CONSISTENT ESTIMATION OF THE PARAMETERS AND ERROR DENSITY IN A CENSORED REGRESSION MODEL

by

Douglas Nychka and A. Ronald Gallant

Institute of Statistics Mimeograph Series No. 1642
June 1984
Consistent Estimation of the Parameters and Error Density in a Censored Regression Model

by

Douglas Nychka and A. Ronald Gallant
Department of Statistics
North Carolina State University

1. Introduction

The underlying model in this discussion has the form:

\[y_1 = f_1(X, \theta) + U_1 \]
\[y_2 = f_2(X, \theta) + U_2 \]

(1.1)

where \((U_1, U_2) = U\) is a mean zero random vector with probability density function \(h\). \(f_1\) and \(f_2\) are specified, continuous functions of the exogeneous variable \(X\) and the parameters \(\theta\). \(\theta\) and \(h\) are unknown.

The interest in this paper concerns estimating \(\theta\) and \(h\) when \(y\) is not observed directly. We consider the data, \(z\), where

\[z_1 = y_1 I(0, \infty)(y_2) \]
\[z_2 = I(-\infty, 0)(y_2) \]

(1.2)

Thus, \(y_1\) is only observed conditional on the event \(\{y_2 > 0\}\). Also, note that \(y_2\) is never observed explicitly; only its sign is known. This particular observational model has a variety of applications in economics, psychology and education. One important example arises in labor economics for evaluating training programs where the second equation represents a selection rule such as voluntary selection or selection by program administrators.

Using this observational model, we propose consistent estimates for \(\theta\) and \(h\) based on the maximum likelihood criterion. In order to define these estimates we first give the probability density for \(z\) and state the assumptions made on \(\theta\) and \(h\).
Let \(\mu \) denote Lebesgue measure and \(\delta_v \) be a measure that gives the point \(v \) unit mass. Then the joint distribution of \((z_1, z_2)\) is absolutely continuous with respect to the product measure \((\mu + \delta_0) \times (\delta_0 + \delta_1)\). Using a conditioning argument, the log density of \(z \) with respect to this dominating measure is

\[
g_{\theta,h}(z,X) = z_2 \log \left\{ \int_{-\infty}^{\infty} h(z_1 - f_1(X,\theta),w) dw \right\}_{\mathbb{R}-\{0\}}(z_1) + (1 - z_2) \log \left\{ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(w_1,w_2) dw_1 dw_2 \right\}
\]

(1.3)

Given \(n \) independent observations the log-likelihood has the form:

\[
\ell_n(\theta,h) = \frac{h}{t=1} g_{\theta,h}(z_t,X_t).
\]

We will assume that \(\theta \in \Theta, h \in H \) where \(\Theta \) is a compact metric space (usually a closed and bounded set in \(\mathbb{R}^k \)) and \(H \) is a bounded subset of an \((m+1)\) order Sobolev space on \(\mathbb{R}^2 \). Finally let \(\phi \) be a positive weight function, \(p^K \) a polynomial of degree \(K \) in \(\mathbb{R}^2 \) and \(F_K = \{ f: f = (p^K \phi)^2 \} \). Set

\[
F = \bigcup_{K=1}^{\infty} F_K \text{ and } H = F_n H_k.
\]

(1.4a)

We will assume that \(K = \frac{K}{n} \to \infty \) as \(n \to \infty \). Then the estimates \((\hat{\theta}_n,\hat{h}_n) \in \Theta \times H_k \) satisfy:

\[
\ell_n(\hat{\theta}_n,\hat{h}_n) = \max_{(\theta,h) \in \Theta \times H_k} \ell_n(\theta,h).
\]

In order to define \(H \) we first present some notation concerning function spaces.

Define the differential operator for functions on \(\mathbb{R}^2 \) as

\[
D^P f = \frac{\partial P}{\partial v_1} f_1 + \frac{\partial P}{\partial v_2} f_2 \text{ where } P = (P_1, P_2) \text{ and } |P| = P_1 + P_2.
\]

We will use the Sobolev Spaces \((m)\) order):
for $m > 0$. Note that $W^0,2(A) = L^2(A)$ and in general $W^m,2(A)$ is a Hilbert Space with respect to the inner product:

$$<f,g>_{W^m,2(A)} = \left| \sum_{j=1}^{m} \left< D^P f, D^P g \right>_{L^2(A)} \right|$$

(see Adams, 1976). To simplify notation, in this paper when $A = \mathbb{R}^2$ we will often omit the domain in (1.4b): $W^m,2 \equiv W^m,2(\mathbb{R}^2)$.

For $R > 0$ let

$$B_R = \{ f \in W^{m+1,2}(\mathbb{R}^2) : \| f \|_{W^{m+1,2}} \leq R \}$$

and let $\psi_L, \psi_H \in B_R$ such that $0 < \psi_L \leq \psi_H$ and $\psi_1 \psi_2 \psi_H(v)$ is integrable.

