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The statistical analysis of dynamic nonlinear models, for instance a model

such as

t = 0, ±1, ±2, ...

with serially correlated errors, is little different from the analysis of static

models as far as applications is concerned. The formula for estimating the
-variance of the average of the scores -- the formula for J and J -- changes but

little else. Thus, as far as applications is concerned, the previous intuition

and methodology carries over directly to the dynamic situation.

The main theoretical difficulty is to establish regularity conditions that

permit a uniform strong law and nearly uniform central limit theorem that are

both plausible (reasonably easy to verify) and resilient to nonlinear

transformation. The time series literature is heavily oriented toward linear

models and is thus not of much use. The more recent martingale central limit

theorems and strong laws are not of much use either because martingales are

essentially a linear concept a nonlinear transformation of a martingale is

not a martingale of necessity. In a series of four papers McLeish (1974, 1975a,

1975b, 1977) developed a notion of asymptotic martingales which he termed

mixingales. This is a concept that does extend to nonlinear situations and

the bulk of this chapter is a verification of this assertion. The flavor of

the extension is this. Conceptually Yt in the model above is a function of

all previous errors e t , e t - 1 , .... But if Yt can be approximated by Yt that
is a function of e , ... , e t and the error of approximation Ily -ytll fallst -m t p

off at a polynomial rate in m then smooth transformations of the form

g(Yt' ... ' Yt-l'xt , ... , xt-l'Y) follow a uniform strong law and a nearly uniform

central limit theorem provided that the error process is strong mixing. The

rest of the analysis follows along the lines laid down in Chapter 3 with a
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reverification made necessary by a weaker form of the uniform strong law:

an average of random variables becomes close to the expectation of the average

but the expectation itself does not necessarily converge. These results

were obtained in collaborative research with Charles Bates, Halbert White, and

Jeffrey M. Wooldridge while they visited Raleigh in the summer of 1984. National

Science Foundation support for this work is gratefully acknowledged.

The reader who is applications oriented is invited to scan the regularity

conditions to become aware of various pitfalls, isolate the formula for J or J

relevant to the application, and then apply the methods of the previous chapters

forthwith. A detailed reading of this chapter is not essential to applications.

The material in this chapter is intended to be accessible to readers familiar

with an introductory, measure theoretic, probability text such as Ash (1972),

Billingsly (1979), Chung (1974), or Tucker (1967). In those instances where the

proof in an original source was too terse to be read at that level, proofs with

the missing details are supplied here. Proofs of new results or significant

modifications to existing results are, of course, given as well. Proofs by

citation occur only in those instances when the argument in the original source

was reasonably self contained and readable at the intended level.
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1. INTRODUCTION

This chapter is concerned with models which have lagged dependent variables

as explanatory variables and (possibly) serially correlated errors. Something

such as

u t = e t + y; e t - l
t =0.±1.±2•...

might be envisaged as the data generating process with {e t } a sequence of. say.

independently and identically distributed random variables. As in Chapter 3.

one presumes that the model is well posed so that in principle. given Yt-l' x t '

yi. Ut' one could solve for Yt. Thus an equivalent representation of the model

is

Yt = Y(ut • Yt-l' x t '
yO)
I

u t = e t + y; e t - l
t = O. ±l. ±2. ...

substitution yields

and if this substitution process is continued indefinitely the data generating

process is seen to be of the form

Yt = Y(t. e , x , yO)
"" ""

with

e"" = ( •.. , e_ l • eO' e l •.•• )

x"" = ( ••• , X_I' xo' Xl' ••• )

t 0, ±l, ±2 •...

Throughout. we shall accommodate models with a finite past by setting Yt' xt ' e t

equal to zero for negative t; the values of Yo' xo ' and eO are the initial conditions

in this case.
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If one has this sort of data generating process in mind, then a least

mean distance estimator could assume the form

with sample objective function

or
n

s (A) = (l/n)E lS (y,y l'···'YO'x,x 1, ... ,xO,T ,A);n t= t t t- t t- n

the distinction between the two being that one distance function has a finite

number of arguments and the number of arguments in the other grows with t.

Writing

with it depending on t accommodates either situation. Similarly, a method of

moments estimator can assume the form

A = argminl\ s (A) = d[m (A),; Jn n n n

with moment equations

m (A)n

In the literature, the analysis of dynamic models is unconditional for the

most part and we shall follow that tradition here. Fixed (nonrandom) variables

amongst the components of xt are accommodated by viewing them as random variables

that take on a single value with probability one. Under these conventions there

is no mathematical distinction between the error process {e}= and the processt t=-=
{xt}::_=describing the independent variables. The conceptual distinction is that

the independent variables {x }= are viewed as being determined externallyt t=-=

to the model and independently of the error process {e t }:=_=. In an unconditional
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analysis of a dynamic setting we must permit the process to be dependentt

and, since fixed (nonrandom) variables are permitted, we must rule out stationarity.

We shall also permit the error process to be dependent and nonstationary

primarily because nothing is gained by assuming the contrary. Since there is no

mathematical distinction between the errors and the independent variables, we can

economize on notation by collecting them into the process witht

denote a realization of the process by

Recall that if the process has a finite past then we set v t = a for t < a and

take the value of va as the initial condition.

Previously, we induced a Pitman drift by considering data generating

processes of the form

and letting yO tend to a point y*. In the present context it is very difficult
n

technically to handle drift in this way so instead of moving the data generating

model to the hypothesis as in Chapter 3 we shall move the hypothesis to the model

by considering

h* *H: h(AO) = against A: h(AO) 1 hn n n n

and letting h(AO) *-h drift toward zero at the raten n This method of

inducing drift is less traditional but in some respects is philosophically more

palatable. It makes more sense to assume that an investigator slowly discovers

the truth as more data becomes available than to assume that nature slowly

accommodates to the investigator's pigheadedness. But withal, the drift is only

a technical artifice to obtain approximations to the sampling distributions of

test statistics that are reasonably accurate in applications so that
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phi1isophical nitpicking of this sort is irrelevant.

