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Chapter 6. Multivariate Nonlinear Regression

All that separates multivariate regression from univariate regression

is a linear transformation. Accordingly, the main thrust of this chapter is

to identify the transformation, to estimate it, and then to the ideas

of Chapter 1. In Chapter 1 we saw that there is little difference between

linear and nonlinear least squares save for some extra in the

tations. We saw that if one uses the likelihood ratio test to test hypothesis

and construct confidence intervals then inferences are reliable provided one

uses the same degrees of freedom corrections used in linear regression and

provided that the hypothesis of spherically distributed errors is reasonably

accurate. These are the main ideas of this chapter.
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1. INTRODUCTION

In Chapter 1 we considered univariate nonlinear model

t=1,2, ... ,n.

Here we consider the case where there are M such regressions

t = 1,2, ... , n; a = 1,2, ... , M

that are related in one of two ways. The first arises most naturally when

Yat a = 1, 2, ... , M

represent repeated measures on the same subject, height and weight measure-

ments on the same individual for instance. In this case one would expect

the observations with the same t index to be correlated, viz

One often refers to this situation as contemporaneous correlation. The

second way these regressions can be related is through shared parameters.

stacking the parameter vectors and writing

81
82

8=
8M

one can have

8 = g{p)

where p has smaller dimension than e. If either or both of these relation-

ships obtain, contemporaneous correlation or shared parameters,
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with improved efficiency can be obtained; improved in the sense of better

efficiency than that which obtains by applying the methods of Chapter 1 M

times (Problem 12, Section 3). An example that exhibits these characteristics

that we shall use heavily for illustration is the following.

EXAMPLE 1. (Consumer Demand) The data shown in Tables la and lb is to

be transformed as follows

y = l,n (peak expenditure share) - l,n (base expenditure share)1
y = l,n (intermediate expenditure share) - l,n (base expenditure share)2

xl = l,n (peak price/expenditure)

x = l,n (intermediate price/expenditure)2
x = l,n (base price/expenditure) .2

As notation, set

Y = x =

Y
t=rlt) Clt) t 1, 2, ... , 224xt = x

2t
=

Y2t x3t

These data are presumed to follow the model

Ylt = l,n[(al + x'b(1))/(a 3 + X'bU))] + elt

Y2t = 1,r{ (a2 + X'b(2))/(a3 + x'b(3))] + e2t

where

a =

B ell b12 b13= b23b21 b22
b31 b32 b

33
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and b(i) denotes the ith row of B, viz.

The errors

are assumed to be independently and identically distributed each with mean

zero and variance-covariance matrix .

There are various hypotheses that one might impose on the model. Two

are of the nature of maintained hypotheses that follow directly from the

theory of demand and ought to be satisfied. These are:

Hl : a 3 and b(3) are the same in both equations, as the

notation suggests.

H2 : B is a sYmmetric matrix.

There is a third hypothesis that would be a considerable convenience if it

were true

3-1, b ij = 0 for i = 1, 2, 3 .

The theory supporting this model specification follows; the reader who has

no interest in the theory can skip over the rest of the example.

The theory of consumer demand is fairly straightforward. Given an income

Y which can be spent on N different goods which sell at prices Pl' P2' ... , PN

the consumer's problem is to decide what quantities ql' q2' ..• , qN of each

good to purchase. One assumes that the consumer has the ability to rank

various bundles of goods in order of preference. Denoting a bundle by the

vector
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the assumption of an ability to rank bundles is equivalent to the assumption

that there is a (utility) function u(q) such that u(qO) > u(q*) bundle

qO is preferred to bundle q*. Since a bundle costs p'q with p'= (Pl'P2, ... ,PN)

the consumers problem is

maximize u(q)

subject to p'q = Y •

This is the same problem as

maximize u(q)

subject to (p/Y)'q = 1

which means that the solution must be of the form

q = q(v)

with v = ply. The function q(v) mapping the positive orthant of RN into the
positive orthant of RN is called the consumer's demand system. It is usually

assumed in applied work that all prices are positive and that a bundle with

some q. = 0 is never chosen.
1

If one substitutes the demand system q(v) back into the utility function

one obtains the function

g(v) = u[q(v)]

which gives the maximum utility that a consumer can achieve at the pricel

income point v. The function g( v) is called the indirect utility function.

A property of the indirect utility function that makes it extremely useful

in applied work is that the demand system is proportional to the gradient of

the indirect utility function (Deaton and Muellbauer, 1980), viz.
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q(v) = (%v)g(v)/v'(%v)g(v).

This relationship is called Roy's identity. Thus, to implement the theory

of consumer demand one need only specifY a parametric form g(vle) and then

fi t the system

q = (%v)g(vle)/v'(%v)g(vle)

to observed values of (q,v) in order to estimate e. The theory asserts that

g(vle) should be decreasing in each argument,

and should be quasi-convex, v'(o2/ovov ')g(vle)v > 0

the fitted function

(%v. )g(vle) < 0 ,

every v with v'(%v)g(vle) = 0 (Deaton and Muellbauer, 1980) .

for

If g(vle) has

this property then there exists a corresponding u(q). Thus, in applied

work, there is no need to bother with u(q); g(vle) is enough.

It is easier to arrive at a stochastic model if we reexpress the demand

system in terms of expenditure shares. Accordingly let diag(v) denote a

diagonal matrix with the components of the vector v along the diagonal and set

s = diag( v)q
s(vle) = diag(v) (%v)g(vle)/v'(%v)g(vle) .

Observe that

s. = V.q. = p.q./y

so that s. denotes that proportion of total expenditure Y spent on the ith

good. As such 1's = if IS. = 1 and 1 's(vle) = 1 .

The deterministic model suggests that the distribution of the shares

has a location parameter that depends on s(vle) in a simple way. What seems

to the case with this sort (Rossi, 1983) of data is that observed shares

follow the logistic-normal distribution (Aitchison and Shen, 1980) with
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location parameter

IJo = tn s (v Ie)

where tn s(vle) denotes the N-vector with components tn s.(vle) for
l

i = 1, 2, ... , N. The logistic-normal distribution is characterized as

follows. Let w be normally distributed with mean vector IJo and a variance-

covariance matrix C(w,w') that satisfies 1 'C(w,w')1 = O. Then s has the

logistic-normal distribution if

w.
where ew denotes the vector with components e l for i = 1, 2, ... , N. A

log transform yields

whence

i = 1, 2, ... , N-l .

Writing wi - wN = lJoi - + ei for i = 1, 2, ... , N-l we have equations that
can be fi t to data

i=1,2, ... ,N-l.

The last step in implementing this model is the specification of a

functional form for g(vle). Theory implies a strong preference for a low

order multivariate Fourier series expansion (Gallant, 1981, 1982; Elbadawi,

Gallant, and Souza, 1983) but since our purpose is illustrative the choice

will be governed by simplicity and manipulative convenience. Accordingly,

let g(vle) be specified as the Translog (Christensen, Jorgenson, and Lau, 1975)
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g(vle) = a'x +

with x = 1.n v and

Differentiation yields

(%v)g(vle) = [diag(v)r1:a + (B + B')x] .

One can see from this expression that B can be taken to be symmetric without

loss of generality. With this assumption we have

(%v)g(v\e) = [diag(v)rl(a + Bx) .

Recall that in general shares are computed as

s(vle) = diag(v) (%v)g(vle)/v'(%v)g(vla)

which reduces to

s(v\e) = (a + Bx)/1'(a + Bx)

in this instance. Differenced log shares are

The model set forth in the beginning paragraphs of this discussion follows

the above equation. The origins of hypotheses Hl and H2 are apparent

as well.
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One notes, however, that we applied this model not to all goods

ql' q2' ... , qN and income Y but rather to three categories of electricity

expenditure - peak = ql' intermediate = base = q3 - and to total

electricity expenditure E. A (necessary and sUfficient) condition that per-

mits one to apply the theory of demand essentially intact to the electricity

subsystem, as we have done, is that the utility function is of the form

(Blacorby, Primont, and Russell, 1978, Ch. 5)

u[ u(1) (ql' q2' q3)' q4' ... , qN J .

If the utility function is of this form and E is known it is fairly easy to

see that optimal allocation of E to ql' q2' and q3 can be computed by solving

maximize u(l)(ql' q2' q3)

subject to i3 p.q. = E .
• 11.1.1.=

Since this problem has exactly the same structure as the original problem,

one just applies the previous theory with N = 3 and Y = E
There is a problem in passing from the deterministic version of the

subsystem to the stochastic specification. One usually prefers to regard

prices and income as independent variables and condition the analysis on p

and Y. Expenditure in the subsystem, from this point of view, is to be

regarded as stochastic with a location parameter depending on p, Y and

possibly on demographic characteristics, viz

E = f(p, Y, etc.) + error.

For now, we shall ignore this problem,implicitly treating it as an errors in

variables problem of negligible consequence. That is, we assume that in

observing E we are actually observing f(p, Y, etc.) with negligible error so
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that an analysis on E will be adequate. In Chapter 8 we shall

present methods that take formal account of this problem.

In this connection, hypothesis H3 implies that g(vle) is

of degree one in v which in turn implies that the first-stage allocation

function has the form

f(p, Y, etc.) = ft.rr(pl' P2' P3)' P4' ... , etc.]

where rr(Pl' P2' P3) is a price index for electricity which must, itself, be

homogeneous of degree one in PI' P2' P3 (Blackorby, Primont, and Russell,

1978, Ch. 5). This leads to major simplifications in the interpretation of

results which see Caves and Christensen (1980).

One word of warning regarding Table lc, all data is constructed following

the protocol described in Gallant and Koenker (1984) save income. Some

income values have been imputed by prediction a regression equation.

These values can be identified as those not equal to one of the values 500,

1500, 2500, 3500, 4500, 5500, 7000, 9000, 11000, 13500, 17000, 22500, 27500,

40000, 70711. The listed values are the means of the questionnaire's class

boundaries save the last which is the mean of an open ended interval assuming

that income follows the Pareto distribution. The prediction equation includes

variables not shown in Table lc, namely age and years of education of a

member of the household, the respondent or head in most instances. 0
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Table la. Household Electricity Expenditures by Time-of-Use,
North Carolina, Average over Weekdays in July 1978.

Expenditure Share

t Treatment Base Intermediate Peak
Expenditure
(S per day)

1 1 0.056731 0.280382 0.662888 0.46931
2 1 0.103444 0.252128 0.644427 0.79539
3 1 0.158353 0.270089 0.571558 0.45756
4 1 0.108075 0.305072 0.586853 0.94713
5 1 0.083921 0.211656 0.704423 1.22054
6 1 0.112165 0.290532 0.597302 0.93181
7 1 0.071274 0.240518 0.688208 1.79152
8 1 0.076510 0.210503 0.712987 0.51442
9 1 0.066173 0.202999 0.730828 0.78407
10 1 0.094836 0.270281 0.634883 1.01354
1 1 1 0.078501 0.293953 0.627546 0.83854
12 1 0.059530 0.228752 0.711718 1.53957
13 1 0.208982 0.328053 0.462965 1.06694
14 1 0.083702 0.297272 0.619027 0.82437
15 1 0.138705 0.358329 0.502966 0.80712
16 1 0.111378 0.322564 0.566058 0.53169
17 1 0.092919 0.259633 0.647448 0.85439
18 1 0.039353 0.158205 0.802442 1.93326
19 1 0.066577 0.247454 0.685970 1.37160
20 2 0.102844 0.244335 0.652821 0.92766
21 2 0.125485 0.230305 0.644210 1.80934
22 2 0.154316 0.235135 0.610549 2.41501
23 2 0.165714 0.276980 0.557305 0.84658
24 2 0.145370 0.173112 0.681518 1.60788
25 2 0.184467 0.268865 0.546668 0.73838
26 2 0.162269 0.280939 0.556792 0.81116
27 2 0.112016 0.220850 0.667133 2.01503
28 2 0.226863 0.257833 0.515304 2.32035
29 2 0.118028 0.219830 0.662142 2.40172
30 2 0.137761 0.345117 0.517122 0.57141
3 1 2 0.079115 0.257319 0.663566 0.94474
32 2 0.185022 0.265051 0.549928 1.63778
33 2 0.144524 0.276133 0.579343 0.75816
34 2 0.201734 0.241966 0.556300 1.00136
35 2 0.094890 0.227651 0.677459 1.11384
36 2 0.102843 0.264515 0.632642 1.07185
37 2 0.107760 0.214232 0.678009 1.53659
38 2 0.156552 0.236422 0.607026 0.24099
39 2 0.088431 0.222746 0.688822 0.58066
40 2 0.146236 0.301884 0.551880 2.52983
41 3 0.080802 0.199005 0.720192 1.14741
42 3 0.100711 0.387758 0.511531 0.97934
43 3 0.073483 0.335280 0.591237 1.09361
44 3 0.059455 0.259823 0.680722 2.19468
45 3 0.076195 0.378371 0.545434 1.98221

(Continued next page)
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Expenditure Share
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t Trea.tment Base Intermediate Peak
Expenditure
($ per day)

46 3 0.076926 0.325032 0.598042 1.78194
47 3 0.086052 0.339653 0.574295 3.24274
48 3 0.069359 0.278369 0.652272 0.47593
49 3 0.071265 0.273866 0.654869 1.38369
50 3 0.100562 0.306247 0.593191 1.57831
51 3 0.050203 0.294285 0.655513 2.16900
S2 3 0.059627 0.311932 0.628442 2.11575
53 3 0.081433 0.328604 0.589962 0.35681
54 3 0.075762 0.285972 0.638265 1.55275
55 3 0.042910 0.372337 0.584754 1.06305
56 3 0.086846 0.340184 0.572970 4.02013
57 3 0.102537 0.335535 0.561928 0.60712
58 3 0.068766 0.310182 0.620452 1.15334
59 3 0.058405 0.307111 0.634485 2.43191
60 4 0.055227 0.300839 0.643934 0.10082
61 4 0.107435 0.273937 0.618628 0.69302
62 4 0.105958 0.291205 0.602837 1.12592
63 4 0.132278 0.219429 0.588293 1.84425
64 4 0.094195 0.328866 0.576940 1 .57972
65 4 0.115259 0.401079 0.483663 1.27034
66 4 0.150229 0.317866 0.531905 0.56330
67 4 0.168780 0.307669 0.523551 3.43139
68 4 0.118222 0.318080 0.563698 1.00979
69 4 0.103394 0.301611 0.588936 2.08458
10 4 0.124001 0.362115 0.513819 1.30410
11 4 0.197987 0.280130 0.521884 3.48146
72 4 0.108083 0.337004 0.554913 0.53206
13 5 0.088798 0.232568 0.618634 3.28981
74 5 0.100508 0.272139 0.627353 0.32678
75 5 0.127303 0.298519 0.574178 0.52452
76 5 0.109718 0.228172 0.662109 0.36622
77 5 0.130080 0.231037 0.638883 0.63788
78 5 0.148562 0.323579 0.521859 1.42239
79 :5 0.106306 0.252137 0.641556 0.93535
80 5 0.080877 0.214172 0.704951 1.26243
81 5 0.081810 0.135665 0.782525 1.51472
82 5 0.131749 0.278338 0.589913 2.07858
83 5 0.059180 0.254533 0.686287 1.60681
84 5 0.078620 0.267252 0.654128 t.54706
85 5 0.090220 0.293831 0.615949 2.61162
86 5 0.086916 0.193967 0.719117 2.96418
81 5 0.132383 0.230489 0.637127 0.26912
88 5 0.085560 0.252321 0.662120 0.42554
89 5 0.071368 0.276238 0.652393 1.01926
90 S 0.061196 0.245025 0.693780 1.53801

(Continued next page)
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Expenditure Share
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t Treatment Base Intermediate Peak
Expenditure
($ per day)

91 5 0.086608 0.233981 0.679411 0.75711
92 5 0.105628 0.,305471 0.588901 0.83647
93 5 0.078158 0.202536 0.719307 1.92096
94 5 0.048632 0.216807 0.734560 1.57795
95 5 0.094527 0.224344 0.681128 0.83216
96 5 0.092809 0.209154 0.698037 1.39364
97 5 0.035751 0.166231 0.798018 1.72697
98 5 0.065205 0.205058 0.729736 2.04120
99 5 0.092561 0.193848 0.713591 2.04708
100 5 0.063119 0.234114 0.702767 3.43969
101 5 0.091186 0.224488 0.684326 2.66918
102 5 0.047291 0.262623 0.690086 2.71072
103 5 0.081575 0.206400 0.712025 3.36803
104 5 0.108165 0.243650 0.648185 0.65682
lOS 5 0.079534 0.320450 0.600017 0.95523
106 5 0.084828 0.247189 0.667984 0.61441
107 5 0.063747 0.210343 0.725910 1.85034
108 5 0.081108 0.249960 0.668932 2.11274
109 5 0.089942 0.206601 0.703457 1.54120
110 5 0.046717 0.224784 0.728499 3.54351
111 5 0.114925 0.272279 0.612796 2.61769
112 5 0.115055 0.264415 0.620530 3.00236
113 S 0.081511 0.223870 0.694618 1.74166
114 5 0.109658 0.343593 0.546750 1.17640
115 5 0.114263 0.304761 0.580976 0.74566
116 5 0.115089 0.226412 0.658499 1.30392
117 5 0.040622 0.198986 0.760392 2.13339
118 5 0.073245 0.238522 0.688234 2.83039
119 5 0.087954 0.287450 0.624596 1.62179
120 5 0.091967 0.206131 0.701902 2.18534
121 5 0.142746 0.302939 0.554315 0.26503
122 5 0.117972 0.253811 0.628217 0.05082
123 5 0.071573 0.248324 0.680103 0.42740
124 5 0.073628 0.290586 0.635786 0.47979
125 5 0.121075 0.350781 0.528145 0.59551
126 5 0.077335 0.339358 0.583307 0.47506
127 5 0.074766 0.167202 0.758032 2.11867
128 5 0.208580 0.331363 0.460058 1.13621
129 5 0.080195 0.210619 0.709185 2.61204
130 5 0.066156 0.204118 0.729726 1.45227
131 5 0.112282 0.252638 0.635080 0.79071
132 5 0.041310 0.093106 0.865584 1.30697
133 5 0.102675 0.297009 0.600316 0.93691
134 5 0.102902 0.270832 0.626266 0.98718
135 5 0.118932 0.250104 0.630964 1.40085

(Continued next page)
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Expenditure Share
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t Treatment Base Intermediate Peale
Expenditure
($ per dal{)

136 5 0.139760 0.322394 Q.537846 1.78710
137 5 0.121616 0.214626 0.663758 8.46237
138 5 0.065701 0.263818 0.670481 1.58663
139 5 0.034029 0.175181 0.790790 2.62535
140 5 0.074476 0.194744 0.730780 4.29430
141 5 0.059568 0.229705 0.710727 0.65404
142 5 0.088128 0.295546 0.616326 0.41292
143 5 0.075522 0.213622 0.710856 2.02370
144 5 0.057089 0.195720 0.747190 1. 76998
145 5 0.096331 0.301692 0.601977 0.99891
146 5 0.120824 0.250280 0.628896 0.27942
147 6 0.034529 0.193456 0.772015 0.91673
148 6 0.026971 0.180848 0.792181 1.15617
149 6 0.045271 0.141894 0.812835 1.57107
150 6 0.067708 0.219302 0.712990 1.24515
151 6 0.079335 0.230693 0.689972 1.70748
152 6 0.022703 0.178896 0.798401 1.79959
153 6 0.043053 0.157142 0.799805 4.61665
154 6 0.057157 0.245931 0.696912 0.59504
155 6 0.063229 0.136192 0.800579 1.42499
156 6 0.076873 0.214209 0.708918 1.34371
157 6 0.027353 0.124894 0.847753 2.74908
158 6 0.067823 0.146994 0.785183 1.84628
159 6 0.056388 0.189185 0.754428 3.82472
160 6 0.036841 0.194994 0.768165 1.18199
161 6 0.059160 0.138681 0.802158 2.07338
162 6 0.051980 0.215700 0.732320 0.80376
163 6 0.027300 0.145072 0.827628 1.52316
164 6 0.014790 0.179619 0.805591 3.17526
165 6 0.047865 0.167561 0.784574 3.30794
166 6 0.115629 0.231381 0.652990 0.72456
167 7 0.104970 0.147525 0.747505 0.50274
168 7 0.119254 0.187409 0.693337 1.22571
169 7 0.042564 0.112839 0.844596 2.13534
170 7 0.096756 0.150178 0.753066 5.56011
171 7 0.063013 0.168422 0.768565 3.11725
172 7 0.080060 0.143934 0.776006 0.99796
173 7 0.097493 0.173391 0.729116 0.67859
174 7 0.102526 0.220954 0.676520 0.79027
175 7 0.085538 0.195686 0.718776 2.24498
176 7 0.068733 0.166248 0.765019 2.01993
177 7 0.094915 0.140119 0.764966 4.07330
178 7 0.076163 0.132046 0.791792 3.66432
179 7 0.099943 0.176885 0.723172 0.40768
180 7 0.081494 0.175082 0.743425 1.09065

(Continued next page)
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Expenditure Share
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t Treatment Base Intermediate Peak
Expenditure
($ per day)

181 7 0.196026 0.299348 0.504626 1.35008
182 7 0.093173 0.235816 0.671011 1.06138
183 7 0.172293 0.173032 0.654675 0.99219
184 7 0.067736 0.159600 0.772663 3.69199
185 7 0.102033 0.171697 0.726271 2.36676
186 7 0.067977 0.151109 0.780914 1.84563
187 8 0.071073 0.238985 0.689942 0.18316
188 8 0.049453 0.286788 0.663759 2.23986
189 8 0.062748 0.255129 0.682123 3.48084
190 8 0.032376 0.154905 0.812719 7.26135
191 8 0.055055 0.225296 0.719648 1.68814
192 8 0.037829 0.179051 0.783120 1.13804
193 8 0.020102 0.172396 0.807502 1.40894
194 8 0.021917 0.149092 0.828992 3.47472
195 8 0.047590 0.174735 0.777675 3.37689
196 8 0.063446 0.235823 0.700731 3.14810
197 8 0.034719 0.159398 0.805883 3.21710
198 8 0.055428 0.200488 0.744084 1.13941
199 8 0.058074 0.254823 0.687103 2.55414
200 8 0.060719 0.209763 0.729518 0.29071
201 8 0.045681 0.206177 0.748142 1.21336
202 8 0.040151 0.263161 0.696688 1.02370
203 8 0.072230 0.281460 0.646310 1.40580
204 8 0.064366 0.269816 0.665819 0.97704
205 8 0.035993 0.191422 0.772585 2.09909
206 9 0.091638 0.215290 0.693073 1.03679
207 9 0.072171 0.236658 0.691171 2.36788
208 9 0.056187 0.195345 0.748468 3.45908
209 9 0.095888 0.229586 0.674526 3.63796
210 9 0.069809 0.219558 0.710633 2.56887
211 9 0.142920 0.223801 0.633279 2.00319
212 9 0.087323 0.196401 0.716276 2.40644
213 9 0.064517 0.218711 0.716772 2.58552
214 9 0.086882 0.194778 0.718341 8.94023
215 9 0.067463 0.219228 0.713309 3.75275
216 9 0.105610 0.230661 0.663730 0.34082
217 9 0.138992 0.283123 0.577885 1.62649
218 9 0.081364 0.186967 0.731670 2.31678
219 9 0.114535 0.221751 0.663714 1.77709
220 9 0.069940 0.280622 0.649438 1.38765
221 9 0.073137 0.143219 0.783643 3.46442
222 9 0.096326 0.243241 0.660434 1.74696
223 9 0.083284 0.202951 0.713765 1.28613
224 9 0.179133 0.299403 0.521465 1.15897

Sourc.e: Gallant and Koenlcer(1984)



Taule lb.

6-1-15

Experimental Rates in Effect on a Veekday in July 1978.

Price (cents per kwh)

Treatment Base Intermedite Peak

1 1 .06 2.86 3.90

2 1.78 2 .86 3.90

3 1 .06 3.90 3.90

4 1 .78 3.90 3.90

5 1 .37 3.34 5.06

6 1 .06 2 .86 6 .56

7 1 .78 2.86 6.56

8 1 .06 3.90 6.56

9 1 .78 3.90 6.56

Base period hours are l1pm to 7am. Intermediate period
hours are 7am to lOam and 8pm to llpm. Peak period hours
a.re lOam to 8pm.



Table lc. Consumer Demographic Characteristics.
6-1-16

Residence
-------------- Air Condition.

Heat Elec. --------------
Fam i 1y Income Size Loss Range \.lasher Dryer Central \.lindow

t Size ($ per yr) (SqFt) (Btuh) (l=yes) (l=yes) (l=yes) (l=yes) (Btuh)

1 2 17000 600 4305 0 1 0 0 13000
2 6 13500 700 7731 1 1 0 0 0
3 2 7000 1248 18878 1 1 0 0 0
4 3 11000 1787 17377 1 1 0 0 0
5 4 27500 2700 24874 1 0 0 1 5000
6 3 13500 2000 ZZ5Z6 1 1 1 0 24000
7 4 22500 3800 17335 1 1 1 1 0
8 7 3060 216 4476 1 0 0 0 0
9 3 7000 1000 8772 0 1 1 0 18000
10 1 6773 1200 14663 0 0 0 0
11 5 11000 1000 14480 1 1 0 0 0
12 5 17000 704 3172 1 1 1 1 24000
13 3 5500 2100 8631 1 1 0 1 0
14 2 13500 1400 17720 1 1 1 0 17000
15 4 22500 1252 7386 1 1 1 0 24000
16 7 17000 716 7174 0 1 0 0 0
17 2 11000 1800 17757 1 1 1 1 0
18 2 13500 780 4641 1 1 0 1 0
19 3 6570 960 11396 1 1 0 0 24000
20 4 9000 768 8195 1 1 1 0 0
21 2 11000 1200 7812 1 1 1 1 10000
2Z 4 13500 900 8878 1 1 1 1 0
23 3 40000 2200 15078 1 1 1 0 0
24 5 7000 1000 7041 1 1 0 0 10000
25 3 13500 720 5130 0 1 1 0 0
Z6 2 13500 550 7532 1 1 0 0 12000
27 4 17000 1600 9674 1 1 1 1 0
28 4 27500 2300 13706 1 1 0 1 0
29 6 15777 1000 10372 1 1 1 0 10000
30 2 11000 880 7477 0 1 1 0 17000
31 4 9000 1200 14013 1 1 1 0 0
32 4 17052 2200 15230 1 1 0 0 0
33 2 14812 1080 13170 1 0 0 0 0
34 3 27500 870 10843 1 1 1 0 18500
35 2 4562 800 9373 1 1 1 0 6000
36 2 7000 1200 11395 1 1 0 0 0
37 3 9000 700 6175 1 1 0 0 23000
38 2 4711 1500 17655 1 0 0 0 0
37 5 146 52 1500 11916 1 1 1 0 0
40 4 70711 2152 16552 1 1 1 1 0
41 2 7000 832 4316 1 1 1 1 0
42 3 22500 1700 7209 1 1 1 1 0
43 11 4500 1248 7607 1 1 0 0 0
44 5 11000 1808 19400 1 1 1 0 28000
45 6 22500 1800 177 81 1 1 1 1 0

(Continued next page).



