CONSISTENT ESTIMATION OF THE PARAMETERS AND ERROR DENSITY IN A CENSORED REGRESSION MODEL

> by Douglas Nychka and A. Ronald Gallant

Institute of Statistics Mimeograph Series No. 1642 June 1984 Consistent Estimation of the Parameters and Error Density in a Censored Regression Model

by

Douglas Nychka and A. Ronald Gallant Department of Statistics North Carolina State University

1. Introduction

The underlying model in this discussion has the form:

$$y_1 = f_1(x, \theta) + U_1$$
 (1.1)
 $y_2 = f_2(x, \theta) + U_2$

where $(U_1, U_2) = U$ is a mean zero random vector with probability density function h. f_1 and f_2 are specified, continuous functions of the exogeneous variable X and the parameters θ . θ and h are unknown.

The interest in this paper concerns estimating θ and h when y is not observed directly. We consider the data, z, where

$$z_{1} = y_{1} I_{[0,\infty)} (y_{2})$$

$$z_{2} = I_{(-\infty,0]} (y_{2})$$
(1.2)

Thus, y_1 is only observed conditional on the event $\{y_2>0\}$. Also, note that y_2 is never observed explicitly; only its sign is known. This particular observational model has a variety of applications in economics, psychology and education. One important example arises in labor economics for evaluating training programs where the second equation represents a selection rule such as voluntary selection or selection by program administrators.

Using this observational model, we propose consistent estimates for θ and h based on the maximum likelihood criterion. In order to define these estimates we first give the probability density for z and state the assumptions made on θ and h.

Let μ denote Lebesque measure and δ_v be a measure that gives the point v unit mass. Then the joint distribution of (z_1, z_2) is absolutely continuous with respect to the product measure $(\mu + \delta_0) \times (\delta_0 + \delta_1)$. Using a conditioning argument, the log density of z with respect to this dominating measure is

$$g_{\theta,h}(z,X) = z_2 \log \{ \int_{-f_2(X,\theta)}^{\infty} h(z_1 - f_1(X,\theta),w)dw \} I_{\mathbb{R}^-\{0\}}(z_1)$$
(1.3)
+(1 - z_2) \log \{ \int_{-\infty}^{\infty} \int_{-\infty}^{-f_2(X,\theta)} h(w_1,w_2)dw_2dw_1 \}

Given n independent observations the log-likelihood has the form:

$$\ell_{n}(\theta,h) = \sum_{t=1}^{h} g_{\theta,h}(z_{t},X_{t}) .$$

We will assume that $\theta \in \Theta$, $h \in H$ where Θ is a compact metric space (usually a closed and bounded set in \mathbb{R}^k) and H is a bounded subset of an (m+1) order Sobelev space on \mathbb{R}^2 . Finally let ϕ be a positive weight function, p^K a polynomial of degree K in \mathbb{R}^2 and $F_K = \{f: f = (p^K \phi)^2\}$. Set

$$F = \bigcup_{K=1}^{\infty} F_{K} \text{ and } H_{k} = F_{k} \cap H .$$
 (1.4a)

We will assume that $K = K_n \to \infty$ as $n \to \infty$. Then the estimates $(\hat{\theta}_n, \hat{h}_n) \in \Theta \times \mathcal{H}_k$ satisfy:

$$\ell_{n}(\hat{\theta}_{n},\hat{h}_{n}) = \max_{(\theta,h)\in \Theta} \ell_{n}(\theta,h) .$$

In order to define H we first present some notation concerning function spaces.

Define the differential operator for functions on \mathbb{R}^2 as

$$D^{P}f = \frac{\partial^{P}1}{\partial v_{1}P_{1}} \frac{\partial^{P}2}{\partial v_{2}P_{2}} f \text{ where } P = (P_{1}, P_{2}) \text{ and } |P| = P_{1} + P_{2}.$$

We will use the Sobolev Spaces (mth order):

$$W^{m,q}(A) = \{f: D^{P}(f) \in L^{q}(A) \forall |P| \leq m\}$$
(1.4b)

for m > 0. Note that $W^{0,2}(A) = L^2(A)$ and in general $W^{m,2}(A)$ is a Hilbert Space with respect to the inner product:

$$\langle \mathbf{f}, \mathbf{g} \rangle_{W^{\mathbf{m}}, 2(\mathbf{A})} = \sum_{\substack{P \mid \leq m}} \langle \mathbf{D}^{P} \mathbf{f}, \mathbf{D}^{P} \mathbf{g} \rangle_{L^{2}(\mathbf{A})}$$

(see Adams, 1976). To simplify notation, in this paper when $A = \mathbb{R}^2$ we will often omit the domain in (1.4b): $W^{m,2} \equiv W^{m,2}(\mathbb{R}^2)$.

For R > 0 let

$$B_{R} = \{f \in W^{m+1,2}(\mathbb{R}^{2}) : ||f||_{W^{m+1},2} \leq R \}$$

and let $\Psi_L, \ \Psi_H \ \epsilon \ B_R$ such that $0 \ < \ \Psi_L \ \leq \ \Psi_H$ and $v_1 v_2 \Psi_H(v)$ is integrable. Then we have,

$$H = \{h \varepsilon B_R \colon \int_{\mathbb{R}^2} h \, dv = 1, \quad \int v_1 v_2 \, h(v) \, dv = 0$$
$$|D^P \Psi_L| \leq |D^P h| \leq |D^P \Psi_H| \quad \text{for } |P| \leq m, \sqrt{h} \in W^{m+1,2} \}$$