If the data generating model is not going to be subjected to drift there

is no reason to put up with the cumbersome notation:

Yt = Y(t,e ,x ,yO)
00 00

sO.) = (l/n)I;n lS (y,y l'···'Y o,x,x l'···'x 0"; ,A)n t= t t t- t t- n
t t

Much simpler is to stack the variables entering the distance function into a

single vector

and view wt as obtained from the doubly infinite sequence

by a mapping of the form

Let wt be kt-dimensional. Estimators then take the form

in the case of least mean distance estimators and

A = argmin. s (A) = d[m (A),; Jn 1l n n n

= ;n,A)

in the case of method of moments estimators. We are led then to consider limit
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theorems for composite functions of the form

(l/n)En Ig [W (v ),yJt= t t

which is the subject of the next section. There y is treated as a generic

parameter which could be variously yO, (T,A), or an arbitrary infinite

dimensional vector.
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2. A UNIFORM STRONG LAW AND A CENTRAL LIMIT
THEOREM FOR DEPENDENT, NONSTATIONARY RANDOM VARIABLES

Consider a sequence of vector-valued random variables

t = 0,±1,±2,

defined on a complete probability space (12,a,p) with range in, lsay, lR . Let

where each v
t

with range in

is in lRl and consider
k tlR for t = 0, 1,

, Borel measurable
vector-valued/functions of the form W (v )A t 0)

The subscript t serves three functions.

It indicates that time may enter as a variable. It indicates that the focus of

the function Wt is the component vt of VO) and that other components Vs enter the

computation, as a rule, according as the distance of the index s from the index

t, for instance

W (v )t 0)

0)

= E. OA.V t .J= J -J

And, it indicates that the dimension kt of the vector wt
Put

= W (v ) may depend on t.t 0)

then Wt[VO)(w)J is a kt-dimensional random variable depending (possibly) on infinitely

many of the random variables Vt(w). This notation is rather cumbersome and we shall

often write Wt(w) or Wt instead. Let (f,p) be a compact metric space and let

{gnt(wt,y): n=1,2, ... ; t=0,1, .•. }

{gt(wt,y): t=0,1, .•. }

k tbe sequences of real valued functions defined over lR x f. In this section we

shall set forth plausible regularity conditions such that

almost surely (12, G,p) and such that
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for any sequence {yO} from r, convergent or not. We have seen in Chapter 3 thatn

these are the basic tools with which one constructs an asymptotic theory for

nonlinear models. As mentioned earlier, these results represent adaptations

and extensions of dependent strong laws and central limit theorems obtained in

a series of articles by McLeish (1974, 1975a, 1975b, 1977). Additional details

and some of the historical development of the ideas may be had by consulting

that series of articles.

We begin with a few definitions. The first defines a quantitative measure

of the dependence amongst the random variables .t
STRONG MIXING. A measure of dependence between two sigma-algebras J and

is

a(3,q) = sUPFE3' IP(FG) - P(F)P(G) I
The measure will be zero if the two sigma-algebras are independent and positive

otherwise. Let the sequence of random variables defined on the

complete probability space (12,a,p) described above and let

denote the smallest complete (with respect to p) sub-sigma-algebra such that the

random variables Vt for t = m, m+l, ... , n are measurable. Define

t
a = sup a(J ,Jt+m). [Jm t

Observe that the faster a converges to zero, the less dependence the sequence
m

{V exhibits. An independent sequence has a > 0 for m = 0 and a = 0 form m

m > O.

Following McLeish we shall express the rate at which such a sequence

of nonnegative real numbers approaches zero in terms of size.
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A sequence {am}:=1 of
8= O(m ) for some 8 < -q.
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nonnegative real numbers is said to be of size

o
This definition is stronger than that of McLeish. However, the slight

sacrifice in generality is irrelevant to our purposes and the above definition

of size is much easier to work with. Recall that a = O(m8 ) means that there ism

a bound B with la I Bme for all m larger than some M.m

Withers (1981, Corollary 4.a) proves the following. Let {€t: t=O,±l,±Z,···t

be a sequence of independent and identically distributed random variables each

with mean zero, variance one, and a density P€(t) which satisfies

P€(t+h)ldt IhlB for some finite bound B. If each €t is normally

distributed then this condition is satisfied. Let

e t = Ej=O dj€t_j

where d j = O(j-v) for some v > 3/2 and E;=OdjZ j 0 for complex valued z with

Izi 1. Suppose that I/€tl/o const. < for some 0 with Z/(v-l) < 0 < v

Then {e } is strong-mixing with {a } of size -[6(v-1)-Z]/(6+1). For normally
t m

distributed {€t} there will always be such a 6 for any v. These conditions are

not the weakest possible for a linear process to be strong-mixing; see

Withers (1981) and his references for weaker conditions.

The most frequently used time series models are stationary autoregressive

moving average models, often denoted ARMA (p,q),

with the roots of the characteristic polynomials

mP + p-l + + a = 0aIm p

mq + q-l + + b = 0blm ... q
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less than one in absolute value. Such processes can be put in the form

where the d.
]

with Izi S 1

falloff exponentially and E;=O djZ j 0 for complex valued z

(Fuller, 197&, Theorem 2.7.1 and Section 2.4) whence d. = O(j-v)
]

for any v > O. Thus, a normal ARMA (p,q) process is strong-mixing of size -q

for q arbitrarily large; the same is true for any innovation process {€t} that

satisfies Withers' conditions for large enough o.
It would seem from these remarks that an assumption made repeatedly in

the sequel:
00

"{V} is strong-mixing of size -r/(r-2) for some r > 2,"
t t=-oo

is not unreasonable in applications. If the issue is in doubt, it is probably

easier to take {Vt } to be a sequence of independent random variables or a

finite moving average of independent random variables which will certainly

be strong-mixing of arbitrary size and then show that the dependence of

observed data W on far distant V is limited in a sense we make precise below.
t s

This will provide access to our results without the need to verify strong-mixing.

We shall see an example of this approach when we verify that our results apply

to a nonlinear autoregression (Example 1).
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Consider the vector-valued function W (V ) which, recall, depends (possibly)
t ""

on infinitely many of the coordinates of the vector

If the dependence of W (V ) on coordinates V far removed from the position
t "" s

occupied by Vt is too strong, the sequence of random variables

W
t
= W (V )

t ""

will not inherit any limits on dependence from limits placed on {V}"" as measured
t t=-""

by {am}:=O' In order to insure that limits placed on the dependence exhibited by

{V}"" carryover to {W}"" we shall limit the influence of V on the valuest t=-"" t t=O s

taken on by Wt(V"") for values of s far removed from the current epoch t. A

quantative measure of this notion is as follows.