Then we have,

$$H = \{ h \in B_R : \int_{\mathbb{R}^2} h \, dv = 1, \int \psi_1 \psi_2 h(v) \, dv = 0$$

$$|D^P \psi_L| \leq |D^P h| \leq |D^P \psi_H| \text{ for } |P| \leq m$$

Thus H is a set of density functions with zero mean and whose tail behavior lies between the extremes of ψ_L and ψ_H. Moreover, the restriction of $h \in B_R$ is an implicit assumption on the smoothness of h. This constraint limits the amount of oscillation in h and its derivative. The requirement that $\sqrt{h} \in W^{m+1,2}$ is necessary to insure that the weighted polynomials in F can be used to approximate functions in H. (see Lemma 4.2)

Let θ^* and h^* denote the true values of θ and h. Under conditions A-C (see Section 2) which insure that the parameters are identifiable and assuming conditions I-III which concern the Cesaro summability of $\{ U_k, X_k \}_{k=1}^{\infty}$ and the tail behavior of the densities in H (see Section 3). We prove:

Theorem 1.1

Suppose $\theta^* \in \Theta$ and $h^* \in \bigcup_{k=1}^{\infty} H_k$, where the closure is taken with respect to $W^m,2(\mathbb{R}^2)$. If $m \geq 2$ then $\hat{\theta}_n \to \theta^*$ a.s. in Θ.
and \(\hat{h}_n \to h^* \) a.s. in \(W^{m,2}(\mathbb{R}^2) \). \hspace{1cm} (1.4c)

We note that the convergence with respect to \(m \)th order Sobolev norm is quite strong. For example (1.4b) implies that

\[
\sup_{U \in \mathbb{R}^2} |(D^P\hat{h}_n)(U) - (D^P h)(U)| \to 0 \text{ a.s.}
\]

for all \(P \) such that \(0 \leq |P| \leq m-2 \). In general, if \(\Lambda \) is any continuous functional on \(W^{m,2}(\mathbb{R}^2) \) then \(|\Lambda(\hat{h}_n) - \Lambda(h^*)| \to 0 \) a.s.

The main difficulty in interpreting this theorem is relating \(\overline{\bigcup_{k=1}^\infty H_k} \) to \(H \). Although in Section 4 we show that \(\overline{\bigcup_{k=1}^\infty F_k} \) is a dense set of functions in \(H \), this is not enough to guarantee that \(\overline{\bigcup_{k=1}^\infty H_k} \) will also be dense. (The problem arises in taking the intersection: \(H_k = F_k \cap H \) and in general, \(\overline{\bigcup_{k=1}^\infty H_k} \) may not be equal to \(H \).) In order to obtain consistency for all functions in \(H \) we consider a slightly different estimate. Let \(\overline{H} \) be the closure of \(H \) in \(W^{m,2} \) and let \(Q: W^{m,2} \to \overline{H} \) be the projection operator such that

\[
Q(g) = h \iff \|g - h\|_{W^{m,2}} = \min_{f \in H} \|f - h\|_{W^{m,2}}. \hspace{1cm} (1.5)
\]

Thus, \(Q \) in this case is the best approximation to \(f \) by a density satisfying the constraints in \(H \). Since \(\overline{H} \) is a closed, convex set in \(W^{m,2} \) such an operator is well-defined (see Rudin, 1974, p. 83).

Now define the estimates \(\hat{\theta}_n, \hat{h}_n \) such that \(\hat{\theta}_n \in \Theta \), \(\hat{h}_n = Q(g) \) for some \(g \in F_k \) and

\[
\ell_n(\hat{\theta}_n, \hat{h}_n) = \max_{f \in F_k, \hat{\theta} \in \Theta} \ell_n(\hat{\theta}, Q(f)).
\]

Using this estimate we prove.

Theorem 1.2

Suppose \(F \subseteq W^{m+1,2}(\mathbb{R}^2) \) and \(m \geq 2 \). If \(h^* \in H \) and \(\theta^* \in \Theta \) then \(\hat{\theta}_n \to \theta^* \) a.s. in \(\Theta \) and \(\hat{h}_n \to h^* \) a.s. in \(W^{m,2} \).
The next section gives conditions under which θ, h are identifiable and the expected log-likelihood has a unique maximum. Section 3 proves Theorem 1.1 and the following section proves Theorem 1.2.

2. Identifiability of the Parameters

Let X denote the space containing the exogenous variable x and let ν be a measure on X that is the weak limit of the empirical distributions of $
abla^{t}_{t=1,\infty}$. Identifiability conditions:

Let $\theta, \theta' \in \Theta$.

A) If

\[f_1(x, \theta) = f_1(x, \theta') \]

\[f_2(x, \theta) = f_2(x, \theta') \text{ a.e. } \nu \]

then $\theta = \theta'$.

B) If $f_2(x, \theta) = \phi(f_2(x, \theta'))$ a.e. ν for some monotone transformation ϕ then

\[f_2(x, \theta) = f_2(x, \theta'). \]

C) Let B be any rectangle in \mathbb{R}^2 and let $\theta \in \Theta$.

If $F = \{x \in X : f_1(x, \theta), f_2(x, \theta) \in B \}$ then $\nu(F) > 0$.

The later two conditions may appear unusual and require some comment. In B), the invariance of f_2 under monotone functions is necessary because y_2 is never observed directly, only its sign is known.

To illustrate the problem encountered in this situation suppose $\Theta, \mathcal{X} \subseteq \mathbb{R}$ and $f(x, \theta) = x\theta$. Then,

\[P(y_2 < 0|x) = \int_{-\infty}^{\infty} \int_{-\infty}^{x\theta} h(u)du. \]

However, if we make the change of variables $w = cu$ where c is some arbitrary value
\[P(y_2 < |x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{c}h(w)dw \]
\[= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h'(w)dw \]

where \(\theta' = \theta c \), \(h' = \frac{1}{c} h \).

