 9b. We have

1 0 0
0 1 0
G(p) =
0 0 1
Py oy P p
0 0 ~(5p,e 3y2(50 3 4 50,e 3y

If
1
(9/036 )f(x,8) = (DER_II, DER_T2, DER T3, DER T4)
then to compute

(3/3p )Elx,g(p)] = (DER.R1, DER.R2, DER.R3)

one codes

DER.R1 = DER_?I

DER.R2 = DER_?Z

DER.R3 = DER_?S + DEQ_?4 * (=T4%%2) * (5*%EXP(R3) + 5*R3*EXP(R3))
where

o]
T4 = 1/(5pqe )
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Figure 9b. Illustration of Likelihood Ratio Test Computations with Example 1.

SAS Statements:

PROC NLIN DATA=EXAMPLEl METHOD=GAUSS ITER=60 CONVERGENCE=l,OE-§;
PARMS R1=-0,02588970 R2=1.01567967 R3=~1.11569714;

Tl=R1l; T2=R2; T3=R3; T4=1/(5*R3I*EXP(R3));

MODEL YsT1#X1+T2#*X2+4T4*EXP (T3*X3);

DER_T1=X1l; DER_T2*X2; DER_T3=T4*X3*EXP (T3*X3); DER_T4=EXP(T3*X3);
DER.R1=DER T1; DER.R2=DER T2; -
DER.R3=DER_T3+DER_T4* (-T4¥*2) * (S*EXP (R3)+5*R3I*EXP (R3));

Qutput:
STATISTICAL ANALYSTIS SYSTEM 1
NON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON
ITERATION R1 R2 R3 RESIDUAL S8
o] -0.,02588970 1.01567967 ~1.11569714 0.03644046
1 -0.02286308 1,01860305 -1.19237581 0.03502362
2 -0.02314184 1.02019397 -1.13249955 0.03500414
3 -0,02291862 1,01903284 ~1.18159656 0.03497186
4 -0.02309964 1.02003652 -1,14220257 0.03496229
5 -0.02295240 1,01926378 -1,17465123 0.03495011
6 -0.02307276 1.01992190 ~-1.14831568 0.03494536
7 -0.02297427 1.01940189 ~1.17003037 0.03494040
8 -0,02305506 1.01984017 -1,15230734 0.03493808
9 -0.,02298878 1,01948877 -1.16691829 0.03493597
10 -0.02304322 1.01978274 -1.15495732 0.03493486
11 -0,02299850 1,01954494 -1.16481311 0.,03493394
12 -0.02303525 1.01974282 -1.15673110 0.03493341
13 -0.02300504 1,01958186 -1,16338723 0.03493301
14 -0,02302988 1,01971531 -1.15792350 0.03493276
15 ~-0,02300946 1.01960636 -1.16242136 0.03493258
16 ~0.02302625 1.01269645 -1.15872697 0.03493246
17 -0.02301245 1.01962272 -1.16176727 0.03493238
18 ~-0.02302380 1.01968358 -1.15926909 0.03493233
19 -0.02301447 1.01963370 ~1.16132448 0.03493229
20 ~0.02302214 1.01967482 -1.15963516 0.03493227
21 -0.02301583 1.01964108 -1.16102482 0.03493225
22 -0,.02302102 1.01966888 -1.15988247 0.03493224
23 -0,02301675 1.01964605 -1.16082207 0.03493223
24 -0.02302026 1.01966484 -1.16004961 0.03493223
25 -0.02301738 1.01964941 -1.16068492 0.03493222
26 -0.02301975 1.01966211 -1.16016258 0.03493222
27 -0,02301780 1,01965167 -1.16059216 0.03493222
28 -0.02301940 1.01966026 ~1,16023895 0.03493222
29 -0,02301808 1.01965320 -1.16052942 0.03493222
30 -0,.02301917 1,01965901 -1.16029058 0.03493222
3l -0.02301828 1.01965423 -1.16048699 0.03493222
NOTE: CONVERGENCE CRITERION MET.
STATISTICAL ANALYSTIS SYSTEM 2

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y

SOURCE DF SUM OF SQUARES MEAN SQUARE
REGRESSION 3 26.34150543 8.78050181
RESIDUAL 27 0.03493222 0.00129379
UNCORRECTED TOTAL 30 26,37643754
(CORRECTED TOTAL) 29 .71895291
PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 %
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
Rl -0.02301828 0.01315496 -0.05000981 0.00397326
R2 1.01965423 0.01009476 0.99893755 1.04037092
R3 -1.16048699 0.16302087 -1.49497559 ~0.825998138




as shown in Figure 9b.

. v We have

SSE educed = 0-03493222 (from Figure 9b)

SSEg,11 = 0.03049554 (from Figure 5a)

- £0.03493222 - 0.03049554)/1

L 0.03049554/26

= 3.783.

As F_l('.95; 1, 26) = 4,22 one fails to reject the null hypothesis at the 57

level.

Reconsidering the third hypothesis

which may be rewritten as
H: 6° = g(p) for some p°
with

0

g(p) = °2
P3
o]
1/(593& 3)

‘ we have
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Figure 9¢. Illustration of Likelihood Ratio Test Computations with Example 1.

SAS Statements:

PROC NLIN DATA=EXAMPLEl METHOD=GAUSS ITER=60 CONVERGENCE=1.0E-8;

PARMS R2=1.01965423 R3=-1.16048699; RI1=0;

Tl=R1l; T2=R2; T3=R3; T4=1/(S5*RI*EXP(R3));

MODEL Y=T1#X1+T2*X2+T4*EXP (T3*X3);

DER_T1=X1l; DER_T2=X2; DER_T3=T4*X3I*EXP(T3*X3); DER_T4=EXP(T3I*X3);
DER.R2=DER_T2; DER.R3=DER_T3+DER_T4*(~T4**2)* (S*EXP (R3)+5*R3I*EXP (R3));

Output:
STATISTICAL ANALYSTIS SYSTEM 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON
ITERATION R2 R3 RESIDUAL SS
0 1.01965423 ~1.16048699 0.04287983
1 1.00779498 -1.1763808] 0,03890362
2 1.00807441 -1.16332560 0.03890234
3 1.00784845 -1.17411590 0.03890127
4 1.00803764 -1.16523771 0.03890066
5 1.,00788362 -1.17257272 0.038900138
6 1.00801199 -1.16653150 0.03889989
7 1.00790702 -1.17152084 0.038899K7
8 1.00799423 -1.16740905 0.03889954
9 1.00792271 -1.17080393 0.03889944
10 1.00798200 -1.16800508 0.03889937
11 1.00793329 -1.17031543 0.03889933
12 1.00797361 -1.16841024 0.03889930
13 1,00794043 -1.16998265 0.03889928
14 1.00796787 -1.16868578 0.03889926
15 1.00794527 -1.16975601 0.03889925
16 1.00796394 -1.16887322 0.03889925
17 1.00794856 ~1.16960168 0.03889924
18 1.00796126 -1.16900077 0.03889924
19 1.,00795079 -1.16949660 0.03889924
20 1.00795944 -1.1A208756 0.03889923
21 1.00795231 ~1.16942506 0.03889923
22 1.00795819 -1.16914663 0.03889923
23 1.00795334 -1.16937636 0.03889923
24 1.,00795735 -1.16918683 0.03889923

NOTE: CONVERGENCE CRITERION MET.

STATISTICAL ANALYSTIS SYSTEM 2
NON~LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y
SOURCE DF SUM OF SQUARES MEAN SQUARE
REGRESSION 2 26.33753841 13,16876921
RESIDUAL 28 0.03889923 0.00138926
UNCORRECTED TOTAL 30 26,37643764
(CORRECTED TOTAL) 29 0.71895291
PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 §%
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
R2 1.00795735 0.00769931 0.99218613 1.,02372856
R3 ~1.16918683 0.17039162 -1.51821559 -0.82015808

ASYMPTOTIC CORRELATION MATRIX OF THE PARAMETERS

R2 R3

R2 1.000000 0.467769
R3 0.467769 1.000000



1-5-27

SSEreduced = 0.03889923 (from Figure 9¢)
SSEg,11 = 0.03049554 (from Figure 5a)
L = (SSEreduced B SSEfull)/(p - 1)

(SSE,_ 1 )/(a - )

_ (0.03889923 - 0.03049554)/(4 - 2)
(0.03049554)/(30 - 4)

= 3,582,

Since F_l(.95; 2, 26) = 3.37 one rejects the null hypothesis at the 57

level. I

It is not always easy to convert a parametric restriction h(8) =0 to a
functional dependency & = g(p) analytically. However, all that is needed is
the value of 6 for given p and the value of (9/9p)g(p) for given p. This
allows substitution of numerical methods for analytical methods in the

determination of g(p). We illustrate with the next example.

EXAMPLE 2 (continued). Recall that the amount of substance in

compartment B at time x is given by the response function

-xez -x6

£(x,0) = 8. (e -e 1)/(e1 - 8,).

1
By differentiating with respect to x and setting the derivative to zero one
has that the time at which the maximum amount of substance present in

compartment B is
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X = (9.n91 - .Qnez)/(e1 - 92).

The unconstrained fit of this model is shown in Figure 10a. Suppose that we

want to test

-~

H: x = 1 against A: x # 1.
This requires that
h(6) = (R,ne1 - R.nez)/(e1 - 62) -1

be converted to a functional dependency if one is to be able to use
unconstrained optimization methods. To do this numerically, set 62 = p, Then

the problem is to solve the equation

61 = 2n61 + p - np

for 61. Stated differently, we are trying to find a fixed point of the

equation
z = fnz + const,
But fnz + const. is a contraction mapping for z > 1--the derivative with

respect to z is less than one-—so that a fixed point can be found by

successive substitution




L=D=gYy

Figure 10a. Illustration of Likelihood Ratio Test Computations with Example 2.

SAS Statements:
PROC NLIN DATA=EG2B METHOD=GAUSS ITER=50 CONVERGENCE=1l,E-10;
. PARMS Tl1=1.4 T2=.4;
MODEL Y=T1*(EXP (-T2*X)~EXP(~-T1*X))/(T1-T72);
DER. T1==T2* (EXP (=T 2*X)=EXP(=T1%*X)) /(T1=-T2) **2+T1*X*EXP (-T1*X ) /(T1-T2);
DER.T2=T1* (EXP (~-T2*X)-EXP (~T1#*X))/(T1-T2) **2-T1*X*EXP (~-T2*X) /(T1~T2);
Output:
STATISTICAL ANALYSTIS SYSTEM 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON
Tl T2 RESIDUAL SS
0 1.40000000 0.40000000 0.00567248
1 1,37373983 0.40266678 0.00545775
2 1.37396974 0.40265518 0.00545774
3 1,37396966 0.40265518 0.00545774
NOTE: CONVERGENCE CRITERION MET.
STATISTICAL ANALYSTIS SYSTEM 2

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y

SQURCE DF SUM OF SQUARES MEAN SQUARE
REGRESSION 2 2.68129496 1.34064748
RESIDUAL 10 0.00545774 0.00054577
UNCORRECTED TOTAL 12 2.68675270
(CORRECTED TOTAL) 11 0.21359486
PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 %
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
T1 1.37396966 0.04864A22 1,26557844 1.48236088
T2 0.40265518 0.01324390 0.37314574 0.43216461

ASYMPTOTIC CORRELATION MATRIX OF THE PARAMETERS
Tl T2

Tl 1.000000 0.236174
T2 0.236174 1.000000



Figure 10b.

SAS Statements:

PROC NLIN DATA=EG2B METHOD=GAUSS ITER=50 CONVERGENCE=l,E~10;
PARMS RHO=.40265518;

T2=RHO;

Zl=1.4; Z2=0; C=T2-LOG(T2);

Ll: IF ABS(Z1-Z22)>1.E-13 THEN DO;

Tl=z21;

NU2=T1*(EXP (-T2*X)-EXP(~T1#*X)) /(T1-T2);

DER_T1=-T2%* (EXP (~-T2*X)-EXP(-T1#*X)) /(T1-T2) **2+T1*X*EXP (-T1#*X) /(T1-T2);
DER T2=T1#*(EXP(-T2*X)~EXP(~T1*X))/(T1-T2)**2-T1*X*EXP (-T2#*X)/(T1-T2);

DER“RHO=DER_T1*(1-1/T2)/(1=1/T1)+DER_T2;

MODEL Y=NU2; DER.RHO=DER_RHO;

OQutput:

STATISTICAL

A NA

LYS IS

22=Z1; Z1=LOG(Z1)+C; GO TO L1;

SYSTEM

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

ITERATION

AW

DEPENDENT VARIABLE: Y

RHO

0.40265518
0.46811176
0.47688375
0.47750162
0.47754034
0.47754274
0.47754289

METHOD:

R

GAUSS-NEWTON

ESIDUAL SS

0.07004386
0.04654328
0.04621215
0.04621056
0.04621055
0.04621055
0.04621055
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Illustration of Likelihood Ratio Test Computations with Example 2.

NOTE: CONVERGENCE CRITERION MET.

STATISTICAL ANALYSTIS SYSTEM 2

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y

SOURCE OF SUM OF SQUARES MEAN SQUARE
REGRESSION 1 2.64054214 2.64054214
RESIDUAL 11 0.04621055 0.00420096
UNCORRECTED TOTAL 12 2.68675270
{CORRECTED TOTAL) 11 0.21359486
PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 %
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
RHO 0.47754289 0.03274044 0.405481138 0.54960439

ASYMPTOTIC CORRELATION MATRIX OF THE PARAMETERS
RHO

RHO 1.00G6000




z = fnz . + const.

z, = fnz, + const.

