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Chapter 6. Multivariate Nonlinear Regression

All that separates multivariate regression from univariate regression
is a linear transformation. Accordingly, the main thrust of this chapter‘is
to identify the transformation, to estiméte it, and then to apply the ideas
of Chapter 1. In Chapter 1 we saw that there is little difference between
linear and nonlinear least squares save for some extra tedium in the compu-
tations. We saw that if one uses the likelihood ratio test to test hypothesis
and construct confidence intervals then inferences are reliable provided one
uses the same degrees of freedom corrections used in linear regression and
provided that the hypothesis of spherically distributed errors is reasonably

accurate. These are the main ideas of this chapter.



6-1-1

1. INTRODUCTION
In Chapter 1 we considered univariate nonlinear model

Yy = f(xt,6°) * ey t=1,2, ..., n .

Here we consider the case where there are M such regressions

Vot = f&(xt,eg) te . t=1,2, ..., n; a=1,2, ..., M

that are related in one of two ways. The first arises most naturally when

yott =212, ..., M

represent repeated measures on the same subject, height and weight measure-
ments on the same individual for instance. In this case one would expect

the observations with the same t index to be correlated, viz

C(ya.tﬁ yat) = Uas

One often refers to this situation as contemporaneous correlation. The
second way these regressions can be related is through shared parameters.

Stacking the parameter vectors and writing

A1
e2
B=1 .
eM
one can have
8 = g(p)
where p has smaller dimension than 6 . If either or both of these relation-

ships obtain, contemporaneous correlation or shared parameters, estimators
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with improved efficiency can be obtained; improved in the sense of better
efficiency than that which obtains by applying the methods of Chapter 1 M
times (Problem 12, Section 3). An example that exhibits these characteristics
that we shall use heavily for illustration is the following.

EXAMPIE 1. (Consumer Demand) The data shown in Tables la and 1b is to

be transformed as follows

y; = 4n (peak expenditure share) - 4n (base expenditure share)

Y, = 4n (intermediate expenditure share) - fn (base expenditure share)

X, = fn (peak price/expenditure)
X, = 4n (intermediate price/expenditure)
X, = 4n (base price/expenditure) .

As notation, set

X
y = Yl X = Xl
Yo X2
3
vy X
v =] Lt x, = | Tt t=1,2, ..., 224
t t X
v 2t
2t .
3t

These data are presumed to follow the model
- 4 !
ylt- an.(al+ Xb(l))/(a3+ Xb(3))] + elt

Yoy = zn[(az + X'b(e))/(a3 + le(3))] + s

21 b22 b23
31 P3p P33

where
N
= a2 s
3
B = bll b12 bl3
- b
b
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and b(i) denotes the ith row of B, viz.

b(i) - (bil’ bi2’ bi3)

The errors

are assumed to be independently and identically distributed each with mean
zero and varilance-covariance matrix ¢ .

There are various hypotheses that one might impose on the model. Two
are of the nature of malntained hypotheses that follow directly from the

theory of demand and ought to be satisfied. These are:

H : a

1 are the same in both equations, as the

3 and b(3)

notation suggests.

Hé: B is a symmetric matrix.

There is a third hypothesis that would be a considerable convenience if it
were true

‘

. w3 _ 3
Hy: iy 2; = -1 Tl

N =0 fori=1,, 2, 3.

bij
The theory supporting this model specification follows; the reader who has
no interest in the theory can skip over the rest of the example.

The theory of consumer demand is fairly straightforward. Given an income
Y which can be spent on N different goods which sell at prices Pys> Pos +eos pN
the consumer's problem is to decide what quantities Q5 oo v Uy of each
good to purchase. One assumes that the consumer has the ability to rank
various bundles of goods in order of preference. Denoting a bundle by the

vector
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a= (a5 a5 ++05 q) >
the assumption of an ability to rank bundles is equivalent to the assumption
that there is a (utility) function u(q) such that u(q®) > u(g*) means bundle
Q® is preferred to bundle q° . Since a bundle costs p’q with p'==(pl,p2,...,pN)

the consumers problem is

maximize u(q)

subject to p'q = Y.
This is the same problem as

maximize u(q)

subject to (p/¥)'q =1

which means that the solution must be of the form

q = a(v)
with v = p/Y .  The function q(v) mapping the positive orthant of RN into the
positive orthant of RN is called the consumer's demand system. It is usually
assumed in applied work that all prices are positive and that a bundle with
some q; = 0 is never chosen.
If one substitutes the demand system q(v) back into the utility function

one obtains the function

g(v) = ula(v)]

which gives the maximum utility that a consumer can achieve at the price/
income point v . The function g(v) is called the indirect utility function.
A property of the indirect utility function that makes it extremely useful
in applied work is that the demand system is proportional to the gradient of

the indirect utility function (Deaton and Muellbauer, 1980), viz.
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a(v) = (3/av)g(v)/v'(3/av)e(v) .

This relationship is called Roy's identity. Thus, to implement the theory
of consumer demand one need only specify a parametric form g(vle) and then

fit the system

a = (3/av)e(v|8)/v'(a/av)a(v|8)

to observed values of (q,v) in order to estimate 6 . The theory asserts that
the fitted function g(vle) should be decreasing in each argument,
(B/BVi)g(v|6) < 0, and should be quasi-convex, v’(ae/avav’)g(v|6)V'> 0 for
every v with v/(3/3v)g(v|8) = O (Deaton and Muellbauer, 1980). If g(v|8) has
this property then there exists a corresponding u(gq) . Thus, in applied
work, there is no need to bother with u(q) ; g(v|8) is enough.

It is easier to arrive at a stochastic model if we reexpress the demand
system in terms of expenditure shares. Accordingly let diag(v) denote a

diagonal matrix with the components of the vector v along the diagonal and set

s = diag(v)g
s(v|8) = diag(v) (3/av)e(v|8)/v/(3/av)e(v]|8) .

Cbserve that

s; = Vi = Py /Y

so that Sy denotes that proportion of total expenditure Y spent on the ith

good. As such 1's = zlesi = 1 and 1's(v|6) = 1.

The deterministic model suggests that the distribution of the shares

has a location parameter that depends on s(v|6) in a simple way. What seems

to the case with this sort (Rossi, 1983) of data is that observed shares

follow the logistic-normal distribution (Aitchison and Shen, 1980) with
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location parameter
w=4n s(v|0)

where gn s(v|8) denotes the N-vector with components fn si(vle) for
i=1,2, ..., N. The logistic-normal distribution i1s characterized as
follows. Let w be normally distributed with mean vector p and a variance-
covariance matrix C(w,w’) that satisfies 1/C(w,w’)1 = O. Then s has the

logistic-normal distribution if

s = eW/(z§=l e 1)

where ¢" denotes the vector with components ewi fori=1,2, ..., N. A
log transform yields
ins=w- zn(z§=lewi)1
whence
in 85 - in Sy =Wy ot Wy o i=1,2, ..., N-1 .
Writing We o= Wp T By - g + e for i=1, 2, ..., N-1 we have equations that

can be fit to data

fn s, - 4n sg = 4n (3/ovy)e(v]8) 4n (B/BYN)g(v|6) +e 1=1,2,...,N-1.

The last step in implementing this model is the specification of a
functional form for g(v|8) . Theory implies a strong preference for a low
order multivariate Fourier series expansion (Gallant, 1981, 1982; Elbadawi,
Gallant, and Souza, 1983) but since our purpose is illustrative the choice
will be governed by simplicity and manipulative convenience. Accordingly,

let g(v|8) be specified as the Translog (Christensen, Jorgenson, and Lau, 1975)
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g(v|e) f§ laizn(vi) + %g§= b En(vi) zn(vj)

= 153=1"1]
or

g(v|8) = a’x + ($)x'Bx

with x = 4n v and
7 _
a’ = (al, 255 a3)
b1y P1p Pyg

boy Bop Pog
b3y P3p P33

B =

Differentiation yields
(3/ov)e(v|8) = [diag(v)1La+ 3 (B+ B )x].

One can see from this expression that B can be taken to be symmetric without

loss of generality. With this assumption we have
. -1
(3/3v)e(v|8) = [diag(v)] " (a + Bx) .
Recall that 1in general shares are computed as

s(v|e)

diag(v) (3/3v)g(v|8)/v'(3/av)g(v]8)

which reduces to

s(v|e) = (a + Bx)/1/(a + Bx)

in this instance. Differenced log shares are
_ 7 ’
n si(vle) - 4n SN(V|6) = Ln[(ai + x b(i))/(aN + x b(N))].

The model set forth in the beginning paragraphs of this discussion follows
from the above equation. The origins of hypotheses Hl and H2 are apparent

as well.
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One notes, however, that we applied this model not to all goods
415 9> “> A and income Y but rather to three categories of electricity
expenditure - peak = a5 intermediate = %> base = q3 - and to total
electricity expenditure E. A (necessary and sufficient) condition that per-
mits one to apply the theory of demand essentially intact to the electricity

subsystem, as we have done, is that the utility function is of the form

(Blacorby, Primont, and Russell, 1978, Ch. 5)
utu(l)(ql, q2> q3): (1)4_’ ey q‘N]

If the utility function is of this form and E is known it is fairly easy to

see that optimal allocation of E to 95 95 and q3 can be computed by solving

maximize u(l)(ql, q2, q3)

subject to 23 p,q; = E.
i=1

Since this problem has exactly the same structure as the original problem,
one just applies the previous theory with N = 3 and Y = E .

There is a problem in passing from the deterministic version of the
subsystem to the stochastic specification. One usually prefers to regard
prices and income as independent variables and condition the analysis on p
and Y. Expenditure in the subsystem, from this point of view, is to be
regarded as stochastic with a location parameter depending on p, Y and

possibly on demographic characteristics, viz
E = f(p, Y, etc.) + error .

For now, we shall ignore this problem implicitly treating it as an errors in
variables problem of negligible conseguence. That is, we assume that in

observing E we are actually observing f(p, Y, ete.) with negligible error so
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that an analysis conditioned on E will be adequate. In Chapter 8 we shall
present methods that take formal account of this problem.
In this connection, hypothesis H3 implies that g(v‘e) is homogeneous

of degree one in v which in turn implies that the first-stage allocation

function has the form
f(P: Y, etc') = f[H(Pl, P2: P3): ph_; seey pN’ Y, etc']

where n(pl, p2, p3) is a price index for electricity which must, itself, be
homogeneous of degree one in pl, p2, p3 (Blackorby, Primont, and Russell,
1978, Ch. 5). This leads to major simplifications in the interpretation of
results which see Caves and Christensen (1980).

One word of warning regarding Table lc, all data is constructed following
the protocol described in Gallant and Koenker (1984) save income. Some
income values have been imputed by prediction from a regression equation.
These values can be identified as those not equal to one of the values 500,
1500, 2500, 3500, 4500, 5500, 7000, 9000, 11000, 13500, 17000, 22500, 27500,
40000, 70711. The listed values are the means of the questionnaire's class
boundaries save the last which is the mean of an open ended interval assuming
that income follows the Pareto distribution. The prediction equation includes
variables not shown in Table lc, namely age and years of education of a

member of the household, the respondent or head in most instances. []



Table 12, Household Flectricity Expenditures by Time-of-Use,
Nortth Carolina, Average over Weekdays in July 1978.

Expenditure Share
---------------------------- Expenditure

t Treatment Base Intermediate Peak (5 per day)
1 t 0.056731 0.280382 0.662888 0.46931
2 1 0.103444 0.252128 0.644427 0.7953¢
3 1 0.158353 g0.27008%9 0.571558 0.457546
4 1 0.1080753 0.305072 0.5846853 0.94713
3 1 0.083921 0.21165%6 0.7044923 1.22054
8 1 0.112165% 0.290532 0.597302 0.93181
? 1 0.071274 0.240518 0.6488208 1.79152
8 1 0.076510 0.210503 0.712987 0.51442
9 1 0.066173 0.202999 0.730828 0.78407

10 1 0.0948346 0.270281 0.634883 1.01354

11 1 g.078501 0.293953 0.62754% 0.838854

12 1 0.05953¢0 0.228752 0.711718 1.53957

13 1 0.208982 0.328053 0.462965 1.06694

14 1 0.083702 0.297272 0.619027 0.82437

13 1 0.138705 0.35832°9 0.502966 0.80712

14 1 0.111378 0.322564 0.56464058 0.5314°9

17 1 0.09291°9 0.259633 0.647448 0.83439

18 1 0.039353 0.158205%5 0.802442 1.9332¢6

19 1 0.066577 0.2474514 0.4685970 1.371460

20 2 0.102844 0.244335 0.652821 0.92766

21 2 0.125485% 0.2303058 0.644210 1.80934

22 2 0.154316 0.235135 0.4641054°9 2.41501

23 2 0.165714 0.27698¢0 0.557308 0.84458

24 2 0.145370 0.173112 0.68151¢8 1.60788

25 2 0.184447 0.268845 0.546668 0.73838

26 2 0.162269 0.280939 0.556792 0.81116

27 2 0.1120146 0.2208S0 0.667133 2.01503

28 2 0.226863 0.257833 0.3515304 2.32035

29 2 0.118028 0.219830 0.662142 2.490172

30 2 0.137761 6.345117 0.%517122 0.57141

31 2 0.079115 0.25731°9 0.6433566 0.94474

32 2 0.185022 0.265051 0.549928 1.463778

33 2 0.14435214 0.276133 0.579343 0.75816

34 2 0.201734 0.2419466 0.5546300 1.00134

33 2 0.09489%90 0.227651 0.6774%59 1.11384

346 2 0.102843 0.2645158 0.632642 1.07185

37 2 0.107740 0.214232 0.47800°9 1.5363°9

38 2 0.154552 0.236422 0.60702¢ 0.240¢%¢9

39 2 0.08843t1 0.2227446 0.688822 0.58046

40 2 0.14623¢ 0.30188¢4 0.5%5188¢0 2.52983

11 3 0.080802 0.199005 0.720192 1.14741

42 3 0.100711 0.387758 0.511531 0.97934

43 3 0.073483 0.335280 0.591237 1.093461

44 3 0.059455S 0.259823 0.46480722 2.194468

43 3 0.0741°95 0.378371 0.545434 1.98221

(Continued next page)



Table 1a. (Continued?}.

Expenditure Share
———————————————————————————— Expaenditure
t Treatment Base Intermediate Peak (% per day)

44 3 0.0748926 0.325032 0.598042 1.78194
47?7 3 0.086052 0.339653 0.57429% 3.249274
48 3 0.06935°9 0.27836°9 0.652272 0.47593
39 3 0.071265S 0.27384656 0.465484°9 1.38346°9
S0 3 0.1005¢62 0.3068247 0.593191 1.57831
S1 3 0.050203 0.294285 0.655513 2.146900
32 3 0.059627 0.311932 0.628442 2.11575
53 3 0.081433 0.328604 0.5899%962 0.35681
S4 3 0.075762 0.285972 0.638265 1.535275
SS 3 0.042910 0.372337 0.584754 1.06305
56 3 0.086846 0.340184 0.57297¢0 4.02013
57 3 0.102537 0.33553% 0.561928 0.60712
38 3 0.068766 0.310782 0.620452 1.15334
S9 3 0.058405 0.307111 0.634485 2.43797
80 | 0.055227 0.30083°9 0.643934 0.10082
61 4 0.107435 0.273937 0.418628 0.69302
62 9 0.105958 0.291205 0.602837 1.12592
63 4 0.132278 0.279429 0.588293 1.84425
64 4 0.094195 0.32886¢6 0.5746940 1.57972
65 9 0.1152S°9 0.40107°9 0.483663 1.27034
56 1 0.150229 0.317846546 0.531905 0.56330
67 4 0.1468780 0.307646°9 0.5235%1 3.43139
68 4 0.118222 0.3180840 0.563698 1.00979%
69 4 0.103394 0.307671 0.58893¢6 2.08458
70 4 0.124007 0.3621153 0.513879 1.30410
71 q 0.197987 0.280130 0.S521884 3.4814¢
72 q 0.108083 0.337004 0.554¢913 0.53206
73 5 0.088798 0.2325468 0.678634 3.28987
74 3 0.100508 0.27213°9 0.627353 0.324678
7S 3 0.127303 0.29851°9 0.574178 0.52452
76 S 0.109718 0.228172 0.646210°9 0.36622
77 S 0.130080 0.231037 0.638883 0.63788
78 5] 0.14985462 0.32357°9 0.527835°9 1.42239
79 S 0.10630¢6 0.252137 0.641556 0.93535
8¢ 3 0.080877 0.214172 0.704951 1.26243
81 5 0.081810 0.1354665 0.782525% 1.51472
82 S 0.131749 0.278338 0.589%9913 2.078358
83 5 0.059180 0.254533 0.686287 1.604681
84 5 0.078620 0.267252 0.654128 1.54704
8% S 0.090220 0.293831 0.615949 2.61162
8¢ S 0.086916 0.193967 0.719117 2.96418
87 S 0.1322383 0.230489 0.637127 0.26912
g8 S 0.085540 0.252321 0.642120 0.425354
89 S 0.0713468 0.276238 0.6323%93 1.0192¢6
90 S 0.061194 0.245025 0.693780 1.538¢07

(Continued next page)
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Table 1a. (Continued) .

Expenditure Share
———————————————————————————— Expenditure

t Treatment Base Intermediate Peak ($ per day)
?1 S 0.086608 0.2339%981 0.6479411 0.75711
22 5 0.105é628 0.305471 0.588%901 0.83647
93 5 0.078158 0.20253¢4 0.719307 1.9209%96
?4 5 0.048632 0.2146807 0.7345460 1.5779%
?3 5 0.094527 0.2243414 0.681128 0.83214
246 3 0.09230°9 0.209154 0.698037 1.39364
97?7 3 0.0335751 0.166231 0.798018 1.72697
98 S 0.065205% 0.205058 0.729736 2.04120
?9 5 0.092561 0.193848 0.713591 2.04708
100 S 0.063119 0.234114 0.702747 3.4394°9
101 S 0.0911846 0.224488 0.6843246 2.4646918
102 5 0.047291 0.262623 0.46%0086 2.71072
103 5 0.081575 0.2046400 0.7120258 3.36803
104 S 0.108145 0.243450 0.648185 0.65682
103 3 0.079534 0.32045¢0 0.600017 0.95523
104 3 0.084828 0.24718°9 0.667984 0.61441
107 3 0.063747 0.210343 0.725¢91¢ 1.85034
108 S 0.081108 0.249994640 0.668932 2.11274
109 by 0.089%942 0.206601 0.703457 1.34120
110 3 0.046717 0.224784 0.72849¢9 3.54351
111 5 0.114925§ 0.272279 0.612796 2.61769
112 5 0.11508¢8S 0.264415 0.420530 3.0023¢
113 3 0.081511 0.223870 0.694618 1.74166
114 5 0.1094658 0.3435¢93 0.5446750 1.17640
115 S 0.114263 0.304761 0.58097¢6 0.74566
116 S 0.115089 0.226412 0.465849¢9 1.30392
117 S 0.040622 0.198984 0.760392 2.1333°9
118 3 0.07324% 0.238522 0.4688234 2.83039
1179 5 0.0879354 0.28745¢0 0.6245946 1.62179
120 S 0.0919687 0.206131 0.701902 2.183534
121 b 0.14274¢ 0.30293°9 0.554315 0.246503
122 5 0.117972 0.253811 0.628217 0.0S5082
123 3 0.071573 0.2483214 0.680103 0.4274¢0
124 5] 0.073628 0.290586 0.4635786 0.4797¢
125 S 0.12107S 0.350781 0.528145 0.59551
126 S 0.077335% 0.339358 0.583307 0.475046
127 S 0.074766 0.167202 0.758032 2.118647
128 S 0.208580 0.331363 0.440058 1.13621
129 S 0.080195 0.21061°9 0.709185% 2.61204
130 5 0.066156 0.2049118 0.7297246 1.45227
131 S 0.112282 0.2524638 0.4643508¢0 0.79071
132 3 0.041310 0.093104 0.865584 1.30697
133 S 0.1024675 0.29700°9 0.4003146 0.936¢9%1
134 5 0.102902 0.270832 0.62626¢ 0.98718
135 3 0.118932 0.2501014 0.630964 1.40085

(Continued next page)



Table 1a. (Continued?}.

Expenditure Share
———————————————————————————— Expenditure

t Treatment Base Intermediate Peak ($ per day)
134 5 0.139760 0.322394 0.537844 1.78710
137 5 0.1214156 0.2146256 0.663758 8.46237
138 5 0.065701 0.243818 0.670481 1.58643
139 5 0.03402°9 0.175181 0.790790 2.82535
140 5 0.07447¢ 0.194744 0.73078¢0 4.29430
141 S 0.059548 0.229705 0.710727 0.65404
142 S 0.088128 0.2955446 0.61632¢6 0.41292
143 3 0.075522 0.213622 0.710856 2.02370Q
144 3 0.05708°9 0.195720 0.747190 1.74998
145 ) 0.096331 0.3014692 0.601977 0.99891
144 3 0.120824 0.25028¢0 0.6288946 0.27942
147 6 0.03452°9 0.193454 0.772015 0.91673
148 4 0.026971% 0.180848 0.792181 1.15617
149 [ 0.045271 0.1418%94 0.81283S 1.57107
150 é 0.047708 0.219302 0.712990 1.2451§
151 [ 0.07933¢% 0.230693 0.689972 1.70748
1352 8 0.022703 0.178896 0.798401 1.7995¢9
153 4 0.043053 0.157142 0.799805 4.61668S
154 é 0.057157 0.2435931 0.696912 0.59504
135 4 0.063229 0.136192 0.800579 1.4249°9
156 4 0.076873 0.21420°9 0.708918 1.34371
157 é 0.027353 0.124894 0.847753 2.74908
158 é 0.067823 0.14699%4 0.785183 1.844628
159 [ 0.056388 0.189185 0.754428 3.82472
160 é 0.036841 0.194994 0.768145 1.1819°9
141 6 0.0591460 0.138681 0.8021538 2.07338
162 [ 0.0519840 0.215700 0.732320 0.80376
143 13 0.027300 0.145072 0.827428 1.52316
164 é 0.0147%0 0.17961% 0.8055°91 3.17526
165 é 0.0478465 0.167561 0.784574 3.30794
1646 é 0.11562°9 0.231381 0.652990 0.7245¢6
167 7 0.104970 0.147325% 0.747505 0.50274
1468 ? 0.11925%54 0.18740°9 0.693337 1.22571
1469 7 0.042564 0.112839 0.84459¢ 2.13534
170 7 0.0967546 0.150178 0.7530464% 5.56011
171 7 0.063013 0.168422 0.768545 3.11725
172 7 ‘0.080040 0.143934 0.7760046 0.9979%96
173 7 0.097493 0.173391 0.72911¢6 0.67859
174 7 0.10252¢6 0.220954 0.676520 0.79027
1738 ? 0.085538 0.19568% 0.718774% 2.2449%8
1748 7 0.068733 0.166248 0.765019 2.01993
177 7 0.094915% 0.140119 0.764966 4.07330
178 7 0.0761463 0.1320446 0.791792 3.646432
179 7 0.099%943 0.176885S 0.723172 0.40748
180 7 0.081494 0.175082 0.7434253 1.090465%5

(Continued next page)



Table la. (Continued?.

Ezxpenditure Share
———————————————————————————— Expenditure

t Treatment Base Intermediate Peak (% per day)
181 7 0.196024 0.299348 0.5046246 1.35008
182 7 0.093173 0.23581¢ ¢.471011 1.06138
183 7 0.172293 0.173032 0.6544875 0.9921¢9
184 7 0.067735% 0.159600 0.772663 3.69199
185 7 0.1020383 0.171697 0.724271 2.364876
184 ? 0.067977 0.15110°9 0.780914 1.845463
187 8 0.071073 0.23898S 0.689942 0.18316
188 8 0.049453 0.2846788 0.66375°9 2.239846
189 8 0.062748 0.25512°9 0.46482123 3.48084
190 8 0.032374 0.15490S 0.812719 7.2613%
191 8 0.0550SS 0.225294 0.7194648 1.68814
192 8 0.03782°9 0.1790S51 0.783120 1.13804
193 8 0.020102 0.172396 0.807502 1.4089%94
194 8 0.021917 0.149092 0.828992 3.47472
195 8 0.047359%90 0.174735% 0.777675% 3.37é68¢%9
194 8 0.063444% 0.235823 0.700731 3.14810
197 8 0.034719 0.1593%8 0.805883 3.21710
198 8 0.055428 0.200488 0.7440814 1.139%941
199 8 0.058074 0.254823 0.687103 2.53414
200 8 0.060719 0.209763 0.729518 0.29071
201 8 0.045481 0.2046177 0.748142 1.2133¢6
202 8 0.040151 0.263161 0.6964688 1.02370
203 8 0.072230 0.281440 0.646310 1.40380
204 8 0.064366 0.269816 0.665819 0.97704
205 8 0.0359%3 0.191422 0.772%8S 2.0990¢9
206 ? 0.0914638 0.215290 0.693073 1.0367°9
207 9 0.072171 0.23664658 0.691171 2.36788
208 9 0.056187 0.195345 0.7484468 3.45908
209 ? 0.095888 0.2295846 0.6745246 3.6379%¢6
210 ? 0.06980¢9 0.219358 0.710633 2.546887
211 9 0.142920 0.223801 0.4633279 2.0031°9
212 ? 0.087323 0.196401 0.716276 2.404644
213 ? 0.064517 0.218711 0.716772 2.585%52
214 9 0.0846882 0.194778 0.718341 8§.94023
215 ¢ 0.067463 0.219228 0.71330°9 3.75275%
216 9 0.105610 0.23046461 0.663730 0.34082
217 9 0.138%992 0.283123 0.577889§ 1.6264°9
218 9 0.0813464 0.186%967 0.731470 2.31478
219 9 0.114535%5 0.221751 0.64643714 1.77709
220 9 0.06%9940 0.280622 0.649438 1.38745%
221 K4 0.073137 0.14321°9 0.783643 3.46442
222 9 0.096324 0.243241 0.460434 1.74696
223 ? 0.083284 0.202951 0.713745 1.284613
2214 ? 0.179133 0.299403 0.521445 1.15897

Source: Gallant and Koenker(i984)



U=a=ry

Table 1b. Experimental Rates in Effect on a Weekday in July 1978.

Price (cents per kwh)

Treatment Base Intermedite Peak
1 1.046 2.86 3.90
2 1.78 2.846 3.90
3 1.04 3.90 3.90
4 1.78 3.90 3.9%90
5 1.37 3.34 5.0
é 1.06 2.84 6.56
? 1.78 2.86 6.356
8 1.06 3.9%90 4.564
9 1.78 3.9%90 6.56
Base period hours are l1ipm to 7am. Intermediate period
hours are 7am to 10am and 8pm to iipm. Peak period hours

are 10am to 8pm.



Table 1tec. Consumer Demographic Characteristics.

Residence
.............. Air Condition.

Heat Elee. = ceccccccccca--

Family Income Size Loss Range Washer Dryer Central Window

t Size ($ per yr) (S5qFt) (Btuh) (l=yes) (l=yes) (i1=yes) (l=yes) (Btuh)
1 2 17000 600 4308 0 1 0 ] 13000

2 3 13500 900 9931 1 1 0 0 0

3 2 7000 1248 18878 1 1 0 0 0

4 3 11000 1787 17377 1 1 0 ] ]

5 4 27500 2900 24894 1 0 0 1 5000

é 3 13500 2000 225246 1 1 1 0 24000

7 4 22500 3800 17335 1 1 1 1 0

8 7 3040 214 4494 1 0 0 0 0

9 3 7000 1000 8792 0 1 1 0 18000

10 1 8793 1200 14643 0 0 0 0 .
11 5 11000 1000 14480 1 1 0 0 0
12 3 17000 704 3192 1 1 1 1 24000
13 3 3500 2100 8631 1 1 0 i 0
14 2 13500 1400 19720 1 1 1 0 19000
15 4 22500 1252 73864 1 1 1 0 24000
16 ? 17000 916 7194 ] 1 0 ¢ 0
17 2 11000 1800 17997 1 1 1 1 0
18 2 13500 780 44641 1 1 0 1 0
19 3 4570 960 11394 1 1 0 0 24000
20 4 9000 748 8195 1 1 1 0 ]
21 2 11000 1200 7812 1 1 1 1 100040
22 4 13500 900 8878 1 1 1 1 0
23 3 40000 2200 15098 1 1 1 0 0
24 3 7000 1000 7041 1 1 0 0 10000
25 3 13500 720 5130 0 1 1 0 0
26 2 13500 550 7532 1 1 0 0 12000
27 4 17000 1600 9674 1 t 1 1 0
28 4 27500 2300 137046 1 1 ] 1 0
29 4 15797 1000 10372 1 1 1 0 10000
30 2 11000 880 7477 0 1 1 0 19000
31 4 9000 1200 14013 1 1 1 0 0
32 4 17052 2200 15230 1 1 0 0 0
33 2 14812 1080 13170 1 0 0 0 ]
34 3 27500 8740 10843 1 1 1 0 18500
kR 2 4562 800 9393 1 1 1 0 6000
36 2 7000 1200 11395 1 1 0 0 0
37 3 9000 900 6175 1 1 0 0 23000
38 2 4711 1500 17655 i 0 ] 0 0
39 S 144652 1500 119146 1 1 1 ] ]
40 4 70711 2152 14552 1 1 1 1 0
41 2 7000 812 4314 1 1 1 1 0
42 3 22500 1700 9209 1 1 1 1 0
43 11 4500 1248 9607 1 1 0 0 0
44 5 11000 1808 19400 1 1 1 (] 284000
43 é 22300 1800 19981 1 1 1 1 0

(Continued next page).



Table 1lc. (Continued).

Residence
.............. Air Condition.

