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1. Introduction

The underlying model in this discussion has the form:

Yl fl(X,e) + Ul

YZ = fZ(X,e) + Uz

(1.1)

where (U l ' UZ) = U is a mean zero random vector with probability density

function h. f l and f Z . f· d . f . f hare spec1 1e ,cont1nuous unct10ns 0 t e exogeneous

variable X and the parameters e. e and h are unknown.

The interest in this paper concerns estimating e and h when Y is not

observed directly. We consider the data, z, where

(1. Z)

Thus, Yl is only observed conditional on the event {YZ>O}. Also, note that

Yz is never observed explicitly; only its sign is known. This particular

observational model has a variety of applications in economics, psychology

and education. One important example arises in labor economics for evaluating

training programs where the second equation represents a selection rule such

as voluntary selection or selection by program administrators.

Using this observational model, we propose consistent estimates for 8 and h

based on the maximum likelihood criterion. In order to define these estimates

we first give the probability density for z and state the assumptions made on

8 and h.
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Let denote Lebesque measure and ° be a measure that gives the pointv

v unit mass. Then the joint distribution of (zl' zZ) is absolutely continuous

with respect to the product measure + 00) x (00 + 01). Using a conditioning

argument, the log density of z with respect to this dominating measure is

(1. 3)

Given n independent observations the log-likelihood has the form:

We will assume that e E 8, h E Hwhere e is a compact metric space

(usually a closed and bounded set in mk ) and H is a bounded subset of an

Z(m+l) order Sobelev space on m. Finally let be a positive weight function,

pK a polynomial of degree K in ]RZ and FK = if: f = Set

We will assume that K = K -+ ""as n -+ "". Then the estimates (6 ,h he x Hkn n n

satisfy:

t (8 ,h )n n n max t (e ,h) .
(e,h)E e x H nKn

In order to define Hwe first present some notation concerning function

spaces.
')

Define the differential operator for functions on as

We will use the Sobolev Spaces (mth order):
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( 1.4b)

WO,2(A) = 2 in general wm,2(A)for m > 0. Note that L (A) and is a Hilbert

Space with respect to the inner product:

<f,g> 2
p p

= <D f,D g> 2wm, (A) L (A)

(see Adams, 1976). To simplify notation, in this paper when A

f . h d .. (14b) Wm,2 =__JII,2(lR2).o ten om1t t e oma1n 1n .: W

For R > 0 let

lR2 we will

Then we have,

Thus H is a set of density functions with zero mean and whose tail behavior

lies between the extremes of and Moreover, the restriction of

h £ BR is an implicit assumption on the smoothness of h. This constraint

limits the amount of oscillation in h and its derivative. The requirement

that Ih E wm+l ,2 is necessary to insure that the weighted polynomials in

F can be used to approximate functions in H. (see Lemma 4.2)

Let e* and h* denote the true values of e and h. Under conditions A-C

(see Section 2) which insure that the parameters are identifiable and assuming

conditions I-III which concern the Ceasero summability of {Uk,Xk}K =1 00 and
1 '

the tail behavior of the densities in H (see Section 3). We prove:

Theorem 1.1

Suppose e* E e and h* £

Wm,2(lR2). If m ;;; 2 then e
n

OOu un where the closure is taken with respect to
k=l k
-+- e* a.s. inS
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(1.4c)

We note that the convergence with respect to mth order Sobelev norm

is quite strong. For example (1.4b) implies that

I P Isun.. (D h )(U) - (D h)(U) 0
UEJRL n

a.s.

for all P such that 0 Ipi m-2 . In general, if A is any continuous

functional on then I A(h ) - A(h*)1 0n a.s.
&5

The main difficulty in interpreting this theorem is relating U Hk toK=l
H F. Although in Section 4 we show that is a dense set of functions in

k=l k
H H (, this is not enough to guarantee that will also be dense. The problem

k=l K

arises in taking the intersection: Hk = FKn H and in general, U Hk may not
k=l

be equal to H.) In order to obtain consistency for all functions in H we

consider a slightly different estimate. Let R be the closure of H in

and let Q: Hbe the projection operator such that

Q(g) = h (=> Ilg-hll 2 = mi!!. Ilf-hll 2. (l.5)
Wm, fEH Wm,

Thus, Q in this case is the best approximation to f by a density satisfying

the constraints in H. Since H is a closed, convex set in such an operator

is well-defined (see Rudin, 1974, p. 83).