NEAR EPOCH DEPENDENCE. Let {V}"" be a sequence of vector-valued random
t t=-""

variables defined on the complete probability space a,p) and let J n denote
m

the smallest complete sub-sigma-algebra such that the random variables Vt for

t = m, m+l, ... , n are measurable. = W (v )
t ""

for t = 0, 1, ... denote
k tsequence of Borel measurable, functions with range in that depends (possibly)

on infinitely many of the coordinates of the vector
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Let {gnt(wt )} for n = 1, 2, ... and t = 0, 1, 2, '" be a doubly indexed sequence
k tof real valued, Borel measurable functions each of which is defined over

The doubly indexed sequence {g (W
t
)} is said to be near epoch dependent of size -q ifnt

is size -q.

Let (f,p) be a separable metric space and let {g (w ,y)} be a doubly indexednt t

family of real valued functions each of which is continuous in y for each fixed
k twt and Borel measurable in WtE for fixed y. The family {gnt(Wt,y)} is said

to be near epoch dependent of size -q if

(a) The sequence {gO (W ) = g (W ,yO)} is near epoch dependent of size -q fornt t nt t n

every sequence yO from r.n

(b) The sequences

and

are near epoch dependent of size -q for each yO in r and all positive

o less than some 0° which can depend on yO. 0

The above definition is intended to include singly indexed sequences

in this instance. For singly indexed families {gt(wt,y)};=O ' the definition

retains its doubly indexed flavor as {gO (W ) = gt(W ,yO)} is doubly indexed evennt t t n
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Note that if Wt depends on only finitely many of the Vt , for instance

then any sequence {gnt(wt )} or any family {gnt(wt,y)} will be near epoch

dependent because one has

for m larger than i; similarly for {gO (w )}, {g (wt )}, and {g (w )}.nt t nt _nt t
The situations of most interest here will have the dimension of Wt fixed

at k t = k for all t and gnt(w) or gnt(w,y) will be smooth so that

where wis on the line segment joining w to w. Letting

where Ixl

using II: x·y.1 :li Ixl Iyl·1. 1.
For functions g (w) or g t(w,y) that are smoothnt n

enough to satisfy this inequality, the following lemma and proposition aid in

showing near epoch dependence.

{W}'" 0' and {g (w,y): t=0,1,2, ... ; n=1,2, ... }t t= nt
be as in the definition of near epoch dependence but with k t = k for all t. Let

I AI k A 2 1 kwhere w-w = [I:. (w.-w.) or any other convenient norm on m .
1.=1 1. 1.

At+m
there exist random variables W of the formt-m

At+m
W = W(V , ••• , V , ••• , V +m)t-m t-m t t

Suppose that
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such that for some r > 2 and some pair p, q with 1 p,q l/p + l/q = 1

we have:

(a) dominated by random variables d withntm

If

II d II = [f Id IqdP J1/q :il r:. <ntm q ntm

{B (W Wt+m Y)IW _wt+ml} dominated by random variables d withnt t' t-m' t t-m ntm

II d II :il r:. < .ntm r

is size -2q(r-l)/(r-2) then {g (W ,y)} is near epoch dependent of size -q.nt t

First, we prove the following lemma.

o

LEMMA 1. Let and be as in Proposition 1 and let {gnt(w)}

be a sequence of functions defined over mk with

For {Wt+m}, rand q as in Proposition 1 let liB t(W ,wt+m)1I :il r:. < and lett-m n t t-m q

II B (W Wt +m) IW _wt+ml II r:. <nt t' t-m t t-m r
Then {g (Wt )} is near epoch dependent of size -q.nt

PROOF.
A At+m t+m

Let g(w) = g (w), W=Wt,W=W ,and:J =3' . Fornt t-m t-m

c =

let

= {B(Wo'W)Bl(W,W)

A A

B(w,w)IW-wl :il c
A A

B(W,W) w-WI > c
A A A

and let B2(W,W) = B(W,W) - Bl(W,W). Then

because e(gWIJ) is the best J-measurable approximation to gW in L2-norm and W

is
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- -IIB(w,w)lw-WI liz
AI>.... ....,..

II Bl (w,w) Iw-wl liz + IIBZ(W,W) IW-wl liz

by the triangle inequality

= {J[Bl (W,W)j
ZIW-WI 2 +

+ c(2-r)/2

Iw-wl +

by the Holder inequality

= II Iw-wl II; + c(Z-r)/2 1IB (w,w) Iw-wl 11:/ 2

= II Iw-wl IIB(W,W) Iw-wl

after substituting the above expression for c and some algebra.

and II B(W,w) Iw-wl II t. then we haver

IIgW - e(gwIJ)1I 2 :;l t. II Iw-wl

whence

If n is size -Zq(r-2)/(r-Z) then v is size -q. [Jm m

PROOF OF PROPOSITION 1. Now

implies

-gnt(w,y) Bnt(w,;,y)lw-;1 - gnt(;'y)

-gnt(;'y) Bnt(w,;,y)lw-;1 - gnt(w,y)
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whence, using sup{-x} = -inf{x}, one has

sup ( O)<r B (w,;,y) Iw-;Ip y,y u nt

A similar argument applied to

yields

Isupp(y,yO)<o gnt(w,y) - supp(y,yO)<o gnt(;,y)1

sup ( O)<r B (w,;,y) Iw-;I.p y,y u nt
We also have

All three inequalities have the form

Ignt(w) - gnt(;)I Bnt(w,;)lw-;1

with :£ t. < 00 and II r t. < 00 whence Lemma 1

applies to all three. Thus part (a) of the definition of near epoch dependence

obtains for any sequence {yO} and part (b) obtains for all positive 0. (Jn

The following example illustrates how Proposition 1 may be used in applications,

EXAMPLE 1. (Nonlinear Autoregression) Consider data generated according to

the model

t = 1, 2,

t 0

Assume that f(y,x,S) is a contraction mapping in y; viz

I<a/3y)f(y,x,S)1 :;; d < 1 .
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Let the errors {e t } be strong mixing with Iletllp K < 00 for some p > 4; set

e t = a for t O. As an instance, let

e = E.t y e: ,. e: = a e Ie
t
Ip K < 00t j =0 j t - j' '" t '

with t finite. With this structure, Vt = (0,0) for t 0 and Vt = (et,xt ) for

t = 1, 2, ...
A

Suppose that eO is estimated by least squares -- e minimizesn

We shall show that this situation satisfies the hypotheses of Proposition 1.