Thus H is a set of density functions with zero mean and whose tail behavior lies between the extremes of Ψ_L and Ψ_H . Moreover, the restriction of h ε B_R is an implicit assumption on the smoothness of h. This constraint limits the amount of oscillation in h and its derivative. The requirement that $\sqrt{h} \varepsilon W^{m+1,2}$ is necessary to insure that the weighted polynomials in F can be used to approximate functions in H. (see Lemma 4.2)

Let θ^* and h^* denote the true values of θ and h. Under conditions A-C (see Section 2) which insure that the parameters are identifiable and assuming conditions I-III which concern the Ceasero summability of $\{U_k, X_k\}_{K_1}=1, \infty$ and the tail behavior of the densities in H (see Section 3). We prove: <u>Theorem 1.1</u>

Suppose $\theta^* \in \Theta$ and $h^* \in \overset{\widetilde{U}}{\overset{\widetilde{U}}{\overset{H}{k}}} H_k$ where the closure is taken with respect to $W^{m,2}(\mathbb{R}^2)$. If $m \ge 2$ then $\hat{\theta}_n \Rightarrow \theta^*$ a.s. in Θ

and
$$\hat{h}_n \rightarrow h^*$$
 a.s. in $W^{m,2}(\mathbb{R}^2)$. (1.4c)

We note that the convergence with respect to mth order Sobelev norm is quite strong. For example (1.4b) implies that

$$\sup_{\substack{U \in \mathbb{R}^2}} |(D^P \hat{h}_n)(U) - (D^P h)(U)| \to 0 \quad \text{a.s.}$$

for all P such that $0 \leq |P| \leq m-2$. In general, if Λ is any continuous functional on $W^{m,2}(\mathbb{R}^2)$ then $|\Lambda(\hat{h}_n) - \Lambda(h^*)| \neq 0$ a.s.

The main difficulty in interpreting this theorem is relating $\overline{\overset{\circ}{\mathbb{U}}}_{K=1}^{H}H_{k}$ to H. Although in Section 4 we show that $\overset{\circ}{\mathbb{U}}_{k=1}^{H}F_{k}$ is a dense set of functions in H, this is not enough to guarantee that $\overset{\circ}{\mathbb{U}}_{k=1}^{H}H_{k}$ will also be dense. (The problem arises in taking the intersection: $H_{k} = F_{k} \cap H$ and in general, $\overline{\overset{\circ}{\mathbb{U}}}_{k=1}^{H}H_{k}$ may not be equal to H.) In order to obtain consistency for all functions in H we consider a slightly different estimate. Let \overline{H} be the closure of H in $W^{m,2}$ and let Q: $W^{m,2} \to \overline{H}$ be the projection operator such that

$$Q(g) = h \iff ||g-h||_{W^{m},2} = \min_{f \in \overline{H}} ||f-h||_{W^{m},2}$$
 (1.5)

Thus, Q in this case is the best approximation to f by a density satisfying the constraints in H. Since \overline{H} is a closed, convex set in $W^{m,2}$ such an operator is well-defined (see Rudin, 1974, p. 83).

Now define the estimates $\bar{\theta}_n, \bar{h}_n$ such that $\bar{\theta}_n \in \Theta$, $\bar{h}_n = Q(g)$ for some $g \in F_{K_n}$ and

$$\ell_{n}(\bar{\theta}_{n},\bar{h}_{n}) = \max_{\substack{f \in F_{K}\\n}} \ell_{n}(\theta,Q(f)) .$$

Using this estimate we prove.

Theorem 1.2

Suppose $F \subseteq W^{m+1,2}(\mathbb{R}^2)$ and $m \ge 2$. If $h^* \in H$ and $\theta^* \in \Theta$ then $\overline{\theta}_n \to \theta^*$ a.s. in Θ and $\overline{h}_n \to h^*$ a.s. in $W^{m,2}$. The next section gives conditions under which θ , h are identifiable and the expected log-likelihood has a unique maximum. Section 3 proves Theorem 1.1 and the following section proves Theorem 1.2.

2. Identifiability of the Parameters

Let X_{α} denote the space containing the exogenous variable x and let v be a measure on X that is the weak limit of the empirical distributions of

 $\{x_t\}_{t=1,\infty}$.

Identifiability conditions:

```
Let \theta, \theta' \in \Theta.
```

A) If

$$f_{1}(x,\theta) = f_{1}(x,\theta')$$

$$f_{2}(x,\theta) = f_{2}(x,\theta') \text{ a.e. } v$$

then $\theta=\theta'$.

B) If $f_2(x,\theta) = \Phi(f_2(x,\theta'))$ a.e. ν for some monotone transformation Φ then $f_2(x,\theta) = f_2(x,\theta')$.

C) Let B be any rectangle in
$$\mathbb{R}^2$$
 and let $\theta \in \mathfrak{G}$.
If F = {x $\varepsilon \chi$: {f₁(x, θ), f₂(x, θ)} ε B} then $v(F) > 0$

The later two conditions may appear unusual and require some comment. In B), the invariance of f_2 under monotone functions is necessary because y_2 is never observed directly, only its sign is known.

To illustrate the problem encountered in this situation suppose $\Theta, X \subseteq \mathbb{R}$ and $f(x, \theta) = x\theta$. Then,

$$P(y_2 < 0 | x) = \int_{-\infty}^{\infty} \int_{-\infty}^{-x\theta} h(u) du$$
.

However, if we make the change of variables w = cu where c is some arbitrary value

$$P(y_2 < |x) = \int_{-\infty}^{\infty} \int_{-\infty}^{-x\theta c} \frac{1}{c}h(w)dw$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{-x\theta'} h'(w) dw$$

where $\theta' = \theta c$, $h' = \frac{1}{c} h$.