= {nz, + const,

Zi+1 i

This sequence { will converge to the fixed point.

2y 41}
To compute (3/9p)g(p) we apply the implicit function theorem to

91(9) - anel(p)] =p - fnp
We have
(3/38,){8,(p) - 2al8 ()]} (3/3p)8,(p) = (3/3p)(p - 2np)
or
(3/3p)8,(p) = (1 = 1/p)/[1 = 1/8,(p)]
Then the Jacobian of 6 = g(p) is
(1 = 1/0)/11 = 1/8,(p)]

(3/3p') =

and
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(3/20)£ [x,g(@) ] = {[(3/30))£(x,0)1(1=1/p)/ (1=1/8)) + (3/30)£(x,9)}| gmg(p) ®

These ideas are illustrated in Figure 10b.

SSE = 0.04621055

reduced

(SSEreduced -

SSE¢ 11774

= 74,670,

As F-1(.95; 1, 10) = 4.96 one rejects H.

1=5=34

(from Figure 10a)

(from Figure 10b)

Now let us turn our attention to the computation of the power of the '

likelihood ratio test. That is, for data that follow the model

o
V. = f(xt,e ) + e,

e, 11d. n(0,0%),
t=1, 2, «v., 0,

we should like to compute

2

PL > L, 0°, %, n),

the probability that the likelihood ratio test rejects at level a given 6°, .
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oz, and n where Fa = F_l(l - a3 q, n-p). To do this, note that the test that

rejects when

(SSEreduced - SSEfull)/q

g > F
(SSEfull)/(n - p)

is equivalent to the test that rejects when

(SSE )/ (SSE ) > ¢

reduced full

where
cy = 1+ qFa/(n - P
In Chapter 4 we shall show that

LR
n/(SSE ) = n/e PFe + op(l/n)

full

where

1 -
p; =1 -FEFE P

o

Recall that F = (3/36)£(8°). Then it remains to obtain an approximation to

(SSEreduce

let

* o
en = g(pn)

d)/n in order to approximate (SSEreduced)/(SSEfull)‘

To this end,
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where

n
pz minimizes tZl{f(xt,e°) - f[xt,g(D)]}

2

Recall that g(p) is the mapping from R' into RP that describes the null
hypothesis--H: 6° = g(p) for some p°; r = p-q. The point e: may be
interpreted as that point which 1is being estimated by the constrained
‘estimator gn in the sense that /H(én - 6:) converges in distribution to the
multivariate normal distribution; see Chapter 3 for details. Under this

interpretation,
o *
§ = £(07) - f(en)

may be interepreted as the prediction bias. We shall show later (Chapter 4)

that what one's intuition would suggest is true.1

(SSE

reduced’/® = (& ¥ 6)'P;G(e + 8)/n + °p(1/n)

where
_L r _lll
PFG =1 ~FG(GF FG) GF ,

F = (3/30 )E(8%),

lone's intuition might also suggest that the Jacobian F(6) = (8/86')f(9)
ought to be evaluated at §_ rather than 8°, especially in view of Theorems 6
and 13 of Chapter 3. This is correct, the discrepancy caused by the
substitution of 6° for 0, has been absorbed into the o (1/n) term in order to
permit the derivation of the small sample distribution of the random variable
X. Details are in Chapter 4.




1=2=3D

' o
G = (3/3p )g(pn)-

It follows from the characterizations of the residual sum of squares for the
full and reduced models that

(SSEr ced)/(SSE

edu

full) =X + op(l/n)

where
'l 't 1
X = (e + §) PFG(e + 8)/e PFe.

The idea, then, is to approximate the probability P(L > Fal %, 02, n) by the

2

probability P(X > ca| 6°, 6°, n). The distribution function of the random

variable X is for x > 1 (Problem 4).

A, A

H(x; Vl, VZ’ 1? 2)

=1 =[5 6le/Gem1) + 200,/ =D vy, A/ =D 1g(e; v A dt

1’
where q(t;v,A) denotes the non-central chi-square density function with v
degress of freedom and non-centrality parameter X and G(t;v,)) denotes the
corresponding distribution function (Appendix 1). The two degrees of freedom

entries are

\)=q=p—r
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Table 6. Power of the Likelihood Ratio Test at the 5% Leveél.

1
x2
0 .5 1 2 3 4 5 6 8 10 12
A. vl=l, v2=lO
0.0 .050 .148 ,249 ,440 .599 .722 ,813 .876 .949 .980 .992
. 0001 .050 .148 .249 .440 .599 .722 .813 .876 .%49 .%80 .992
. 001 .050 .148 .249 .440 .599 .723 .813 .876 .949 .980 .992
.01 .051 ,150 .251 .442 .601 .724 .814 .877 .949 .980 .992
.1 .063 .168 .272 .462 .617 .735 .821 .882 .951 .980 .992
B. vl=l, v2=20
0.0 .050 .159 .271 .478 .645 .768 ,853 ,903 .967 ,989 .996
. 0001 .050 .159 .271 .478 .645 .768 ,.853 .909 .967 .989 .996
. 001 .050 .159 .271 .478 .645 .768 .853 .909 .967 .989 ,996
.01 .051 .161 .273 .480 .647 .769 .853 .909 .967 .989 .,996
.1 .065 ,181 .,296 .501 .663 .,780 .860 .913 .968 ,989 .996
c. vl=l, v2=30
c.0 .050 .163 .278 .490 .659 .781 .,864 ,917 .972 .991 .997
. 0001 .050 .163 .278 .490 .659 .781 .864 .917 .972 .991 ,9¢97
.001 .050 .163 .,278 .4%91 .659 ,781 .864 .917 .972 .,991 .997
.01 .051 .165 .280 .493 .661 .782 .864 .918 .972 .991 .,997
.1 .065 .185 ,303 .514 .676 .792 .871 .921 .973 .991 .997
D. ‘Jl=2, \J2=lO
0.0 .050 .111 .178 .318 .454 .,575 .677 .759 .873 ,936 .969
.0001 .050 .111 .,178 .318 ,454 .575 .677 .759 .873 .936 .969
. 001 .050 .111 .178 .318 .454 ,575 .677 ,759 .873 .,936 .969
.01 .051 .112 .,179 .320 .456 .S576 .678 .760 .873 .936 .969
.1 .058 .122 .192 .334 .469 .588 .688 .767 .877 .938 .970
E. vl=2, v2=20
0.0 .050 .121 .199 .364 .517 .647 .749 .827 .922..968 ,987
. 0001 .050 .,121 .199 .364 " .S517 .647 .749 .827 .922 .,968 ,987
. 001 .050 .121 .200 .364 .517 .647 .750 .827 .922 .968 .987
.01 .051 .,122 .201 .365 .519 .648 .750 .828 .923 .968 .987
.1 .060 .135 .216 .382 .534 .660 ,759 .834 ,925 . .969 ,987
F. vl=2, v2=30
0.0 .050 .124 .208 .381 .S539 .671 .773 .847 .936 .975 .991
. 0001 .050 .124 ,208 .381 .539 .671 ,773 .847 .936 .975 .991
.001 .050 .125 ,208 .381 .S539 .671 ,773 .847 .936 ,975 .991
.01 .051 ,126 ,210 .382 .541 .672 .774 .848 .936 .975 .991
.1 .060 .139 .,226 .,400 .556 .684 .782 .854 .,938 .976 .99l

Continued Next Page
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Table 6, Continued.
Kl
XZ
0 .5 1 2 3 4 5 6 8 10 12
G. vl=3, v2=10 .

0.0 .050 ,094 .145 .255 .368 .477 .576 .662 .794 .881 ,933
.0001 .050 ,094 .145 .255 .368 .477 .576¢ .662 .794 .881 .933
. 001 ..050 .095 .145 .255 .368 .477 .576 .662 .794 ,881 ,933
.01 .051 .,095 ,146 .256 .369 .478 .577 .662 .795 .881 .934
.1 .056 ,103 .155 .267 .381 .489 .,586 .670 .800 .884 ,935

H. vl=3, v2=20

0.0 .050 .104 .165 .300 .436 .561 .668 ,755 .874 .940 .973
. 0001 .050 .104 .165 .300 .436 .561 .668 .755 .874 .940 .973
. 001 .050 .,104 .165 .300 .437 ,S561 .668 .755 .874 .940 ,.973
.01 .051 .105 .166 .302 .438 .562 .669 .755 .,875 .940 .973
.1 .057 ,114 .178 .316 .452 .574 .679 .,763 .878 .942 .,973

I \:l=3, \12=3O

0.0 .050 .107 .173 .318 .,462 .591 .899 .785 .897 .954 .981
.0001 .050 .107 ,173 .318 .462 .591 .699 ,785 ,897 .954 .98l
. 001 .050 .107 .173 .318 .462 .592 .699 ,785 .897 ,.,954 .98l
.01 .051 .108 .175 .320 .464 .593 .700 .785 ,.897 .954 .¢%81
.1 .058 .119 .187 .335 .478 .605 .,71C .792 .900 .95 .98l




V.= n = p

and the non—centrality parameters are
A =8 5/ (20
1 = 8 (Pp = Pp)8/(207)

"t 2
XZ = § PFs/(ZU )

' -1t [ | -1t 1
where PF F(F F) °F , PFG‘ FG(G F FG) "G F , and PF 1 PF' This
distribution is partially tabulated in Table 6. Let us illustrate the
computations necessary to use these tables and check the accuracy of the

approximation of P(L > Fy ) by P(X > c,) by Monte Carlo simulation using

Example 1.
EXAMPLE 1 (continued). Recalling that

6.x

373

f(x,0) = 8. x4+ 0,x, + 0,e

171 272 4

let us approximate the probability that the likelihood ratio test rejects the

following three hypotheses at the 5% level when the true values of the

parameters are
8° = (.03, 1, -1.4, =5) ,
o2 = .001.

The three null hypotheses are:




0.9 e

Hy: 0,50,

= 1/5

H,: 6, =0 and 6.0,e

3¢ 93 39, " = 1/5

The computational chore is to compute for each hypothesis:

n
pz minimizing z {f(xt,eo) - f[xt,g(p)]}
t=1

§ = £(6°) - f(9:), 9: = g(oz)

L
8 PFG, s PFGG’ and § 6.
With these, the non—-centrality parameters

' ' 2
Xl = (§ PFG -3 PFGG)/(ZO )

' 2
A, = (88 - 8P 8)/(20)
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are easily computed. As usual, there are a variety of strategies that one

might employ.

To compute §, the easiest approach is to notice that minimizing

n
I {£(x,,8%) - £lx ,g(0)1}

t=1

is no different than minimizing
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n
Iy, - flx_.g(1}

t=1
One simply replaces Yy by f(xt,e°) and uses the modified Gauss—Newton method,
the Levenberg-Marquardt method, or whatever.

To compute G'PFG one can either proceed directly using a programming
language such as PROC MATRIX or make the following observation. If one
regresses § on F with no intercept term using a linear regression procedure
then the analysis of variance table printed by the program will have the

following entries

Source d.f. Sum of Squares
1 ' -1t
Regression P SF(FF) F§
' . ] [] -1
Error n-p § §~8SF(FF) F
\]
Total n § 8

One can just read off
' 1 ] )
$ PFS = § F(F F)F §
from the analysis of variance table. Similarly for a regression of 6§ on FG.

Figures 1la, 11b, and llc illustrate these ideas for the hypothesis H;,

Hy, and Hs.



For the first hypothesis we have

§68 = 0.006668583
s'st = 0.006668583

§'P 6§ = 3.25 x 1070
Ppd = 3.25 x 10

whence

>
[]

' ' 2
(6 PF5 -4 PFGG)/(ZU )

(0.006668583 - 3.25 x 10~2)/(2 x .001)

3.3343

A = (86 - e'st)/(Zoz)

(0.006668583 - 0.006668583)/(2 x ,001)

= 0

0
L}

1 +qF /(n - p)

1 + (1)(4.22)/26

1.1623
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(from Figure 1lla)
(from Figure lla)

(from Figure lla)

Computing 1 - H(1.1623; 1, 26, Ay, A,) by interpolating from Table 6

we obtain

P(X > ¢,) = .700

as an approximation to P(L > Fa)' Later we shall show that tables of the non-

central F will usually be accurate enough so there is usually no need for

special tables or special computations.




Figure lla.
with Example 1

SAS Statements:

DATA WORKOl; SET EXAMPLEL;
YDUMMY=T 1 #X 1 +T 2*X 2+T4*EXP (T
FlaXl; F2=X2;
DROP T1 T2 T3 T4;

F3=T4*X3*EXP (T3*X3);

T1l=,03;
3*x3);

T2=1;

T3=-1,4;

F4=EXP(T3*X3);

T4=-,5;

PROC NLIN DATA=WORKOl METHOD=GAUSS ITER=50 CONVERGENCE=1.0E-13;

PARMS T2=1 T3=-1.4 T4=-,5;
MODEL YDUMMY=T1#*#X1+T2*X2+T4

T1=0;
*EXP(T3*X3);
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Illustration of Likelihood Ratio Test Power Computations

DER.T2aX2; DER.T3=T4*X3*EXP (T3*X3); DER.T4=EXP(T3*X3);
Output:
STATISTICAL ANALYSTIS SYSTEM
NON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: YDUMMY METHOD: GAUSS-NEWTON
ITERATION T2 T3 T4 RESIDUAL SS
0 1.00000000 -1.40000000 -0.50000000 0.01350000
1 1.01422090 -1,39717572 -0,49393589 0.00666859
2 1.01422435 -1.39683401 -0.49391057 0.00666858
3 1.01422476 -1.39679638 -0.49390747 0.00666858
4 1,01422481 -1,.39679223 -0,49390713 0.00666858
5 1.01422481 -1.39679178 -0,49390709 0.00666858
6 1.01422481 -1,39679173 -0,49390708 0.00666858

NOTE: CONVERGENCE CRITERION

SAS Statements:

DATA WORK02; SET WORKOl;
Ti=0; T2=1.01422481;
DELTA=YDUMMY~ (T1*X1+T2%X 2+T

T3=-1.39679173;

-MET.