Thus, the parameters of the model can be varied without changing the probability distribution of \(z_2 \).

Condition C insures that the distribution of the exogenous variables is rich enough so that \((f_1(x,\theta), f_2(x,\theta)) \) will trace out the support of \(h(y) \). Without this requirement, the error density might only be identifiable on a region smaller than its support. If \(\chi \subseteq \mathbb{R}^\ell \) and \(v \) is dominated by Lebesque measure then condition C) implies that for fixed \(\theta \in \Theta \) the map
\[
\{f_1(x,\theta), f_2(x,\theta)\}: \chi \to \mathbb{R}^2 \]
is onto i.e. for any \(u \in \mathbb{R}^2 \) there is an \(x \in \chi \) such that \((f_1(x,\theta), f_2(x,\theta)) = u \).

The following two theorems address the identifiability and uniqueness of the maximum likelihood estimates of the parameters and error density. For technical reasons that will be clearer in Section 3 (see Lemmas 3.1 and 3.2) we state these theorems for \(h \in \overline{H} \), where the closure of \(H \) is taken with respect to \(\mathcal{W}^{m,2} \). Although elements in the closure will not be contained in \(B_R \) they will still be densities with zero mean.

Theorem 2.1

Suppose conditions A-C hold. Let \(h, h' \in \overline{H}, \theta, \theta' \in \Theta \).

If
\[
g_{h,\theta}(z,x) = g_{h',\theta'}(z,x) \quad (2.1)
\]
a.e. for \(z \in \mathbb{R} \times \{0,1\}, x \in \chi \)
then \(h = h' \) and \(\theta = \theta' \).

Proof

Using the fact that \(\log \) is monotone (2.1) implies
Note that (Z.3) can be rewritten as

\[h'(z_1 - f_1(x, \theta'), w) \]

and

\[h'(z_1 - f_1(x, \theta'), w) \] (2.2)

where \(H_z \) and \(H'_z \) are the marginal distribution functions for the second variable in \(h \) and \(h' \). Thus we have

\[(H'_z^{-1} \circ H_z)(-f_2(x, \theta)) = -f_2(x, \theta') \] a.e. \(x \in X \)

since \(H'_z^{-1} \circ H_z \) is a monotone transformation by \(B, f_2(x, \theta) = f_2(x, \theta') \). Now referring to (2.2) by \(C \) we can conclude that these integrals are equal for any interval. Thus

\[h(z_1 - f_1(x, \theta), w_2) = h'(z_1 - f_1(x, \theta'), w_2) \]

a.e. \((z_1, w_2) \in \mathbb{R}^2 \) or

\[h(z_1 - f_1(x, \theta), w_2) = h'(z_1 - f_1(x, \theta) + \delta w_2) \]

where \(\delta = f_1(x, \theta) - f_2(x, \theta') \). Thus, \(h, h' \) can only differ by a shift in location. However, since both densities have zero mean \(\delta = 0 \) or \(f_1(x, \theta) = f_2(x, \theta') \). Therefore \(h = h' \) and by A, \(\theta = \theta' \).

QED

Next we show that the expected value of the log-likelihood of \(z \) has a unique maximum at the true parameters.

Theorem 2.2

Let \(h^\ast \) and \(\theta^\ast \) denote the true values of the parameters and \(P_{\theta^\ast, h^\ast} \) the conditional probability measure for \(z \) given \(x \). Assume \(\nu(X) < \infty \).
If $\theta^* \in \Theta$, $h^* \in \mathcal{H}$ then

$$s(\theta,h) = \int_X \int_{\mathbb{R} \times \{0,1\}} g_{\theta,h}(z,x) \ dP_{\theta^*,h^*}(z|x) d\nu(x) \quad (2.5)$$

achieves a unique maximum at $\theta = \theta^*$ and $h = h^*$.

Proof: Since $-\log$ is strictly convex by the usual application of Jensen's inequality:

$$-\log \left[\mathbb{E}(\exp \left[g_{\theta,h}(z,x) - g_{\theta^*,h^*}(z,x) \right] \right) \leq \mathbb{E}(g_{\theta,h}(z,x) - g_{\theta^*,h^*}(z,x))$$

which gives,

$$0 \leq \int_{\mathbb{R} \times \{0,1\}} g_{\theta^*,h^*}(z,x) dP_{\theta^*,h^*}(z|x) - \int_{\mathbb{R} \times \{0,1\}} g_{\theta,h}(z,x) dP_{\theta^*,h^*}(z|x)$$

with equality holding only if $g_{\theta,h} = g_{\theta^*,h^*}$.

Thus $S(\theta,h) \leq S(\theta^*,h^*) \ \forall \ \theta \in \Theta, \ h \in \mathcal{H}$. Moreover, when this maximum is attained from the remarks above and Theorem 2.1,

$$\theta = \theta^*, \ h = h^*.$$ QED

3. **Consistency of estimates**

We first state the necessary assumptions for Theorem 1.1.