Thus, the parameters of the model can be varied without changing the probability distribution of z_2 .

Condition C insures that the distribution of the exogenous variables is rich enough so that $(f_1(x,\theta), f_2(x,\theta))$ will trace out the support of $h(\underline{v})$. Without this requirement, the error density might only be identifiable on a region smaller than its support. If $\chi \subseteq \mathbb{R}^{\ell}$ and v is dominated by Lebesque measure then condition C) implies that for fixed $\theta \in \Theta$ the map $\{f_1(x,\theta), f_2(x,\theta)\}: X \neq \mathbb{R}^2$ is onto i.e. for any $u \in \mathbb{R}^2$ there is an $x \in X$ such that $(f_1(x,\theta), f_2(x,\theta)) = u$.

The following two theorems address the identifiability and uniqueness of the maximum likelihood estimates of the parameters and error density. For technical reasons that will be clearer in Section 3 (see Lemmas 3.1 and 3.2) we state these theorems for $h \in \overline{H}$, where the closure of H is taken with respect to $W^{m,2}$. Although elements in the closure will not be contained in B_R they will still be densities with zero mean.

Theorem 2.1

Suppose conditions A-C hold. Let h,h' $\varepsilon \stackrel{-}{H}$, θ , $\theta' \in \Theta$.

If

$$g_{h,\theta}(z,x) = g_{h',\theta'}(z,x)$$
 (2.1)

a.e. for $z \in \mathbb{R} \times \{0,1\}$, $x \in \chi$

then h = h' and $\theta = \theta'$.

Proof

Using the fact that log is monotone (2.1) implies

$$\int_{-f_{2}(x,\theta)}^{\infty} h(z_{1} - f_{1}(x,\theta),w)dw$$

=
$$\int_{-f_{2}(x,\theta')}^{\infty} h'(z_{1} - f_{1}(x,\theta'),w)dw$$
 (2.2)

and

$$\int_{-\infty}^{\infty} \int_{-\infty}^{-f_2(x,\theta)} h(w_1,w_2) dw_1 dw_2 = \int_{-\infty}^{\infty} \int_{-\infty}^{-f_2(x,\theta')} h'(w_1,w_2) dw_1 dw_2 . \quad (2.3)$$

Note that (2.3) can be rewritten as

$$H_{2}(-f_{2}(x,\theta)) = H_{2}'(-f_{2}(x,\theta'))$$
(2.4)

where H_2 and H_2' are the marginal distribution functions for the second variable in h and h'. Thus we have

$$(H_2'^{-1} \circ H_2)(-f_2(x,\theta)) = -f_2(x,\theta')$$
 a.e. $x \in X$

since $H_2^{\prime-1}$, H_2 is a monotone transformation by B, $f_2(x,\theta) = f_2(x,\theta')$. Now referring to (2.2) by C we can conclude that these integrals are equal for any interval. Thus

$$h(z_1 - f_1(x,\theta),w_2) = h'(z_1 - f_1(x,\theta'),w_2)$$

a.e. $(z_1,w_2) \in \mathbb{R}^2$ or

$$h(z_1 - f_1(x,\theta),w_2) = h'(z_1 - f_1(x,\theta) + \delta,w_2)$$

where $\delta = f_1(x,\theta) - f_2(x,\theta')$. Thus, h,h' can only differ by a shift in location. However, since both densities have zero mean $\delta = 0$ or $f_1(x,\theta) = f_2(x,\theta')$. Therefore h = h' and by A, $\theta = \theta'$.

Next we show that the expected value of the log-likelihood of z has a unique maximum at the true parameters.

Theorem 2.2

Let h^{*} and θ^* denote the true values of the parameters and P $\theta^*, h^*(\cdot | x)$ the conditional probability measure for z given x. Assume $v(X) < \infty$.

If $\theta^* \in \Theta$, $h^* \in \overline{H}$ then

$$\mathbf{s}(\theta,\mathbf{h}) = \int_{X} \int_{\mathbb{R}} \mathbf{x} \{0,1\} \, g_{\theta,\mathbf{h}}(z,\mathbf{x}) \, dP_{\theta^{\star},\mathbf{h}^{\star}}(z|\mathbf{x}) dv(\mathbf{x})$$
(2.5)

achieves a unique maximum at $\theta = \theta^*$ and $h = h^*$.

<u>Proof</u>: Since -log is strictly convex by the usual application of Jensen's inequality:

$$-log[E(exp\{g_{\theta,h}(z,x) - g_{\theta^{\star},h^{\star}}(z,x)]|X)]$$

$$\leq E(g_{\theta,h}(z,x) - g_{\theta^{\star},h^{\star}}(z,x)|X)$$

which gives,

$$0 \leq \int_{\mathbb{R}} x \{0,1\}^{g} \theta^{*}, h^{*}(z,x) dP \theta^{*}, h^{*}(z|x) \cdot \int_{\mathbb{R}} x \{0,1\}^{g} \theta, h^{(z,x)} dP \theta^{*}, h^{*}(z|x)$$

 $\theta \in \Theta$, $h \in H$ and a.e. on χ

with equality holding only if $g_{\theta,h} = g_{\theta^*,h^*}$.

Thus $S(\theta,h) \leq S(\theta^*,h^*) \ \forall \ \theta \ \epsilon$, $h \ \epsilon \ \overline{H}$. Moreover, when this maximum is attained from the remarks above and Theorem 2.1,

$$\theta = \theta^*, h = h^*$$
. QED

3. Consistency of estimates

We first state the necessary assumptions for Theorem 1.1.