4*EXP (T3%*X3));

T4=-0,49390708;

FGl=aF2; FG2=F3;

FG3=F4; DROP Tl T2 T3 T4;

PROC REG DATA=WORK(0Z2; MODEL DELTA=F1 F2 F3 F4 / NOINT;
PROC REG DATA=WORK02; MODEL DELTA=FGl FG2 FG3 / NOINT;

Qutput:
STATISTICAL ANALYSTIS SYSTEM
DEP VARIABLE: DELTA
SuMm OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F
MODEL 4 0.006668583 0,.001667146 999999.990 0.0001
ERROR 26 2.89364E-13 1.11294E-14
U TOTAL 30 0.006668583
STATISTICAL ANALYSTIS SYSTEM
DEP VARIABLE: DELTA
SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F
MODEL 3 3.25099E-09 1,08366E-09 0.000 1.0000
ERROR 27 0.00666858 0.0002469844
U TOTAL 30 0.006668583
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For the second hypothesis we have

§'s = 0.01321589 (from Figure 11b)
§'pg6 = 0.013215 (from Figure 11b)
§'8 - §'Ppé = 0.00000116542 (£rom Figure 11b)
§'Ppgd = 0.0001894405 (from Figure 11b)
whence
A §'P. 6~ 8P 5 2
L = (82,8 = 8B 8)/(20%)

(0.013215 - 0.0001894405)/(2 x .001)

6.5128

A, = (86§ - 5'pF5)/(2 x ¢2)

(0.00000116542)/(2 x ,001)

0.0005827

(¢]
[}

1 + un/(n -p)

1 + (1)(4.22)/26

1.1623

Computing 1 - H(1.1623; 1, 26, A1s» X9) as above we obtain

P(X > ca) = ,935

as an approximation to P(L > F,).




Figure 1llb.

SAS Statements:

DATA WORKO1l;

SET EXAMPLE];

T1=,.03;

YDUMMY=T 1 *X 1+T2*X 2+T4*EXP (T3*X 3);

Fl=X1l; F2=X2;
DROP T1 T2 T3 T4;

F3=T4*X3*EXP (T3*X3);

T2=1; T3=-1,4;

F4=EXP(T3*X3);

T4=-_5;

PROC NLIN DATA=WORKOL METHOD=GAUSS ITER=50 CONVERGENCE=1.0E-13;
PARMS R1=,03 R2=1 R3=-1.4;
T1sR1l; T2=R2; T3aR3; T4=1/(S5*R3I*EXP(R3));
MODEL YDUMMY=T1*X1+T2*X2+T4*EXP(T3*X3);

DER_T1=X1l; DER_T2=X2; DER_T3=T4*X3*EXP (T3*X3); DER_T4=EXP(T3*X3);
DER.R1=DER _T1; DER.R2=DER T2;

DER.RB-DER:?3+DER_?4*(-T47*2)*(5*8XP(R3)+5*R3*EXP(R3));

Qutput:

STATISTICAL

ANALYSTIS

SYSTEM

NON-L INEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT VARIABLE: YDUMMY

ITERATION

WO UEWN-O

10

R1

0.03000000
0.03363136
0.03440842
0.03425560
0.03435915
0.03433517
0.03434071
0.03433948
0.03434008
0.03433966
0.03433975
0.03433973
0.03433974
0.03433974
0.03433974

R2

1.00000000
1.01008796
1.00692167
1.01002926
1.00268253
1.00977877
1.00977225
1.00978190
1.00978565
1.00978700
1.00978669
1.00978677
1.00978675
1.00978675
1.00978675

METHOD:

R3

-1.40000000
-1.12533963
-1.28648656
-1.25424342
=1.,27776231
-1.27229450
~1.27354293
~1.27325579
-1.27338768
-1.27329144
-1.27331354
-1.27330847
-1.27330963
-1.27330936
-1.27330943

GAUSS-NEWTON

Illustration of Likelihood Ratio Test Power Computations
with Example 1.

RESIDUAL SS

0.01867856
0.01588546
0.01344947
0.01325389
0.01321800
0.01321601
0.01321590
0.01321589
0.01321589
0.01321589
0.01321589
0.01321589
0.01321589
0.01321589
0.01321589

NOTE: CONVERGENCE CRITERION MET.

SAS Statements:

DATA WORK02; SET WORKO1;

R1=0,03433974; R2=1.00978675; R3=-1.27330943;

T1=R1l; T2=R2; T3=R3; T4=1/(S5*R3I*EXP(R3));

DELTA=YDUMMY~ (T1*X1+T2*X2+4T4*EXP (T3*X3));

FGl=Fl; FG2=F2; FG3sF3+F4*(-T4**2)*(S*EXP(R3)+5*RI*EXP(R3));
DROP T1 T2 T3 T4;
PROC REG DATA=WORKO02;
PROC REG DATA=WORKO02:

MODEL DELTA=F1 F2 F3 F4 / NOINT;
MODEL DELTA=FGl FG2 FG3 / NOINT;

Output:
STATISTICAL ANALYSTIS SYSTEM

DEP VARIABLE: DELTA

Sum OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PRCB>F
MODEL 4 0.013215 0.0033036381 73703.561 0.0001
ERROR 26 ,00000116542 4.48239E-08
U TOTAL 30 0.013216

STATISTICAL ANALYSTIS SYSTEM

DEP VARIABLE: DELTA

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F
MODEL 3 0,0001894405 .00006314682 0.131 0.9409
ERROR 27 0.013026 0.0004824611



Figure llc. 1Illustration of Likelihood Ratio Test Power Computations

with Example 1.

SAS Statements:

DATA WORKO01l; SET EXAMPLEl; Tl=,03; T2=1; T3=-1.4; T4=- 5;
YDUMMY =T 1 #X 1 +T2*X 2+T4*EXP (T3*X 3);
Fl=X1l; F2=X2; F3=T4*X3*EXP(T3*X3);
DROP T1 T2 T3 T4;

PROC NLIN DATA-WORKO1l METHOD=GAUSS ITER=50 CONVERGENCE=1.0E-13;
PARMS R2=] R3=-1.4; R1l=0;

T1l=R1l; T2=R2; T3=R3; T4=1/(S*RI*EXP(RI));

MODEL YDUMMY=T1#*X1+T2*X2+T4*EXP (T3#*X3);

DER Tl=X1l; DER _T2aX2; DER T3aT4*X3*EXP(T3*X3); DER T4=EXP(T3*X3);

DERTR2#DER_T2;  DER.R3I=DER_T3+DER_T4* (-T4**2) * (S*EXP (R3)+5*RI*EXP (R3));

F4=EXP(T3*X3);

Output:

STATISTICAL ANALYSTIS SYSTEM 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT VARIABLE: YDUMMY METHOD: GAUSS-NEWTON
ITERATION R2 R3 RESIDUAL SS
0 1,00000000 -1.40000000 0.04431091
1 1.02698331 -1.10041642 0.02539361
2 1.02383184 -1,26840577 0.02235554
3 1,02719587 -1,25372059 0.02205576
4 1.02705467 -1.26454488 0.02204817
S 1.02709154 -1.26197184 0.02204774
6 1.02708616 -1,26258128 0.02204771
7 1.02708920 -1,26243671 0.,02204771
8 1.02708937 -1.26247100 0.02204771
° 1.02709018 -1.26245473 0.02204771
10 1.02709003 -1.26246672 0.02204771
11 1,02709006 -1.26246388 0.02204771
12 1.02709005 -1.26246455 0.02204771
13 1.02709006 -1.26246439 0.02204771

NOTE: CONVERGENCE CRITERION MET.

SAS Statements:

DATA WORK02; SET WORKO1;

R1=0; R2=1.02709006; R3=-1.2624A439;

TlsR1l; T2=R2; T3=R3; T4=l/(S*RI*EXP(R3));
DELTA=YDUMMY- (T1#X1+T 2*X2+T4*EXP (T3*X3));

FGl=F2; FG2=F3+F4*(~T4**2)*(S*EXP(R3)+5*RI*EXP(R2));
DROP T1 T2 T3 T4;
PROC REG DATA=WORKO02;
PROC REG DATAsWORKO02;

MODEL DELTA=Fl F2 F3 F4 / NOINT;
MODEL DELTAsFGl FG2 / NOINT;

Qutput:
STATISTICAL ANALYSTIS SYSTEM

DEpP VARIABLE: DELTA

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F
MODEL 4 0.022046 0.005511515 86947,729 0.0001
ERROR 26 .00000164811 6,33888E-08
U TOTAL 30 0.022048

STATISTICAL ANALYSTIS SYSTEM

DEP VARIABLE: DELTA

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE PROB>F
MCDEL 2 0.0001252535 .00006262677 0.080 0.9233
ERROR 28 0.021922 0.0007829449

U TOTAL 30 0.022048
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For the third hypothesis we have

1

§ 6 0.02204771 (from Figure 1llc)

§'pp 6 0.022046 (from Figure llc)

§'6 - 8'Pp6 = 0.00000164811 | (from Figure llc)

$

§'Prg 0.0001252535 (from Figure llc)

whence

>
[]

] ] ’ 2
(8 2,8 = § P, .8)/(207)

(0.022046 - 0.0001252535)/(2 x .001)

10.9604

>
[}

(s's - s'ch)/(z x .001)

(0.00000164811)/(2 x .001)

0.0008241

(¢}
]

1+qF /G - p)

1 + (2)(3.37)/(26)

1.2592

Computing 1 - H(1.2592; 2, 26, Al, Az) as above we obtain

P(X > ca) = ,983.

Once again we ask: How accurate are these approximations? Table 7

indicates that the approximations are quite good and later we shall see
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several more examples where this is the case. 1In general, Monte Carlo
evidence suggests that the approximation P(L > ca) = P(X > ca) is very
accurate over a wide range of circumstances. Table 7 was constructed exactly

as Table 5. i

In most applications 12 will be quite small relative to 11 as in the
three cases in the last example. This being the case, one sees by scanning
the entries in Table 6 that the value of P(X > ca) computed with AZ = 0 would

be adequate to approximate P(L > F,). If X, = 0 then (Problem 5)

\
H(ca; “1’ vz, Al, 0) =F (Fa; vl, vz, Ar)

with
c, = 1 + vlFa/v2 .

Recall that F'(x; Vis Voo 1) denotes the non-central F-distribution with vy
numerator degrees of freedom, vy denominator degrees of freedom, and non-
centrality parameter A (Appendix 1). Stated differently, the first rows of
Parts A through I of Table 6 are a tabulation of the power of the F-test.
Thus, in most applications, an adequate approximation to the power of the
likelihood ratio test is

. '
P(L > FG) =1-~-F (FG; \)1’ \)2, )‘1)

The next example explores the adequacy of this approximation.
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Table 8. Monte-Carlo Power Estimates for an Exponential Model

Parameters Non-centralities A Monte-Car’.‘E:::

8, 9, M A Px>c ] P SE(p)
5 .5 0 0 .050 .0532 . 00308
53R .5 985k 0 .20k .2058  .00370
. b237 .68L9 . 9853 . 00034 « 204 .211k . 00570
. 5856 .5 L. 556 0 727 «T1ko « 00630
3473 .8697 k. 556 . 00537 .728 <7312 006 29
.62 .5 8.958 0 <957 <9530 . 00387




A o a

EXAMPLE 3. Table 8 compares the probability P(X > c,) to Monte Carlo

estimates of the probability of P(L > F,) for the model

Thirty inputs {x were chosen by replicating the points 0 (.1) .7 three

}30
t't=1
times and the points .8 (.1) 1 twice. The null hypothesis is H: 6° = (1/2,
1/2). For the null hypothesis and selected departures from the null

hypothesis, 5000 random samples of size thirty from the normal distribution

2 taken as .04, The point

were generated according to the model with ¢
estimate 5 of P(L > F,) is, of course, the ratio of the number of times L
exceeded F, to 5000. The variance of 5 was estimated by
Var(;) = P(X > ca) P(X < ca)/SOOO. For complete details see Gallant (1975a).
To comment on the choice of the values of 6° # (1/2, 1/2) shown in Table
8, the ratio Az/kl is minimized (=0) for 6° # (1/2, 1/2) of the form (61, 1/2)
and is maximized for 6° of the form (1/2, 1/2) + rlcos(5n/8), sin(57/8)].
Three points were chosen to be of the first form and two of the latter form.
Further, two sets of points were paired with respect to Al' This was done to
evaluate the variation in power when Xz changes while A; is held fixed.
These simulations indicate that the approximation of P(L > Fa) by

P(X > c¢y) is quite accurate as is the approximation

. '
P(X>c ) =1-F (F; q, n-p, })).