To this end, define a predictor of y of the forms

as follows:

>\ = a t :;l a

Yt = f(y t _1 ,xt ,eO) a < t
AS

Ys -m max(t-m,O)Yt,m = s

AS As-1 max(t-m,O) <Yt,m = f(y ,x ,eO) + e s tt,m s s

For m 0, t 0 there is a Yt on the line segment joining Yt to Yt such that

Iyt-ytl = If(yt _1 ,xt ,eO) + e - f(y t _1 ,xt ,eO)1t
= 1(3/3y)f(Yt,xt,eO)(Yt_l- Yt - 1 ) + etl

:;l dly t - 1- yt-11 + let'

2
yt - 21 + diet_II + Ie Id ly t - 2- t
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For t-m)O the same argument yields

where the last inequality obtains by substituting the bound for IYt - ytl obtained

previously. For t - m < 0 we have

In either event,

This construction is due to Bierns (1981, Chapter 5).

Letting

we have

with

For t 1
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I At-ll I At I I At-ll+ d Yt - l - Yt,m )( Yt - Yt,m + d Yt - l - Yt,m )

+ dmE t -m- 2 d j I I)( I _ At I + I _ At -1, )
j=O e t -m- l - j Yt Yt,m Yt - l Yt,m

Wt ) Iw - Wt It-m t t-m

where we take as a convenient norm

We have at once:

S 2K[l + dm/(l-d)J t:, < 00 all m,t

II Iw - Wt I II 2K dm/(l-d) t:, < 00 all m,t .t t-m p

Using the Holder inequality, we have for r = p/2 that

II B(W ,wt )IW - Wt I IIt t-m t t-m r

AtNote that B(W ,W ) is not indexed by e so the above serve as dominating randomt t-m
variables. Put q = p/(p+l) < p whence
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Thus, the example satisfies conditions (a) and (b)

of Proposition 1. Lastly, note that

The rate at which n falls off with m is exponential since d < 1 whence n ism m

size -q(r-1)/(r-2) for any r > 2. Thus all conditions of Proposition 1 are

satisfied.

If the starting point of the autoregression is random with Yo = Y where

II YII K the same conclusion obtains. One can see that this is so as follows.
p

In the case of random initial conditions, the sequence {Vt } is taken as Vt = (0,0)

for t < 0, Va = (Y,O), and Vt = (et,xt ) for t > O. For t - m > a the predictor
has prediction error (Problem 2)

dtlYI + dmL:-m-ldjle .1
]=0 t-m-]

dmlYI + dmL:-m-1djle .1·]=0 t-m-]

For t-m < a one is permitted knowledge of Y and the errors up to time t so that Yt

can be predicted perfectly for t-m < O. Thus, it is possible to devise a predictor

Y witht,m

The remaining details to verify the conditions of Proposition 1 for random initial

conditions are as above. U
McLeish (1975b) introducted the concept of mixingales -- asymptotic martingales --

on which we rely heavily in our treatment of the subject of dynmaic nonlinear models.

The definition is as follows

MIXINGALE. Let

{x : n = 1, 2,nt ... , t = 1, 2, ... }
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be a doubly indexed sequence of real valued random variables in LZ(n,u,p) and

let be an increasing sequence of sub-sigma-algebras. Then (X is a
-00 nt -00

mixingale if for sequences of nonnegative constants {c } and {W } withnt m

lim W = 0 we have for all t 1, n 1, and m 0 thatm-o m

(a)

(b)

II e(X I II :5 w. cnt -00 Z m nt

cnt [J

The intention is to include singly indexed sequences {Xt};=l as a special

case of the definition. Thus is a mixingale if for nonnegative Wm and

c t with lim W = 0 we havem-o m

(a) lI e (x t l;;::m)11 2 Wmc t

(b) Ilxt -e(x t l;;::m)lI z Wm+1Ct

There are some indirect consequences of the definition. We must have

(Problem 3)

II X - e (X I;; t+(m+l» II :5 II X - e(x I;; t+m) IInt nt -00 Z nt nt -00 Z

Thus, W appearing in the definition could be replaced by W' = min < W so thatm m n_m n

one can assume that Wm satisfies Wm+l Wm without loss of generality. Letting
00

= n t=-oo
;;t
-00

and letting
00

;;-00 denote the smallest complete sub-sigma-

algebra such that all the Vt are measurable, we have from

Consequently, e(X ) = 0 for all n, t 1. By the same sort of argumentnt

X - e (X I'i") = 0 almost surely.nt nt-oo
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Every example that we consider will have X a function of the past, notnt
the future, so that X will perforce be measurable. This being the case,nt

condition (b) in the definition of mixingale will be satisfied trivially and is

just excess baggage from our point of view. Nonetheless, we shall carry it along

through Theorem 2 because it is not that much trouble and it keeps us in conformity

with the literature.

The concept of a mixingale and the concepts of strong mixing and near epoch

dependence are related by the following two propositions. Recall that if X is a
krandom variable with range in lR then

PROPOSITION 2. Suppose that a random variable X defined over the probability

space (12,a,p) is measurable with respect to the sub-sigma-algebra q and has range
in lRk • Let g(x) be a real valued, Borel measurable function defiaed over lRk

with eg(X) '"' 0 and II g(X) II < co for some r > 2. Thenr

lIe(gxl:J) II 2 +

for any sub-sigma-algebra J.