Condition I (Ceasaro Summability)

If b(u,x) is a continuous function on $\mathbb{R}^2 \ge \psi$ then

$$\frac{1}{n} \sum_{t=1}^{n} b(u_t, x_t) \neq \int_{\chi} \int_{\mathbb{R}^2} b(u, x) h(u) du dv(x)$$

Condition II (Continuity of likelihood)

$$\sup_{u_1 \in \mathbb{R}} \int_{\mathbb{R}} \psi_{H}(u_1, w) dw = J < .\infty$$

Let

$$g_{\theta,h}^{(1)}(u_{1},x) = \log\{\int_{-f_{2}}^{\infty}(x,\theta) h(u_{1} - f_{1}(x,\theta),w)dw\}$$

$$g_{\theta,h}^{(2)}(x) \log\{\int_{-\infty}^{\infty}\int_{-\infty}^{-f_{2}(x,\theta)} h(w_{1},w_{2})dw_{1}dw_{2}\}$$

$$b(u_{1},x) = \sup_{\theta \in \Theta} \{|g_{\theta,\psi_{L}}^{(1)}(u,x)|, |g_{\theta,\psi_{L}}^{(2)}(x)|^{2}, \log(J)\}$$

and M(x) = sup $\int b(u_1, x) \psi_{U}(u_1, u_2) du_1$

Condition III (Continuity of expected log-likelihood)

$$\int_{\chi} M(x) d\nu(x) < \infty$$

The main idea behind the proof of Theorem 1.1 is to first prove consistency for the estimate $\tilde{\theta}_n, \tilde{h}_n$ where

$$\ell_n(\tilde{\theta}_n, \tilde{h}_n) = \max_{\theta \in \mathfrak{B}, h \in \mathcal{H}} \ell_n(\theta, h) .$$
(3.1a)

Note that the only difference between $(\tilde{\theta}_n, \tilde{h}_n)$ and $(\hat{\theta}_n, \hat{h}_n)$ is that the maximization in (3.1a) is defined over all of \overline{H} rather than H_K . The next step is to show that the difference between these two estimates converges almost surely to zero. Hence, the consistency of the original estimates follows. The next lemma gives a compactness property for H. This result and Lemmas 3.2-3.4 will be used to establish the consistency of $(\tilde{\theta}_n, \tilde{h}_n)$.

Lemma 3.1

H is precompact in $W^{m,2}(\mathbb{R}^2)$

<u>Proof</u>: Let $\{h_n\}_{n=1,\infty} \subseteq H$. We will show that there exists a subsequence of $\{h_n\}$ that is a Cauchy sequence. Since $W^{m,2}$ is a complete space this subsequence must have a limit which lies in the closure of H. Hence, H is precompact.

Let
$$A_{J}$$
: { $v \in \mathbb{R}^{2}$: $||v||_{\mathbb{R}^{2}} \leq J$ } (3.1b)

and let Γ_J be the operator that restricts a function with domain on \mathbb{R}^2 to one with domain on A_J . By Theorem 6.2 I, IV (Adams, 1975) $\Gamma_J : W_0^{m+1,2}(\mathbb{R}^2) \rightarrow W^{m,2}(A_J)$ is a compact embedding, where $W_0^{m+1,2}(A)$ is the completion of $C_0^{\infty}(A)$ with respect to the norm for $W^{m+1,2}(A)$. Moreover, when $A = \mathbb{R}^2$, $W_0^{m+1,2} = W^{m+1,2}$ and thus (Adams, 1976, p. 56) the embedding from $W^{m+1,2}$ into $W^{m,2}$ is also compact. $H \subseteq B_R$ and thus is a bounded set in $W^{m+1,2}$. Therefore, H is pre-compact in $W^{m,2}(A_J)$. Using this result we can extract a subsequence; $\{h_K^{(1)}\} \subseteq \{h_n\}$ that converges to a limit in $\overline{\Gamma_1(H)}$. Similarly, a convergent subsequence on $W^{m,2}(A_2)$ can now be extracted from $\{h_K^{(1)}\}$. In general, we can choose $\{h_K^{(J)}\}$ such that $\{h_K^{(J)}\} \subseteq \{h_K^{(J-1)}\}$ and $\{h_K^J\}$ has a limit in $W^{m,2}(A_J)$.

Set $g_j = h_j^{(j)}$. Note that this sequence is obtained from the diagonal entries when these subsequences are arranged in a table. Clearly, $\{g_j\} \subseteq \{h_n\}$ and the proof will be completed by showing that $\{g_j\}$ is Cauchy. Let $\alpha_J \in W^{m+1,2}$ with $|D^P \alpha_J| < 1 \ |p| \leq m$ and $\alpha_J(u) = 0$ $u \in A_{J-1}$ $1 \quad u \in A_J^C$

Take $\varepsilon > 0$. For $0 < J \leq j_1 \leq j_2 < \infty$

$$\|g_{j1} - g_{j2}\|_{W^{m,2}} \leq \|\Gamma_{J}(g_{j1} - g_{j2})\|_{W^{m,2}(A_{J})}$$

+ $\|\alpha_{J}(g_{j1} - g_{j2})\|_{W^{m,2}}$

From the definition of $\boldsymbol{\psi}_{\mathrm{M}}$ it is straightforward to show

$$\|\alpha_{J}(g_{j1} - g_{j2})\|_{W^{m,2}} \leq 2 \|\alpha_{J} \psi_{M}\|_{W^{m,2}}$$
 (3.1c)

Since $\psi_M \in W^{m+1,2}(\mathbb{R}^2)$, by the dominated convergence theorem $\|\alpha_J \psi_M\|_{W^{m,2}} \to 0$ as $J \to \infty$. We will choose J such that (3.1c) is bounded by $\varepsilon/2$. Now $\{h^J\}$ is a Cauchy sequence in $W^{m,2}(A_J)$ and by construction $\Gamma_J(g_j) \in \{h_K^J\}$ provided j > J.