EXAMPLE 2 (continued). As mentioned at the beginning of the chapter, the

model

-0 _x -0.x
B: y, = 0, (e 2t L. lt)/(el-ez)+et
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was chosen by Guttman and Meeter (1965) to represent a nearly linear model as
measured by measures of the coincidence of the contours of Iy - f(B)Il2 with

~ 'A ~
the contours of (8 - 6) C(6 - 8) introduced by Beale (1960). The model

-0.x -let

- 0,e )/(61 - 62) + e

2 t

is highly nonlinear by this same criterion. The simulations reported in Table

9 were designed to determine how the approximations

P(W>F) =P >F))

P(L >F,) =PB(X >c))

hold up as we move from a nearly linear situation to more nonlinear

situations. As we have hinted at all along, the approximation
P(W > Fa) = P(Y > Fa)

deteriorates badly while the approximation
P(L > Fa) = P(X > ca)

holds up quite well. The details of the simulation are as follows.

The probabilities P(W > F,) and P(L > F ) that the hypothesis
H: 6° = (1.4, .4) is rejected shown in Table 9 were computed from 4000 Monte
Carlo trials using the control variate method of variance reduction (Hammersly

and Handscomb, 1964). The independent variables were the same as those listed



in Table 2 and the simulated errors were normally distributed with mean zero
and variance o2 = (.025)2. The sample size in each of the 4000 trials was

n = 12 as one sees from Table 2. An asterisk indicates that P(W > F ) is
significantly different from P(Y > F,) at the 57 level; similarly for the

likelihood ratio test. For complete details see Gallant (1976). I

If the null hypothesis is written as a parametric restriction

H: h(e®) = 0

and it is not convenient to rewrite it as a functional dependency 6 = g(p) the

following alternative formula (Section 6 of Chapter 3) may be used to compute

Ppg .
* 2 o 2
0 minimizes z [£(x_,0") - £(x_,8)]" subject to h(8) = 0
n t=1 t t
- * ' %*
H = H(Gn) = (3/39 )h(en)
[} _1_' - 1 ] _1_' _1_ ? _1 ]
P =P ~-F(FF) H[H(FF) H] H(F F) F
FG F
We have discussed the Wald test and the likelihood test of
H: h(8°) = 0 against A: h(8°) # O,
equivalently,

H: 6° = g(p) for some o° against A: 8% # g(p) for any o




There is one other test in common use, the Lagrange multiplier (Problem 6) or
efficient score test. In view of the foregoing, the following motivation is

likely to have the strongest intuitive appeal. Let
6 minimize SSE(®) subject to h(8) = 0,

equivalently,
8 = g(p) where p minimizes SSE[g(p)]

Suppose that 6 is used as a starting value, the Gauss-Newton step away from ©

~

(presumably) toward 9 is

D=

Fly - £(9)]

where F = F(8) = (3/38 )£(6). Intuitively, if the hypothesis h(8°) = 0 is
false then minimization of SSE(8) subject to h(8) = 0 will cause a large
displacement away from ) and D will be large. Conversely, if h(8°) is true
then 6 should be small. It remains to find some measure of the distance of D

from zero that will yield a convenient test statistic.

Recall that

n

*

en minimizes z [f(xt,eo) - f(xt,e)]2 subject to h(8) = 0,
t=1

equivalently,

n
* (o) o o, _ 2
en - g(pn) where p minimizes t£1{f(xt’e ) f[xt,g(p)]}



and that

0 *
§ = £(87) - f(en)

S
PF = F(F F) 'F

L | _1 L
PFG = FG(G F FG) G F

\]
where G = (3/3p )g(pz). Equivalently,

* -l= - t _1_' ~1= ] -1 ]
PFG = PF - F(FF) H[H(FF) H] H(FF) F

- A *
where H = (3/99 )h(en). We shall show in Chapter 4 that

~p~ o~

D (F F)D/n = (e + c)'(pF “Pp)le + O)/n + o (1/n),
SSE(8)/n = (e + 8) (I - Peg)(e + 8)/n + o (1/n),
SSE(8)/n = e (I - Ppde/n + o (1/n).

These characterizations suggest two test statistics

~p Mg o~

D g F)D/q
SSE(8)/(n - p)

and




~e~ o~

R, =0 D (F F)D/SSE(9)

The second statistic Ry is the customary form of the Lagrange multiplier test
and has the advantage that it can be computed from knowledge of 6 alone. The
first requires two minimizations, one to compute 5 and another to compute 5.
Much is gained by going to this extra bother. The distribution theory is
simpier and the test has better power as we shall see later on.

The two test statistics can be characterized as

w
]

1 Z1 + op(l)

w
]

2 Z2 + op(l)

where

(e + 5)'(pF - Bpe)(e + /g

e'(I - PF)e/(n - p)

N
L]

] ]
n(e + §) (pF - PFG)(e + 8)/(e + 8) (I - PFG)(e + §).
The distribution function of 2Z; is (Problem 7)
]
F (z; q, n-p, A)
where

! 2
Al =6 (PF - PFG)G/(ZO ).
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That is, the random variable 2, is distributed-as the non-central F-
distribution (Appendix 1) with q numerator degrees of freedom, n-p denominator
degrees of freedom, and non-centrality parameter A+ Thus R, is approximately
distributed as the (central) F distribution and the test is: Reject H when R;
exceeds Fa = F_l(l ~a; q, n = p)e.

The distribution function of 22 is (Problem 8) for z < n

F [(a-p)(2)/(a)(a-2); q, m-p, A[, A,
where
A, = 8 (B, - P )8/(20%)
1 F FG
' 2
A, = 8 (1 - B)8/(20%).

2

11
and F (t; q, n-p, Xl, A,) denotes the doubly non-central F-distribution
(Appendix 1) with q numerator degrees of freedom, n-p denominator degrees of
freedom, numerator non—centrality parameter Al and denominator non—centrality

parameter Xy (Appendix 1). If we approximate
P(R2 >d) = P(22 > d)

then under the null hypothesis that h(6°) = 0 we have § = 0, Xl = (0, and

Az = (0 whence

P(R, > d|A; = A, = 0) = 1 - F[(n-p)(d)/(q)(n=d); q, n-p]
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Letting F, denote the a x (100%) critical point of the F-distributionm, that is
a=1- F(Fa; q, n=p)
then that value d, of d for which
P(R > da|x1 =1, =0) =a

is

F, = (“'P)(da)/(q)(“'da)

or

d, = of /[(a-p)/q +F_l.
The test is then: Reject H: h(6°) = 0 if Ry, > dy. With this computation of

dgs

P(R1 > Fa) P(Zl > Fa)

[
1-F (FG; q, n-p, >‘1)

\J

)
<1-F (Fa; q, n-p, Al, Az)

P(Z2 > da)
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= P(R2 > da)

and we see that to within the accuracy of these approximations, the first
version of the Lagrange multiplier test always has better power than the
second. Of course as we noted earlier, in most instances 12 will be small
relative to Al and the difference in power will be negligible.

In the same vein, judging from the entries in Table 6 we have (see

Problem 10)
?
1 -F (F; q, n-p, X)) <1 -H(c ; q, n-p, Ay A)

whence

P(L > Fa) P(X > ca)

*
>1-F (Fg; q, np, X))

P(Z1 > Fa)
= P(R1 > Fa)'
Thus the likelihood ratio test has better power than either of the two

versions of the Lagrange multiplier test. But again, Xz is usually small and

the difference in power negligible.
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To summarize this discussion, the first version of the Lagrange

multiplier test rejects the hypothesis
H: h(6%) =0

when the statistic

oy mgn -~

_ D (F F)n/q
SSE(8)/(n-p)

exceeds Fa = F_l(l-a; q, n—~p). The second version rejects when the statistic

~y M~ o~ ~

R2 = nD (F F)D/SSE(6
exceeds
d, = oF /[(n=-p)/q +FI.

As usual, there are various strategies one might employ to compute the
statistics R; and Ro. In connection with the likelihood ratio test, we have
already discussed and illustrated how one can compute 9 by computing the
unconstrained minimum 8 of the composite function SSE[g(p)] and setting
¥ = g(S). Now suppose that one creates a data set with observations

-

e, =Y, - f(xt,e) t=1,2,...,0

, .
ft = (3/98 )f(xt,B) t=1,2,.04.,0n
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Or in vector notation
- ~ - . ~
e=y - £(8), F = (3/30 )E(O)

- ~ ' -
Note that F is an n by p matrix; F is not the n by r matrix (3/3p )flg(p)].
If one regresses ; on F with no intercept term using a linear regression

procedure then the analyssis of variance table printed by the program will

have the following entries

Source d.f. Sum of Squares

i ladPied Hodis Bl B
Regression P e F(F F) F e

g g g
Error n-p ee-e F(F F)F e
Total n mre

e e

One can just read off

e~ o~ g~ g~ ~'~

D (F F)D = e F(F F) F e

SSE(G) =g e

from the analysis of variance table. Let us illustrate these ideas.
EXAMPLE 1 (continued). Recalling that the response function is

0,x

373
£(x,8) lel + 92x2 + 64e

reconsider the first hypothesis




Iliustration of Lasrange Mullirlier Test Computations
with Examrle 1.

Fisure 12z,

585 Statemenis:

UDATA WORKGLS  SET EXAMPLELS

Ti=0.,05 T2=1.00294392F T3=-1.,14123442;
E=Y—{ TIXXIHT2HX2+THREXP( T3XX3) )3
Fi=X1i F2=X25 F3=T4kXIXEXP({TIXX3)s
OROF 71 T2 73 T45
FROC REG DATA=UORKOLj

T4=-0.511822775
F4=EXP( T3%X3)s
MODEL E=F1 F2 F3 F4 / NOINT

Quitruts
STATISTICAL ANALYSIS SYSTEHM
GEF UVARIABLE: E
SUM OF HEAN

HOURCE oF SQUARES SQUARE F VALUE PRORF
RODEL 4 §.004938382 0.001234594 1.053 0.,3996
ERROR 28 0.030495 0.001172849
U 7074l 30 0.035433

RGOOT HSE 0.034247 R~SQUARE 0.1394

OER MEAN -5.30727E~09 ADJ R-5Q 0.0401

C.Y,

-621854289%

MGTE: NO INTERCEPT TERM IS USED. R-SGUARE IS5 REDEFINED.

FARANETER STANDARD T FOR HOS
VARIABLE IF ESTIMATE ERROR PARAMETER=0  PROE > iT:
7l 1 -0,025888 0.012616 -2,052 0.0304
F2 1 0.012719 0.009874181 1,288 0,2091
F3 1 0.026417 0,1485440 0.160 0.8744
Fé 1 0.007033215 0.025929 0.271 0.7883
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H: 9? = 0,

Previously we computed

0.0
- 1.00296592 (from Figure 9a)
9 =
-1.14123442
-0.51182277
SSE(9) = 0.03543298 (from Figure 9a or Figure 12a)
SSE(9) = 0.03049554 (from Figure 5a)

We implement the scheme of regressing e on F in Figure 12a (note the

similarity with Figure 1lla) and obtain

oy o~

~t
D (F F)D = 0.004938382 (from Figure 12a)

The first Lagrange multiplier test statistic is

oy g~ o~

D ({ F)D/q
SSE(68)/(n-p)

_ (0.004938382)/ (1)

= 4.210.

Comparing with the critical point




Fol(.95; 1, 26) = 4.22

one fails to reject the null hypothesis at the 957 level.

The second Lagrange multiplier test statistic is

oy Mg~ o~ ~

nD (F F)D/SSE(®

)
]

(30)(0.004938382)/(0.03543298)

4.1812
Comparing with the critical point
d, = of /[(n-p)/q +F_]
= (30)(4.22)/1(26)/(1) + 4.22]
= 4,19

One fails to reject the null hypothesis at the 957 level.

Reconsider the second hypothesis
o3
H: 840,e ~ = 1/5

which can be represented equivalently as

1-5-65



Fig
b3

igure 12D,

5A8 Statements:

OATA WORKOLF SET EXAMPLELS
"1=-0,023018283

R2=1.01745423;

R3=-1.,1604856993

T1=R1s T2=R2F T3=R3i T4=1/(SKRIAEXP(RI));
E=Y-( TLRXL+T2RX24+T4XEXP( TIXX3) )5

F3=T4AXXIXEXP( T3I%X3 )3
OROF T1 T2 T3 T43

Fi=X1i

FRGC REG DATA=WORROLs

Qutruil

F2=X2;

STATIST

UEF VARIABLEY E

S0URCE [IF

MOBEL 4

ZRROR 26

b iaTaL 30
RO0T NSE
DEPF HEAN
T

HOTE: 0 IWTERCEPT TERM IS

UARIABLE [IF

T T T T
B O B OV e
[l ool

-

SuUM OF
SQUARES

0.004439308
0.030493
0.034932

0.034246
7+39999E-09
4504609078

FARANETER
ESTIMATE

-0.00285742
-0.00398544
0.043503
0.,045342

ICAL

MEAN
SQUARE

0,001109827
0.001172804

R~-SQUARE
Al R-5Q

F4=EXP{ T3XX3)s

HODEL E=F1 F2 F3 F4 / NOINTS

ANALYSIS

F VaLUE

0.946

Illustration of Ladrande Hultirlier Test Comruilations
with Examele 1.

SYSTEHN

PROEF

0.,4531

USET', R-SQUARE IS REDEFINED.