·f.lble lc. (Continued).

6-l-l7

Residence
-------------- Air Condition.

Heat Elec. --------------
Fam i IY Income Size Loss Range lJasher Dryer Central lJindow
Si ze ( $ per yr) (SqFt) (Stuh) (l=yes) (l=yes) (l=yes) (l=yes) (Stuh)

46 4 22500 1800 18573 0 0 0 1 0
47 3 40000 4200 16264 1 1 1 1 0
48 2 9000 1400 10541 1 1 1 0 24000
49 2 13500 2500 29231 1 1 0 0 16000
SO 6 17000 1300 5805 1 1 1 0 21000
51 3 11000 780 5894 1 1 1 1 0
52 1 4500 1000 13714 0 0 0 0 6000
53 2 11267 960 7863 1 1 0 0 0
54 3 2500 1000 12973 1 1 0 0 0
55 1 7430 1170 9361 1 1 1 0 0
56 4 17000 2900 12203 1 1 1 1 0
57 1 22500 1000 10131 0 1 0 0 0
58 3 22500 1250 12773 1 1 1 0 12000
59 3 7000 1400 11011 1 1 1 0 29000
60 1 2500 835 12730 1 0 0 0 0
61 1 13500 1300 1196 1 1 0 0 32000
62 1 11 000 540 1198 1 1 0 0 0
63 4 14381 1100 8100 1 1 1 0 30000
64 2 9000 900 5126 1 0 0 0 12000
65 3 11000 120 3854 1 1 1 1 0
66 5 5500 180 6236 1 1 0 1 0
67 4 40000 1450 8160 1 1 1 0 28000
68 2 3500 1100 10102 1 1 0 0 12000
69 2 11000 3000 36124 1 1 0 1 0
70 4 11000 1534 15711 1 0 0 0 0
11 2 40000 2000 11250 1 1 1 1 0
72 2 2500 1400 15040 0 0 0 0 6000
73 4 11000 1400 13544 1 0 1 1 0
14 2 1500 656 1383 1 0 0 0 0
15 3 9000 712 13229 1 0 0 0 1800
76 1 9000 600 4035 1 1 0 0 0
77 5 5500 500 6110 1 0 0 0 0
78 3 13500 1200 11097 1 1 1 0 10000
19 2 13590 1300 12869 1 0 0 0 24000
80 4 11000 1045 11224 1 1 0 0 0
81 2 9681 768 1565 1 1 1 0 10000
82 2 17000 1100 9159 0 1 1 0 10000
83 11 4500 480 6099 1 1 0 0 0
84 5 13500 1916 12478 1 1 1 0 0
85 4 40000 2500 23213 1 1 1 0
86 5 22500 2100 12314 1 1 1 1 0
81 3 3500 1196 14125 0 0 0 0 0
88 3 12100 950 11114 0 0 0 0 0
89 3 3500 1080 12186 1 0 0 0 0
90 2 1000 1400 10050 1 1 0 0 28000

(Continued next page).



Table lc. (Continued).

6-1-18

Residence
-------------- Air Condition.

Heat Elec. --------------
Fam i 1Y Income Size Loss Range Washer Dryer Central Window

t Size ($ per yr) (SqFt) (Stuh) (l=yes) (l=yes) (l=yes) (l=yes) (Stuh)

91 2 3500 1800 16493 1 1 1 0 2000
92 2 7000 1456 17469 0 1 0 0 18000
93 4 9000 1100 6177 1 1 1 0 23000
94 2 3500 1500 21659 1 1 1 0 18000
95 4 9894 720 6133 1 1 1 0 6000
96 1 22500 1500 7952 1 0 0 1 0
97 4 13500 1500 10759 1 0 1 1 0
98 4 17000 1900 10176 1 1 1 1 0
99 2 17000 1100 10869 1 1 1 0 23000
100 5 27500 2300 16610 1 1 1 1 0
101 3 13500 1500 11304 1 1 1 1 0
102 2 27500 3000 23727 1 1 1 1 0
103 4 24970 2280 18602 1 1 1 1 0
104 2 3500 970 10065 1 1 0 0 0
105 2 17000 1169 1081 0 1 1 0 0 30000
106 2 13500 1800 20614 1 1 1 0 0
107 2 13500 728 4841 1 1 1 1 0
108 2 11000 1500 11235 1 1 1 1 0
109 3 17000 1500 9774 1 1 0 1 0
110 5 5500 900 12085 1 1 0 0 23000
111 3 17000 1500 17859 1 1 1 1 0
112 1 70711 2600 16 661 1 1 1 1 0
113 3 7000 780 5692 1 1 1 0 20000
114 4 22500 1600 8191 1 1 1 1 0
115 2 13500 600 5086 0 1 1 0 2000
116 3 4500 1200 14178 1 1 1 0 1000
117 5 17000 900 8966 1 1 1 0 18000
118 4 13500 1500 11142 1 1 1 1 0
119 5 17000 2000 19555 1 1 1 1 0
120 3 23067 1740 10183 1 1 1 0 42000
121 1 17000 696 5974 1 0 0 0 0
122 1 2500 900 10111 1 1 0 0 0
123 2 7265 970 20437 1 1 0 0 0
124 2 10415 1500 9619 1 0 0 0 0
125 3 5500 750 169 55 0 0 1 0 18000
126 2 4500 824 11647 1 1 0 0 0
127 1 22500 1900 11401 1 0 1 1 0
128 4 40000 2500 15205 1 1 1 1 0
129 2 4500 840 5984 1 1 1 1 0
130 1 22500 1800 18012 1 1 1 1 0
131 2 5500 1200 8447 1 1 0 0 1000
132 1 3689 576 12207 0 0 0 0 0
133 3 16356 1600 16227 0 1 1 0 28500
134 4 11000 1360 17045 1 1 0 0 0
135 3 5500 600 4644 0 1 0 0 9000

(Continued next page).



Table Ie. (Continued).

6-1-19

Residence
-------------- Air Condition.

Heat Elec. --------------
Fam i IY Income Sise Loss Range Washer Dryer Central Window

t Sise ($ per yr) (SqFt) (Btuh) (l=yes) (l=yes) (1=1 es ) (1=1es) (B tuh)

136 3 17000 2000 16731 1 1 1 1 2300
137 2 32070 6000 61737 1 1 1 1 0
138 2 27500 1250 7397 1 1 1 1 0
139 4 17000 840 5426 1 1 1 1 0
140 4 27500 3300 11023 1 1 1 1 0
141 2 11000 1200 10888 1 0 0 0 18000
142 1 1000 5446 1 0 0 0 0
143 3 36919 1200 8860 1 1 1 1 0
144 5 9000 720 5882 1 1 1 0 10000
145 5 21400 1300 6273 1 1 1 0 0
146 1 1500 375 6727 0 0 0 0 0
147 2 5063 1008 7195 1 0 0 0 0
148 1 3500 1650 13164 1 0 0 1 0
149 1 9488 850 9830 0 0 1 0 10000
150 1 27500 1200 8469 1 1 1 1 0
151 5 17000 1000 8006 0 1 1 0 16 000
152 3 11000 2000 12608 1 1 1 1 0
153 7 22500 1225 11505 1 0 0 1 0
154 6 3500 1200 16682 1 1 0 0 0
155 3 9273 600 5078 1 1 0 0 15000
156 8 17000 1100 17912 1 0 0 0 0
157 3 17459 980 7984 0 1 1 1 0
158 5 11000 1200 14113 1 1 1 0 18000
159 3 9000 1600 21519 1 1 1 0 6000
160 2 11000 899 5731 0 1 1 0 28000
161 3 12068 1350 16331 1 1 1 0 6000
162 2 7000 672 8875 1 1 0 0 0
163 3 22500 1200 10424 1 1 0 0 23000
164 2 5500 1300 8636 1 1 1 1 0
165 2 12519 1000 24210 1 1 1 0 37000
166 2 29391 1400 12837 1 1 1 1 0
167 2 9000 400 4519 1 0 0 0 0
168 3 4664 1235 14274 1 1 0 0 6000
169 4 11000 720 6393 0 1 1 0 23000
170
171 3 18125 2300 16926 1 0 1 0
172
173 5 9000 720 6439 1 1 1 0 0
174 6 5500 1000 13651 1 1 0 0 0
175 5 14085 1400 14563 1 1 0 0 15000
176 2 9000 720 6540 0 1 1 1 0
177 6 17000 1470 8439 1 1 1 1 0
178 4 27500 1900 12345 1 1 1 1 18500
179 3 7000 480 3796 0 0 0 0 10000
180 3 13500 1300 7352 1 1 0 0 23000

(Continued next page).



lc. (Continued).

6-1-20

Residence
-------------- Air Condition.

Heat Elec. --------------
F i I Y Income Size Loss "'asher Dryer Central "'indow

t Sin ($ per yr) (SqFt) (Stuh) (l=yes) (l =yes) (l=yes) (1=ye5) (Stuh)

181 3 13437 1200 9502 1 1 1 1 0
182 3 14150 1300 8334 1 1 0 0 0
183 1 7000 1200 119 41 1 1 0 0 21 00 0
184 4 27500 1350 7585 1 1 1 1 0
185 2 32444 2900 15158 1 1 0 1 0
186 1 4274 400 7859 1 0 0 0 0
187 1 3500 600 144 41 0 0 0 0 0
188 4 27500 2000 15462 1 1 1 1 0
189 4 40000 2900 13478 1 1 0 1 0
190 6 17000 5000 24132 1 0 1 1 0
191 1 2500 1400 17016 1 1 0 0 2000
192 7 9000 1400 13293 1 1 0 0 0
193 0 0 0 0
194 4 13500 780 5629 1 1 0 1 0
195 5 13500 1000 7281 1 1 1 1 0
196 2 13500 1169 11273 1 1 0 0 12000
197 2 40000 2400 13515 1 1 0 1 0
198 4 27500 1320 9865 1 1 1 0 29000
199 4 27500 1250 5759 1 1 1 1 0
200 1 3449 1200 18358 0 0 0 0 0
201 2 3500 425 4554 1 0 0 0
202 2 27500 1400 13496 1 0 0 1 0
203 4 7000 1300 11555 1 1 1 0 14000
204 2 3500 1800 23271 1 1 0 0 0
205 4 11000 720 5879 1 1 1 0 16000
206 7 9000 680 11528 1 0 0 0 0
207 4 14077 780 4829 1 1 1 0 10000
208 3 13500 2200 22223 1 1 1 0 24000
209 4 17000 1342 12050 1 1 1 1 0
210 4 3500 628 5369 1 1 1 0 24000
211 2 11000 920 5590 1 1 1 1 0
212 :5 9000 1300 11510 1 1 1 0 19000
213 3 5500 1400 18584 1 1 1 0 23000
214 5 27500 2300 15480 1 1 1 1 0
215 3 20144 1700 11212 1 1 1 1 0
216 5 3500 1080 13857 0 0 0 0 0
217 2 22500 1800 17588 1 1 0 0 23000
218 6 22500 1900 15115 1 1 1 0 22000
219 5 6758 1200 16868 1 0 0 0 0
220 6 11000 2200 21884 1 1 1 1 0
221 3 17000 1500 11504 1 1 1 1 0
222 2 9000 600 5825 1 0 1 1 0
223 2 15100 1932 15760 1 1 1 0 0
224 1 7000 979 11700 1 1 1 0 1000

(Continued neat page).



Table lc. (Continued).
6-1-21

Type of Residence
--------------------------- Elec.

DupIn or Mobile Water
Detached Apartment 'Home Heater Freezer Refrigerator

t (1=yes) (1=yes) (1=yes) (1=yes) ( kw) ( kw)

1 0 0 1 1 0 0.700
2 1 0 0 1 1.320 0.700
3 1 0 0 1 1 .320 0.700
4 1 0 0 1 1.320 2.495
5 1 0 0 0 1 .320 3.590
6 1 0 0 1 0 1.795
7 1 0 0 1 0 1 .795
8 1 0 0 0 1.320 0.700
9 1 0 0 1 1 .320 0.700
10 1 0 0 0 1 .985 1.795
11 1 0 0 1 2.640 0.700
12 0 0 1 1 1.985 1.795
13 1 0 0 1 1.320 1 .795
14 1 0 0 1 1.320 1.795
15 1 0 0 1 1.320 1 .795
16 0 0 1 1 0 1.795
17 1 0 0 1 1 .985 1 .795
18 0 0 1 1 0 0.700
19 1 0 0 1 1.320 1 .795
20 1 0 0 1 0 1.795
21 1 0 0 1 1.320 0.700
22 1 0 0 1 1.320 0.700
23 1 0 0 1 3.305 1 .795
24 0 1 0 1 0 0.700
25 0 0 1 1 1.320 0.700
26 1 0 0 1 1.985 0.700
27 1 0 0 1 1 .320 1 .795
28 1 0 0 1 1 .320 1.795
29 1 0 0 1 0 1 .795
30 0 0 1 1 0 0.700
31 1 0 0 1 1 .320 0.700
32 1 0 0 1 0 1.795
33 1 0 0 1 1 .320 3.590
34 1 0 0 1 0 1.795
35 1 0 0 1 1 .320 1 .795
36 1 0 0 1 1 .320 0.700
37 1 0 0 1 1 .320 1 .795
38 1 0 0 1 0 0.700
39 1 0 0 1 0 1 .795
40 1 0 0 1 1 .320 1.400
41 1 0 0 1 1 .985 1 .795
41 1 0 0 1 2.640 0.700
43 1 0 0 1 1. 320 1 .795
44 1 0 0 1 3.970 1.795
45 1 0 0 1 1 .9 B5 1 .795

(Continued next page) .



Table Ie. (Continued).

6-1-22

Type of Residence
--------------------------- Elec.

DupIn or Mo b i Ie 'Jater
Detached Apartment Home Heater Freezer Refrigerator

t (1=yes) (1=1 es ) (1=yes) (1=ye5) ( kw) (kw)

46 1 0 0 0 0 1 .795
47 1 0 0 1 0 1.795
48 1 0 0 1 0 0.700
49 1 0 0 1 0 2.495
50 1 0 0 1 1 .985 1 .795
51 0 0 1 1 1.985 0.700
52 1 0 0 0 1 .320 1 .795
53 0 0 1 1 0 0.700
54 1 0 0 1 1 .320 1 .795
5S 1 0 0 1 1.320 1.795
56 1 0 0 1 1 .320 1 .795
57 1 0 0 1 1.320 1.795
58 1 0 0 1 1 .320 1 .795
59 1 0 0 1 1.320 1.795
60 1 0 0 0 0 0.700
61 1 0 0 1 1 .320 0.700
6Z 1 0 0 1 1 .320 0.700
63 1 0 0 1 1.320 0.700
64 0 1 0 1 0 1 .795
6S 0 0 1 1 0 0.700
66 0 0 1 1 0 1 .795
67 1 0 0 1 1 .320 1.795
68 1 0 0 1 1.320 0.700
6? 1 0 0 1 0 1.400
70 1 0 0 1 1 .320 1 .795
71 1 0 0 1 1 .985 1.795
72 1 0 0 0 1.320 1 .795
73 1 0 0 0 0 1.795
74 1 0 0 0 0 0.700
7S 1 0 0 0 1.320 0.700
76 1 0 0 1 0 0.700
77 0 1 0 0 1 .320 0.700
78 1 0 0 1 0 1 .795
79 1 0 0 0 1.320 1.795
80 1 0 0 1 1.320 1 .795
81 0 0 1 1 1.320 2.495
82 1 0 0 1 1 .985 1 .795
83 1 0 0 1 1 .320 0.700
84 1 0 0 1 1 .985 1 .795
85 1 0 0 1 0 1.795
86 1 0 0 1 1 .320 2.495
87 1 0 0 0 0 1.795
88 1 0 0 0 3.305 0.700
89 1 0 0 1 1 .985 0.700
90 1 0 0 1 1 .985 1 .795

(Continued next page) .



Table Ie. (Continued).

6-1-23

Type of Residence
--------------------------- Elec.

Duplex or Mobile Water
Detached Apartment Home Heater Freezer Refrigerator

t (l=yes) (l=yes) (l=yes) (1=ye5) ( kw) <kw)

91 1 0 0 1 0 1.795
92 1 0 0 1 1.985 1.795
93 1 0 0 1 1 .320 1 .795
94 1 0 0 1 0 1.795
95 0 0 1 1 0 1 .795
96 1 0 0 1 1 .985 0.700
97 1 0 0 0 1.320 0.700
98 1 0 0 1 1.320 0.700
99 1 0 0 1 2.640 1 .795
100 1 0 0 1 1 .320 1.795
101 1 0 0 1 1 .320 1 .795
102 1 0 0 1 0 2.495
103 I 0 0 1 1 .320 1.795
104 1 0 0 1 1 .320 0.700
105 1 0 0 1 1.320 0.700
106 1 0 0 1 0 1.795
107 1 0 0 1 1.320 0.700
108 1 0 0 1 1.320 0.700
109 1 0 0 1 0 1 .795
110 1 0 0 1 1 .320 0.700
111 1 0 0 1 1 .320 1 .795
112 1 0 0 1 3.970 1.795
113 0 0 1 1 0 1 .795
114 1 0 0 1 1.320 1.795
115 0 0 1 1 0 0.700
116 1 0 0 1 0 1.795
117 1 0 0 1 1.320 1 .795
118 1 0 0 1 1.985 0.700
119 1 0 0 1 0 0.700
120 0 0 1 1 1.320 1.795
121 0 0 1 1 0 1 .795
122 1 0 0 1 0 0.700
123 1 0 0 1 0 0.700
124 1 0 0 1 0 1.795
125 1 0 0 0 1 .320 1 .795
126 1 0 0 1 0 0.700
127 1 0 0 0 1 .320 1.795
128 1 0 0 1 0 2.495
129 0 0 1 1 1 .320 1 .795
130 1 0 0 1 0 1.795
131 1 0 0 1 0 o .700
132 1 0 0 0 1.320 1.795
133 1 0 0 1 1.320 0.700
134 1 0 0 1 1.320 0.700
135 0 0 1 1 0 0.700

(Continued next page) .



Table Ie. (Continued).

6-1-24

Type of Residence
--------------------------- Elec.

Duplex or Mobile 'Water
Detached Apartment Home Hea te r Freezer Refrigerator

t (l=yes) (l=yes) (l=yes) (1=ye5) ( kw) (kw)

136 1 0 0 1 1.985 1.795
137 1 0 0 1 1.985 1.400
138 0 1 0 1 0 1 .795
139 0 0 1 1 0 0.700
140 0 1 0 1 7.265 1 .195
141 1 0 0 1 1.320 0.700
142 0 1 0 1 0 1 .195
143 0 1 0 1 0 0.700
144 0 0 1 1 0 0.700
145 0 0 1 1 0 1.795
146 1 0 0 0 0 1 .795
147 1 0 0 0 0 0.700
148 1 0 0 0 0 1 .795
149 1 0 0 0 1 .320 1.795
150 0 1 0 1 0 1 .795
151 1 0 0 1 2.640 1.795
152 1 0 0 1 0 1.195
153 1 0 0 0 1 .320 1.195
154 1 0 0 1 1.320 0.700
155 0 0 1 1 0 0.700
156 1 0 0 1 1 .320 0.700
157 0 0 1 1 1.320 1.795
158 1 0 0 1 3.970 2.495
159 1 0 0 1 0 0.700
160 1 0 0 1 1 .320 1 .795
161 1 0 0 1 1. 320 1.795
162 1 0 0 1 1 .320 0.700
163 1 0 0 1 0 1.795
164 1 0 0 1 0 1 .795
165 1 0 0 1 2.640 3.590
166 1 0 0 1 1 .320 o.700
167 0 1 0 1 0 0.700
168 1 0 0 1 2.040 o .700
169 0 0 1 1 0 1.795
170
171 1 0 0 1.320 1.795
172
173 0 0 1 1 1 .320 0.700
174 1 0 0 1 1.320 0.700
175 1 0 0 1 1.985 1.795
176 0 0 1 1 0 0.700
177 1 0 0 1 3.970 1.195
178 1 0 0 1 1 .985 1 .795
179 0 0 1 0 0 0.700
180 1 0 0 1 1.320 1 .195

(Continued neat page) .



Table Ie. (Continued).

6-1-25

Type of Residence
--------------------------- Elec.

Duplex or Mobile 'Ja.ter
Detached Apu tmen t Home Heater Freezer Refrigerator

t (l=yes) (l=yes) (l=yes) (l=yes) (kw) (kw)

181 1 0 0 1 1.985 0.100
182 1 0 0 1 1.985 1.795
183 1 0 0 1 1.320 1 .795
184 1 0 0 1 1.320 1.795
185 1 0 0 1 0 2.495
186 1 0 0 1 0 1.795
187 1 0 0 0 1.320 0
188 1 0 0 1 1.320 1.795
189 1 0 0 1 0 1 .795
190 1 0 0 0 1 .985 2.495
191 1 0 0 1 0 1 .795
192 1 0 0 1 0 1.795
193 0 0 1 0 0 0
194 0 0 1 1 1.320 1.795
195 1 0 0 1 1 .320 0.700
196 1 0 0 1 1.985 1.795
197 1 0 0 1 1 .985 1 .795
198 0 0 1 1 0 1.795
199 1 0 0 1 1 .320 1 .795
200 1 0 0 0 0 0.700
201 0 1 0 1 1.985 0
202 0 1 0 1 0 1.795
203 1 0 0 1 1.320 0.700
204 1 0 0 1 0 0.700
205 0 0 1 1 1 .320 o.700
206 1 0 0 0 1.320 0.700
207 0 0 1 1 0 0.700
208 1 0 0 1 1.320 2.495
209 1 0 0 1 1 .320 1 .195
210 1 0 0 1 0 0.700
211 0 1 0 1 0 0.700
212 1 0 0 1 0 1 .795
213 1 0 0 1 1.320 1 .795
214 1 0 0 1 1.985 1 .795
215 1 0 0 1 1.320 1 .795
216 1 0 0 0 0 0.700
217 1 0 0 1 1.320 1 .795
218 1 0 0 1 1.985 1.795
219 1 0 0 0 0 o.700
220 1 0 0 1 1 .320 1.795
221 1 0 0 1 1 .320 1 .795
222 0 1 0 1 0 1.795
223 1 0 0 1 1.320 1 .795
224 1 0 0 1 0 1 .79 S

Source: Gallant and Koenker(1984).



6-2-1

2. LEAST SQUARES ESTIMATORS AND MATTERS OF NOTATION

Univariate responses yCtt for t = 1, 2, ... , nand Ct = 1, 2, ... , M

are presumed to be related to k-dimensional input vectors xt as follows

Ct 1,2, ... ,M; t=1,2, ... ,n

where each f (x,S ) is a known function, each SO is a p -dimensional vector
Ct Ct Ct Ct

of unknown parameters, and the eCtt represent unobservable observational or

experimental errors. As previously, we write to emphasize that it is the
Ct

true, but unknown, value of the parameter vector e
Ct
that is meant; 80' itself

is used to denote instances when the parameter vector is treated as a variable.

Writing

e =t

the error vectors et are assumed to be independently and identically distributed

with mean zero and unknown variance-covariance matrix 2: ,

!: = C(et , t = 1, 2, ... , n ,
whence r:a t = s

C(eat , eSt) =
t =I s

with 0'0'6 denoting the elements of l: .

In the Iitera,ture one finds two conventions for writing this model in

a vector form. One emphasizes the fact that the model consists of M separate

univariate nonlinear regressions

y =f(SO)+e
a a Ct a Ct = 1, 2, ... , M
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with y being an n-vector as described below and the other emphasizes the
et

multivariate nature of the data

t = 1, 2, ... , n

with Yt being an M-vector; Simply to have labels to distinguish the two,

we shall follow Zellner (1962) and refer to the first notational scheme as

the "seemingly unrelated" (nonlinear regressions) structure the second as

the multivariate (nonlinear regression) structure. Let us take these up in

turn.

The "seemingly unrelated" notational scheme follows the same conventions

used in Chapter 1. Write

Yet1
Yet2

Y =et

n
Yetn 1

f (xl ,6 )
et et
f (x2 ,6 )
et et

f (6 ) =
et et

f (x ,6 )
n et n et 1

eetl
eet2

e =et

e
n om 1

In this notation, each regression is written as

0

Yet = f (8 ) + e et = 1, 2, ... , M
et et et
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with (Problem 1)

C(e = (J t:t I .ex 10' exjii n n

Denote the Jacobian of f (8 ) byex ex

F (8 ) = (a/a8') f (8 )ex ex ex ex ex

which is of order n by p . Illustrating with Example 1 we have:
ex

EXAMPLE 1 (continued). The independent variables are the logarithms of

expenditure normalized prices. From Tables la arid lb we obtain a few instances

xl = tn[(3.90, 2.86, 1.06)/(0.46931)J' = (2.11747, 1.80731, 0.81476)'

x2 = tn[(3·90, 2.86, 1.06)/(0.79539)J' = (1.58990, 1.27974, 0.28719)'

x20= 2.86, 1.06)/(1.37160)J' = (1.04500,0.73484, -0.25771)'

x21= tn((3.90, 2.86, 1.78)/(0.92766)J' = (1.43607,1.12591,0.65170)'

x40= tn[(3.90, 2.86, 1.78)/(2.52983)J' = (0.43282, 0.12267, -0.35154)'

x41= tn[(3.90, 3·90, 1.06)/(1.14741)J' = (1.22347, 1.22347, -0.079238)'

X224= tn[(6.56, 3·90, 1.78)/(1.15897)J' = (1.73346,1.21344,0.42908)' .

The vectors of dependent variables are for ex = 1

tn(0.644427/0.103444)
y =ex •

tn(0.521465/0.l79l33)
224 1

=

2.45829
1.82933

1.06851
224 1
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and for et = 2
Ln(0.280382/0.056731)
Ln(0.252128/0.103444)

1.59783
0.89091

y =
et =

Ln(0.299403/0. 179133)
224 1

0.51366
224 1

Recall that

with beet) denoting the et-th row of

oa and B= 0 B we shall have

Note that if both a and B are multiplied by some

bll b12 b13
B = b21 b22 b23

b31 b32 b33

and with a' = (al , a2 , a3 ) .
co:nm.on factor 0 to obtain a=

Thus the parameters of the model can only be determined to within a scalar

multiple. In order to estimate the model it is necessary to impose a normal-

ization rule. Our choice is to set 8 3 = -1. With this choice we write the

model as

with
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f (x,8 ) = J.nl (a + b' (a)x)/(-l + b(3)x)] a = 1, 2a a a

8' = (al , bll , b12 , b13 , b3l , b32 , b33
)1

e' = (a2 , b2l , b22 , b23 , b3l , b32 , b33
) 02

Recognizing that what we have is M instances of the univariate nonlinear

regression model of Chapter 1, we can apply our previous results and estimate

the parameters 8° of each model by computing to :ninimizea a

SSE (8 ) = [y - f (8 )] 'L y - f (8 )]a a a a a a a a

for a = 1, 2, ... , M. This done, the elements <Ja6 of I: can be estimated by

a,S = 1, 2, ... , M .