Now define the estimates e ,h such that e E8n n n

g E FK and
n

hn Q(g) for some

l (8 ,h )n n n
f. (e,Q(f» .n

Using this estimate we prove.

Theorem 1.2

Suppose F wm+l,2(m2) and m 2. If h* E Hand e* E e

then en e* a.s. in 8

and a.s. in
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The next section gives conditions under which e,h are identifiable and

the expected log-likelihood has a unique maximum. Section 3 proves Theorem 1.1

and the following section proves Theorem 1.2.

2. Identifiability of the Parameters

Let X, denote the space containing the exogenous variable x and let v be

a measure on X that is the weak limit of the empirical distributions of

Identifiability conditions:

Let e,e' 1::8.
A) If

fl(x,e')

f 2(x,e') a.e. v

then e=e'.
B) If fZ(x,e) = a.e. v for some monotone transformation then

fZ(x,e) = fZ(x,e').

C) Let B be any rectangle in ]RZ and let e E .

The later two conditions may appear unusual and require some comment.

In B), the invariance of f Z under monotone functions is necessary because

yz is never observed directly, only its sign is known.

To illustrate the problem encountered in this situation suppose

e, Xc;; lR and f(x,e) = xe. Then,

However, if we make the change of variables w = cu where c is some arbitrary

value
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1-h(w)dwc

1where 6'= 6c h' = -- h, c

Thus, the parameters of the model can be varied without changing the probability

distribution of zZ.

Condition C insures that the distribution of the exogenous variables is

rich enough so that (f l (x,6), f Z(x,6» will trace out the support of

Without this requirement, the error density might only be identifiable on a

region smaller than its support. If X and v is dominated by Lebesque

measure then condition C) implies that for fixed 6 E (9 the map

{fl (x,6), f Z(x,6)}: X -+ is onto Le. for any u E there is an x EX

such that (f l (x,6), f Z(x,6» = u .

The following two theorems address the identifiability and uniqueness

of the maximum likelihood estimates of the parameters and error density. For

technical reasons that will be clearer in Section 3 (see Lemmas 3.1 and 3.Z) we

state these theorems for h E H , where the closure of H is taken with respect

to Wm,Z. Although elements in the closure will not be contained in BR they

will still be densities with zero mean.

Theorem Z.l

Suppose conditions A-C hold. Let h,h' E H, 6,6' E 9.

If

(Z.1)

a. e. for z E X {O, I}, X E X

then h

Proof

h' and 8=8'.

Using the fact that log is monotone (Z.l) implies
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(z.Z)

and

Note that (Z.3) can be rewritten as

(Z.3)

(Z.4)

where HZ and H; are the marginal distribution functions for the second variable

in hand h'. Thus we have

since H;-lo HZ is a monotone transformation by fZ(x,e) = fZ(x,e') • Now

referring to (Z.Z) by C we can conclude that these integrals are equal for

any interval. Thus

where 6 = fl(x,e) - fZ(x,e'). Thus, h,h' can only differ by a shift in location.

However, since both densities have zero mean 6 = 0 or fl(x,e) = fZ(x,e').

Therefore h = h' and by A, e = e' .

QED

Next we show that the expected value of the log-likelihood of z has a

unique maximum at the true parameters.

Theorem Z.Z

Let h* and e* denote the true values of the parameters and P * *(. Ix)
e ,h

the conditional probability measure for z given x. Assume v(X) < 00 •
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If e* E e, h* E iT then

s(e,h) = fxfmx {O,l} ge,h (z,x) dPe*,h* (zlx)dv(x)

achieves a unique maximum at e = e* and h = h*.

(2.5)

Proof: Since -log is strictly convex by the usual application of Jensen's

inequality:

which gives,

o fmx {O l}g * *(z,x)dP * *(zlx)-, e,h e ,h

fm x {O I} g e, h ( z , x) dP * * ( z Ix), e ,h

e E 'B, h e: H and a. e. on X

with equality holding only if ge,h = ge*,h*

Thus S(e,h) S(e*,h*) Vee: h e: H Moreover, when this maximum

is attained from the remarks above and Theorem 2.1,

e = e*, h = h* .

3. Consistency of estimates

We first state the necessary assumptions for Theorem 1.1.