Condition I (Cesáro Summability)

If $b(u,x)$ is a continuous function on $\mathbb{R}^2 \times \psi$ then

$$\frac{1}{n} \sum_{t=1}^{n} b(u_t, x_t) \to \int_X \int_{\mathbb{R}^2} b(u,x) h(u) dud\nu(x)$$

Condition II (Continuity of likelihood)

$$\sup_{u_1 \in \mathbb{R}} \int_{\mathbb{R}} \psi_H(u_1, w) dw = J < \infty$$
Let
\[
g^{(1)}_{\theta,h}(u_1,x) = \log\left\{ \int_{-\infty}^{\infty} h(u_1 - f_1(x,\theta),w)dw \right\}
\]
\[
g^{(2)}_{\theta,h}(x) = \log\left\{ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(w_1,w_2)dw_1dw_2 \right\}
\]
\[
b(u_1,x) = \sup_{\theta \in \Theta} \left\{ |g^{(1)}_{\theta,x}(u)|, |g^{(2)}_{\theta,x}(x)|, \log(J) \right\}
\]
and
\[
M(x) = \sup_{u_2 \in \mathbb{R}} \int b(u_1,x) \psi_0(u_1,u_2)du_1
\]
Condition III (Continuity of expected log-likelihood)
\[
\int_{\chi} M(x) dv(x) < \infty
\]

The main idea behind the proof of Theorem 1.1 is to first prove consistency for the estimate \(\tilde{\theta}_n, \tilde{h}_n \) where
\[
\mathcal{L}_n(\tilde{\theta}_n, \tilde{h}_n) = \max_{\theta \in \Theta, h \in \overline{H}} \mathcal{L}_n(\theta, h) .
\]

Note that the only difference between \(\tilde{\theta}_n, \tilde{h}_n \) and \(\hat{\theta}_n, \hat{h}_n \) is that the maximization in (3.1a) is defined over all of \(\overline{H} \) rather than \(H_K \). The next step is to show that the difference between these two estimates converges almost surely to zero. Hence, the consistency of the original estimates follows.

The next lemma gives a compactness property for \(H \). This result and Lemmas 3.2-3.4 will be used to establish the consistency of \(\tilde{\theta}_n, \tilde{h}_n \).

Lemma 3.1

\(H \) is precompact in \(\mathcal{W}^{m,2}(\mathbb{R}^2) \)

Proof: Let \(\{h_n\}_{n=1,\infty} \subset H \). We will show that there exists a subsequence of \(\{h_n\} \) that is a Cauchy sequence. Since \(\mathcal{W}^{m,2} \) is a complete space this subsequence must have a limit which lies in the closure of \(H \). Hence, \(H \) is precompact.
Let \(A_J : \{ v \in \mathbb{R}^2 : \| v \|_{\mathbb{R}}^2 \leq J \} \) \hfill (3.1b)

and let \(\Gamma_J \) be the operator that restricts a function with domain on \(\mathbb{R}^2 \) to one with domain on \(A_J \). By Theorem 6.2 I, IV (Adams, 1975) \(\Gamma_J : W^{m+1,2}_0(\mathbb{R}^2) \to W^{m,2}(A_J) \) is a compact embedding, where \(W^{m+1,2}_0(A) \) is the completion of \(C_0^\infty(A) \) with respect to the norm for \(W^{m+1,2}(A) \). Moreover, when \(A = \mathbb{R}^2 \), \(W^{m+1,2}_0 = W^{m+1,2} \) and thus (Adams, 1976, p. 56) the embedding from \(W^{m+1,2} \) into \(W^{m,2} \) is also compact.

\(H \subseteq B_{\mathbb{R}} \) and thus is a bounded set in \(W^{m+1,2} \). Therefore, \(H \) is pre-compact in \(W^{m,2}(A_J) \). Using this result we can extract a subsequence; \(\{ h^{(1)}_K \} \subseteq \{ h_n \} \) that converges to a limit in \(\overline{\Gamma_1(H)} \). Similarly, a convergent subsequence on \(W^{m,2}(A_2) \) can now be extracted from \(\{ h^{(1)}_K \} \). In general, we can choose \(\{ h^{(J)}_K \} \) such that \(\{ h^{(J)}_K \} \subseteq \{ h^{(J-1)}_K \} \) and \(\{ h^{(J)}_K \} \) has a limit in \(W^{m,2}(A_J) \).

Set \(g_j = h^{(j)}_1 \). Note that this sequence is obtained from the diagonal entries when these subsequences are arranged in a table. Clearly, \(\{ g_j \} \subseteq \{ h_n \} \) and the proof will be completed by showing that \(\{ g_j \} \) is Cauchy. Let \(\alpha_J \in W^{m+1,2} \) with \(|D^p \alpha_j| < 1 \) \(|p| \leq m \) and \(\alpha_j(u) = 0 \) \(u \in A_{J-1} \) for \(\alpha_J(u) = 1 \) \(u \in A_J \).