Let denote the M by M matrix with typical element CraS . Equivalently, if

we write

e = y - f (6#)a a a a

then

t = (l/n)E'E .

We illustrate with Example 1.

a = 1, 2, ... , M

EXAMPLE 1 (continued). Fitting

by the methods of Chapter 1 we have from Figure la that
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figure First of Example 1 Fitted by the Modified Gauss-Newton

Method.

SAS Statements:

FRoe NLIN DATA=EXAMPLEl METHOD=GAUSS ITER=50 CONVERGENCE=1.E-13i
PARMS B11=0 B12=0 B13=0 B31=0 B32=0 B33=0 Al=-9; A3=-li
P£AK=Al+Bll-X1+B12-X2+313-X3i BASE=A3+B31-Xl+B3Z-X2+B33-X3i
MODEL Y1=LOG(PEAK/BASE)i
DER.Al =1/PEAKi
DER.Bll=l/PEAK-Xli DER.B31=-1/BASE*Xl i
DER.B12=1/PEAK-X2i DER.B32=-1/BASE-XZi
DER.B13=1/PEAK*X3i D£R.B33=-1/BASE*X3i
OUTPUT OUT=VORK02 RESIDUAL=£li

Output:

S TAT 1ST I CAL A N A L Y SIS S Y S T E M
NON-LINEAR LEAST SQUARES ITERATIVE PHASE

O.OOOOOOE+OO
0.000000£+00

ITERATION

o

DEPENDENT VARIABLE: Yl

Bll
B31
Al

0.000000£+00
0.000000£+00
-9.00000000

B12
832

METHOD: GAUSS-NEWTON

B13
B33

O.OOOOOOE+OO
O.OOOOOOE+OO

RESIDUAL SS

72.21326991

16 -0.8386Z780
0.46865734
-1.98254583

-1.44241315
-0.19468166

2.01535561
-0.38299626

36.50071896

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS

NOT£: CONVERGENCE CRITERION MET.

S TAT 1ST I CAL

SOURCE

REGRESSION
RESIDUAL
UNCORRECTED TOTAL

(CORRECTED TOTAL)

OF
7

217
224

Z23

A N A L Y SIS

SUM OF SQUARES

1019.72335676
36.50071896

1056.22407572

70.01946051

S Y S T £ M
DEPENDENT VARIABLE Yl

MEAN SQUARE

145.61476525
0.16820608

3

PARAMETER

Bl1
312
B13
D31
B32
333
Al

ESTIMATE

-0.83862780
-1.44241315
2.01535561
0.46865734
-0.19468166
-0.38299626
-1.98254583

ASYMPTOTIC
STD. ERROR

1.37155782
1.87671707
1.44501283
0.12655505
0.21864114
0.09376286
1.03138455

ASYMPTOTIC 95 1ft
CONFIDENCE INTERVAL

LOVER UPPER
-3.54194099 1.86468538
-5.14138517 2.25655887
-0.83273595 4.86344716
0.21921985 0.71809482
-0.62561901 0.23625569
-0.56780098 -0.19819153
-4.01538427 0.05029260



"'#e =1 =

-1·98254583
-0.83862780
-1.44241315
2.01535561
0.46865734
-0.19468166
-0·38299626
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and from Figure lb that

"'#e =2 =

-1.11401781
0.41684196
-1·30951752
0.73956410
0.24777391
0.07675306
-0·39514717

Some aspects of these deserve comment. In this instance,

the convergence of the modified Gauss-Newton method is fairly robust to the

choice of starting values so we have taken the simple expedient of starting with

8 = 08 + [F'(08 ) F (08 )]-1 F'(08 )[y - f (08 )]1 Ct' Ct' Ct' Ct' Ct' Ct' Ct' Ct' Ct' Ct' Ct'

is such that

is negative for some of the xt ; this results in an error condition when

taking logarithms. Obviously one need only take care to choose a step length

OACt' small enough such that
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rigure lb. Second Equation of Example 1 Fitted by the Modified Gauss-Newton
Method.

SAS Statements:

PROC NLIN DATA=EXAMPLEl METHOD=GAUSS ITER=50 CONVERGENCE=1.E-13i
PARMS B21=0 B22=0 B23=0 831=0 B32=0 B33=0 A2=-3; A3=-1i
INTER=A2+B21*X1+B22*X2+B23*X3i BASE=A3+B31*X1+B32*X2+B33*X3i
MODEL YZ=LOG(INTER/BASE) i
DER . A2 =1 lINTER ;
DER.BZ1=1/INTER*X1i DER.B31=-1/BASE*X1i
DER.B22=1/INTER*X2; DER.B32=-1/BASE*X2;
DER.B23=1/INTER*X3i DER.B33=-1/BASE*X3i
OUTPUT OUT=VORK03 RESIDUAL=E2i

Output:

S TAT 1ST I CAL A N A L Y SIS S Y S T E M 4

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

O.OOOOOOE+OO
0.000000£+00

ITERATION

o

DEPENDENT VARIABLE: Y2

B21
931
A2

0.000000£+00
O.OOOOOOE+OO
-3.00000000

B22
B32

METHOD: CAUSS-NEVTON

B23
B33

O.OOOOOOE+OO
O.OOOOOOE+OO

RESIDUAL SS

37.16988980

16 0.41684196
0.24777391
-1.11401781

-1.30951752
0.07675306

0.73956410
-0.39514717

19.70439405

NON-LINEAR SQUARES SUMMARY STATISTICS

NOTE: CONVERGENCE CRITERION MET.

S TAT 1ST I CAL

SOURCE

REGRESSION
RESIDUAL
UNCORRECTED TOTAL

(CORRECTED TOTAL)

Dr

7
217
224

223

A N A L Y S ! S

SUM or SQUARES

265.3686590Z
19.70439405
285.07305307

36.70369496

S Y S T E M
VARIABLE Y2

MEAN SQUARE

37.90980843
0.09080366

6

PARAMETER

B21
B22
B23
B31
B32
833
A2

ESTIMATE

0.41684196
-1.30951752
0.73956410
0.24777391
0.07675306
-0.39514717
-1.11401781

ASYMPTOTIC
STD. ERROR

0.44396622
0.60897020
O. :54937638
0.13857700
0.18207332
0.08932410
0.34304923

ASYMPTOTIC 95 1ft
CONFIDENCE INTERVAL

LOVER UPPER
-0.45820663 1.29189056
-2.50978567 -0.10924936
-0.34324582 1.82237401
-0.02535860 0.52090642
-0.28210983 0.43561595
-0.57120320 -0.21909114
-1.79016103 -0.43787460
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figure le. Contemporaneous Variance-Covariance Matria of Example 1 Estimated

from Single Equation Residuals.

SAS Stl.tements:

DATA WORK04j MERGE WORK02 WORK03i KEEP T El E2i
PROe MATRIX FW=20i FETCH E DATA=WORK04(KEEP=El E2) i
SIGMA=E''l!EIf2Z4j PRINT SIGMAi P=HALF(INV(SIGMA»i PRINT Pi

Output:

SIGMA

S TAT 1ST I CAL

COLl

A N A L Y SIS

COL2

S Y S T E M 7

ROWl
ROW2

p

ROWl
ROW2

0.1&29496382006
0.09015433203941

eOLl

3.764814163903
o

0.09015433203941
0.08796604486025

eOL2

-3.85846955764
3.371649857133
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18 ::: 08 + 0" [F'(08 ) F (08 )[y -f (08 )]
Ct Ct Ct Ct Ct Ct Ct Ct Ct Ct Ct

is in range to avoid this difficulty. Thus, this situation is not a problem

for properly written code. Other than cluttering up the output (suppressed

0.09015433203941 )
0.08796604486025

another approach to this problem.
Lastly, we compute

(
0.1629496382006
0.09015433203941

in the figures), the SAS code seems to behave reasonably well. See Problem 7

for

as shown in Figure lc. For later use we compute

(
3.764814163903

1>::: 0
- 3 .85846955764 )
3.371659857133

. .... -1 .... , ....
Wlth!: ::: P P. 0

The set of M regressions can be arranged in a single regression

y ::: f(8°) + e

by writing

f1 (el )

fee)
f 2 (82 )

:::

nM 1

e1
e2e :::

nM 1
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81

8==
82

e
.:-1: 1P

with P == PO" In order to work out the variance-covariance matrix of e

let us review Kroneker product notation.

If A is an k by matrix and B is m by n then their Kroneker product,

denoted as A ® B is the kIn by In matrix

A®B==

The operations of matrix transposition and Kroneker product formation commute;

viz.

(A ® B) I == (A I ® B') •

If A and C are conformable for multiplication, that is, C has as many rows

as A has columns, and Band D are conformable as well then

(A ® B) (C ® D) == (AC ® BD) •

It follows immediately that if both A and B are square and invertable then

that is, inversion and Kroneker product formation commute.
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In this notation, the variance-covariance matrix of the errors is

C(el , e{)

C(e2 , e' )1
C(e,e') = .

e' )1

0"11 I 0"12 I O"lM I

0"21 I 0"22 I 02M I

=

DM1 I

= t I ;

the identity is n by n while is Mby M so the resultant 0 I is riM by riM •

-1 -1Factor t as t = P'P and consider the rotated model

(P0I)'y= (P0I)'f(e) + (P0I)'e

or

"y" = "f" (e) + "e"

Since

C("e", "e"') =

= L_ 0 In n

= I
riM riM

the model
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is simply a univariate nonlinear model and 6° can be estimated by minimizing

S(6,l:) = ["y" - "f"(6)J'["y" - "f"(e)J

= [y f(e)J'(p 0 I)'(P 0 I)[y - f(6)J

= [y f(e)]'(E-10 I)[y - f(8))

Of course l: is unknown so one adopts the obvious expedient (Problem 4) of

replacing l: by !: and estimating eo by

eminimizing .

These ideas are easier to if we adopt the multivariate notational

scheme rather than the "seemingly unrelated" regressions scheme. Accordingly,

let

t = 1, 2, ... , n

M 1
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8 =

whence the model may be written as the multivariate nonlinear regression

t = 1, 2, ... , n .

In this scheme,

To see that this is so, let denote the elements of and write

= - [Yet - fa(Xt,ee)]

= - - f(8e)J

= [y - ® I)[y - f(e)]

The advantage of the multivariate notational scheme in writing code

derives fran the fact that it is natural to group observations (Yt,xt ) on the

same subject together and process them serially for t = 1, 2, ... , n. With

written as

one can see at sight that it suffices to fetch (Yt'xt ), compute

[Yt - - f(xt,e)], add the result to an accumulator and

continue.
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The notation is also suggestive of a transformation that permits the

use of univariate nonlinear regression programs for multivariate computations.
-1 -1Observe that if L: factors as 1: = pIp then

Writing to denote the row of P we have

S(s,r;) = -

One now has S(S,L:) expressed as the sum of squares of univariate entities,

what remains is to find a notational scheme to remove the double summation.

To this end, put

s = M( t-l) +

"X II =
S

for = 1, 2, ... , M and t = 1, 2, ... , n whence

(S ) [lly II _ II f II ("x II, S) J2S ,L: = '"'s=l s s

We illustrate these ideas with the example.

EXAMPLE 1 (continued). Recall that the model is

with
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fQ' (x , 8,) = .tn( (aQ' + b (Q' ) )/ (-1 + b (3 )x )] Q' = 1, 2

8' = (al , bll , b12 , b13 , b31 , b32 , b33 )1

e' = (a2 , b21 , b22 , b23 , b31 , b32 , b33 )2

As the model is written, the notation suggests that b(3) is the same for both

Q' = 1 and Q' = 2 which up to now has not been the case. To have a notation

that reflects this fact write

fQ'(x,8Q') = .tn((aQ' + b(Q'))/(-l + Q' = 1, 2

8' = (al , bil , b12 , b13 , b131, b132 , b133 )1

8' = (a2 , b21 , b22 , b23 , b231 , b232 , b233 )2

to emphasize the fact that the equality constraint is not imposed. The

multivariate model is, then,

with



e =

and Yt =(Ylt\ '
Y2t)

for t = 1 we have

al
b ll
b12
b13
b131
b132
b 133
a2
b 21
b 22
b 23
b 231
b 232
b 233

e =t , xt as before.
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To illustrate, Table la

Y = (.tn(0.662888/0.056731)) =
t tn(0.280382/0.056731)

and for t = 2

(
2.45829)
1.59783

_ (.tn(0.644427/0.103444)) = (1.82933 )
Yt - .tn(0.252128/0.013444) 0.89091

as previously from Tables la and lb we have

(

2.11747)
xl = 1.80731

0.81476 (

1.58990)
, x2 = 1.27974

0.28719

To illustrate the scheme for minimizing using a univariate nonlinear

program, recall that

A (3.7658p -- 0
-3.8585 )
3.3716 (from Figure lc)
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whence

"y II = (3.7648, -3.8585) (2.45829) = 3·089801
1.59783

"y II = ( 0, 3.3716) (2.45829) = 5·387332
1·59783

"y II = (3.7648, -3.8585) C·82933) = 3·449563
0.89091

II " ( 0, 3.3716) (1..82933) 3·00382Y4 = =
0.89091

"x " = U. 7648, -3·8585, 2.11747, 1.80731, 0.81476) ,1
" " ( 0, 3.3716, 2.11747, 1.80731, 0.81476) ,x2 =
"x " = (3.7648, -3.8585, 1.58990, 1.27974, 0.28719)'3
II " 0, 3.3716, 1.58990, 1.27974, 0.28719)'x4 =

"f"("xl",e) = (3.7648) .tn[ (a1 + X1b(1))/(-1 + x{b1U ))J

-U·8585) .tn[(a2 + x1b(2))/(-1 + x{b2U ))]

"f"("x2",e) = (3.3716) .tn[(a2 + x{b(2))/(-1 + x1b2U ))]

SAS code to implement this scheme is shown in Figure 2a together with the

resulting output.

Least squares methods lean rather heavily on normality for their validity.

Accordingly, it is a sensible precaution to check residuals for evidence of

severe departures from normality. Figure 2a includes a residual analysis of

the unconstrained fit. There does not appear to be a gross departure from

normality. Notably, the Kolmogorov-Smirnov test does not reject normality.
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Figure 2a. Example 1 Fitted by Multivariate Least Squares, Unconstrained.

SAS Statements:

DATA SET EXAMPLE1i
P1=3.764814163903i OUTPUTi
Pl=Oi P2=3.371649857133i Y=P1-Yl+P2-Y2i OUTPUTi DELETEi
PROC NLIN DATA=WORKOI METHOD=GAUSS ITER=50 CONVERGENCE=I.E-8i
PARMS 311=-.8 BI2=-1.4 B13=2 8131=.5 BI32=-.2 8133=-.4

B21=.4 822=-1.3 823=.7 8231=.2 B232=.1 B233=-.4
Al=-2 A2=-li A3=-li

PEAK =Al+BII-X1+BI2*X2+813-X3i
INTER=A2+821-Xl+B2Z*X2+B23*X3i BASEZ=A3+B231-Xl+B23Z*X2+B233-X3i
MODEL
DER.Al =PI/PEAKi DER.AZ =PZ/INTER;
DER.B11=PI/PEAK*X1i DER.B21=PZ/INTER*Xli
DER.B1Z=PI/PEAK*XZi DER.BZZ=P2/INTER-XZi
DER.BI3=PI/PEAK-X3i DER.BZ3=P2/INTER*X3i
DER.B131=-P1/8ASEI-Xli DER.8231=-P2/BASEZ-Xl;
DER.8132=-PI/BASEI-XZi DER.B232=-P2/BASE2-X2i
DER.8133=-PI/BASEI-X3i DER.B233=-P2/BASE2*X3;
OUTPUT OUT=WORK02 RESIDUAL=EHATi
PRCC UNIVARIATE DATA=WORK02 PLOT NORMALi VAR EHATi 10 Ti

Output:

S T A TIS TIC A L A N A L Y SIS S Y S T E M

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

DEPENDENT VARIABLE: Y METHOD: GAUSS-NEVTON

ITERATION 811 BIZ 813 RESIDUAL 55
8131 8132 8133
821 B2Z B23
8231 8232 8233
At A2

1

o

6

-0.80000000
0.50000000
0.40000000
0.20000000
-2.00000000

-2.98669756
0.26718356
0.20848925
0.18931302
-1.52573841

-1.40000000
-0.20000000
-1.30000000
0.10000000
-1.00000000

0.90158533
0.07113302
-1.33081849
0.10756268
-0.96432128

2.00000000
-0.40000000
0.70000000
-0.40000000

1.66353998
-0.4101324Z

-0.40539911

631.16222217

442.65919896

NOTE: CONVERGENCE CRITERION MET.
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Figure 2a. (Continued).

S TAT 1ST 1 CAL A N A L Y SIS S Y S T E M 2

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y

SOURCr:

REGRESSION
nr:SIDUAL
UNCORRECTED TOTAL

(CORRECTED TOTAL)

DF

14
434
448

447

SUM OF SQUARES

6540.63880955
442.65919896
6983. H800851

871.79801949

MEAN SQUARE

467.18848640
1.01995207

PARAMETER ESTIMATE ASYMPTOTIC
STD. ERROR

ASYMPTOTIC 95 1ft
CONFIDENCE INTERVAL

B11
B12
B13
B131
B132
IH33
B21
Bn
B23
B231
B232
B233
Al
A2

-2.98669756
0.90158533
1.66353998
0.26718356
0.07113302
-0.47013242
0.20848925
-1.33081849
0.85048354
0.18931302
0.10756268
-0.40539911
-1.52573841
-0.96432128

1.27777798
1.41306196
1.31692369
0.10864198
0.17067332
0.07443325
0.41968687
0.48055515
0.54542139
0.12899074
0.14251811
0.07932153
0.98851033
0.34907493

LOWER
-5.49813789
-1.87575225
-0.92484026
0.05365048
-0.26432109
-0.61642910
-0.61639469
-2.27533750
-0.22152841
-0.06421501
-0.17255306
-0.56130357
-3.46863048
-1.65041924

UPPER
-0.47525724
3.67892291
4.25192022
0.48071663
0.40658712
-0.32383574
1.03337319
-0.38629949
1.92249550
0.44284105
0.38767842
-0.24949465
0.41715366
-0.27822332
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Figure 2a. (Continued).

S TAT 1ST I CAL

VAR IABLt.:EHAT

A N A L Y SIS

UNIVARIATE

S Y S T E M 4

SUM 'JCTS 448 100" MAX 4.62368 99" 2.68474
SUM -5.434E-07 75Pft 03 0.648524 95Pft 1.63032
VARIANCE 0.990289 501ft MED -0.057296 90" 1.18026
KURTOSIS 1.30039 251ft 01 -0.665501 101ft -1.1508
CSS 442.659 0" MIN -3.31487 51ft -1.60095
STD MEAN 0.0470156 11ft -2.15196
PROB} IT: 1 RANCE 7.93855
PROB} : S I 0.710841 03-01 1.31402

MODE -3.31487
PROB)D

N
MEAN
STD DEV
SltEVNESS
USS
CV
T:MEAN=O
SCN RANK
NUM '.: 0
D:NORMAL

MOMENTS

448
-1.213E-09
0.995133
0.378159
442.659

-8.205E+l0
-2.580E-08

-1017
448

0.0310503 }0.15

EXTREMES

OUANTILES(DEF=4)

-3.25+·
----+----+----+----+----+----+----+----+----+--
• MAY REPRESENT UP TO 2 COUNTS

•••••••••••••••••••••••••••••••••••
0.75+········································•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•1
1

LOVEST
-3.31487(
-2.44543(
-2.31033(
-2.21378(
-2.08762<

BAR CHART
4.75+·•

ID
181>
128)
13 )
183)
13 )

HIGHEST
2.65142(
2.71678(
2.7925(
3.96674(
4.62368(

10
152 )
60)
81 )
164)
132 )

4
5
17
39
80
63
93
74
42
18
10

1

BOXPLOT•
o
o

+-----+
._-+-_•
+-----+

o

VAR IABLE=EHAT

NORMAL PROBABILITY PLOT
4.75+

•
••••

•• ++++
•••• +••••••0.75+ •••••••

•••• +••••••••••••••••••• +
••••• +

•••• +

-3.25 •
+----+----+----+----+----+----+----+----+----+----+

-2 -1 +0 +1 +2
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Consider, now, fitting the model subject to the restriction that b(3)

is the same in both equations, viz

As we have seen before, there are two approaches. The first is to leave the

model as written and impose the constraint using the functional dependency

8 =

a lbll
b12
b13
b13l
b 132
b133
a2
b 2l
b 22
b23
b23l
b232
b233

=

PI
P2

P3
P4
P5
P6
P7
P8
1'9
PIO
Pll

P5
P6
P7

= g(p)

One fits the model

by minimizing derivatives are computed using the chain rule

(%p) "f"[ "xs",g(p) ]

= (%p) p(C/)f[xt,g(p)]

= P(C/)(0/08')f(Xt ,A)\ (%p')g(p)
8=g(p)
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These ideas were illustrated in Figure 9b of Chapter 1 and will be seen

again in Figure 2d below.

The second approach is to simply rewrite the model with the constraint

a2 + b21xlt + b22x2t + b23x3t
-1 + b31xlt + b32x2t + b33

x3t
L.!1

imposed. We adopt the second alternative, viz.
al + bllxlt + b12x2t + b13x3t

Ln -1 + b
31
xlt + b32

x2t + b33
x
3t

SAS code to fit this model is shown in Figure 2b.

Following these, same ideas we impose the additional constraint of

symmetry,

by writing

al + bllxlt + b12x2t + b13x3t
-1 + b13xlt + b23x2t + b33x3t

Ln

e' =

SAS code is shown in Figure 2c.

The last restriction to be imposed, in addition to HI and H2' is the
homogeneity restriction

3 _
!:i=la i - -1 , b = 0""j=l ij for i = 1, 2, 3
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figure Zb. Esample 1 Fitted by Multivariate Least Squares, HI Imposed.

SAS Statements:

DER.B31=(-PI-PZ)/BASE*Xlj
DER.B3Z=(-P1-P2)/BASE*X2i
DER.B33=(-PI-P2)/BASE*X3i

DATA IJORKOI; SET EXAMPLE1 i
Pl=3.764814163903; PZ:-3.85846955764; Y=Pl*Yl+PZ*YZ; OUTPUT;
Fl=Oi P2=3.371649857133; Y=PI-Yl+PZ*Y2i OUTPUTj DELETE;
PROC NLIN DATA=IJORKOI METHOD=GAUSS ITER=50 CONVERGENCE=I.E-8;
PARMS Bl1=-.8 BI2=-1.4 B13=2 B21=.4 B22:-1.3 B23:.7 831=.5 B32=-.2

Al=-2 A2=-I; A3=-lj
PEAK=Al+B11*Xl+BI2*X2+B13-X3i INTER=A2+B21*X1+B22*X2+B23-X3;
BASE:A3+B31*Xl+B32*X2+B33*X3i
MODEL Y=Pl*LOG(PEAK/BASE)+P2*LOG(INTER/BASE)i
DER.Al =PI/PEAKj DER.A2 =P2/INTERi
DER.Bll=PI/PEAK*Xl; DER.B21=P2/JNTER*X1;
DER.BI2=PI/PEAK*X2i DER.BZ2=P2nNTER*X2;
DER.B13=PI/PEAK*X3i DER.B23=P2/INTER*X3;

Output:

B33=-.4

S TAT 1ST I CAL A N A L Y 5 I 5 5 Y S T E M 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

-1.40000000
-1.30000000
-0.20000000
-1.00000000

641.48045300

ITERATION

o

DEPENDENT VARIABLE: Y

Bll
B21
B31
At

-0.80000000
0.40000000
0.50000000
-2.00000000

B12
B22
B32
A2

METHOD: GAUSS-NEWTON

B13
823
B33

2.00000000
0.70000000
-0.40000000

RESIDUAL SS

8 -3.27643190
0.40180449
0.23744183
-1.58236942

1.30488351
-1.11931853
0.10626154
-1.20266408

1.66561680
0.41058766
-0.45982238

447.31829119

NOTE: CONVERGENCE CRITERION MET.

S T A T I S TIC A L A N A L Y S I S S Y S T E M 2

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y

SOURCE DF SUM OF SQUARES MEAN SQUARE

REGRESSION 11 6535.97971731 594.17997430
RESIDUAL 431 447.31829119 1.02361165
UNCORRECTED TOTAL 448 6983.29800851

(CORRECTED TOTAL) 441 871.79801949

PARAMETER

B11
B12
B13
B21
B22
B23
B31
B3Z
B33
Al
A2

ESTIMATE

-3.Z7643190
1.30488351
1.66561680
0.40180449
-1.11931853
0.41058766
0.23944183
0.10626154
-0.45982238
-1.58236942
-1.20266408

ASYMPTOTIC
STD. ERROR

1.27198559
0.95321400
1.01449051
0.29689462
0.36601761
0.33172431
0.09393101
0.11605HO
0.05409256
0.85859333
0.23172071

ASYMPTOTIC 95 1ft
CONFIDENCE INTERVAL

LOIJER UPPER
-5.77643950 -0.77642431
-0.56859860 3.17836562
-0.32830042 3.65953403
-0.18172319 0.78533217
-1.83870310 -0.39993395
-0.24139558 1.06251090
0.05482635 0.42405730
-0.12183961 O. 33436Z70
-0.56613790 -0.35350687
-3.26988056 0.10514111
-1.65809655 -0.14723161
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Zc. 1 ritted by Multivariate Least Squares, HI and HZ Imposed.