Thus there is an $M < \infty$ such that $M \ge J$ and $j_1, j_2 \ge M$ implies that the first term on the RHS of (3.1c) is bounded by $\varepsilon/2$. Thus (3.1c) is bounded by ε for $j_1, j_2 \ge M$ and therefore $\{g_j\}$ is Cauchy sequence. QED

Let
$$S_n(\theta,h) = \frac{1}{n} \ell_n(\theta,h)$$
 and take $S(\theta,h)$ as defined in (2.5).
Lemma 3.2 (Gallant, 1984)

Suppose $\Theta \propto \overline{H}$ is compact in the usual product topology, S(θ ,h) has a unique maximum at (θ^* , h^{*}) and S is continuous on $\Theta \propto \overline{H}$. If

$$\sup_{\theta,h\in \Theta \times \overline{H}} |S_n(\theta,h) - S(\theta,h)| \neq 0 \text{ a.s.}$$
(3.2)

then $(\tilde{\theta}_n, \tilde{h}_n) \rightarrow (\theta^*, h^*)$ in the product topology on $\Theta \propto \overline{H}$.

<u>Proof</u>. Since $\Theta \ge \overline{H}$ is compact the sequence $(\tilde{\theta}_n, \tilde{h}_n)$ will have <u>at least</u> one limit point. Suppose (θ_0, h_0) is such a limit point and $(\tilde{\theta}_m, \tilde{h}_m)$ is a subsequence converging to it. From the definition of the maximum likelihood estimate

$$S_{m}(\tilde{\theta}_{m},\tilde{h}_{m}) \geq S_{m}(\theta^{*},h^{*})$$

and by the assumption of uniform convergence in (3.2),

 $S(\theta_0, h_0) \ge S(\theta^*, h^*)$. Since (θ^*, h^*) yields a unique maximum, we can conclude that $(\theta_0, h_0) = (\theta^*, h^*)$. Therefore the sequence of estimates has <u>only</u> one limit point at (θ^*, h^*) .

Lemma 3.3

Under conditions II and III a) the functionals $g_{\theta,h}^{(1)}(u,x)$ and $g_{\theta,h}^{(2)}(x)$ are continuous on $\mathbb{R}^2 \ge X \ge \overline{H}$

and

b)
$$S(\theta,h)$$
 is continuous on $\Im x H$.

<u>Proof</u>: Suppose $\{(X_n, U_n, \theta_n, h_n)\}_{n=1,\infty}$ is a sequence converging to (x, u, θ, h) let $\phi_n(w) = I_{(-f_2(x_n, \theta_n),\infty)} h_n(u_n, w)$.

Using the facts that convergence in Sobolev norm with $m \ge 2$ implies the uniform convergence of a function pointwise (see Adams, 1976, p. 97-98) and that f_2 is a continuous function of x and θ we have

$$\phi_n(w) \neq I (-f_2(x,\theta),\infty)^{h(u,w)}$$

Since $\phi_n \leq \psi_U$ by condition II we can apply the dominated convergence theorem to conclude that

$$\int \phi_n(w) \neq \int_{-f_2(x,\theta)}^{\infty} h(u,w) dw .$$

Finally, noting that the log is a continuous function we have

 $g_{\theta_n,h_n}^{(1)}(u_n,x_n) \rightarrow g_{\theta,h}^{(1)}(u,x)$ and thus this functional is continuous. The continuity of $g_{\theta_n}^{(2)}$ is proved in a similar manner.

b) From the results in a) it is clear that for fixed u and x $g_{\theta,h}(u,x)$

is a continuous function on $\Theta \propto H$.

Also, from condition II

$$\sup_{\substack{\theta \in \Theta \\ \theta \in H}} |g_{\theta,h}(u,x)| \leq b(u_1,x)$$

with $\int_X \int_{\mathbb{R}^2} b(u_1, x)h(u) du dv(x) < \infty$.

If (θ_n, h_n) is a sequence converging to (θ, h) then by the dominated convergence theorem

 $S_{\theta_n,h_n} \rightarrow S_{\theta,h}$ and thus the continuity in b) follows.

Under conditions I-III

$$\sup_{\substack{(\theta,h)\in \Theta \ x \ \overline{H}}} |S_n(\theta,h) - S(\theta,h)| \neq 0 \quad a.s.$$

If $g_{\theta,h}(u,x)$ were continuous in all of its arguments then this result would follow by a Unifrom Strong Law of Large Numbers, such as Theorem 1 in (Gallant, 1982). However, because of the indicator functions in the loglikelihood some additoinal work is required. The idea behind this proof is to approximate $g_{\theta,h}$ by a continuous likelihood and then show that the difference 'is negligible.