Take \(\varepsilon > 0 \). For \(0 < J \leq j_1 \leq j_2 < \infty \)

\[
\| g_{j_1} - g_{j_2} \|_{W^{m,2}} \leq \| \Gamma_J(g_{j_1} - g_{j_2}) \|_{W^{m,2}(A_J)} + \| \alpha_J(g_{j_1} - g_{j_2}) \|_{W^{m,2}}
\]

From the definition of \(\psi_M \) it is straightforward to show

\[
\| \alpha_J(g_{j_1} - g_{j_2}) \|_{W^{m,2}} \leq 2 \| \alpha_J \psi_M \|_{W^{m,2}} \]

(3.1c)

Since \(\psi_M \in W^{m+1,2}(\mathbb{R}^2) \), by the dominated convergence theorem \(\| \alpha_J \psi_M \|_{W^{m,2}} \to 0 \) as \(J \to \infty \). We will choose \(J \) such that (3.1c) is bounded by \(\varepsilon/2 \). Now \(\{ h^J \} \) is a Cauchy sequence in \(W^{m,2}(A_J) \) and by construction \(\Gamma_J(g_j) \in \{ h^J_K \} \) provided \(j > J \).
Thus there is an $M < \infty$ such that $M \geq J$ and $j_1, j_2 \geq M$ implies that the first term on the RHS of (3.1c) is bounded by $\varepsilon/2$. Thus (3.1c) is bounded by ε for $j_1, j_2 \geq M$ and therefore $\{g_j\}$ is Cauchy sequence.

Let $S_n(\theta, h) = \frac{1}{n} \ell_n(\theta, h)$ and take $S(\theta, h)$ as defined in (2.5).

Lemma 3.2 (Gallant, 1984)

Suppose $\Theta \times \overline{H}$ is compact in the usual product topology, $S(\theta, h)$ has a unique maximum at (θ^*, h^*) and S is continuous on $\Theta \times \overline{H}$. If

$$\sup_{\theta, h \in \Theta \times \overline{H}} |S_n(\theta, h) - S(\theta, h)| \to 0 \text{ a.s.} \tag{3.2}$$

then $(\tilde{\theta}_n, \tilde{h}_n) \to (\theta^*, h^*)$ in the product topology on $\Theta \times \overline{H}$.

Proof. Since $\Theta \times \overline{H}$ is compact the sequence $(\tilde{\theta}_n, \tilde{h}_n)$ will have at least one limit point. Suppose (θ_0, h_0) is such a limit point and $(\tilde{\theta}_m, \tilde{h}_m)$ is a subsequence converging to it. From the definition of the maximum likelihood estimate

$$S_m(\tilde{\theta}_m, \tilde{h}_m) \geq S_m(\theta^*, h^*)$$

and by the assumption of uniform convergence in (3.2),

$$S(\theta_0, h_0) \geq S(\theta^*, h^*).$$

Since (θ^*, h^*) yields a unique maximum, we can conclude that $(\theta_0, h_0) = (\theta^*, h^*)$. Therefore the sequence of estimates has only one limit point at (θ^*, h^*).

Lemma 3.3

Under conditions II and III

a) the functionals $g_{\theta, h}^{(1)}(u, x)$ and $g_{\beta, h}^{(2)}(x)$ are continuous on $\mathbb{R}^2 \times X \times \Theta \times \overline{H}$

and

b) $S(\theta, h)$ is continuous on $\Theta \times \overline{H}$.
Proof: Suppose \(\{(X_n, U_n, \theta_n, h_n)\}_{n=1}^{\infty} \) is a sequence converging to \((x, u, \theta, h)\)

let \(\phi_n(w) = \int_{-f_2(x_n, \theta_n)}^{h_n(u_n, w)} w \, dw \).

Using the facts that convergence in Sobolev norm with \(m \geq 2 \) implies the uniform convergence of a function pointwise (see Adams, 1976, p. 97-98) and that \(f_2 \) is a continuous function of \(x \) and \(\theta \) we have

\[
\phi_n(w) = \int_{-f_2(x, \theta)}^{h(u, w)} w \, dw .
\]

Since \(\phi_n \leq \psi_U \) by condition II we can apply the dominated convergence theorem to conclude that

\[
\int \phi_n(w) \to \int_{-f_2(x, \theta)}^{h(u, w)} w \, dw .
\]

Finally, noting that the log is a continuous function we have

(1) \(g^0_{\theta, h_n}(u_n, x_n) \to g^0_{\theta, h}(u, x) \) and thus this functional is continuous. The continuity of \(g(2) \) is proved in a similar manner.

b) From the results in a) it is clear that for fixed \(u \) and \(x \) \(g_{\theta, h_n}(u, x) \)

is a continuous function on \(\Theta \times H \).

Also, from condition II

\[
\sup_{\theta \in \Theta, h \in H} |g_{\theta, h}(u, x)| \leq b(u_1, x)
\]

with \(\int_X \int_{\mathbb{R}^2} b(u_1, x) h(u) \, du \, dv(x) < \infty \).

If \(\{(\theta_n, h_n)\} \) is a sequence converging to \((\theta, h)\) then by the dominated convergence theorem

\[
S_{\theta_n, h_n} \to S_{\theta, h} \quad \text{and thus the continuity in b) follows.}
\]
Lemma 3.4

Under conditions I-III

\[\sup_{(\theta, h) \in \Theta \times \mathcal{H}} |S_n(\theta, h) - S(\theta, h)| = 0 \text{ a.s.} \]

If \(g_{\theta, h}(u, x) \) were continuous in all of its arguments then this result would follow by a Uniform Strong Law of Large Numbers, such as Theorem 1 in (Gallant, 1982). However, because of the indicator functions in the log-likelihood some additional work is required. The idea behind this proof is to approximate \(g_{\theta, h} \) by a continuous likelihood and then show that the difference is negligible.