SAS Statements:

DATA VORKOli SET EXAMPLE1;
Pl=3.764814163903i P2=-3.8S846955764i Y=PI-Y1+PZ-Y2i OUTPUTi
P1=Oi P2=3.311649857133; Y=P1-Y1+P2-Y2i OUTPUT; DELETEi
PROC NLIN DATA=VORKOI METHOD=GAUSS ITER=50 CONVERGENCE=1.E-8i
FARMS 311=0 B12=0 B13=0 B22=0 B23=0 B33=0 Al=-l A2=-li A3=-li
PEAK=Al+B11-Xl+B12-X2+B13-X3i INTER=A2+B12*Xl+B22*X2+B23*X3i
BA5E=A3+B13*X1+B23*X2+B33*X3i
MODEL Y=Pl*LOG(PEAK/BASE)+P2*LOC(INTER/BASE) i
DER.Al =FI/PEAKi DER.A2 DER.Bl1=Pl/PEAK*Xli
DER.B12=P1/PEAK*X2+P2/INTER-X1i DER.B22=P2/INTER*X2i
DER.B13=PI/PEAK*X3+(-PI-P2)/BASE-Xli DER.B23=P2/INTER*X3+(-PI-P2)/BASE*X2i

Output:

S TAT 1 S TIC A L A N A L Y SIS S Y S T E M
NON-LINEAR LEAST SQUARES ITERATIVE PHASE

O.OOOOOOE+OO
O.OOOOOOE+OO
-1.00000000

6983.29800851

ITERATION

o

DEPENDENT VARIABLE: Y

Bl1
B22
Al

O.OOOOOOE+OO
O.OOOOOOE+OO
-1.00000000

B12
B23
A2

METHOD: GAUSS-NEVTON

B13
B33

O.OOOOOOE+OO
O.OOOOOOE+OO

RESIDUAL S5

11 -1.28362419
-1.04835591
-2.92121122

0.81889299
0.03049761
-1.53186463

0.36106159
-0.46735947

450.95423403

NOTE: CONVERGENCE CRITERION MET.

S T A T I S TIC A L A N A L Y S I S 5 Y S T E M 3

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y

SOURCE DF SUM OF SQUARES MEAN SQUARE

REGRESSION 8 6532.34377448 816.54297181
RESIDUAL 440 450.95413403 1.02489599
UNCORRECTED TOTAL 448 6983.29800851

(CORRECTED TOTAL) 447 871.19801949

PARAMETER

B11
B12
B13
B22
B23
B33
Al
A2

ESTIMATE

-1.28362419
0.81889299
0.36106759
-1.04835591
0.03049167
-0.46735941
-2.92727122
-1.53786463

ASYMPTOTIC
STD. ERROR
0.22619435
0.08076691
0.03024103
0.08359301
0.03608943
0.01923198
0.27778075
0.09167461

ASYMPTOTIC 95 14
CONFIDENCE INTERVAL

LOVER UPPER
-1.72936637 -0.83188321
0.65976063 0.97802535
0.30162008 0.42051510
-1.21264961 -0.88406221
-0.04043249 0.10142783
-0.50515801 -0.42956093
-3.47322147 -2.38132098
-1.71804189 -1.35768731
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As we have noted, the scaling convention is irrelevant as far as the data

is concerned. The restriction al + a2 + a3 = -1 is just a scaling convention
and, other than asthetics, there is no reason to prefer it to the convention

*a = -1 that we have imposed thus far.3 Retaining a3 = -1, the hypothesis of

homogeneity can be rewritten as the parametric restriction

3H3 : L;. lb .. = 0 for j = 1, 2, 3l.= l.J

H
3
can be written as the functional dependency

a l al Pl
bll -b12 - b13 -P2 - P3

e
b12 b12 °2 g(p)= = = =b13 b13 P3
a2 a2 P4
b22 -b23 - b12 -P5 - P2
b23 b 23 P5
b33 -b 23 - b13 -P5 - P3

with Jacob ian
1 0 0 0 0

0 -1 -1 0 0

0 1 0 0 0

G(p) (%p ')g(p ) 0 0 1 0 0=
0 0 0 1 0

0 -1 0 0 -1
0 0 0 0 1
0 0 -1 0 -1

SAS code implementing this restriction is shown in Figure 2d.

*In economic parlance, it is impossible to tell the difference between a
linear homogeneous and a indirect utility function by looking at
a demand system.
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Figure Zd. Example 1 Fitted by Multivariate Least Squares, H1, HZ, and H3
Imposed.

SAS Statements:

DATA SET EXAMPLEli
P1=3.764814163903i PZ=-3.8S8469S5764; Y=Pl*Y1+PZ*YZi OUTPUTi
Pl=Oi PZ=3.371649857133i Y=Pl*Yl+PZ*Y2i OUTPUTi DELETEi
PROC NLIN DATA=VORKOI METHOD=GAUSS ITER=50 CONVERGENCE=1.E-8i
PARMS Rl:-3 RZ=.8 R3=.4 R4=-1.5 R5=,03; A3=-1;
Al=Rli Bll=-R2-R3i BIZ=R2i A2=R4i B2Z=-R5-R2i BZ3=R5i B33=-RS-R3i
PEAK=Al+Bl1*Xl+BI2*XZ+BI3*X3i INTER=AZ+BIZ*Xl+BZ2*X2+B23*X3i
BASE=A3+B13*Xl+B23*XZ+B33*X3i
MODEL Y=Pl*LOG(PEAK/BASE)+PZ*LOG(INTER/BASE)i
DER_Al =P1/PEAKi DER_A2 =P2/INTERi DER_Bll=Pl/PEAK*Xl i
DER BI2=PI/PEAK*X2+PZ/INTER*Xli DER B22=P2/INTER*XZi
DER-B13=PI/PEAK*X3+(-PI-PZ)/BASE*Xli- DER B23=P2/INTER*X3+(-PI-PZ)/BASE*X2i
DER-B33=(-PI-PZ)/BASE*X3; -

Ali DER.RZ=-DER Bll+DER BIZ-DER 82Z; DER.R3=-DER 811+DER 813-DER B33;
DER.R4=DER:A2i DER.R5=-DER:B22+DER:BZ3-DER:B33i - - -

Output:

S TAT 1ST I CAL A N A L Y SIS S Y S T E M 1

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

ITERATION

DEPENDENT VARIABLE: Y

R1
R4

R2
R5

METHOD:

R3 RESIDUAL SS

o

2

3

4

-3.00000000 0.80000000 0.40000000 560.95959664
-1.50000000 0.03000000

-2.70479542 0.85805995 0.37705186 478.82185398
-1.59049135 0.05440110

-2.72429979 0.85764215 0.37433263 478.79661265
-1.59215078 0.05770545

-2.72517813 0.85757097 0.37413074 478.79654696
-1.59211417 0.05194011

-2.12523501 0.85156494 0.31411103 418.19654666
-1.59Z10916 0.05195631

NOTE: CONVERGENCE CRITERION MET.

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS

S TAT 1ST I CAL

SOURCE

REGRESSION
RESIDUAL
UNCORRECTED TOTAL

(CORRECTED TOTAL)

DF

5
443
448

447

A N A L Y SIS

SUM OF SQUARES

6504.50146185
418.19&54666
6983.29800851

871.19801949

S Y S T E M
DEPENDENT VARIABLE Y

MEAN SQUARE

1300.90029237
1.08080485

PARAMETER

R1
RZ
R3
R4
R5

ESTIMATE

-2.72523501
0.85156494
0.37411703
-1.59210976
0.05795637

ASYMPTOTIC
STD. ERROR

0.11799072
0.06118212
0.02709873
0.07719388
0.03403316

ASYMPTOTIC 95 1ft
CONFIDENCE INTERVAL

UPPER
-3.07505148 -2.31541867
0.12552168 0.98960220
0.3Z085818 0.42737587
-1.74382378 -1.44039575
-0.00893116 0.IZ484390
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Parameter Estimates and Standard Errors for Example 1.

Subject to:

Parameter Unconstrained

Al -1.5257
(0.9885)

Bl1 -2.9867
(1.2778)

812 0.9016
(1.4131>

E13 1.6635
(1.3169)

A2 -0.9643
(0.3491>

821 0.2085
(0.4197>

822 -1.3308
(0.4806)

823 0.8505
(0.5454)

A3 -1 .0
( 0 .0)

8131/831 0.2672
(0.1086)

E132/832 0.0711
(0.1707>

8133/833 -0.4701
(0.0744)

Hl

-1.5824
(0.8586)

-3.2764
(1.2720)

1.3049
(0.9532)

1.6656
(1.0145)

-1.2027
(0.2317)

0.4018
(0.2969)

-1.1193
(0.3660)

0.4106
(0.3317>

-1 .0
( 0 .0)

0.2394
(0.0939)

0.1063
(0.1161>

-0.4598
(0.0541)

Hl & H2

-2.9273
(0.2778)

-1.2836
(0.2268)

0.8189
(0.0810)

0.3611
(0.0302)

-1.5379
(0.0917)

0.8189

-1.0484
(0.0836)

0.0305
(0.0361>

-1 .0
( 0 .0)

0.3611

0.0305

-0.4674
(0.0192)

Hl, H2 & H3

-2.7252
(0.1780)

-1.2317

0.8576
(0.0672)

0.3741
(0.0271>

-1.5921
(0.0772)

0.8516

-0.9155

0.0580
(0.0340)

-1.0
( 0 .0)

0.3741

0.0580

-0.4321

8231

8232

8233

0.1893
(0.1290)

0.1076
(0.1425)

-0.4054
(0.0793)

Standard errors shown in parentheses.
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As was seen in Chapter 1, these regressions can be assessed using the

likelihood ratio test statistic

(SSE d d - SSEfL = re uce u
(SSEfull)/(n - p)

As with linear regression, when one has a number of such tests to perform it

is best to organize them into an analysis of variance table as shown in

Table 3. For each hypothesis listed under source in Table 3, the entry

listed under d. f. is as above, and that listed under Sum of is

(SSEreduced - SSEfull ), as above. As an instance, to test Hl, H2 &H3 jointly

one has

SSEreduced = 478.79654666
SSEfull = 442.65919896

(from Figure 2d)

(from Figure 2a)

443 and 434 degrees of freedom respectively which yields

(SSEreduced - SSEfull ) = 36.1374
= 443 - 434 = 9

as shown in Table 3. In general, the mean sum of cannot be split from

the total regression sum of but in this instance it would be possible

to fit a mean to the data as a special case of the nonlinear model by setting

B = 0 and

The existence of a parametric restriction that will produce the model

"ys " = +"es " justifies the split. The sum of for the mean is

computed from



Table 3. Analysis of Variance
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Source d. f. SUlIl 0 f Squa r es Mean Square F P>F

Mean 1 6111.5000 6111.5000

Regression 4 393.0015 98.2504 96.324 0.00000

Hl, H2, & H3 9 36.1374 4.0153 3.937 0.0001

Hl 3 4.6591 1.5530 1.523 0.206

H2 after Hl 3 3.6360 1.2120 1.188 0.313

H3 after 3 27.8423 9.2808 9.099 0.00001
HI & H2

Er r or 434 442.6592 1.0200

Total 448 6983.2980



SSEreduced = 6983.29800851 (from Figure 2d)
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SSEfull (from Figure 2d)

with 448 and 447 degrees of freedom respectively yielding

(SSE d d - SSEf 11) = 6111.5000re uce u

q = 448 - 447 = 1

which is subtracted fran

SSE . = 6504.50146185 (from Figure 2d)

with 5 degrees of freedom to yield the entry shown in Table 3.

From Table 3 one sees that the model of Figure 2c is reasonably well

supported by the data and the model of Figure 2d is not. Accordingly, we

shall accept it as adequate throughout most of the rest of the sequel realizing

that there are potential specification errors of at least two sorts. The first

are omitted variables of which those listed in Table lc are prime candidates

and the second is an erroneous specification of functional form. But our

purp8se is illustrative and we shall not dwell on this matter. The model of

Figure 2c will serve. 0
As suggested by the preceding analysis, in the sequel we shall accept the

information provided by t- l = pIp regarding the rotation P that will reduce
the multivariate model to a univariate model, as we must to make any progress,

but we shall disregard the scale information and shall handle scaling in accord-

ance with standard practice for univariate models. To state this differently,

in using Table 3 we could have entered a table of the chi-square distribution

using 27.8423 with 3 degrees of freedom but instead we entered a table of

the F-distribution using 9.099 with 3 and 434 degrees of freedom.
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The idea of rewriting the multivariate model

in the form

"y " = "f"("x ",e) + "e "s s s

using the transformation

t = 1, 2, ... , n

s = 1, 2, ... , nM

s = M(t-l) + ex

in order to be able to use univariate nonlinear regression methods is useful

pedagogically and is even convenient for small values of M. In general,

however, one needs to be able to minimize directly. To do this note

that the Gauss-Newton correction vector is, from Section 4 of Chapter 1,

=

X - f(xt,e)]

= (%e)f'(xt,e)] (%e')f(xt,e)]J-l

X - f(xt,e)]

The modified Gauss-Newton algorithm for minimizing is, then:

0) Choose a starting estimate eO. Compute DO = D( and find a

AO between zero and one such that
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1) Let 81 = 80 + AODo . Compute Dl = and find a Al between

zero and one such that

S(8l + <

2) Let 82 = 61Dl .

The comments in Section 4 of Chapter 1 regarding starting rules, stopping

rules, alternative algorithms apply directly.
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1) Let 81 = 80 + AODO . Compute Dl = and find a between

zero and one such that

S(8l + <

2) Let 82 = 81Dl .

The comments in Section 4 of Chapter 1 regarding starting rules, stopping
rules, alternative algorithms apply directly.
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PROBLE..\18

Show that if ea is an n-vector with typical element eat for t = 1,2, .. " n

and a = 1, 2, •.. , M and c(eat , = 0a6 if t = s and is zero otherwise

then

2. Re-estimate Example 1 (in unconstrained form, subject to HI' subject to

HI &H2' and subject to HI' H2 , &H3) using the normalizing convention
al + a2 + a3 = -1 (instead of a3 = -1 as used in Figures 2a, 2b, 2c, 2d).

3. Using the "seemingly unrelated" regressions notation, show that the Gauss-

Newton correction vector can be written as

= 0 I) F(8)]-1 0 I)[Y - f(8)]

4. Show that satisfies Assumption 4 of Chapter 3 which justifies the
A A

expedient of replacing by t and SUbsequently acting as if were the

true value of l: '

5. If the model used in Example 1 is misspecified as to choice of functional

form then theory suggests (Gallant, 1981, 1982; Elbadawi, Gallant, and

Souza, 1983) that the misspecification must take the form of omission of

additive terms of the form

a . cos(jk'x) - b . sin(jk'x)
aJ a aJ a

from the indirect utility function
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g(xle) = a'x + x;

recall that x = tn(p/E). Test for the joint omission of these terms for

and j = 1, 2, a total of 24 additional parameters.

6. Instead of splitting out one degree of freedom for the model

" "_ (1) +Ys - \oJ. 1 "e "s

from the five degrees of freedom regression sum of squares of Figure 2d

as was done in Table 3, split out two degrees of freedom for the model

" II =( \oJ. l \ + IIe II

Ys \oJ.J s

7. (Out of range argument) Show that the constants t l , t z' a, b, c, a, e
can be chosen so that the function

slog(x) = {: :
.en x

ax zbx + cx
-ClO < x t l
t l x t z
t z x < co

is continuous with continuous first derivative

(d/dx)slog(x) = + Zcx
l/x

-co < x t l
t l x t z
t z :;; x < co

Verify that slog(x) is once continuously differentiable if the constants

are chosen as

T2 = l.D-7
Tl = O.DO
ALPHA=-299.999999999999886DO
BETA=5667638086.98083ZlDO
A=-Z99.999999999999886DO
B=5667638086.98083ZlDO
C=-Z8Z88l90434904l65.DO

Use slog(x) in place of in Figures la through Zd and observe that
the same numerical results obtain.
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3 . ASYMPrOTIC THEORY

As in Chapter 4, an asymptotic estimation theory obtains by restating

Assumptions 1 through 6 of Chapter 3 in context and then applying Theorems

3 and 5 of Chapter 3. Similarly, one obtains an asymptotic theory of

inference by appending restatements of Assumptions 7 and 13 to the list of

assumptions and then applying Theorems 11, 14, and 15.

Of the two notational schemes, "seemingly unrelated" and multivariate,

the multivariate is the more convenient to this task. Recall, that in

this scheme the model is written as

t:: 1,2, ... , n

*with known to lie in some compact set e . The functional form of f(x,8)

is known, x is k-dimensional, 8 is p-dimensional, and f(x,8) takes its values

in Ff1; Yt and et are M-vectors. The errors et are independently and

identically distributed each with mean zero and nonsingular variance-covariance

matrix viz.

t :: S

t :j: s

The parameter AO is estimated by e that minimizesn

A

Here we shall let Eh be any random variable that converges almost surely to

and has J:;-(r:n bounded in probability; that is, given 0 > 0 there is a

bound b and a size N such that

p(.,rnl cr CI - CJ eI < b) );0 1 - 0a

for all n > N, CJaa being a typical element of 2:. Verification that the
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estimator of proposed in the previous section satisfies this requirement

is left to Problem 1.
,.

Construction of the set T which is presumed to contain requires an
little care. Denote the upper triangle of by

which is a column vector of length M(M+l)/2 Let denote the mapping

of T into the elements of l: and set = = Now

det is a polynomial of degree M in T and is therefore continuous; moreover

for some 6 > 0 we have det - 0 > 0 by assumption. Therefore the set

*is an open set containing T . Then this set must contain a bounded open ball

. *Wl. th center T and the closure of this ball can be taken as T. The

T and, without loss of generality (Problem 2), we

*is in T for all n. Note that det !:h) det l:(T ) - 0 for
,.

can assume that Tn

assumption that In is bounded in probability means that we have

*implicitly taken TO == Tn

all T in T which implies that is continuous and differentiable over

T (Problem 3). Put

where denotes a typical element of Since is continuous

over the compact set T we must have B< co •

We are interested in testing the hypothesis

H: h(SO) = 0 against A: h(eo) * 0
which we assume can be given the equivalent representation

H: eo = g(pO) for some pO against A: eO * g(p) for any p
where h: RP Rq , g: Rr RP, and p = r + q. The correspondence with the

notation of Chapter 3 is as follows.
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Assumptions 1 through 6 of Chapter 3 read as follows in the present

case.

ASSUMPTION 1'. The errors are independently anj identically distributed

with distribution pee). 0
ASSUMPTION 2' . * *f(x,e) is continuous on X X e and e is compact. 0
ASSUMPTION 3'. (Gallant and Holly, 1980) Almost every realization of

[vt
1 with vt = (et,xt ) is a Cesaro sum generator with respect to the product

measure

= SS IA(e,x) dP(e)
X e

and dominating function b(e,x) The sequence tXt} is a Cesaro sum generator

with respect to and b(x) = Sb(e,x) dP(e). For each x c X there is a
e

neighborhood Nx such that S b(e,x) dP(e) < =. 0
e x

ASSUMPTION 4'. (Identification) The parameter eo is indexed by nand
* * L(A *)the sequence feO} converges to S ; ,.0 =,. , ",n,. -,. is bounded in-n n n

A *probability, and,. converges almost surely to,. .n

* S * -1 * *s (e) =M + [f(x,S) -f(x,S)]'!: (,. )[f(x,S ) -f(x,S)]'dlJo(x)
X

h . .. t:::I* t S*as a over a .

ASSUMPTION 5'. * Ae is compact; [,. }, T, and B are as described in then

first few paragraphs of this section. The functions

are dominated by b(e,x)jM2B over e X X X e* X e* ; b(e,x) is that of
Assumption 3'. 0

This is enough to satisfy Assumption 5 of Chapter 3 since
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s[Y(e,x,SO ),X,,.,S]

= [e + f(x,SO) - f(x,e)J'L:-l(,.)[e+ f(x,eo) - f(x,e)]

S B L:QlL:aIeQi + f)x,eo) - ft:!(x,e)\\ee + - fe(x,e)1

S BM2 b(e,x)jM2B

= b(e,x) .

The sample objective function is

,. *Replacing,. by,.o == T , its expectation isn n

= + - f(Xt,e)],!:-l(,.*)[e t + - f(xt,e)]

= t-l(T*)et

+ - f(Xt,e)] 'L:-l(T*)[ - f(xt,e)]

= M+ - f(Xt,e)];

the last equality obtains from

= tr e

= tr L
M M

= M •

By Lemma 1 of Chapter 3, both s (e) and SO (e) have uniform almost sure limitn n

s*(e) = M+ S -f(x,e)]d\Jo(x) .
X

Note that the true value eO of the unknown parameter is also a minimizer ofn
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SO (8) so that the use of 8° to denote them both is not ambiguous. Byn n

Theorem 3 of Chapter 3 we have

*Lim = 6 almost surely.n

Continuing, we have one last assumption in order to be able to claim asymptotic

normality.

* *ASSUMPTION 6'. e contains a closed ball e centered at 8 with finite,

nonzero radius such that

[(O/OA.)f (x,0)1(0/08.)fl:l(x,6)],
C'i J ...

[e + f (x,6°) - f (x,e)][(02/oe .08 .)f(x,6)], and
C'i C'i C'i J

[[e + f (x,SO) - f (x,6)][ (0/08. )fc (X,e)]}2 are
01 C'i 01

dominated by b(e,X)/BM2 over e X 1, X @ X e for i,j = 1,2, ... , P and 01,6 = 1,2, ... ,M .

Moreover,

= 2J
I

is nonsingular. 0
One can verify that this is enough to dominate

(0/08. )s[Y(e,x,eO)

= -2[e + f(x,6°) - )f(x,e)

=
J

-2 t\1 1 ,[e + f (x,8°) - f (x,8)] .)fra(x,e)
ct= ...=.J.. C'i 01 01 J .,

[ (0/0e. )s[Y(e ,x, eO ) ,x, , 6]H(0/08 . )s[Y(e ,x, eO ) ,x, , e J}
J

= 4[ (O/oA. f(x,8°) - f(x,e)]
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to within a multiplicative constant. Since (Problem 4, Section 6),

we have

(02/0T.Os.)s[Y(e,x,SO ),x,T,8]
J

= 2[e + f(x,eO) - f(x,e)J'r:-l(T)[ (%Tih:(T)lr:-l(T)(O/Oej)f(X,e)

*Evaluating at 8 = eo = e and integrating we have

SS (02/0T .Oe .)s[Y(e,x,e*),X,T*,e*] dP(e)
'X e J

= S -2 S e dP(e)r:-l(T*)[(O/OT.)r:(T*)lL:-l(T*)(O/oS.)f(x,e*)
'X e J

= 0

because S e dP(e) = O. Thus, Assumption 6' is enough to imply Assumption 6
e

of Chapter 3.

The parameters of the asymptotic distribution of en and various test

statistics are defined in terms of the following.

NOTATION 2.

n = S
'X

= (0/08') f(Xt , (O/OA' )f(xt ,

n: =



6-3-8

NOTATION 3.

*J = 40
*{} = 20
*14 = 0

= 4rfn n

4 *On
20: - - fet(xt,e:)] crete(t/OeOA')fe(xt,e:)

- f(Xt,e:)]

X -

*14 =n

1:. = 2d'n n
14° = 0n

*I n =

*{} =n

One can see from Notation 3 that it would be enough to have an estimator

* *of 0 to be able to estimate J and {} . Accordingly we propose the following.

NOTATION 4.

(1 =

'0 = (0/08' )f(Xt ;Sn)] (%tt)f(xt ]

- (" ) S- ( -1).In 8 - eo N 0,0 ,n n

oconverges almost surely to 0

Assumptions 7 and 13 of Chapter 3, restated in context, read as follows.

ASSUMPTION 7'. (Pitman drift)

,tim jn ([> - e*) = t:.. Moreover,
rHo:> n n

The sequence eO is chosen such thatn
*h(e ) = O. 0
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ASSUMPTION 13'. The function h(e) is a once continuously differentiable

mapping of ® into Rq Its Jacobian H(e) = (%e')h(e) has full rank (=q) at

e* .e = o
From these last two assumptions we obtain a variety of ancillary facts,

notably that converges almost surely to e*n

surely to 0 , and that (Problem 6)

9* = 2 + .n n

rv
that 0 converges almost

The next task is to apply Theorems 11, 14, and 15 of Chapter 3 to obtain

Wa1d, "likelihood ratio," and Lagrange multiplier test statistics as well as

non-central chi-square approximations to their distributions. In the next

section, these statistics will be modified so that tables of the non-central

F-distribution can be used as approximations. However, we shall not try to

justify these modifications by deriving characterization theorems as we did

in Chapter 4 to justify the approach taken in Chapter 1. Instead, we shall

merely note that the statistics proposed in the next section are asymptotically

equivalent (differ by terms of order 0 (1) or less) to the statistics derivedp

below and let that serve as a justification.

Consider testing

H: h (eO ) = 0 aga ins t A: h (eO) :I: 0n n

where, recall, h(e) is a q-vector with Jacobian H(e) = (%e')h(e), H(e) being

a q by P matrix. Writing h= h(e ) and H= H(A ) and applying Theorem 11 ofn n

Chapter 3 we have that the Wald test statistic is

and that the distribution of W'can be approximated by the non-central chi-square

distribution with q degrees of freedom and non-centrality parameter
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*Multivariate nonlinear least squares is an instance where J n
9* = (1/2)J* + O(l/J;) (Problem 6) whence the likelihood ratio test statisticn n

is

L' = n[s (8 ) - s (8 )Jn n n n

In the notation of the previous section,

L' = 8(8 ,i: ) - 8(e , ) .n n n n

It is critical that t be the same in both terms on the right hand side ofn

this equation. If they differ then the distributional results that follow

are invalid (Problem 8). This seems a bit strange because it is usually the

case in asymptotic theory that any AI; - consistent estimator of a nuisance
parameter can be substituted in an expression without changing the result.

The source of the difficulty is that the first equation in the proof of

Theorem 15 is not true if is not the same in both terms.n

Applying, Theorem 15 of Chapter 3 and the remarks that follow it we

have that the distribution of L' can be approximated by the non-central chi-

square with q-degrees of freedom and non-centrality parameter (Problem 7)

which is the same as for the efficient score test.

Up to this point, we have assumed that a correctly centered estimator of

the variance-covariance matrix of the errors is available. That is, we have

assumed that the estimator r has (E - r) bounded in probability whethern n

h(eO) = 0 is true or not. In the next section we shall see that thisn

assumption is unrealistic with respect to the Lagrange multiplier test.
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Accordingly, we base the Lagrange multiplier test on an estimate of scale

E for which we assume thatn

*- E ) bounded in probabilityn n

limn-+«>
*E = E •n

Of such estimators, that which is most likely to be used in applications is

.obtained by 8 to minimize s (8,1) subject to h(8) = 0, where
n n

s (8,V)
n

and then putting

The center is found (Problem 10) by computing 8# to minimize sO(8,1) subject
n n

to h(8) = 0 where

and putting

* n iFE = + (lin) E 1[f(xt ,8°) - f(x ,8 )][f(xt ,8°)n t= n t n n

Using the estimator E , the formulas for the constrained estimators aren

revised to read 8 minimizes s (8,E ) subject to h(8) = 0 and
n n n
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The form of the efficient score or Lagrange multiplier test depends on

* *how one goes about estimating V and having the estimator in hand. Inn
view of the remarks following Theorem 14 of Chapter 3, the choices

= ?i- l , = 2

lead to considerable simplifications in the computations because it is not

necessary to obtain second derivatives of s (A) to estimate and one is inn

the situation where = a for a = 1/2. With these choices, the efficient

score test becomes (Problem 9)

R' = -

X -

**Let e minimizen
*sO(8,E ) subject to h(8) = 0 and putn

Then the distribution of R'can be characterized as (Problem 9)

R' = y + 0 (1)
P

where

and

J**/4
n

n ** * - 1 * - 1 **(l/n)E t _1[(a/a8' )f(xt,S ))' (E) E(E) [(a/as' )f(x ,8 )]- n n n t n

** **lIn = (a/as') h(Sn )
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The random variable Y is a general quadratic form in the multivariate normal

random variable Zand one can use the methods discussed in Imhof (1961) to

compute its distribution. Comparing with the result derived in Problem 5

one sees that the unfortunate consequence of the use of r instead of L ton n
-I

compute R is that one can not use tables of the non-central chi-square to

approximate its non-null distribution. The null distribution of Yis a chi-

**square with q degrees of freedom since, if the null is true, e = if and
n n

*and L = L •n



6-3-14

PROBLEMS

1. Show that the regularity conditions listed in this section are

sufficient to imply the regularity conditions listed in Section 2 of

Chapter 4 for each of the models

y = f (e ) + eOl Ol ex Ol Ol = 1,2, •.. , M .