STANDARD
ERROR

0,0125611
0.009829362
0.156802
0.026129

T FOR HOS
PARAMETER=0

-0.,227
'00405
0.277
1,736

oD M)
o~ n
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H: 6° = g(p) for some p°

with

1
P2
g(p) =
3
P
1/(5pqe 3
Previously we computed
-0.02301828
o = 1.01965423 (from Figure 9b)
-1.16048699
SSE(9) = 0.03493222 (from Figure 9b or Figure 12b)
SSE(9) = 0.03049554 (from Figure 5a)
Regressing e on f we obtain
D (F F)D = 0.004439308 (from Figure 12b)

The first Lagrange multiplier test statistic is

~ ~yg o~

D (F F)D/q
SSE(6)/(n-p)




1=JT00

. (0.004439308)/(1)

= 3,7849
Comparing with
F(.95; 1, 26) = 4,22

we fail to reject the null hypothesis at the 95% level.

The second Lagrange multiplier test statistic is

~y Mg~ o~ -~

nD (F F)D/SSE(®

o)
(]

(30)(0.004439308)/(0.0349322)

3.8125

Coﬁparing with

=9
|}

of /{(n-p)/q +F ]

(30)(4.22)/1(26)/(1) + 4.22]

= 4.19

we fail to reject at the 95% level.

Reconsidering the third hypothesis




H: 6, =0 and 6.8,e ~ = 1/5

which may be rewritten as
o

H: 0% = g(p) for some p

with

0

P2

g(p) =
3
P
1/(5pge )
Previously we computed

. 05 1.00795735
Py ~1.16918683

SSE(8) = 0.03889923
SSE(8) = 0.03049554
Regressing ; on E we obtain

D (F F)D = 0.008407271
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(from Figure 9c)

(from Figure 9c or Figure 12¢)

(from Figure 5a)

(from Figure 12¢)



Figure 12c, Iliustration of Ladrange Multirlier Test Comrutations
with Examrle 1,

545 Statements:

ATA WORKOLs SET EXAMPLELS

#1=05 R2=1,0079597355 KR3=-1.16718483;

Ti=R1i T2=RZs T3=R3I3 T4=1/(OKRIXEXP(R3I))j

E=V—{ TIXXIPT24X2+T4XKEXPC T3%X3 )3

Fil=X13 F2=X25 F3=T4kXIKEXP(TIKX3 )i F4=EXP(T3XX3)s
DROF T1 T2 T3 T45

PROC REG DATA=MWORKOLs HMODEL E=F1 F2 F3 F4 / NOINTS

Gutruts

STATISTICAL ANALYSIS SYSTEHN

OEF VARIABLE! E

SuM OF MEAN
SOURCE oF SQUARES SQUARE F VALUE PROBXF
MOBEL 4 0.008407271 0.002101818 1.792 0.1607

ERROR 26 0.030492 0.0011727468
U TaTaL 30 0.038899

ROOT HSE 0.034246 R-SQUARE 0.2161
DEF HEAN -2.33174E-09 Al R-SQ 0.1257
GV, -1209350370

ROTES NO INTERCEFT TERM IS USED. R~S5QUARE IS REDEFINED.

FARAMETER STANDARIT T FOR HOS

VARIABLE DF ESTIMATE ERROR PARAMETER=0  PROB > IT!
Fi 1 ~0.025848 0.012608 -2.052 0.0504
2 1 0.007699193  0.00980999 0.785 0.43%6
F3 1 0.052092 0.157889 0,330 0.7441
Fé 1 0.046107 0.026218 1,759 0.0904
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The first Lagrange multiplier test statistic is

~y mp ~

D (F F)D/q
SSE(6)/(n-p)

- (0.008407271)/(2)

= 3.5840
Comparing with
F-1(.95; 2, 26) = 3.37

we reject the null hypothesis at the 57 level.

The second Lagrange multiplier test statistic is

X ~

D (F F)D/SSE(6

P
'l

(30)(0.008407271)/(0.03889923)

6.4839
Comparing with

d, =nof [(n -p)/q +F_]

(30)(3.37)/((26)/2 + 3.37]

6.1759

we reject at the 957 level. 1



As the example suggests, the approximation

~p e o~

D (F F)D = SSE(8) - SSE(8)

i1s quite good so that

in most applications. Thus, in most instances, the likelihood ratio test and
the first version of the Lagrange multiplier test will accept and reject
together,

To compute power, one uses the approximations
P(R1 > Fa) = P(Z1 > Fq)
and
P(R2 > da) = P(Z2 > da)'

The non-centrality parameters Al, and Az appearing in the distributions of Z,
and Z, are the same as those in the distribution of X. Their computation was
discussed in detail during the discussion of power computations for the

likelihood ratio test. We 1llustrate
EXAMPLE 1 (continued). Recalling that

%5%4
£(x,0) = elxl + 92x2 + 64e




let us approximate the probabilities that the two versions of the Lagrange
multiplier test reject the following three hypotheses at the 5% level when the
true values of the parameters are

8% = (.03, 1, =1.4, =.5)"

o2 = ,001

The three hypotheses are the same as those we have used for the illustration

throughout:
HI: el=0
03
HZ: 9364e = 1/5
84
Hy: 83 = 0 and 0404e ~ = 1/5.

In connection with the illustration of power computations for the likelihood

ratio test we obtained

Hp: Ay = 3.3343, Ay = 0
Hay: A; = 10.9604 Ay = 0,0008241.
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For the first hypothesis

P(R, > F ) = P(z1 >F)
L
=]1-F (Fa; q, n-p, kl)
L
=1 ~-F (4.22; 1, 26, 3.3343)
= ,700 ,
P(R2 > da) = P(Z2 > da)
L 28 ]
=1 -F (4.22; 1, 26, 3.3343, 0)
= ,700 ;
the second
P(Rl >F) = P(z1 >F)

1
1 ~-F (F,; 4, n-p, Xl)

]
1 -F (4.22; 1, 26, 6.5128)

= .935 ‘l'



P(R2 > da) P(Z2 > da)

K
1-F (Fa; q, n-p, kl’ X2)

1t
1 -F (4.22; 1, 26, 6.5128, 0.0005827)

= ,935
and the third
19(111 >F)) = P(z1 > Fa)
L
=1-F (Fa; q, n-p, >\1)
]
=1 ~-F (3.37; 2, 26, 10.9604%)
= ,983
1>(R2 > da) = 1>(z2 > da)

'
=1-F (Fa; q, n-p, Al’ kz)

L
1 -F (3.37; 2, 26, 10.9604, 0.0008241)

= .983
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Again one questions the accuracy of these approximations. Tables 10a and
10b indicate that the approximations are quite good. Also, by comparing
Tables 7, 10a and 10b one can see the beginnings of the spread

P(L > Fa) > P(R1 > Fa) > P(R2 > da)

as AZ increases which was predicted by the theory. Tables 9a and 9b were

constructed exactly the same as Tables 5 and 7. 1
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PROBLEMS

1. Assuming that the density of y is p(y; 6,0) =

(2102)™/2 exp{~(1/2)[y - £(8)] [y - £(8)1/0*} show that

-n/2

max, p(y; 8, 0) = [2ﬂSSE(§)/n] exp(-n/2)

/2

max, g).0. PV 85 O) = [218SE(8)/n] ™ Pexp(-n/2),

presuming, of course, that £(8) is such that the maximum exists. The

likelihood ratio test rejects when the ratio

[max, (gy=0,oP(¥s 8 9)1/[maxy ply; 8, 0)]

is small, Put this statistic in the form: Reject when

[SSE(8) - SSE(g)]/q
SSE(8)/(n-p)

is large.

2. If the system of equations defined over ©

h(8) =1

$(8) = p
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has an inverse

8 = Y(p,T)

show that

{6 € & n(e) = 0}

= {8: 8 = y(p,0) for some p in R}

where R = {p: p = $(6) for some O in 0}.

3. Referring to the previous problem, show that

max{SSE(8): h(8) = 0 and 8 in 6}

= max{SSE[w(p,q)]: p in R}

if either maximum exists.

4, (Derivation of H(x; vy, Vg, A, A3)). Define H(x; vy, Vg, Ay, Ap)

to be the distribution function given by
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0, x<1, A\, =0,
o 2 2
[Ble/(x = 1) + 220,/ (x = )75 vy, Ay/(x = 1]

- {(-H Vs Al)dt, x <1, A, >0,

[- -]
[N(-ts 24,, 8L)g(E; vy, A )de, x=1, A, >0,

1= [elt/(x = 1) + 200/ = D5 9y, A/ (x = D]

« g(t; Vi kl)dt, x > 1.

where g(t; v, A) denotes the non-central chi-square density function with v
degrees of freedom and non-centrality parameter X and G(t; v, A) denotes the
corresponding distribution function (Appendix 1).
Fill in the missing steps. Set z = (l/d)e, Y = (1/6)50, and

R =P - P;. The random variables (zl, Zoy eee, zn) are independent with
density n(t; 0, 1). For an arbitrary constant b, the random variable

(z + bY)'R(Z + bY) is a noncentral chi-squared with q degrees freedom and
noncentrality bZY'RY/Z, since R is idempotent with rank q. Similarly,

(z + bY)'Pl(z + bY) is a noncentral chi-squared with n - p degrees freedom

)
ZY PlY/Z. These two random variables are independent

and noncentrality b
because RPl = 0.

Let a > O.

PIX > a + 1]

Pl(z + Y)'Pll(z +7) > (a + Dz pz]

1 ] _L 1 _L ] _L
P(z+Y)R(z+7Y) Daz Pz =-2YyPz~-YPY]

Pl[(z + Y)'R(z +7v) > a(z - a.lY)'Pl(z - a-lY) -1+ a—l)Y'PlY]
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-1 ' 1 -
= f;b[t >a(z - a 1Y) P(z - a 1Y)
-1. ' 1 '
- (1 +a ")y Pylg(t; q, Y Ry/2)dt
o -1_.'.1 -1
= [Pl - a ') P - a M)
-1 t 1 '
< (t+ (1+a )y Py)alg(t; q, ¥ RY/2)dt
1 _L 2 | J_ 2 ]
= J'ZG[t/a + (a+ 1)y Py/a"; n - p, Y Py/(2a7)]g(t; q, ¥ Ry/2)dt.
By substituting x = a - 1, A, = Y'RY/Z. and Az = Y'PLY/Z one obtains the form
of the distribution function for x > 1.
The derivations for the remaining cases are analogous.
5. Show that if Az = 0, then
! 1] _L
P(X > ¢y) = Pl[(n-p)(e + ) (pF - PFG)(e + 8)/(qe PFe) > Fa].
Referring to Problem 4, why doees this fact imply that
' ?
H(ca, vl’ \’2’ X1) 0) = F (Fa) v]., \)2) A1) .
6. (Alternative motivation of the Lagrange multiplier test). Suppose

that we change the sign conventions on the components of the vector valued

function h(0) so that
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minimize SSE(8)
subject to h(8) < 0
is equivalent to the problem

minimize SSE(9)

subject to h(8) = 0.

The vector inequality means inequality component by component.

Now consider the problem

minimize SSE(9)

subject to h(8) = x

and view the solution 6 as depending on x. Under suitable regularity

conditions there is a vector x of Lagrange multipliers such that

(8/89')3313(5) = ;'H(S)

and (B/Gx')a(x) exists. Then

h[o(x)] = x

implies

H(8)(3/3x )8(x) = I
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whence

(3/3x )SSE[6(x)]

= (3/30 )SSE[6(x)](3/3x )6(x)

= AH[8(x)]1(3/3x )8(x)

The intuitive interpretation of this equation is that if one had one more unit
of the constraint h; then SSE(8) would increase by the amount Ay. Then one

should be willing to pay Ay (in units of SSE) for one more unit of hy. Stated

differently, the components of the vector X can be viewed as the prices of the
constraints.
With this interpretation any reasonable measure d(A) of the distance of

the vector i from zero could be used to test
H: h(8) = 0 against A: h(8) # O,

One would reject for large values of d(X). Show that if

g~ ey~ _1-.'..

d(A) = (/&)X HEF F) M A

is chosen as the measure of distance where ﬁ and ﬁ denote evaluation of 6 = 5

then
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.~y Mg o~

d(;) =D (F F)D
where, recall, 5 = (E'E)-lf'[y - f(é)].

7. Show that Zl is distributed as F'(z; q, n-p, Xl). Hint:

PF(I - PF) = 0 and PFG(I - PF) = 0,

8. Fill in the missing steps. If z < n
P(Z2 < z)

= Pl(e + 8) (By = Pyo)(e + 8) < (z/m)(e + 8) (I - Pyo)(e + 8)]

(e + 8) (B - Bro)(e + 6)/a (o - p)z,

= P[ ¥ o
(e + &) Pi(e + 8)/(a-p) I~

=F [ - p)(2)/(@)(n - 2); q, n-p, A, Al

9. (Relaxation of the Normality Assumption). The distribution of e is
spherical if the distribution of Qe is the same as the distribution of e for
every n by n orthogonal matrix Q. Perhaps the most useful distribution of
this sort other than the normal is the multivariate Student-t (Zellner,

1976). Show that the null distributions of X, Z;, and Z, do not change if any
spherical distribution is substituted for the normal distribution. Hint:

Jensen (1981),



1=2=50

10. Prove that P(X > c,) > P(Z; > Fy). Warning: this is an open

question!




1-6-1

6. CONFIDENCE INTERVALS

A confidence interval on any (twice continuously differentiable)

parametric function Y(6) can be obtained by inverting any of the tests of
H: h(8) = 0 against A: h(8) # 0

described in the previous section. That is, to construct a 100 x (l-a)Z%

confidence interval for Y(8) one lets
o
h(8) = y(8) - ¥

and puts in the interval all those Y® for which the hypothesis H: h(8) = 0 is
accepted at the a level of significance (Problem 1). The same is true for
confidence regions, the only difference being that Y(8) and Y° will be q-
vectors instead of being univariate.