Condition I (Ceasaro Summability)

If b(u,x) is a continuous function on m2 x Wthen

1 £ b(u,x) f f 2 b(u,x)h(u)dudv(x)
n t=l t t X m

Condition II (Continuity of likelihood)

QED
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Let

supaee

Condition III (Continuity of expected log-likelihood)

J M(x) dv(x) < 00
X

The main idea behind the proof of Theorem 1.1 is to first prove consistency

- -for the estimate a ,h wheren n

In(8 ,h ) = max _ l (a,h)
n n 6e:g ,he:H n

(3.1a)

Note that the only difference between (8 ,h ) and (6 ,h ) is that the maxi-n n n n

mization in is defined over all of Hrather than HK. The next step is

to show that the difference between these two estimates converges almost

surely to zero. Hence, the consistency of the original estimates follows.

The next lemma gives a compactness property for H. This result and

Lemmas 3.2-3.4 will be used to establish the consistency of (8 ,h ).n n

Lemma 3.1

H is precompact in

sequence.

Proof: Let {hn}n=l 00,
{h } that is a Cauchyn

H. We will show that there exists a subsequence of

Since is a complete space this sub-

sequence must have a limit which lies in the closure of H. Hence, H is

precompact.
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(3.1b)

and let f J be the operator that restricts a function with domain on R2 to

one with domain on AJ . By Theorem 6.2 I, IV (Adams, 1975) f J : + wm,2(AJ )

is a compact embedding, where is

to the norm for wm+l ,2(A). Moreover, when

(Adams, 1976, p. 56)

co
the completion of Co (A) with respect

A = R 2 = Wm+l,2 and thus, 0

the embedding from wm+l ,2 into Wm,2 is also compact.

H BR and thus is a bounded set in wm+l ,2. H is pre-compact in

wm,2(AJ ). Using this result we can extract a subsequence; {hn } that

converges to a limit in fl(H). Similarly, a convergent subsequence on wm,2(A2)

(1) { (J)can now be extracted from {hK }. In general, we can choose hK } such that

and has a limit in wm,2(AJ ).

Set g.= h(j) Note that this sequence is obtained from the diagonal entries
] j

when these subsequences are arranged in a table. Clearly, {gj} {hn } and the

proof will be completed by showing that {gj} is Cauchy. Let aJ £ wm+l,2 with

o
1

Take £ > O. For 0 < J jl j2 < co

+ II a J (g'l - g. 2) II 2] ] wrn,

From the definition of it is straightforward to show

(3. lc)

Since £

We will choose J such that (3.lc) is bounded by £/2.J + ce.

m+l 2 2. II IIW ' (R ), by the convergence theorem a 2 + 0 as
Wm,

Now {hJ } is a

Cauchy sequence in wm,2(AJ ) and by construction fJ(gj) £ provided j > J.
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Thus there is an M < such that M J and jl' j2 M implies that the first

term on the RHS of (3.1c) is bounded by E/2. Thus (3.1c) is bounded by E

for jl' j2 M and therefore {gjI is Cauchy sequence.

Let S (S,h) = 1 l (S,h) and take S(e,h) as defined inn n n
Lemma 3.2 (Gallant, 1984)

(2.5).

QED

Suppose e x H is compact in the usual product topology, S(e,h) has a

unique maximum at (e*,h*) and S is continuous one x H. If

sup Is (S,h) - s(e,h)1 + 0 a.s.
e,hEexH n

- - * * -then (S ,h ) + (S ,h ) in the product topology on e x Hn n

(3.2)

Proof.

point.

Since e x H is compact the sequence (8 ,h ) will have at least one limitn n

Suppose (eO,hO) is such a limit point and (6m,hm) is a subsequence

converging to it. From the definition of the maximum likelihood estimate

s (6 h) s (e* h*)m m' m m'

and by the assumption of uniform convergence in (3.2),

S(eo,hO) S(e*,h*). Since (e*,h*) yields a unique maximum, we can conclude

that (SO,hO) = (S*,h*). Therefore the sequence of estimates has only one limit

point at (e*,h*).

Lemma 3.3

Under conditions II and III

a) the functionals and are continuous on

2 -lR xXxexH

and

b) S(S,h) is continuous on ex H •
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Proof: Suppose {(X ,U ,e ,h)} 1 is a sequence converging to (x,u,e,h)n n n n n=

let $ (w) = I h (u ,w) .
n ( - f 2 (x ,e ), n n

n n

Using the facts that convergence in Sobolev norm with m 2 implies the

uniform convergence of a function pointwise (see Adams, 1976, p. 97-98) and

that f 2 is a continuous function of x and e we have

Since $n by condition II we can apply the dominated convergence theorem to

conclude that

Finally, noting that the log is a continuous function we have
(1) (1)
ge h (u ,x ) and thus this functional is continuous. The continuity of
n' n n n

g(2) is proved in a similar manner.

b) From the results in a) it is clear that for fixed u and x ge h(u,x),
is a continuous function on ® x H.