Heat Elec. = emememcemeaao

Family Income Size Loss Range Washer Dryer Central Window

t Size ($ per yr) (SqFt) (Btuh) (l=yes) (l=yes) (l=yes) (l=yes) (Btuh)
46 4 22500 1800 18573 0 0 0 1 0
47 3 40000 4200 16264 1 1 i 1 0
43 2 f000 1400 10541 1 1 1 0 24000
19 2 13500 2500 29231 1 1 0 0 14000
50 é 17000 1300 5803 1 1 1 0 21000
51 3 11000 780 5894 1 1 i 1 0
32 1 4500 1000 13714 0 0 0 0 6000
53 2 11247 940 7843 1 1 ] 0 0
54 3 2500 1000 12973 1 1 0 0 ]
S5 1 7430 1170 9361 1 1 1 0 0
36 4 17000 2900 12203 1 1 1 1 0
57 1 22500 1000 10131 0 1 0 0 0
58 3 22500 1250 12773 1 1 1 0 12000
59 3 7000 1400 11011 1 1 1 0 29000
60 1 2500 835 12730 1 0 0 0 0
61 1 13500 1300 7196 1 1 0 ] 32000
42 ? 11000 540 7798 1 1 0 0 0
63 4 14381 1100 8700 1 i 1 ] 30000
44 2 9000 900 5724 1 0 0 0 12000
653 3 11000 720 3854 1 1 1 1 0
66 b} S500 780 6236 1 1 0 1 0
&7 4 40000 1450 8140 1 1 1 0 28000
48 2 3500 1100 10102 1 1 0 0 12000
69 2 17000 3000 38124 1 1 ] 1 ]
70 4 11000 1534 15711 1 0 0 0 0
71 2 40000 2000 11250 1 1 1 1 ]
72 2 2500 1400 15040 0 ] 0 0 §000
73 q 17000 1400 13544 1 0 1 1 0
74 2 1500 856 7383 1 ] 0 0 0
73 3 9000 772 13229 1 0 0 ] 1800
76 1 9000 600 4033 1 1 0 0 0
77 S 5500 500 6110 1 0 0 0 0
78 3 13500 1200 11097 1 1 1 0 10000
79 2 13590 1300 12849 1 0 0 0 24000
80 4 11000 10453 11224 1 1 0 0 0
81 2 94687 7468 7563 1 1 1 0 10000
82 3 17000 1100 91359 ] 1 1 ] 10000
83 11 4500 480 6099 1 1 0 0 0
84 5 13500 1974 12498 1 1 1 0 e
85 4 40000 2500 23213 1 1 1 0 .
Bé 3 22500 2100 12314 1 1 1 1 0
87 3 3500 1194 14725 0 ] 0 0 0
88 3 12100 9350 11174 ] ] 0 0 0
89 3 3500 1080 12184 1 0 0 ] 0
90 2 7000 1400 10050 1 1 0 0 28000

(Continued next page).



Table 1c. (Continued).

Residence
.............. Air Condition.

Heat Elee. = ceccccccccaaa-

Family Income Size Loss Range Washer Dryer Central Window

t Size (6 per yr) (SqfFt) (Btuh) (l=yes) (1=yes) (l=yes) (i=yes} (Btuh)

91 2 3500 1800 16493 1 1 1 0 2000

92 2 7000 145¢ 17469 0 1 0 0 18000

93 4 9000 1100 6177 1 1 1 0 23000

94 2 3500 1500 214359 1 1 1 0 18000

95 4 9894 720 6133 1 1 1 0 4000

96 1 22500 1500 7952 1 0 0 1 0

97 4 13500 1500 10759 1 ] 1 1 0

98 4 17000 1900 10174 1 1 1 1 0

99 2 17000 1100 10849 1 1 1 0 23000

100 S 27500 2300 16610 1 1 1 1 0
101 3 13500 1500 11304 1 1 1 1 0
102 2 27500 igaao 23727 1 1 1 1 0
103 L] 24970 2280 18402 1 1 1 1 0
104 2 3500 970 10065 1 1 0 0 0
105 2 17000 1169 10810 1 1 0 0 30000
106 2 13500 1300 204814 1 1 1 ] 0
107 2 13500 728 4841 i 1 1 1 0
108 2 11000 1500 11235 1 1 1 1 0
109 3 17000 1500 9774 1 1 0 1 0
110 S 3500 900 12085 1 1 0 0 23000
111 3 17000 1500 17859 1 1 1 1 0
112 1 70711 2600 16641 1 1 1 1 0
113 3 7000 780 5692 1 1 1 0 20000
114 4 22500 1600 8191 1 1 1 1 0
115 2 13500 600 508¢ 0 1 1 0 2000
114 3 4500 1200 14178 1 1 1 0 1000
117 H] 17000 900 8944 1 1 1 0 18000
118 4 13500 1500 11142 1 1 1 1 0
119 3 17000 2000 19555 1 1 1 1 ]
120 3 23067 1740 10183 1 1 1 0 420400
121 1 17000 496 5974 1 0 0 0 0
122 1 2500 900 10111 1 1 0 0 0
123 2 7245 970 20437 1 1 0 0 0
124 2 10415 1500 9619 1 0 0 0 0
123 3 3500 750 16955 0 0 1 ] 18000
1246 2 4500 824 114647 1 1 0 0 0
127 1 22500 1900 11401 1 0 1 1 0
128 4 40000 2500 15205 1 1 1 1 0
129 2 4500 840 5984 1 i 1 1 0
130 1 22500 1800 18012 1 1 1 1 0
131 2 5500 1200 8447 1 i ] 0 10600
132 1 34689 574 12207 0 Y 0 0 0
133 3 16356 1600 16227 0 1 1 0 283500
134 4 11000 1340 17045 1 1 0 0 0
135 3 5500 600 4644 0 1 0 0 9000

(Continued next page).
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Table 1ic. (Continued).

Residence
______________ Air Condition.

Heat Elee. = cccaacaccacoaa
Family Income Size Loss Range Washer Dryer Central Window
t Size ($ per yr) (S5qFt) (Btuh) (i=yes) (i=zyes) (l1=yes) (1=yes) (Btuh)
134 3 17000 2000 16731 1 1 1 1 2300
137 2 32070 6000 §1737 1 1 1 1 0
138 2 27500 1250 7397 1 1 1 1 0
139 4 17000 8490 5424 1 1 1 1 0
140 4 27500 3300 11023 1 1 1 1 0
141 2 11000 1200 10888 1 0 0 0 18000
142 1 . 1000 3444 1 0 0 0 0
143 3 36919 1200 8860 1 1 1 1 0
144 5 9000 720 5882 1 1 1 0 10000
143 S 21400 1300 6273 1 1 1 0 ]
144 1 1500 375 4727 0 0 0 0 0
147 2 5063 1008 71935 1 0 0 0 0
148 1 3500 1450 13144 1 0 0 1 0
149 1 9488 850 9830 0 0 1 0 10000
150 1 27500 1200 8469 1 1 1 1 0
151 S 17000 1000 800¢ 0 1 1 0 16000
152 3 11000 2000 124608 1 1 1 . 1 0
153 7 22500 1225 11505 1 0 0 1 0
154 8 3500 1200 16682 1 1 0 0 ¢
155 3 9273 400 5078 1 1 0 0 15000
156 8 17000 1100 17912 1 0 0 0 0
157 3 17459 980 7984 0 1 1 1 0
158 S 11000 1200 14113 1 i 1 0 184000
159 3 9000 1600 21529 1 1 1 0 6000
1460 2 11000 899 5731 0 1 1 0 28000
161 3 12048 1350 16331 1 1 1 0 4000
142 2 7000 §72 8875 1 1 0 0 0
163 3 22500 1200 10424 1 1 0 0 23000
164 2 3500 1300 8436 1 1 1 1 0
145 2 12519 1000 24210 1 1 1 0 37000
166 2 29391 1400 12837 1 1 1 1 ]
1467 2 9000 400 4319 1 0 0 0 0
148 3 4644 1235 14274 1 1 0 0 6000
169 4 11000 720 §3%3 0 i 1 0 23000
170 . . . . .
171 3 18125 2300 16924 1 1 0 1 0
172 . . . . . . . . .
173 3 9000 720 6439 1 1 1 0 0
174 é 5500 1000 13651 1 1 0 0 0
175 S 1408535 1400 145463 1 1 0 ] 15000
174 2 9000 720 6340 0 1 1 1 0
177 4 17000 1470 8439 1 1 1 1 0
178 4 27500 1900 12345 1 1 1 1 18500
179 3 7000 480 379¢ 0 0 0 ] 10000
180 K} 13500 1300 7352 1 1 0 0 23000

(Continued next page).
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Table 1ic. (Continued).

Residence
.............. Air Condition.

Heat Eleec. = ccceeccreroe=-

Family Income Size Loss Range Washer Dryer Central Window

t Size ($ per yr) (SqFt) (Btuh) (l=yes) (1=yes) (lsyes) (l=yes) (Btuh)

181 3 13437 1200 9502 1 1 1 1 ]
182 3 14150 1300 8334 1 1 0 e 0
183 1 7000 1200 11941 1 1 0 0 21000
184 94 27500 1350 7585 1 1 1 1 0
185 2 32444 2900 15158 1 1 0 1 ¢
186 1 4274 400 7839 1 0 0 0 0
187 1 3500 600 14441 0 0 ] 0 0
188 4 27500 2000 15442 1 1 1 1 0
189 4 40000 2900 13478 1 1 o 1 ]
190 § 17000 5000 24132 1 0 1 1 0
191 1 2500 1400 17014 1 1 0 ] 2000
192 ? 9000 1400 13293 1 1 0 0 0
193 . . . . 0 ] 0 . 0
194 4 13500 780 5629 1 1 0 1 0
195 S 13500 1000 7281 1 1 1 1 0
196 2 13500 11469 11273 1 1 0 0 12000
197 2 40000 2400 13515 1 i ] 1 ]
198 ! 27500 1320 9845 1 1 1 0 29000
199 g’ 27500 1250 3739 1 1 1 1 0
200 1 3449 1200 18358 0 0 0 0 0
201 2 3500 425 4554 1 ] 0 ] .
202 2 27500 1400 13496 1 o 0 1 0
203 4 7000 1300 1135535 1 1 1 0 14000
204 2 3500 1800 23271 1 1 0 0 ]
205 q 11000 720 5879 1 1 1 ] 14000
2046 7 9000 680 11528 1 0 0 0 0
207 4 14077 780 4829 1 1 1 0 10000
208 3 13500 2200 22223 1 1 1 0 24000
209 q 17000 1342 120350 1 1 1 1 0
210 4 3500 428 5349 1 1 1 0 24000
211 2 11000 920 3590 1 1 1 1 0
212 S 9000 1300 11510 1 1 1 0 19000
213 3 5500 1400 18584 1 1 1 0 23000
214 S 27500 2300 15480 1 1 1 1 0
215 3 20144 1700 11212 1 1 1 1 0
216 S 3500 1080 13857 0 0 0 0 0
217 2 22500 1800 17588 1 1 0 0 23000
218 é 22500 1900 15118 1 1 1 0 22000
219 S 6758 1200 146848 1 0 0 0 0
220 é 11000 2200 21884 1 1 1 1 ¢
221 3 17000 1500 11504 1 1 1 1 ]
222 2 9000 400 5825 1 0 1 1 0
223 2 15100 1932 15760 1 1 1 ] 0
2214 1 7000 979 11700 1 1 1 0 1000

(Continued next page).



Table fc. (Continued).

Type of Residence

--------------------------- Elec.
Duplex or Mobile Water
Detached Apartment "Home Heater Freezer Refrigerator

t (1=yes) (l=yeas) (1=yes) (l=yes) (kw) (kw)
1 0 0 1 1 0 0.700
2 1 0 0 1 1.320 0.700
3 1 0 0 1 1.320 0.700
4 1 0 0 1 1.3290 2.495§
3 1 0 0 0 1.320 3.59¢0
é 1 0 0 1 0 1.7935
7 1 0 0 1 0 1.79%
8 1 0 0 0 1.320 0.700
9 1 0 o 1 1.320 0.700
10 1 0 ] 0 1.985 1.795
11 1 0 ] 1 2.640 0.700
12 ] 0 1 1 1.985 1.795
13 1 0 0 1 1.320 1.795%
14 1 0 ] 1 1.320 1.798
15 1 0 0 1 1.320 1.795%
16 0 0 1 1 ¢ 1.795
17 1 0 0 1 1.985 1.79%
18 0 0 1 1 0 0.700
19 1 0 0 1 1.320 1.79%
20 1 0 0 1 0 1.795%
21 1 0 0 1 1.320 0.700
22 1 ] 0 1 1.320 0.700
23 1 0 ] 1 3.303 1.79S
24 0 1 0 1 0 0.700
25 ] 0 1 1 1.320 0.700
24 1 0 0 1 1.985 0.700
27 1 0 0 1 1.320 1.793%
28 1 0 0 1 1.320 1.798
29 1 0 0 1 0 1.795
30 0 ¢ 1 1 0 0.700
1 1 0 0 1 1.320 0.700
32 1 0 0 1 0 1.795
33 1 0 0 1 1.320 3.59¢0
34 1 0 0 1 0 1.795
35 1 0 ] 1 1.320 1.79%
34 1 ] 0 1 1.320 0.700
37 1 0 0 1 1.320 1.79%
38 1 0 0 1 0 0.700
39 1 0 0 1 0 1.79%
10 1 0 ] 1 1.320 1.400
11 1 0 0 1 1.985 1.795%
42 1 0 0 1 2.640 0.700
43 1 0 0 1 1.320 1.795
14 1 0 ¢ 1 3.970 1.795§
45 1 0 0 t 1.985 1.79§

(Continued next page).



Table 1c. (Continued).

Type of Residence

--------------------------- Elec.
Duplex or Mobile Water
Detached Apartment Home Heater Freezer Refrigerator
t (l=yes) (l=yes) (l=yes) (l=yes) (kw) (kw)
46 1 0 0 0 0 1.795%
47 1 0 0 1 0 1.795
48 1 0 0 1 0 0.700
49 1 0 0 1 0 2.493%
50 t ] 0 1 1.9835 1.793
51 0 0 1 1 1.983% g.700
52 1 0 ] 0 1.320 1.795%
33 0 ] 1 1 0 0.700
54 1 0 ] 1 1.320 1.795
5§ 1 (] ] 1 1.320 1.7935
54 1 0 0 1 1.320 1.79%
57 1 0 0 1 1.320 1.7935
58 1 0 0 1 1.320 1.798
59 1 0 0 1 1.320 1.795
60 1 0 0 0 0 0.700
61 1 0 0 1 1.32¢0 0.700
82 1 0 0 i 1.320 0.700
43 1 0 0 1 1.320 0.700
64 0 1 0 1 0 1.798
63 0 ¢ 1 1 0 0.700
X ] 0 1 1 0 1.795
67 1 0 0 1 1.320 1.798
48 1 0 0 1 1.320 g.700
69 1 0 ] 1 0 1.400
70 1 0 0 1 1.320 1.795
71 1 ] 0 1 1.98% 1.795
72 1 0 0 0 1.320 1.795
73 1 ] ] 0 0 1.795
74 1 0 0 0 0 0.700
7% 1 ¢ 0 0 1.320 0.700
76 1 0 0 1 0 0.700
77 0 1 0 ] 1.320 0.700
78 1 0 0 1 0 1.79%
79 1 ] 0 0 1.320 1.795
80 1 0 0 1 1.320 1.79%
81 0 0 1 1 1.320 2.49%
82 1 0 0 1 1.9835 1.79%
813 1 e 0 1 1.320 0.700
84 1 0 0 1 1.9835 1.79§
85 1 0 ] 1 o 1.79§
86 1 ] 0 1 1.320 2.493
87 1 0 0 ¢ ] 1.795
as 1 0 0 0 3.305 0.700
89 1 0 0 1 1.9835 g.700
90 1 0 ] 1 1.985 1.79%

(Continued next page).
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Table 1e¢. (Continued).

Type of Residence

--------------------------- Elec.
Duplex or Mobile WVater
Detached Apartment Home Heater Freezer Refrigerator

t (l=yes) (l=yes) (l=yes) (l=yes) (kw) (kw)
91 1 0 0 1 0 1.795
92 1 0 0 1 1.98S§ 1.7935
93 1 0 0 1 1.320 1.7935
94 1 0 0 1 0 1.798
95 0 0 1 1 0 1.795
96 1 0 0 1 1.98% g.700
97 1 0 0 0 1.320 0.700
98 1 ] 0 1 1.320 0.700
99 1 ] 0 1 2.640 1.79%
100 1 0 0 1 1.320 1.795
101 1 0 0 1 1.320 1.798
102 1 0 0 1 0 2.495
103 1 0 0 1 1.320 1.79%
104 1 0 0 1 320 0.700
1035 1 0 0 1 1.320 - 0.700
104 1 0 0 1 0 1.795
107 1 0 0 1 1.320 0.700
108 1 0 0 1 320 g.700
109 1 0 0 1 0 1.795
110 1 ] 0 1 320 0.700
111 1 0 0 1 1.320 1.798§
112 1 0 0 1 970 1.795
113 0 0 1 1 0 1.795
114 1 0 0 1 1.320 1.795
113 o 0 1 i 0 0.700
114 1 0 0 1 0 1.795
117 1 0 0 1 1.320 1.798
118 1 o 0 1 1.985 0.700
119 1 0 0 1 o 0.700
120 0 0 1 1 1.320 1.798
121 0 0 1 1 0 1.795
122 1 0 0 1 0 0.700
123 1 0 0 1 0 0.700
124 1 0 0 1 0 1.795
125 1 0 0 0 1.320 1.798§
126 1 0 0 1 0 0.700
127 1 0 0 0 1.320 1.79%
128 1 0 0 1 0 2.495
129 0 0 1 1 1.320 1.795%
130 1 0 0 1 0 1.795
131 1 0 ] 1 0 0.700
132 1 0 0 0 1.320 1.795
133 1 0 0 1 1.32¢0 0.700
134 1 0 0 1 1.320 0.700
133§ 0 0 1 1 0 0.700

(Continued next page).



Table 1c. (Continued).

Type of Residence

--------------------------- Elec.
Duplex or Mobile Water
Detached Apartment Home Heater Freezer Refrigerator
t (1=yes) (1=yes) (1=yes) (1l=yes) (kw) (kw)
13¢ 1 0 0 1 1.9835 1.795
137 1 0 0 1 1.985 1.400
138 0 ! 0 1 0 1.793%
139 0 0 1 1 0 0.700
140 0 1 0 1 7.265 1.793%
141 1 0 0 1 1.320 0.700
142 0 1 0 1 0 1.79%
143 0 1 0 1 0 0.700
144 0 e 1 1 0 0.700
145 0 ] 1 1 ] 1.79%
144 1 0 0 0 0 1.795%
147 1 0 ] 0 0 0.700
148 1 0 0 0 0 1.79%
149 1 0 0 0 1.320 1.793
150 0 1 ] 1 0 1.79%
151 1 0 0 1 2.640 1.79S
152 1 0 0 1 0 1.79%
153 1 0 0 ] 1.320 1.795
154 1 0 0 1 1.320 0.700
155 0 0 1 1 ] 0.700
1546 1 0 0 1 1.320 0.700
137 0 0 1 1 1.320 1.795%
158 1 ] 0 1 3.970 2.49%
189 1 0 0 1 0 0.700
140 1 0 0 1 1.320 1.79%
161 1 0 0 1 1.320 1.79%
162 1 0 0 1 1.320 0.700
143 1 0 0 1 ¢ 1.795
164 1 0 0 1 ¢ 1.79%
165 1 0 0 1 2.640 3.590
164 1 0 0 1 1.320 0.700
147 0 1 0 1 0 g.700
148 1 0 0 1 2.640 0.700
149 ] 0 1 1 0 1.795
170 : . . .
171 1 ¢ 0 1 1.320 1.795
172 . . . . . .
173 ¢ 0 1 1 1.320 0.700
174 1 0 0 1 1.320 0.700
175 1 0 0 1 1.985 1.795
176 ] 0 1 1 0 0.700
177 1 0 0 1 3.970 1.795
178 1 0 0 1 1.985 1.79%
179 0 0 1 0 0 0.700
180 1 o 0 1 1.320 1.795

(Continued next page).



Table 1ec. (Continued).

O-L=cD

Type of Residence

--------------------------- Elec.
Duplex or Mobile Water
Detached Apartment Home Heater Freezer Refrigerator
t (l=yes) (1=yes) (1=yes) (l=yes) (kw) (kw)
181 1 0 0 1 1.98% 0.700
182 1 0 0 1 1.9835 1.795
183 1 0 0 1 1.320 1.795
184 1 0 0 1 1.320 1.795
185 1 ¢ 0 1 0 2.495%
186 1 0 ] 1 0 1.795
187 1 0 0 0 1.320 0
188 1 0 0 1 1.320 1.795
189 1 0 0 1 0 1.795%
190 1 0 0 0 1.985 2.495
191 1 ] 0 1 0 1.79%
192 1 0 0 1 0 1.795
193 ] 0 1 0 0 0
194 0 o 1 1 1.320 1.795
195 1 0 0 1 1.320 0.700
198 1 0 0 1 1.9835 1.798
197 1 0 0 1 1.985 1.795
198 0 0 1 1 0 1.795
199 1 0 0 1 1.320 1.79%
200 1 0 0 0 0 0.7060
201 0 1 0 1 1.985 0
202 0 1 0 i 0 1.795
203 1 0 0 1 1.320 0.70¢0
204 1 0 0 1 ] 0.700
205 0 1] 1 1 1.320 0.700
204 1 0 0 ] 1.320 ¢.700
207 ] ] 1 1 0 0.700
208 1 0 0 1 1.320 2.495
209 1 0 0 1 1.320 1.795
210 1 0 0 1 0 0.700
211 0 1 ] 1 e 0.700
212 1 0 0 1 0 1.79%
213 1 0 0 1 1.320 1.795
214 1 0 0 1 1.985 1.795§
215 1 0 0 1 1.320 1.793%
216 1 0 0 ] 0 0.700
217 1 0 0 1 1.320 1.79%
218 1 1] 0 1 1.98% 1.795
219 1 0 0 a 0 0.700
220 1 0 0 1 1.320 1.795
221 1 0 0 1 1.320 1.79%
222 0 1 0 1 0 1.795
223 1 0 ] 1 1.320 1.79%
224 1 0 0 1 0 1.795

Source:

Gallant and Koenker(1984).
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2. LEAST SQUARES ESTIMATORS AND MATTERS OF NOTATION

Univariate responses Yot fort=1,2, ..., nandeg=1,2, ..., M
are presumed to be related to k-dimensional input vectors Xy as follows
%t=%ﬁvﬁ)+%a a=1,2, ..., M; t=1,2, ..., n

where each £ (x,0 ) is a known function, each 6; is a pa-dimensional vector
o o

of unknown parameters, and the e represent uncbservable observational or

ot
experimental errors. As previously, we write 9; to emphasize that it is the
true, but unknown, value of the parameter vector ea that is meant; Qa itself

is used to denote instances when the parameter vector is treated as a variable.

Writing

Mt
the error vectors e, are assumed to be independently and identically distributed

with mean zero and unknown variance-covariance matrix T,

N C(et, eé) t=1,2, ..., n,
whence s £ = s
B
C(eat, eSt) =
0 t#s
with G&B denoting the elements of ¢.

In the literature one finds two conventions for writing this model in

a vector form. One emphasizes the fact that the model consists of M separate

univariate nonlinear regressions

v, = T(&) + e, a=1,2, ..., M
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with ya being an n-vector as described below and the other emphasizes the

multivariate nature of the data

yt=f(xt,9°)+et t=1,2, ..., n

with Vi being an M-vector; Simply to have labels to distinguish the two,
we shall follow Zellner (1962) and refer to the first notational scheme as
the "seemingly unrelated" (nonlinear regressions) structure the second as
the multivariate (nonlinear regression) structure. Let us take these up in
turn.

The "seemingly unrelated" notational scheme follows the same conventions

used in Chapter 1. Write

¥y

al
yaE
xy= .
y
n on 1
£ (x,,8 )
f&(xz,ea)
fa(ea)=
f (x_,8 )
n n 1
eal
ea2
e = .
o .
€ n
n @ 1

In this notation, each regression is written as

—f(e) e =1, 2 M
+ RPN
y v 3 ’ P
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with (Problem 1)

C(ea,ee) = O oIn -

Denote the Jacobian of qy(ea) by
— ’
Fa(ea) = (a/aea) f&(ed)

which is of order n by'pa . Tllustrating with Example 1 we have:
EXAMPIE 1 (continued). The independent variables are the logarithms of

expenditure normalized prices. From Tables la arnd 1lb we obtain a few instances

(2.11747, 1.80731, 0.81476)’

»
"

L = 40 (3.90, 2.86, 1.06)/(0.46931)]

[ (3.90, 2.86, 1.06)/(0.79539)]" = (1.58990, 1.27974, 0.28719)’

el
1t

X507 4n[ (3.90, 2.86, 1.06)/(1.37160)7 = (1.04500, 0.73484, -0.25771)"

X51= 20 (3.90, 2.86, 1.78)/(0.92766)7 = (1.43607, 1.12591, 0.65170)’

i

%, [ (3.90, 2.86, 1.78)/(2.52983)1’ = (0.43282, 0.12267, -0.35154)’

X)= #n[ (3.90, 3.90, 1.06)/(L.14741)]’

(1.22347, 1.22347, -0.079238)’

It

XoopF 4oL (6.56, 3.90, 1.78)/(1.15897)1" = (1.73346, 1.2134k, 0.42908)" .

The vectors of dependent variables are for ¢ = 1

4n(0.662888/0.056731) 2.45829
2n(0.644427/0.10344Y) 1.82933

y01= : = E s
4n(0.521465/0.179133) 1.06851

224 1 22k 1
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4n(0.280382/0.056731) 1.59783
£n(0.252128/0.10344%) 0.89091
yaz : = : .
£n(0.299403/0.179133) 0.51366
22k 1 22k 1

Recall that
Vi = 4llay + xbqy)/(ag + xboy)]+ ey
Vop = #L(2y = %o (p))/(ag + xgp(3))1 + ey
with b(d) denoting the g-th row of
11 P12 P13

21 b22 b23

P31 P3p P33

b
B=1b

and with a’ = (a Note that if both a and B are multiplied by some

l’ a2, a3)

common factor § to obtain a=25%a and B= 8B we shall have
’ ’ - - I - 12wy
(ad + x b(a))/(a3 + x b(3>) (ad + x b(a))/(a3 + x b(3))

Thus the parameters of the model can only be determined to within a scalar

multiple. In order to estimate the model it is necessary to impose a normal-

ization rule. Our choice is to set a3 = -1 . With this choice we write the
model as
O
= +
Vig = F1(xg00) + ey
Q
= -+
Yoy = Tp(xg:0p) + epy

with
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fa(x,ea) = LnL(aa + b’(a)x)/(—l + b(3)x)] a=1, 2

7 _
el = (al, bll, blz, bl3, b3l, b32, b33)

7 _
85 = (a5 Dpys Byps bygs ays Daps Dag) -

Recognizing that what we have is M instances of the univariate nonlinear
regression model of Chapter 1, we can apply our previous results and estimate
the parameters 6; of each model by computing @z to minimize

SSE (8 ) =Lly_-f (8 )1'Lly -£ (8
a( a) Lya a( a)] Lya a( a)]

fore=1,2, ..., M. This done, the elements Ga of ¥, can be estimated by

B

5,0 = [y, - 2,81 Ty, - £,(80)1/m @B =1,2, ..., M.

Let % denote the M by M matrix with typical element 6&5 . Equivalently, if

we write
éd =y, -f&(éﬁ) a=1,2, ..., M
Bo=le e D&y

then

$ = (1/n)E'E

We illustrate with Example 1.

EXAMPIE 1 (continued). Fitting
yp = £1(8)) + e

by the methods of Chapter 1 we have from Figure la that



Tigure la. TFirst CEquation of Example 1 Fitted by the Modified Gauss-Newton
Methed.

SAS Statements:

PRCC NLIN DATA=CEXAMPLE! METHOD=GAUSS ITER=50 CONVERGENCE=1.E-13;
PARMS B!1=0 B12=0 B13=0 B31=0 B32=0 B33=0 Al=-9; A3=-1;
PEAK=A1+B11*X1+B12*X2+813%X3; BASE=A3+B31*X1+B32*X2+B33*X3;
MODEL Y1=LOG(PEAK/BASE);

DER.A1 =1/PEAX;
DER.B11=1/PEAK*X1; DER.B31=-1/BASEx*X1{,;
DER.B12=1/PEAK*X2;, DER.B32=-1/BASE®X2;
D£R.BlS=1/PEAK*X3, DER.B33=-1/BASE*X3;
QUTPUT QUT=WORK(02 RESIDUAL=E1l;
Qutput:
STATISTTI1CAL ANALYSTITS SYSTEM 1
MON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y! METHOD: GAUSS-NEWTON
ITERATION Bit B12 B13 RESIDUAL SS
B31 B3z2 B33
Al
0 .000000E+0Q0 0.000000E+00 0.000000E+00 72.213249%1
.000000E+00 0.000000E+00 0.000000E+00
-9.00000000
16 -0.83842780 -1.44241315% 2.0153535461 34.50071894
0.448465734 -0.194481464 -0.38299424
-1.98254583
NOTE: CONVERGENCE CRITERION MET.
STATISTTICAL ANALYSI S SYSTEM 3
NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Vi
SOURCE DF SUM OF SQUARES MEAN SQUARE
REGRESSION 7 1019.72333487¢ 145.67476528%
RESIDUAL 217 36.5007189¢ 0.16820408
UNCORRECTED TOTAL 224 1056.22407572
(CORRECTED TOTAL) 223 70.01944051
PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 %
STD. ERROR CONFIDENCE INTERVAL
LOVER UPPER
B11l -0.83842780 1.37155782 -3.54194099 1.86468338
B12 -1.44241215 1.87671707 -5.14138517 2.25455887
B13 2.01539%541¢ 1.44501283 -0.83273595% 4.86344714
B3t 0.468463734 0.12655503 0.21921985 0.71809482
B3z -0.19468144 0.218464114 -0.62561901 0.23425349
B33 -0.3829942¢6 0.0937628% -0.546780098 -0.19819153
Al -1.98254583 1.03138455 -4.01538427 0.05029240
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r ‘él -1.98254583

13 11 -0.83862780

s - 1:12 _ -1.44241315
1 bl3 2.01535561
*531 0.46865734

£32) -0.19468166

b33 -0.38299626

and from Figure 1b that

( 52 -1.11401781

E2l 0.41684196

o _ 1:22 . -1.30951752
2 - b23 - 0.73956410
%31 0.24777391

b 3 0.07675306

633 -0.39514717,

Some aspects of these computations deserve comment. In this instance,
the convergence of the modified Gauss-Newton method is fairly robust to the
choice of starting values so we have taken the simple expedient of starting with

a value Oea with fq(x’Oea) =V, The first full step away from oea
-1
= + ! 4 -
8, = o8, * [FI(e8,) Fa(oea)] F' (08, )0y, fa(oea)]

is such that
a, + b X 1+ b
(1 1% (o) )/ (- 1P(3)% x)
is negative for some of the Xt ;3 this results in an error condition when
taking logarithms. Obviously one need only take care to choose a step length

OX small enough such that
o



Figure 1b. Second Equation of Example 1| Fitted by the Modified Gauss-Newton
Method.