Proof: Let $0 \leq \chi^{\varepsilon}$ (z) ≤ 1 be a continuous function such that

$$\chi^{\varepsilon}(z) = 0 \ z < 0 \text{ and}$$

 $\chi^{\varepsilon}(z) = 1 \ z > \varepsilon$

Let

$$g_{\theta,h}^{\varepsilon}(u,x) = \chi^{\varepsilon}(u + f_2(x,\theta^*))g_{\theta,h}^{(1)}(u,x) + \{1-\chi^{\varepsilon}(u+f_2(x,\theta^*))\}g_{\theta,h}^{2}(x)$$

$$S_{n}^{\varepsilon}(\theta,h) = \frac{1}{n} \sum_{w=1}^{n} g_{\theta,h}^{\varepsilon}(u,x),$$

and

$$S^{\varepsilon}(\theta,h) = \int_{\mathbb{R}^2} \int_{\chi} g^{\varepsilon}_{\theta,h}(u,x)h(u)du dv(x).$$

Thus $S_n^{\varepsilon}(\theta,h)$ is identical to $S_n(\theta,h)$, the original log-likelihood, except for a continuous modification of the indicator functions close to 0. Adding and subtracting this modified likelihood gives

$$|s_{n}(\theta,h) - s(\theta,h)| \leq |s_{n}^{\varepsilon}(\theta,h) - s^{\varepsilon}(\theta,h)|$$
$$|s(\theta,h) - s^{\varepsilon}(\theta,h)| + |s^{\varepsilon}(\theta,h) - s_{n}(\theta,h)|$$
(3.3)

Now we argue that each term on the RHS of (3.3) converges to zero uniformly in $\Im \times H$.

By construction, $|g_{\theta,h}^{\epsilon}(u,x)| \leq b(u,x)$ and is continuous on $\mathbb{R}^2 \times X \times \Im \times F$. Thus, by Theorem 1, (Gallant, 1982) the first term in (3.3) converges uniformly to zero.

Considering the second term in (3.3) and applying condition III gives

$$\sup_{\theta,h \in \Theta} x F |S_{\theta,h}^{\varepsilon} - S_{\theta,h}| \leq \int_{\chi} \int_{\mathbb{R}^2} \frac{I}{(-\varepsilon,\varepsilon)} (u_2 + f_2(x,\theta^*))b(u,x)h^*(u)du dv(x)$$

$$\leq \int_{\chi} \int_{\mathbb{R}} \frac{I}{(-\varepsilon,\varepsilon)} (u_2 + f_2(x,\theta^*))M(x)du_2 dv(x)$$

$$\leq 2\varepsilon \int_{\chi} M(x)dv(x) .$$

Since by assumption $\int_{\chi} M(x) dv(x) < \infty$ we see then this term converges to zero uniformly as $\varepsilon \to 0$.

Let $0 \leq \phi^{\varepsilon} \leq 1$ be a continuous, function which is one on the interval $[-\varepsilon, \varepsilon]$ but zero outside the interval $[-2\varepsilon, 2\varepsilon]$. Considering the last term in (3.3)

$$|s_n(\theta,h) - s_n^{\varepsilon}(\theta,h)| \leq \frac{1}{n} \sum_{W=1}^n \Phi^{\varepsilon}(u_2 + f_2(x_k,\theta^*))b(u_k,x_k)$$

Once again, applying Theorem 1, (Gallant, 1982) the RHS of (3.4) converges uniformly to

$$\int_{\chi} \int_{\mathbb{R}^2} b(u,x) \, \phi^{\varepsilon}(u_2 + f_2(x,\theta)) h^{\star}(u) du \, dv(x)$$
(3.5)

and by using the same arguments given above this quantity is uniformly bounded by

 $4 \in \int M(x) dv(x)$.

Therefore for $\varepsilon > 0$ there is an N such that for $n \, \geqq \, N$

$$\sup_{\substack{(\theta,h)\in \Theta \\ \leq \varepsilon}} \frac{\sup_{x \in H} |S_n(\theta,h) - S_n^{\varepsilon}(\theta,h)|}{\leq \varepsilon + 4 \varepsilon \int M(x) d\nu(x)}$$

Combining the results for the separate terms in (3.3) proves the lemma. QED

Before giving the proof of Theorem 1.1 we need to introduce the following projection operator:

Let
$$P_{K}: W^{m,2} \rightarrow \overline{H}$$
 such that
 $P_{k}(h) = g \iff ||h-g||_{W^{m},2} = \min_{f \in H_{k}} ||f-h||_{W^{m},2}$

For $h \in W^{m,2} ||P_k(h) - h||_{W^{m,2}}$ will be non-increasing in K and if $h \in \bigcup_{k=1}^{\infty} H_k$ then

$$\left\| P_{K}(h) - h \right\|_{W^{m}, 2} \neq 0 \text{ a.s. } k \neq \infty.$$
(3.6a)

Finally, we claim that if $h_n \rightarrow h$ in $W^{m,2}$ and $h \in \bigcup_{k=1}^{\infty} H_k$ then

$$P_{K}(h_{n}) \rightarrow h \text{ as } n, K \rightarrow \infty.$$
 (3.6b)

To see this we have

$$||P_{k}(h_{n}) - h||_{W^{m},2} \leq \min_{f \in \mathcal{H}_{k}} ||f - h_{n}||_{W^{m},2} + ||h_{n} - h||_{W^{m},2}$$

$$\leq \min_{f \in \mathcal{H}_{k}} ||f - h||_{W^{m},2} + 2||h_{n} - h||_{W^{m},2}$$

$$\leq ||P_{K}(h) - h||_{W^{m},2} + 2||h_{n} - h||_{W^{m},2}$$
(3.7)

where both terms on the RHS of (3.6) will converge to zero. <u>Proof of Theorem 1.1</u>

We first argue that $(\tilde{\theta}_n, \tilde{h}_n)$ are consistent estimates.