Also, from condition II

Ige,h (u,x)1
hEH

If (e ,h ) is a sequence converging to (e,h) then by the dominated
n n

convergence theorem

S8 h Se,h and thus the continuity in b) follows.
n' n
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Lermna 3.4

Under conditions I-III

sup _ IS (S,h) - S(S,h)1 0 a.s.
(S,h)e: e x H n

If gS,h(u,x) were continuous in all of its arguments then this result

would follow by a Unifrom Strong Law of Large Numbers, such as Theorem 1 in

(Gallant, 1982). However, because of the indicator functions in the log-

likelihood some additoinal work is required. The idea behind this proof is

to approximate gS,h by a continuous likelihood and then show that the difference

, is negligible.

Proof: Let 0 (z) 1 be a continuous function such that

Let

E:X (z)
E:X (z)

o z < 0 and

1 Z > E:

and

Thus SE:(S,h) is identical to S (S,h), the original log-likelihood, except for an n

continuous modification of the indicator functions close to O. Adding and

subtracting this modified likelihood gives

(3.3)

Now we argue that each term on the RHS of (3.3) converges to zero uniformly in

2) x H.
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E ZBy construction, Ige,h(u,x)1 b(u,x) and is continuous on JR x X x 8) x F.

Thus, by Theorem 1, (Gallant, 198Z) the first term in (3.3) converges uniformly

to zero.

Considering the second term in (3.3) and applying condition III gives

J JJR I (uZ+fZ(x,e*»M(x)duz dv(x)X (-E ,E>

ZE J M(x)dv(x) .
X

Since by assumption J M(x)dv(x) < 00 we see then this term converges to zero
X

uniformly as E O.

Let 0 1 be a continuous, function which is one on the interval

[-E,E] but zero outside the interval [-ZE,ZE]. Considering the last term in

0.3)

Is (e,h) - SE(e,h)1 1 ¥n n n W=l

Once again, applying Theorem 1, (Gallant, 198Z) the RHS of (3.4) converges

uniformly to

0.5)

and by using the same arguments given above this quantity is uniformly bounded

by

4 E JM(x)dv(x)

Therefore for E > 0 there is an N such that for n N

Combining the results for the separate terms in (3.3) proves the lemma. QED
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Before giving the proof of Theorem 1.1 we need to introduce the following

projection operator:

. .m 2 -Let PK: w' H such that

g <=> II h-gll m 2 =
W '

min
f£::Hk

For h £:: wn, 211 Pk(h) - hI/ m 2 will be non-increasing in K and if h £:: Hk then
W ' k=l

---
F o 11 1" th t ·f h h 1"n . .m,2 and h H1na y, we c a1m a 1 W

n k=l k

To see this we have

then

0.6a)

0.6b)

II Pk ( h ) - h II m 2 :;i
n W '

0.7)

:;i min Ilf-hil 2 + 211h -hll . .m 2
f£::H wID, n w'

k

II PK(h)-hll 2 + 211h -hll 2Wm, n Wm,

where both terms on the RHS of (3.6) will converge to zero.

Proof of Theorem 1.1

We first argue that (8 ,h ) are consistent estimates.n n

By Lennna 3.1 iT will be compact therefore, so is 8 x Ff. Under the

identifiability conditions A-C by Lennna 2.2 S(e*,h*) is the unique maximum of

s(e,h) over 2l x iT and by Lennna 3.3b S is continuous on 3) x iT. Finally, by

Lennna 3.3 we can conclude that (3.2) holds. Having satisfied the assumptions

of Lennna 3.1 we have:

e e* a.s. in 8
n

(3.8)
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A

Now we show that e and h are consistent.n n

By the definition of (8 ,h )n n

From the properties of PK given above, the consistency of (6 ,h ) and Lemma 3.4.
n n

A A * *liminf S (6 ,h ) s(e ,h )n n n

Now, using arguments similar to those in the proof of Lemma 3.2, it is

straightforward to show that (6 ,h ) must have a single limit point at (e*,h*).
n n