SAS Statements:

PROC NLIN DATA=EXAMPLE1 METHOD=CAUSS ITER=50 CONVERGENCE=1.E-13;
PARMS B21=0 B22=0 B23=0 B31=0 B32=0 B33=0 A2=-3; A3=-1;
INTER=A2+B21*X1+B22*%2+B23%X3; DBASE=A3+B31*YX1+B32%X2+B33*X3;
MODEL Y2=LOG(INTER/BASE);

DER.AZ =1/INTER;

DER.B21=1/INTER*X1; DER.B3{=-1/BASE®*I{;

DER.B22=1/INTER*X2; DER.B32=-1/BASE®*X2;

DER.B23=1/INTER*X3; DER.B33=-1/BASE*X3;

OUTPUT OUT=WORK03 RESIDUAL=E2;

Qutput:
STATISTICAL ANALYSTIS SYSTTEM
NON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y2 METHOD: GAUSS-NEWTON
ITERATION B21! B22 B23 RESIDUAL S§S
B3l B32 B33
A2
0 0.000000E+00 0.000000E+00 0.000000E+00 37.149889890
0.000000E+00 0.000000E+00 0.000000E+00
~-3.00000000
14 0.41684194 -1.30951752 0.73956410 19.70439405
0.24777391 0.07675304 -0.39514717
-1.11401781

NOTE: CONVERGENCE CRITERION MET.
STATISTICAL ANALYSTIS SYSTTEM

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEZPENDENT VARIABLE Y2
SOURCE DF SUM OF SQUARES MEAN SQUARE
REGRESSION 7 265.36865902 37.90980843
RESIDUAL 217 19.70439403 0.09080364
UNCORRECTED TOTAL 224 285.07305307
(CORRECTED TOTAL) 223 36.70369494%

PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 93 %
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
B21 0.4168419¢6 0.44396622 -0.458206463 1.29189056
B22 -1.30951752 0.4608%7020 -2.30978547 -0.10924934§
B23 0.73956410 0.54937638 -0.34324582 1.82237401
B31 0.24777391 0.13857700 -0.02533840 1.52090642
B32 0.07675306 0.18207332 ~-0.28210983 0.43561595
B33 -0.39514717 0.08932410 -0.57120320 ~-0.21909114
A2 -1.11401781 0.34304923 -1.7%9016103 -0.43787440
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Tigure 1c. Contemporaneous Variance-Covatiance Matrig of Example 1 Estimated

from Single Equation Residuals.

SAS Statements:

DATA WORK04; MERGE WORK02 WORKQ03; XEEP T E! EZ2;
PROC MATRIX FW=20; FETCH E DATA=WORKO4(KEEP=E1 E2);
SIGMA=E'*E#/224; PRINT SIGMA; P=HALF(INV(SIGMA)); PRINT P;

Qutput:
STATI!STI!CAL ANALYSIS SYSTEM
SIGMA COL1 T coL2
ROW1 0.1629496382006 0.09015433203941
ROW2 0.09015433203941  0.08794604486025
P COL1 coL?
ROVt 3.764814163903 -3.85846955764

ROW2 ] 3.371649857133
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18= 8+ oML, Fa(oea)]-lF'(oea)[ya -£ (8,1

is in range to avoid this difficulty. Thus, this situation is not a problem
for properly written code. Other than cluttering up the output (suppressed

in the figures), the SAS code seems to behave reasonably well. See Problem 7

for another approach to this problem.
Lastly, we compute

( 0.1629496382006 0.09015433203941 )

L= 1 0.09015433203941  0.08796604L86025

as shown in Figure lc. For later use we compute

. 3.764814163903 -3.858L695576L
- 0 3.371659857133

with 872 = 2d.

The set of M regressions can be arranged in a single regression

y=f(6°)+ e
by writing '
I
¥
y = :2
N
My
l(el)
(6,)
£(8) = 2 2
nM fM(%M) 1
€1
€2
e = .
M
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1
8
o=1 .2
8
P S
with p = i§=l pa . In order to work out the variance-covariance matrix of e

let us review Kroneker product notation.
If A is an k by 4 matrix and B is m by n then their Kroneker product,

denoted as A ® B 1s the km by fn matrix

{allB alZB e alﬂB

ale a22B .o azzB
A®B =

\ale asz .o asz

The operations of matrix transposition and Kroneker product formation commute;
viz.

(A®B) = (A’ ®B') .
If A and C are conformable for multiplication, that is, C has as many rows
as A has columns, and B and D are conformable as well then

(A ®B)(C ® D) = (AC ® BD) .
It follows immediately that if both A and B are square and invertable then

1 -1

(A®B)'1=A' ® B :

that is, inversion and Kroneker product formation commute.
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In this notation, the variance-covariance matrix of the errors is

C(el, ei) C(el,eé) ... C(el,eé)
C(e2, ei C(ez,eé) ... C(ez,e&)
Cle,e’) =

Cleys o) Cleel)  Cloyep)

Gll I 0‘12 I OlM I

9y I Opp L Oom T

%1 T %o T Sy
= $&I;

the identity is n by n while ¥ is M by M so the resultant 7 ® I is nM by nM .

Factor z-l as z-l = P’P and consider the rotated model

(PRI)'y=(PRI)f(B)+ (P®I)e

1n_tr
e

Hyll - "f"<e)

+

Since

C("e", nenl) - (P ® I)'(Z ® I)(P ® I)

P'sP®I

p/(p) P lr e I

MIM ® nIn

oM nM

the model
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Hy” —- nfn(eo ) + lleH
is simply a univariate nonlinear model and 8° can be estimated by minimizing

S(G,Z) - [nyn - ufn(e)]ll:nyn - "f"(e)]

[y - £(8))(PoI)'(P® 1)y - £(8)]

]

[y - £(8)1(z™® Dy - £(8)] .
Of course ¥ is unknown so one adopts the obvious expedient (Problem L) of
replacing ¥ by & and estimating 6° by
® minimizing S(8,%)
These ideas are easier to implement if we adopt the multivariate notational

scheme rather than the "seemingly unrelated" regressions scheme. Accordingly,

let



U=~ L+

A
6
_ 2 ~
6 = : p= z§=lpa
8
pt M1

whence the model may be written as the multivariate nonlinear regression

Ve = f(xt,€°) + ey t=21,2, ..., n .

In this scheme,
n ’ -lt

C

To see that this is so, let OQ denote the elements of Z_l and write

S(8,z) = ¢

Tl"tS

l[yt - f(xt,e)]’z'l[yt - f(xt,e)]

0

o1 Ty Tae1 Oy, - £(%,08,)) Lyg, - £4(x,,8,))

= Ty Tgp Ly, - 281y, - £(8y)]

d_’:

[y - £8)1(x "  ® I)y - £(8)]

The advantage of the multivariate notational scheme in writing code
derives from the fact that it is natural to group observations (yt,xt) on the
same subject together and process them serially for t =1, 2, ..., n. With

s(8,r) written as
5(8,5) = f_ (v, - £(x,,8) 15 Ty, - £(x,,n)]

one can see at sight that it suffices to fetch (yt,xt) , compute
[yt - f(xt,e)]'z-l[yt - f(xt,e)] , add the result to an accunulator and

continue.
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The notation is also suggestive of a transformation that permits the
use of univariate nonlinear regression programs for multivariate computations.

Observe that if z’l factors as z"l = P’P then

s(6,8) = T,_;[By, - Pr(x,,0)1 By, - Pf(x,,8)]

Writing pza) to denote the g-th row of P we have

5(0,%) = Tp g By q[P{ )y - Pl flx,0)1°

One now has S(6,%) expressed as the sum of squares of univariate entities,

what remains is to find a notational scheme to remove the double summation.

To this end, put

s = M(t-1) + ¢«

e
]

S p(a)yt

"
!

’ IAYs
- (pa,Xt

”fg(kg,e) = pza)f(xt,e)

fore¢e=1,2, ..., Mand t = 1, 2, ..., n whence

nM

5(8,%) = Ty 2,

l[ nysn - nfn(nxs n,e)]

We illustrate these ideas with the example.

EXAMPIE 1 (continued). Recall that the model is

vy = frlxg:87) + epy
Vor = Tp(%g:85) + epp

with
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fa(x,ea) = !.n[(aa + b(a))/(-l + b(3)x)] a=1, 2

[
8] = (ay; P1y5 Pros Bygs Pags Bass b33)

’r
8, = (a5, byys By bp32 B3ys Paps b33)

As the model is written, the notation suggests that b( is the same for both

3)

a=1and ¢ = 2 which up to now has not been the case. To have a notation

that reflects this fact write

£,(x:8,) = al(a, + [ )/(-1+v)0x)]  a=1,2

7
8] = (a1 g5 Ppps D135 By3ys Bygno b133)

5= (ay D515 b, 0535 Bogys Pogss b233)

to emphasize the fact that the equality constraint is not imposed. The

multivariate model is, then,
Vi = f(xt,e) + ey

with a + b..x + x

1t Pra¥y T Pio¥oy *oPyg¥sy
- ¥
L+ D% ¥ Pygo¥op ¥ bygg¥ay

in

f(X_t,e) =
+
85 boy¥pp F PopXoy F Dpa¥ay
- +
L H bogy Xy ¥ Poso¥op T boagXay
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2]
=

11
12
13
131
132
g = 133

o o o o o o

jol

21
22
23
231

232
\ 233

and Yy =(Yl;> s & T (flt) > Xy as before. To illustrate, from Table la

o o o o o o

Iot,

for t = 1 we have

4n(0.662888/0.056731) 2.45829
Yt = | 4n(0.280382/0.056731) | ~ \ 1.59783

and for t = 2
4n(0.644427/0.1034L04 ) 1.82933
Yt = \4n(0.252128/0.0134kk) / = | 0.8909L )

as previously from Tables la and lb we have

2.11747 1.58990
X = 1.80731 » Xy = 1.27974
0.81476 0.28719

To illustrate the scheme for minimizing S(6,%) using a univariate nonlinear

program, recall that

(3.7658 -3.8585 )

P o 3.3716 (from Figure lc)



U= =10

whence

nyln = (3.76h_8, _3.8585 2 )_{_5829 = 308980

1 59783
y,"= (0, 3.3716) (2-h5829 = 5.38733

1.59783
"yy" = (3.7648, -3.8585) [1.82933) = 3.4kos6

0.89091
= 3.00382

"y, = 0, 3.3716) {1.82933
0.89091

"x." = (3.7648, -3.8585, 2.11747, 1.80731, 0.81476)"
"y "= ( 0, 3.3716, 2.117h47, 1.80731, 0.81L76)’

>
1

"x.," = (3.7648, -3.8585, 1.58990, 1.27974, 0.28719)’

"xu" ( 0, 3.3716, 1.58990, 1.27974, 0.28719)'
"f"("Xl",G) = (3'76)““8) I'n[(al + X].,.b(l>)/ -1+ x bl(3))]
-(3.8585) 4 (a, + x b(2))/( -1+ x] 2(3))]

ufn(nxgn,e) - (3.3716) znc (a + x b(2))/ -1+ x b2(3))]

SAS code to implement this scheme is shown in Figure 2a together with the
resulting output.

Least squares methods lean rather heavily on normality for their wvalidity.
Accordingly, it is a sensible precaution to check residuals for evidence of
severe departures from normality. Figure 2a includes a residual analysis of
the unconstrained fit. There does not appear to be a gross departure from

normality. Notably, the Kolmogorov-Smirnov test does not reject normality.



Figure Za. Ezample ! Fitted by Multivariate Least Squares, Uncon

SAS Statements:

DATA WORKO01; SET EXAMPLEL;
P1=3.764814163903; P2=-3.838446955764; Y=P1*Y1+P2*xY2; OUTPUT;
F1=0; P2=3.3714649857133;, VY=P1xY1+P2%Y2; OUTPUT; DELETE;
PROC NLIN DATA=WORKO1 METHOD=GAUSS ITER=50 CONVERGENCE=1.E-8;
PARMS B11=-.8 B12=-1.4 B13=2 B131=.5 B132=-.2 B133=-.4

B21=.4 B22=-1.3 B23=.7 B231=.2 B232=.1 B233=-.4

Al=-2 A2=-1; A3=-1;
PEAK =A1+B11*X1+B12*X2+B13*%3; BASE1=A3+B131*X1+B132*X2+B133%¥3;
INTER=A2+B21%X1+B22*X2+B23*%3; DBASE2=A3+B231*X1+B232*%2+B233*X3;
MODEL Y=P1*LOG(PEAK/BASE!)+P2+*LOG(INTER/BASE2);

DER.A1l =P1/PEAX; DER.AZ =PZ/INTER;

DER.B11=P1/PEAK®X!; DER.B21=P2Z/INTER*X1{;
DER .B12=P1/PEAK*X2; DER.B22=P2/INTER*X2;
DER.B13=P{/PEAK*X3; DER.B23=P2/INTER®X3;

DER.B131=-P1/BASEL1*X1; DER.B231=-P2/BASEZ2*X1;
DER.B132=-P1/BASE1*X2; DER.B232=-P2/BASE2*XZ;
DER.B133=-P1/BASEI1*X3; DER.B233=-P2/BASE2*X3;

OUTPUT QUT=WORK0Z RESIDUAL=EHAT;

PROC UNIVARIATE DATA=WORKQ02 PLOT NORMAL; VAR EHAT; 1ID T;

strained.

RESIDUAL SS

631.16222217

442 . 65919896

Qutput:
STATISTICAL ANALYSTIS SYSTEM
NON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON
ITERATION Bit B12 B13
B131 B132 B133
B21 B22 B23
B231 B232 B233
Al A2
0 -0.80000000 -1.40000000 2.00000000
0.50000000 -0.20000000 -0.40000000
0.40000000 -1.30000000 0.70000000
0.20000000 0.10000000 -0.40000000
-2.00000000 -1.00000000
é -2.98669754 0.90158533 1.46353998
0.2671835¢6 0.07113302 -0.47013242
0.20848925 -1.33081849 0.85048354
0.18931302 0.10756248 -0.40539911
-1.52573841 -0.96432128

NOTE: CONVERGENCE CRITERION MET.



Figure 2a. (Continued) .

STATISTICAL ANAL

¥YSI1s

NON-LINEAR LEAST SGUARES SUMMARY STATISTICS

SOURCE

REGRESSION

RESIDUAL

UNCORRECTED TOTAL

(CORRECTED TOTAL)

PARAMETER ESTIMATE
3 -2.9866975¢6
Bi2 0.90158533
B13 1.66353998
B131 0.26718356
B132 0.07113302
B133 -0.47013242
B21 0.20848925
B22 -1.33081849
B23 0.85048354
B131 0.18931302
B232 0.10756248
B233 -0.40539911
Al ~1.52573841
A2 -0.96432128

DF SUM OF

14 6340.

4314 442.
448 6983,

447 871.

ASYMPTOTIC
STD. ERROR

.27777798
.41306196
.31692369
.10864198
.17067332
.074433253
.41968487
.480S55515%
.94%4213°9
.12899074
.14251811
.07932153
.98851033
.34907492

Q0O O QO 0000 B O - ke -

SQUARES
63880953
65919894
29800851

79801949

-3.

-1

-0.

-0.
-0.

-0

-2.
-0.
-0.
-0.
-0.
-3.
-1.

SYSTEM 2
DEPENDENT VARIABLE Y
MEAN SQUARE
467.18848640
1.019935207
ASYMPTOTIC 95 %
CONFIDENCE INTERVAL
LOWER UPPER
49813789 ~0.47525724
.87575228$ 3.67892291
92484025 4.25192022
.053465048 0.480714663
26432109 0.40458712
61642910 -0.32383574
.61639449 1.03337319
273337350 -0.3862994°9
22152841 1.922495540
064213501 0.44284103
17255304 0.38767842
56130337 -0.24949445
46863048 0.41715346
65041924 -0.27822332



Figure 2a. (Continued).

STATISTICAL ANALYSTIS SYSTEM

UNIVARIATE
VARIABLE=EHAT
MOMENTS QUANTILES(DEF=4)
N 448 SUM WGTS 448 100% MAX  4.62348 99% 2.68474
MEAN -1.213E-09 SUM -5.434E-07 75% 03  0.648524 95% 1.63032
STD DEV 0.995133 VARIANCE 0.990289  S50% MED -0.057296 90% 1.18024
SKEWNESS  0.378159 XURTOSIS 1.30039 25% Q1 -0.665501 10% -1.1508
Uss 442.659 CSS 442 .659 0% MIN -3.31487 5% -1.60095
cv -8.205E+10 STD MEAN 0.0470156 1% -2.15196
T:MEAN=0Q -2.580E-08 PROB)!T! 1 RANGE 7.93855
SGN RANK -1017 PROB)!S! 0.710841 Q3-01 1.31402
NUM ‘= 0 448 MODE -3.31487
D:NORMAL 0.0310503 PROB)D y0.15
EXTREMES
LOWEST 1D HIGHEST 1D
-3.31487¢ 181) 2.65142¢ 152)
-2.44543¢ 128) 2.71678¢ 60)
-2.31033¢ 13) 2.7925¢ 81)
-2.21378¢ 183) 3.96674¢ 164)
-2.08762¢ 13) 4.62368¢( 132)
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Consider, now, fitting the model subject to the restriction that b(3)

is the same in both equations, viz

Hy:Pygy = Bogys Pygn = Bogos Bygs = Dogg

As we have seen before, there are two approaches. The first is to leave the

model as written and impose the constraint using the functional dependency

a P
{bil pé
P 03
P13 Oy
P131 o5
P13 Pg
TR =] B RO B

2 P8
Poy Pg
P22 , 10
Po3 11
Po31 s
Pr30 6
P23 P

One fits the model
= ° +
vy = flx.,8(0°)] + e,
by minimizing S[g(p),%] ; derivatives are computed using the chain rule

(3/3p)" "0 " 6(p)]

(3/2) p{,)Txe(0)]

"

! \(3/387)f(x, ,R) (3/30")e(p)
p{y)(®/ 420 ‘e=g(p /30" )elp



—- = =

These ideas were 1llustrated in Figure 9b of Chapter 1 and will be seen
again in Figure 24 below.
The second approach is to simply rewrite the model with the constraint

imposed. We adopt the second alternative, viz.
+ +
8y F byyXyy F Dyp¥py T Pya¥ay

"L Doy Xy F DXy F o bogXay

in

11

+
8y by Xy T Dop¥oy *obogXay

"L b X bgpXop * bagXay

in

A’ = (ay, byys Dyos Dygs 855 Dyys By Dogs Bays ons byg)

SAS code to fit this model is shown in Figure 2b.

Following these, same ideas we impose the additional constraint of

symmetry,

Hyt Dyp = Bpys Pyg = baps Ppg = Pa

by writing

8 * Dy Xy T Pyo¥oy TP ¥y

"L DXy T Pog¥oy T bag¥ay

in

f(xt,e)

8y T D Xy F BooXoy  DpaXay

"l DXy bog¥oy T DagXay

in

b

r
87 = (aps byys P1ps Dygs 2ps Doy Pogs Byy)

SAS code is shown in Figure 2c.

The last restriction to be imposed, in addition to Hl and Hé, is the

homogeneity restriction

z:ilai = -1, g§=lbij =0 fori=1, 2,3



Figure 2b. Ezxample 1 Fitted by Multivariate Least Squares, H! Imposed.

SAS Statements:

DATA WORKO01; SET EXAMPLEL;

P1=3.764814163903;, P2=-3.8B3844955764; Y=PIi*Y1+P2*Y¥2; OUTPUT;

F1=0; DP2=3.371649837133; VY=P1xY1:+P2*Y2; OUTPUT; DELETE;

PROC NLIN DATA=WORKO1 METHOD=GAUSS ITER=50 CONVERGENCE=1.E-8;

PARMS B11=-.8 B12=-1.4 B13=2 B21=.4 B22=-1.3 B23=.7 B31=.5 B32=-.2 B33=-
Al=-2 A2=-1; A3=-1;

PEAK=A1+B11*X1+B12*¥2+B13*X3; INTER=A2+B21%X1+B22*X2+B23*X3;

BASE=A3+B31*¥1+B32%X2+8332X3;

MODEL Y=P1*LOG(PEAK/BASE)+P2*LOG(INTER/BASE);

DER.A1 =P1/PEAK; DER.A2Z =P2/INTER;

.4

DER.B11=P1/PEAK*X1; DER.B21=P2/JNTER*X1; DER.B31=(-P1-P2)/BASE*¥};
DER .B12=P1/PEAK*X2; DER.B22=P2Z/INTER*X2; DER.B32=(-P1-P2)/BASExX2,;
DER.B13=P1/PEAX*X3; DER.E23=P2/INTER%*X3; DER.B33=(-P1-P2)/BASE*Y3,;
Qutput:
STATISTI!ICAL ANALYSTIS SYSTEM 1
NON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON
" ITERATION B11l B12 B13 RESIDUAL 88
B21 B22 B23
B3t B32 B33
Al A2
0 -0.80000000 -1.40000000 2.00000000 641.48045300
0.40000000 -1.30000000 0.70000000
06.50000000 -0.20000000 -0.40000000
-2.00000000 -1.00000000
8 -3.27643190 1.30488351 1.66561680 447 .31829119
0.4018044°9 -1.119318353 0.41058764
0.23944183 0.10824154 -0.45982238
-1.58236942 ~-1.20266408
NOTE: CONVERGENCE CRITERION MET.
STATISTTICAL ANALYSTIS SYSTEM 2
NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y
SOURCE DF SUM OF SQUARES MEAN SQUARE
REGRESSION 11 6535.97971731 $94.17997430
RESIDUAL 437 447.31829119 1.02341145%
UNCORRECTED TOTAL 448 6983.29800851
(CORRECTED TOTAL) 447 871.79801949
PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 %
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
B11! -3.27643190 1.2719885¢ -53.77643950 -0.77642431
B12 1.30488351 0.95321400 -0.54859840 3.178348%5412
B13 1.866561680 1.01449051 -0.32830042 3.45953403
B2t 0.40180449 0.29489442 -0.18172319 0.98533217
B22 -1.11931853 0.36601761 -1.83870310 ~-0.39993395
B23 0.41058744 0.33172431 -0.24139558 1.06257090
B3l 0.23944183 0.09393101 0.05482635 0.42405730
B32 0.1046246154 0.11403420 -0.121839461 0.334346270
B33 ~-0.43982238 0.05409254 -0.5464813790 -0.35350487
At -1.38234942 0.85859333 -3.26988054 0.10514171
A2 -1.202466408 0.23172071 -1.4658096355 -0.74723141



Figure 2c. Exzemple 1 Fitted by Multivariate Least Squares, H! and H2 Imposed.
SAS Statements:

DATA WORKO01; SET LXAMPLEY;

P1=3.764814163903; P2=-3.858449557484; VY=PixY1+P2*xY2, OUTPUT;

Pi=0; P2=3.3714649857133; VY=P{xY1+P2®Y2;, OUTPUT; DELETE;

PROC NLIN DATA=WORKO1 METHOD=GAUSS ITER=50 CONVERGENCE=1 . E-8;

PARMS Bi11=0 B12=0 B13=0 B22=0 B23=0 B33=0 Al=-1 A2=-1; A3=-1;

PEAK=A1+B11*X1+B12*X2+B13%*X3;
BASE=A3+B13*X1+B23*X2+B33*X3;
MODEL Y=Pi*LOG(PEAK/BASE)+P2*LOG(INTER/BASE);

DER.A! =P1/PEAK; DER.A2 =P2/INTER; DER.B11=P1/PEAK*X1;
DER.B12=P1/PEAK*X2+P2/INTER*X1; DER.B22=P2/INTER*X2;
DER .B13=P1/PEAK®X3+(-P1-P2)/BASE*X];
DER.B33=(-P1-P2)/BASE*X3;

INTER=AZ+B12*X1+B22%X2+B23*X3;

DER.B23=P2/INTER*X3+(-P1-P2)/BASE*X2;

Output:
STATISTTICAL ANALYSTIS S YSTEM 1
NON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON
ITERATION B11 B12 B13 RESIDUAL 8S
B22 B23 B33
Al A2
0 0.000000E+00 0.000000E+00 0.000000E+00 4983.29800851
0.000000E+00 0.000000E+00 0.000000E+00
-1.00000000 -1.00000000
11 -1.283682479 0.81889299 0.36106759 450.95423403
-1.04835591 0.03049747 -0.46735947
-2.92727122 -1.53784443
NOTE: CONVERGENCE CRITERION MET.
STATISTICAL ANALYSIS SYSTEM 3
NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y
SOURCE DF SUM OF SQUARES MEAN SQUARE
REGRESSION 8 6532 .34377448 816.54297181
RESIDUAL 440 450.95423403 1.02489599
UNCORRECTED TOTAL 448 6983.29800851
(CORRECTED TOTAL) 447 871.79801949
PARAMETER ESTIMATE ASYMPTOTIC ASYMBTOTIC 95 %
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
Bil -1.28362479 0.22679433 -1.72936637 -0.83788321
B12 0.8188929¢9 0.08096691 0.65976063 0.97802535§
B13 0.36106739 0.03024703 0.30162008 0.42051510
B22 -1.04835591 0.08359301 -1.21264941 -0.88406221
B23 0.03049747 0.03408943 -0.04043249 0.10142783
B33 -0.46735947 0.01923198 -0.50515801 -0.42954092
At -2.92727122 0.27778075 -3.47322147 -2.38132098
A2 -1.53786463 0.09187441 -1.71804189 -1.35768737
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As we have noted, the scaling convention is irrelevant as far as the data
is concerned. The restriction a; + ay + a3 = -1 is just a scaling convention
and, other than asthetics, there is no reason to prefer it to the convention

*
= -1 that we have imposed thus far. Retaining a3 = -1, the hypothesis of

%3
homogeneity can be rewritten as the parametric restriction
H,: 23 b,.=0 for j=1,2, 3
3 i=171j
Equivalently, H3 can be written as the functional dependency
%1 i P1
°11 1o - P13 Pp " 03
g = 212 _ :12 _ P2 - &lo)
13 13 &
%2 %2 Py
oo Po3 " Ppp s T P2
°23 Py Ps
P33 P23 7 P13 5 = 03
with Jacocbian
1 o0 O 0 O
o -1 -1 0 O
0] O 0 O
¢lo) = (/% )ele) = | 0 0 1 0O
0 o 1 ©
0O -1 0 0 -1
o o0 o o 1
0O 0 -1 0 -1

SAS code implementing this restriction is shown in Figure 24.

*
In economic parlance, it is impossible to tell the difference between a

linear homogeneous and a homothetic indirect utility function by looking at

a demand system.



Figure 2d. Example 1 Fitted by Multivariate Least Squares, H!, H2Z, and H3
Imposed.

SAS Statements:

DATA WORKO01; SET EXAMPLEL;

P1=3.764814163903; P2=-3.85846955764;, VY¥=P1r¥14+P2*Y2; OUTPUT;

Pi=0; P2=3.371449857133; Y=PixY1+P2*Y2Z; OUTPUT; DELETE;

PROC NLIN DATA=WORKO01 METHOD=GAUSS ITER=50 CONVERGENCE=i.E-8;

PARMS R!1=-3 R2=.8 R3=.4 R4=-1.5 R3=.03; Ad=-1;

At=R1; B11=-R2-R3; B12=R2; B13=R3; AZ=R4; B22=-R3-R2; B23=R5; B33=-R5-R3I;
PEAK=A1+B11*X1+B12*X2+B13%X3; INTER=A2+B12*X1+B22%%2+B23*X3;
BASE=A3+B13%xX1+B23%X2+B337X3;

MODEL Y=P1*LOG(PEAK/BASE)+PZ*LOG(INTER/BASE);

DER_A1 =P1/PEAK;, DER_A2 =P2/INTER; DER_B11=P1/PEAK*I1;
DER_B12=P1/PEAK*X2+P2/INTER*X{; DER_B22=P2/INTER*X2;
DER_B13=P1/PEAK*X3+(-P1-P2)/BASE*X1; DER_B23=P2/INTER*X3+(-P1-P2)/BASE*X2;
DER_B33=(-P1-P2)/BASE*X3;

DER.R1=DER_Al; DER.R2=-DER_B11+DER_B12-DER_B22; DER.R3=-DER_B11+DER_B13-DER_B33;

DER.R4=DER_A2; DER.RS5=-DER_B22+DER_B23-DER_B33;

Qutput:
STATISTI1CAL ANALYSTIS SYSTEM
NON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y METHOD: CAUSS-NEWTON
ITERATION R1 R2 R3 RESIDUAL SS
R4 RS
0 -3.00000000 0.80000000 0.40000000 560.95959464
-1.50000000 0.03000000
1 -2.70479542 0.85805995 0.3770518¢ 478.82185398
-1.5904%135 0.05440110
2 -2.72429979 0.85764213 0.37433243 478.796461265
-1.59215078 0.057703545%
3 -2.72517893 0.85757097 0.37413074 478.796546%4
-1.59211417 0.05794017
4 -2.725235%07 0.85756494 0.37411703 478.796544¢64
-1.59210976 0.05795437

NOTE: CONVERGENCE CRITERION MET.