Proof: Let \(0 \leq \chi^E(z) \leq 1 \) be a continuous function such that

\[\chi^E(z) = \begin{cases} 0 & z < 0 \text{ and } \\ 1 & z > \varepsilon \end{cases} \]

Let

\[g^E_{\theta, h}(u, x) = \chi^E(u + f_2(x, \theta^*))g_{\theta, h}^{(1)}(u, x) + [1 - \chi^E(u + f_2(x, \theta^*))]g_{\theta, h}^{(2)}(x) \]

\[S_n^E(\theta, h) = \frac{1}{n} \sum_{w=1}^{n} g^E_{\theta, h}(u, x), \]

and

\[S^E(\theta, h) = \int_{\mathbb{R}^2} \int_{\mathcal{X}} g^E_{\theta, h}(u, x) du dv(x). \]

Thus \(S_n^E(\theta, h) \) is identical to \(S_n(\theta, h) \), the original log-likelihood, except for a continuous modification of the indicator functions close to 0. Adding and subtracting this modified likelihood gives

\[|S_n(\theta, h) - S(\theta, h)| \leq |S_n^E(\theta, h) - S^E(\theta, h)| \]

(3.3)

Now we argue that each term on the RHS of (3.3) converges to zero uniformly in \(\Theta \times \mathcal{H} \).
By construction, \(|g_{\theta, h}^\varepsilon(u, x)| \leq b(u, x)| and is continuous on \(\mathbb{R}^2 \times X \times \Theta \times F\). Thus, by Theorem 1, (Gallant, 1982) the first term in (3.3) converges uniformly to zero.

Considering the second term in (3.3) and applying condition III gives

\[
\sup_{\theta, h \in \Theta \times F} |S_{\theta, h}^\varepsilon - S_{\theta, h}| \leq \int \int_{\mathbb{R}^2} (-\varepsilon, \varepsilon) (u_2 + f_2(x, \theta^*)) b(u, x) h^*(u) du \, dv(x)
\]

\[
\leq \int \int_{\chi \mathbb{R}} (-\varepsilon, \varepsilon) (u_2 + f_2(x, \theta^*)) M(x) du_2 \, dv(x)
\]

\[
\leq 2\varepsilon \int \chi M(x) dv(x) .
\]

Since by assumption \(\int \chi M(x) dv(x) < \infty\) we see then this term converges to zero uniformly as \(\varepsilon \to 0\).

Let \(0 \leq \Phi^\varepsilon \leq 1\) be a continuous, function which is one on the interval \([-\varepsilon, \varepsilon]\) but zero outside the interval \([-2\varepsilon, 2\varepsilon]\). Considering the last term in (3.3)

\[
|S_n(\theta, h) - S_n^\varepsilon(\theta, h)| \leq \frac{1}{n} \sum_{k=1}^{n} \Phi^\varepsilon(u_2 + f_2(x_k, \theta^*)) b(u_k, x_k)
\]

Once again, applying Theorem 1, (Gallant, 1982) the RHS of (3.4) converges uniformly to

\[
\int \int_{\mathbb{R}^2} b(u, x) \Phi^\varepsilon(u_2 + f_2(x, \theta^*)) h^*(u) du \, dv(x) \quad (3.5)
\]

and by using the same arguments given above this quantity is uniformly bounded by

\[
4 \varepsilon \int \chi M(x) dv(x) .
\]

Therefore for \(\varepsilon > 0\) there is an \(N\) such that for \(n \geq N\)

\[
\sup_{(\theta, h) \in \Theta \times H} |S_n(\theta, h) - S_n^\varepsilon(\theta, h)|
\]

\[
\leq \varepsilon + 4 \varepsilon \int \chi M(x) dv(x) .
\]

Combining the results for the separate terms in (3.3) proves the lemma. QED
Before giving the proof of Theorem 1.1 we need to introduce the following projection operator:

Let \(P_k : W^m,2 \to \bar{H} \) such that

\[
P_k(h) = g \iff \frac{\|h-g\|_{W^m,2}}{\|f\|_{W^m,2}} = \min_{f \in H_k} \frac{\|f-h\|_{W^m,2}}{\|f\|_{W^m,2}}
\]

For \(h \in W^m,2 \), \(P_k(h) - h \) will be non-increasing in \(k \) and if \(h \in \bigcup_{k=1}^{\infty} H_k \) then

\[
\frac{\|P_k(h) - h\|_{W^m,2}}{\|f\|_{W^m,2}} \to 0 \text{ a.s. } k \to \infty.
\]

Finally, we claim that if \(h_n \to h \) in \(W^m,2 \) and \(h \in \bigcup_{k=1}^{\infty} H_k \) then

\[
P_k(h_n) \to h \text{ as } n, k \to \infty.
\]

To see this we have

\[
\frac{\|P_k(h_n) - h\|_{W^m,2}}{\|f\|_{W^m,2}} \leq \min_{f \in H_k} \frac{\|f-h_n\|_{W^m,2}}{\|f\|_{W^m,2}} + \frac{\|h_n-h\|_{W^m,2}}{\|f\|_{W^m,2}}
\]

\[
\leq \min_{f \in H_k} \frac{\|f-h\|_{W^m,2} + 2\|h_n-h\|_{W^m,2}}{\|f\|_{W^m,2}}
\]

where both terms on the RHS of (3.6) will converge to zero.