A# *Show that this implies that 8 converges almost surely to e and thatOl Ol
- # *In (8 - eo ) is bounded in probability where e and eO are defined byOl Oln Ol Oln
Assumption 4' using

8'=(8{, ... ... ,eM)·

Let

Show that almost surely to O'C'iS(e*) and that In [oOlS(e{F)-

is bounded in probability.

Hint. Use Taylor's theorem to write

= - f(xt,e)](%e')fe(Xt ,§)} .in ('8 -

+ - f(xt ,§)](%8')fOl (Xt ,§)} In
A

2. Apply Lemma 2 of Chapter 3 to conclude that one can assume that Tn is

in T without loss of generality.

3. Use = adjoint to show that is continuous

and differentiable over T .

4. Verify the computations of Notation 3.
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5. (Lagrange multiplier test with a correctly centered estimator of

scale). Assume that an extimator r is available with (I - r) bounded
n

in probabil i ty. Apply Theorem 14 with modifications as necessary to reflect

the choices V
statistic is

--1 - -= Q and 9 = 2 Q to conclude that the efficient score test

where = H(a ) with a distribution that can be characterized asn

R' = Y + 0 (1)p

where
* 1 * * * 1 * -1 * * 1Y = Z '0 - H '[ H n - H 'l H 0 - Zn n nn n- nn

and

* *with H = H(e ). Show that the variable Y has the noncentra1 chi-n n

square distribution with q degrees of and noncentra1ity parameter

* 1 * * *-1 * ] * *-1[2 - H '[H 0 H' H 0X n n nn n nn

- 1Now use the fact that "tj = 1/2 9- to obtain the simpler form.



6-3-16

Use the same sort of argument to show that

Ct ::: - f(Xt,e:)J'r:-l(O/oe')f(Xt,e:)}

X O*-l[L;nt l[f(xt,eO) -n::: n n n

Hint. See the remarks and the example which follow the proof of Theorem

14 of Chapter 3.
* * -6. Verify that Pn ::: (1/2)Jn + O(l/Jn). Hint. See the example following

Theorem 15 of Chapter 3.

7. Show that

* * 1 * * * 1 * -1 * *-1,- *[(%e)sO (e ))'0 - H '(H 0 - H) H 0 L(%e)sO (e )]nn n n nn n nn nn

::: .

Hint. See Problem 5.

8. Suppose that is computed asn

and that is computed as

Take it as given that both and converge almost surely to L: and that bothn n

..Tn - r:) and JnCr!. -!:) are bounded in probability. Show that bothn n
S(S ) =M and ) =M so thatn n n n

S ,'t ) - S (8 ) =0n n n n

and cannot be asymptotically distributed as a chi-square random variable.

However, both
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('"'" )L = S e ,!:: - Mn n

and

L = M - ;r: )n n

are asymptotically distributed as a chi-square random variable by the results

of this section.

9. (Lagrange multiplier test with a miscentered estimator of scale).

Suppose that one uses an estimator of scale E with (En n
*- r ) bounded in
n

probability and limn-+o> *r = r as in the text.n Use the same argument as in

- =-1 - -Problem 5 to show that the choices V = Q and f) = 2 Q allow the Lagrange

multiplier test to be written as

ii' = (l/n){rnt__ l[Yt - f(x ,6 )]'E-l(a/as' )f(x ,6 )}t n n t n

Show that the distribution of ii' can be characterized as ii' = y + 0 (1) withp

Y as given in the text.

** ** 2 ** * **Hint. Let H = H c9 = c9 f1 = (37a8aS' )SO(S ,r), and Q = Qn' n'lf n n n n
**Note that:; = 2 Q + 0 (l). Use Theorems 12 and 13 of Chapter 3 to show that
n

= )] + 0 (1)n n n n p

= (s**)],;;-lH' (H;}-lH' )-lH Q-1H' (H;;-lH, )-1
n n

H:;-l[tn(a/as)s (s**)] + 0 (1)
n p

= (s**)]'Q-1H, (H Q-1H' (s**)] + 0 (1)
n n n p

where
** **X - rm<a/aS)sO(S )/2, c9 /4]n n n
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*10. (Computation of the value E that centers E). Assume that h(e) = 0n n

can be written equivalently as e = g(p) for some p. Use Theorem 5 of Chapter 3

to show that if one computes p to minimize
n

then the appropriate centering value is computed by finding to minimize

SO(p) = (l/n)f",{e + f(x ,eO) - f[xt,g(p)]}'{e + f(xt,eO) - f[x ,g(p)J}dP(e)n r.." tn n t

= tr E + (l/n)En l{f(xt,eO) - f[x ,g(p)]}'{f(xt,eO) - f[xt,g(p)J} .t= n t n

Now

is the solution of the following minimization problem (Problem 11)

subject to: V positive definite, symmetric.

*Use Theorem 5 of Chapter 3 to show that the value E that centers E is computedn n

as the solution of the problem

subject to: V positive definite, symmetric

where
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SO(V,p) = in det(V)
n

- f[xt,g(P)]}dP(e)

= in det(V) + tr(V-lI)

The solution of this minimization problem is (Problem 11)

11. Let

f(V) = in det V + tr (V-lA)

where A is an M by M positive definite symmetric matrix. Show that the

minimum of f(V) over the (open) set of all positive definite matrices V

is attained at the value V = A. Hint.

Let A. be the eigenvalues of V-lAo Then
1

f(V) - f(A)

Since the line y = x plots above the line y in x + lone has

f(V) - f(A) > 0

f(V) - f(A) = 0

if any A. # 1
1

if all A. = 1
1
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12. (Efficiency of least squares estimators) Define §# as the minimizer

of s (e,v ) where - V) is bounded in probability, lim V= V almostn n n n-+a> n

surely, and V is positive definite. Show that under Assumptions l' through 7'

with

r * -1 *= 2J-1 [(alae' )f(x,e )]' V [(aide' )f(x,e )]dll(X)

-1 -1
Show that a'Pv JVJV a is minimized when V = L Note that the equation-by-

equation estimator has V = I.
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4. HYPOTHESIS TESTING

The results of this section are expressed in a summation notation

using the multivariate notational scheme. A summation notation is less

attractive aesthetically than a matrix notation using Kroneker products

but formulas written in summation notation translate easily into machine

code, as noted earlier, and have pedagogical advantages.

At the end of the section is a summary of the results using a matrix

notation for data arranged in the "seemingly unrelated" scheme.

Assume that the data follow the model

t = 1,2, ... , n

with the functional form f(x,e) known, x a k-vector, e a p-vector, y ant t

M-vector, and e an M-vector. Assume that the errors {e } are independently
t t

and normally distributed each with mean zero and variance-covariance matrix

r. The unknown parameters are eO and r.

Consider testing a hypothesis that can be expressed either as a parametric

restriction

or as a functional dependency

H: eO = g(pO) for some pO against A: eO g(p) for any p.

Here, h(e) maps R P into R q with Jacobian

H(e) = (3/3e') h(e)

which we assume is continuous and has rank q at eO the true value of e; g(p)
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maps lRr into lRP and has Jacobian

G(p) = (a/ap' )g(p) .

The Jacobians are of order q by p for H(8) and p by r for G(p); we assume

that p = r + q and from h[g(p)] = 0 we have H[g(p)]G(p) = O. For complete

details see Section 6 of Chapter 3. Let us illustrate with the example.

EXAMPLE 1 (Continued) Recall that the model

Yt = f( x t ' 8°) + e t t = I, 2, ... ,224

with
a l + bUxl + bl2x2 + b13x3in -1 + bl3x I + b23x2 + b33x3

f(x,8) =
a2 + bl2x I + b22x2 + b23x3in
-1 + bl3x I + b23x2 + b

33x3

8' = (aI' bU ' b12 , bl3 , a2 , b22 , b23 , b33 )

was chosen as a reasonable representation of the data of Table I on the

basis of the computations reported in Table 3. Since we have settled on a

model specification, let us henceforth adopt the simpler subscripting scheme

81 + 82x1 + 83x2 + 84x3in -1 + 84x1 + 87x2 + 8ax3
f(x,8) =

85 + 83x1 + 86x2 + 87x3in -1 + 84x1 + 87x2 + 8ax3

In this notation, the hypothesis of homogeneity may be written as the

parametric restriction
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c+ 63 +
e
4
)h(6) = 63 + 66 + 67 = 0

.64 + 67 + 68

with Jacobian

H(e) -G 1 1 1 0 0 0 00 1 0 0 1 1
0 0 1 0 0 1

The hypothesis may also be written as a functional dependency

81 81 P1

6Z -6 - -P Z - P33

63 63 Pz
6 = 64 = 64 = P3 = g(p)

65 65 P4

66 -6 - 6 -P 5- Pz7 3

67 67 Ps
68 -6 - 6 -P 5- P34 7

with Jacobian

1 0 0 0 0

0 -1 -1 0 0

0 1 0 0 0

0 0 1 0 0
G(p) = 0 0 0 1 0

0 -1 0 0 -1

0 0 0 0 1

0 0 -1 0 -1

which is, of course, the same as was obtained in Section Z. In passing,

observe that H[g(p)]G(p) = o. []
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Throughout this section we shall take E to be any random variable

that converges almost surely to E and has - E) bounded in probability.

To obtain a level a test this condition on r need only hold when H: h(8°) = 0

is true but to use the approximations to power derived below the condition

must hold when A: h(8°) 0 as well.

There are two commonly used estimators of E that satisfy the condition

under both the null and alternative hypotheses. We illustrated one of them

in Section 2. There one fitted each equation in the model separately in

the style of Chapter I and then estimated E from single equation residuals.

Recalling that

S(8,E)

an alternative approach is to put E = I, minimize S(8,I) with respect to 8

to obtain g#, and estimate E by

= (1/ )n e t e t

If there are no across equation restrictions on the model these two estimators

will be the same. When there are across equation restrictions, there is a

tendency to incorporate them directly into the model specification when using

the multivariate notational scheme as we have just done with the example.

(The restrictions that 83 , 84 , 87 , and 88 be the same in both equations are

the across equation restrictions, a total of four. The restriction that 84

be the same in the numerator and denominator of the first equation is called

a within equation restriction.) This tendency to incorporate across equation

restrictions in the model specification causes the two estimators of E to be

different in most instances. Simply for varieties sake, we shall use the
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estimator computed from the fit that minimizes S(8,1) in this section.

We illustrate these ideas with the example. In reading what follows,

recall the ideas used to write a multivariate model in a univariate notation.

A-I A-I AlA AI A
Factor E as E = P P, let p(a) denote a typical row of P, and put

s = M(t-l) + a

"y " = AI

s p(a) Yt

"x " = (p(a)' x' )'s t

"f"("x " ,6) = AI f(x
t
,6)s p(a) .

In this notation

S(6,r) = EnM ["y" - "f"("x II 6)]2
s=l s s '

EXAMPLE 1. (continued) SAS code to minimize S(8,1) for

f(x,8) =

8 1 + 82x l + 63x2 + 64x3
-1 + 64x l + 67x2 + 6ax3

6s + tl.3xl + 86x2 + 87x3
-1 + 64x l + 87x2 + 6ax3

is shown in Figure 3a. A detailed discussion of the ideas is found in

connection with Figure 2a; briefly they are as follows.

Trivially the identity factors as I = p'p with P = I. The multivariate

observations Yt' x t for t = 1, 2, ... , 224 = n are transformed to the

univariate entities
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I:ncosec

SA,3

DHA 'YlORKQ1; SET EX.&..MPLE:l;
I'1:-:10; P2=OO; Y=E'l*Yl+PZJ!'{L OUTPUT;
Pl=O 0, Y=P1J!Yl+P2J!Y2; OUTPUT; DELETE;
PROe NLIN DATA=WORK01 METHOD=GAUSS ITER=50 CONVERGENCE=I.E-13;
FARMS T2=-1.3 T4:.36 T5=-1.5 T6=-1. T7=-.03 T8=- 47;
FEAK=Tl+TZ*X1+T3J!X2+T4J!X3;
BASE=-I+T4J!Xl+T7*Y.2+T8J!Y.3;
MODEL Y=Pl*LOGCPEAK/BASEI+PZJ!LOGIINTER/EASEI;
DER.Tl=Pl/PEAK; DER.T2=Pl/PEAK*Xl; nER.T3=Pl/PEAK*XZ+P2/INTER*Xl,
DER.T4=P1JPEAK*X3+I-Pl-P21/BASEJ!Xl; DER.T5=PZ/INTER;

DER.T7=P2/INTER*X3.I-Pl-P21/BASE*X2;
DER.T8=(-Pl-P2l/BASE*X3;
OUTPUT RESIDUAL=E;

Output:

SAS

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

!TERATION

DEPENDENT VARIABLE: Y

Tl
T4
T7

T2
T5
T8

METHOD: GAUSS-NEVTON

T3
T6

RESIDUAL SS

o -2.90000000
0.36000000
-0.03000000

-2.98025942
0.35309087
0.05407441

-1.30000000
-1.50000000
-0.47000000

-1.16088895
-1.50604388
-0.474363H

0.82000000
-1.00000000

0.78692676
-0.99985707

68.32779625

57.02306899

NOTE: CONVERGENCE CR!TERION MET.
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for s = 1, 2, ... ,448 = nM which are then stored in the data set WORK0l

as shown in Figure 3a. The univariate nonlinear model

with

"y " = "f"("x " e) + "e "s s ' s s = 1, 2, ... , 448 = nM

"f"("x" e)
s '

s = M(t-l) + CL

is fitted to these data using PROC NLIN and the residuals "e " fors

s = 1, 2, ... , 448 = nM are stored in the data set named WORK02.

In Figure 3b the univariate residuals stored in WORK02 are regrouped

into the multivariate residuals et for t = 1, 2, ... , 224 = n and stored

in a data set named WORK05; here we are exploiting the fact that P = I.

From the residuals stored in WORK05, rand p with r- l = p'p are computed

using PROC MATRIX. Compare this estimate of r with the one obtained in

Figure lc. Imposing the across equation restrictions results in a slight

difference between the two estimates.

Using P as computed in Figure 3b, s(e,r) is minimized to obtain

e =

-2.92458126
-1. 28674630
0.81856986
0.36115784
-1. 53758854
-1.04895916
0.03008670
-0.46742014

(from Figure 3c)

as shown in Figure 3c; the ideas are the same as for Figure 3a. The

difference between r in Figures lc and 3b results in a slight difference

between the estimate of e computed in Figure 2c and e above. []
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ContempCr3neCU5 Variance-Cc7ari3nce Matrix of Example 1 Estimated
fram Least Squares Residuals. Across Equation Constraints Imposed.

SAS Shtements:

DATA VQRKQ3; SET VORKQ2i EbEi IF MOD( _N_,2l=Q THEN DELETE i
!:lATA VORKQ4; SET VQRK02, E2=Ei IF MOD( _N_,2)=1 THEN DELETEi
DATA lJORKQ'5 i MERGE VORKe3 VORK04i KEEP E1 E2;
PROC MATRIX F\J=20; FETCH E DATA=\JORK05(KEEP=E1 E2) ;
SIGI1Ad:':IlE1*12Z4i PRINT SIGMA; P=HALF(INV(SICMA» ; PR;:NT Pi

Output:

SAS 4

SIGMA COLl COL2
ROW1 0.164'1246288351 0.09200572942276
RO\J2 0.09200572942276 0.08964264342294

I' CaLl COL2

HO\Jl 3 .76639099219 -3.865677509
nmJZ 0 3.339970820524



flg1lre 3c 1 Fitted by Least Squares, Across Equation
Constraints

SAS Stltements:

DATA VORKDl i SET EXAMPLEl;
P2=-3.865677509; Y=P1*Yl+PZ*Y2; OUTPUT;

0, P2=3.33997082052Q; Y=Pl*Y1+P2*Y2; OUTPUT; DELETE;
PROC NLIN DATA=WORK01 METHOD=GAUSS ITER=50 CONVERGENCE=1.E-13;

T1=-29 T2=-1.3 T3=.82 TQ=.36 T5=-1.5 .03 T8=-. 47;
INTER=T5+T3*Xl+T6*X2+T7*X3;

BASE=-1+T4*X1.T7*X2+T8*X3;
MODEL Y=P1*tOC(PEAKJBASE)+P2*LOC(INTER/EASE);
DER.T1=P1/PEAK; DER.T2=P1/PEAK*X1; DER.T3=P1/PEAK*X2+P2/INTER*X1;
DERT4=P1/PEAK*X3+(-P1-P2)/BASE*X1i DER.T5=P2/INTER;
DER.T6=P2/INTER*X2; DER.T7=P2/INTER*X3+(-P1-P2)/BASE*X2;
DER.T8=(-PI-P2)/BASE*X3i

Output:

SAS

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

5

DEPENDENT VARIABLE: Y

ITERATION

o

T'..
T4
T7

-2.90000000
0.36000000
-0.03000000

T2
T5
T8

-1.30000000
-1.50000000
-0.47000000

METHOD: CAUSS-NEWTON

T3
T6

0.82000000
-1.00000000

RESIDUAL SS

543.55788176

14 -2.92458126
0.36115784
0.03008670

-1.28674630
-1.53758854
-0.46742014

0.81856986
-1.04895916

446.8569520

NOTE: CONVERGENCE CRITERION MET

SAS

NON-tINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y
7

SOURCE

REGRESSION
RES IDUAL
UNCORRECTED TOTAL

(CORRECTED TOTAL)

OF

8
440
448

447

SUM OF SQUARES

6468.84819992
446.85695247
6915.70515239

866.32697265

MEAN SQUARE

808.60602499
1.01558398

PARAMETER

T1
1'2
T3
T4
T5
1'6
T7
1'8

ESTIMATE

-2.92458126
-1.28674630
0.81856986
0.36115784
-1.53758854
-1.04895916
0.03008670
-0.46742014

ASYMPTOTIC
STD. ERROR

0.27790948
0.22671234
0.08088226
0.03029057
0.09192958
0.08367724
0.03614145
0.01926170

ASYMPTOTIC 95 "
CONFIDENCE INTERVAL

LOWER UPPER
-3.47078451 -2.37837801
-1.73232670 -0.84116589
065960389 0.97753584
0.30162474 0.42069093
-1.71826692 -1.35691016
-1.21341839 -0.88449993
-0.04094570 0.10111909
-0.50527708 -0.42956320



The theory in Section 3 would lead one to test H: h(e)

for instance)
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o by computing)

and rejecting if L' exceeds the a-level critical point of the x2-distribution

with q degrees of freedom) recall that e minimizes subject to

h(e) = 0 and that e is the unconstrained minimum of This is what

one usually encounters in the applied literature. We shall not use that

approach here. In this instance we shall compute

L = -
S(6)1:)/(nM - p)

and reject if L exceeds the a-level critical point of the F-distribution

with q numerator degrees of freedom and nM - p denominator degrees of

freedom. There are two reasons for doing so. One is pedogogical) we wish

to transfer the ideas in Chapter 1 intact to the multivariate setting. The

other is to make some attempt to compensate for the sampling variation due

to having to estimate r. We might note that S(6#)1:) = nM (Problem 1) so

that in typical instances S(6)1:) nM. If nM is larger than 100 the

difference between what we recommend here and what one usually encounters

in the applied literature is slight.

In notation used here) the matrix C of Chapter 1 is written as (Problem 2)

and

Writing h = h(e) and H = H(8)) the Wald test statistic is
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One rejects the hypothesis

when W exceeds the upper a X 100% critical point of the F distribution with

q numerator degrees of freedom and nM - p denominator degrees of freedom;

that is when W > F-l(l - a; q, n - p).

Recall from Chapter 1 that a convenient method for computing W is to

compute a vector of residuals with typical element

e = "y " - "f"("x " S) = p' y - p'(N)f(xt,S) ,s s s ' (a) t ""

compute a design matrix F with typical row

£' = (aide') "f"("x " S)s s '

fit the linear model

e = F S + u

by least squares, and test the hypothesis

H: H S = h

We illustrate.

against A: H B h

EXAMPLE 1. (continued) We wish to test the hypothesis of homogeneity,

H: h(e") = 0 against A: h(eO) 0

(2 + e3 + ")h(e) = e3 + e6 + e7
e4 + e7 + e8
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in the model with bivariate response function

using the Wa1d test. To this end, the multivariate observations(yt,xt ) are

transformed to the univariate entities

"ys" -- p'(a)Y t ' " " (' ') ,X s = p(a)' x t

which are then stored in the data set named WORK01 as shown in Figure 4.

Using parameter values taken from Figure 3c, the entities

e = "y " - "f"("x "8) f' = (a/ae') "f"("x " 8)s s s" s s'

are computed and stored in the data set named WORK02. We are now in a

position to compute

by fitting the model

e = f' 8 + us s s

using least squares and testing

H: H 8 = h

We have

against A: H 8 h
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figure 4. Illustration of Test with Esample 1.

5A5 Statements'

DATA \JORKO 1 j SET EXAMPLE 1 ;
P2=-3.B65677S09i Y=Pl*Yl+P2*YZ; OUTPUTi

Pl=O.Oi P2=3.3399708205Z4; Y=P1*Yl+P2*V2; OUTPUT; DELETE;
DATA WORK02; SET VORKOl i
Tl=-2.92458126; T2=-1.28674630; T3=0.81856986; T4=0.36115784;
T5=-1.53758854; T6=-1.04895916; T7=0.03008670; T8=-0.46742014;
PEAK=Tl+TZ*Xl+T3*X2+T4*X3i INTER=T5+T3*Xl+T6*X2+T7*X3;
BASE=-1+T4*Xl+T7*X2+T8*X3;
E=Y-(Pl*LOC(PEAK/BASE)+P2*LOC(INTER/BASE»i
DER_Tl=Pl/PEAK; DER_T2=PI/PEAK*Xl; DER_T3=PI/PEAK*X2+PZIINTER*X1;
DER_T4=PI/PEAK*X3+(-PI-PZ)/BASE*X1i DER_T5=P2/!NTER;
DER_T6=P2/INTER*X2i DER_T7=P2/INTER*X3+(-Pl-P2)/BASE*X2;
DER_T8=(-PI-P2)/BASE*X3;
PROC REG DATA=WORK02i
MODEL E = DER_Tl DER_T2 DER_T3 DER T4 DER_T5 DER T6 DER_T7 DER_T8 I NOINT;
HOMOGENE: TEST DER_T2+DER_T3+DER_T4=-0. 10701860,

DER_T3+DER_T6+DER_T7=-0.20030260,
DER_T4+DER_T7+DER_T8=-0.07617560i

Output:

SAS

DEP VAR!ABLE: E

SOURCE

MODn
ERROR
U TOTAL

DF

8
440
448

SUM OF
SQUARES

4.32010E-12
446.857
446.857

MEAN
SQUARE

S.4001ZE-13
1.015584

F VALUE

0.000

PROB>F

1.0000

ROOT MSE
DEP MEAN
c.v.

1.007762
0.001628355

61888.34

R-SQUARE
ADJ R-SQ

0.0000
-0.0159

HOTE: NO INTERCEPT TERM IS USED. R-SQUARE IS REDEFINED.

PARAMETER STANDARD T FOR HO:
VAR!ABLE DF ESTIMATE ERROR PARAMETER=O PROB > :T:

OER- Tl -2.37028E-07 0.277909 -0.000 1.0000
DER-T2 3.17717E-07 0.226712 0.000 1.0000
DER-T3 5.36973E-08 0.080882 0.000 1.0000
DtR-T4 1 1.64816E-08 0.030291 0.000 1.0000
OER-T5 1 -5.10589E-08 0.091930 -0.000 1.0000
DER-TO 7.81229E-08 0.083677 0.000 1.0000
DER-T7 5.65631£-10 0.036141 0.000 1.0000
DER-T8 2.78288E-08 0.019262 o . 000 1.0000

TEST' HOMOGENE NUMERATOR: 7.31205 DF: 3 F VALUE: 7.1998
DENOMINATOR: 1.01558 DF: 440 PROB H 0.0001
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(from Figure 3c)
0.36115780
0.03008670

0.46742014

1

o
11

o

oo
o
o

1

1

o
1

1

o

1

o
o

(

1.28674630 + 0.81856986 +
0.81856986 - 1.04895916 +
0.36115784 + 0.03008670 -

(-::
G

=

h =

if =

h' (H CH' )-lh/3 = 7.31205
s2 = 1. 015584

(from Figure 4)

(from Figure 3c or 4)

W = 7.1998 (from Figure 4 or by division)

Since F- 1(.95; 3, 440) = 2.61 one rejects at the 5% level. The p-va1ue is

smaller than 0.001 as shown in Figure 4. []

Again following the ideas in Chapter 1, the Wa1d test statistic is

approximately distributed as the non-central F-distribution, with q

numerator degrees of freedom, nM - p denominator degrees of freedom, and

non-centrality parameter

written more compactly as W F' (q,nM - p, A). As noted in Chapter 1, the

computation of A is little different from the computation of W itself; we

illustrate.
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EXAMPLE 1. (continued) Consider finding the probability that a 5%

level Wa1d test rejects the hypothesis of homogeneity

H' heal = r':::::: = 0
+ 67 + 68

at the parameter settings

-2.82625314

-1.25765338

0.83822896

0.36759231

-1. 56498719

-0.98193861

0.04422702
-0.44971643

(
0.16492462883510

• r = 0.09200572942276
0.09200572942276'\

• n = 224

for data with bivariate response function

61 + 62x1 + 63x2 + 64x3in_ 1 + 64x1 + 67x2 + 68x3
f(x,e) =

65 + 63x1 + 66x2 + 67x3in_ 1 + 64x1 + 67x2 + 68x3

the value of 6° chosen is midwayan the line segment joining the last two

columns of Table 2.