STATISTICHAL ANALYSIS SYSTEM

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y
SOURCE DF SUM OF SQUARES MEAN SQUARE
REGRESSION 5 6504.50146185%5 1300.90029237
RESIDUAL 443 478.794854666 1.08080483
UNCORRECTED TOTAL 448 6983.29800851
(CORRECTED TOTAL) 447 871.79801949

PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 %
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
Rr1 -2.723523507 0.17799072 ~-3.07505148 -2.37341847
Rl 0.857546494 0.06718212 0.72532748 0.98960220
R3 0.37411703 0.02709873 0.320858138 0.42737587
R4 -1.3921097¢ 0.07719388 -1.74382378 -1.44039575
RS 0.05795637 0.03403314 -0.00893114 0.12484390



Table 2. Parameter Estimates and Standard Errors for Ezample 1.

Subject to:

Parameter Unconstrained H1 H1 & H2 Hi, H2 & H3

Al -1.52357 ~-1.58214 -2.9273 -2.7252
(0.988535) (0.8584) (0.2778) (0.1780)

Bitl -2.9867 -3.2764 -1.2834 -1.2317
(1.2778) (1.2720) (0.2268)

Bi2 0.90146 1.304°¢9 0.818¢9 0.85746
(1.4131) (0.93532) (0.0810) (0.0672)

BE13 1.6638% 1.64656 0.3611 0.3741
(1.3169) (1.0145) (0.0302) (0.0271)

A2 -0.9443 -1.2027 -1.5379 -1.5921
(0.3491) (0.2317) (0.0917) (0.0772)

B21 0.2085 0.4018 0.8189 0.8374
(0.4197) (0.29469)

B22 -1.3308 -1.1193 -1.0484 -0.91%55
(0.4806" (0.34860) (0.0834)

B23 0.8505 0.410¢ 0.0308 0.0580
(0.5454) (0.3317) (0.0361) (0.0340)»

A3 -1.0 -1.0 -1.0 -1.0
(0.0) (0.0) (0.0 (0.0)

B131/B31 0.2672 0.2394 0.34611 0.3741
(0.108¢) (0.0939)

B122/B32 0.0711 0.1063 0.030% 0.0580
(0.1707) (0.11461)

B133/B33 -0.4701 -0.4598 -0.4474 -0.4321
(0.0744) (0.0541) (0.0192)

B231 0.1893
(0.1290)

B232 0.1076
(0.1425)

B233 -0.4054
(0.0793)

Standard errors shown in parentheses.
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As was seen In Chapter 1, these regressions can be assessed using the

likelihood ratio test statistic

(SSE

I = reduced SSEfull)/q

(SSE;,1,)/(a - )

As with linear regression, when one has a number of such tests to perform it
is best to organize them into an analysis of variance table as shown in
Table 3. For each hypothesis listed under source in Table 3, the entry

listed under 4. f. 1s g , as above, and that listed under Sum of Squares is

(SSEreduced - SSEfull)’ as above. As an instance, to test Hl, H2 & H3 jointly
one has

SSEreduced = L478.79654666  (from Figure 2d)

SSEp, 11 = L4h42.65919896 (from Figure 2a)

with 443 and 434 degrees of freedom respectively which yields

(SSE ) = 36.137L

reduced ~ S Peull
g = 443 - U3k =9
as shown in Table 3. In general, the mean sum of sguares cannot be split from
the total regression sum of squares but in this instance it would be possible
to fit a mean to the data as a special case of the nonlinear model by setting

B = O and choosing

The existence of a parametric restriction that will produce the model

"YS" = u(i) +"es" justifies the split. The sum of squares for the mean is

computed from



Table

Source

Mean

Regres

Hi, H2

H1
H2
H3
Hi

Error

Total

3. Analysis of Variance

sion

; & H3

after Hi

after
& HZ

d.f.

434

148

6111,

393

36.

27.

4412 .

6983

Sum of Squares

S000

.0015

1374

.63591

.6340

8423

6592

.2980

- - -

Mean Square F P)F
6111.5000
98.2504 96.324 0.00000
4.0153 3.937 0.0001
1.5530 1.523 0.20¢
1.2120 1.188 0.313
9.2808 9.099 0.00001¢
1.0200



O=c=3L

SSE 6933.29800851 (from Figure 2d)

reduced

SSEei11

871.798001949  (from Figure 24)

with 448 and 447 degrees of freedom respectively yielding

(SSEreduced - SSEfull) = 6111.5000

g = L48 - L7 =1
which is subtracted from

SSE egression = 6504 .50146185 (from Figure 2d)

with 5 degrees of freedom to yield the entry shown in Table 3.

From Table 3 one sees that the model of Figure 2c is reasonably well
supported by the data and the model of Figure 24 is not. Accordingly, we
shall accept it as adequate throughout most of the rest of the sequel realizing
that there are potential specification errors of at least two sorts. The first
are omitted variables of which those listed in Table lc are prime candidates
and the second is an erroneous specification of functional form. But our
purpose is illustrative and we shall not dwell on this matter. The model of
Figure 2c¢ will serve. []

As suggested by the preceding analysis, in the sequel we shall accept the
information provided by ﬁ-l - PP regarding the rotation P that will reduce
the multivariate model to a univariate model, as we must to make any progress,
but we shall disregard the scale information and shall handle scaling in accord-
ance with standard practice for univariate models. To state this differently,
in using Table 3 we could have entered a table of the chi-square distribution
using 27.8423 with 3 degrees of freedom but instead we entered a table of

the F-distribution using 9.099 with 3 and U434 degrees of freedom.
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The idea of rewriting the multivariate model

v, = flx.,8) + e t=1,2, ..., n
in the form

nyslt - "f"(nxsll’e) + Hesﬂ s = l, 2’ e, nM
using the transformation

" = M(t-1) + «

"o 7
yS - p(d)yt S

in order to be able to use univariate nonlinear regression methods is useful
pedagogically and is even convenient for small values of M. In general,
however, one needs to be able to minimize S(§,5) directly. To do this note

that the Gauss-Newton correction vector is, from Section 4 of Chapter 1,
- IM Mttty 13 Mttt/ 17 s -l
D(8,x) = {zoo,[(3/28) "£"("x_ ",8)10(3/38) "£"("x,",8)]")

I)M Matt/n 1t 1 " 1"attst 1"
P zszl[(a/ae) £ ("x 01 v, - "f ('xS ,8)]

iy zg;lﬁ(a/ae)f’(xt,e)]p(a)pga)[(a/ae’)f(xt,e)]}"l

x oy B 0(3/38")2(x,,0)Ipyp( ¥y - £(x,,0)]

(2L (3/20)1" (x,,8)) 7T (/20 )£(x,,8) 117"
x T [(3/28)2" (x,,8)] £ Ty, - £(x,0)] -

The modified Gauss-Newton algorithm for minimizing S(g§,%) is, then:

0) Choose a starting estimate 8y - Compute D, = D(GO,Z) and find a

XO between zero and one such that

§(8y * AgDy»T) < 8(8,,%)



1) Let el = eo + xODO . Compute D, = D(el,z) and find a xl between

1

zero and one such that

2) Let 6, = 8,0y -

The comments in Section L4 of Chapter 1 regarding starting rules, stopping

rules, alternative algorithms apply directly.
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1) Let el = eo + )\ODO . Compute D, = D(el,}:) and find a ;\_l between

1

zero and one such that

(8, + AD;,%) < 5(8;,%)
2) Let 6, = 8,0y -

The comments in Section 4 of Chapter 1 regarding starting rules, stopping

rules, alternative algorithms apply directly.
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PROBLEMS

Show that if ea is an n-vector with typical element €yt fort=131, 2, ...,

) =0 _ if t = s and is zero otherwise

and o = 1, 2, ..., M and C(e B

at’ Bs
then

C(ea, ea) = G&B nIh

Re-estimate Example 1 (in unconstrained form, subject to Hl’ subject to

Hl & H2, and subJject to H., & H3) using the normalizing convention

2’

a, + a, + a, = -1 (instead of a_ = -1 as used in Figures 2a, 2b, 2c, 24).

1 2 3 3

Using the "seemingly unrelated" regressions notation, show that the Gauss-

Newton correction vector can be written as
D(8,5) = [F/(6)(z® 1) F(8)1™" F'(8)(z ® )y - £(6)]
where F(8) = (3/39')f(8) = diag LFl(el), ceey FM(eM)] .

Show that S(8,%) satisfies Assumption 4 of Chapter 3 which justifies the
expedient of replacing ¥ by i and subsequently acting as if i were the

true value of ¢ .

If the model used in Example 1 is misspecified as to choice of functional
form then theory suggests (Gallant, 1981, 1982; Elbadawi, Gallant, and
Souza, 1983) that the misspecification must take the form of omission of
additive terms of the form
. ik’ - b . sin(jk’x
8, ; cos(J ax) o sin(J - )

from the indirect utility function
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g(x]8) = a’x+ ($)x'B x 3

recall that x = gn(p/E) . Test for the joint omission of these terms for

1 0 0 1 1 0
k01= 0 s 1 ) b} 1 ’ 0 s
0] 0 0 1

and j = 1, 2, a total of 24 additional parameters.

Instead of splitting out one degree of freedom for the model

l 111 143
= +
w(y) e

" "
S

from the five degrees of freedom regression sum of squares of Figure 2d

as was done in Table 3, split out two degrees of freedom for the model

93
nm_on 1 n_on
= +
Vs (uz) s

(Out of range argument) Show that the constants € t,ys @, b, ¢, a, B

can be chosen so that the function

a + Bx “o < t1
slog(x) = 4 a + bx + cx? bty s xSt
< o]
In x t, s <
is continuous with continuous first derivative
B -o < §t1
(d/dx)slog(x) = § b + 2cx £, Sxst,
1/x t2 < { =

Verify that slog(x) is once continuously differentiable if the constants

are chosen as

T2 = 1.D-7

Tl = 0.D0

ALPHA=-299.999999999999886D0
BETA=5667638086.9808321D0
=-299.999999999999886D0
B=5667638086.9808321D0
C=-28288190434904165.D0

Use slog(x) in place of £n(x) in Figures la through 2d and observe that

the same numerical results obtain.



3. ASYMPTOTIC THEORY

As in Chapter 4, an asymptotic estimation theory obtains by restating
Assumptions 1 through 6 of Chapter 3 in context and then applying Theorems
3 and 5 of Chapter 3. Similarly, one obtains an asymptotic theory of
inference by appending restatements of Assumptions 7 and 13 to the list of
assumptions and then applying Theorems 11, 14, and 15.

Of the two notational schemes, 'seemingly unrelated" and multivariate,
the multivariate is the more convenient to this task. Recall, that in

this scheme the model is written as

Yy = f(xt,9°) t e, t=1,2,..., n

*
with 6 known to lie in some compact set ® . The functional form of f(x,0)
is known, x is k-dimensional, 6 is p-dimensional, and f(x,e) takes its values
in RM 5 Ve and e, are M-veetors. The errors ey are independently and

identically distributed each with mean zero and nonsingular variance-covariance

matrix n; viz.

8e=og c(e,e,)=
t t's 0 t#s

The parameter A° is estimated by én that minimizes
s (8 % ) = (1/n) a [y, -f(x 9)]'%-l[y -r(x,,8)] .
n 72y Lpo1t Yy £ n L4 t

Here we shall let En be any random variable that converges almost surely to
¥ and has VE_(in-z) bounded in probability; that is, given § > O there is a

bound b and a sample size N such that
PGAals . -0 .l <b)>1-

for all n> N, being a typical element of § . Verification that the

GO!E
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estimator of ¥ proposed in the previous section satisfies this requirement
is left to Problem 1.

Construction of the set T which is presumed to contain in requires a
little care. Denote the upper triangle of 3 by
)!

» 0.

T= ("11"’12"’22’°13’°23’°33""'°1M’°2M"" MM

which is a column vector of length M(M+1)/2 . Let v(r) denote the mapping
~ ~ *
of T into the elements of ¥ and set Z(Tn) = Zh , o) = C(et,eé) . Now
det Z(T) is a polynomial of degree M in 7 and is therefore continuous; moreover

for some 8 > O we have det Z(T*) - 8 > 0 by assumption. Therefore the set

fridet n(r) > det £(7°) - §)

*
is an open set containing T . Then this set must contain a bounded open ball
with center T* and the closure of this ball can be taken as T. The
agssumption that JH (%n-z) is bounded in probability means that we have

*

implicitly taken f; =1 ¢ T and, without loss of generality (Problem 2), we
- *

can assume that Tn is in T for all n. DNote that det z(¢) > det v(r )-8 for

2ll v in T which implies that Z-l(T) is continuous and differentiable over

T (Problem 3). Put

B = sup {O‘as(T): teT, Q’:B=132)""M}

where OQB(T) denotes a typical element of 2-1(T) . ©Since z_l(T) is continuous
over the compact set T we must have B< = .
We are interested in testing the hypothesis

H: h(8°) = 0 against A: h(6°) % 0

which we assume can be given the equivalent representation
H: 6 = g(p°®) for some p° against A: 6° # g(p) for any p

where h: RP 5 R | g: R' , RP, and p= r+q . The correspondence with the

notation of Chapter 3 is as follows.
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Assumptions 1 through 6 of Chapter 3 read as follows in the present
case.

ASSUMPTION 1’. The errors are independently and identically distributed
with common distribution P{e). [0

ASSUMPTION 2. f(x,6) is continuous on X X ®* and ® is compact. []

ASSUMPTION 3/. (Gallant and Holly, 1980) Almost every realization of

{vt? with v, = (et,xt) is a Cesaro sum generator with respect to the product

t

measure

v(a) = [ [ I,(e,x) aP(e) dulx)
T E

and dominating function b(e,x) . The sequence {xt} is a Cesaro sum generator
with respect to w and b(x) = I b(e,x) dP(e) . For each x ¢ X there is a
e
neighborhood Nx such that I supy b(e,x) dP(e) < = . 0
€ X
ASSUMPTION L’. (Identification) The parameter 6° is indexed by n and

* * - *

the sequence {9;} converges to 8 ; f; =T VE(Tn-T ) is bounded in

- *x
probablility, and T, comnverges almost surely to 1 .

sT(8) = M+ [ [£(x,80) - £(x,8)1 57 (¢ )N £(x,0%) - £(x,0) 1 an(x)
X

*
has a unique minimum over @ at 6" . 0
* ~
ASSUMPTION 5’. ® 1is compact; {Tn}, T, and B are as described in the

first few paragraphs of this section. The functions
e+t (x,6°) - (x,8) e+ £ (x,67)- £,(x,0)]
) * *
are dominated by b(e,x)/M"B over € x X X ® x® ; ble,x) is that of

Assumption 3'. [

This is enough to satisfy Assumption 5 of Chapter 3 since



6-3-5

s[Y(e,X,eo ),x,*r,G]
Te + £(x,6°) - £(x,8) )/ (r)le+ £(x,8) - £(x,8)]

<B Za'ialea * £ (x,6°) - fa(x,e)\lea+ fs(x,n° ) - fs(x.,e)l

B M ble,x) /M5

IA

= b(e,x).

The sample objective function is

s,(8) = (1/n)s] [y, - £(x,,8) 1 (7 )y, - £(x,,8)] .

-~ *
Replacing T by T; =T , its expectation is

s () (l/n)ﬁji;lf’,l:e,G + f(xt,e‘;) - f(xt,e)]’z-l(ﬂ'*)[et”f £(x,,69) - £(x,,8)]

- *
(l/n)zil:lee,é G )et

+(1/n)el DeCe,80) - £k, ,8) 187 (2 £, ) - £(x,,0)])
=M+ (/n)gd [e(x,,8) - £(x,,0) 1T (7 ) £, ,62) - £(x,,8));
the last equality obtains from

(1/n)g eef =M (r e,

*

n -1 ’
(l/n)zt=l tr e (r)e e ey

(1 n)?n tr L
/ t=1 MM

=M.
By Lemma 1 of Chapter 3, both sn(e) and s;(e) have uniform almost sure limit

s(8) =M+ [ [e(x,8) -£(x,8)12  (r N e(x,0) - £(x,0) Jan(x) .
X

Note that the true value 9; of the unknown parameter is also a minimizer of
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s;(e) so that the use of 9: to denote them both is not ambiguous. By

Theorem 3 of Chapter 3 we have

*
8 =6 almost surely.

2im
noe n

Continuing, we have one last assumption in order to be able to claim asymptotic

normality.

* *
ASSUMPTION 6’. ® contains a closed ball ® centered at § with finite,

nonzero radius such that

[e, + £ (x,6°) - £ (x,8) X (3/30; )1g(x,0) 7,
[(a/2n; )¢ (x,3) T (3/28,),(x,8)],

0 2
[ea + f&(xae ) - f&(x,e)][(a /aeiaej)f(x,e)] , and
(Te + £ (6,@) - £ (x,0)10(3/38;)2(x,8)1} are

dominated by b(e,x)/BM2 over € x XL X® x® for i,j=1,2,...,p and «,B8=1,2,...,M.

Moreover,

7 = 2f [(3/28")2(x,0")1 "7 (r ) (3/30)2(x,8 )] dulx)
X

is nonsingular. [J

One can verify that this is enough to dominate

(3/28,)s[¥(e,x,6°),x,7,6]
= e+ £(x,6°) -f(x,e)]'z'l(w)(a/aei)f(x,e)
(az/agiaqj)s[Y(e,x,6°),X,T,G]
= et(a/aei)f(x,e)J’z'l('r)E(a/aaj)f(x,e)J
-2 %y Ty ol t 08 -7 (x,6)] *B(r)(3%/20,30 )7, (x,0)
{(3/38, )s[¥(e,x,6° ),x,T,e]}{(a/aej)s[Y(e,x,e°),x,~r,6]}

= [ (3/30,)2(x,8) 12 () e+ £(x,6°) - £(x,8)]

xLe+ £(x,) - 2(x,8)1'5H(r)[ (3/28)2(x,6) ]
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to within a multiplicative constant. Since (Problem 4, Section 6),
(3/ar )n7H(r) = -2 ™M) (3/ar)x(7) 157 ()

we have

(3% /57,20, )s[¥ (e, ) x,7,6]

= 2le + (x,8°) - £0x,8) VEHRIL (/a7 )nlr) () (3/20,)(x,8) -
Evaluating at 6=6° = 6" and integrating we have

fxfe(ae/aTiaej)s[Y(e,x,e*),x,T*,G*] dP(e) du(x)

[ 2] ear(e)s™(r ) (3/ar)u(r )™ (+") (/00 )£(x,87) dulx)
X €

=0

7

because f e dP(e) = 0. Thus, Assumption 6’ is enough to imply Assumption 6
e
of Chapter 3.
The parameters of the asymptotic distribution of én and various test

statistics are defined in terms of the following.

NOTATION 2.
a = [ [(3/28")e(x,87)1's7 L (3/30")5(x,8 )7 au(x)
X
@ = (1/m)g] ([ (3/208")2(x,,8) 15 ' (3/3n ) (x, ,62)]
QZ = (l/n)z;l:l[(a/ae’)f(xt,ez)]’z'lt(a/aa’)f(xt,ez)]
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NOTATION 3.

¥*

3 = uo

*

g =20

*

u =0

= M

7 - o,

u =0

* *

Jn = LLQn

* _ * . n n n 5 * QB , *
Jp = 20, - (2/n)sl b S 0r (x,,8) - £ (x,,0,)] o®>(8/2628" )£g(x, ,8))
* - *

u = (u/n)zf_le[(a/ae’)f(xt,eZ)]’z To(x,,8) - £(x,,9,)]

x [ 202, &) - £lx,,60) 157 (3/36")£(x, ,6)]

One can see from Notation 3 that it would be enough to have an estimator

* *
to be able to estimate 4 and § . Accordingly we propose the following.

NOTATION L.

0= (1/n) [ (3/aa")e(x, B )15 (3/0)2(x, B )1

[¢

It

(1/n)El_ [ (3/38" )2, 8 )18 (3/29)(x, ,¥,)]

¥.=1 ¥, ¥\-1 -1
Since (g )7~ 8 (g )™ = Q™" , we have from Theorem 5 of Chapter 3 that
— ~ , £ - l
Aﬁl(en - 6) > N(o,a™)

b

~

) converges almost surely to Q .
Agssumptions 7 and 13 of Chapter 3, restated in context, read as follows.

ASSUMPTION 7/. (Pitman drift) The sequence G; is chosen such that

zimn*ﬂfa (6; - 6:) = A . Moreover, h(e*) =0. |
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ASSUMPTION 13’. The function h(g) is a once continuously differentiable
mapping of ® into Y. Its Jacobian H(8) = (3/368’)n(8) has full rank (=q) at
6=186 . [

From these last two assumptions we cbtain a variety of ancillary facts,
notably that’@n converges almost surely to 6* s that Q converges almost

surely to Q , and that (Problem 6)

gr =20 +0(1//n)

The next task is to apply Theorems 11, 14, and 15 of Chapter 3 to obtain
Wald, "likelihood ratio,” and Lagrange multiplier test statistics as well as
non-central chi-square approximations to their distributions. 1In the next
section, these statistics will be modified so that tables of the non-central
F~-distribution can be used as approximations. However, we shall not try to
justify these modifications by deriving characterization theorems as we did
in Chapter 4 to justify the approach taken in Chapter 1. Instead, we shall
merely note that the statistics proposed in the next section are asymptotically
equivalent (differ by terms of order op(l) or less) to the statistics derived

below and let that serve as a justification.

Consider testing
H: h(G;) = 0 against A: h(@;) ¥ 0

where, recall, h(8) is a gq-vector with Jacobian H(g) = (a/ae')h(e) , H(8) veing
a q by p matrix. Writing h = h(gn) and = H(Sn) and applying Theorem 11 of

Chapter 3 we have that the Wald test statistic is
W= n &0(R Q)N
and that the distribution of W'can be approximated by the non-central chi-square

distribution with g degrees of freedom and non-centrality parameter

o= 00 (8)H(®) ()M ()1 () /2.
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* *
Multivariate nonlinear least squares 1s an instance where Jn ¥ gn but
* * —
I, = (l/Q)Jn + 0(1/J/n) (Problem 6) whence the likelihood ratio test statistic
is

r_ N _ A
L' =nls (8 ) - s (8 )] .
In the notation of the previous section, .
' _ ’ ~ . ’ A
L' =8(, ,z,) -8, 5) .

It is critical that %n be the same in both terms on the right hand side of
this equation. If they differ then the distributional results that follow
are invalid (Problem 8). This seems a bit strange because it is usually the
case in asymptotic theory that any uE - consistent estimator of a nuisance
parameter can be substituted in an expression without changing the result.
The source of the difficulty is that the first equation in the proof of

Theorem 15 is not true if Zn is not the same in both terms.

Applying, Theorem 15 of Chapter 3 and the remarks that follow it we
have that the distribution of L’ can be approximated by the non-central chi-

square with g-degrees of freedom and non-centrality parameter (Problem 7)
- n (o] * / -l 7 *
o= {g_[f(x.,67) - £(x,,8 )12 (/38" (%, ,n )}

x 0 HEL (20, 8) - £(x,,8,) 18 (3/38 )£, ,a0) 1/ (20)

which is the same as for the efficient score test.

Up to this point, we have assumed that a correctly centered estimator of
the variance-covariance matrix of the errors is available. That is, we have
assumed that the estimator in has Vn (En - I) bounded in probability whether
h(@;) = 0 is true or not. In the next section we shall see that this

assumption is unrealistic with respect to the Lagrange multiplier test.
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Accordingly, we base the Lagrange multiplier test on an estimate of scale

A

Zn for which we assume that

~ *
ﬂT(Zn - Zn) bounded in probability

O0f such estimators, that which is most likely to be used in applications 1is

obtained by computing éﬁ to minimize sn(e,I) subject to h(8) = 0, where

_ n r -1 _
s (8,V) = (1/n) 5 _, Iy, - £(x.,0)]'V "[y -£(x_,0)],

and then putting:

n

* ~i# sty
t = (1/n) Leaqlyym £(x08 D1y - £(x.,8 )]

The center is found (Problem 10) by computing eﬁ to minimize s;(G,I) subject

to h(6) = 0 where

1

o - - n o - ' _1 Q -
s (8,V) = tr Vo + (1/n) 2 o [£(x.,87) - £(x,0)]'V "[£(x ,6°) - £(x ,8)]

and putting

Z: = I + (l/n) Z:=1[f(xt’e;) - f(xt,eﬁ)][f(xt’e;) - f(xt,eﬁ)]'-

Using the estimator fn, the formulas for the constrained estimators are

revised to read én minimizes sn(e,fn) subject to h(8) = 0 and

)]

=®“

x _ n ' = ra-1 '
& = (1/n) 10 [(3/38" )E(x,,6 )1'E " [(3/00" )E(x,,
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The form of the efficient score or Lagrange multiplier test depends on
* * ~
how one goes about estimating V and ¢ having the estimator @g in hand. In

view of the remarks following Theorem 1Lk of Chapter 3, the choices
V=01 ,%=210
lead to considerable simplifications in the computations because it is not
*
necessary to obtain second derivatives of sn(a) to estimate § and one is in

the situation where'y-l = a7V for a=1/2. With these choices, the efficient

score test becomes (Problem 9)

-~

r n = 121 ' z
R' = (/m){z__ Ly, - £(x,,8 )]'I "(3/38" )E(x ,8 )}

t

~

-1,_n z yx-1 , x .
{2 ly, - £Gx 8 1" E "(3/38" V(x5 )}

X Q

ok *
Let 9n minimize s°(6,2n) subject to h(6) = 0 and put

*k * -
0 = (L/m) 10 1G/38" YeCx 00 )1 (2 T T(a/08 D ECx 877

Then the distribution of R'can be characterized as (Problem 9)

R' =Y+ o (1)
P

where
3 = 2'62*’)-1H**,[H**(Q**)-1H**']-1H*’%2*j-1 3
n n n n n n\n
and
5 _ n , *k L K =] oy _ *% *%
z ~ N{(-1//n)5]_ 1(3/38" Y ECx ,8_ )1 (2 ) [£(x,,87) £(x_,0 )18 "/4]

*% n , L | * -1 , F%
&n /4 = (1/n)zt=1[(a/ae )f(xt’en )] (Zn) Z(Zn) [(3/36 )f(xt’en )]

**k *%
Hn = (5/38') h(en )
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The random variable Y is a general quadratic form in the multivariate normal

random variable z and one can use the methods discussed in Imhof (1961) to

compute its distribution. Comparing with the result derived in Problem 5

one sees that the unfortunate consequence of the use of En instead of Zn to

-~ !
compute R is that one can not use tables of the non-central chi-square to
approximate its non-null distribution. The null distribution of Y is a chi-

F*%
square with q degrees of freedom since, if the null is true, %. = i.and

%*
and Z = I .
n
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PROBLEMS

1. Show that the regularity conditions listed in this section are
sufficient to imply the regularity conditions listed in Section 2 of

Chapter 4 for each of the models

- + = . .
Y, fa(ea) e, a=1,2,..., M

A *
Show that this implies that Gﬁ converges almost surely to ea and that
Jn (6# -8 ) is bounded in probability where 6* and 8°_ are defined by
o an o on

Assumption 4’ using

r ’ ’ ’ J;
8’ = (el s 855 eees ea s ey QM)

Let

"aa(e) = (1/’1)[3’0,'fa(ea)]'[ya“fs(ee)] :

A * , -
Show that qas(eﬁ)converges almost surely to 0&5(8 ) and that J/n [0&8(9%-Q2B(g;)]
is bounded in probability.

Hint. Use Taylor's theorem to write
Jlo (8- o ()] =
oB QB ' ’n
= {(-l/n):f:l[yat - f(Xt,é)](B/ae')fa(Xt,é)} «/’H (lé—e(;l)

+ {(-1/n)s>

1l7gy - £ ,8)1(2/20)1, (2, ,8)) W (B - 63)

2. Apply Lemma 2 of Chapter 3 to conclude that one can assume that ;n is
in T without loss of generality.

3. Use Z-l(T) = adjoint z(r)/det §(v) to show that z_l(r) is continuous
and differentiable over T.

4. Verify the computations of Notation 3.



6-3-15

5. (Lagrange multiplier test with a correctly centered estimator of

~

scale). Assume that an extimator I is available with vn (Zn - I) bounded

in probability. Apply Theorem 14 with modifications as necessary to reflect

ﬁ-l and 7 = 2 ! to conclude that the efficient score test

(]

the choices V

statistic is
= (1/n){x}_ [y, - £, 8 )18 H3/00 ), B )Y B H (R AT R) RO
x (80 Ly, -£(x, 8 )T (/28 )2 (x, B )Y

where H = H(gn) with a distribution that can be characterized as

=Y+ o (1
p( )
where
*_1 % *  ¥_7 % =1 % %
Y=z2'g 'HTH o *H 'l E Q2
n“n'n n - n n
and

- ~yh ' *yqrem 0 * *

Z ~N{(-1/Vn)g_[(3/38")f(x,,8,) ]z l[f(xt,en) - £(x,,8.)], Q)
* *

with Hn = H(en) . Show that the random variable ¥ has the noncentral chi-

square distribution with q degrees of freedom and noncentrality parameter

= (T oG, ,8) - £(x,,6)1'T 7 (3/287)2(x, ,6))

*-1 %, Sl g oL
xQ [H Q H'IE Q
n * _l ¥*
x (£ 0f(x,,80) - £(x,,8,)1 (3/28")e(x,,6,)}/(2n)
Now use the fact that ¥V = 1/2 5'1 to obtain the simpler form

= (1/n){z]_ Iy, - £(x,,8 )15 (a/20" )2 (x, ¥ )}

x AR Ly, - £(x,,8 )18 (/28 )0, , B Y
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Use the same sort of argument to show that

o= {% fhfﬁg)-futﬁplﬁfﬁaheﬂfwfﬁzﬂ

n
t=l£

xQ HE [e(x,8) - £(x,,60)1'57 (3/28" )1 (x, ,8,)) "/ (2n)

Hint. See the remarks and the example which follow the proof of Theorem
14 of Chapter 3.
* * —
6. Verify that I, = (l/Q)Jn + o(1/y/n) . Hint. See the example following
Theorem 15 of Chapter 3.