PROOF. (Hall and Heyde, 1980, Theorem A.S; McLeish, 1975b, Lemma 2.1)

Suppose that U and V are univariate random variables, each bounded in absolute

value by one, and measurable with respect to J and q respectively. Let

v '"' sgnle(VIJ) -e VJ which is :J measurable. We have

s e v le(V 13<) - e VJ

= ele(vvl:J) -e veV J

'"' e(vV) - eveV .
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The argument is symmetric so that for .. sgn[e(ulq) -e uJ we have

leuv -euevl -

But' \) is just a particular instance of an:J measurable function that is bounded

by one so we have from this inequality that

Combining this inequality with the first we have

Put F_ l '" {w: \) .. -I}, Fl .. {w: \) .. I}, G_ l .. {w: .. -I}, and G
l
.. {w: .. I}. Then

We have

of which the second inequality will be used below and the first is of some

interest in its own right (Hall and Heyde, 1980, p. 277).

The rest of the proof is much the same as the proof of Lemma 1. Put

a" aCJ,Q), c,. a-l/rllgXll r , Xl ,. r<lgxl s c), X2 ,. gX - Xl where r<lgXl :ii c) ,. 1

if IgXI :ii c and zero otherwise. If;] and q are independent we will have ex .. 0

and e (gX /3) .. o. For ex > 0

by the triangle inequality
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by the conditional Jensen's inequality (Problem 4) and the fact that Ixz '

+ Zlcp- r J c r - p IXzlP dPjl/p

l(Zc)p-l Jle(xlIJ) - eXlldPjl/p + Zlcp- r Jlxzl r dPjl/p

(Zc>(p-U/p lele(xlIJ) - e x l
, jl/p + z c(p-d/p

(2c)(P-U/p (4ccd l / p + 2c(p-d/p II gXII r/p
r

by the inequality derived above and the fact that IgXI IXzl

2(Zl/p + Ua l / p - l/r IIgxll
r

after substituting the above expression for c and some algebra. U

PROPOSITION 3. be a sequence of vector valued random variables

that is strong-mixing of size -Zqr/(r-Z) for some r > Z and q > O. Let W = W (V )t . t 00

k
denote a sequence of functions with range in R t that depends (possibly) on

infinitely many of the coordinates of the vector

Let {g (w)} for n 1, Z,nt t
and t 0, 1, Z, ••• be a near epoch dependent

sequence of real valued functions that is near epoch dependent of size -q. Let

denote the smallest complete sub-sigma-algebrasuch that the random variables

V for t • n, n-l, ..• are measurable. Then
t
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Then

u

Let m be even.

= max{1, IIg W // lnt t r f •

denotes the smallest complete sub-sigma-algebra such

with {tjlmJ of size - q and c
nt

PROOF. Recall that 3 n
m

that Vm, Vm+l' ... , Vn are measurable.

= lie le (g W /3 t-m ) IJ t- (m+l) 11/nt t -00 -00 2

by the law of iterated expectations

by the conditional Jensen's inequality (Problem 4)

Ile[e( W l... t+m/Z)la t -m JIIgnt t "t-m/2 -00 2

by the triangle inequality

II w II
-00 ' t-m/2 gnt t r

+ Ilg w - e(g W 13t+m/2)IInt t nt t t-m/2 2

by Proposition 2 applied to the first term and by the conditional Jensen's

inequality (Problem 4) applied to the second

gntWt IIr + vm/ 2

by definition of near epoch dependence. Put W = tjI = vm+l m m/2m/2
and c = max{1, II g W II } whencet nt t r
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for all m 0, n 1, t 1 and is size -q. Again, let m be even whence
m

because is the best L2 approximation to gntWt by an
t+m t+m+lmeasurable function and ) is measurable (Problem 5)

< II W - e ( W lat+tn)II- gnt t gnt t t -m 2

by the same best L2 approximation argument

'J
m

by the definition of near epoch dependence

by the best L2 approximation argument. We have

for all m O. 0

A mixingale with {Wm} of size will obey a strong law of large

numbers and a central limit theorem provided that additional regularity conditions

An inequality that is critical in showing{c }.nt
both the strong law and the central limit theorem is the following.

are imposed on the sequence

LEMMA 2. (McLeish's inequality) Let (X t,-:l ) be a mixingale and put 8 .=E Jt" IX tn nJ = n

be a doubly indexed sequence of constants with a k = a_k and
Then

e(maxo<U 82 )
]=..(, nj
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PROOF. (McLeish, 1975a) We have from Doob (1953, Theorem 4.3) that

tim e.(Xnt t_+tnoo ) = e. (X 1:;00) = X
m+'X' Q' nt -00 nt

almost surely. It follows that

almost surely since

Em
k o [e(x I:Jt+k) - e.(X I:Jt+k-l)J

nt nt-oo

= e(x lat+tn) - e.(X l:;t-t-1)nt -00 nt -00

Put

Y = Ej O(X _ o(Xjk t=1v nt Q'-oo v nt Q'-oo
00

whence S . = Ek- YO k almost surely. By the Cauchy-Schwartz inequalitynJ __00 J

whence

By the monotone convergence theorem

For fixed

:£ (E:=_ooalC)E:=_oo e,(maxj:ilt

o+k
k, {(Yok,:;J ): 1 j t} is a martingale sinceJ -00

CXYo l;yk+j -1) =
Jk -00

Y + e.[e.(X .I:;j+k) - e(x .1:;j+k-l)l:;k+j-1 Jj-l,k nJ -00 nJ -00 -00

A martingale with a last element t, such as the above, satisfies Doob's inequality

(Hall and Hyde, 1980, Theorem 2.2 or Doob, 1953, Theorem 3.4) whence



Now (Problem () )

Let Z k = X - e (X t I;,t+k) whence e la J = e,2(xle) impliesnt nt

and

= - ee2(xntI3::1)/ao

2 2 I t+ e ZntO/al - ee (Xnt
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(Problem 7)

2 2 -1 -1
+ Ek=1 cnt Wk+1 (ak+1 a

k
)

2 2 -1 -1
+ Ek=1 c Wk (ak - a k+1 )nt

2 2 2 w2 -1 -1= c [WO/aO + wl /aO + 2E k=1 (ak
a
k
_
1
)J

nt k

Thus,
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A consequence of Lemma 2 is the following inequality from which the strong

law of large numbers obtains directly.