The Wald test is easy to invert. In the univariate case (q=1), the Wald
test accepts when

ZAAA'

A o 1/
|¥(8) - ¥ |/(s"HeH ) 2 <ty
where

= (3/38')[v(8) - v°] = (3/38")Y(8)

and ta/2 = t_l(l - a/2; n-p); that is, ta/2 denotes the upper a/2 critical



1-6-2

point of the t-distribution with n-p degrees of freedom. Those points Y° that

satisfy the inequality are in the interval

A ZAAA' 1/
v(8) t talz(s HCH ) "2,

The most common situation is when one wishes to set a confidence interval on
one of the components 91 of the parameter vector 8, In this case the interval

is

2

/
8
1 t ta/2 Vs cii

~ ~ ' ~ F.) -
where cy4 is the i-th diagonal element of C = [F (8)F(8)] 1. We illustrate
with Example 1.

EXAMPLE 1 (continued). Recalling that

8,4
£f(x,8) = elxl + 92x2 + 64e

let us set a confidence interval on 91 by inverting the Wald test. One can

read off the confidence interval directly from the SAS output of Figure 5a as
[-0.05183816, 0.00005877]
or compute it as
0, = -0.02588970 (from Figure 5a)

¢y = +13587 (from Figure 5b)




s2 = 0.00117291
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(from Figure 5b)

t~1(.975; 26) = 2.0555

whence

-0.02588970 + (2.0555) ¥(0.00117291)(.13587)

-0.02588970 + 0.0259484615

[-0.051838, 0.000588].

To put a confidence interval on

Y(8) = (3/3x)E(x,0) xyml 8,0,

we have

0
H(8) = (3/20°)¥(8) = [0, 0, 0,(1 +0,)e 3 6.

%3

3]
3
3

¥(8) = (-1.11569714)(~0.50490286)e 1+11569714 (from Figure 5a)

= 0.1845920697

H = (0, O, 0.0191420895), -0.365599176) (from Figure 5a)

AAAy

HCH = 0.0552562

(from Figures 5b and 13)
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Fizure 13. Wald Test Confidence Interval Construction Illustrated with
Examrle 1.

5a3 Statements:

FROC HATRIX:
o= 0.,135387 -0.067112 -0.15100  -0.0375394/
~-3.067112 0.084203 0.51754 -0.00157848/
-0.13100 0.31734 22,8032 2.00887/
=-0.037594 -0.00157848 2.00887 0.561255
H= 0 0 0,0191420895 -0.365597174;
HCH = HRCXH’ §  PRINT HCHj

Guiruti
STATISTICAL ANALYSIS SYSTEHMN 1
HCH cotl
ROW1 0.,0352563
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s = 0,00117291 (from Figure 5a)
Then the confidence interval is
2AAA 1/2

Y(8) ¢ ta/z(s HCH)

1
0.184592 + (2.0555)[(0.00117291)(0.0552563) ] 2

0.1845921 £+ 0.0165478

or
[0.168044, 0.201140]. 1
In the case that Y(9) is a g-vector, the Wald test accepts when
[v(8) - v°1 (er ) M v(®) - v°1/(@s?) < ¥,

The confidence region obtained by inverting this test is an ellipsoid with
hhﬁ'

center at Y(9) and the eigenvectors of HCH as axes.

To construct a confidence interval for Y(9) by inverting the likelihood
ratio test, put

h(8) = y(8) - v°

with Y° being a q-vector and let
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SSE _ = min{SSE(8): Y(8) = v°}
,YO

The likelihood ratio test accepts when

(SSE - SSE; ,,)/q

Oy . Y
MO = —ssE, 7@ C o

where, recall, F_ = F—l(l-a; q, n-p) and SSEg 1; = SSE(a) = min SSE(6). Thus,
a likelihood ratio confidence region consists of those points v% with
L(Y°) < F, Although it is not a frequent occurrence in applications, the
likelihood ratio test can have unusual structural characteristics. It is
possible that L(Y°) does not rise above F, as “Yoﬂ increases in some diretion
so that the confidence region can be unbounded. Also it i1s possible that
L(Y®) has local minima which can lead to confidence regions consisting of
disjoint islands. But as we said, this does not happen often.

In the univariate case, the easiest way to invert the likelihood ratio
test is by quadratic interpolation as follows. Take three trial values Y?,
Y3, Yg around the lower limit of the Wald test confidence interval and compute

the corresponding values of L(Y?), L(Yg), L(Yg). Fit the quadratic equation
L(YY) = a(¥)? + b(vQ) + ¢ 1=1,2,3

to these three points and let ; solve the equation
F,= ax2 + bx + ¢

a

One can take x as the lower limit or refine the estimates by taking three
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. trial values Y‘f, Yg, Yg around x and repeating the process. The upper

confidence limit can be computed similarly. We illustrate with Example 1.

EXAMPLE 1 (continued). Recalling that

®3%4
£f(x,8) = Slxl + 92x2 + 94e

let us set a confidence interval at 91. We have

SSEfy11 = 0.03049554 (from Figure 5a)

By simply reusing the SAS code from Figure 9a and embedding it in a MACRO

whose argument Y° is assigned to the paramter 9 1 Ve can easily construct the

. following table from Figure léa.
\° SSE__ L(Y%)
Y

-.052 0.03551086 4.275980
-.051 0.03513419 3.954837
-.050 0.03477221 3.646219
-.001 0.03505883 3.890587
.000 0.03543298 4.209581
.001 0.03582188 4.541151

Then either by hand calculator or by using PROC MATRIX as in Figure 1l4b one

can interpolate from this table to obtain the confidence interval

‘ [-0.0518, 0.0000320].



Figure l4a, Likelihcod Rsatio Test Confidence Interval Construclion Illustrated
with Exanrle 1.

495 Statements:

AHACRO SSE(GAMNA)S

FROC NUIN DATA=EXAHPLEL METHOD=GAUSS ITER=50 CONVERGENCE=1.0E-133
FARHS  T2=1.01567967 T3=-1.11569714 T4=-0.304902865 T1i=4GANMA}

HMOBEL. Y=TIRXL+T2RX2+T4XEXP( T3%X3 )4

GER.T2=X23 DER.TI=T4KXIXEXP{ TIXX3 )i DER.T4=EXP({T3%X3);

ZHENTI 53E5

#83E(-.,052) XSS5E(-.051) XSSE(-.050) XSSE(-.001) ZSSE(.000) XSSE(.001)

Outrutl
NON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEFENDENT VARIABLES Y HETHOD: GAUSS-NEWTON
ITERATION T2 T3 T4 RESIDUAL SS
& 1.02862742 -1.08499107 ~-0.49757910 0.03551086
5 1.02812865 -1.08627326 ~0.49786686 0.03513419
] 1.02763014 -1,08754637 -0.49815400 0.03477221
7 1.00345514 -1,14032573 -0.51136098 0.03505883
7 1.002946592 -1.14123442 -0.51182277 0.03543298
7 1.00247682 -1.14213734 -0.51208415 0.,03582188
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Fisure 14b. LiKelihood Ratio Test Confidence Interval Construction Illustrated

with Examrle 1.

SA3 Stalements!

FROC HATRIYS
A= 1 -.032 002704 /
L= 051 002601 /
1 -.050 002500 i
TEST= 4,273980 / 3.754837 / 3.4646219 7 B=INVCA)XTEST:
hQUT (=B 291 MHSORTIB( 25 1 )3B( 29 1 )~43B( 391 ) BU 1y 1)-4,22)))13/( 24B( 301 ) )5
RIT ROGTS
nFQT=\—B&231)—bGRT(B(Q!I)#B( 11 )-43B( 3+ 1 0 B( 121 )-4,22) 1)3/(2#B( 34 1))
INT ROOTS
ﬁ= L =001 ,000001 /
+G01 000001
= 3.,890587 / 4,209381 / 4.541151 5 B =INVCA)YXTESTS
T=(=-BC 2y L345QRTOB( 22 1 03B 291 )—43B( 3 1 )3 (B 151 -4, 220 )03/ 24B{ 3y 1))
T ROGT
=(~K{ 291 )-G0RTIB( 22 11300 291 )-43B( 32 1 ) BC 191 3-4,22)0 )#/( 23B( 391 ) )4
“T ROOT

STATISTICAL ANALYSIS SYSTEHM

ROOT caL1
ROWL 0.000108776

ROOGT coLt
ROuWl -0.0518285
ROOT coLt
ROW1 +0000320109
ROOT coL1

ROu1 -0.0517626



Next let us set a confidence interval on the parametric function

)

3
Y(8) = (3/3%,)£(x,0) — 8,0,e ~.

As we have seen previously, the hypothesis

“ 3 _ .0
H: 9364e Y

can be rewritten as

0
. - 3,.0,-1
H: 64 (93e ) .

Again, as we have seen previously, to compute SSE o let
Y

gYo(p) =

°3
\ (p3e” 3/7°)

and SSEYo can be computed as the unconstrained minimum of SSE[qu(p)]' Using
the SAS code from Figure 9b and embedding it in a MACRO whose argument Y°
replaces the value 1/5 in the previous code the following table can be

constructed from Figure léc.
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Fidure l4c. Likelihood Rastioc Test Confidence Interval Construction Illustrated

with Examrle 1.

3]

A5 Statementst

1

fe

ZHACRO S5E(GAHMA)S

FRIC NLIN DATA=EXAHFLEL METHOD=GAUSS ITER=60 CONVERGENCE=1,0E-8}
FA&RHMS R1=-0,02588970 R2=1.015679467 R3=-1,115697145F RG=1/4GAMMAS
Ti=R17 T2=R25 T3=R3i T4=1/(RGXRIXEXP(R3))s

AODEL Y=TIxX1+T2KX2+THREXP(TIXX3 )5

DER.T1=X1j DER_T2=X25 DER_T3=T4&kXIXKEXP(T3%X3); DER.T4=EXP{T3%X3)3i
TER.R1=DER_T15 DER.R2Z=DER_T2}

TIER. R3=DER_TI+DER_T4%( -T4¥%2 )X RGKEXP( R3 ItRCKRIXEXP(R3 ) )+

AMEMTI §5E5

XB5E( 1667 XSSE({.167) %SSE(.168) XSSE(.200) %S5E(.,201) Z5SE(.202)

Qutruts
NON-LINEAR LEﬁST SQUARES ITERATIVE PHASE
DEFENDENT VARIABLE:D Y METHOD? GAUSS-NEWTON
ITERATICN R1 R2 R3
8 -0.,03002338 | 1.015672014 -0.91765508
8 -0.02978174 1.01642383 -0.,93080113
8 -0,02954071 1.01614385 -0.94412575
3 -0,02301828 1.01945423 -1,16048499
43 -0.02283734 1.01994471 -1.,16201915
i3 -0.02265799 1.02024775 -1,16319256

RESIDUAL 5SS
0.,03591352
0.03540285
0.03491101
0.,03493222
0.03553200

0.03617013
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Fisure 14d. Likelihood Ratio Test Confidence Interval Construction Illustrated
Wwith Examrle 1.

543 Stetenenls!

FROC MATRIXs
A= 1 .186 027356 /

1 .1&7 .027889 /

1 +1468 .028224
TEST= 4,5617281 / 4,183892 / 3.764%58 7 B=INU(A)KTEST;
ROOT={-BC 2y 1 MBOART(B( 291 )BB( 251 )—43B( 321 )M R( 171 )-4.22) ) )8/( 23R( 341 ) )}
PRINT ROQTS
ROOT=(~B{ 2s1 )~SORT(B( 25 1 )BBC 251 )-43B( 32 1 (B 191 )-4,22)))3/( 24B(3+1) )}
FRINT ROQT:
A= 2200 040000 /

10301 040401 /

1,202 ,040804 5

EST= 3.782541 / 4.294004 / 4.838063 5 B =INV(A)XTESTS

FO0T=0 ~BC 251 )480RTCB( 25 103BC 251 )—44B( 3o 1 )H RO 151 )-4.22) ) )3/( 238( 3v1 ) )}
FRINT ROQT:
FO0T={-B{2s1)-SORT{B( 29 1 )B( 251 )-43B( 31 )$( B(1+1)-4,22) 0 )8/( 24B( 3+1) )3
FRINT ROCTH

Gubsuts
STATISTICAL ANALYSIS SYSTEMN 1
ROOT coLt
ROWL 0.,220322
ROOT coLt
ROWL 0.186916
ROOT coL1
ROWL 0.200839
ROOT COL1
ROW1 0.1468841



.166
.167
.168
.200
.201

. 202

Quadratic interpolation from this table as shown in Figure l4d yields

SSE

YO

0.03591352
0.03540285
0.03491101
0.03493222
0.03553200

0.03617013

[0.1669, 0.2009]. |

L(Y9)

4.619281
4,183892
3.764558
3.782641
4,294004

4.838063

1-6-13

To construct a confidence interval for Y(9) by inverting the Lagrange

multiplier tests, let

h(8) = v(8) - v°

6 minimize SSE(6) subject to h(8) =0

F = F(8) = (3/38 )£(8)

~ g RS Bod
D=(FF)'F

[y - £(8)]

~g~ o~

R, (r°) = [0 (F F)D/q]/[SSE(8)/(a-p)]

Ry(1°) = D (

L R ~

F F)D/SSE(9).
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The first version of the Lagrange multiplier test accepts when
R;(Y%) < F,
and the second when
Ry (Y%) < d,

where F, = F-l(l-a; q, n-p), da = nFa/[(n-p)/q + Fa]’ and q is the dimension
of Y°. Confidence regions consist of those points Y° for which the tests
accept. These confidence regions have the same structural characteristics as
likelihood ratio confidence regions except that disjoint islands are much more
likely with Lagrange multiplier regions (Problem 2).