7. Show that

[(3/38)2(87) 1, 1 /(e 10 ) H o 1 (3/20)s° (5)]

= [(3/20)3,(8,)1"0, "1 (3/20)<(6.)] -

Hint. See Problem 5.
F
8. Suppose that D is computed as
*

£ = (/e Ly, - £(x,,8 )y, - £(x,,8_ )1

and that'fn is computed as

~

%, = (/e Ly, - 2068 )y, - £(x,,8 )7

n

Take it as given that both ﬁn and"fn converge almost surely to 3 and that both

Agi(g -%) and VEC§£ - v) are bounded in probability. Show that both

a» 13

S(én, ) =M and S(En,“z'n) =M so that

n

it
o

~ ~ R
s(8,,%) - 8(8,5) =

and cannot be asymptotically distributed as a chi-square random variable.

However, both
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L= S(Gn,En) -M

and
L=M-s(8,%)
are asymptotically distributed as a chi-square random variable by the results
of this section.
9. (Lagrange multiplier test with a miscentered estimator of scale).
Suppose that one uses an estimator of scale fn with vn (En - Z:) bounded in

*
probability and Zimn*m Zn = L as in the text. Use the same argument as in

-~
~ -

Problem 5 to show that the choices V = § and 7 = 2 ¢ allow the Lagrange

multiplier test to be written as
R = n - 2 rx=1 ’ a
R'= (1/m){z/_ [y, - £(x,8 )1"E "(3/30")E(x,,8 )}

-1 a yx-1 ! 2 '
X & "zl [y~ £(x,,8 )1 E "(8/08" ) E(x,,8 )} .

Show that the distribution of R' can be characterized as R' = Y + op(l) with

~

Y as given in the text.
¥k Exs *%k Kk
Hint. Let H=H , d=43 ,72 = (5%3986')s°(8 , L), and = Q .
n n n n n n

%k
Note that g = 2 Qn + 0(l). Use Theorems 12 and 13 of Chapter 3 to show that

R' = (1/4)[/a(3/38)s (8 )1'6 L (/a(a/30)s (B )]
n n n n n

(1/4) [Va(3/38)s (8 01" L [v/a(3/30)s (§)] + o (1)
n n n n p

(1/4)[/E(a/ae)sn(e:*)]'g’ln'(H}'IH')‘lu o tw (ug w7t

Hg‘l[/5<a/ae>sn<e**)1 + 0 (1)

"

(1/4)[/E(a/ae)sn(e:*)]'ﬁ'lﬂ'(H Q'IH')’lnn‘l[/ﬁ(a/ae)sn(e**)] + Op(l)

(x/2)' o ' o twr )7t

m o lx/2) + op(l)

where

*k **x
X ~ r/ﬁ(a/ae)sn(en /2, 3 /4]
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~

*
10. (Computation of the value Zn that centers Zn). Assume that h(8) = 0
can be written equivalently as 6 = g(p) for some p. Use Theorem 5 of Chapter 3

to show that if one computes 5n to minimize

s (0) = (l/n)ZIZ:l{y - £lx .81} {y_ - flx_,g()]1}

t

then the appropriate centering value is computed by finding p; to minimize

s°(p) (1/n)fg{e + f(x,,0°) - flx ,g(0) ]} {e + £(x ,0°) - f[xt,g(p)]}dP(e

tr &+ (1/n)x]_ {£(x.,0°) - £lx ,8(0) 1} {£(x,,0%) - £lx_,g(0)]}

Now

Eo= (/mz]_ {y, - £lx,806 )1y, - £lx 86 )1}

is the solution of the following minimization problem (Problem 11)

minimize: sn(V,an) = (l/n)Z:=1£n det(V) + {yt - f[Xt’g(Sn)]}'V-l{yt-f[xt’g(an)]

subject to: V positive definite, symmetric.

~

*
Use Theorem 5 of Chapter 3 to show that the value Zn that centers Zn is computed

as the solution of the problem

minimize: s°(V,p°)
n n

subject to: V positive definite, symmetric

where
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£n det(V)

s;(V,p)

+ (l/n)22=1%’{e + f(x,,6°) - f[xt,g(o)]}'V'l{e + £(x,,6°)

- f{xt,g(p)]}dP(e)

£n det(V) + tr(V-IZ)

+ (1/n)22=1{f(xt,e;) - f[xt,g(p)]}'v-l{f(xt,e;) - f[xt,g(p)]}

The solution of this minimization problem is (Problem 11)

Z; =73 + (l/n)22=l{f(xt,6;) - f[xt,g(ag)]}{f(xt,eg) - f[xt,g(gg)]}'

11. Let

£(V) = £n det V + tr (V 1A)

where A is an M by M positive definite symmetric matrix. Show that the
minimum of f(V) over the (open) set of all positive definite matrices V

is attained at the value V = A. Hint.

£(V) - £(A) = - £n det(V YA) + tr (v 1A) - M .

Let Ai be the eigenvalues of V-lA. Then

£(V) - £(A)

[}
o™

.(x, = 4Lnx, - 1)
i=1""1 i

Since the line y = x plots above the line y = £n x + 1 one has

£(v) - £(A) > 0 if any A #1

£(v) - £f(A) =0 if all Ai =1.
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12. (Efficiency of least squares estimators) Define 5# as the minimizer
of s (8,7 ) where vn(V_ - V) is bounded in probability, £im V_ =V almost
n n n n>e n

surely, and V is positive definite. Show that under Assumptions 1' through 7'

"# o) g _l ‘1
Yn(8" - 8°) — N(o,?V ”9v ”7v )
with
?V = 2& [(a/ae')f(x,e*)l' V'li(a/ae')f(x,e*)]du<x)
3y = b [(3/30")£(x,0)1" V7T vTH(3/20" ) £(x,67) Jdu(x)

Show that aﬂy;{svg;la is minimized when V = . Note that the equation-by-

equation estimator has V = I.



4. HYPOTHESIS TESTING

The results of this section are expressed in a summation notation
using the multivariate notational scheme. A summation notation is less
attractive aesthetically than a matrix notation using Kroneker products
but formulas written in summation notation translate easily into machine
code, as noted earlier, and have pedagogical advantages.

At the end of the section is a summary of the results using a matrix
notation for data arranged in the "seemingly unrelated" scheme.

Assume that the data follow the model

Yo = f(xt, 8°) + e, t=1,2, ..., n

with the functional form f(x,6) known, x, a k-vector, & a p-vector, y, an
M-vector, and e, an M-vector. Assume that the errors {et} are independently
and normally distributed each with mean zero and variance-covariance matrix
I. The unknown parameters are 8° and I.

Consider testing a hypothesis that can be expressed either as a parametric

restriction

H: h(6°) = 0 against A: h(6°) # 0
or as a functional dependency

H: 68° = g(p°) for some p° against A: 8° # g(p) for any o.
Here, h(8) maps RP into RY with Jacobian

H(6) = (3/36') h(e)

which we assume is continuous and has rank q at 6° the true value of 6; g(p)



maps R" into RP and has Jacobian

G(p) = (3/3p0" )glp)

The Jacobians are of order q by p for H(8) and p by r for G(p); we assume
that p = r + q and from h[g(p)] = 0 we have H[g(p)]G(p) = 0. For complete
details see Section 6 of Chapter 3. Let us illustrate with the example.

EXAMPLE 1 (Continued) Recall that the model

= o =
Y, f(xt,e ) + e t 1,2,...,224
with
o a1 + bllx1 + blzx2 + b13x3
-1 + b13x1 + b23x2 + b33x3
f(x,8) =
o a2 + blle + b22x2 + b23x3
-1 + b13x1 + b23x2 + b33x3
o
87 = (215 by brgs Bygs @55 By bygs byy)

was chosen as a reasonable representation of the data of Table 1 on the
basis of the computations reported in Table 3. Since we have settled on a

model specification, let us henceforth adopt the simpler subscripting scheme

61 + 62x1 + e3x2 + 64x3

£n
1 + 94x1 + 67x2 + 68x3
f(x,8) =
o 65 + 63x1 + 66x2 + 97x3
"L Bk + 8yx, 4+ 8gxg
= ]
8 (el, 6,, 04, 8, 8, 85 0, 68) .

In this notation, the hypothesis of homogeneity may be written as the

parametric restriction
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62+ 63+ 94
h(9) = 63 + 66 + 97 =0
94 + 97 + 68
with Jacobian
0 1 1 1 0 0 0 0
H(8) =} 0O 0 1 0 0 1 1 0
0 0 0 1 0 0 1 1

The hypothesis may also be written as a functional dependency

o Py
®, TPy TPy
85 Pa
e = 94 = = p3 = g(p)
% Pg
% TP5T Py
®; Ps
®s "P5” "3/
with Jacobian

1 0 0 0 0
o -1 -1 0 0
0 1 0 0 0
0 0 1 0 0

clp) = | 0 0 1 0
0o -1 0 0o -1
0 0 0 1

\o -1 0o -1

which is, of course, the same as was obtained in Section 2. In passing,

observe that Hlg(p)]G(p) = 0. I}
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Throughout this section we shall take £ to be any random variable
that converges almost surely to I and has /n(£ - £) bounded in probability.
To obtain a level a test this condition on £ need only hold when H: h(8°) = 0
is true but to use the approximations to power derived below the condition
must hold when A: h(6°) # 0 as well.

There are two commonly used estimators of I that satisfy the condition
under both the null and alternative hypotheses. We illustrated one of them
in Section 2. There one fitted each equation in the model separately in
the style of Chapter 1 and then estimated I from single equation residuals.
Recalling that

1

= ¢ - 1" -
s(e,2) =z _; Iy, - £x,0)1'L “ly, - £(x.,0)],

an alternative approach is to put I = I, minimize S(6,I) with respect to 9
to obtain 5#, and estimate I by

n

(1/n) zt=l

&1
L]

~# Ay
[yt- f(xt, ) )][yt - f(xt,e )]

n A
(1/n) Zt=1 e, e

If there are no across equation restrictions on the model these two estimators
will be the same. When there are across equation restrictions, there is a
tendency to incorporate them directly into the model specification when using
the multivariate notational scheme as we have just done with the example.

(The restrictions that 93, 94, 67, and 68 be the same in both equations are
the across equation restrictions, a total of four. The restriction that 64
be the same in the numerator and denominator of the first equation is called
a within equation restriction.) This tendency to incorporate across equation
restrictions in the model specification causes the two estimators of I to be

different in most instances. Simply for varieties sake, we shall use the
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estimator computed from the fit that minimizes S(6,I) in this section.
We illustrate these ideas with the example. In reading what follows,
recall the ideas used to write a multivariate model in a univariate notation.

Factor f-l as f-l = ﬁ'ﬁ, let §2a) denote a typical row of ﬁ, and put

s = M(t-1) + a

nxsn = (s'(a)’ X;:)'
"f"("xs",e) = p'(a) f(xt’e)

In this notation

s = 528 0,7 et

EXAMPLE 1. (continued) SAS code to minimize S(6,I) for

61 + ele + 63x2 + 94x3

-1 + 64x1 + 97x2 + 88x3

£n

f(x,8) =

2 65 + e3x1 + 66x2 + 97x3
-1 + 94x1 + 67x2 + 68x3

is shown in Figure 3a. A detailed discussion of the ideas is found in

connection with Figure 2a; briefly they are as follows.

Trivially the identity factors as I = P'Pp with P = I. The multivariate

observations yt, x for t =1, 2,

v -+» 224 = n are transformed to the

univariate entities



Figure 2a. Zgxample 1 FTitted By Lleast Zguares, Acraoss Equaticn Constraints

ZA3 Statements:

DATA WORKOt,;, SET EXAMPLEYL,

Pi=t.90; P2=0.0, ¥Y=P1xV1i+PI*¥2, QUTPUT,;

P1=0.0, P2=1.0,; Y¥=Pix¥is+P2%¥32, OQUTPUT; DELETE;

PRCC NLIN DATA=WORKO! METHOD=GAUSS ITER-30 CONVERGENCE=1 E-

13;
PARMS Ti{=-2.9 T2=-1.3 T3-.82 T4=.36 T3=-1.5 Té=-1. T7=-.03 T8=-.47,
PEAK=T1+T2*X1+T3*Y¥2+T4*X3;, INTER=TS+T3*X1+TExY2+T72Y3;
BASS=-14Ta4%xY14T7%xY24+TB*Y3;
MODEL Y=F1*LOG(PEAK/BASE}+P2*LOG(INTER/BAZSE);
DER .Ti=P:1/PEAX; DER.T2=P!/PEAX%X1, DER T3=P!/PEAX*YZ+P2/INTER*X!{,
DER.T4=P1/PEAK*¥3+(-P1-P2)/BASE*Xi; DER.TE=P2/INTER;
DER Té=PZ/INTER*X2; DER.T7=P2/INTER*¥3+(-P!-P2)/BASE*YZ,;
CER.TB8=(-P1-P2)/BASE*X3;
CUTPUT QUT=WCRX02 RESIDUAL=E;

Cutput:
SAS
NON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y METHOD: GAUSS-MEWTON
ITERATICN T T2 T3 RESIDUAL 88§
T4 TS Té
7 T8
i -2.90000000 -1.30000000 g.82000000 68.32779623
0.36000000 -1.500000400 -1.00000000
-0.02000000 -0.47000000
14 -2.98025942 -1.146088893 0.78692676 $7.02304899
§.35309087 -1.50604388 -0.999857407
£0.25407441 -0.474346347

MOTE: CONVERGENCE CRITERION MET.
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vy, "' = p'(a)yt , x" = (plyys X)

for s = 1, 2, ..., 448 = nM which are then stored in the data set WORK@1

as shown in Figure 3a. The univariate nonlinear model

"y 1) = 'lf"("x ",e) + "e " s - 1’ 2, ceny 448 = nM
s s )
with
Mtttz 1"t = L
£1¢( x ", 9) p(a)f(xt,e)

M(t-1) + a

4]
[

is fitted to these data using PROC NLIN and the residuals "és" for
s =1, 2, ..., 448 = nM are stored in the data set named WORK@2.

In Figure 3b the univariate residuals stored in WORK@2 are regrouped
into the multivariate residuals ét for t =1, 2, ..., 224 = n and stored
in a data set named WORK@5; here we are exploiting the fact that P = I.
From the residuals stored in WORK@5, £ and P with £ = = P'P are computed
using PROC MATRIX. Compare this estimate of I with the one obtained in
Figure lc. Imposing the across equation restrictions results in a slight
difference between the two estimates.

Using P as computed in Figure 3b, S(8,%) is minimized to obtain

.92458126
.28674630
.81856986
.36115784
.53758854
.04895916
.03008670
46742014

D>
[]

(from Figure 3c)

as shown in Figure 3c¢c; the ideas are the same as for Figure 3a. The

~

difference between I in Figures lc and 3b results in a slight difference

between the estimate of § computed in Figure 2¢ and 8 above. []



Tigure 3%, Contempsosranecus Yarvriance-€covariance Matrix of Ezample ! Estimated
from Least Sguares Res:iduzls, Across Equation Constraints Imposed.

ZAS Statements:

CATA WCRK03; SET WORKOZ;, El=E; IF MOD(_N_,2)=0 THEN DELETE;
DATA WORKO04; SET WORKOZ, E2=E; IF MOD(_N_,2)>=1 THEN DELETE;
DATA WORK0S,; MERGE WORKC3 WORKQ4; KEEP Et EZ;

PRCC MATRIY FW=20:; FETCH E DATA=WORKOS(XEEP=El E2);
SIGMA=E'*E%#/224; PRINT SICMA; P=HALF(INV(SICMA)); PRINT P;

Output:

SAS
SIGMA COL1 COL2
ROW? 0.14649244288351 0.09200572942274
ROW2 0.0920057294227¢6 0.08964264342294
Iy COL1 COL2
ROW1 3.76639099219 -3.865477509

new? 0 3.239970820524



Tigure 3c. Lzampie ! Fitted by Multivariate Least Sguares, Across Eguation

Constraints Impcosed.

SAS Statamants:

DATA WORKDYL, SET EYAMPLEI!;

0123 744639099289 P2=-3 . B45477509, VY=P1i*xY14+P2%wV2, QUTPUT,
D1=0 0; P2=3.339970820524, Y=PixV1i4+P2%x¥2, OQUTPUT, DELETE,;
PRCC MLIN DATA=WCORX01 METHOD=GAU3S ITER=50 CONVERGEMCE=! E-1!

PARMS

T1=-2.9 T2=-1.3 T3=.82 T4=.34 TH=-1.5 Té=-1,

PEAX=T1+T22{1+T3IxX2+T4nZ3; INT£R=T5+T5*X1+T6*X2+T7*X3;
BASE=-1+T4*X1+T7*xY2+TB*X3;

MODEL

¥Y=PL1*LOG(PEAK/BASE)+PZ*LOG(INTER/BASE);

3
T?7=-.03 T8=-.47;

DER.T1=P1/PEAK, DER.T2=P!1/PEAK*X1,; DER.T3=P1/PEAK*X2+PZ/INTER*X!;

DER .T4=P1/PEAK*{3+(-P1-P2)/BASE*X1;
DER.T6=P2Z/INTER*X2Z;

CER . T8=(-FP1-P2)/BASE*X3,;

Qutput:
SAS 3
MON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y METHCD: GAUSS-NEWTON
ITERATICN T1 T2 T3 RESIDUAL 85
T4 TS T4
T7 T8
] -2.90000000 -1.30000000 0.82000000 $43.59788174
0.364000000 -1.50000000 -1.00000000
-0.03000000 -0.470000400
14 -2.924358112% -1.284744630 0.31854%8¢4 444 834935247
0.36115784 -1.337588354 -1.04893915%
0.03008470 -0.446742014
NOTE: CONVERGENCE CRITERICN MET.
SAS 7
NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y
SCURCE DF SUM OF SQUARES MEAN SQUARE
REGRESSION 8 6468.8481999%92 808.60402499
RESIDUAL 449 4446 .836935247 1.01558398
UMCORRECTED TOTAL 448 69135 .7051523¢%
(CORRECTED TOTAL) 447 864.32897245
PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 %
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
T1 -2.9245812¢ 0.277%90948 -3.470784351 -2.37837801
T2 -1.286744630 0.224871234 -1.732324870 -0.84114589
T3 0.818354984 0.0808822¢ 0.65940389 0.97753584
T4 0.346115784 0.03029057 0.30162474 0.42049093
TS -1.53758851 0.09192958 -1.71824692 -1.35691014
Té -1.04895914 0.08347724 -1.21341839 -0.88449993
T7 0.030086870 0.03614145 -0.0409%4570 0.101t119%90°%
T3 -0.446742014 0.01924170 -0.50%527708 -0.429346320

DER.T3=P2/INTER,
DER.T7=PZ/INTER*X3+(-P1-P2)/BASE*XZ;
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The theory in Section 3 would lead one to test H: h(6) = 0 by computing,

for instance,

and rejecting if L' exceeds the a-level critical point of the xz-distribution
with q degrees of freedom, recall that 6 minimizes S(6,%) subject to

h(8) = 0 and that 6 is the unconstrained minimum of S(8,%). This is what

one usually encounters in the applied literature. We shall not use that

approach here. 1In this instance we shall compute

L = 18(8,8) - s(8,8)1/q
$(8,2)/(nM - p)

and reject if L exceeds the a-level critical point of the F-distribution
with q numerator degrees of freedom and nM - p denominator degrees of
freedom. There are two reasons for doing so. One is pedogogical, we wish
to transfer the ideas in Chapter 1 intact to the multivariate setting. The
other is to make some attempt to compensate for the sampling variation due

#,f) = nM (Problem 1) so

to having to estimate L. We might note that S(§
that in typical instances S(é,f) %2 nM. If nM is larger than 100 the
difference between what we recommend here and what one usually encounters

in the applied literature is slight.

In notation used here, the matrix C of Chapter 1 is written as (Problem 2)
n ' ~ )"‘1 ' ~ -1
¢ = {zt=1[(a/ae E(x ,8)1'E T[(3/38 )f(xt,e)]} ,

and

s(8,£)/(aM - p).

/]
1]

Writing h h(é) and H = H(é), the Wald test statistic is
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~

W=nh'(EC H')_lh/(q s2)
One rejects the hypothesis
H: h(8°) =0

when W exceeds the upper a X 100% critical point of the F distribution with

q numerator degrees of freedom and nM - p denominator degrees of freedom;

that is when W > F-l(l - a; q, n - p).

Recall from Chapter 1 that a convenient method for computing W is to

compute a vector of residuals e with typical element

po | R T B TP~ N T TN T - Y | R | a
s Vs £ *s :8) Pla)e p(a)f(xt’e) ’

compute a design matrix F with typical row
1 - ! e, oAy = ' A
£ (3/368') "£"( X ,6) p(a)(a/ae )f(xt,e) ,

fit the linear model

by least squares, and test the hypothesis
H: H B =h against A: HB # h

We illustrate.

EXAMPLE 1. (continued) We wish to test the hypothesis of homogeneity,

H: h(89) = 0 against A: h(8°) # 0

h(e) = [ 0, + 6, + 0, ,
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in the model with bivariate response function

91 + 92x1 + 63x2 + 64x3

-1 + 94x1 + 67x2 + 68x3

£n

f(x,8) =
65 + 63x1 + 66x2 + 67x3
-1 + 64x1 + e7x2 + 68x3

£n

using the Wald test. To this end, the multivariate observations(yt,xt) are

transformed to the univariate entities

"ys" = p'(a)yt s "xsl' = (p'(a), x't) !

which are then stored in the data set named WORK@l as shown in Figure 4.

Using parameter values taken from Figure 3c, the entities

é = ny "o ongnng n"e‘) , El = (3/39') WEI (M u’é)
S S S S S

are computed and stored in the data set named WORK@2. We are now in a

position to compute
W= h'(é &) hig 8D

by fitting the model

~

e =f B+u
s s

using least squares and testing

~

H: HB = h against A: H B8 # h .

We have



Tigure 4. Illustration of Wald Test Computations with Example 1.

SAS Statements:

CATA WORKO01; SET EXAMPLEL;

D1-3.76639099219; P2=-3.845677509; VY=P1xY14+P2%x¥2;, OUTPUT;

P1=0.0; P2=-3.339970820524; VY=Pi*xY¥1+P2%Y2; OUTPUT; DELETE;

DATA WORK02; SET WORKO1;

T1=-2.92458126; T2=-1.28674630; T32=0.81856986; Td=0.26115784;

T5=-1.53758854; T6=-1.04895916; T7=0.03008670; TB8=-0.46742014;

PEAK=T1+T2*%1+T2%*X2+T4*X3; INTER=TS+T3*X1+T62X2+T7#%3;

BASE=-1+T4*X1+T7%X2+T8*X3;

E=Y-(P1*LOG(PEAK/BASE)+P2*LOG( INTER/BASE));

DER_T1=P1/PEAK; DER_T2=P!/PEAK*X1; DER_T3=P1/PEAK*X2+P2/INTER*X1;

DER_T4=P1/PEAK*X3+(-P1-P2)/BASE*X1; DER_TS=P2/INTER;

DER_T4=P2/INTER*X2; DER_T7=P2/INTER*X3+(-P1-P2)/BASE*X2;

DER_T8=(-P1-P2) /BASE*X3;

PROC REG DATA=WORKO02Z;

MODEL £ = DER_T! DER_T2 DER_T3 DER_T4 DER_TS DER_T4 DER_T? DER_T8 / NOINT;

HOMOGENE: TEST DER_T2+DER_T3+DER_T4=-0.10701840,
DER_T3+DER_T4+DER_T7=-0.20030260,
DER_T4+DER_T7+DER_T8=-0.07617540;

OQutput:
SAS
DEP VARIABLE: E
SUM OF MEAN

SQURCE jal SQUARES SQUARE F VALUVE PROB}F
MODEL 8 4.32010E-12 S .40012E-13 0.000 1.0000
ERRGR 440 4446 .837 1.015584
U TOTAL 448 444 .857

ROOT MSE 1.007762 R-~-SQUARE 0.0000

DEP MEAN 0.00142833% ADJ R-SQ -0.01%9

c.v. 61888 .34

MOTE: NC INTERCEPT TERM 1S USED. R-SQUARE IS REDEFINED.

PARAMETER STAMDARD T FOR HO:
VARIAELE ©DF ESTIMATE ERROR PARAMETER=Q PROE » IT)
DER_T! 1 -2.37028E-07 0.27799° -0.000 1.0000
DER_T2 1 3.17717E-Q7 0.228712 0.000 1.004Q0
DER_T3 ! 5.36973E-08 p.080882 0.000 1.0000
CER_T4 1 1.64814E-08 0.030291 0.00¢0 1.0000
DER_TS 1 -53.10589E-08 0.0919390 -0.000 1.0000
CER_TS 1 7.81229E-408 0.083677 0.000 1.0000
DER_T7? 1 5.65637E-10 0.03s8141 g.co00 1.00090
DER_TSH 1 2.78288E-08 0.019262 0.009 1.0000
TEST: HOMCGENE NUMERATOR: 7.3120% DF: 3 F VALUE: 7.1998

DEMNOMINATOR: 1.015%8 DF: 440 PRGEB »F g.0C01
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-1.28674630 + 0.81856986 + 0.36115784
.81856986 - 1.04895916 + 0.03008670 (from Figure 3c)
0.36115784 + 0.03008670 - 0.46742014

= b
L]
o

-0.10701860
= -0.20030260
-0.07617560

H = 0 0 1 0
0 0 1 1
h'(H C H')-lh/3 = 7.31205 (from Figure 4)
g% a 1.015584 (from Figure 3c or 4)
W = 7.1998 (from Figure 4 or by division)

Since F-l(.95; 3, 440) = 2.61 one rejects at the 5% level. The p-value is
smaller than 0.001 as shown in Figure 4. []

Again following the ideas in Chapter 1, the Wald test statistic is
approximately distributed as the non-central F-distribution, with q
numerator degrees of freedom, nM - p denominator degrees of freedom, and

non-centrality parameter

1

= h' (8°)[H(8°) C(8°)H' (8°)] = h(8°)/2

>
|

n ? ' '1 y -1
c(s) {zt=1[(a/ae VE(x, 81" £ "[(3/30 )f(xt,e)]} ;

written more compactly as W < F'(q,nM - p, A). As noted in Chapter 1, the

computation of A is little different from the computation of W itself; we

illustrate.
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EXAMPLE 1. (continued) Consider finding the probability that a 5%
level Wald test rejects the hypothesis of homogeneity

8, + 6, + 8,
H: h(8) = 93 + 96 + 67 =0
8, *+ 6, + g

at the parameter settings

.82625314\\
.25765338
.83822896
.36759231 0.16492462883510 0.0920057294227
.56498719 | * T =<i

.98193861

.04422702
.44971643

for data with bivariate response function

61 + ele + 63x2 + 64x3

-1 + 64x1 + 67x2 + 98X3

Lo

f(x,8) =

65 + 63x1 + 66X2 + 97x3

-1 + 94x1 + 67x2 + 98x3

L

the value of 6° chosen is midway on the line segment joining the last two
columns of Table 2.

Recall (Figure 3b) that Z-l factors as Z-l = P'P with

3.76639099219 -3.865677509
0 3.339970820524

Exactly as in Figure 4, the multivariate model is transformed in Figure 5

15

6
0.09200572942276 0.0896426434229;> » B = 22

to a uni-

variate model and the Jacobian of the univariate model evaluated at 6°, denote it as



Tigure §. Illustration of Wald Test Power Computations with Example 1.

SAS Statements:

DATA WORKQ!; SET EXAMPLE!;

P1=3.76439099219; P2=-3.8456773509; VY=P1*Y1+P2%x¥2; OQUTPUT;

FPi=0.0; P2=3.339970820524; Y=P1*¥1+P2*Y2, OQUTPUT; DELETE;

DATA WORK02;, SET WORKO!:
Ti= -2.82623314; T2= -1.23765338, T3= 0.8382289%;
Ti= -1.56498719; Té= -0.98193861,; T7= 0.04422702;
PEAK=T1+T2*®Z1+T3*X2+T4*X3; INTER=TS+T3I*X1+T4*X2+T7*X3;
BASE=-1+Ta*x¥1+T7*¥2+T8*X3;

0.38759231;
-0.44971643;

DER_T!=P1/PEAK; DER_TZ=P1/PEAK*X1;, DCER_T3=P1/PEAK*XZ+P2/INTER*X1;

DER_T4=P{/PEAK*X3+(-P!-P2)/BASE*X1; DER_T5=P2/INTER;

DER_T6=P2/INTER*X2; DER_T7=P2/INTER*X3+(-P1-P2)/BASE*X2;

DER_T8=(-P1-P2)/BASE*X3,;

PRCC MATRIX; TFETCH F DATA=WORKOZ(XEEP=DER_T1-DER_T8);
FETCH T | DATA=WORKOZ2(KEEP=T!-T8);
H=01110000/70¢01001t10¢/00010011
LAMBDA=HO'*INV(H*C*H')*H0#/2; PRINT LAMEBDA;

Cutput:

SAS

LAMBDA COL!

ROW1 3.2990¢

C=INV(F'xF);

?