Recall (Figure 3b) that r- 1 factors as r- 1 = p'p with

p = -3.865677509 )
3.339970820524

Exactly as in Figure 4, the multivariate model is transformed in Figure 5 to a uni-

variate model and the Jacobian of the univariate model evaluated at 6°, denote it as
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rigure 5. Illustration of Vald Test Power Computations with Example 1.

SAS Statements:

DATA VORKOl; SET EXAMPLE1;
Pl=3.76639099219i P2=-3.865677509; V=Pl*Vl+P2*V2i OUTPUT;
rl=Q.O; Y=P1*Y1+P2*Y2i OUTPUT; DELETE;
DATA VORK02; SET VORK01;
T1= -2.82625314; T2= -1.25765338; T3= 0.83822896; T4= 0.36759231;

-1.56498719; T6= -0.98193861; T7= 0.04422702; T8= -0.44971643;
PCAK=T1+TZ*Xl+T3*X2+T4*X3; INTER=T5+T3*Xl+T6*X2+T7*X3;
BASE=-1+T4*X1+T7*X2+T8*X3;
DER_Tl=Pl/PEAK; DER_T2=Pl/PEAK*Xl; DER_T3=P1/PEAK*XZ+PZfINTER*Xl;
DER_T4=PlfPEAK*X3+(-Pl-PZ)fBASE*Xl; DER T5=PZfINTER;
DER_T6=PZfINTER*XZ; DER_T7=PZfINTER*X3+(-P1-PZ)fBASE*XZ;

FROC MATRIX; FETCH F DATA=VORKOZ(KEEP=DER_TI-DER_T8); C=INV(F'*F) i FREE F;
FSTCH T 1 DATA=VORKOZ(KEEP=TI-T8);
H = 0 1 1 1 0 0 0 0 f 0 0 1 0 0 1 1 0 f 0 0 0 1 0 0 1 1 HO=H*T' ;
LAMBDA=HO'*INV(H*C*H' )*HOifZ; PRINT LAMBDA;

Output:

SAS

LAMBDA

ROV1

COLl

3.Z9906
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F, is stored in the data set named WORK02. Next

A = h' [H C H' ]h/2 = 3.29906

with h = h(eO), H = (a/ae' )h(eO), and

(Figure 5)

is computed using straightforward matrix algebra. From the Pearson-Hartley

charts of the non-central F-distribution in Scheffe (1959) we obtain

1 - F' (2.61; 3, 440, 3.29906) = .55

as the approximation to the probability that a 5% level Wald test rejects the

hypothesis of homogeneity if the true values of eO and L are as above. []

A derivation of the "likelihood ratio" test of the hypothesis

using the ideas of Chapter 1 is straightforward. Recall that e is the

unconstrained minimum of S(e,r), that e minimizes s(e,r) subject to
h(e) = 0, and that h(e) maps into As we have seen, an alternative

method of computing e makes use of the equivalent form of the hypothesis

H: eO = g(pO) for some pO against A: eO g(p) for any p .

One computes the unconstrained minimum p of S[g(p),r] and puts e = g(p) .

Using the formula given in Chapter 1,
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L = (SSE reduced - SSE full)/q
(SSE full)/("n" - p)

and using

= r nM [lly II _ "f"("X II e)]2
s=1 s s '

one obtains the statistic

L = [s(e,E) - S(S,E)]/q
S(S,E)/(nM - p)

One rejects H: h(eO) = 0 when L exceeds the a X 100% critical point F ofa

the F-distribution with q numerator degrees of freedom and nM - p denominator
-1degrees of freedom; F = F (1 - a; q, nM - p) .a

We illustrate the computations with the example. In reading it,

recall from Chapter 1 that one can exploit the structure of a composite

function in writing code as follows. Suppose code is at hand to compute

f(x,e) and F(x,e) = (a/ae' )f(x,e). Given the value p compute e = g(p) and

G = (a/ae' )g(S). Obtain the value f[x,g(p)] from the function evaluation

f(x,S). Obtain (a/ap' )f[x,g(p)] by evaluating F(x,S) and performing the

matrix multiplication F(x,S)G

EXAMPLE 1. (continued) Consider retesting the hypothesis of homogeneity,

expressed as the functional dependency

g(pO) for some pO against A: eO g(p) for any p

with
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6 Clample 1 Fitted by Multivariate Least Squares. Across Equation
Constraints Homogeneity Imposed.

SAS St.ltements:

DATA \.lORK01: SET EXAMPLE1;
Pt=3.76639099219i PZ=-3.865677509i Y=Pl*Yl+PZ*Y2; OUTPUT:
P!=OO; PZ=3.3399708Z05Z4: Y=Pl*Yl+P2*YZ; OUTPUT: DELETE:
PROe NLIN DATA=\.lORK01 METHOO=GAUSS ITER=50 CONVERGENCE=! .E-13;
PARMS R1=-3 RZ=.8 R3=.4 R4=-1.5 R5=.03:
Tl=Rl i TZ=-RZ-R3; T3=RZi T4=R3; T5=R4; T6=-R5-R2i T7=R5i T8=-R5-R3i
PEAK=T1+TZ*Xl+T3*XZ+T4*X3: INTER=T5+T3*Xl+T6*X2+T7*X3;
EASE=-1+T4*X1+T7*X2+T8*X3;
MODEL Y=Pl*LOGlPEAK/BASE)+PZ*LOGlINTER/BASE);
DtR Tl=P1/PEAK; DER T2=PI/PEAK*Xli OER T3=P1/PEAK*XZ+PZ/INTER*X1;
DER-T4=P1/PEAK*X3+l-P1-PZ)/BASE*Xl; DER-T5=P2/INTERi
DER-T6=P2/INTER*X2; OER T7=PZ/INTER*X3+(-P1-PZ)/BASE*X2;
DER-T8=l-PI-P2)/BASE*X3;-

T1; DER.R2=-DER TZ+DER T3-DER T6; DER.R3=-DER_TZ+DER_T4-DER_T8;
DER.R4=DER:T5; DER.R5=-DER:T6+DER:T7-DER:T8;

Output:

SAS

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

ITERATION

DEPENDENT VARIABLE: Y
Rl
R4

R2
R5

METHOD: GAUSS-NE\.lTON

R3 RESIDUAL 55

o -3.00000000
-1.50000000

-2.72482606
-1.592394Z3

0.80000000
0.03000000

0.85773951
0.05768367

0.40000000

0.37430609

556.8280Z354

474.68Z21082

NOTE: CONVERGENCE CRITERION MET.

SAS

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS

SOURCE

REGRESSION
nES IDUU
UNCORRECTED TOTAL

lCORRECTED TOTAL)

DF

5
443
448

447

SUM OF SQUARES

6441.02294156
474.68221082
6915.70515239

866.32697265

DEPENDENT VARIABLE Y

MEAN SQUARE

1288.20458831
1.07151741

2

PARAMETER

Ht
H2
R3
R4
R5

ESTIMATE

-2.72482606
0.85773951
0.37430609
-1.59239423
0.05768367

ASYMPTOTIC
STD. ERROR

0.17837791
0.06707057
0.02713134
0.07748868
0.03407531

ASYMPTOTIC 95 1ft
CONFIDENCE INTERVAL

LO\.lER UPPER
-3.07540344 -2.37424867
0.72592147 0.98955755
0.32098315 0.42762902
-1.74468762 -1.44010083
-0.00928668 0.12465402



g(p) =

PI
-p 2-p 3

P2

P3
P4

-P 5-P2

P5
-P 5-P3
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in the model with response function

e l + e2xl + e3x2 + e4x3in -1 + e4xl + e7x2 + e8x3

f(x,e) =
e5 + e3xl + e6x2 + e7x3in -1 + e4xl + e7x2 + e8x3

using the "likelihood ratio" test; e has length p = 8 and P has length r = 5
whence q = p - r = 3. The model is bivariate so M = 2 and there are n = 224
observations. We adopt the expedient discussed immediately above, reusing the

code of Figure 3c; the Jacobian of g(p) was displayed earlier on in this

section. The result is the SAS code shown in Figure 6. We obtain

sSE(e,2) = 474.68221082

Previously we computed

SSE(e,r) = 446.85695247

(from Figure 6).

(from Figure 3c).

The "likelihood ratio" test statistic is



L

=

[s(e,r) - S(S,r))/q
S(S,r)/(nM - p)

(474.68221082 - 446.85695247)/3
446.85695247/(448 - 8)

9.133 .
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Comparing with the critical point

-1F (.95; 3,440) = 2.61

one rejects the hypothesis of homogeneity at the 5% level. This is, by and

large, a repetition of the computations displayed in Table 3; the slight

change in r has made little difference. []

In order to approximate the power of the "likelihood ratio" test we

proceed as before. We formally treat the transformed model

"y " = "f"("X II e) + lie IIs s ' s s = 1, 2, ... , nM

as if it were a univariate nonlinear regression model and apply the results

of Chapter 1. In a power computation, one is given an expression for the

Mresponse function f(x,e) range in R ), values for the parameters eO

and r, a sequence of independent variables and the hypothesis

H: eO = g(pO) for some pO against A: eO 1 g(p) for any p .

-1Recall that the univariate response function is computed by factoring r
-1as r = p'p and putting

"f"("x II e)
s '

for



s = M(t - 1) +
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= 1, 2, ... , M; t = 1, 2, ... , n .

Applying the ideas of Chapter 1, the null hypothesis induces the location

parameter

where is computed by minimizing

= - - f[xt,g(p)]}

n -1= Et=l{f(xt,eO) - f[xt,g(p)]}'E {f(xt,eO) - f[xt,g(p)]} .

Let

F = (a/ae') f(x eO)t t'

Similar algebra results in the following expressions for the non-centrality

parameters of Section 5 of Chapter 1

Al = (o'PFo - 0'PFGO)/2

A2 = (0' 0 - o'PFo)/2

0' 0 = In o'E-lo
t=l t t

o'P 0 = (En o'I-1F )(En F'E-1F )-l(En F'E-lo )
F t-l t t t=l t t t=l t t

o'PFGo = (En o'E-1F G)(G'In F'E-1F G)-l(G'In F'E-lo )t=l t t t=l t t t=l t t

One approximates the probability that the "likelihood ratio" rejects H by
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where

c = 1 + q F /(nM - p);a a

H(x;v1 , v2 ' A1 ,A2) is the distribution defined and partially tabled in

Section 5 of Chapter 1. Recall that if A2 is small the approximation

P(L> F 1 - F' (F· nM -a a' q, p,

is adequate where, recall, F' (x; vI' v 2 ' A) denotes the non-central

F-distribution. We illustrate with the example.

EXAMPLE 1. (continued) Consider finding the probability that a 5%

level "likelihood ratio" test rejects the hypothesis of homogeneity

H: eO = g(pO) for some pO against A: eO f g(p) for any p

with

g(p) =

PI
-p 2-p 3

P2

P3
P4

-p 5-P2

P5
-p 5 -p 3

at the parameter settings

-2.82625314
-1.25765338
0.83822896

eO = 0.36759231
-1. 56498719
-0.98193861
0.04422702
0.44971643

, I =(0.16492462883510

lO.09200572942276
, n = 224

0.08964264342294

for data with bivariate response function
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e1 + e2x1 + e3x2 + e4x3in -1 + e4x1 + e7x2 + e8x3
f(x,e) =

e5 + e3x1 + e6x2 + e7x3in -1 + e4x1 + e7x2 + e8x3

the value of eO chosen is midway on the line segment joining the last

two columns of Table 2.

with

-1 -1Recall (Figure 3b) that r factors as r = P'p

p -3.865677509 )
3.339970820524

Referring to Figure 7, the multivariate model is converted to a

univariate model and the entities "f"("x " eO) and (a/ae' )"f"("x " e) ares ' s '
computed and stored in the data set named WORK02. Reusing the code of

Figure 6, to minimize

r nM {"f"("x " eO) - "f"["Xs",g(p)]}2s=l s '

is computed using PROC NLIN.

entities

From this value and setting e* = g(pO), the
n n

"0 " = "f"("x " eO) - "f"("x " e*)s s ' s ' n

are computed, adjoined to the data in WORK02, and stored in the data set

named WORK03. Then, as explained in connection with Figure 11a of Chapter 1,

one can regress "os" on (a/ae') "f"("xs",eO) to obtain 0'0 and o'PFo from

the analysis of variance table and can regress "0 " ons



7 !llustratlon of Likelihood Ratio Test Power Computations
with
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SAS

DATA VORKQ1; SET EXAMPLE1;
rl=3.76639099Z19j P2=-3.865677509; Y=Pl*Yl+P2*Y2; OUTPUT;
Pl:00; P2=3.339970920524; Y=Pl*Yl+P2*Y2; OUTPUT; DELETE;
DATA VORK02; SET VORKQ1;

-2.8Z625314; T2= -1.25765338; T3= 0.83822896; T4= 0.36759231i
TS: -1.56498719; T6= -0.98193861; T7= 0.04422702; T8: -0.44971643;
rEAK=Tl+TZ*!1+T3*X2+T4*X3; INTER=T5+T3*Xl+T6*XZ+T7*X3;
BASE=-I+T4*Xl+T7*X2+T8*X3i
fl=Pl/PEAK; fZ=PI/PEAK*Xl; F3=PI/PEAK*XZ+PZ/INTER*Xli
F4=P1/PEAK*X3+(-PI-PZ)/BASE*Xl; F5=PZ/INTER;
f6=PZ/INTER*X2; F7=P2/INTER*X3+(-PI-PZ)/BASE*XZ; F8=(-PI-P2)/BASE*X3i
YDUMMY:Pl*LOG(PEAK/BASE)+PZ*LOG(INTER/BASE); DROP TI-T8i
PROC NL!N DATA=VORK02 METHOO=GAUSS ITER=50 CONVERGENCE=I.E-13;
PARMS 11=-3 R2=.8 R3=.4 R4=-1.5 15=.03;
Tl=Rl; TZ=-R2-R3; T3=R2; T4=R3i T5=R4; T6=-R5-RZ; T7=R5; T8=-R5-R3;
PEAK=Tl+TZ*Xl+T3*XZ+T4*X3; INTER=T5+T3*Xl+T6*X2+T7*X3i
EASE=-1+T4*Xl+T7*X2+T8*X3;
MODEL YDUMMY=Pl*LOG(PEAKfBASE)+PZ*LOG(INTERfBASE);
DER_Tl=Pl/PEAK; DER_T2=PI/PEAK*X1i DER_T3=Pl/PEAK*XZ+P2fINTER*Xl;
DER_T4=PI/PEAK*X3+(-PI-P2)/BASE*XI; DER_T5=PZfINTER;
DER_T6=PZ/INTER*XZi DER_T7=PZ/INTER*X3+(-PI-PZ)/BASE*XZ;
DER_T8=(-PI-PZ)/BASE*X3;
DER.Rl=DER_Tli DER.RZ=-DER_TZ+DER_T3-DER_T6; DER.R3=-DER_TZ+DER_T4-DER_T8;

DER.R5=-DER_T6+DER_T7-DER_T8;

Output:

SAS

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

ITERATION

DEPENDENT VARIABLE: Y

Rl
R4

HZ
R5

METHOD: GAUS5-NEVTON

R3 RESIDUAL 55

Q

4

-3.00000000
-1.50000000

-Z.73217450
-1.59899262

0.80000000
0.03000000

0.85819875
0.05540598

0.40000000

0.37461886

90.74Z81456

7.43156658

NOTE: CONVERGENCE CRITERION MET.



figtHe 7 (Continued).
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SAS StJ.tl!ments

DATA VORK03; SET
R2=0.8581987Si R3=037461886i R4=-1.59899262; R5=OOSS40598i
T3=R2; T4=R3; T7=RS; T8=-RS-R3;

PEAK=T1.T2*X1+T3*X2.T4*X3; INTER=TS.T3*X1.T6*X2+T7*X3i
BASE=-1+T4*X1+T7*XZ+T8*X3i
DELTA=P1*LOC(PEAKIBASEl.P2*LOC(INTERIBASEl-YDUMMYi
FG1=F1i FG2=-F2+F3-F6i FG3=-F2+F4-F8iFG4=FSi FGS=-F6+F7-F8;
PRoe REG DATA=VORK03i MODEL DELTA = Fl-F8 I NO!NT;
FRoe REG DATA=VORK03i MODEL DELTA FG1-FGS I NOINT;

Output:

SAS

DEP VARIABLE: DELTA

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE

110DEL 8 7.401094 0.925137 13358.456
ERROR 440 0.030472 .00006925477
U TOTAL 448 7.431567

SAS

DEP VARIABLE: DElTA

SUM OF MEAN
SOURCE DF SQUARES SQUARE F VALUE

MODEL 5 0.134951 0.026990 1.639
ERROR 443 7.296616 0.016471
U TOTAL 448 7.431567

3

FROSH

0.0001

4

PROS>F

0.1472



whence

0'0 = 7.431567

o'p ° = 7.401094F

o'PFGo = 0.134951

(from Figure 7)

(from Figure 7)

(from Figure 7)
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Al = (o'PFo - 0'PFGO)/2

= (7.401094 - 0.134951) /2

= 3.63307

A2 = (0' °- 0'PFo)/2
= (7.431567 - 7.401094)/2

= 0.01524

c = 1 + q F /(nM - p)ex ex

= 1 + 3(2.61)/(448 - 8)

= 1.01780.

Direct computation (Gallant, 1975) yields

P(L > 2.61) 1 - H(1.01780; 3, 440, 3.63307, 0.01524)

= 0.610 .

From the Pearson-Hartley charts of the non-central F-distribution (Scheffe, 1959)

one has

P(L > 2.61) 1 - F' (2.61; 3, 440, 3.63307)

= 0.60. []
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In Chapter I we noted that the Lagrange multiplier test had rather

bizarre structural characteristics. Take the simple case of testing

H: aO = a* against A: aO a* If a* is near a local minimum or a local

maximum of the sum of squares surface then the test will accept H no matter

A *how large is the distance between a and a Also we saw some indications

that the Lagrange multiplier test had poorer power than the likelihood ratio

test. Thus, it would seem that one would not use the Lagrange multiplier

test unless the computation of the unconstrained estimator e is inordinately
burdensome for some reason. We shall assume that this is the case.

If e is inordinately burdensome to compute then e# will be as well.

Thus, it is unreasonable to assume that one has available an estimator f

with lO(r - bounded in probability when h(aO) = a is false since such

an estimator will almost always have to be computed from residuals from

an unconstrained fit. The exception is when one has replicates at some

settings of the independent variable. Accordingly, we shall base the

Lagrange multiplier statistic on an estimator E computed as follows.n

If the hypothesis is written as a parametric restriction

then let e# minimize 8(a,I) subject to h(a) = a and put

f( -e#)][ - f(xt,-e#)]'xt ' Yt

If the hypothesis is written as a functional dependency

H: eO = g(pO) for some pO against A: eO g(p) for any p

then let p# minimize 8[g(p),I] and put



6-4-29

The constrained estimator corresponding to this estimator of scale is

e that minimizes S(e,E) subject to h(e) = O. Equivalently, let p minimize

S[g(p),E] whence e = g(p)

F . ;-1 ;-1actor1ng L as L = P'P, denoting a typical row of P by and

formally treating the transformed model

"y " = "f"("x " e) + "e "s s ' s

with s = M(t - 1) + a

s = 1, 2, ... , nM

"y "s

"x "s

as a univariate model, one obtains as the second version of the Lagrange

multiplier test given in Chapter 1 the statistic

X H(xtj)]r l

X - f(xtj)l} .

One rejects H: h(eO) = 0 if R > d wherea

d = nMF /[(nM - p)/q + F ]a a a

and F denotes the a X (100%) critical point of the F-distribution with qa

numerator degrees of freedom and nM - p denominator degrees of freedom;

that is a = 1 - F(F . q nM - p)a' ,
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One can use the same approach used in Chapter 1 to compute R. Create

a data set with observations

" = "y " - "f"("x " 8)s s s '

£' = (a/ae' )"f"("x " 8)s s '

A linear regression of on F with no

Let e be the nM - vector with " as elements and let F be the nM by ps
-, 1matrix with f as a typica row.
s

intercept term yields the analysis of variance table

Source d. f. Sum of Squares

Regression p
Error nM-p -,- -e e
Total nM -,-e e

From this table R is computed as

- - - - - -1- - - -R = nM e'F(F'F) F'e/e'e

Let us illustrate.

EXAMPLE 1. (continued) Consider retesting the hypothesis of homogeneity,

expressed as the functional dependency

H: eO = g(pO) for some pO against A: eO f g(p) for any p

with

g(p) =

Pl
-p Z-p 3

Pz
P3

P4
-p S-p Z

Ps
-p -pS 3
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in the model with response function

81 + 82x l + 83x2 + 84x3
-1 + 84xl + 87x2 + 88x3

f(x, 8) =
85 + 83Xl + 86x2 + 87x3
-1 + 84x l + 87x2 + 88x3

using the Lagrange multiplier test. Note that 8 is a p-vector with p = 8,

p is an r-vector with r = 5, q p - r = 3, there are M equations with

M = 2, and n observations with n = 224.
Before computing the Lagrange multiplier statistic R one must first

-1ft - -compute 8 as shown in Figure 8a, E as shown in Figure 8b, and 8 as shown

in Figure 8c. The SAS code shown in Figures 8a through 8c is simply the

same code shown in Figures 3a through 3c modified by substitutions from

Figure 6 so that is minimized instead of This substitution

is so obvious that the discussion associated with Figures 3a, 3b, 3c, and 6

ought to suffice as a discussion on Figures 8a, 8b, 8c.

We have

p. -3.75526011819 )
3.328902782166

(from Figure 8b),

p =

-2.73001786
0.85800567
0.37332245
-1.59315750
0.05863267

(from Figure 8c),



6-4-32

Figure 1 Fitted by Least Squares, Acress Equation Constraints
Imposed, Homogeneity Imposed

SAS St.ltements:

DATA SET EXAMPLEl i
Pl=1.0; P2=Q.0; Y=P1*Y1+PZ*Y2; OUTPUT;

P2=1.0; Y=P1*Y1+P2*YZ; OUTPUT; DELETE;
rRCC NLIN METHOD=CAUSS ITER=50 CONVERCENCE=1.E-13;
FARMS R1=-3 RZ=.8 R3=.4 R4=-1.5 R5=.03;
Tl=R1; T2=-RZ-R3; T3=RZ; T4=R3; T5=R4; T6=-R5-RZ; T7=R5; T8=-R5-R3;
PEAK=T1+T2*X1+T3*XZ+T4*X3i INTER=T5+T3*X1+T6*r.Z+T7*X3;
EASE=-1.T4*Xl+T7*X2+T8*X3;
MODEL Y=Pl*LOG(PEAK/BASE)+PZ*LOG(INTER/BASE) i
DCR_T1=Pl/PEAK; DER_TZ=P1/PEAK*Xl; DER_T3=Pl/PEAK*X2+PZ/INTER*X1i
DER_T4=P1IPEAK*X3+(-P1-PZ)/BASE*Xl; DER_T5=PZIINTER;
DER_T6=P2IINTEn*XZ; DER_T7=P2IINTER*X3+(-P1-PZ)/BASE*XZ;
DER_T8=(-P1-PZ)/BASE*X3;
D£R.Rl=DER_T1; DER.R2=-DER_TZ+DER_T3-DER_T6; DERR3=-DER_TZ+DER_T4-DER_T8i
DER.R4=DER_T5; DER.R5=-DER_T6+DER_T7-DER_T8;
OUTPUT RESIDUAL=E;

Output:

SAS

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

ITERAT!ON

DEPENDENT VARIABLE: Y

R1
R4

RZ
R5

METHOD:

R3 RESIDUAL 55

o

6

-3.00000000
-1.50000000

-Z.71995278
-1.53399610

0.80000000
0.03000000

0.8087066Z
0.08112412

0.40000000

0.36225861

63.33812691

60.25116542

NOTE: CONVERGENCE CRITERION MET.
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figure 8b. Contemporaneous Variance-Covariance Matrix of Example 1 Estimated
from Least Squares Residuals, Across Equation Constraints Imposed,
Homogeneity Imposed.

SAS Statements:

DATA \olORK03i SET \olORKOZi £1=E; IF 110D(_N_,Z)=O THEN DELETE;
DATA \olORKQ4i SET \olORKOZi EZ=Ej IF MOD(_flC,Z)=1 THEN DELETE;
DATA VORKOS, MERGE WORK03 VORK04; KEEP El EZi
FROC MATR!X FV=ZOi FETCH E DATA=\olORKOS(KEEP=El E2) i

PRINT S!GMA; P=HALF(INV(SIGMA»i PRINT Pi

Output:

SAS 3

S!GMA

nOVl
RO\olZ

r

ROWI
nO\ol2

COLI

0.178738689442
O.09503630Z24405

COLl

3.565728486712
o

COLZ

0.09503630224405
0.090Z397Z761352

COLZ

-3.75526011819
3.328902782166
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EK4mple 1 fitted by Least Squares, Across Equation
Constraints Imposed, Homogeneity Imposed

SAS St.ltements:

DATA \JORK01, SET EXAMPLEI i
P2=-3.?55260118l9; Y=Pl*Yl+P2*Y2; OUTPUT;

Y=Pl*Yl+P2*Y2i OUTPUT; DELETE;
FROe NLIN DATA=\JORKOI METHOD=GAUSS ITER=50 CONVERGENCE=l.E-13;
PARMS Rl=-3 R2=.8 R4=-1.5 R5=.03i

T2=-R2-R3; T3=R2i T4=R3i T5=R4; T6=-R5-R2; T7=R5i T8=-R5-R3i
PEAK=Tl+T2*Xl+T3*X2+T4*X3; IMTER=T5+T3*Xl+T6*X2+T7*X3;
EASE=-1+T4*Xl+T7*X2+T8*X3i
MODEL Y=Pl*LOG(PEAK/BASE)+P2*LOG(INTER/BASE);
DER Tl=Pl/PEAK; DER T2=PI/PEAK*Xli DER T3=PI/PEAK*X2+P2/INTER*Xl;
DER-T4=PIIPEAK*X3+(-PI-P2)/BASE*Xli DER-T5=P2/INTERi
DER- T6=P2 I INTER*X2 ; DER T7=P2 I INTER*X3+"( - P1- P2 ) I BASE*X2 ;
DER:T8=(-PI-P2)/BASE*X3;-

Output:

SAS

NON-LINEAR LEAST SQUARES ITERATIVE PHASE

4

ITERATION

DEPENDENT VARIABLE: Y

Rl
R4

R2
R5

METHOD: GAUSS-NE\JTON

R3 RESIDUAL SS

o -3.00000000
-1.50000000

-2.73001786
-1.59315750

0.80000000
0.03000000

0.85800567
0.05863167

0.40000000

0.37332245

522.75679658

447.09568448

NOTE: CONVERGENCE CRITERION MET.