Proof of Theorem 1.1

We first argue that \((\tilde{\theta}_n, \tilde{h}_n) \) are consistent estimates.

By Lemma 3.1 \(\bar{H} \) will be compact therefore, so is \(\Theta \times \bar{H} \). Under the identifiability conditions A-C by Lemma 2.2 \(S(\theta^*, h^*) \) is the unique maximum of \(S(\theta, h) \) over \(\Theta \times \bar{H} \) and by Lemma 3.3b \(S \) is continuous on \(\Theta \times \bar{H} \). Finally, by Lemma 3.3 we can conclude that (3.2) holds. Having satisfied the assumptions of Lemma 3.1 we have:

\[
\tilde{\theta}_n \to \theta^* \text{ a.s. in } \Theta
\]

\[
\tilde{h}_n \to h^* \text{ a.s. in } W^m,2(\mathbb{R}^2)
\]
Now we show that $\hat{\theta}_n$ and \hat{h}_n are consistent.

By the definition of $(\hat{\theta}_n, \hat{h}_n)$

$$s_n(\hat{\theta}_n, \hat{h}_n) \geq s_n(\bar{\theta}_n, P_K(\bar{h}_n))$$

From the properties of P_K given above, the consistency of $(\hat{\theta}_n, \hat{h}_n)$ and Lemma 3.4.

$$\liminf s_n(\hat{\theta}_n, \hat{h}_n) \geq S(\theta^*, h^*)$$

Now, using arguments similar to those in the proof of Lemma 3.2, it is straightforward to show that $(\hat{\theta}_n, \hat{h}_n)$ must have a single limit point at (θ^*, h^*).

QED

4. Consistency of $(\hat{\theta}_n, h_n)$

Let P denote the class of polynomials on \mathbb{R}^2 and let

$$V = \{ f : f = p\phi, \ p \in P \}$$

Lemma 4.1

If ϕ^2 has a moment generating function and $V \subseteq W_{S,2}(\mathbb{R}^2)$ then

a) V is dense in $W_{S,2}(\mathbb{R}^2)$

b) H is contained in the closure of F with respect to the norm for $W_{m,2}(\mathbb{R}^2)$

Proof

a) The first statement of the lemma is equivalent to the following condition:

$$\text{If } h \in W_{S,2} \text{ and } \langle f, h \rangle_{W_{S,2}} = 0$$

for all $f \in V$ then $h = 0$. (4.1)
First assume that (4.1) holds for \(h \in C^\infty_0 \). Using the fact that the adjoint of \(D^p \)
\(L^2 \) for functions in \(C^\infty_0 \) is \((-1)|D^p|\)

\[
0 = \langle f, h \rangle_{W^S,2} = \sum_{p \leq s} \langle D^p f, D^p h \rangle_{L^2} = \sum_{p \leq s} (-1)|D^p|\langle f, D^p h \rangle_{L^2} = \langle f, g \rangle_{L^2}
\]

where \(g = \sum_{p \leq s} (-1)|D^p|\langle D^p D^p \rangle(h) \).

Setting \(f = p \phi \) and rewriting (4.2) gives

\[
(p, g/\phi)_{L^2(\mathbb{R}^2, \phi^2)} = 0 \quad \forall \ p \in P
\]

From Gallant (1980), we know that the polynomials are dense in the weighted
\(L^2 \) space \(L^2(\mathbb{R}^2, \phi^2) \). Thus \(g/\phi = 0 \) and since \(g \) has compact support and is
continuous \(g \equiv 0 \).

Now \(\langle h, g \rangle_{L^2(\mathbb{R}^2)} = 0 \) and from (4.2) we have \(\langle h, h \rangle_{W^S,2(\mathbb{R}^2)} = 0 \) which implies
\(h \equiv 0 \).

Thus we have demonstrated that (4.1) holds for all \(h \in C^\infty_0(\mathbb{R}^2) \). Since
\(C^\infty_0(\mathbb{R}^2) \) is dense in \(W^{S,2}(\mathbb{R}^2) \) by continuous extension (4.1) holds for all
\(h \in W^{S,2} \) and the result follows

b) Since \(h \in H \) by assumption \(\sqrt{h} \in W^{m+1,2} \). From part a) there is a
sequence \(\{f_n\} \subseteq U \) such that (4.1b) \(f_n \to \sqrt{h} \) in \(W^{m+1,2} \).

It remains to show that \(f_n^2 \to h \) in \(W^{m,2} \). Repeated application of the
chain rule yields the formula

\[
\frac{P_1}{\partial U_1} \frac{P_2}{\partial U_2} (a \beta) = \sum_{i=0}^{P_1} \sum_{j=0}^{P_2} \binom{P_1}{i} \binom{P_2}{j} \frac{\partial^i}{\partial U_1^i} \frac{\partial^j}{\partial U_2^j} (a) \cdot (4.1c)
\]

\[
\frac{P_1}{\partial U_1} \frac{P_2}{\partial U_2} (a \beta) = \sum_{i=0}^{P_1} \sum_{j=0}^{P_2} \binom{P_1}{i} \binom{P_2}{j} \frac{\partial^i}{\partial U_1^i} \frac{\partial^j}{\partial U_2^j} (a) \cdot (4.1c)
\]

\[
\frac{P_1}{\partial U_1} \frac{P_2}{\partial U_2} (a \beta) = \sum_{i=0}^{P_1} \sum_{j=0}^{P_2} \binom{P_1}{i} \binom{P_2}{j} \frac{\partial^i}{\partial U_1^i} \frac{\partial^j}{\partial U_2^j} (a) \cdot (4.1c)
\]
Or in operator notation:
\[D^P(\alpha \beta) = \sum_{0 \leq |q| \leq |p|} (q_1^{P_1}) (q_2^{P_2}) D^q \alpha \ D^{P-q} \beta \]