HO=H*T"';

FREE F;
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F, is stored in the data set named WORK@2. Next

A=nh'[HCH]n/2 = 3.29906 (Figure 5)
with h = h(8°), H = (3/36' )h(8°), and

¢ = ()7 = {27 [(3/0" )E(x ,0°) )" s T[(2/38" )ECx,,0°)1}

is computed using straightforward matrix algebra. From the Pearson-Hartley

charts of the non-central F-distribution in Scheffé (1959) we obtain

1 - F'(2.61; 3, 440, 3.29906) = .55

as the approximation to the probability that a 5% level Wald test rejects the
hypothesis of homogeneity if the true values of 6° and I are as above. []

A derivation of the "likelihood ratio" test of the hypothesis
H: h(8°) = 0 against A: h(8°) # 0

using the ideas of Chapter 1 is straightforward. Recall that 6 is the
unconstrained minimum of $(6,£), that 6 minimizes S(6,%) subject to
h(8) = 0, and that h(9) maps RP into RY. As we have seen, an alternative

method of computing 6 makes use of the equivalent form of the hypothesis

H: 8° = g(p°) for some p° against A: 6° # g(p) for any p .

One computes the unconstrained minimum p of S[g(p),%] and puts & = g(p)

Using the formula given in Chapter 1,
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L = (SSE reduced - SSE full)/q
(SSE full)/("n" - p) ’

and using
S(e,f) = erlfl [nysn - "f"("xsn3e)]2
one obtains the statistic

[s(5,8) - s(8,5)]/q
S(6,5)/(aM - p)

One rejects H: h(8°) = 0 when L exceeds the a X 100% critical point F of
the F-distribution with q numerator degrees of freedom and nM - p denominator

_1(1 - a3 q, nM - p).

degrees of freedom; Fa = F
We illustrate the computations with the example. In reading it,

recall from Chapter 1 that one can exploit the structure of a composite
function in writing code as follows. Suppose code is at hand to compute
£(x,6) and F(x,8) = (3/36')f(x,8). Given the value 5 compute 6 = g(p) and
G = (3/38')g(8). Obtain the value f[x,g(p)] from the function evaluation
f(x,8). Obtain (3/89')f[x,g(5)] by evaluating F(x,8) and performing the
matrix multiplication F(x,8)G .

EXAMPLE 1. (continued) Consider retesting the hypothesis of homogeneity,

expressed as the functional dependency

H: 6° = g(p°) for some p° against A: 6° # g(p) for any p

with



Across

Equation

Figure2 4. Cxample ! Fitted by Multivariate Least Squares,
Constraints Impcsed, Hcmogeneity Imposed.

SAS Statements:

DATA WORX0!; SET EXAMPLEL,

P1=2.76639099219; P2=-3.865877309; Y=P1xV¥Y14+P2*xY2,; OQUTPUT,

Pi=0.0; P2=3.339970820524; VY=P1®xY14+P2*Y2Z, QUTPUT,; DELETE,;

PRCC NLIN DATA=WORKO! METHOD=GAUSS ITER=50 CONVERGENCE=! E-13;

PARMS R1=-3 R2=.8 R3=.4 R4=-!.5 R5=.03;

Ti=R1; T2=-R2-R2;, T3=R2; T4=R3; TS=R4; Té=-RS-RZ; T?7=RS, T8=-R3I-R3I;

PEAK=

MODEL
CER_T:=P1/PEAK;

T1+T2x¥1+T3*Y2+T4*X3; INTER=TS+T3I*X1+Té&%xX2+T7%X3;
BASE=-1+T4*X1+T7xX2+TB%X3;
Y=Pi1*LOG(PEAX/BASE)+P2*LOG(INTER/BASE);

DER_T2=P1/PEAK*X1;

DER_T4=P1/PEAK*X34+(-P1-P2)/BASE*X1;, DER_TS=

DER_Té6=P2/INTER*XZ;

DER_T8=(-P1-P2) /BASE*X3;

DERTR!{=DER_T1;
DER.R4=DER_TS;

Cutput:
DEPENDENT VARIABLE:
ITERATION R1
R4
0 -3.00000000 0
-1.30000000 0
é -2.72482604
-1.5923%423
NOTE: CONVERGENCE CRITERION MET.

DER.R2=-DER_T2+DER_T3-DER_TS;
DER.R5=-DER_T6+DER_T?7-DER_TS;

SAS

P2/INTER,;

DER_T7=P2/INTER*X3+(-P1-P2)/BASE*X2;

DER_T3=P1/PEAK*X2+P2/INTER*X1;

DER.R3=-DER_T2+DER_T4-DER_TS;

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

[~ N1

Y

R12
RS

.80000000
.03000000

Qm
e
~ =)
o -2
o
0
o
~ -

SAS

METHOD:

GAUSS-NEWTON

R3

0.40000000

0.3743060°9

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS

SOURCE DF
REGRESSION b}
RESIDUAL 443
UNCORRECTED TOTAL 448
(CORRECTED TOTAL)> 447

PARAMETER ESTIMATE

Rl -2.7248240¢6

R2 0.85773951

R3 0.37430609

R4 -1.59239423

RS 0.05768347

SUM OF
4

~O L of>
[agndie BV -3
[ -

é
866 .

ASYMPTOTIC
STD. ERROR

.17837791
.06707057
.027131314
.07748848
.03407331

DOoaQ

SQUARES

~NoO
[= . 3 )
[ L
Loadll & -]
[ e -

156
082
239

[N ]

3269724653

-3

-1.
-0.

RESIDUAL 8S

356.82802354

474.682210812

DEPENDENT VARIABLE Y

MEAN SQUARE

ASYMPTOTIC 9% %
CONFIDENCE INTERVAL

LOWER
.07540344
.72592147
.32098315
74448742
00928668

-2.

[~ N

UPPER
37424847

.98955755%
.42762%02
.44010083
.124465402
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glp) = ,

in the model with response function

61 + Sle + 63x2 + 94x3

-1 + 64x1 + e7x2 + 68x3

£n

f(x,06) =

95 + 63x1 + 66x2 + e7x3
-1 + 94x1 + 67x2 + 68x3

£n

using the '"likelihood ratio" test; 6 has length p = 8 and p has length r = 5
whence q = p - r = 3. The model is bivariate so M = 2 and there are n = 224
observations. We adopt the expedient discussed immediately above, reusing the
code of Figure 3c; the Jacobian of g(p) was displayed earlier on in this

section. The result is the SAS code shown in Figure 6. We obtain

SSE(§,%) = 474.68221082 (from Figure 6).

Previously we computed

SSE(6§,%) = 446.85695247 (from Figure 3c).

The '"likelihood ratio'" test statistic is
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[s(8,8) - s(8,8)]/q
S(8,8)/@M - p)

(474.68221082 - 446.85695247)/3
446.85695247/(448 - 8)

9.133

Comparing with the critical point

F'l(.95; 3,440) = 2.61

one rejects the hypothesis of homogeneity at the 5% level. This is, by and
large, a repetition of the computations displayed in Table 3; the slight
change in 7 has made little difference. []

In order to approximate the power of the '"likelihood ratio' test we

proceed as before. We formally treat the transformed model

"y o= NE(x_M,8) + Me s=1,2, ..., nM

as if it were a univariate nonlinear regression model and apply the results
of Chapter 1. 1In a power computation, one is given an expression for the

. . , M
response function f(x,6) with range in R ), values for the parameters 6°

and I, a sequence of independent variables {xt}n and the hypothesis

t=1
H: 6° = g(p°®) for some p° against A: 8° # g(p) for any o .

Recall that the univariate response function is computed by factoring Z-l

as 25 = P'P and putting

"f"("xs",e) = p'(a)f(xt,e)

for
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s = M(t - 1) +a a=1, 2, ..., My t=1, 2, ..., n .

Applying the ideas of Chapter 1, the null hypothesis induces the location

parameter

* [}
6 g(pn)

where p; is computed by minimizing

2251 {"f"("xs",6°) - "f"["xs",g(o)]}2
= I} EGx,8%) - £lx 80D T} Eh_p o Ploy [E(x,58%) - £lx ,8(0)]}
= 10 {£(x,,6%) - £lx,,8() 1} 5 H{E(x ,0%) - £lx,,8(0)]}
Let
§, = £(x.,8°) - flx_,g(02)]
F_= (3/30') £(x ,8°)

Similar algebra results in the following expressions for the non-centrality

parameters of Section 5 of Chapter 1

Ay = (8'PpS - 8'P..8)/2

A, = (8's - G’PFG)/Z

§'s = 22=15'z'15t
s'p s = (20 sl T )G FTiE )T G Fr e )
8'PL.8 = (Z:=1GLZ-1FtG)(G'22=1FLZ-1FtG)-1(G'Z:=1FLZ-16t)

One approximates the probability that the "likelihood ratio" rejects H by

X - . -
P(L > FQ) 1 H(ca, q, oM - p, Al,xz)
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where

ca =1+ q Fa/(nM - p);

H(x;vl, v ) is the distribution defined and partially tabled in

20 Aoty
Section 5 of Chapter 1. Recall that if Az is small the approximation

P(L > Fa)é 1 - F'(Fa; q, nM - p, Al)
is adequate where, recall, F'(x; vy vy A) denotes the non-central
F-distribution. We illustrate with the example.
EXAMPLE 1. (continued) Consider finding the probability that a 5%
level "likelihood ratio'" test rejects the hypothesis of homogeneity

H: 8° = g(p°) for some p° against A: 6° # g(p) for amy p

with

glp) =

at the parameter settings

-2.82625314
-1.25765338

0.83822896 0.16492462883510 0.09200572942276
6°= 0.36759231| , I =

-1.56498719 0.09200572942276 0.08964264342294

-0.98193861

0.04422702
0.4497164%}

for data with bivariate response function
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61 + Sle + 63x2 + 94x3

-1 + 64x1 + 67x2 + 98x3

In

f(x,8) =

65 + 63x1 + 66x2 + e7x3
-1 + 64xl + e7x2 + 68x3

£n

the value of 8° chosen is midway on the line segment joining the last

two columns of Table 2. Recall (Figure 3b) that Z-l factors as Z-l = p'Pp
with
3.76639099219 -3.865677509
P =

0 3.339970820524

Referring to Figure 7, the multivariate model is converted to a
univariate model and the entities "f"("xs",6°) and (8/36')"f"("xs",9) are
computed and stored in the data set named WORK@2. Reusing the code of

Figure 6, p; to minimize

I [y 7,8°) - e 50001

is computed using PROC NLIN. From this value and setting 6; = g(p;), the
entities

ng Moz men(ny ",90) - ngnng ",6*)
S S S n
(a/ae')"f"("xs",e°) (a/ap')g(p;)

are computed, adjoined to the data in WORK@2, and stored in the data set
named WORK@3. Then, as explained in connection with Figure 1la of Chapter 1,
one can regress "68" on (5/38') "f"("xs",9°) to obtain 6'8 and G'PFG from

the analysis of variance table and can regress "65" on

(5/36") "f"("xs", e°)(8/ap')g(p;) to obtain G'PFGG . We have



Tigure 7 ftlnstration of Likelihocd Ratic Test Power Computations
with Exzample !

SAS Statements:

DATA WORKO!, SET EXAMPLE!;

P1=2.74639099219; P2=-3.865677509; Y=P1*Y1+P2*Y2; OUTPUT;

P1=0.0; P2=3.339970820524; Y=P1%xYi+P2%¥2, OUTPUT; ODELETE;

DATA WORK0Z; SET WORKO!;

Tt= -2.82625314; T2= -1.25765338; T3= 0.8382289%96; T4= 0.36759231;
TS= -1.56498719%; Té= -0.98193861; T?7= 0.04422702; T8= -0.44971643;
PEAK=T1+T2*X1+T3*X2+T4%%3; INTER=TS+TI*¥1+T62X24+T71%3;
BASE=-1+T4*xX1+T7*X2+T8*X3;

T1=P1/PEAK; T[2=P1/PEAK*X!; F3=P1/PEAK*X2+P2/INTER*X1;
F4=P1/PEAK*X3+(-P1-P2)/BASE*X1; F5=P2/INTER;

T6=P2/INTER*X2; F7=P2/INTER*X3+(-P1-P2)/BASE*X2; F8=(-P1-P2)/BASE*X];
YDUMMY=P!{*LOG(PEAK/BASE)+P2*LOG( INTER/BASE); DRO® T1-T8;

PROC NLIN DATA=WORK02 METHOD=CAUSS ITER=50 CONVERGENCE=1.E-13;

PARMS R!=-3 R2=.8 R3=.4 Rd4=-1.5 RS=.03;

Ti=R1; T2=-R2-R3; T2=R2; T4=R3; TS5=R4; Té=-R5-R2; T7=RS; TB=-RS-R3;
PEAK=T!{+T2*X1+T3%*X2+T4*X3; INTER=TS+T3*X1+T6*X2+T7#%3;
DASE=-1+Ta*X1+T7*X2+TB*K3;

MODEL YDUMMY=P1*LOG(PEAX/BASE)+P2*LOG(INTER/BASE);

DER_T1=P1/PEAK; DER_T2=P1/PEAK*X1; DER_T3=P1/PEAK*X2+P2/INTER*X};
DER_T4=P1/PEAK*X3+(-P1-P2) /BASE*X!; DER_TS5=P2/INTER;

DER_T4=P2/INTER*X2; DER_T?7=P2/INTER*X3+(-P1-P2)/BASE*X2;
DER_T8=(-P1-P2)/BASE*Y3;

CLR.R1=DER_T!; DER.R2=-DER_T2+DER_T3-DER_T&; DER.R3=-DER_T2+DER_T4-DER_TS;
DER.R4=DER_TS; DER.R5=-DER_T&+DER_T7-DER_TS;

Cutput:
SAS
MON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y METHGD: GAUSS-NEWTON

ITERATION Ri R2 R3 RESIDUAL 88
R4 RS

0 -3.00000000 0.80000000 0.40000000 90.74281456
-1.50000000 0.03000000

4 -2.7321745¢0 0.85819875 0.37441884 7.4315648358
-1.59899242 0.05540398

NQTE: CCOMVERGEMCE CRITERION MET.
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SAS Etataments:

DATA WORKG3;, SET WORKOZ;

Ri=-2.73217456,;, R2=0.8581987S5;, R23=0.37461884; R4=-1.59899242;
T1=R1; T2=-R2-R3; T3=RZ; T4=R3;, TS=R4; Té=-R5-RZ; T7=RH5; TB=-RS-R3,
PEAK=T1+T2*X1+T3%X2+T4*¥3; INTER=TS4+TI®Y1+T6*xX2+T7*¥3;

BASBE=-1+T4*x{1+T7%X2+TB8xX3;
DELTA=Pi*LOG(PEAK/BASE) +«P2*LOG(INTER/EASE) -YDUMMY;

RE=0.05%340398,;

FGi=F1,; FG2=-F2+F3-F4;, FG3=-F2+F4-F8,FG4=F3;, FG3S=-F6+F7-F8;
PROC REG DATA=WORX03; MODEL DELTA = F1-F8 / NCINT;
PRCC REG DATA=-WORKO03; MOREL DELTA = FG!-FGS / NCINT;
Cutput:
SAS

DEP VARIABLE: DELTA

SUM OF MEAN
SOQURCE OF SQUARES SQUARE F VALUE PROB)F
MCDEL 8 7.401094 0.925137 13358.454 0.0001
ERROR 440 0.030472 .0000492%477
U TOTAL 4438 7.431567
DEP VARIABLE: DELTA

SUM OF MEAN
SOURCE DF SGUARES SQUARE F VALUE PROB}F
MCCEL 3 0.134951 0.024990 1.639 0D.1472
ERROR 4412 7.296616 0.014647¢
U TOTAL 448 7.431567
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§'§ = 7.431567 (from Figure 7)
G'PFG = 7.401094 (from Figure 7)
6'PFG6 = 0.134951 (from Figure 7)
whence
- ' Y
Ay = (s P§ - 8 PFGG)/Z
= (7.401094 - 0.134951)/2
= 3.63307
= re oL gt
Ay (8'6 - 8'P8)/2
= (7.431567 - 7.401094)/2
= 0.01524
c, = 1+gq Fa/(nM - p)

1 + 3(2.61)/(448 - 8)

1.01780.

Direct computation (Gallant, 1975) yields

fle

P(L > 2.61) 1 - H(1.01780; 3, 440, 3.63307, 0.01524)

0.610 .

From the Pearson-Hartley charts of the non-central F-distribution (Scheffé, 1959)

one has

lie

P(L > 2.61) 1 - F'(2.61; 3, 440, 3.63307)

= 0.60 . ]
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In Chapter 1 we noted that the Lagrange multiplier test had rather
bizarre structural characteristics. Take the simple case of testing
H: 8° = 0% against A: 8° # 6% . If 6% is near a local minimum or a local
maximum of the sum of squares surface then the test will accept H no matter
how large is the distance between § and 6% . Also we saw some indications
that the Lagrange multiplier test had poorer power than the likelihood ratio
test. Thus, it would seem that one would not use the Lagrange multiplier
test unless the computation of the unconstrained estimator 6 is inordinately
burdensome for some reason. We shall assume that this is the case.

If 6 is inordinately burdensome to compute then §# will be as well.
Thus, it is unreasonable to assume that one has available an estimator &
with vn(Z - I) bounded in probability when h(8°) = 0 is false since such
an estimator will almost always have to be computed from residuals from
an unconstrained fit. The exception is when one has replicates at some
settings of the independent variable. Accordingly, we shall base the

Lagrange multiplier statistic on an estimator En computed as follows.
If the hypothesis is written as a parametric restriction
H: h(8°) = 0 against A: h(8°) # 0
then let 5# minimize S(6,I) subject to h(8) = 0 and put
= n ~# =i\ 1)
I = (1/n)2t=l[yt f(xt,e )][yt f(xt,e )]
If the hypothesis is written as a functional dependency
H: 6° = g(p°) for some p° against A: 6° # g(p) for amy p
~F L
then let p' minimize S[g(p),I] and put

= /m) st {y, - Elx,eGDI}y, - flx,8GDIY

t
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The constrained estimator corresponding to this estimator of scale is

6 that minimizes S(8,L) subject to h(6) = 0. Equivalently, let p minimize

S[g(p),L] whence 6 = g(p)
Factoring E-l as f-l = P'P, denoting a typical row of P by Eia) and

formally treating the transformed model

"ysll = llfll("xsll’e) + l'esll s = 1, 2’ e nM

with s = M(t - 1) + a
=~

Yo T PY:

= (! oyt
X (p(a)’xt)

wenron, N = !

£''( X ,0) p(a)f(xt,e)
as a univariate model, one obtains as the second version of the Lagrange
multiplier test given in Chapter 1 the statistic

R o= (/s D) 1{z]_ Iy, - £Gx 81" E (/00" ) (x, )1}

n ! z ~-1 = -1
X {z ., [(3/30")E(x ,8)]1"E "[(3/00" )E(x ,6)1}

n ' A z
X {zt=1[(a/ae VE(x ,8)]1'E Tly, f(xt,e)]}
One rejects H: h(8°) = 0 if R > d, where
da = nMF&/[(nM - p)/q + Fa]

and F_ denotes the a X (100%) critical point of the F-distribution with q
numerator degrees of freedom and nM - p denominator degrees of freedom;

that is a = 1 - F(Fa; q, nM - p)



6-4-30

-~

One can use the same approach used in Chapter 1 to compute R . Create

a data set with observations

nesn = nysn - "f"("Xs",e) = P'(a)yt - P'(a)f(xt’e)
£, = (3/38")"E"("x ",8) = p (3/30' )E(x ,6)

Let e be the nM - vector with ";S as elements and let F be the nM by p

~ !

matrix with E @as a typical row. A linear regression of e on F with no
s

intercept term yields the analysis of variance table

Source d.f. Sum of Squares
Regression p E'?(ﬁ'f)-lf'é

Error nM-p e'e - E'f(ﬁ'f)—lf'e
Total nM e'e

From this table R is computed as

L R " 9

Let us illustrate.

EXAMPLE 1. (continued) Consider retesting the hypothesis of homogeneity,

expressed as the functional dependency
H: 6° = g(p°) for some p° against A: 68° # g(p) for any p

with

g(p) =
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in the model with response function

91 + 92x1 + 93x2 + 64x3

Zn
1 + 64x1 + 67x2 + 6,x

f(x,8) =

65 + 93x1 + 66x2 + 97x3

Zn
1 + 64x1 + 67x2 + 6 _x

using the Lagrange multiplier test. Note that 8 is a p-vector with p = 8,
p is an r-vector with r = 5, q = p - r = 3, there are M equations with
M = 2, and n observations with n = 224.
Before computing the Lagrange multiplier statistic R one must first
compute 5# as shown in Figure 8a, I as shown in Figure 8b, and § as shown
in Figure 8c. The SAS code shown in Figures 8a through 8c is simply the
same code shown in Figures 3a through 3c modified by substitutions from
Figure 6 so that S{g(p),Z] is minimized instead of S(8,IZ). This substitution

is so obvious that the discussion associated with Figures 3a, 3b, 3c, and 6

ought to suffice as a discussion on Figures 8a, 8b, 8c.

We have
~ 3.565728486712 -3.75526011819
P = (from Figure 8b),
0 3.328902782166
-2.73001786
i 0.85800567
p = 0.37332245 (from Figure 8c),
-1.59315750

0.05863267



figure 83. Example ! Fitted By Least Sguares, Acrcss Lguation Constraints
imposed, Homogeneity Imposed.

SAS Statements:

ATA WORKO1; SET EXAMPLE!;
1=1.0; P2=0.0; Y=P1*Y14+P2*Y2, OUTPUT;

1=0.0; P2=1.0; Y=P1*Y1+P2*Y2;, OUTPUT; DELETE;

R LIN DATA=WORKO! METHOD=GAUSS ITER=50 CONVERGENCE=1.E-13;

ARMS R1=-3 R2=.8 R3=.4 R4=-1.5 RS=.03;

T1=R1; T2=-R2-R3; T3=R2; T4=R3; TS=R4; Té=-RS5-R2; T7=R5; T8--RS-R3;
PEAK=T1+T2*X1+T3%X2+T4*%3; INTER=TS+T3*X1+T6*N2+T7%X3;
EASL=-1+TAXX1+T7AX2+TB*Z3;

MODEL Y=P1*LOG(PEAK/BASE)+P2%LOG(INTER/BASE) ;

GCR_T1=P1/PEAK; DER_T2=P1/PEAK*X1; DER_T3=P1/PEAK*X2+P2/INTER*X1;
DER_T4=P1/PEAK*%3+(-P1-P2) /BASE*Xt; DER_TS5=P2/INTER;
DER_T6=P2/INTER*X2; DER_T7=P2/INTER*X3+(-P1-P2)/BASEXX2;
DER_TB8=(-P1{-P2) /BASE*X3;

DER.R1=DER_T1; DER.R2=-DER_T2+DER_T3-DER_T6; DER.R3=-DER_T2+DER_T4-DER_TS;
DER.R4=DER_T5; DER.RS5=-DER_T6+DER_T?7-DER_TS;

OUTPUT OUT=WORKO0Z RESIDUAL=E;

Qutput:
SAS
NON-LINEAR LEAST SQUARES ITERATIVE PHASE
DEPENDENT VARIABLE: Y METHOD: GAUSS-NEWTON

ITERATION R1 R2 R3 RESIDUAL 8§
R4 RS

¢ -3.00000000 0.80000000 0.40000000 63.33812491
-1.50000000 0.03000000

& -2.71995278 0.808704862 0.362235861 60.25114542
-1.53399410 0.08112412

MOTL: CCONVERGENCE CRITERION MET.

re



Figure 85, Contempsraneous Variance-Covariance Matriz of Ezample 1| Estimated
from Least Squares Residuals, Across Equaticn Constraints Imposed,
Hemcgeneity Impesed.

SAS Statements:

DATA WORK03; SET WORKO0Z; E1=E; IF MOD(_N_,2)=0 THEN DELETE;
DATA WORK(4; SET WORKO0Z; E2=E; IF MOD(_N_,2)=t THEN DELETE;
DATA WORKO0S, MERGE WORK03 WORKO04; KXEEP E! E2;

PROC MATRIY FW=20; FETCH E DATA=WORKOS(KEEP=E! E2};
SIGMA=E'*E#/224;, PRINT SIGMA; P=HALF(INV(SIGMA}); PRINT P;

Cutput:

SAS
SIGMA COLt coL2
RCW1! 0.1787384689442 0.09503630224405
ROW2 0.09503630224405 0.09023972761352
r COL1{ coLz
ROW! 3.5657284846712 ~-3.79526011819

ROW?2 ¢ 3.328902782146



Tigura 8- Example ! Fitted by Multivariate Least Squares, Across Equation

Constraints Impcsed, Homogeneity Impcsed.

SA5 Statements:

DATA WOHKO., SET EYAMPLE!;

P1=2.0657284858712; P2=-3.75524011819;, Y¥=PixY14+P2*¥2; OQUTPUT,
PI:0.0; P2=3.328902782146. Y=P1xY1+P2*Y¥2,; OUTPUT; DELETE;
FROC MLIN DATA=WORK01 MCTHOD=GAUSS ITER=50 CONVERGENCE=1.E-13;

PARMS R!=-3 R2=.8 R3=-.4 R4=-1.5 RO=.03;

Ti=R1. T2=-R2-R3; T3=RZ; T4=R3;, TS=R4, Té=-RS-R2;, T7=R5; T8=-RS-R3;
PEAK=T1+T2Z*X1+TI*X2+T4%X3; IMTER=TS+T3*X1+TE*X2+T7%X3;
EASE=-1+T4*X1+T7%X2+TB"X3;

MODEL Y=Pi1*LOG(PEAK/BASE)+P2*LOG(INTER/BASE),

DER_T1=P!/PLAK; DER_T2=P1/PEAK*Y1; DER_T3=P!1/PEAK*XZ+P2/INTER®Y?;
DER_T4=P1/PEAK*X3+(-Pi-P2)/BASE*X!; DER_T3=P2/INTER;
DER_T4§=P2/INTER*¥2;, DER_T?=P2/IMTER*X3+(-P1-P2)/BASE*X2Z;
DER_T8=(-P1-PZ)/BASE*Y3;

3~

Cutsut:
SAS q
NON-LIMEAR LEAST SQUARES ITERATIVE PHASE
DEPEMDENT VARIABLE: Y METHOD: GAUSS-NEWTON
ITERATION R1 R2Z R3 RESIDUAL SS
R4 RS
0 -3.000000400 0.80000000 0.40000000 522.735679458
-1.500090000 g0.03000000
4 -2.7300178% 0.83800547 0.37332243 447 . 09348448
-1.5931575¢0 0.058483147
NOTE: CONVERGELNCE CRITERION MET.
SAS 3
MON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPEMDENT VARIABLE Y
SCQURCE DF SUM OF SQUARES MEAN SQUARE
REGRESSION 3 5899.238146229 1179 .84763246
RESIDUAL 443 447 . 09568448 1.00924534
UNCORRECTED TOTAL 448 6344 .33384477
(CORRECTED TATAL) 447 806.6359774%¢
PARAMETER ESTIMATE ASYMPTOTIC ASYMPTOTIC 95 %
STD. ERROR CONFIDENCE INTERVAL
LOWER UPPER
R! -2.73001784 0.17961271 -3.08302208 -2.37701344
R2 0.835800547 0.06701544 0.7262955°9 0.98971574
R3 0.37332245 0.02732102 0.31962671 0.42701818
R4 -1.393157590 0.075460472 1.7417521¢ -1.444356284
R3 0.03863147 0.033%96211¢ 0.00811621 0.12537956
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0
Py7P3
52 -2.7300179
. A R -1.2313281
8 = glp) = P4 = 0.8580057 ,
- 0.3733224
Py -1.5931575
-8 .- ~-0.9166373
5 P2
X 0.0586317
os -0.4319541
05703
and
S(8,%) = 447.09568448 (from Figure 8c)

As shown in Figure 9, from these values the entities

£(x_,0)

no o on o 1 nen/n, n z = ! - !
e y B ("xg"o8) = PoyYe T Pron R

S S

and

f; = (8/86')"f"("xs",9) = pza)(a/ae)f(xt,e)

are computed and stored in the data set named WORK@2 as

ETILDE

Fht
(]

(DER_T1, DER_T2, ..., DER_T8)
From the regression of Es on ?; we obtain

F'e = 24.696058 (from Figure 9).

Recall that the parameter estimates shown in Figure 9 are a full Gauss-
Newton step from g to (hopefully) the minimizer of S(8,L). It is interesting
to note that if these parameter estimates are added to the last column of
Table 2 then the adjacent column is nearly reproduced as one might expect;

replacing z by T is apparently only a small perturbation.



Tigure 9. Illustration of Lagrange Multiplier Test Computaticns with Ezample

‘

with Ezample I

SAS Statements:

DATA WORKO!; S5ET EXAMPLE:,

Pi=3.5635728486712,; PZ=-3.73326011819; Y=Pi*Y1+P2*¥Y2; QCUTPUT;
P1=0.0;, P2=3.328%027821466; Y=PlxY1+P2*Y¥2, OUTPUT; DELETE,

DATA WCRX02, SET WORKOQ1Y;

M1=-2.72001784,; R2=0.85800547; R3=0.37332243;, R4=-1.59315750; RS=0.058431467;
T{=R!;, T2=-R2-R3; T3=R2; T4=R3;, TS=R4; Té=-R5-R2; T7=R3, T8=-RO-R3;
PEAK=T1+T2*X1+T3*X2+T4*¥3; INTER=TSI+TI®Y1+TE*{2+T7%*K3;
BASE=-1+Ta*xX1+T7%X2+TBRYZ;
YTILCE=P1*LOG(PEAK/BASE)+P2*LOG(INTER/BASE); ETILDE=Y-YTILDE;
CER_T!1=P!1/PEAK; DER_TZ=P1/PEAK*X!;, DER_T3=P1/PEAK*X2+P2/INTER¥*X!;
DER_T4=P1/PEAK*X3+(-P1-P2)/BASE*X!l; DER_T3=P2/INTER;
BER_Té=P2/INTER*X2; DER_T7=P2/INTER*X3+(-P1-P2)/BASE*Z2;
DER_T8=(-P1-P2)/BASE*X3;

PROC REG DATA=WORK02; MODEL ETILDE=DER_T1-DER_T8 / NOINT;

Cutput:

SAS
DEP VARIABLE: ETILDE
SUM OF MEAN

SOURCE DF SQUARES SQUARE F VALUE PROBOF
MODEL 8 24.696058 3.087007 3.2146 0.001%2
ERRCOR 440 422 .400 0.959999
U TOTAL 448 447 . 096

ROOT MSE 0.979795 R-SQUARE 0.05852

DEP MEAN 0.0015135266 ADJ R-8Q 0.0402

c.v. 64661 .62

NOTE: NO INTERCEPT TERM 15 USED. R-SQUARE IS REDEFIMED.