LEMMA 3. Let be a mixingale with

of size and let S . = L j X Then there is a finite constant K that dependsnJ t=1 nt
only on } such that

m

2e(max.<u S .)J-.(,.. nJ

If > 0 for all m thenm

PROOF. (McLeish, 1977) By Lemma 2 the result is trivially true if = 0
m

for some

put a =k

m since
2 + 4ak_1) -

Then assume that > 0 for all m, put aO = and
2 for k I whence ak is positive and solves

Then

so that

SB m for some S < and using an integral approximation we have

B'k- 2S+1 for some B'. Thus

k -2
Lk=l(Lm=O )m

(B'::.l Lk=1 k

<
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2 2 2 2Further, (Wo + w1)/aO 2aO because Wm is a decreasing sequence and aO = .

Putting a_ k = ak and substituting into the inequality given by Lemma 2 yields the

result. [j

A strong law of large numbers for mixingales follows directly using the

same argument that is used to deduce the classical strong law of large numbers

from Kolmogorov's inequality. For detailed presentation of this argument see

the proof of Theorem 2, Section 5.1, and Theorem 1, Section 5.3, of Tucker (19b7).

The strong law reads as follows.

PROPOSITION 4. Suppose that is a singly indexed mixingale with

Wm of size (whence, recall, eXt = 0 for all t).

(a)

(b) If Et=l

nthen Et=l Xt converges almost surely.

< then tim (l/n)Ent 1 X = 0 almost surely.n-+<><> = t [j

We are now in a position to state and prove a uniform strong law of large

numbers. The approach is due to Hoadey (1971). Below, we state some standard

definitions and results (Neveu, 19b5, p. 49-54), prove an intermediate result,

then state and prove the uniform strong law.

UNIFORMLY INTEGRABLE. A collection {XA: A E A} of integrable random variables

is uniformly integrable if

PROPOSITION 5. If II XAII r t::. < for all A in some index set A and for some

r > 1 then {XA: A E A} is uniformly integrable.

PROPOSITION b. The following are equivalent

(a) {Xn}:=l is uniformly integrable and Xn

(b) X is integrable and timn-+<><> Ilxn - xIII = O.
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PROPOSITION 7. Let (f.p) be a separable metric space and let X (y) beo

continuous in y for n = 1. 2•... If {X (y): 0=1.2 •... ; y E f} is uniformlyo

integrable and Xn(y) = Xn almost surely then {Xn}:=l is uniformly
integrable. If in addition.

lim 0 sup IX (y) - X I = 0y-ry 0 n n

almost surely then

lim 0 sup elx (y) - X I = 0y-ry n n n

PROOF (Hoadley. 1971). Choose M large enough that

Holding 0 fixed. let

A = {w: lim 0 X (y) = X }y..,.y 0 0

B(y) = {w: IXn(y)1 > M}

B = {w: IX I > M}o

continuity and separability insure the measurability of these sets. Let I(A)

equal one if w is in A and zero otherwise. Then

lim 0 I[AnB(y)J IX (y)1 = I(AnB)IX Iy-ry 0 n

and by Fatou's lemma (Royden. 1963)

II I Ix I dP = I I(AnB)lx I dPX >M 0 n
n

= I I I IX (y) I dPX (y) >M n
n

< .
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As to the second, suppose that sup e IX (Y) - X In n n

does not converge to zero. Then there is an €>O, a subsequence n. + 00, and a
J

sequence y. with p(y.. yO) +0 such that 0 < € < e Iz.1 where
J J J

Zj = Ixnj(y j ) - xnjl .

is uniformly integrable by assumption and we have just shown thatNow {X .(Y.)}
nJ J

{X .} is uniformly integrable.
nJ

must be uniformly integrable.

Using Iz.1 IX .(y.)1 + Ix .1 we see that {Z.}
J nJ J nJ J

Proposition 6 implies that lim. Ilz.1I 1 = o.J+OO J

This contradicts liz .11 > € whence it must be true that
J

lim ° sup e IX (y) - X I = O.y+y n n n

Using elx (y) - X I I e X (y) -e X I we have the last assertion. [jn n n n

We are now in a position to state and prove the Uniform Strong Law. In reading it,

the statement "ft (y) is continuous in y uniformly in til means that for each fixed e
yO in r

If a family {ft(y)} is continuous in y uniformly in t and (f,p) is a compact metric

space then the family {ft(y)} is equicontinuous; that is, given € > 0 there is a

o > 0 that depends only on € such that

for all y,yO and all t. (Problem 8)
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THEOREM 1. (Uniform Strong Law) Let be a sequence of vector-

valued random variables defined on a complete probability space (n,a,p) that is

strongly mixing of size -r/(r-2) for some r > 2. Let (r,p) be a compact metric

space and let Wt = W (V) - W (w) be a Borel measurable function oft t

. . k tw1th range 1n ]R Let {gt(wt,y)};=O be a sequence of real-valued functions,

each Borel measurable for fixed y. Suppose:

(a) is a near epoch dependent family of size -;.,2 •

(b) gt[Wt(w),y] is continuous in y uniformly in t for each fixed w in

some set A with P(A) = 1.

(c) There is a sequence {dt } of random variables with

lid IIt r

for t = 0, 1, 2, ....

Then

almost surely and

is an equicontinuous family.

PROOF (Hoadley, 1971). A compact metric space is perforce separable

(Problem 9). Hypothesis (c) together with Proposition 5 implies that {gt(wt,y)}

is uniformly integrable. Hypothesis (b) states that
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almost surely whence by Proposition 7-

Then

tim ° sup I(l/n)En 1 e[gt(Wt'Y) - gt(W ,yO)]1y-ry n t= t

S timy-ry0 elgt(wt,y) - gt(Wt,yO)1

= o.

This proves the second assertion; see the remarks preceding the statement of

Theorem 1. Proposition 7 also implies

whence hypothesis (b) is satisfied by

Since hypotheses (a) and (c) are trivially satisfied as well, we may assume that

eg(Wt,y) = 0 in the rest of the proof without loss of generality.

Let

The continuity of gt(w,y) in y and the separability of (f,p) insure measurability.