In the univariate case, Lagrange multiplier tests are inverted the same
as the likelihood ratio test. One constructs a table with Rl(Yo) and R2(Y°)
evaluated at three points around each of the Wald test confidence limits and
then uses quadratic interpolation to find the limits. We illustrate with

Example 1.
EXAMPLE 1 (continued). Recalling that

¥3%4
f(x,0) = elxl + 62x2 + eae

let us set Lagrange multiplier confidence intervals on 91. We have

SSE(a) = 0,03049554 (from Figure 5a)

Taking 8 and SSE(é) from Figure l4a and embedding the SAS code from Figure 12a




Fidure 1iSsa.

Ilius

545 Statements:

AHACRO BFFIK THETALSTHETAZ

TATA HORKGLY
TI=&THETALS

SET EXANPLE

T2=4THETAZS

E=Y~( TLAX1+T2AX2HTA4EXP( T

Fl=xls FZ2=X2%

F3=T44X3%

OROF T1 T2 T3 T4

“RIC REG DATA=UCRKOL;S

WEEWD OFFDS
AUEF T -, 052,
ROFFI -, 051
ATFFDL -, 036,
AOFELC -, bey

SLFF Fi UU)

A .GOia
SIS TR M
SOURCE LF
HOBEL 4
FREOR 24
1 707TaL 30
HOGEL 3
ERROR 6
Y IGTAL 30
F3hEL 4
ER%GF 24
VIGTAL 30
HOMEL &
=RROR 26
37074l 30
AlBEL i
ERRCGR 26
U074 35
HOBEL. 3
FERGﬁ 26
HTaTraL 30

1.028627 42y
1.02812855y
1,02743014,
1.00345514,
1.00275592,
1,00247682»

SUN OF
SGUARES

7.003017024
0.030494
0.035511

0.,004540212
0.,030494
0.035134

G.004273098
0.030474
0.034772

G.,004564159
2,030495
0,035059

G.,004938382
3.,030495
G.,035433

G,005327344
0.030495
0.035822

Lagrande Hullirlier Test Confidence Interval Construction
trated uwith Exsmrle 1.

s THETAS3» THETA4,55ER )3

1y
T3=4THETAZs

3%X3))s

EXP(TI®X3)5

-1.08499107,
~-1,08627326+
-1,08754437
-1.14032573»
-1.14123442,
-1.14213734,

MEAN
5QUAKRE

0.0012542056
0.00117284

0.001160033
0.001172845

0,00106952
0.001172831

0.001141042
§.001172871

0.001234596
0.00117286%

0.00133183%
0.001172867

T4=4THETA4}

F4=EXP{ T3XX3)3i

HODEL E=F1 F2 F3 F4 / NOINTS

-0.4%9757910y 0.03551086)
=-0.,49786686y 0.03013419)
-0.47815400, 0.03477221)
-0.51156098y 0.03505883)
-0.51182277, 0.03543298)
-0.51208415, 0.03582188)

F VALUE PROBCF
1,049 0.3916
0.989 0.4309
0.912 0.4717
0.973 0.4392
1,053 0.3994
1.136 043617
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in a MACRO as shown in Figure 15a we obtain the following table from the

entries in Figure 15a:

Y° D'(F'F)D Ry (Y) Ry (Y°)
-.052 0.005017024 4.277433 4, 238442
-.051 0.004640212 3.956169 3.962134
~.050 0.004278098 3.647437 3.690963
-.001 0.004564169 3.891336 3.905580

. 000 0.004938382 4.210384 4.181174
.001 0.005327344 4.542001 4.461528

Interpolating as shown in Figure 15b we obtain

Ry: [-0.0518, 0.0000345]

Ry: [-0.0518, 0.0000317]

In exactly the same way we construct the following table for

8

3
¥(8) = 8,0,e

from the entries of Figures l4c and 1l5c.
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Figure 15b. Lagrange Hultirlier Test Confidence Intervzl Construction
Tilustrated with Examrle 1.

SA3 Statementis?

v ]

'ROC RATRIXS
= 1 =052 .002704 /

- G351 0025801 /

=330 002500 5§
= 4, 377433 4,238442 /

3.756169 3.962134 /

3.647437 3.090%963 5 B=INV(AIKTEST;
ROCT3=(-5{2s 1 HBART(B( 291 )3B( 291 )-43B( 391 )H(B( 151 )-4.22)) }#/(28B(3r 1) )}
FOCTE=(-B(2y1 }-5GRT(B( 25 1 )4BC 291 )~43B( 39 1 )H(BU 151 )-4,22)) )3/ 2¥B( 391 ) )5
ROOT3={-R{ 2y 2 MHSERT(B( 2,2 B 292 )-43B( 35 2 )3 B( 152)-4.19) ) )#/( 28B( 352} )}
ROOT4=(-B(2s2 )-SORT(R( 2,2 )03B{ 2,2 )-43B( 3» 2 )8 B( 192)-4.19) ) ) /( 24R( 3+ 2) )5
FRINT ROOTL ROOT2 ROOT3 ROOT4S
A= 1 -.CO01 000001 /

1 GO0 .G00000 /

i +GO1 000001 ¥
TEST= 3.3913346 3.905580 /

+210384 4.181174 /
£.452001 4.461528 5 B=INV(A)KTESTS

ROOT1=(-BC 2y L MGORTIB( 291 )3B( 251 )-43B( 31 )H( B( 151 )-4.22)))3/( 28B( 3+1 )}
ROOT2=(-B(25 1 )-SORTOB( 2y 1 JBC 251 )~43B( 31 J( B( 11 )-4.22)) )#/{ 23B(351) )3
RODT3={-B{ 2,2 MGARTIB( 292 )3B( 292 )-44B( 39 2)H(B( 192)-4 .19 1))#/( 28B(3+2) )5
ROCT4=( -B(2s2 )-50RTOBO 292 )4B( 252 )-43B( 3+ 2)3( B(152)-4.,19)) 13/( 23B( 352) )5
FRIMT ROOTL ROGT2 ROOT3 ROOT45

= et

poa
itai

by

Suirail

TISTICAL ANALYSIS SYSTEHN

4 3]
—
X

ROOTL coLt
ROW1 +0000950422
ROGT2 CoLl
ROWL -0.0518241
ROOT3 coLt
ROW1 0.0564016
ROGT4 CoLt
ROW1 -0.051824
ROOT1 CoL1
ROW1 +0000344662
ROOT2 coLy
ROWL 0.00720637
ROOT3 coL1
ROWL 0000317425
ROOT4 coLt

ROW1 -0.,116828

L-o~-LY
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-, Lagrande Hullirlier Test Confidence Interval Construction
Iilustreted with Examrle 1.

543 Stalements!

ZHACRO DFFIK GAHMA,RHO1,RHO2,RHO3 5 55ER )5

UATA MURKGI? SET EXAMPLELS

TI=4RHOL;  T2=4RHO2F T3=4RHO37 T4=1/(SRHOIXEXF{&RHO3 )/ 8GANMA )Y
E=y- i-1*k1+T”1k2*T4*EXF(T3XX3)):

Fi=X1li F2=X27 F3=T4XXIAEXP{T3¥X3)i F4=EXP(T3¥X3);

LROF T1 TE T3 T#?
FROC REG DATA=WORKC1; MODEL E=F1 F2 F3 F4 / NOINTS

THEND DFFDs
AOFFDC 186y -0,03002338y 1,01872014y -0,91765508y 0.03591352)
AUFFLC 167y -0.02978174y 1.01642383y -0.93080113, 0.03540285)
RDFFDC 188y -0.,02954071y 1.01614385y -0,94412575y 0.03491101)
AOFFIM 2 20Cy -0.02301828y 1.01965423y -1.16048699y 0.03493222)
LDFFD L2010, -0.02283734, 1,01994671, -1,16201915, 0.03553200)
AOFFDC 202y -0.022583799y 1.02024775, -1.16319256y 0.03617013)
HIRA-IE 1
SUn OF MEAN

S0URCE oF SQUARES SQUARE F VALUE PROBF
HOBEL 4 0.005507692 0.0013746923 1.177 0,3438
=RROR 26 0.030406 0.001159455
UToTat 30 0.035%14

HOGEL & 0.0049856108 0.001246527 1,066 0.3935
EZRROR 26 ¢v030417  0.0011469875

UTaTaL 30 0.035403

sOnEL 4 04483467 0.0011208687 0.958 0.4471
ERROR 25 0.030428 §.00117029

Ui0TaL 30 0.034911

ROuEL 4 §.00U4439308  0.001109827 0.946 0.4531
ERROR 25 2.,030493  0.001172804

JI0TAL 30 9.034732

}ﬁﬂFL 4 095039249 0.,001259812 1.074 0.3894
ERRGH 2% 0.030493 0.001172798

\JTGTAL 30 ©+035532

SOLEL £ £.0084677511 0.001419378 1.210 0.3303
ZRROR 28 0.030493 0.,001172793
1 707TAL 30 0.0358170
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v D' (F'F)D Ry (Y0) R, (Y%)
.166 0.005507692 4.695768 4.600795
.167 0.004986108 4.251074 4.225175
.168 0.004483469 3.822533 3.852770
.200 0.004439308 3.784882 3.812504
.201 0.005039249 4.296382 4.254685
.202 0.005677511 4. 840553 4.709005

Quadratic interpolation from this table as shown in Figure 15d yields

Ry: [0.1671, 0.2009]

Ryt [0.1671, 0.2009] |

There is some risk in using quadratic interpolation around Wald test
confidence limits to find likelihood ratio or Lagrange multiplier confidence
intervals. If the confidence region is a union of disjoint intervals then the
method will compute the wrong answer. To be completely safe one would have to
plot L(Y°), RI(YO)' or Ry(Y°) and inspect for local minima.

The usual criterion for judging the quality of a confidence procedure is
expected length, area, or volume depending on the dimension q of Y(0). Let us
use volume as the generic term. If two confidence procedures have the same
probability of covering Y(8%) then the one with the smallest expected volume
is preferred. But expected volume is really just an attribute of the power
curve of the test to which the confidence procedure corresponds. To see this,

let a test be described by its critical function



Lzgranse Hultirlier Test Confidence Interval Construction
Tilustrated uwith Examrle 1.

Wl ~“°"=Sb f
W14 ,027889 /
14 8 ebL3224 i
= £.,595768 4.600795 /

& 2""74 4,225175 7

I.822533 3.852770 §  B=INUCAIKTESTS

ROCT1=(-B{2y 1 MSORTCE( 221 )4BC 291 )-43BC 3y 1 JI(B( 191 )-4.,22)) )4/ 24B(3»1) )3
PJOT F={~B( 291 J-BORTCBC 22 1 JRBC( 251 )-44B( 39 1 )H( RO 191 )-4,22) ))4/(23B( 351 ) )}
ROOT3=(-B( 2y 2 )4SQRT(BC 25 2)3B( 2y 2 )-43B( 32 2)H(B( 1+ 2)-4,19) ) )#/( 2#B( 3+2) )5
R0374=(-B(' y2 )-SGRT(B{ 2,2 B 2+2)-43B( 3y 2)#(RB( 1,2 )-4,19) ) )#/( 24B(3+2) )3
FRINT ROOTI ROOUT2 ROOT3 ROOT4s
A= 1,200 040000 /

1,201 040401 /

1,202 .G408BG4 3
EST= 3.7B4882 3.812504 /
§.275382 4.,2544685 /
§,349553 4,709005 7 B=INV(A)XTEST}
(~BC29 L H3QRTOB( 221 )8B( 25 1)-44B( 35 1 I(B( 1o 1)-4,22) ) )4/7( 24B( 391 ) )5
{=R{291 J-SORTIB( 2y 1 )#B( 251 )~43B( 3 1 )3 B(1»1)-4,22) ) 34/C 28B( 351 ) )5
R k =B 292 4S0RT(B( 2,2 03B 252 )-43B( 32 ( B( 1+ 2)-4.19)))3/( 23B( 352) )5

DT 4=(-RE 2y 2 )-SORTORC 29 2)8BC 252 )-43R( 352 )3 B( 1+2)-4,19)) )4/ 28B(3»2) )5
1R;Al ROCT! ROOT2 RGOT3 ROOT4S

Cuimuts

STATISTICAL ANALYSIS S5YSTEH

ROOTY coLt
ROWL 0.220%89
ROOTZ coLt
ROuW1 0.167071
ROOT3 coLt
ROW1L 0.399573
ROOT4 CoLt
ROWL 0.167094
ROOT1 coLt
ROUWL 0.,200853
ROOT2 coL1
kOW1L 0.188833
ROOT3 coLt
ROWL 0.200855
ROOT4 coLt

ROWL 0.,127292

1-6-20
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1 reject H: v(8) =»Y°
o(y,7°) =
0 accept H: v(8) = Yo .

The corresponding confidence procedure is

R = {Yo: #(y,v,) = 0}.