PARAMETER STANDARD T FOR HO:
VARIADLE DF ESTIMATE ERROR PARAMETER=0 PROE » 'T!
DER_T! : -0.182493 0.28444614 -0.4642 0.3213
DER_T2 1 -0.045933 0.228945 -0.201 0.8411¢
DER_T3 ! -0.029078 0.073294 -0.38¢6 0.6995
DER_T4 1 -0.012788 0.027878 -0.442 0.6443
DER_TS 1 0.0535117 0.0917¢4 0.801 0.5484
DER_Té 1 -0.125929 0.076238 -1.432 0.0993
DER_T7 1 -0.019402 0.033583 -0.578 0.5637
DER_T# 1 -0.039143 0.021008 -1.864 0.06230

4

FON
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From the computations above, we can compute

R = (mM)a'F(F'F)” L12/5(8,5)

o]
[}
~~

=]
=
N
(1]
v
~
vy
vy
p—

(448)(24.696058)/(447.09568448)

24.746

which we compare with

[+ 9
[}

(nM)Fa/[(nM - p)/q + Fa]

(448)(2.61)/[440)/(3) + 2.61]

7.83

The null hypothesis of homogeneity is rejected. []

Power computations for the Lagrange multiplier test are rather onerous
as seen from formulas given at the end of Section 3. The worst of it is
the annoyance of having to evaluate the distribution function of a general
quadratic form in normal variates rather than being able to use readily
available tables. If one does not want to go to this bother then the power
of the likelihood ratio test can be used as an approximation to the power

of the Lagrange multiplier test.
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We saw in Chapter 1 that, for univariate models, inferences based on the
asymptotic theory of Chapter 3 are reasonably reliable in samples of moderate
size, save in the case of the Wald test statistic, provided one takes the
precaution of making degrees of freedom corrections and using tables of the
F-distribution. This observation would carry over to the present situation
if the matrix P with P'P = Z-l used to rotate the model were known. It is
the fact that one must use random P instead of known P that gives one pause
in asserting that what is true in the univariate case is true in the multi-
variate case as well.

Below we report some simulations that confirm what intuition would lead
one to expect. Dividing the Wald and "likelihood ratio" statistics by
S(8,%)/(nM-p) and using tables of F instead of tables of the xz-distribution
does improve accuracy. The Wald test is unreliable. The sampling variation
in P is deleterious and leads to the need for larger sample sizes before
results can be trusted in the multivariate case than in the univariate case.
Since P has less sampling variation than P, the null case Lagrange test
probability statements are more reliable than '"likelihood ratio" test prob-
ability statements. These interpretations of the simulations are subject
to all the usual caveats associated with inductive inference. The details

are as follows.



V=407

Tible 4. Acecuracy cf Null Case Probability Statements.
Monte Carlo

Sample Asymptotic W = ceceecemmi e
Variable Size Approxzimation Estimate Standard Error
P(W Y B) 46 .05 .084 .0051
P(L > ) 46 .05 .067 .0046
P(R » d) 44 .03 .047 .0039
P(W' » F) 46 .05 .094 .0092
F(L* ¥ E) 46 .03 .072 .0082
E(s?) a4 100 1,062 00083
MW > F) 224 .08 .067 .0056
P(L > F) 224 .03 .04% .0046

P(R » d) 224 .03 . 045 .0044
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EXAMPLE 1. <(continued) The simulations reported in Table 4 were
computed as follows. The data in Table la was randomly resorted and the

first n = 46 entries were used to form the variables

x, = £n[(peak price, intermediate price, base price)/expenditure]’

for t =1, 2, ..., 46. For n = 224, the Table la was used in its entirety.

At the null case parameter settings

. 72482606

.23204560

.85773951

.37430609 0.1649246288351 0.09200572942276
.59239423 , L =

.91542318 0.09200572942276 0.08964264342294
.05768367

.43198976

independent, normally distributed errors e, each with mean zero and variance-

covariance matrix I were generated and used to compute Ye according to

Y, = f(xt,6°) + e, t=1,2, ..., n

with
61 + Sle + 63x2 + 64x3
-1 + 64x1 + 67x2 + 68x3

£n

f(x,08) =

65 + 63x1 + 66X2 + 67x3

-1 + 64x1 + 97x2 + 6,.x

From each generated sample, the test statistics W, L, R discussed in this

section and the statistics W', L' of Section 3 were computed for the

hypothesis



6-4-41

92 + 63 + 64
H 93 + 66 + 97 =0
64 + 67 + 68

This process was replicated N times. The Monte Carlo estimate of, say,
P(L > F) is ﬁ equal to the number of times L exceeded F in the N Monte Carlo
replicates divided by N; the reported standard error is vp(1-p)/N. The

value of F is computed as .95 = F(F; 3, nM-p). & (52) is the average of

§2 = S(6,%)/(nM-p) over the N Monte Carlo trials with standard error computed

i

1 N 2 _ .2
as J/;;ﬁfzi=1(si -8)/N, ]

The formulas for test statistics that result from the 'seemingly unrelated"
notational scheme are aesthetically more appealing than the formulas presented
thus far as noted earlier. Aside fromaesthetics, they also serve nicely as
mnemonics to the foregoing because in appearance they are just the obvious
modifications of the formulas of Chapter 1 to account for the correlation
structure of the errors. Verification that these formulas are correct is left
as an exercise.

Recall that in the "seemingly unrelated" notational scheme we have M

separate regressions of the sort studied in Chapter 1
= o =
Yy fa(ea) +e a=1,2, ..., M
with Yy fa(ea), and e, being n-vectors. These are '"stacked" into a single regressio
y = £(8°) + e

by writing



6-4-42

Lol
£(g) = 2 2
fM(GM)

nM 1

nM 1

with

£(e) =0 C(e,e') =z ® 1.

We have available some estimator & of L, typically that obtained by finding
At

0" to minimize

$(6,2) = [y - £)]' "1 ® Dy - £(8)]

with I = I and taking as the estimate the matrix £ with typical element
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. iyt
Sup = (I/n)[ya - fa(ea)] [YB fB(GB)]-

The estimator 0 minimizes s(e,ﬁ). Recall that the task at hand is to test a

hypothesis that can be expressed either as a parametric restriction
H: h(8°) = 0 against A: h(8°) # 0
or as a functional dependency
H: 8° = g(p°) for some p° against A: 6° # g(p) for any o

where p is an r-vector, h(8) is a q-vector, and p = r + q. The various

Jacobians required are

H(8) = (3/38')h(6)
G(p) = (3/3p"')glp)
F(8) = (3/36')f(8)

being q by p, p by r, and nM by p respectively.

The Wald test statistic is

~ ~

W=nh'(HC ﬁ)'lﬁ/(q s2)

with

- P3G e Dr) T

Q>
|

s°= 5(6,5)/(aM - p)

h = h(d), H = H(B).

One rejects H: h(8°) = 0 when W exceeds F—l(l-a, q, nM-p).

The form of the "likelihood ratio" test is unaltered

_1s(3,%) - s(8,)1/q
S(8,E)/(aM - p)

where 6 = g(p) and p minimizes S[g(p),%]. One rejects when L exceeds
Fl(1-a; q, nM-p).

As noted above one is unlikely to use the Lagrange multiplier test unless
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S(6,Z) is difficult to minimize while minimization of S[g(p),Z] is
relatively easy. In this instance one is apt to use the estimate % with

typical element

~ - - “'# ] - "#
O%p = (l/n)[ya fa(ea)] [yB fB(eB)]

~

where 5# = g(a#) and 5# minimizes S[g(p), I]. Let 6 = g(p) where p minimizes

1)

D>

S{g(p),%). The Gauss-Newton step away from 8§ (presumably) toward 8 is

p=(FGCle R FPGE e DIy - £l

where F = F(8), and f = £(8). The Lagrange multiplier test statistic is
o = et (ol =11 2 z 5
R =nMD'[F'(Z ~® I)F] ~ D/sS(8,I)

-~

One rejects when R exceeds

d, = nM Fa/[(nM-p)/q + Fa]

with F_ = Fl(1-a; q, nM-p).
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PROBLEMS

1. Show that if 8" minimizes S(8,1I) and £ = (l/n)22=1[yt-f(xt,§#)]
y,~£(x 81" then 5(B,8) = mn.

2. Show that the matrix C of Chapter 1 can be written as

A = nM e " A Pyt n " A -1
C=[z__,(3/38)"£"("x_",8) (3/36")""("x ",6)]

using the notation of Section 2. Show that (3/36')"f"("xs",§) = pka)(a/ae')f(xt,é)
whence

A ] a ya-1 ] A -1
€ = {z]_ [(3/30" )E(x ,8)1"E " [(3/30" )E(x,,8)]}

3. Show that the equation s = M(t - 1) + a uniquely defines t and a

as a function of s provided that 1 s ¢« £ M and s, t, a are positive integers.
4. Verify that the formulas given for W and i at the end of this

section in the "seemingly unrelated" notational scheme agree with the formulas

that precede them.



5. CONFIDENCE INTERVALS

As discussed in Section 6 of Chapter 1, a confidence interval on any
(twice continuously differentiable) parametric function y(8) can be obtained

by inverting any one of the tests of

H: h(8°) = 0 against A: h(8°) # O
that were discussed in the previous section. Letting
h(8) = y(8) - ¥°

one puts in the interval all those y° for which the hypothesis H: h(8°) = 0
is accepted at the a level of significance. The same approach applies to
confidence regions, the only difference is that y(8) and y° will be g-vectors
instead of being univariate.

There is really nothing to add to the discussion in Section 6 of
Chapter 3. The methods discussed there transfer directly to multivariate
nonlinear regression. The only difference is that the test statistics W,

L, and R are computed according to the formulas of the previous section.

The rest is the same.



6. MAXIMUM LIKELIHOOD ESTIMATION

Given some estimator of scale EO’ the corresponding least squares estimator

60 minimizes s(e,io) where, recall,

s(e,r) = (1/n))‘.’.rtl=1[yt - f(xt,e)]'z'llyt - £(x,,0)].

A natural tendency is to iterate by putting

£

n 2 a J
i+1 (l/n)2t=1[y - f(Xt,ei)][yt = f(xt’ei)] s

t

and

) = argmin, S(G,Zi )

i+l +1

where argmin, S(9,I) means that value of 6 which minimizes S(8,I). Continuing

8

this process generates a sequence of estimators

If the sequence is terminated at any finite step I then EI is a consistent estimator
of scale with va (ﬁI - Z;) bounded in probability under the regularity conditions
listed in Section 3 (Problem 1). Thus, éI is just a least squares estimator and

the theory and methods discussed in Sections 1 through 5 apply. If one iterates

until the sequence {(éi’ii)}:=1 converges then the limits

£ = fim, £,
§ = Lim )
o iso Ui

will be a local maximum of a normal-errors likelihood surface provided that
regularity conditions similar to those listed in Problem 4, Section 4, Chapter 1
are imposed. To see intuitively that this claim is correct, observe that

under a normality assumption the random variables {yt}2=1 are independent each

with density
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/2 ly, - £(x,, 012y, - £(x,,0)]

aly, |£(x.,0),5] = (2m) ™ 2(det 1) e

The log likelihood is

£n H2=1[ytlf(xt,6),2] = const. -X L{fn det I + [yt - f(xt,e)]'z-llyt-f(xt,e)]

n
t=1
50 the maximum likelihood estimator can be characterized as that value of (8,I)

which minimizes

-

s (8,5) = (1/n) I0) %{fn det = + [y, - £(x_,0)1'Z '[y_ - £(x_,0)]}

L[€n det T + (1/n) s(8,5)].

Further, sn(G,Z) will have a local minimum at each local maximum of the likelihood

surface, and conversely. By Problem 11 of Section 3 we have that

sn(ei’zi+1) < sn(ei,Zi)

) # 6

# I.. By definition S(8 i+l i

Iy a < X « . a
provided that Zi+1 i i+1’zi+1) < s(ei,zi+1) provided 6

Arguments similar to those of Problem 4, Section 4, Chapter 1,'can be employed to

strengthen the weak inequality to a strict inequality. Thus we have

~

unless (6i+1,21+1) = (ei,zi) and can conclude that (8

i+l’zi+1) is downhill from

(@i,fi). By attending to a few extra details, one can conclude that the limit
(ém,im) must exist and be a local minimum of sn(e,Z).
One can set forth regularity conditions such that the uniform almost sure

* %
limit of sn(e,Z) exists and has a unique minimum at (6 ,I ). This fact coupled

A a * %
with the fact that (90,20) has almost sure limit (6 ,IZ ) under the regularity

conditions listed in Section 3 is enough to conclude that (éw,fm) is tail
equivalent to the maximum likelihood estimator and thus for any theoretical

purpose can be regarded as if it were the maximum likelihood estimator. As a



practical matter one may prefer some other algorithm to iterated least squares as
a means to compute the maximum likelihood estimator. In a direct computation,
the number of arguments of the objective function that must be minimized can be

reduced by "concentrating'" the likelihood as follows. Let

£(e) = (1/m)zf_) Iy, - £(x,®0)]ly, - £(x_,0)}'

t

and observe that by Problems 8 and 11 of Section 3

min, s_(6,I) = sn[e,f(e)] = %[fn det £(8) + M]

Thus it suffices to compute

D>

= argmineﬂn det (9)

and put
5= £(3)

to have the minimizer (éw,im) of sn(e,Z). As before, the reader is referred to
Gill, Murray, and Wright (1981) for guidance in the choice of algorithms for
minimizing &n det £(6).

It seems unnecessary to set forth regularity conditions from which the
claims above can be derived rigorously for two reasons. First, the intuition
behind them is fairly compelling. Secondly, maximum likelihood estimation of the
parameters of a multivariate nonlinear regression model is a special case of
maximum likelihood estimation of the parameters of a nonlinear simultaneous
equation. The general theory is treated in detail in Chapter 8 and when the
general regularity conditions are specialized to the present instance the result
is a listing of regularity conditions that does not differ in any essential respect
from those listed in Section 3. For these two reasons it seems pointless to bother
with the details.

The following facts hold under the regularity conditions listed in Chapter 8:



fw is consistent for ¥, /n (fm - Z;) is bounded in probability, and 5@ minimizes
s(e,im). It follows that Q”is a least squares estimator so that one can apply
the theory and methods of Section 4 to have a methodology for inference regarding
f using maximum likelihood estimates. We shall have more to say on this later.
However, for joint inference regarding (8,I) or marginal inference regarding I
one needs the joint asymptotics of (§Q,fm). This is provided by specializing the

results of Chapter 3 to the present instance.

In order to develop an asymptotic theory suited to inference regarding
L it is necessary to subject E; to a Pitman drift and thus it is necessary to
use a slightly different setup for the data generating model than that used in
Section 3 of this chapter. For this, we need some additional notation regarding
I. Let o, a vector of length M(M+1)/2, denote the upper triangle of I arranged

as follows

= '
0 = (01159192 992291329232 9337 + 2Ty Tgy2 * -+ 1Oy
The mapping of o into the elements of I is denoted as (o). Let vec I denote the
2 R : =
M"-vector obtained by stacking the colummns of I [Z(l)’ 2(2), ey X(M)]

according to

Ln

L(2)
vec I = .
)

The mapping of o into vec I(¢) is a linear map and can be written as

vec L(g) = K o

where K is an MZ by M(M+1)/2 matrix of zeroes and ones. Perhaps it is best to

illustrate these notations with a 3 by 3 example:

c= [C11 %12 %13
91 %2 923 ’
931 932 933



- ]
o = (077, 0195 Tpps 0135 Ty T33)°

11 12 13
(o) = 01, Typ Tpg ,
%13 923 933
011\ /1 0 0 0 0 0 a1,
012 0 1 0 0 0 O 919
013 0O 0 01 0 O 022
012 0O 1 0 0 0 O 013
%59 = 0 01 0 0 O 9,3
93 0 0 0 01 0O 033
013 0O 0 01 0 O
023 0O 0 0 0 1 ¢
033 \p 0O 0 0 O 5/
— . ~ o
vec Z(o) Kg

1 1 1 -1
The notation I% denotes a matrix such that £ = (£%)(X%2)' and the notation I 2

1

L

- - -l
denotes a matrix such that & = = (I 2)'(Z 2). We shall always assume that the

-1 =1
2 %

1 1
factorization algorithm used to compute I% and I ° satisfies £2 % 2% = I.

The data generating model is

-— ] o 1/2
y. = f(xt,en) + [Z(on)] e

t t

with 6; known to lie in some compact set ®° and o; known to lie in some compact
set ¥ over which I(o) is a positive definite matrix, see Section 3 for a
construction of such an S*. The functional form of f(x,0) is known, x is
k-dimensional, 8 is p-dimensiomal, and £(x,8) takes its values inIRM; yt

and e, are M-vectors. The errors e, are independently and identically distributed
each with mean zero and variance-covariance matrix the identity matrix of order

M. Note that normality is not assumed in deriving the asymptotics. The parameter

to be estimated is

)\; = (9:1’ cr;’l)

Drift is imposed so that
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In order to use the formulas for the parameters of the asymptotic
distributions set forth in Chapter 3 it is necessary to compute

(3/3x)s[¥Y(e,x,v°),x,A] and (BZ/BABA')s[Y(e,x,Y°),x,A]. To this end, write

s[Y(e,x,v°),x,A]
=% fn det 5(0) + %lu + 6(x,0)1"Z Y(o)[u + 6(x,0)]

1
where u = £%(0°)e and 6(x,6) = f(x,6°) - f(x,6). Note that u has mean zero and
variance-covariance matrix Z;. Letting gi denote a vector with a one in the ith

position and zeroces elsewhere, we have (Problem 2):



(a/aei)s[Y(e,x,Y°),x,A]

= -[u + 6(x,8)]' £~ X(o) (3/26,)£(x,0)

(alaoi)s[Y(e,x,y°),x,A]
= 3% tr(z o) 2 D{I - 2THO [ - 8(x,0)1u - 6(x,0)1'})
(Sz/aeiaej)s[Y(e,x,Y"),x,A]
- [(alaei)f(x,e)]'Z-l(o)[(a/aej)f(x,e)]
- zf::l Zbé___l[&;,_):-l(c)&B][ua + sa(x,e)](az/aeiaej)fs(x,e)
(82/30186j)s[Y(e,x,y°),x,A]

= [u+ 6(x,0)] £ o) 1) £ o) (3/36,)£(x,0)

(32/8oiaoj)s[Y(e,x,Y°),x,A]

= % ez N 2(g,) rHo) g {1 - 2 27HO [ - 6(x,0)][u6(x,0)]" D)



In order to write (3/3c) s[Y¥(e,x,v%),x,A] as a vector we use the fact

(Problem 3) that for conformable matrices A, B, C

(c'®A) vec B

i

vec (ABC)

tr (ABC) (vec A')' (I ® B) vec C

where, recall, vec A denotes the columns of A stacked into a column vector as
defined and illustrated a few paragraphs earlier and A® B denotes the matrix
with typical block aijB as defined and illustrated in Section 2 of this chapter.

Recalling that vec Z(g) = K ¢ we have
(alaoi)s[Y(e,x,Y°),x,A]

er (2710) 25, (o) {Z(0) - [u - 6(x,0)1[u = &(x,0)1"}

H
N

n
W

vec'[Z(Ei)Z-l(c)][I<8 Z-l(o)] vec {£(o) - [u - &8(x,8)][u - &(x,8)]'}

/]
W

vee'£(g,) [ ()RIII ® 2 '(0)] vee {2(a) - [u - §(x,0)][u - 6(x,0)]’

g K'(27H0) ® £7H(0)] vee {E(o) - [u - 8(x,0)]lu ~ 8(x,6)]'}

[!]
N

From this expression we deduce that

[(a/ae')f<x,e)]'(z;)'1u

(8/8A)s[Y(e,x,Y;),X,X;] =
L R'(2° ® Z°)-1 vec [uu' - (Z°)-1]
n n n

In terms of the notation



NOTATION 6.

Q = Lr [(a/ae’)f(x,e*)]'z'l(c*)[(a/ae')f(x,e*)ldp<x)
F = II (3796 ) E(x, 0%)dulx)

= (1/m)22 [(8/20")E(x,02)1' 2 (62) [(3/00" )E(x, ,6°)]

be]
=0 o
f

o n ] o
o = (1/n)z]_ (/30" )£(x,6°)

&l
|



we have

° -1 -

T @ DT [ vee! (w122 ® )7k

sym 1 ? -] o -l 1 -1
%K (Zn ® Zn) Var[vec(uu )](Z;‘g Z;) K

The third moment of a normally distributed random variable is zero whence
£[u vec "(uu’')] = 0 under normality. From Henderson and Searle (1979) we have

that under normality

Var[vec(uu')] = (X:’l ®Z;)(I + I(M,M))

where I is a matrix whose entries are zeros and ones defined for a p by gq

(MaM)

matrix A as

vec A =1 vec(A')
(p,q)
Since for any o
= = '= =
Ko vec L I(M’M)vec I I(M’M)vec z I(M,M)KO

we must have K = I(M,M)K whence, under normality,

Q° 0
n
0 L' (2° ® £°) ik
n n
Using
1.
vec(uu') = (£° R £°)? vec ee' ,
n n
we have that

° oyt o= ‘o ' ' o oy~2
Qn (Sn) [(Zn Y]'e [e vec' (ee )](Zn<8 Zn) K
J° =

-1 <l
" sym %K'[(Z;'g Z;) Gk Var[vec(ee')](Z:.® Z;) g

in general.



The form of 8(32/3030')s[Y(e,x,Y;),x,A;] can be deduced as follows

2 o o
2(3 /aoiacj)s[Y(e,x,Yn),x,An]

o -1 o -1 o -1 o
~Ltr (zn) z(gj)(zn) Z(Ei)[I - z(zn) (zn)]

s vee! [2()(z) 7ML @ (22 HIvee (e )

= L g3 1<'():;’1 R z;)'lx g -

SinceFi(32/80.30.)s[Y(e,x,Y°),x,A°] = 0 we have
i n n

Q° 0
n

n 0 LK'(z° ® £°) ik
n n

Normality plays no role in the form of g;.
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In summary we have

NOTATION 7a (in general)

i

RS (@)D A ele vee' (ee)I(I2 @ I2) K

cgo =
n 10 o oy~%q1 ’ o o3
sym %K'[(Z° @ 1°) *]'var[vec(ee')] (I’ & %) K
n n n n
Q° 0
n
o ” 0 LK'(:° ® z°)'1K
2 n n
u = 90
n

NOTATION 7b (under normality)

Q° 0
9 = ! 1
‘n 1} o oN"
0 =K (Z’n @Zn) K
[ - [e]
gn Jn
u® = 0.
n

The expressions for A*, *, and t* have the same form as above with (9,3,2*)
P

replacing (93,3;,23) throughout. {]



~

Let A = (8 ,E ) denote the minimum of s (6,Z) and let A_ = (0 ,Z ) denote
n w? Yoo n n w? T

the minimum of sn(S,Z) subject to h(A) = 0. Define:
NOTATION 8.

8 = (1/n)E]_ [(/00")E(x,8_)1"E2" (€700 )E(x,,8,)]

) [(3/36")E(x, 801" 2.0 G,
s, =
%K'(fwéb fw)-; vec[ﬁtﬁé - f;ll

-~ -~ ~ -~

Expressions for Q, S.» and u_ are the same with (6,,L_) replacing (ém,fm)

throughout. []

We propose the following as estimators of 9* and g*.

NOTATION 9a (in general)

A- n ~ A'

3 (l/n)Zt=1 Stst

A 9 0

g = .1
0 %K'(Z‘.w&wzw) K

o}
o

~

The expressions for § and J have the same form with (Q,Z,St) replacing (ﬁ,f,ét)

throughout. []
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A test of the marginal hypothesis

H: h(8°) = 0 against A: h(8°) # 0

where h(8) maps RP into RY is most often of interest in applications. As mentioned
earlier, maximum likelihood estimators are least squares estimators so that, as
regards the Wald and the Lagrange multiplier tests, the theory and methods set
forth in Section 4 can be applied directly with the maximum likelihood estimators

6

£_,8_,2

©? Y

replacing, respectively, the estimators

~

6, £, 8, I
in the formulas for the Wald and Lagrange multiplier test statistics. The
likelihood ratio test needs modification due to the following considerations.

Direct application of Theorem 15 of Chapter 3 would give

~

2nls (6 ,£ ) - s (6,8 )]
n o« n o o

L1

n(£n det Z_ - £n det fm )

as the likelihood ratio test statistic whereas application of the results in

Section 4 would give

[s(3,5_) - s(§_,5)1/q
L2

S(éw,fm)/(nM-p)

[S(‘é’iw) - nM]/q
nM/ (nM-p)

where 0 minimize s(e,ﬁw) subject to h(8) = 0. These two formulas can be reconciled

using the equation

d fn det I = tr(z ldx)
orxr
£n det(f+4) - £n det I = er(z71a) + o(a)

derived in Problem 4.
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To within a differential approximation

$(3,8) - (8,5

= n tr[f;l £(8)] - n tr(f;lfm)

=ntr £2MEG) - 8]

o

sner £ G_ -5 +ner S2HE® - F )

o]

11 +ntr 5205 - § )

«©

= Ll + [s(8,5) - s(8_,E 1.

Thus one can expect that there will be a negligible difference between an inference
based on either L1 or L2 in most applications. Our recommendation is to use

Ll = n(£n det Em - £n det ﬁm) to avoid the confusion that would result from the

use of something other than the classical likelihood ratio test in connection

with maximum likelihood estimators. But we do recommend the use of degrees of
freedom corrections to improve the accuracy of probability statements.

To summarize this discussion, the likelihood ratio test rejects the hypothesis

H: h(8°) =0

where h(6) maps]Rp into RrY when the statistic
L=n (fn det I - £n det £ )
-] o«

exceeds qFa where Fa denotes the upper a X 100% critical point of the F-distribution
with q numerator degrees of freedom and nM-p denominator degrees of freedom;
F = F-l(l-a;q,nM-p).

We illustrate.

EXAMPLE 1. (continued) Consider retesting the hypothesis of homogeneity,

expressed as the functional dependency



H: 8° = g(p°) for some p° against A: 8° # g(p) for any p

with

in the model with response function

61 + ele + 63x2 + 94x3

-1 + e4x1 + 67x2 + 68x3

£n

f(x,8) =

65 + 93x1 + 66x2 + 67x3

-1 + 94x1 + e7x2 + 68x3

£n

using the likelihood ratio test; 6 has length p = 8 and p has length r = 5 whence
q=p-r = 3. The model is bivariate so M = 2 and there are n = 224 observations.
In Figure 10a the maximum likelihood estimators are computed by iterating the
least squares estimator to convergence obtaining
(:2.92345
-1.28826
0.81849

6_ = 0.36121 (from Figure 10a)

-1.53759
-1.04926

0.02987
\:0.46741

0.165141 0.92505
e 10.092505 0.08989

(from Figure 10a).

on
]

Compare these values with those shown in Figures 3b and 3c¢; the difference is slight.



Figure 10a. Ezample 1 Fitted by Mazimum Likelihood, Across Equation
Constraints Imposed.

SAS Statements:

PROC MODEL OUT=MODELGO1;
ENDOGENOUS Y1 YZ;
EXOGENQUS X1 X2 X3,
PARMS T! -2.98 T2 -1.1é6 T3 0.787 T4 0.353 TS -1.51 Té -1.00
T? 0.054 T8 -0.474,
PEAK=T1+T2*X1+T3I*X2+T4*¥3; INTER=TS+T3I*X1+TE*X2+T7*%3;
BASE=-1+T4*X1+T7*X2+T8*X3;
Yi=LOG(PEAK/BASE); VY2=LOG(INTER/BASE);
PROC SYSNLIN DATA=EXAMPLE1 MODEL=MODELO! ITSUR NESTIT METHOD=CAUSS QUTS=SHAT;

Qutput:
SAS
NONLINEAR ITSUR PARAMETER ESTIMATES
APPROX. APPROX.
PARAMETER ESTIMATE STD ERROR 'T' RATIO PROB)!IT!
T1 -2.92345% 0.2781988 -10.51 0.0001
T2 -1.2882¢ 0.226682 -5.48 0.0001
T3 0.8184883 0.08079815 10.13 0.0001
T4 0.3612072 0.03033414 11.91 0.0001
TS -1.5373°% 0.09204265 -146.71 0.0001
Té -1.04926 0.08368577 -12.54 0.0001
T7 0.02984769 0.034617161 0.83 0.409¢9
T8 -0.467411 0.01927753 -24 .25 0.000¢
SYSTEM STATISTICS: SSE = 447.999% MSE = 2 OBS= 224

COVARIANCE OF RESIDUALS

Y1 Y2
Y1 0.165141 0.09250446
Y2 0.0925046 0.0898862



In Figure 10b the estimator aw minimizing £n det Z[g(p)] is obtained by

iterated least squares; put 5m = g(am) to obtain

7-2.7303 )
-1. 2315
0.8582
.3733
-1.5935
-0.9167
0.0585
-0.4319 )

(from Figure 10b)

Dt
|
o
~~
i)
8
Nt
|
o

0.179194 0.095365
(from Figure 10b)

2
n

0.095365 0.090199

Compare these values with those shown in Figure 6; again, the difference is slight.