From hypothesis (b) we have
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almost surely. Hypothesis (c) implies uniform integrability and application of

Proposition 7 yields

Thus, given € > 0 there is for each yO in r a 0° > 0 so small that

for all t. The collection ° r ° = {y: p(y,yO) < 0°} is an openy y t:: Y

covering of the compact set r so there is a finite subcovering .
1

The sequence satisfies the hypotheses of Proposition 3 whence

is a mixingale with of size and

c t max{l,IIh (W } < (taking > 1 if necessary). Nowt t 1 1 r

En c 2/t 2 < and Proposition 4'applies. Then for w not in the exceptionalt=l t
set Ei given by Proposition 4 put wt = Wt(w) and there is an Ni such that n > Ni
implies

(l/n )Ent 1 - O/n>Ent _1=- 11 - - 11

whence

Now every y is in ° for some
Yi

i and we have that n > max N. implies
1

- € (lin) gt(Wt,y) €

n N [for w t Ui=l Ei with P(U i =l Ei ) = O. This establishes the first assertion. J
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As seen in Chapter 3, there are two constituants to an asymptotic theory

of inference for nonlinear models: a Uniform Strong Law of large numbers and a

"nearly uniform" Central Limit Theorem.

THEOREM 2. (Central Limit Theorem) Let {V be a sequence of vectort

valued random variables that is strongly mixing of size -r/(r-2) for some r > 2.

Let (f,p) be a separable metric space and let Wt =

= ( ... , V_I' VO' VI' .•. )

k twith range in lR Let

W (V )t be a function of

{gn t (Wt ' y ): n = 1, 2, ...; t = 0, 1, 2, .•• t

be a near epoch dependent sequence of real valued functions that is near epoch

dependent of size Given a sequence {y;t:=l from r, put

0 2 = Var[En 1 g (W yO)]n t= nt t' n n = 1, 2, ...

o :5 s :5 1

where [nsJ denotes the integer part of ns -- the largest integer that does not

exceed ns -- and w (0) = O. Suppose that:n

(a) 1/02 = O( lin)n

(b) lim Vadw (s)J = s, o :5 s 1n-+<Xl n

(c) II gnt (Wt ' y ) - eg t(Wt ,yO)1! tJ. < , 1 t n, t = 1, 2, ...n n r

Then w (.0) converges weakly in D[O,lJ to a standard Wiener process. In particular,n
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The terminology appearing in the conclusion of Theorem 2 is defined as

follows. 0[0,1] is the space of functions x or x(·) on [O,IJ that are right

continuous and have left hand limits; that is, for 0 t < 1,
x(t+) = x(t+h) exists and x(t+) = x(t) and for 0 < t 1, x(t-) =
exists. A metric d(x,y) on O[O,lJ may be defined as follows. Let A denote the

class of strictly increasing, continuous mappings A of [O,lJ onto itself; such a

A will have A(O) = 0 and A(l) =1 of necessity. For x and y in O[O,lJ define

d(x,y) to be the infinum of those positive € for which there is a A in A with

The idea is that one is permitted

to shift points on the time axis by an amount € in an attempt to make x and y

coincide to within €; note that the points 0 and 1 cannot be so shifted. A

verification that d(x,y) is a metric is given by Billingsly (1968, Section 14).

If denotes the smallest sigma-algebra containing the open sets sets of the

form {y: d(x,y) < o} -- then is a measurable space. is called the

Borel subsets of oW,lJ. The random variables w (.) have range in 0[0,1] and,n

preforce, induce a probability measure on defined by
-1P (A) = Pw (A) =p{w: w (.) in A} for each A A standard Wiener processn n n

w(·) has two determining properties. For each t, the (real valued) random

variable w(t) is normally distributed with mean zero and variance t. For each

partition 0 to t 1 •.. t k 1, the (real valued) random variables

are independent; this property is known as independent increments. Let W be the
-1probability measure on induced by this process; W(A) = P w (A) = p{w: w(·) in A}.

It exists and puts mass one on the space C[O,lJ of continuous functions defined on

[O,lJ (Billinglsy, 1968, Section 9).

Weiner process means that

Weak convergence of w (.) to a standardn
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tim f f dP = f f dW
D n D

for every bounded, continuous function f defined over D[O,lj. The term weak

convergence derives from the fact that the collection of finite signed measures

is the dual (Royden, 1963, Chapter 10) of the space of bounded, continuous

functions defined on D[O,IJ and tim f fdP = f fdW for every such f is weak*n

convergence (pointwise convergence) in this dual space. (Billingsly, 1908,

Section 2) 1If h is a continuous mapping from D[O,IJ into B then weak convergence

implies tim f f h dP = f f h dW for all f bounded and continuous on B'D n D
whence by the change of variable formula tim f f dP h- 1 = f f dWh- 1 . Thus

B n B
-1 1the probability measures P h defined on the Borel subsets of m convergen

-1weakly to Wh 1
On B convergence in distribution and weak convergence are

equivalent (Billingsly, 1968, Section 3) so that the distribution of h w ('),n

-1F (x) = P[hw (.) xj = P h (-=,xJ,n n n

converges at every continuity point to the distribution of h w(·). In particular

the mapping x(l) is continuous because tim d(y ,x) = ° impliesn

tim y (1) = x(l); recall one cannot shift the point 1 by choice of A in A.n

Thus we have that the random variable w (1) converges in distribution to then

random variable w(l) which is normally distributed with mean zero and unit variance.

The proof of Theorem 2 is due to Wooldridge (1984) and is an adaptation of

the methods of proof used by McLeish (1975, 1977). We shall need some preliminary

definitions and lemmas.

Recall that is the underlying stochastic process on

that denotes the smallest complete sub-sigma-algebra such that Vm, Vm+l' •.. , Vn

= that Wt(V=) is a function of
k

B t for t = 0, 1, ... , and that

== nt=-=
possibly infinitely many of the Vt with range in

k tmaps B into the real line for n = 1, 2, ... and t = 0, 1, ....

are measurable, 3-=-=
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Set

for t 0 and Z = 0 for t < 0 whencent

0 2 = Var(En IX )n t= nt

w (s) = E[ns] X 102
n t=l nt n

By Proposition 4, ) for n = 1, 2, ... and t = 1, 2,

with {ljIm} of size and Cnt = max {1, IIxntllr}. That is,

(a) II (X II <e nt 2 - ljIm Cnt

is a mixingale

(b) IIX -nt Cnt

for n 1, t 1, m O. We also have from the definition of near epoch

dependence that

is size Define

and

S = Ej X = S (Join) .nj t=l nt n

Take S (0) = S = O.n nO

'1/0 '1/1 . f bMARTINGALE. Note that ... 1S an increasing sequence 0 su -sigma-

algebras. Relative to these sigma-algebras, a doubly indexed process

{(Z n = 1, 2, ... ; t = 0, 1, ... }nt

is said to be a martingale if
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(a) tZ is measurable with respect to 3'nt -00

(b) elz I < 00nt

(c) e(z I3 s ) = X for s < t.nt -00 ns

The sequence

{ (Y , :;t ): n = 1, 2,nt -co ... , t = 1, 2, ... }
with YnO = ZnO' and Ynt = Znt - Zn,t-l for t = I, 2, •.. and as above

is called a martingale difference sequence.