Expected volume is computed as

Expected volume (¢) = | n [ dydN[y; f(e°), OZI]
R R
y

21

= [ 1 - eG,v)1dvanly; £(6%), o°1]
rR" rY

As Pratt (1961) shows by interchanging the order of integration
Expected volume (¢) = f q f n[1 - ¢(y,Y) ]dN(y; f(e°) , GZI]dY
R R
o 2
= [ PleCy,y) =0 | 8°, o“lay
rd

The integrand is the probability of covering Y,

2

cy() = BLo(y,7) = 0 | 0%, o]

and is analogous to the operating characteristic curve of a test. The

essential difference between the coverage function ¢ (Y) and the operating

¢

characteristic function lies in the treatment of the hypothesized value Y and

the true value of the parameter 6°. For the coverage function, 6° is held
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fixed and Y varies; the converse is true for the operating characteristic
function. If a test ¢(y,Y) has better power against H: Y(8) = Y° than the
test w(y,Yo) for all Y° then we have that

2

e, (v°) = PleCy,v°) =0 | 8%, o)

¢

2

< Ply(y,Y%) =0 | 6°, o]

o
c¢(Y )
which implies
Expected volume (¢) < Expected volume (¥).

In this case a confidence procedure based on ¢ is to be preferred to a
confidence interval based on V.

If one accepts the approximations of the previous section as giving
useful guidance in applications then the confidence procedure obtained by
inverting the likelihood ratio test is to be preferred to either of the
Lagrange multiplier procedures. However, both the likelihood ratio and
Lagrange procedures can have infinite expected volume; Example 2 is an
instance (Problem 3). But for vy # y(e°) the coverage function gives the
probability that the confidence procedure covers false values of Y. Thus,
even in the case of infinite expected volume, the inequality c¢(Y) < cw(Y)
implies that the procedure obtained by inverting ¢ is preferred to that
obtained by inverting Y. Thus the likelihood ratio procedure remains
preferable to the Lagrange multiplier procedures even in the case of infinite

expected volume,
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Again, if one accepts the approximations of the previous section, the
confidence procedure obtained by inverting the Wald test has better structural
characteristics than either the likelihood ratio procedure or the Lagrange
multiplier procedures. Wald test confidence regions are always intervals,
ellipses, or ellipsoids according to the dimension of Y(8) and they are much
easier to compute than likelihood ratio or Lagrange multiplier regions.
Expected volume is always finite (Problem 4). It is a pity that the accuracy
of the approximation to the probability P(W > F,) by P(Y > F,) of the previous
section is often inaccurate., This makes use of Wald confidence regions risky
as one cannot be sure that the actual coverage probability is accurately
approximated by the nominal probability of l-a short of Monte Carlo simulation
at each instance. 1In the next chapter we shall consider methods that are

intended to remedy this defect.
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PROBLEMS
1. In the notation of the last few paragraphs of this section show that

p{oly, ¥(6°)] = 0 | &°, o} = [, anly; £(6%), o’1].
v

2. (Disconnected confidence regions.) Fill in the missing details in
the following argument. Consider setting a confidence region on the entire
parameter vector 0, Islands in likelihood ratio confidence regions may occur
because SSE(6) has a local minimum at 6* causing L(G*) to fall below F,. But
if 6" 1s a local minimum then Rl(e*) = Rz(e*) = 0 and a neighborhood of o*

must be included in a Lagrange multiplier confidence region.

3. Referring to Model B of Example 2 and the hypothesis H: 8° = v° show
that the fact that 0 < f(x,Y) < 1 implies that P(X > ca) <1 for all y in

A= {Y= 0 <y, < Yl} where X and ¢, are as defined in the previous

2
section. Show also that there is an open set E such that for all e in E we

have

2
8queAHe + §(y)1 < cy ianeAﬂe + §(Y)I
where §(y) = f(e°) - £f(y). Show that this implies that P(L > Fa) <1 for all
Y in A. Show that these facts imply that the expected volume of the
likelihood ratio confidence region is infinite both when the approximating

random variable X is used in the computation and when L itself is used.
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L
4. Show that if Y ~ F [q, n-p, X(Yo)] where

1

ACY) = 1v(8%) - %1 {H(%) IF (0%)F(8%) 1 (8%} v (e°) - v°1/(2a)2

and cY(Yo) = P(Y < Fa) then IRS cY(Y)dY < o,



1-7-1

7. REFERENCES

Bartle, Robert G. (1964), The Elements of Real Analysis. New York: John

Wiley and Sons.

Beale, E. M. L. (1960), "Confidence Regions in Non-Linear Estimation," Journal
of the Royal Statistical Society, Series B, 22, 41-76.

Blackwell, D. and M. A. Girshick (1954), Theory of Games and Statistical
Decisions. New York: John Wiley and Sons.

Box, G. E. P. and H. L. Lucus (1959), "The Design of Experiments in Non-Linear
Situations,” Biometrika 46, 77-90.

Dennis, J. E., D. M. Gay and Roy E. Welch (1977), "An Adaptive Nonlinear

"

Least-Squares Algorithm,"” Department of Computer Sciences Report No. TR

77-321, Cornell University, Ithaca, New York.

Fox, M. (1956), "Charts on the Power of the T-Test,"” The Annals of
Mathematical Statistics 27, 484-497.

Gallant, A. Ronald (1973), "Inference for Nonlinear Models,” Institute of
Statistics Mimeograph Series No. 875, North Carolina State University,
Raleigh, North Carolina.

Gallant, A. Ronald (1975a), "The Power of the Likelihood Ratio Test of
Location in Nonlinear Regression Models,” Journal of the American
Statistical Association 70, 199-203.

Gallant, A. Ronald (1975b), "Testing a Subset of the Parameters of a Nonlinear
Regression Model,” Journal of the American Statistical Association 70,
927-932.




1-7-2

Gallant, A. Ronald (1976), "Confidence Regions for the Parameters of a
Nonlinear Regression Model," Institute of Statistics Mimeograph Series
No. 875, North Carolina State University, Raleigh, North Carolina.

Gallant, A. Ronald (1980), "Explicit Estimators of Parametric Functions in
Nonlinear Regression,” Journal of the American Statistical Association
75, 182-193.

Gill, Philip E., Walter Murray and Margaret H. Wright (1981), Practical
Optimization. New York: Academic Press.

Golub, Gene H. and Victor Pereyra (1973), "The Differentiation of Psuedo-
Inverses and Nonlinear Least-Squares Problems whose Variable Separate,”
SIAM Journal of Numerical Analysis 10, 413-432,

Guttman, Irwin and Duane A. Meeter (1964), "On Beale's Measures of Non-
Linearity,” Technometrics 7, 623-637.

Hammersley, J. M. and D. C. Handscomb (1964), Monte Carlo Methods. New
York: John Wiley and Sons.

Hartley, H. O. (1961), "The Modified Gauss-Newton Method for the Fitting of
Nonlinear Regression Functions by Least Squares,” Technometrics 3,
269-280.

Hartley, H. 0. and A. Booker (1965), "Nonlinear Least Squares Estimation,"”
Annals of Mathematical Statistics 36, 638-650.

Huber, Peter (1982), "Comment on the Unification of the Asymptotic Theory of

Nonlinear Econometric Models,” Econometric Reviews 1, 191-192.

Jensen, D. R. (1981), "Power of Invariant Tests for Linear Hypotheses under

Spherical Symmetry," Scandanavian Journal of Statistics 8, 169-174.

Levenberg, K. (1944), "A Method for the Solution of Certain Problems in Least
Squares,” Quarterly Journal of Applied Mathematics 2, 164-168.




1-7-3

Malinvaud, E. (1970), Statistical Methods of Econometrics (Chapter 9).
Amsterdam: North-Holland.

Marquardt, Donald W. (1963), "An Algorithm for Least-Squares Estimation of

Nonlinear Parameters,

Mathematics 11, 431-441.

Journal of the Society for Industrial and Applied

Osborne, M. R. (1972), "Some Aspects of Non-Linear Least Squares

Calculations,” in Lootsma, F. A. (ed.), Numerical Methods for Non-Linear

Optimization. New York: Academic Press.

Pearson, E. S and H. O. Hartley (1951), "Charts of the Power Function of the
Analysis of Variance Tests, Derived from the Non-Central F-Distribution,”
Biometrika 38, 112-130.

Pratt, John W. (1961), "Length of Confidence Intervals,” Journal of the
American Statistical Association 56, 549-567.

Royden, H. L. (1963), Real Analysis. New York: MacMillan Company.

Scheffe, Henry (1959), The Analysis of Variance. New York: John Wiley and

Sons.

Searle, S. R. (1971), Linear Models. New York: John Wiley and Souns.

Tucker, Howard G. (1967), A Graduate Course in Probability. New York:

Academic Press.

Zellner, Arnold (1976), "Bayesian and Non-Bayesian Analysis of the Regression
Model with Multivariate Student-t Error Terms,"” Journal of the American
Statistical Association 71, 400-405.




8. INDEX TO CHAPTEK 1.

Chain ruley 1-2-3y 1-2-11
Comrariment analusisy 1-1-7
Comprosite function rules 1-2-3y 1-2-11
Confidence redions
corresrondence belween exrecled lendgths areas or
volume and rower of 3 testy 1-6-21
Lagrande multirliers 1-6-14
likelihood ratiocy 1-6-6
structural characteristics ofy 1-6-4y 1-6-14y 1-6-22y 1-6-24
Waldsy 1-6-1
Coverade functions 1-6-21
Critical functions 1-6-21
Differentiation
chain rules 1-2-3s 1-2-11
composile function rules 1-2-3» 1-2-11
gradienty 1-2-1 -
Jacobiany 1-2-2
hessiany 1-2-1
patix derivativer 1-2-1
vector derivativer 1-2-1
Disconnected confidence redionsy 1-6-24
Efficieni score test
{(see Ladgrande mullirlier lesi)
Figure 1y 1-4-2
Figure 2» 1-4-3
Fidure 35 1-4-9
Fidgure 4» 1-4-12
Fidure 353y 1-4-14
Figure Sby 1-4-1
Figure &y 1-4-22
Fidure 7y 1-5-8
Figure 8y 1-5-10
Fidure 92y 1-5-2
Figure 9by 1-5-24
Figure 9c¢cy 1-5-26
Fidure 10a» 1-5-29
Figure 10br 1-5-30
Fidure 11as 1-5-43
Fidure 1ibs 1-3-45
Fidure 1lcy 1-5-46
Figure 123y 1-3-63
Figure 12Zbs 1-5-64
Fidure 12cs 1-3-70
Figure 13 1-6-4
Fidure l4as 1-6-8
Figure 14by 1-6-9
Figure l4cs 1-6-11
Figure 1l4ds 1
Fidure 13a» 1-6
Figure 1Sbs 1-6-17
Figure 15cy 1-8
Fidure 15dy 1-6

1-8-1



Functional derendencuyr 1-5-14

Gauss-Newton melhod )
slgorithay 1-4-4
algorithe failures 1-4-21
conversence =roofy 1-4-27
informal discussions 1-4-1
starting valuess 1-4-6
.ster lendth determinsiions 1-4-5
storring ruless 31-4-5

Gradient, 1-2-1

Grid searchy 1-4-17

Jacobiany 1-2-2

Har Llew’s method
{see Gauss-Newlon method)

Hessians 1-2-1

Identification Conditions 1-3-7

Ladrange multirlier test
ssumplotic distributiony 1-5-57
comrutstiony 1-5-62
corresronding confidence resions 1-6-14
defineds 1-5-61

informal discussions 1-5-55s 1-5-81
Monti Carlo simulaticnsy 1-5-77
rower comrulationsy 1-5-72

Larde residual rroblems 1-4-21
Least sauares estimator
characterized as a linear function of the errorssy 1-3-1
computation
{see Gauss-Newlons Levenberdg-Harouardls and Hewlon melhods)
definedy 1-2-10
distribution ofy 1-3-2» 1-3-3
first order conditicnsy 1-2-2
informal discussion of redularily conditionsy 1-3-5
Least sauares scale estimator
characlerized as a ausdratic function of the errorss 1-3-2
comrutation
(see Gauss-Newlons Levenberg-Harauardls and Newlon methods)
defineds 1-2-10
distribution ofs 1-3-2» 1-3-3
Likelihood ratio test
ssumptotic distributions 1-5-35
comrutationy 1-5-14
corresrondind confidence regions 1-6-6
defineds 1-5-15
informal discussiony 1-5-13
onti Carlo simulstionss 1-5-49, 1-5-51, 1-5-54
pouwer comrutationss 1-5-32
Linear redression model
{see univariale nonlinear resression model)
Marauardi’'s method
{see Levenberd-Hareuardt method)
Hatrix derivativesy 1-2-1




1-8-3

Hodified Gauss-Newlon wmethod
{see Gauss-Newton method)
Nonlinear redression model
{see univariate nonlinear redression model)
Parametric restrictions 1-5-14
fank Conditions 1-3-7
Reso’s efficient score test
{see Lagrange multirlier test)

Teble 1y 1-1-5

Tsble 2y 1-1-9

Table 3» 1-3-13
Table 4y 1-4-24
Table Sy 1-5-12
Table 6+ 1-5-36
Table 7y 1-5-48
Table 8y 1-5-50
Table 9» 1-3-82

Table 10ar 1-5-76

Table 10bs 1-5-78

Tawlor’s theorems 1-2-8

Univariate linear redression model
defineds 1-1-2

Univariaie nonlinear redression model
defineds 1-1-1y 1-1-3
vector rerresentaiions 1-2-4

Vector derivativess 1-2-1

Wald test
asumrtotic distributions 1-5-7
corresronding confidence resions 1-6-1
defineds 1-5-3
informal discussions 1-5-1
Monti Carlo simulationsy 1-3-14s 1-5-13s 1-5-54
rower computationss 1-5-9