By Lemma 3.1 \overline{H} will be compact therefore, so is $\mathfrak{B} \times \overline{H}$. Under the identifiability conditions A-C by Lemma 2.2 $S(\theta^*,h^*)$ is the unique maximum of $S(\theta,h)$ over $\mathfrak{B} \times \overline{H}$ and by Lemma 3.3b S is continuous on $\mathfrak{B} \times \overline{H}$. Finally, by Lemma 3.3 we can conclude that (3.2) holds. Having satisfied the assumptions of Lemma 3.1 we have:

$$\tilde{\theta}_n \neq \theta^*$$
 a.s. in Θ (3.8)
 $\tilde{h}_n \neq h^*$ a.s. in $W^{m,2}(\mathbb{R}^2)$

Now we show that $\hat{\theta}_n$ and \hat{h}_n are consistent. By the definition of $(\hat{\theta}_n, \hat{h}_n)$

$$s_n(\hat{\theta}_n, \hat{h}_n) \ge s_n(\tilde{\theta}_n, P_{K_n}(\tilde{h}_n))$$

From the properties of P_{K} given above, the consistency of $(\tilde{\theta}_{n}, \tilde{h}_{n})$ and Lemma 3.4.

liminf $S_n(\hat{\theta}_n, \hat{h}_n) \ge S(\theta^*, h^*)$

Now, using arguments similar to those in the proof of Lemma 3.2, it is straightforward to show that $(\hat{\theta}_n, \hat{h}_n)$ must have a single limit point at (θ^*, h^*) .

4. <u>Consistency of $(\bar{\theta}, h)$ </u>

Let P denote the class of polynomials on

 \mathbb{R}^2 and let $V = \{f: f = p\phi, p \in P\}$

Lemma 4.1

- If ϕ^2 has a moment generating function and $V \subseteq W^{S,2}(\mathbb{R}^2)$ then
- a) V is dense in $W^{S,2}(\mathbb{R}^2)$
- b) *H* is contained in the closure of *F* with respect to the norm for $w^{m,2}(\mathbb{R}^2)$

Proof

a) The first statement of the lemma is equivalent to the following condition:

If
$$h \in W^{S,2}$$
 and $\langle f,h \rangle_{US,2} = 0$ (4.1)

for all f ε V then h = 0.

First assume that (4.1) holds for h εC_0^{∞} . Using the fact that the adjoint of $D^P L^2$ for functions in C_0^{∞} is $(-1)^{|P|} D^P$

$$0 = \langle \mathbf{f}, \mathbf{h} \rangle_{W^{\mathbf{S}}, 2} = \sum_{\substack{|\mathbf{p}| \leq \mathbf{S}}} \langle \mathbf{p}^{\mathbf{P}} \mathbf{f}, \mathbf{p}^{\mathbf{P}} \mathbf{h} \rangle_{L^{2}}$$

$$= \sum_{\substack{|p| \leq \\ L^2}} (-1)^{|p|} \langle f, p^P \cdot p^P h \rangle_{L^2} = \langle f, g \rangle_{L^2}$$

where $g = \sum_{\substack{p \leq S}} (-1)^{|p|} (D^P \cdot D^P)(h)$.

Setting $f = p\phi$ and rewriting (4.2) gives

$$(\mathbf{p}, \mathbf{g}/\phi)_{\mathrm{L}^{2}(\mathbb{R}^{2}, \phi^{2})} = 0 \quad \forall \mathbf{p} \in \mathcal{P}$$

From Gallant (1980), we know that the polynomials are dense in the weighted L^2 space $L^2(\mathbb{R}^2,\phi^2)$. Thus $g/\phi = 0$ and since g has compact support and is continuous $g \equiv 0$.

Now $\langle h,g \rangle_{L^2(\mathbb{R}^2)} = 0$ and from (4.2) we have $\langle h,h \rangle_{W^{S,2}(\mathbb{R}^2)} = 0$ which implies $h \equiv 0$.

Thus we have demonstrated that (4.1) holds for all $h \in C_0^{\infty}(\mathbb{R}^2)$. Since $C_0^{\infty}(\mathbb{R}^2)$ is dense in $W^{S,2}(\mathbb{R}^2)$ by continuous extension (4.1) holds for all $h \in W^{S,2}$ and the result follows

b) Since $h \in H$ by assumption $\sqrt{h} \in W^{m+1,2}$. From part a) there is a sequence $\{f_n\} \subseteq V$ such that (4.1b) $f_n \neq \sqrt{h}$ in $W^{m+1,2}$.

It remains to show that $f_n^2 \rightarrow h$ in $W^{m,2}$. Repeated application of the chain rule yields the formula

$$\frac{\partial^{P_{1}}}{\partial v_{1}^{P_{1}}} \frac{\partial^{P_{2}}}{\partial v_{2}^{P_{2}}} (\alpha\beta) = \sum_{i=0}^{P_{1}} \sum_{j=0}^{P_{2}} {P_{1} \choose i} {P_{2} \choose j} \frac{\partial^{i}}{\partial v_{1}^{i}} \frac{\partial^{j}}{\partial v_{2}^{j}} (\alpha) . \qquad (4.1c)$$

$$\frac{\partial^{P_{1}-i}}{\partial v_{1}^{P_{1}-i}} \frac{\partial^{P_{2}-j}}{\partial v_{2}^{P_{2}-j}} (\beta)$$

Or in operator notation:

$$D^{P}(\alpha\beta) = \sum_{\substack{0 \leq |q| \leq |p|}} {\binom{P_{1}}{q_{1}} \binom{P_{2}}{q_{2}}} D^{q} \alpha D^{p-q} \beta$$