QED

4. Consistency of (8 ,h )
11---0-

Let P denote the class of polynomials on

]R2 and let

v = {f : f = P<P, p I:: P}

Lemma 4.1

If $2 has a moment generating function and V WS,2(]R2) then

b) H is contained in the closure of F with respect to the norm for

Proof

a) The first statement of the lemma is equivalent to the following

condition:

If h I:: wS,2 and <f,h> S 2
W'

for all f I:: V then h O.

o (4.1)
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First assume that (4.0 holds for h E: Using the fact that the adjoint of DP ir

L2 co (-1) IplDPfor functions in Co is

=

where g = E

(-l)lpl<f,DP.DPh> 2 =
L

(-l)lpl(DP.DP)(h).

<f,g> 2
L

Setting f = and rewriting (4.2) gives

(p, g/ 2( 2 2) = 0 'if p E: P
L lR,

From Gallant (1980), we know that the polynomials are dense in the weighted
2 2 2 2L space L (lR Thus = 0 and since g has compact support and is

continuous g = O.
Now <h,g> 2 2

L OR )
h - O.

o and from (4.2) we have <h,h> S 2 2 = 0 which implies
W ' (lR )

co 2Thus we have demonstrated that (4.1) holds for all h E: Co (lR). Since

is dense in by continuous extension (4.1) holds for all

h E: WS,2 and the result follows

b) Since h H by assumption Ih E: From part a) there is a

sequence {f} V such that (4.1b) f Ih inn n

It remains to show that f2 h in Repeated application of the
n

chain rule yields the formula

PI P2 PI P2 (P.l)( P.2)a a
;(1 a/2

(as) = E E
i=O l=O 1 J

1 2

(a) (4.1c)

P -i
':I 1:;,

P -i
au 1
1

P -j
a 2
P -j

au 2
2



-18-

Or in operator notation:

P
D (as) = I f I Iq p

Since the binomial coefficients are bounded for there is a c < 00

such that

Thus

(4.ld)

By expanding and applying the Cauchy Schwartz inequality to the cross

products it is straightforward to verify that there is and C'< 00 independent

of wI such that

(4.le)

or

Clearly 4.le will also hold for w2 and therefore it follows that there is and

M < 00 such that

2lI aS ll wm ,2 (4.10
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By Theorem 5.4 (5) (Adams, 1976) the

QED

Hence II f + Ih 11 4 4 wi 11n

be for sufficiently large nand IIfn - Ih ":m,4 O. Thus by 4.lf

II a S11 2 2 = II h - f2 11 2 0 •Wm, n

Let a = f + Ih and S = f - Ih .n n
imbedding Wm+l,2(JR2) is continuous.

Before proving Theorem 1.2 we need to give some properties of two projection

operators.

Let Tk : Fk denote the projection operator such that

Now if we replace Pk by Tk and Hk by Fk in (3.6) - (3.7) the same relations

will hold. In particular, if h £ H F and h h then
n

Also we will need the fact that Q (see (1.5» is a continuous operator.

Suppose {h } converges to h E Wm,2. By Lemma 3.1 H is compact and
n

there is a subsequence {Q(h )} with a limit p E H. Sincenk

IIQ(h ) - hll 2::i IIQ(h) - hll 2 + 211h - hllwm,2nk Wm, n k

it follows that for any E > 0

IIp-hli 2;;0 IIQ(h)-hli 2 + £rJU'
By definition II Q(h)-h /I 2;;; II p-h II 2

Wm,
by the uniqueness of the projection, Q(h)

Thus IIQ(h)-hil 2 = IIp-hll 2 and
rJU' Wm,

= p. Therefore, {Q(h )} has only onen

limit point at Q(h) and Q(h ) Q(h).n

Proof of Theorem 1.2

From the definition of e ,hn n

S (8 ,(Q.Tk)(h » S (8 ,h )n n n n n n (4.2)
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- - * *Also, from section 3 we know (6 ,h ) + (6 ,h) a.s.n n

Since Q and Tk are continuous, (QoTk ) will also be continuous and

(QoTk)(hn ) h*. Therefore, by Lemma 3.4 (4.2) implies

* * - -S(6 ,h ) liminf S (6 ,h ) .n n n

Using arguments similar to those given in the proof of Lemma 3.2 one can

show that {(e ,h )} must have a single limit point at 6*,h*.n n

QED
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