SAS 5

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS

SOURCE

REGRESSION
RESIDUAL
UNCORRECTED TOTAL

(CORRECTED TOTAL)

DF

5
443
448

447

SUM OF SQUARES

5899.23816229
447.09568448
6346.33384677

806.65977490

DEPENDENT VARIABLE Y

MEAN SQUARE

1179.84763246
1.00924534

PARAMETER

RI
H2
R3
H4
R5

ESTIMATE

-2.73001786
0.85800567
0.37332245
-1.59315750
0.05863167

ASYMPTOTIC
STD. ERROR

0.17961271
0.06701564
0.02732102
0.07560672
0.03396211

ASYMPTOTIC 95 Oft
CONFIDENCE INTERVAL

LO\JER UPPER
-3.08302208 -2.37701364
0.72629559 0.98971574
0.31962671 0.42701818
-1.74175216 -1.44456284
-0.00811621 0.12537956



and

e = g(p) =

PI
-P 2-P 3

P2
P3
P4

-P -P5 2
P5

A

-P 5 -P 3

=

-2.7300179
-1.2313281
0.8580057
0.3733224
-1.5931575
-0.9166373
0.0586317
-0.4319541
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= 447.09568448 (from Figure 8c) .

As shown in Figure 9, from these values the entities

and

-I' = (a/ae' )"f"("x " e)s s '

are computed and stored in the data set named WORK02 as

"e " = ETILDEs

I's ... , DER T8)

From the regression of e on I' we obtains s

.............. .... -1 ........e'F(F'F) F'e = 24.696058 (from Figure 9).

Recall that the parameter estimates shown in Figure 9 are a full Gauss-

Newton step from e to (hopefully) the minimizer of It is interesting

to note that if these parameter estimates are added to the last column of

Table 2 then the adjacent column is nearly reproduced as one might expect;

replacing I by is apparently only a small perturbation.
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figure 9. Illustration of Lagrange Multiplier Test Computations with Example 1.
with EX.3.mpIe

SAS Shtements:

DATA VORK01; SET EXAMPLE! ;
Pl:3.565?Z8486?lZj PZ:-3.?55Z6011819i Y=P1-Yl+PZ*YZ; OUTPUTj

Y=P1*Yl+PZ*YZi OUTPUTi DELETEi
DATA IJORKOZ i SET VORKOl j

Rl=-Z.73001?86i RZ=O.85800567; R3=O.3?33ZZ45; R4=-1.59315750; R5=0.05a63l6?j
Tl=Rl; TZ=-RZ-R3; T3=RZ; T4=R3, T5=R4j T6=-R5-RZ; T7=R5; T8=-R5-R3i
PCAK=Tl+TZ*Xl+T3*XZ+T4*X3; INTER=T5+T3*Xl+T6*XZ+T7*X3;
3ASE=-1+T4*Xl+T7*XZ+TB*X3i
YTILDE=P1*LOG(PEAK/BASE)+PZ*LOG(INTER/BASE)i ETILDE=Y-YTILDEi
DER_Tl=Pl/PEAKj DER_TZ=P1/PEAK*Xl; DER_T3=Pl/PEAK*XZ+PZ/INTER*Xl;
DER_T4=Pl/PEAK-X3+(-PI-PZ)/BASE*Xli DER_T5=PZ/INTERi
DER_T6=PZ/INTER*XZ; DER_T7=P2/INTER*X3+(-Pl-P2)/BASE*XZi
DCR_T8=(-PI-PZ)/EASE*X3;
PROC REG DATA=VORK02; MODEL ETILDE=DER_Tl-DER_T8 / NOINT;

Output:

SAS

DEP VARIABLE: ETHDE

SUM OF MEAN
SOURCE OF SQUARES SQUARE

liCDEL 8 /.4.696058 3.087007
ERROR 440 422.400 0.959999
U TOTAL 448 447.096

ROOT MSE 0.979795 R-SQUARE
DEP MEAN 0.001515266 ADJ R-SQ
C.V. 64661.62

F VALUE

3.216

0.0552
0.0402

PROB)F

0.0015

1

NOTE: NO INTERCEPT TERM IS USED. R-SQUARE IS REDEFINED.

PARAMETER STANDARD T FOR HO:
VARIADLE Dr ESTIMATE ERROR PARAMETER=O PROB ) ''I"', • I

DER_Tl -0.182493 0.284464 -0.642 0.5215
DER_TZ -0.045933 0.228965 -0.201 0.8411
DER_T3 -0.029078 0.075294 -0.386 0.6995
DI:R_T4 1 -0.012788 0.027678 -0.462 0.6443
DER_T5 1 0.055117 0.091764 0.601 0.5484
DER_T6 1 -0.125929 0.0.76238 -1.652 0.0993
DER_T7 1 -0.019402 0.033583 -0.57B 0.5637
DI:R_T8 1 -0.039163 0.021008 -1.864 0.0630
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From the computations above, we can compute

= (448)(24.696058)/(447.09568448)

= 24.746

which we compare with

d = (nM)F /[(nM - p)/q + F ]a a a

= (448)(2.61)/[440)/(3) + 2.61]

= 7.83 .

The null hypothesis of homogeneity is rejected. []

Power computations for the Lagrange multiplier test are rather onerous

as seen from formulas given at the end of Section 3. The worst of it is

the annoyance of having to evaluate the distribution function of a general

quadratic form in normal variates rather than being able to use readily

available tables. If one does not want to go to this bother then the power

of the likelihood ratio test can be used as an approximation to the power

of the Lagrange multiplier test.
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We saw in Chapter 1 that, for univariate models, inferences based on the

asymptotic theory of Chapter 3 are reasonably reliable in samples of moderate

size, save in the case of the Wald test statistic, provided one takes the

precaution of making degrees of freedom corrections and using tables of the

F-distribution. This observation would carryover to the present situation

if the matrix P with P'p = r- l used to rotate the model were known. It is

the fact that one must use random P instead of known P that gives one pause

in asserting that what is true in the univariate case is true in the multi-

variate case as well.

Below we report some simulations that confirm what intuition would lead

one to expect. Dividing the Wald and "likelihood ratio" statistics by

S(e,E)/(nM-p) and using tables of F instead of tables of the X2-distribution

does improve accuracy. The Wald test is unreliable. The sampling variation

in P is deleterious and leads to the need for larger sample sizes before

results can be trusted in the multivariate case than in the univariate case.

Since P has less sampling variation than F, the null case Lagrange test

probability statements are more reliable than "likelihood ratio" test prob-

ability statements. These interpretations of the simulations are subject

to all the usual caveats associated with inductive inference. The details

are as follows.
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Table q Accuracy of Null Case Probability Statements.

Monte Carlo

V.uiable
Sample
Size

Asymptotic
Approximation Estimate Standard Error

F(V F) 46 .05 .084 .0051

P(L F) 46 .05 .067 .0046

peR d) 46 .05 .047 .0039

P (IJ I F) 46 .05 .094 .0092

F(L' F) 46 .05 .072 .0082

E(s2) 46 1 .00 1.063 .00083

P(V F) 224 .05 .067 .0056

P(L F) 224 .05 .045 .0046

P(R d) 224 .05 .045 .0046
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EXAMPLE 1. (continued) The simulations reported in Table 4 were

computed as follows. The data in Table la was randomly resorted and the

first n = 46 entries were used to form the variables

Xt = tn[(peak price, intermediate price, base price)/expenditure]'

for t = 1, 2, ... , 46. For n = 224, the Table la was used in its entirety.

At the null case parameter settings

-2.72482606
-1. 23204560
0.85773951
0.37430609
-1. 59239423
-0.91542318
0.05768367
-0.43198976

(

0.1649246288351
r -

0.09200572942276

independent, normally distributed errors e t each with mean zero and variance-

covariance matrix r were generated and used to compute Yt according to

with

t 1, 2, ... , n

81 + 82x l + 83x2 + 84x3tn -1 + 84x l + 87x2 + 88x3

f(x,8) =
85 + 83x l + 86x 2 + 87x3tn -1 + 84x l + 87x2 + 88x3

From each generated sample, the test statistics W, L, R discussed in this

section and the statistics W', L' of Section 3 were computed for the

hypothesis



H: o .

6-4-41

This process was replicated N times. The Monte Carlo estimate of, say,

P(L > F) is p equal to the number of times L exceeded F in the N Monte Carlo

replicates divided by N; the reported standard error is IpO-p)/N. The

value of F is computed as .95 = F(F; 3, nM-p). e (s2) is the average of
s7 = S(6,I)/(nM-p) over the N Monte Carlo trials with standard error computed
1.

1 1 N 2 _2) Nas -N1 - s / , []- 1.- 1.

The formulas for test statistics that result from the "seemingly unrelated"

notational scheme are aesthetically more appealing than the formulas presented

thus far as noted earlier. Aside from aesthetics, they also serve nicely as

mnemonics to the foregoing because in appearance they are just the obvious

modifications of the formulas of Chapter 1 to account for the correlation

structure of the errors. Verification that these formulas are correct is left

as an exercise.

Recall that in the "seemingly unrelated" notational scheme we have M

separate regressions of the sort studied in Chapter 1

Y = f (eO) + e ex = 1, 2, ••• , Mex ex ex ex

with y , f (e ), and e being n-vectors. These are "stacked" into a single regressionex ex ex ex

by writing
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y =

1

fl(e l )

f< e) =
f 2(e 2)

f M( eM)
nM 1

e l
e = e

2

nM
eM

1

Ie 1
e

e2=
.
eM

1

with

P,(e) = 0 C(e,e') = r @ 1.

We have available some estimator r of r, typically that obtained by finding

e to minimize

s(e,r) = [y - f<e)]'(r- l @ I)[y - f<e)]

with r = I and taking as the estimate the matrix r with typical element
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= (1/n) [y - f (6t,!»), [ya a a e

The estimator 6 minimizes S(e,E). Recall that the task at hand is to test a

hypothesis that can be expressed either as a parametric restriction

or as a functional dependency

H: eO = g(pO) for some pO against A: eO g(p) for any p

where p is an r-vector, h(e) is a q-vector, and p = r + q. The various

Jacobians required are

H(e) = (a/ae' )h(e)
G(p) = (a/ap' )g(p)
F(e) = (a/ae' )£(e)

q by p, p by r, and nM by p respectively.

The Wa1d test statistic is

with

C = [F' (6)(E- 1 @ I)F(6»)-1

s2= S(6,E)/(nM - p)

h = h(6), H = H(6).

-1One rejects H: h(eO) = 0 when W exceeds F (l-a, q, nM-p).

The form of the "likelihood ratio" test is unaltered

L = [S(6,E) - S(6,E)]/q
S(6,E)/(nM - p)

where e = g(p) and p minimizes S[g(p),E). One rejects when L exceeds
-1F (l-a; q, nM-p).

As noted above one is unlikely to use the Lagrange multiplier test unless
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S(S,E) is difficult to minimize while minimization of S[g(p),E] is

relatively easy. In this instance one is apt to use the estimate Ewith
typical element

where 6# = g(p#) and p# minimizes S[g(p), I]. Let e = g(p) where p minimizes

S[g(p),E). The Gauss-Newton step away from 6 (presumably) toward e is

where F = and f = The Lagrange multiplier test statistic is

One rejects when R exceeds

d = nM F /[(nM-p)/q + F ]ex ex ex

with Fex
-1= F (I-a; q, nM-p).
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PROBLEMS

1. AI!Show that if e minimizes S(e,l) and r

2. Show that the matrix Cof Chapter 1 can be written as

C = [L: nM (a/ae)"f"("x " e) (a/ae' )"f"("x " 8)]-1s=l s ' s '

using the notation of Section 2.

whence

Show that (a/ae' )"f"("x " 8)s '

3. Show that the equation s = M(t - 1) + a uniquely defines t and a

as a function of s provided that 1 a M and s, t, a are positive integers.

4. Verify that the formulas given for Wand R at the end of this

section in the "seemingly unrelated" notational scheme agree with the formulas

that precede them.
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5. CONFIDENCE INTERVALS

As discussed in Section 6 of Chapter 1, a confidence interval on any

(twice continuously differentiable) parametric function y(e) can be obtained

by inverting anyone of the tests of

that were discussed in the previous section. Letting

one puts in the interval all those yO for which the hypothesis H: h(eO) = 0

is accepted at the a level of significance. The same approach applies to

confidence regions, the only difference is that y(e) and yO will be q-vectors

instead of being univariate.

There is really nothing to add to the discussion in Section 6 of

Chapter 3. The methods discussed there transfer directly to multivariate

nonlinear regression. The only difference is that the test statistics W,

L, and R are computed according to the formulas of the previous section.

The rest is the same.



6-6-1

6. MAXIMUM LIKELIHOOD ESTIMATION

Given some estimator of scale the corresponding least squares estimator

eO minimizes where, recall,

A natural tendency is to iterate by putting

and

where argmins S(S,E) means that value of e which minimizes S(S,E). Continuing

this process generates a sequence of estimators

If the sequence is terminated at any finite step I then is a consistent estimator

of scale with In - bounded in probability under the regularity conditions

listed in Section 3 (Problem 1). Thus, e I is just a least squares estimator and

the theory and methods discussed in Sections 1 through 5 apply. If one iterates

until the sequence converges then the limits

lim.
A

E = E.
0:> 1.-+<» 1.

lim.
A

S = S.
0:> 1.-+<» 1.

will be a local maximum of a normal-errors likelihood surface provided that

regularity conditions similar to those listed in Problem 4, Section 4, Chapter 1

are imposed. To see intuitively that this claim is correct, observe that

under a normality assumption the random variables are independent each

with density
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The log likelihood is

so the maximum likelihood estimator can be characterized as that value of

which minimizes

= det E + (l/n) s(e,E)].

Further, s will have a local minimum at each local maximum of the likelihoodn

surface, and conversely. By Problem 11 of Section 3 we have that

s (6., E.+1) < s (6., E, )n n

Arguments similar to those of Problem 4, Section 4, Chapter 1, can be employed to

strengthen the weak inequality to a strict inequality. Thus we have

s (6.+ l ,E'+1) < s (6.,E.)n n

unless (6 i +1 ,E i +1) = (6 i ,E i ) and can conclude that (8 i +1 ,E i +1 ) is downhill from

(6.,E.). By attending to a few extra details, one can conclude that the limit

(6 ,f ) must exist and be a local minimum of s
00 00 n

One can set forth regularity conditions such that the uniform almost sure

* *limit of s (e,E) exists and has a unique minimum at (e This fact coupledn

* *with the fact that (8 ,E ) has almost sure limit (e ) under the regularityo 0

conditions listed in Section 3 is enough to conclude that (6 ,f ) is tail
00 00

equivalent to the maximum likelihood estimator and thus for any theoretical

purpose can be regarded as if it were the maximum likelihood estimator. As a
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practical matter one may prefer some other algorithm to iterated least squares as

a means to compute the maximum likelihood estimator. In a direct computation,

the number of arguments of the objective function that must be minimized can be

reduced by "concentrating" the likelihood as follows. Let

and observe that by Problems 8 and 11 of Section 3

s (e,r) = s [e,f(e)] = det f(e) + M] .
L. n n

Thus it suffices to compute

and put

to have the minimizer (6 ,f ) of s (e,r). As before, the reader is referred to
00 00 n

Gill, Murray, and Wright (1981) for guidance i.n the choice of algorithms for

minimizing in det f(e).

It seems unnecessary to set forth regularity conditions from which the

claims above can be derived rigorously for two reasons. First, the intuition

behind them is fairly compelling. Secondly, maximum likelihood estimation of the

parameters of a multivariate nonlinear regression model is a special case of

maximum likelihood estimation of the parameters of a nonlinear simultaneous

equation. The general theory is treated in detail in Chapter 8 and when the

general regularity conditions are specialized to the present instance the result

is a listing of regularity conditions that does not differ in any essential respect

from those listed in Section 3. For these two reasons it seems pointless to bother

with the details.

The following facts hold under the regularity conditions listed in Chapter 8:



E is consistent for r*, (E - rO) is bounded in probability, and 6 minimizesn

It follows that a least squares estimator so that one can apply

the theory and methods of Section 4 to have a methodology for inference regarding

e using maximum likelihood estimates. We shall have more to say on this later.

However, for joint inference regarding (e,r) or marginal inference regarding r

one needs the joint asymptotics of (6 ,r). This is provided by specializing the

results of Chapter 3 to the present instance.

In order to develop an asymptotic theory suited to inference regarding

r it is necessary to subject rO to a Pitman drift and thus it is necessary ton
use a slightly different setup for the data generating model than that used in

Section 3 of this chapter. For this, we need some additional notation regarding

r. Let a, a vector of length M(M+l)/2, denote the upper triangle of r arranged

as follows

The mapping of a into the elements of r is denoted as r(a). Let vec r denote the

M
2
-vector obtained by stacking the columns of r = [r(l)' r(2)' ••. , r(M)]

according to

vec r =

The mapping of a into vec r(a) is a linear map and can be written as

vec r(a) = K a

2where K is an M by M(M+I)/2 matrix of zeroes and ones. Perhaps it is best to

illustrate these notations with a 3 by 3 example:



We shall always assume that the

6-6-5

a = (all' a12 , a22 , a13 , a23 , ( 33 )'

G
ll a12 OlUr(a) = a12 a22 a23
a13 a23 a33

all 1 0 0 0 0 0 all
a lZ 0 1 0 0 0 0 a12
a13 0 0 0 1 0 0 a22
a12 0 1 0 0 0 0 aU
a22 = 0 0 1 0 0 0 a23
a23 0 0 0 0 1 0 a33
a13 0 0 0 1 0 0
aZ3 0 0 0 0 1 0
a33 0 0 0 0 0 1. v

vec r(a) Ka

1 1 1 -k:The notation denotes a matrix such that r = and the notation r 2

-1denotes a matrix such that r =
1 1 -k:factorization algorithm used to compute and r satisfies r 2 = I.

The data generating model is

with 8° known to lie in some compact set a* and aO known to lie in some compactn n

set g* over which r(a) is a positive definite matrix, see Section 3 for a

construction of such an g*. The functional form of f(x,8) is known, x is

k-dimensional, 8 is p-dimensional, and f(x,8) takes its values in EM; Yt

and e t are M-vectors. The errors e t are independently and identically distributed

each with mean zero and variance-covariance matrix the identity matrix of order

M. Note that normality is not assumed in deriving the asymptotics. The parameter

to be estimated is

Drift is imposed so that
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In order to use the formulas for the parameters of the asymptotic

distributions set forth in Chapter 3 it is necessary to compute

(a/aA)s[Y(e,x,yO),X,A) and (a2/aAaA' )s[Y(e,x,yO),X,A). To this end, write

= in det r(o) + + o(x,e)]'r-l(o)[u + o(x,e)]

1where u = and o(x,e) = f(x,eO) - f(x,e). Note that u has mean zero and

variance-covariance matrix rO. denote a vector with a one in the i thn 1.

position and zeroes elsewhere, we have (Problem 2):
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= -[u + <S(x,e)]' E- 1(0) (a/ae.)f(x,e)
1

= [(a/ae.)f(x,e)]'E- 1(0)[(a/ae.)f(x,e)]
1 J

- EM 1 EMS + 8 (x,e)](a 2/ae i ae.)fS(x,e)a= = a a a J

(a 2/ao.ae.)s[Y(e,x,yO),X,A]
1 J

= [u + o(x,e)]' E- 1(0) E(C) E- 1(0) (a/ae.)f(x,e)
1 1

(a2/ao.ao.)s[Y(e,x,yO),X,A]
1 J

= t r( E-1 ( 0) E( .) E-1 ( 0) E( .) {I - 2 E-1 ( 0)[ u - 8(x, e) ] [u- 8(x, e) ]' })
J 1
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In order to write (d/da) s[Y(e,x,yO),X,A] as a vector we use the fact

(Problem 3) that for conformable matrices A, B, C

vec (ABC) = (C'@A) vec B

tr (ABC) = (vec A' )'(10 B) vec C

where, recall, vec A denotes the columns of A stacked into a column vector as

defined and illustrated a few paragraphs earlier and A® B denotes the matrix

with typical block a .. B as defined and illustrated in Section 2 of this chapter.

Recalling that vec r(a) = K a we have

From this expression we deduce that

In terms of the notation



NOTATION 6.

Q = J [(alae' )f(x,e*)]'r-1(o*)[(a/ae'
L

6-6-11
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we have

09° _ n
n - sym

(;}O)' U;O) -1 [u vec' (uu' )] <1:° ® E
n
O) -lKJn n n

to)-lVar[vec(uu')](EO to)-lKn n n n

The third moment of a normally distributed random variable is zero whence

e[u vec '(uu')] = 0 under normality. From Henderson and Searle (1979) we have

that under normality

where I(M,M) is a matrix whose entries are zeros and ones defined for a p by q

matrix A as

vec A = I( ) vedA') .p,q

Since for any (J

we must have K = I (M ,M)K whence, under normality,

- 0
.9°n

(to 6<)n

Using
1

( ') ( ° ,vec uu = t l. ... vec ee ,
n n

we have that

(

n0
09° = n
n 8ym

in general.

vec'(ee')]U:o®n n n

[(to 0 Var[vec(ee')](EO 0n n n n
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The form of )s[Y(e,x,yO),X,AO] can be deduced as follows- n n

= - 2(EO)-1(EO)]n J n n n

= vee' [I <81 (EO)-l]vec
J n n

= K'(EO EO)-lK
J n n

Normality plays no role in the form of
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In summary we have

NOTATION 7a (in general)

:;0 =
n

I [( EO ) 'e [e vee I (ee I ) ] (EO 0 EO)n n n n

[(EO
n n n n

11,0 = 0
n

NOTATION 7b (under normality)

1),0 = o.
n

The expressions for <9*, :;*, and 1t* have the same form as above with (Q,3,E*)
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Let A = (6 ,E ) denote the minimum of s (e,E) and let A = (e ,E ) denoten 0000 n n 0000

the minimum of s (e,E) subject to h(A) = O. Define:n

NOTATION 8.

(

[(a/ae')f(X ,8 )]'r- 1 u )t 00 00 t

0 E )-1 vec [u u' - E
oo
-
1 ]

00 00. t t

Expressions for Q, St' and u t are the same with (e ,E ) replacing (6 ,E )
00 00 00 00

throughout. []

We propose the following as estimators of J* and

NOTATION 9a (in general)

o
!.:K' (E2 00

NOTATION 9b (under normality)

G
0

U-1K)
A

-9 = =
00

The expressions for J and have the same form with (Q,E,St) replacing (Q,E,St)

throughout. []
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A test of the marginal hypothesis

where h(e) maps RP into Rq is most often of interest in applications. As mentioned

earlier t maximum likelihood estimators are least squares estimators so that t as

regards the Wald and the Lagrange multiplier tests t the theory and methods set

forth in Section 4 can be applied directly with the maximum likelihood estimators

replacing t respectivelYt the estimators

in the formulas for the Wald and Lagrange multiplier test statistics. The

likelihood ratio test needs modification due to the following considerations.

Direct application of Theorem 15 of Chapter 3 would give

L1 = 2n [s (6 t E ) - s (e t E )]n 00 00 n 00 00

= n(.tn det L - in det E )
00 00

as the likelihood ratio test statistic whereas application of the results in

Section 4 would give
[S(6 t E ) - s(e tE )]/q

00 00 00

L2 =

=

s(e tE )/(nM-p)
00 00

nM/(nM-p)

where e minimize S(etE ) subject to h(e) = O. These two formulas can be reconciled
00

using the equation

or

derived in Problem 4.
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To within a differential approximation

S(S,E ) - s(e ,E )
co co co

= n tr r l [E(6) - E ]
co co

A-I (r 1:: ) f-l[f(e)= n tr 1:: - + n trco co co co

- L1 + n tr f-l[f(e) - r ]co co

r ]
co

= Ll + [s(6,f ) - S(S ,f )].
co co co

Thus one can expect that there will be a negligible difference between an inference

based on either L1 or L2 in most applications. Our recommendation is to use

L1 = n(in det r - in det E ) to avoid the confusion that would result from theco co

use of something other than the classical likelihood ratio test in connection

with maximum likelihood estimators. But we do recommend the use of degrees of

freedom corrections to improve the accuracy of probability statements.

To summarize this discussion, the likelihood ratio test rejects the hypothesis

where h(e) maps mP into mq when the statistic

L = n (in det 1:: - in det f )co co

exceeds qF where F denotes the upper X 100% critical point of the F-distribution

with q numerator degrees of freedom and nM-p denominator degrees of freedom;

F =
We illustrate.

EXAMPLE 1. (continued) Consider retesting the hypothesis of homogeneity,

expressed as the functional dependency



with

g(p) =
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H: 8° = g(pO) for some pO against A: 8° g(p) for any p

( Pl
I-p -p, 2 3
I p

2
P3

P4
-PS-P2

Ps
-P S-P 3

in the model with response function

81 + 82xl + 83X2 + 84x3In_ l + 84Xl + 87X2 + 88X3
f(x,8) =

85 + 83Xl + 86x2 + 87X3In_ l + 84Xl + 87x2 + 88X3

using the likelihood ratio test; e has length p = 8 and P has length r = 5 whence
q = p - r = 3. The model is bivariate so M = 2 and there are n = 224 observations.

In Figure lOa the maximum likelihood estimators are computed by iterating the

least squares estimator to convergence obtaining

(from Figure lOa)

-2.92345
-1.28826
0.81849

8 = 0.3612100

-1. 53759
-1.04926
0.02987
-0.46741

f = (0.165141
00 \.. 0.092505-

0.92505)
0.08989

(from Figure lOa).

Compare these values with those shown in Figures 3b and 3c; the difference is slight.
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Figure lOa Example 1 Fitted by Maximum Likelihood, Across Equation
Constraints Imposed.

SAS Statements:

PROC MODEL
ENDOGENOUS Y1 Y2i
EXOCENOUS Xl X2 X3i
FARMS T1 -2.98 TZ -1.16 T3 0.787 T4 0.353 T5 -1.51 T6 -1.00

T7 0.054 T8 -0.474;
PEAK=Tl+TZ-Xl+T3-XZ+T4-X3i INTER=T5+T3-Xl+T6-X2+T7-X3i
BASE=-1+T4-Xl+T7-X2+T8-X3i
Yl=LOC(PEAK/BASE) i Y2=LOC(INTER/BASE)i
PROC SYSNLIN DATA=EXAMPLEI MODEL=MODELOI ITSUR NESTIT METHOD=CAUSS OUTS=SHATi

Output:

SAS 5

NONLINEAR ITSUR PARAMETER ESTIMATES

APPROX. APPROX.
PARAMETER ESTIMATE STD ERROR IT I RATIO PROB>lTl

Tl -2.92345 0.2781988 -10.51 0.0001
T2 -1.28826 0.226682 -5.68 0.0001
T3 0.8184883 0.08079815 10.13 0.0001
T4 0.3612072 0.03033416 11 . 91 0.0001
T5 -1.53759 0.09204265 -16.71 0.0001
T6 -1.04926 0.08368577 -lZ.54 0.0001
T7 0.02986769 0.03617161 0.83 0.4099
T8 -0.467411 0.01927753 -24.25 0.0001

SYSTEM STATISTICS: SSE = 447.9999 MSE = 2 OBS= 224

COVARIANCE OF RESIDUALS

Yl
12

Yl
0.165141
0.0925046

Y2
0.0925046
0.0898862
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In Figure lOb the estimator minimizing In det L[g(p)] is obtained by

iterated least squares; put e = g(p ) to obtain

(-2.7303
-1. 2315
0.8582
0.3733
-1. 5935
-0.9167
0.0585
-0.4319

(from Figure lOb)

= (0.179194

0.095365

0.095365J

0.090199
(from Figure lOb)

Compare these values with those shown in Figure 6; again, the difference is slight.