Since the binomial coefficients are bounded for $|p| {\leq} m$ there is a c ${<} \infty$ such that

$$\left| \mathbf{D}^{\mathbf{P}}(\alpha\beta) \right|^{2} \leq \mathbf{C} \sum_{\substack{\mathbf{0} \leq |\mathbf{q}| \leq |\mathbf{p}|}} \left| \mathbf{D}^{\mathbf{q}} \alpha \right| \left| \mathbf{D}^{\mathbf{p}-\mathbf{q}} \beta \right|$$
(4.1d)

$$\leq C(w_1)(w_2)$$

where $w_1 = \sum_{0 \leq |q| \leq |p|} |D^q(\alpha)|^2$, $w_2 = \sum_{0 \leq |q| \leq |p|} |D^q(\beta)|^2$

Thus

$$\begin{split} \| \mathbf{p}^{P}(\alpha \beta) \|_{L^{2}} &\leq c \| \mathbf{w}_{1} \mathbf{w}_{2} \|_{L^{2}} \\ &\leq c \| \mathbf{w}_{1}^{2} \|_{L^{2}} \| \mathbf{w}_{2}^{2} \|_{L^{2}} \end{split}$$

By expanding w_1^2 and applying the Cauchy Schwartz inequality to the cross products it is straightforward to verify that there is and C'< ∞ independent of w_1 such that

$$\|w_{1}^{2}\|_{L^{2}}^{2} \leq C' \sum_{0 \leq |q| \leq |p|} \|D^{q} \alpha\|_{L^{4}}^{4}$$
(4.1e)

or

$$\leq C' ||\alpha||^4_{W|p|,4}$$

Clearly 4.1e will also hold for w and therefore it follows that there is and M $<\infty$ such that

$$\|\alpha\beta\|_{W^{m,2}}^{2} \leq M \|\alpha\|_{W^{m,4}}^{4} \|\beta\|_{W^{m,4}}^{4}$$
(4.1f)

Let $\alpha = f_n + \sqrt{h}$ and $\beta = f_n - \sqrt{h}$. By Theorem 5.4 (5) (Adams, 1976) the imbedding $W^{m+1,2}(\mathbb{R}^2) \rightarrow W^{m,4}(\mathbb{R}^2)$ is continuous. Hence $||f_n + \sqrt{h}||_{W^{m,4}}^4$ will be bounded for sufficiently large n and $||f_n - \sqrt{h}||_{W^{m,4}}^4 \rightarrow 0$. Thus by 4.1f $||\alpha\beta||_{W^{m,2}}^2 = ||h - f_n^2||_{W^{m,2}}^2 \rightarrow 0$. QED

Before proving Theorem 1.2 we need to give some properties of two projection operators.

Let $T_k: W^{m,2} \neq F_k$ denote the projection operator such that $T_k(h) = g \langle = \rangle g \in F_k, ||g-h||_{W^{m,2}} = \min_{f \in F_k} ||f-h||_{W^{m,2}}$

Now if we replace P_k by T_k and H_k by F_k in (3.6) - (3.7) the same relations will hold. In particular, if $h \in H \subseteq F$ and $h_n \rightarrow h$ then

 $T_k(h) \rightarrow h \text{ as } n, k \rightarrow \infty$.

Also we will need the fact that Q (see (1.5)) is a continuous operator.

Suppose $\{h_n\} \subseteq W^{m,2}$ converges to $h \in W^{m,2}$. By Lemma 3.1 \overline{H} is compact and there is a subsequence $\{Q(h_{n_k})\}$ with a limit $\rho \in \overline{H}$. Since

$$\|Q(h_{n_{k}}) - h\|_{W^{m},2} \leq \|Q(h) - h\|_{W^{m},2} + 2\|h_{n_{k}} - h\|_{W^{m},2}$$

it follows that for any $\epsilon > 0$

$$\|\rho - h\|_{W^{m}, 2} \leq \|Q(h) - h\|_{W^{m}, 2} + \epsilon$$

By definition $||Q(h)-h||_{W^{m},2} \ge ||\rho-h||_{W^{m},2}$. Thus $||Q(h)-h||_{W^{m},2} = ||\rho-h||_{W^{m},2}$ and by the uniqueness of the projection, $Q(h) = \rho$. Therefore, $\{Q(h_n)\}$ has only one limit point at Q(h) and $Q(h_n) \neq Q(h)$.

(4.2)

From the definition of $\bar{\theta}_n, \bar{h}_n$ $S_n(\tilde{\theta}_n, (Q \cdot T_k)(\tilde{h}_n)) \leq S_n(\tilde{\theta}_n, \bar{h}_n)$ Also, from section 3 we know $(\tilde{\theta}_n, \tilde{h}_n) \rightarrow (\theta^*, h^*)$ a.s. Since Q and T_k are continuous, $(Q^{\circ}T_k)$ will also be continuous and $(Q^{\circ}T_k)(\tilde{h}_n) \rightarrow h^*$. Therefore, by Lemma 3.4 (4.2) implies

 $S(\theta^*,h^*) \leq \liminf S_n(\bar{\theta}_n,\bar{h}_n)$.

Using arguments similar to those given in the proof of Lemma 3.2 one can show that $\{(\bar{\theta}_n, \bar{h}_n)\}$ must have a single limit point at θ^*, h^* .

QED

References

Adams, R. A. (1975). Sobolev Spaces. Academic Press, New York.

- Gallant, A. R. (1980). "Explicit Estimators of Parametric Functions in Nonlinear Regression," JASA <u>75</u>(369): 182-193.
- Gallant, A. R. (1982). "Nonlinear Statistical Methods, Chapter 3. A Unified Asymptotic Theory of Nonlinear Statistical Models," Institute of Statistics Mimeograph Series No. 1617, North Carolina State University.

Rudin, W. (1974). Real and Complex Analysis. McGraw Hill, Inc., New York.