Since the binomial coefficients are bounded for $|p| \leq m$ there is a $c < \infty$ such that
\[|D^P(\alpha \beta)|^2 \leq c \sum_{0 \leq |q| \leq |p|} |D^q \alpha| \ |D^{P-q} \beta| \]

Thus
\[\|D^P(\alpha \beta)\|_{L^2} \leq c \|w_1 w_2\|_{L^2} \]

By expanding w_1^2 and applying the Cauchy Schwartz inequality to the cross products it is straightforward to verify that there is and $C' < \infty$ independent of w_1 such that
\[\|w_1^2\|_{L^2} \leq C' \sum_{0 \leq |q| \leq |p|} |D^q \alpha|^4 \]

or
\[\leq C' \|\alpha\|_{w^4}^4 \]

Clearly 4.1e will also hold for w_2 and therefore it follows that there is and $M < \infty$ such that
\[\|\alpha \beta\|_{w^m,2}^2 \leq M \|\alpha\|_{w^m,4}^4 \|\beta\|_{w^m,4}^4 \]
Let \(\alpha = f_n + \sqrt{n} \) and \(\beta = f_n - \sqrt{n} \). By Theorem 5.4 (5) (Adams, 1976) the imbedding \(W^{m+1,2}(\mathbb{R}^2) + W^{m,4}(\mathbb{R}^2) \) is continuous. Hence \(\| f_n + \sqrt{n} \|_{W^{m,4}}^4 \) will be bounded for sufficiently large \(n \) and \(\| f_n - \sqrt{n} \|_{W^{m,4}}^4 \to 0 \). Thus by 4.1f
\[
\| \alpha \beta \|_{W^{m,2}}^2 = \| h - f_n^2 \|_{W^{m,2}}^2 \to 0 .
\]

QED

Before proving Theorem 1.2 we need to give some properties of two projection operators.

Let \(T_k: W^{m,2} \to F_k \) denote the projection operator such that
\[
T_k(h) = g \iff g \in F_k, \quad \| g - h \|_{W^{m,2}} = \min_{f \in F_k} \| f - h \|_{W^{m,2}}
\]

Now if we replace \(P_k \) by \(T_k \) and \(H_k \) by \(F_k \) in (3.6) - (3.7) the same relations will hold. In particular, if \(h \in H \subseteq F \) and \(h_n \to h \) then
\[
T_k(h_n) \to h \quad \text{as} \quad n, k \to \infty .
\]

Also we will need the fact that \(Q \) (see (1.5)) is a continuous operator.

Suppose \(\{ h_n \} \subseteq W^{m,2} \) converges to \(h \in W^{m,2} \). By Lemma 3.1 \(H \) is compact and there is a subsequence \(\{ Q(h_{n_k}) \} \) with a limit \(\rho \in H \). Since
\[
\| Q(h_{n_k}) - h \|_{W^{m,2}} \leq \| Q(h) - h \|_{W^{m,2}} + 2 \| h_{n_k} - h \|_{W^{m,2}}
\]
it follows that for any \(\varepsilon > 0 \)
\[
\| \rho - h \|_{W^{m,2}} \leq \| Q(h) - h \|_{W^{m,2}} + \varepsilon
\]

By definition \(\| Q(h) - h \|_{W^{m,2}} \geq \| \rho - h \|_{W^{m,2}} \). Thus \(\| Q(h) - h \|_{W^{m,2}} = \| \rho - h \|_{W^{m,2}} \) and by the uniqueness of the projection, \(Q(h) = \rho \). Therefore, \(\{ Q(h_{n_k}) \} \) has only one limit point at \(Q(h) \) and \(Q(h_{n_k}) \to Q(h) \).

Proof of Theorem 1.2

From the definition of \(\tilde{s}_n, \tilde{h}_n \)
\[
S_n(\tilde{s}_n, (Q \circ T_k)(\tilde{h}_n)) \leq S_n(\tilde{s}_n, \tilde{h}_n)
\]

(4.2)
Also, from section 3 we know \(\left(\hat{\theta}_n, \hat{h}_n \right) \to (\theta^*, h^*) \) a.s.

Since \(Q \) and \(T_k \) are continuous, \((Q \circ T_k) \) will also be continuous and
\((Q \circ T_k)(\hat{h}_n) \to h^* \). Therefore, by Lemma 3.4 (4.2) implies

\[
S(\theta^*, h^*) \leq \liminf S_n(\hat{\theta}_n, \hat{h}_n).
\]

Using arguments similar to those given in the proof of Lemma 3.2 one can show that \(\{(\hat{\theta}_n, \hat{h}_n)\} \) must have a single limit point at \(\theta^*, h^* \).

QED

References