In Figure 10c, the likelihood ratio test statistic is computed as

L = n(ln det L - In det r )
00

= 26.2573 (from Figure 10c).

-1F = F (.95;3,440) = 2.61 so that
CL

q F = (3)(2.61) = 7.83.
CL

One rejects

at the 5% level. With this many denominator degrees of freedom, the difference

between q F and the three degrees of freedom chi-square critical value of 7.81
CL

is negligible. In smaller sized samples this will not be the case.

It is of interest to compare

det L - in det r ) = 26.2573 (from Figure 10c)
00 00

with

s(e,r) - s(e,r)

= 474.6822 - 446.8570 (from Figures 6 and 3c)

= 27.8252 .
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Figure lOb. Example 1 Fitted by Maximum Likelihood, Across Equation
Constraints Imposed, Homogeneity Imposed.

SAS Statements:

PROC MODEL OUT=MODEL02j
ENDOGENOUS Yl 12i
EXOGENOUS Xl X2 X3j
PARMS Rl -2.72 R2 0.S5S R3 0.374 R4 -1.59 R5 0.057j
Tl=Rli T2=-R2-R3i T3=R2j T4=R3j T5=R4i T6=-R5-R2j T7=R5j TS=-R5-R3j
PEAK=Tl+T2-Xl+T3-X2+T4-X3j INTER=T5+T3-Xl+T6-X2+T7-X3j
BASE=-1+T4-Xl+T7-X2+TS-X3i
Yl=LOG(PEAK/BASE) j Y2=LOG(INTER/BASE)i
PROC SYSNLIN DATA=EXAMPLEI MODEL=MODEL02 ITSUR NESTIT METHOD=GAUSS OUTS=STILDEi

Output:

SAS

NONLINEAR ITSUR PARAMETER ESTIMATES

APPROX. APPROX.
PARAMETER ESTIMATE STD ERROR 'T' RATIO PROB>:T:

Rl -2.7303 0.1800188 -15.17 0.0001
R2 0.8581672 0.06691972 12.82 0.0001
R3 0.3733482 0.02736511 13.64 0.0001
R4 -1.59345 0.07560367 -21.08 0.0001
R5 0.05854239 0.0339787 1.72 0.0863

SYSTEM STATISTICS: SSE = 448 MSE = 2 OBS= 224

COVARIANCE OF RESIDUALS

10

Yl
Y2

Yl
0.179194
0.0953651

Y2
0.0953651
0.0901989
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figure 10c. Illustration of Likelihood Ratio Test Computations with Example 1.

SAS Statements:

PRoe MATR IX j

FETCH SHAT DATA=SHATCKEEP=Yl Y2) i
FeTCH STILDE DATA=STILDECKEEP=Yl Y2)i
N=224j L=N3(LOG(DET(STILDE»-LOGCDET(SHAT») i PRINT Li

Output:

L

ROWI

SAS

COLI

26.2573

11



The differential approximation d in det E

accurate in this instance. 0

A marginal hypothesis of the form

6-6-23

-1= tr E dE seems to be reasonably

H: h(oO) = 0 against A: h(oO) 'f 0

is sometimes of interest in applications. We shall proceed under the assumption

that the computation of (6 ,0 ) is fairly straightforward but that the minimization
00 00

of s (6,0) subject to h(o) = 0 is inordinately burdensome as is quite often then

case. This assumption compels the use of the Wald test statistic. We shall also

assume that the errors are normally distri.buted.

Under normality, the Wald test statistic for the hypothesis

where h(o) maps into has the form

where

h = h(o )
00

,
H = 0/ 'do' ) h(o ) ,

00

V = U.:K' 0: E )-lK]-l
2 00 - 00

The test rejects when W exceeds the upper a X 100% critical point of a chi-square

random variable with q degrees of freedom.

In performing the computations, explicit construction of the matrix K can

be avoided as follows. Consider w defined by

vee uu' = E(w) = Kw

where u is an M-vector. Subscripts are related as follows



vec uu' = i = 8(8-1)/2 + a -- w.
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If u - NM(O,E) then for

i = 8(8-1)/2 + a

j = 8'(8'-1)/2 + a'

we have (Anderson, 1958, p. 161) that

=

Thus, the variance-covariance matrix C(w,w') of the random variable w can be
!:.:

computed easily. Now consider the asymptotics for the model Yt = u t = E 2 e t

with e t independent N(O,I). The previous asymptotic results imply

but in this case AM = wt and the Central Limit Theorem implies that

I A ,

vn ( (J - (J)- N [°,C(w,w )]
00

We conclude that

and have the following algorithm for computing the elements v .. of V.



DO for 8 = 1 to M·,

DO for cx = 1 to 8;

i = 8(8-1)/2 + cx;

DO for 8' = 1 to M",

DO for cx' = 1 to 8' ;

j = 8'(8'-1)/2 + cx' ;

END;

END;

END;

END;
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Table 5. Yields of 3 Varieties of Alfalfa (Tons Per Acre> in 1944
Following 4 Dates of Final Cutting in 1943.

--------------------------------------------------------------
Date

-------------------------
t Variety B1od A B C D

--------------------------------------------------------------
1 Ladak 1 2.17 1. 58 2.29 2.23
2 Cossac 1 2.33 1. 38 1 .86 2.27
3 Ranger 1 1.75 1.52 1.55 1 .56

4 Ladak 2 1. 88 1.26 1 .60 2. 01
5 COSS<lC 2 2.01 1. 30 1.70 1 .81
6 R<lnger 2 1. 95 1. 47 1 . 61 1.72

7 Ladak 3 1 .62 1. 22 1 .67 1 .82
8 Cossac 3 1. 70 1. 85 1. 81 2 .01
9 Ranger 3 2.13 1. 80 1 .82 1 .99

10 Ladak 4 2.34 1. 59 1. 91 2.10
11 Cos sac 4 1 .78 1. 09 1.54 1 .40
12 Ranger 4 1. 78 1.37 1. 56 1.55

13 Ladak 5 1. 58 1.25 1.39 1 .66
14 Cossac 5 1. 42 1. 13 1. 67 1 . 31
15 Ranger 5 1. 31 1. 01 1.23 1 .51

16 Ladak 6 1 .66 0.94 1. 12 1. 10
17 Cos sac 6 1. 35 1.06 0.88 1 .06
18 Ranger 6 1. 30 1 . 31 1. 13 1. 33

--------------------------------------------------------------
Source: Snedecor and Cochran(1980)
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We illustrate with an example.

EXAMPLE 2. (Split Plot Design) The split plot experimental design can

be viewed as a two-way design with multivariate observations in each cell which

is written as

Y1'J' = u + p. + T. + e ..1 J 1J

where Yij' u, etc. are M-vectors and

i = 1, 2, ••• t I = 4F blocks

j = I, 2, ... , J = 4F treatments

('.(e .. = E •- 1J 1J

In the corresponding univariate split plot analysis, the data are assumed to

follow the model

where k = 1, 2, ... , M, Roman letters denote parameters, and Greek letters denote

random variables, Var(n .. ) = 0
2 , Var(Ek ,.) = 0

2 , and random variables with1J n 1J E
different subscripts are assumed independent. It is not difficult to show

(Problem 5) that the only difference between the two models is that the univariate

analysis imposes the restriction

on the variance-covariance matrix of the multivariate analysis; I is the identity

matrix of order M and J is an M by Mmatrix whose entries are all ones. Such an

assumption is somewhat suspect when the observations

represent successive observations on the same plot at different points in time.

An instance is the data shown in Table 5.
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For these data, M = 4, n = 18, and the hypothesis to be tested is H: h(aO) = 0 where

1 0 -1 0 0 0 0 0 0 0 ' an
1 0 0 0 0 -1 0 0 0 0 a12
1 0 0 0 0 0 0 0 0 -1 a22

h(a) = 0 1 0 -1 0 0 0 0 0 0 au
0 1 0 0 -1 0 0 0 0 0 a23

0 1 0 0 0 0 -1 0 0 0 a33

0 1 0 0 0 0 0 -1 0 0 a14

0 1 0 0 0 0 0 0 -1 0 a24

, .-v

H
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Figure 11. Maximum Likelihood Estimation of the Variance-Covariance Matrix
of Example 2.

SAS Statements:

PROC ANOVA DATA=EXAMPLE2;
CLASSES VARIETY BLOCK;
MODEL ABC D = VARIETY BLOCK;
MANOVA I PRINTE;

Output:

SAS

ANALYSIS OF VARIANCE PROCEDURE

6

E = ERROR SS&CP MATRIX

DF=10 A B C D

A 0.56965556 0.23726111 0.25468889 0.36578889
B 0.23726111 0.46912222 0.26341111 0.31137778
C 0.25468889 0.26341111 0.42495556 0.25678889
D 0.36578889 0.31137778 0.25678889 0.60702222
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The maximum likelihood estimate of E is computed in Figure 11 as

(000316475 0.0131812
0.0131812 0.0260623

}; ,
= I 0.014149400 0.0146340

lO.0203216 0.0172988

whence

(0.00558519 '
i
! 0.00803889
1-0.00207593

h(aoo ) =1-0.00096821
-0.00145278 i
-0.00714043

\ -0.00411759)1
\..-0.00108488

0.0141494
0.0146340
0.0236086
0.0142660

0.0203216

0.0172988)'
0.0142660
0.0337235

= E(a )
00
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Figure 12. Wald Test of a Restriction on the Variance-Covariance Matrix
of Example 2.

SAS Statements:

0.26341111
0.60702222) I;

0.365788891
0.311377781
0.256788891
0.60702222;
0.25468889
0.25678889

S

HH

PROC MATR IX;
SSCP = 0.56965556 0.23726111 0.25468889

0.23726111 0.46912222 0.26341111
0.25468889 0.26341111 0.42495556
0.36578889 0.31137778 0.25678889

= <0.56965556 0.23726111 0.46912222
0.42495556 0.36578889 0.31137778

= 1 0 -1 0 0 0 0 0 0 01
1 0 0 0 0 -1 0 0 0 01
1 0 0 0 0 0 0 0 0 -11
o 1 0 -1 0 0 0 0 0 01
o 1 0 0 -1 0 0 0 0 01
o 1 0 0 0 0 -1 0 0 01
o 1 0 0 0 0 0 -1 0 01
o 1 0 0 0 0 0 0 -1 0;

N=18; SICMA=SSCPI/N; H=HH*S./Ni
M=4; V=(0*<1:M*<M+l).12»'*(0*(1:M*(M+1)./2»;
DO B = 1 TO Hi DO A = 1 TO B; I = B*( B-1)./2+ A;
DO BB = 1 TO H; DO AA = 1 TO BB; J = BB*<BB-l)./2+AA;
V(I,J)=SICMA<A,AA)*SICMA(B,BB)+SICMA(A,BB)*SIGMA(B,AA) ;
END; END; END; ENDi
WALD=N*(H'*INV(HH*V*HH' )*H); PRINT VALD;

Output:

SAS

VALD COLl

ROWl 2.26972
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Figure 13 illustrates the algorithm for computing V discussed above and we

obtain

W= 2.26972 (from Figure 12).

Entering a table of the chi-square distribution at 8 degrees of freedom one

finds that

p = p(W > 2.26972) =0.97
A univariate analysis of the data seems reasonable.

This happens to be an instance where it is easy to compute the maximum

likelihood estimate subject to h(o) = O. From Figure 13 we obtain

(0.0287605 0.0156418 0.0156418 0 0 01564181I: I 0.0156418 0.0287605 0.0156418 0.0156418=00 LO o 0156418 0.0156418 0.0287605 0.0156418 ,
I

0.0156418 0.0156418 0.0156418 0.0287605)

For a linear model of this form we have (Problem 6)

L = 2n[s (8 ,E ) - s (6 ,E )]n 00 00 n 00 00

= n[in det E + tr E- 1E - in det E - M]
00 OD co 00

= 2.61168 (from Figure 1 4)
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Figure 13. Maximum Likelihood Estimation of the Variance-Covariance Matrix
of Example 2 under the ANOVA Restriction.

SAS Statements:

PROC VARCOMP OATA=EXAMPLE2 METHOD=ML;
CLASSES VARIETY DATE BLOCK;
MODEL
YIELD = BLOCK VARIETY DATE DATE-BLOCK DATE-VARIETY BLOCK-VARIETY I
FIXED = S;

Output:

SAS

MAXIMUM LIKELIHOOD VARIANCE COMPONENT ESTIMATION PROCEDURE

DEPENDENT VARIABLE: YIELD

2

ITERATION

o
1

OBJECTIVE

-280.48173508
-280.48173508

VAR(VARIETY-BLOCK)

0.01564182
0.01564182

VAR(ERROR)

0.01311867
0.01311867

CONVERGENCE CRITERION MET
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Figure 14. Likelihood Ratio Test of a Restriction on the Variance-Covariance
Matrix of Example 2.

SAS Statements:

PRoe MATR IX ;
SSCP = 0.56965556 0.23726111 0.25468889 0.36578889/

0.23726111 0.46912222 0.26341111 0.31137778/
0.25468889 0.26341111 0.42495556 0.25678889/
0.36578889 0.31137778 0.25678889 0.60702222;

N=18; M=4; SHAT=SSCPI/N; STILDE=0.01311867II(M)+J(M,M,O.01564182)i
i PRINT Li

Output:

SAS

L

ROWI

COLI

2.61168
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which agrees well with the Wald test statistic. []

A test of a joint hypothesis

is not encountered very often in applications. In the event that it is,

application of Theorems 11, 14, or 15 of Section 5, Chapter 3 is reasonably

straightforward.
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PROBLEMS

1. Show that (21 - is bounded in probability. Hint, see Problem 1,

Section 3.

2.

(a/aa.)

Show that = In Problem 4 the expressions
-1 -1 -1 -1(a) = (a) and (a/aai ) in det =

are derived. Use them to derive the first and second partial derivatives of

s[Y(e,x,yO),X,A] given in the text.

3. Denote the jth column of a matrix A by A(j) and a typical element by

a. .. Show that

= .. AHB(.))1J

then stack the columns (ABC)(j) to obtain

vec(ABC) = (C'0 A)vec B.

Show that

whence

tr(ABC) = vec' (A' )vec(BCI) = vec' (A' HI 0 B)vec C.

4. Show that = Use I = to obtain

o = + whence

= Let a square matrix A have elements

a .. , let c .. denote the cofactors of A and let a ij denote the elements of A-I.

From det A = a;kc;k show that (a/aa .. ) det A = c = a ji det A. This implies thatij
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-1(a/a vec'A) det A = det A vec'(A )'

Use this fact and the previous problem to show

(a/aO,) det L(o) = det L(o) vee' [L-l(o)] vec[(a/ao,)L(O)]
1 1

5. Referring to Example 2, a two-way multivariate design has fixed part

whereas the split-plot ANOVA has fixed part

Use the following correspondences to show that the fixed part of the designs

is the same

(t, + (ts) l' , ... , t , + (ts)k' , ... , t , + (ts)M')
J J J J J J

, = (Pli,··"Pki"",PMi) =Pi
, = (Tlj,···,Tkj,···,TMj) =T,
J

J.l' = (J.l l , ... , J.lk , ... , = (m, ... , m, , m) ,

(r, + (rs)l" ,r. + (rs)k" ... ,r. + (rs)M')
1 1 1 1. 1. 1.

Show that under the ANOVA assumption L = 0
2 I + 0

2 J.
E: n

6. Suppose that one has the multivariate linear model

y' = + e't t

where B is k by p and ,
Yt,

Yl
Y = y'2..

y'n
and show that

t = 1, 2, ... , n

is 1 by M. Write

x =
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2 Sn(B,r) = in det r + tr r-l[y .. PxY]' [y .. PxY]/n

+ tr r-l[PxY - XB]' [PXY - XB]/n

where Px = X(X'X)-lX'. One observes from this equation that B will be computed

as 8 = (X'X)-lX'Y no matter what value is assigned to r. Thus, if (B ,r )
00 00

minimizes s (B,r) subject to r = r(o), h(o) = 0 and (8 ,E ) is the unconstrainedn 00 00

minimizer then

2 s (B ,r )n 00 00
= in det r

00
+ tr r r

00 00
+ 0 .
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7. AN ILLUSTRATION OF THE BIAS IN INFERENCE
CAUSED BY MISSPECIFICATION

The asymptotic theory in Chapter 3 was developed in sufficient generality

to permit the analysis of inference procedures under conditions where the data

generating model and the model fitted to the data are not the same. The

following example is an instance where a second order polynomial approximation

can lead to considerable error. The underlying ideas are similar to those of

Example 1.

EXAMPLE 3. (Power curve of a Translog test of additivity) The theory

of demand states that of the bundles of goods and services that the consumer

can afford he will choose that bundle which pleases him the most. Mathematically

this proposition is stated as follows: Let there be N different goods and

services in a bundle, let q = (ql,qZ, .•. ,qN)' be an N-vector giving the

quantities of each in a bundle, let p = (Pl'PZ' ... ,PN)' be the N-vector of
corresponding prices, let u*(q) be the pleasure or utility derived from the

bundle q, and let Y be the consumer's total income. The consumer's problem is

Maximize u*(q) sUbject to p'q Y .

The solution has the form q(x) where x. =ply. If one sets

* *g (x) = u [q(x)]

then the demar.d system q(x) can be recovered by differentiation

The recoveT'J formula is called Roy-'s identity and the function g*(x) is called

the indirect utility function. See Varian (1978) for regularity

conditions and details.
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These nay be adapted to emperical work by setting forth an indirect

*utility function which is to adequately approximate g (x) over

a region of interest I. Then Roy's identity is applied to obtain an

approximating demand Usually one fits to consumer expenditure share

data q.p./Y i = 1, 2, ... , N although, as we have seen from Example 1,

is the expenditure system

The result

q.P./Y = f.(X,A) + e.

with

i=1,2, ... ,N-l

r. (X,A) =[xJ(%X)g(X,A)]-lx. (a/ox. )g(X,A) .
1. 1.

The index i ranges to N - 1 rather than N because expen::Uture shares sum to

one for each consumer and the last share may be obtained by subtracting the

rest. Converting to a vector notation, write

where y, rex, A) and e are N - 1 vectors. Measurements on n consumers yield

the regression equations

t=1,2, ... ,n

Multivariate nonlinear least squares is often used to fit the data whence,

referring to Notation 1, Chapter 3, the sample objective function is

and

where § is a preliminary estimator of C(e,e')
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Suppose that the consumer's true indirect utility function is additive

Ci*(x)

Christensen, Jorgenson, and Lau (1975) have proposed that this supposition be

tested by using a Translog indirect utility function

to obtain the approximating expenditure system

f. (x,>..) =

with

and

then testing

H: 6ij =0 for all i :1= j against A: eij :1= 0 for some i:l=j .

This is a linear hypothesis of the form

h(A) = H>..= 0

with

as a possible test statistic where An minimizes sn(A) and V is as defined in

Section 5, Chapter 3.
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The validity of this inference depends on whether a quadratic in logaritbms

is an adequate approximation to the consumer's true indirect utility fUnction.

*For plausible alternative specifications of g (x), it should be true that:

p(w > c) = Ci

p(W > c) > Ci

*if g is additive,

if g* is not additive,

if the Translog is to be accepted as adequate. In this section

we shall obtain an asymptotic approximation to P(W > c) in 8rder to shed

some light on the quality of the approximation.

For an appropriately chosen sequence of N-vectors k , Ci =1,2,3, ... the
Ci

consumers indirect utility function must be of the Fourier form

g(x,y) = u + b 'x + 'exo

c:D c:D [+ !:_,[u +l:. r u. cos(jk'x) -v. sin(jk'x)]}
....-.J. ':)et J= JCi Ci JCi Ci

where y is vector of infinite length whose entries are b and some triangular

arrangement of the u.
JCi

consumer's expenditure

c:D ,and v .. C = u k k In consequence, theJet ' -toa=l OCi Ci Ci •

system f(x,y) is that which results by applying Roy's

identity to g(x,y) • The indirect utility fUnction is additive if and only

if the elementary N-vectors are the only vectors k which eneter g(x,y) with
Ci

non-zero coefficients. That is, if and only if

, lJr 2g(x,y) = u + b x - lU xo et= OCt Ci

+ r'"ll[u + leu. cos(jx ) -v. sin(jx )J)
et= OCt J= Ja a Ja Ci

See Gallant (1981) for regularity conditions and details.
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The situation is, then, as follows. The data is generated according to

The fitted is

t=l,2, ... , n

,.
with Aestimated by Aminimizing

where

S(y,X,S,A) =

The probab ility pCW>C] is to be approximated for plausible settings of the

yO where

'" 'q' ( "'. I) -L_",W = nA _> HVH, tlA,.

For simplicitys we shall compute power assuming that (YtSXt) are inde-

pendently and identically distributed. Thus s u*and UO of Notations 2 and 3, Chapter 3

are zero and the asymptotic distribution of W is the .non-central chi-square.

We assume that e(e) =0, C(ee ') =!:, that S converges almost to !: ,n

and that me's -!:) is bounded in probab ility. Direct computation using
n

Notations 1 and 3 of Chapter 3 yields



Table 6. Data of Christensen, Jorgenson and Lau (1915).

--------------------------------------------------------------------
Durables Non-durables Services

---------------- ---------------- ----------------
Year Quantity Price Quantity Price Quantity Price
--------------------------------------------------------------------
1929 28.9645 33.9 98.1 38.4 96.1 31.6
1930 29.8164 32.2 93.5 36.4 89.5 32. 1
1931 28.9645 31 .4 93. 1 31. 1 84.3 30.9
1932 26.8821 23.9 85.9 26.5 11.1 28.8
1933 25.3616 31 .3 82.9 26.8 16.8 26. 1
1934 24.6104 21.7 88.5 30.2 76.3 26.8
1935 22.3387 28.8 93.2 31.5 19.5 26.8
1936 24.1311 32.9 103.8 31.6 83.8 27.2
1937 24.1371 29.0 107.7 32.7 86.5 28.3
1938 26.6928 28.4 109.3 31 . 1 83.1 29. 1
1939 26.4088 30.5 115 . 1 30.5 86.1 29.2
1940 27.0714 29.4 119 . 9 30.9 88.7 29.5
1941 28.4912 28.9 127.6 33.6 91.8 30.8
1942 29.5325 31 .1 129.9 39. 1 95.5 32.4
1943 28.6806 38.0 134.0 43.7 100.1 34.2
1944 28.8699 37.7 139.4 46.2 102.7 36. 1
1945 28.3966 39.0 150.3 47 . 8 106.3 31.3
1946 26.6928 44.0 158.9 52.1 116 .7 38.9
1941 28.3966 65.3 154.8 58.7 120.8 41 .7
1948 31.6149 . 60.4 155.0 62.3 124 . 6 44.4
1949 35.8744 50.4 157.4 60.3 126 . 4 46.1
1950 38.9980 59.2 161 .8 60.7 132.8 47.4
1951 43.5414 60.0 165.3 65.8 137.1 49.9
1952 48.0849 64.2 111.2 66.6 140.8 52.6
1953 49.8833 51.5 115.1 66.3 145.5 55.4
1954 53.1016 68.3 177.0 66.6 150.4 57.2
1955 55.4680 63.5 185.4 66.3 157.5 58.5
1956 58.8756 62.2 191 .5 67.3 164.8 60.2
1951 61.6206 56.S 194.8 69.4 170.3 62.2
1958 65.3122 66.7 196.8 71 .0 175 . 8 64.2
1959 65.7854 63.3 205.0 71. 4 184.7 66.0
1960 68.6251 73.1 208.2 72.6 192.3 68.0
1961 70.6129 72.1 211.9 73.3 200.0 69.1
1962 11.5594 72.4 218.5 13.9 208.1 10. 4
1963 73.5472 72.5 223.0 74.9 217.6 11 .1
1964 11.2381 16.3 233.3 15.8 229.1 72.8
1965 81.9715 82.3 244.0 77.3 240.7 74.3
1966 81.4615 84.3 255.5 80.1 251 .6 76.5
1967 93.8981 81 .0 259.5 81 .9 264.0 78.8
1968 79.5774 81.0 270.2 85.3 275.0 82.0
1969 106.7710 94.4 276.4 89.4 287.2 86.1
1970 109.1380 85.0 282.7 93.6 297.3 90.5
1971 115.2900 88.5 287.5 96.6 306.3 95.8
1972 122.2000 100.0 299.3 100.0 322.4 100. 0

--------------------------------------------------------------------
Source: Gallant(1981)
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JO = O(xt,>.,o ,'I/)O'(xt,>.,o ,y0)JI:- l

x [(a/a>., ')f(Xt ,>.,0)]

'N'here

and !:ij denotes the elements of !:-l .

Values of yO were chosen as follows. The parameter yO was truncated to

vector of finite length by using only the multi-indices

and discarding the rest of the infinite sequence {ka }:=l. Let K denote the

root sum of squares of the parameters of g(x,y) which are not associated with

elementary vectors for k. For specified values of K, the parameters yO werea
obtained by fitting f(x,yO), subject to specified K, to the data used by

Christenson, Jorgenson, and Lau (1975) which are shown in Table 6. This

provides a sequence of indirect utility functions g(x,yO) which increase in

the degree of departure from additivity. When K = 0, g(x,yO) is additive

and when K is unconstrained the parameter yO is free to adjust to the data

as best it can.
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The asymptotic approxination to c) with c chosen to give a nominal

.01 level test are shown in Table 7. For comparison, the power curve W

computed the correct model - the Fourier expenditure system - is

included in the table.

We see Table 7 that the Translog test explicit additivity is

seriously flawed. The actual size the test is much larger than the

nominal level .01 and the power curle is relatively

Power does increase near the null hypothesis, as one might expect, but it

again as departures additivity become more extreme.



Table 7. Tests for an Additive Indirect Utility Function.
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K

Fourier

Noncentrality Power

Translog

NoncentraIity Power

0.0 0.0 0.010 8.9439 0.872

0.00046 0.0011935 0.010 8.9919 0.874

0.0021 0.029616 O. 011 9.2014 0.884

0.0091 0.63795 0.023 10.287 0.924

0.033 4.6689 0.260 14.268 0.987

o.059 7.8947 0.552 15.710 0.993

0.084 82.815 1.000 13.875 0.984

unconstrained 328.61 1 .000 10.230 0.922
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