In Figure 10c, the likelihood ratio test statistic is computed as

[

L = n(fn det im - Ln det fm)

26.2573 (from Figure 10c).

F_ = F1(.95,3,440) = 2.61 so that
q F, = (3)(2.61) = 7.83.

One rejects

H: 8° = g(p°) for some p°

at the 5% level. With this many denominator degrees of freedom, the difference
between q Fa and the three degrees of freedom chi-square critical value of 7.81
is negligible. In smaller sized samples this will not be the case.
It is of interest to compare
n(£n det Em - Zn det fm) = 26.2573 (from Figure 10c)
with
s(8,2) - s(8,)

474.6822 - 446.8570 (from Figures 6 and 3c)

27.8252 .



Figure 10b. Example 1 Fitted by Mazimum Likelihood, Across Equation
Constraints Imposed, Homogeneity Imposed.

SAS Statements:

PROC MODEL OUT=MODELOZ;

ENDOGENOUS Y1 Y¥2;

'EXOGENOUS X1 X2 X3;

PARMS R1 -2.72 H2 0.858 R3 0.374 R4 -1.59 RS 0.057;

Ti=R1; T2=-R2-R3; T3=R2; T4=R3; TS5=R4; Té=-R5-R2; T7=R5; T8=-R5-R3;
PEAX=T1+T2*X1+T3%X2+T4%X3; INTER=TS+T3¥X1+T4XX2+T71¥3;
BASE=-1+T4*X1+T7%X2+T8*X3;

¥Y1=LOG(PEAK/BASE); YZ=LOG(INTER/BASE);

PROC SYSNLIN DATA=EXAMPLE! MODEL=MODELOZ ITSUR NESTIT METHOD=GAUSS OUTS=STILDE;

Qutput:
SAS 10
NONLINEAR ITSUR PARAMETER ESTIMATES
APPROX. APPROX.
PARAMETER ESTIMATE STD ERROR ‘'T' RATIO PROBXIT!
Rt -2.7303 0.1800188 -15.17 0.0001
R2 0.8581672 0.06691972 12.82 0.000¢
R3 0.3733482 0.02736511 13.44 0.0001
R4 -1.59345 0.07560347 -21.08 0.0001
RS 0.05854239 0.0339787 1.72 0.0863
SYSTEM STATISTICS: 8SE = 448 MSE = 2 OBS= 2214

COVARIANCE OF RESIDUALS

Y1 Y2
Y1 0.179194 0.0953451
Y2 0.0953451 0.0%01989



Figure 10c. Illustration of Likelihood Ratio Test Computations with Ezxample 1.

SAS Statements:

PROC MATRIY;

FETCH SHAT DATA=SHAT(KEEP=Yi Y2);

FETCH STILDE DATA=STILDE(KEEP=Y1 Y2);

N=224; L=N$(LOG(DET(STILDE))-LOG(DET(SHAT)));
Output:

SAS

L COL1

ROW! 26.2573

PRINT L;

11



The differential approximation d £n det I = tr Z-le seems to be reasonably
accurate in this instance. ]

A marginal hypothesis of the form
H: h(c®°) = 0 against A: h(c®) #0

is sometimes of interest in applications. We shall proceed under the assumption
that the computation of (§m,8w) is fairly straightforward but that the minimization
of sn(e,o) subject to h(o) = 0 is inordinately burdensome as is quite often the
case. This assumption compels the use of the Wald test statistic. We shall also
assume that the errors are normally distributed.

Under normality, the Wald test statistic for the hypothesis

H: h(c®°) = 0 against A: h(c®) # O

M(M+1)/2

where h(o) maps R into RY has the form

~ AAI\_lh

W=nh'(HVH " h

where
h =n() ,
H = (3/30") n(5) ,
Ve B (G @3 ) k!

The test rejects when W exceeds the upper a X 100% critical point of a chi-square
random variable with q degrees of freedom.

In performing the computations, explicit construction of the matrix K can

be avoided as follows. Consider w defined by
vec uu' = I(w) = Kw

where u is an M-vector. Subscripts are related as follows



r “ 4 -
1Y Y1
ulu2 w2
LI L. §{ = - S
vec uu u U< i B(R=1)/2 + « v,
u,u
MM-1 VM(M+1) /2
UMM
— o . -

If u ~ NM(O,Z) then for

B(B-1)/2 + o

[
]

B'(B'-1)/2 + o'

[N
[]

we have (Anderson, 1958, p. 161) that

Clw,,w,) =(uu )
7]

a'g oaB)(ua'u

Br - Uav Br

=0)U,+0a

aa' 8B 9

Ba' °

Bl
Thus, the variance-covariance matrix C(w,w') of the random variable w can be

computed easily. Now consider the asymptotics for the model Y = u. = Z%e
with e  independent N(0,I). The previous asymptotic results imply
A, - ) no, B @ 07k 171
but in this case am = (l/n)Z:=1 W, and the Central Limit Theorem implies that
/E(&m - 0)§4 N[O,C(w,w')]
We conclude that

1

V = [LR(Z ® z)'lx']' = Cw,w')

and have the following algorithm for computing the elements vij of V.



]

DO for B 1 to M;

DO for a 1 to B

i = B(B-1)/2 + a;

DO for B' 1 to M;
DO for a' =1 to B';
j=B8"(8'-1)/2 + a';
Vij = 9! OBB' + caB'
END;
END;
END;

END;

o)

Ba';
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Table §. Yields of 3 Variaeties of Alfalfa

{Tons Per Acra)

Following 4 Dates of Final Cutting in 1943.

in 1944

10
11
12

13
14
13

16
17
18

Variety Block
Ladak 1
Cossac 1
Ranger 1
Ladzk 2
Cossac 2
Ranger 2
Ladak 3
Cossac 3
Ranger 3
Ladak 4q
Cossac 4
Ranger 4
Ladak 5
Cossac 3
Ranger 3
Ladak [
Cossac é
Ranger &

.17
.33
.73

.88
2.01
.95

.62
.70
2.13

.34
.78
.78

.38
.42
.31

.64
.33
.30

.58
.38
.52

.24
.30
.47

.22
1.85
.80

.59
.09
1.37

.23
1.13
.01

.94
.04
.31

.29
.86
.95

.60
.70
.61

.47
.81
.82

.91
.54
.56

.39
.47
.23

.12
.88
.13

.23
.27
.56

.01
.81
.12

.82
2.01
.99

.10
.40
.83

.68
1.31
.51

.10
.06
.33

Source:

Snedecor and Cochran(1980)

0=0=Z0



We illustrate with an example.

EXAMPLE 2. (Split Plot Design) The split plot experimental design can
be viewed as a two-way design with multivariate observations in each cell which
is written as

=u+ + +
Yig T U TP T Ty T Gy

where yij’ u, etc. are M-vectors and

i=1, 2, .y I = # blocks

j=1, 2, ..., J = # treatments
' =

(_‘,(eijeij z.

In the corresponding univariate split plot analysis, the data are assumed to

follow the model

= +t, + + 5), .+ .+
m + r, tj nij s, + (rs)kl (ts)kJ €

Ykij k kij

where k = 1, 2, ..., M, Roman letters denote parameters, and Greek letters denote
random variables, Var(n,.) = 02 , Var(e, . .) = 02 , and random variables with

ij n kij €
different subscripts are assumed independent. It is not difficult to show

(Problem 5) that the only difference between the two models is that the univariate

analysis imposes the restriction
2
L= 021 + 0 J
€ n
on the variance-covariance matrix of the multivariate analysis; I is the identity

matrix of order M and J is an M by M matrix whose entries are all ones. Such an

assumption is somewhat suspect when the observations

1 -
Vi3 (ylij’ Yoij° * yMij)

represent successive observations on the same plot at different points in time.

An instance is the data shown in Table 5.



b-b-45

For these data, M = 4, n = 18, and the hypothesis to be tested is H: h(c®) = 0 where

1 o0 -1 0 0 0 0 0 0 O \ [o11
1 0 0 0 - 0 0 0 O o1,
1 0 0 0 0 0 0 0 -1 Sy
h(o) =] o 1 0o -1 0 0 0 0 0 O o
13
0o 1 0o 0 -1 0 0 0 0 O Oys
0 1 0 0 0 0 -1 0 0 O 933
0 1 0 0 0 0 0 -1 0
ko 1 0o 0 0 0 o0 o0 -1
\ N
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Figure 11. Mazimum Likelihood Estimation of the Variance-Covariance Matrizx

of Example 2.

SAS Statements:

PROC ANOVA DATA=EXAMPLEZ;
CLASSES VARIETY BLOCK;

MODEL A B C D = VARIETY BLOCK;
MANQOVA / PRINTE;

Qutput:
SAS
ANALYSIS OF VARIANCE PROCEDURE
E = ERROR SS&CP MATRIX
DF=10 A B c
A 0.56945556 0.23724111 0.25448889
B 0.237246111 0.46912222 0.26341111
c 0.25446888¢9 0.26341111 0.42495554
D 0.34578889 0.31137778 0.25678889%

D

0.36578889
0.31137778
0.254678889
0.60702222



The maximum likelihood estimate of I is computed in Figure 11 as

(/6.0316475
| 0.0131812
® " | 0.0141494

0.0203216

[ B

whence

jfb.00558519 |
.00803889

f
/

.00207593
-0.00096821

1
(o) ={
} -0.00145278

0.0131812
0.0260623
0.0146340
0.0172988

A

-0.00714043 I

-0.00411759

\:0.0010848%/

0.0141494
0.0146340
0.0236086
0.0142660

0.0203216
0.0172988
0.0142660
0.0337235

v v v

z(o)



Figure 12. Wald Test of a Restriction on the Variance-Covariance Matrix
of Ezample 2.

SAS Statements:

PROC MATRIX;

SECP = 0.56965556 0.23726111 0.25468889 0.36578889/
0.23726111 0.46912222 0.268341111 0.31137778/
0.25468889 0.26341111 0.424955586 0.25478889/
0.36578889 0.31137778 0.25678889 0.60702222;
S = (0.56965556 0.23728111 0.44912222 0.25468889 0.26341111
0.424955%6 0.36578889 0.31137778 0.25678889 0.60702222)"';
HH = 1 0 -1 0o 0 0 o0 0 0 0/
1 0 ¢ 6 0-1 0 0 0O 0/
10 0 6 o 0 0 0 0 -1/
0 1 o -1t 0 0 0 0 0 0/
0 1 0 6 -1t 0 0 0 0 o0/
0 1 0 ¢ o0 0 -1 0 0 0/
0 1 o 0o ¢ 0 0 -1 0 0/
0 1 0 0 0 0 0 0 -1 O0;

N=18; SICMA=SSCP#/N; H=HH*S#/N;

M=4,; V=(0®(1 M2 (M+1)%/2)) ' *(Ox(1 M2 (M+1)%/2));

DO B =1 TOM; DO A =1TO B; I = Bx( B-1)#/2+ A;
DO BB = { TO M; DO AA = 1 TO BB; J = BB*(BB-1)#/2+AA;
V(I,J)=SIGMA(A,AA))*SICMA(B,BB)+SICGMA(A,BBYXSIGMA(B, AN);
END; END; END; END;

WALD=N®*(H'®*INV(HH®V*HH')*H); PRINT WALD;

Qutput:

EAS

WALD COLt

ROW1 2.26972



v v e

~

Figure 13 illustrates the algorithm for computing V discussed above and we

obtain

W = 2.26972 (from Figure 12).

Entering a table of the chi-square distribution at 8 degrees of freedom one

finds that

p = P(W > 2.26972) = 0.97 .

A univariate analysis of the data seems reasonable.
This happens to be an instance where it is easy to compute the maximum

likelihood estimate subject to h(¢c) = 0. From Figure 13 we obtain

0.0287605 0.0156418 0.0156418 0.0156418
/ 0.0156418 0.0287605 0.0156418 0.0156418
| 0.0156418 0.0156418  0.0287605 0.0156418]
\\9.0156418 0.0156418 0.0156418 0.028760%/

T =

For a linear model of this form we have (Problem 6)

~

2nls (8,20 - s _(8_,2)]

[
"

[~}

n[fn det im + tr f-lfw - fn det fm - M]

2.61168 (from Figure 14)



Figure 13. Mzxzimum Likelihocod Estimation of the Variance-Covariance Matrix
of Example 2 under the ANOVA Restriction.

SAS Statements:

PROC VARCOMP DATA=EXAMPLEZ METHOD=ML;
CLASSES VARIETY DATE BLOCK;

MODEL

YIELD = BLOCK VARIETY DATE DATE*BLOCK DATE*VARIETY BLOCK*VARIETY /
FIXED = §;

Qutput:

SAS
MAXIMUM LIKELIHOOD VARIANCE COMPONENT ESTIMATION PROCEDURE

DEPENDENT VARIABLE: YIELD

ITERATION OBJECTIVE VAR(VARIETY®*BLOCK) VAR(ERROR)
0 -280.48173508 0.01564182 0.01311867
1 -280.48173508 0.015464182 0.01311847

CONVERGENCE CRITERION MET



Fiqure 14. Likalihood Ratio Test

Matrirx of Ezxample 2.

SAS Statements:

PROC MATRIZ;

S8CP = 0.969655%9¢6
0.23726111
0.25448889
0.346578889

N=18;, M=4; GSHAT=SECP#/N;

Qutput:

0.237248111
0.46912222
0.26341111
0.31137778

ROW1

[ =2~ ]

0.
STILDE=0.0131184678I(M)+J(M ,M,0.01564182);
L=N#(LOG(DET(STILDE))+TRACE(INV(STILDE)*SHAT)-LOG(DET(SHAT))-M};

of a Restriction on the Variance-Covariance

.23468889 O
.2634111t 0
.4249555¢6 0
25678889 0.

SAS

COL!

2.61148

.36378889/
.31137778/
.25478889/

60702222



which agrees well with the Wald test statistic. [

A test of a joint hypothesis
H: h(8°,2°) = 0 against A: h(8°,I°) # 0

is not encountered very often in applications. In the event that it is,

application of Theorems 11, 14, or 15 of Section 5, Chapter 3 is reasonably

straightforward.



PROBLEMS

1. Show that /n (fI - Z;) is bounded in probability. Hint, see Problem 1,
Section 3.
2. Show that (a/aoi)z(o) = Z(Ei). In Problem 4 the expressions

(3/30,) z'l(o)=-z'l(o)[(a/aoi)z(o)]z'l(c) and (0/30,) £n det I(0) = tr[Z-l(c)(alaoi,)Z(o

are derived. Use them to derive the first and second partial derivatives of
s[Y(e,x,Y°),x,A] given in the text.
3. Denote the jth column of a matrix A by A(j) and a typical element by

a,.. Show that
1]

(ABC)(J.) = (AB)C(j)

Zi(cij A)(B(i))

!
[(c(j)) ® A] vec B
then stack the columns (ABC)(j) to obtain
vec(ABC) = (C'® A)vec B.

Show that

= = 1gat
tr(AB) Zizkaikbki vec' (A' )vec B
whence

tr(ABC) = vec' (A')vec(BCI) = vec' (A')(I®R B)vec C.

4. Show that (3/801)2(0) = Z(Ei). Use I = Z-I(G)Z(O) to obtain
0 = [(3/30 )% H(0)]E(0) + £ '(0)[(3/30,)E(0)] whence
(3/301)2-1(0) = -Z_l(o)[(8/801)2(0)12-1(0). Let a square matrix A have elements
-1

aij’ let cij denote the cofactors of A and let a'd denote the elements of A

=z 5 3/ 3da =c = gii is i ies
From det A k 2ikCik show that (3/ ij) det A i a det A. This implies that



(3/3 vec'A) det A = det A vec'(A_l)'

Use this fact and the previous problem to show

(Blaci) det I(o)

det z(q) tr[Z_l(o)(a/aci)Z(o)].

Show that (3/301) Ln det I(g) = tr[Z-l(o)(S/aoi)Z(O)].

5.

2 =
vyij u+ pi + Tj

whereas the split-plot ANOVA has fixed part

gyijk =m+r, + tj + s,

+ (rs)ki + (ts)kj

Use the following correspondences to show that the fixed part of

is the same

det (o) vec'[Z‘l(o)] vec[(alaoi)z(c)]

vTuTJ0

Referring to Example 2, a two-way multivariate design has fixed part

the designs

p o= (ul, ceea M eees uM) =(m, ..., m, ..., m) ,
' _ = <

p; = (pli""’pki’°"’pMi) (ri-#(rs)li,...,ri-k(rs)ki,...,rii-(rs)Mi) s
' = =

T (le,...,rkj,...,er) (tj-+(ts)lj,...,tj4-(ts)kj,...,tj-k(ts)Mj) .

Show that under the ANOVA assumption I = ci I+ oi J.

6. Suppose that one has the multivariate linear model

yé = x;B + eé t=1, 2, ..., n .

where B is k by p and yL is 1 by M. Write

! )]

1 X1

Y = y& , X = xé
5, E,

yn xn

and show that



= -1 - ' -
2 sn(B,Z) £n det L + tr £ T[Y PXY] [Y PXY]/n

1

+tr I [P.Y - XB]'[PXY - XB]/n

X

where P, = X(X'X)-lX'. One observes from this equation that B will be computed

as B = (X'X)-lX'Y no matter what value is assigned to . Thus, if (ﬁm,fw)
minimizes sn(B,Z) subject to I = Z(o), h(o) = 0 and (ﬁm,fw) is the unconstrained
minimizer then

- w=1a

2 Sn(B »2) = £n det fm +trZ L +0

o [=- BN - -]



L® Dl A

7. AN ILLUSTRATION OF THE BIAS IN INFERENCE
CAUSED BY MISSPECIFICATION

The asymptotic theory in Chapter 3 was developed in sufficient generality
to permit the analysis of inference procedures under conditions where the data
generating model and the model fitted to the data are not the same. The
following example is an instance where a second order polynomial approximation
can lead to considerable error. The underlying ideas are similar to those of
Example 1.

EXAMPLE 3. (Power curve of a Translog test of additivity) The theory

of demand states that of the bundles of goods and services that the consumer

can afford he will choose that bundle which pleases him the most. Mathematically
this proposition is stated as follows: Let there be N different goods and
services in a bundle, let q = (ql,qz,...,qN)' be an N-vector giving the
quantities of each in a bundle, let p = (pl,pz,...,pN)' be the N-vector of
corresponding prices, let u*(q) be the pleasure or utility derived from the

bundle q, and let Y be the consumer's total income. The consumer's problem is
Maximize u (g) subject to p‘a <Y .

The solution has the form q(x) where x=p/Y . If one sets
g (x) = u'la(x)]

then the demand system q(x) can be recovered by differentiation
a(x) = [x/(3/2x)8" (x) 17 (a/2x)g " (x) .

*
The recovery formula is called Ray's identity and the function g (x) is called
the consumer's indirect utility function. See Varian (1378) for regularity

conditions and details.



These ideas may be adapted to emperical work by setting forth an indirect

*

utility function g(x,A) which is thought to adequately approximate g (x) over

(@]

a region of interest X . Then Roy's identity is applied %o obtain an
approximating demand system. Usually one 2its to consumer expenditure share

data q.p./Y i =1, 2, ..., N although, as we have seen from Example 1,
iti
fitting Kn(qipi/Y) - Kn(quN/Y) to Kn[gi(x)/gN(x)] is preferable. The result

is the expenditure system
qipi/Y = fi(x,x) + ey i=1l,2,...,N-1

with

£, (6,0) =[x (/308,00 1™, (/3 (1) -

The index i ranges to N -1 rather than N because expenditure shares sum to
one for each consumer and the last share may be obtained by subtracting the

rest. Converting to a vector notation, write
y=£(x,\)+e

where y , f(x,\) and e are N -1 vectors. Measurements on n consumers yield

the regression equations

yt=f(xt,X)+et t=l,2,...,n

Multivariate nonlinear least squares is often used to fit the data whence,

referring to Notation 1, Chapter 3, the sample objective function is

s (M) = (/)2 Hy, - £(x, 176G ) Ty, - £(x,,0)]

and

s(y,x.,S J)\) = lé[:f = f(X,)\)] ,S-l[y - f(X,X)]

where § is a preliminary estimator of C(e,e’) .



Suppose that the consumer's true indirect utility function is additive

N

¥*/. - *
qa (x) = Tiq gi(xi) .

Christensen, Jorgenson, and Lau (1975) have proposed that this suppcsition be

tested by using a Translog indirect utility functicn

N , N
. ; ;
g(x,0) = T, «ydnlx,) + o, 9;:13.13. n(x; ) Zn(xj)

to cbtain the approximating expenditure system
“i*zlLlBij
£, (x,\) = % : )

- -1+ g, . An(x.

Z5=1Pwy ( J

zn(xj)

with

M= lapsas ooy g 0By 5850B0p 81358535 B 050 By By - By
and

ay = -1 - zb.r:l Q. Bji=sij for i< j, an=2§.I=lsij )
then testing

d: aij==0 for all i # j against A: sij # O for some i%]

This is a linear hypothesis of the form
a(\) = H\ = 0
with
W=andm@Eve)t gl
n n
as a possible test statistic where Xn minimizes sn(A) and V is as defined in

Section 5, Chapter 3.



The validity of this inference depends on whether a quadratic in logarithms
is an adequate approximation to the consumer's true indirect utility funection.

For plausible alternative specifications of g*(x) , it should be true that:

P(W>c)2q if g is additive ,

P(W>c)>aq if g* is not additive,

if the Translog specificaticzn is to be accepted as adequate. In this section
we shall obtain an asymptotic approximation to P(W > c¢) in order to shed
some light on the quality of the approximation.

For an appropriately chosen sequence of N-vectors ka , a=1,2,3,... the

consumers indirect utility function must be of the Fourier form

1

g(x,y) = u +b'x + 5x'Cx

[+ -] o]
* Zﬁ=i{uoa4-z

. Lu, cos(jk’x) ~v, si !

s=10 %5 s(J ax) VJaSln(jkdx)]}

where y 1s vector of infinite length whose entries are b and scme triangular
t of the u, L3 C= op k kK’ .

arrangement o e uJa and vJa ;s C Za=luoa oy In consequence, the

consumer's expenditure system f(X,y) is that which results by applying Roy's
identity to g(x,y) « The indirect utility function is additive if and cnly
if the elementary N-vectors are the only vectors kd which eneter g(x,y) with

non-zero coefficients. That is, if and only if

= + 'x « & 2
g(x,y) = u  + b'x 2z‘g=luoaxa

x .
+ + ; - 3 ]
zf_l{u zj:l u; cos(Jxa) Vig Sln(JXa)]]

See Gallant (1981) for regularity conditions and details.



The situation is, then, as fcollows. The data is generated according to

v = Flx,v0) + ey t=1,2,..., 0 .

The fitted model is

1,2,..., n

]

= £

with A estimated by p minimizing

n a
Sn(k) = (l/n>2t=ls (yt :xt :Sn:>\>

where

s(y,%,5,0) = Xy -£(x,0)1's Ly - £(x,\)]

The prcbability [W>C] is to be approximated for plausible settings of the

parameter v° where

For simplicity, we shall compute power assuming that (yt,xt) are inde-
pendently and identically distributed. Thus, u*and w’ of Notations 2 and 3, Chapter
are zero and the asymptotic distribution of W is the .non-central chi-square.

We assume that &(e)=0, C(ee’)=g, that én converges almost surely to g,
and that vﬁ;(én-z) is bounded in probability. Direct computation using

Notations 1 and 3 of Chapter 3 yields



Table 6. Datz of Christensen, Jorgenson and Lau (1%75).

Durables Non-durables Services
Year Quantity Price Quantity Price Quantity Price
1929 28.9645 33.9 98.1 38.4 96.1 31.¢4
1930 29.8144 32.2 93.5 36 .4 89.5 32.1¢
1931 28.9645 31.4 93.1 3t1.1 84.3 0.9
1932 26.8821 23.9 85.9% 26.5 77 .1 28.8
1933 25.3676 31.3 82.9 26.8 76 .8 26.1
1934 24.46104 27.7 88.5 30.2 76 .3 26.8
19335 22.3387 28.8 93.2 31.3% 79.3% 26.8
193¢ 24.1371 32.9 103.8 31.4 83.8 27.2
1937 24.1371 9.0 107.7 32.7 84.5 28.3
1938 26.6928 28.4 109.3 31.1 83.7 29.1
1939 26.4088 30.5 115.1 30.5 8é6.1 29.2
1940 27.0714 29 .4 119.9 30.9 88.7 29.5
1941 28.4912 28.9 127.6 33.¢6 91.8 30.8
1942 29.5325 31.7 129.9 39.1 95.53 32.4
1943 28.6806 3s8. 0 134.0 43.7 100.1 34.2
1944 28.8499 37.7 139 .4 44 .2 102.7 36.1
19453 28.3966 3%9.0 150.3 47 .8 106.3 37.3
1946 26.6928 44 . 0 158.9 52.1 116.7 38.9
1947 28.3944 45 .3 154.8 58.7 120.8 41 .7
1948 31.6149 -60.4 155.0 62.3 124 .4 44 .4
1949 35.8744 30.4 157 .4 60.3 126 .4 46 . 1
19350 3g.99%980 59.2 1641.8 60.7 132.8 47 .4
1951 43.5414 60.0 1645.3 45.8 137.1 49 .9
1932 48 . 0849 64.2 171.2 66 .6 140 .8 52.6
1953 49 .8833 §7.5 175.7 66 .3 145.5 55.4
1954 33.1016 68 .3 177.0 66 .6 150.4 37.2
19535 55.44680 63.5 185.4 66 .3 157.5 58.5%
19546 58.8754 62.12 191.5 67.3 164.8 §0.2
1957 61.6204 36.9 194.8 §9 .4 170.3 62.2
1958 45.3122 66.7 196.8 71.0 175.8 644.2
1959 45.7854 63.3 205.0 71.4 184.7 66.0
19460 68.6251 73.1 208.2 72.4 192 .3 68.0
1941 70.46129 72.1 211.9 73.3 200.0 69 .1
1942 71.5594 72 .4 218.5 73.9 208.7 70.4
1943 73.5472 72.5 223.0 74 .9 217.4 71.7
1944 77.2387 76 .3 233.3 75.8 229.7 72.8
19463 81.9715 82.3 244. 0 77.3 240.7 74.3
1966 87.4415 84.3 255.35 80.1 251.6 76.5
1947 93.8981 81.0 259.5 81.9 264.0 78.8
1948 99.5774 81.0 270.2 85.3 275.0 82.0
1949 106.7710 94.4 2746 .4 89 .4 287.2 84.1
1970 109.1380 85.0 282.7 93.4 297 .3 90.5
1971 115.2900 88 .5 287.35 96 .6 306.3 95.8
1972 122.2000 100.0 299.3 100.0 322 .4 100.0

. - — - - m . . W . - e WP W == A A = N R WS B W e MmN 4 WD B WP AR Em e N WS G UP e YR M e M =S B TE % e e e

Source: Gallant(1981)



e e ’ -1
A\° minimizes s;(x) = (l/n)z§=156 (xt,k,y°) b 6(xt,x,y°) + (N-1)/2

P = (1/n)Z (/a0 Ve (e, 22) 1 T LS4 6, 0 14006 (3,00 4°) 12T
x (/o0 )£, %)
P = (1/n)E L(3/a0 (2, ,A°) 1 T (3/M ) (e, X))

- (U/n)Ey Ty Tyny 8yl sh w?)E T (070NN ) (10

o® = o\’ ‘H'(HV H')-LH)\"/Z

v o= (P) et

"

where
5<xt:)\o s‘Y) = f(xt:‘Yo) - f(xt,)\o)
ij -1
and ¢ denotes the elements of T .

Values of y° were chosen as follows. The parameter y° was truncated to

vector of finite length by using only the multi-indices

1 0 0 1 1 0 1
ka = 0] ,]|1 » 10 Y s 1 1 s 11 » 11
0 0 0 1 0 1 1

and discarding the rest of the infinite sequence {ka}:=1 . Let K denote the
root sum of squares of the parameters of g(x,y) which are not associated with
elementary vectors for ka' For specified values of K, the parameters Y° were
obtained by fitting f(x,y°), subject to specified K, to the data used by
Christenson, Jorgenson, and Lau (1975) which are shown in Table 6. This
provides a sequence of indirect utility functions g(x,y°) which increase in
the degree of departure from additivity. When K = 0, g(x,y°) is additive

and when K is unconstrained the parameter y° is free to adjust to the data

as best it can.



The asymptotic approximation to P(W=c) with ¢ chosen to give a nominal
.01 level test are shown in Table 7. For comparison, the power curve for W
computed from the correct model - the Fourier expenditure system - is
included in the table.

We see from Table 7 that the Translog test of explicit additivity is
seriously flawed. The actual size of the test is much larger than the
nominal significance level of .0l and the power curve is relatively flat.
Power does increase near the null hypothesis, as one might expect, but it

falls off again as departures from additiviity become more extreme.



Table 7. Tests for an Additive Indirect Utility Function.

Fourier Translog

X Noncentrality Power Noncentrality Power
0.0 g.0 0.010 8.9439 0.872
0.00046 0.0011935 0.010 8.991°9 0.874
0.0021 0.029614 0.011 9.2014 0.884
0.0091 0.63793 0.023 10.287 0.924
0.033 4.6689 0.260 14.268 0.987
0.0S59 7.8947 0.552 15.710 0.993
¢.084 82.8735 1.000 13.875 0.984

unconstrained 328.461 ’ 1.000 10.230 0.922

- s e R D e - = S A =D W S s A WP e P W = e o e W - e S A S e W e S e R Y W W WP A A M P e em . - ———
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