LEMMA 4. tLet (Xnt':;-co) be a mixingale and put

Then for any y > 1 and nonnegative sequence {ail we have

PROOF. (McLeish, 1975b, Lemma 6.2).

LEMMA 5. Let (y t,3F ) for n = 1, 2, and t = 1, 2, ... be a martingalen -co
difference sequence (soe(y = 0 almost surely for all t 1) and assument co

that IYntl K cnt almost surely for some sequence of positive constants {cnt } .

Then

PROOF. McLeish (1977, Lemma 3.1).

LEMMA 6. Let (Xnt':;:oo) be a mixingale with {$m} of size and

c: = max {I, II X II } for r > 2. Ifnt nt r

{X:
t
: t = 1, 2, ... , n; n = 1, 2, ... }

is uniformly integrable then



{ ( 5 5 )2/ Ek+l 2
n,j+k - nk t=k+l cnt

is uniformly integrable.

1 k+l n, k 0, n I}
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PROOF. (McLeish, 1977) For c 1 and m to be determined later, put

and note that X = Y + Z Ejnt nt nt + U Let E X = X dP, Y = Ynt 'nt a nj t=1
- Ej - = Ej _2 El 2z = z u u col = cnt' Jensen's inequality implies thatnj t=1 nt' nj t=1 nt' t=1
(E 2 2 for Piwith EPixi ) :;; E Pixi any positive Pi = 1 whence

by taking p. = 1/3. In general
1.

(X + Y + Z > a) c (X > a/3) U (y > a/3) U (Z > a/3)

whence

(X + Y + Z) I(X + Y + Z > a)

3 X I(X > a/3) + 3 Y I(Y > a/3) + 3 Z I(Z > a/3)

and

Ea (X + Y + Z) 3 Ea / 3 X + 3 Ea / 3 Y + 3 Ea / 3 Z .

It follows that

where
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For some e < we have

e -% -2o 1/1 = O(k ) = o[k 2(ln k) J.
k

Note that for k m

and for m > k

II U -e(U la t +k)II = IIX -e(X cnt I/Ik·nt nt -00 Z nt nt-oo

Similarly II e(Unt la::k ) liz is less than cnt for k m and is less than cnt I/I k

a =k

m and

m we have

Therefore (U t' at ) is a mixingale with $k = 1/1 ( k) of sizen -00 max m.
for all k > m. By Lemma 2 with a k = m ifi m for IklI/I k ifi(k)]

l/(k ifi k) for Ikl

for k ;;: m.

and

u :;;;

Now r -1 -Z -Z 00

x (in x) dx = u du < 00 implies that 0 :;;; L a < 00 Further.
2 k=-oo k

by Taylor's k ifi 2 k[ifi 2 Z intheorem 0 ::i k - (k-l)in(k-l) :5 k - in(k-l) J :5 k for
00 2 -1 -1 00 4

k - 1 :5 k :5 k whence 0 :5 Lk=Z I/Ik(ak - ak- 1) Z Lk=Z in k/(k in k) < 00 Thus.

for arbitrary € > 0 we may choose and fix m sufficiently large that u :5 €/27.

Note the choice of m depends only on the sequence {I/Ik}' not on n. Also note that

if some of the leading Unt wre set to zero Unt would be a mixingale with the
A

same Wk but the leading cnt would be zero. Thus the choice of m does not depend

on where the sum starts.
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Similarly, for k m IIZnt - e(Zntl:J::k)ll z and lie (ZntI:J::k)lIz are less

than II Znt liz and

II Znt liz :5 II Xnt - liz :li maxt :5n e cX:t

For k > m IIZnt -e(ZntI3::k)lIz = lIe(ZntI3::k)lIz = O. By Lenuna Z, with ak
Zfor k S m+l and = ak = k for k > m+1 we have

For our now fixed value of m we may choose c large enough that z < €/Z7 since

{XZ } is a uniformly integrable set. Note again that c depends neither on n nornt
on where the sum starts.

With c and m thus fixed apply Lenuna 4 to the sequence {Y } with y=4 and a=lnt
for Iii m and a. = i Z for Iii> m to obtain

1.

where

YUk = e(y 13t+k) - e(y laF+k- 1)-{.. t=l nt .-co nt-co

For fixed m and c as chosen previously, one sees from this inequality that there

is an a large enough that y < €/Z7. Thus

Note once again that the choice of a depends neither on n nor on where the sum

starts thus

{max U (S - S )Z/(Lk+t cZ ): 1 k + t n, k 0, n I}jS-{.. n,j+k n,k t=k+l nt

is a uniformly integrable set. U

1
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TIGHTNESS. A family of probability measures {p } defined on the Boreln

subsets of D[O,11 is tight if for every positive € there exists a compact set

K such that p (K) > 1 - € for all n. The importance of tightness derives fromn

the fact that it implies relative compactness:

a weakly convergent subsequence.

every sequence from {p } containsn

LEMMA 7. Let w be a sequence of random variables with range in D[O,11
n

and suppose that

is a uniformly integrable set where N(t,o) is some nonrandom finite valued

function. It is understood that if t+o>l then the maximum above is taken over

[t,11. Then {p } with
n

P (A) = p{w: w (.) in A}n n

is tight and if pI is the weak limit of a subsequence from P then pI puts massn

one on the space C[O,l].

PROOF. The proof consists in verifying the conditions of Theorem 15.5 of

Billingsly (1968). These are:

(a) For each positive n there exists an a such that p{w: Iw (0)1 > a} nn

for n ;;: 1.

(b) For each positive € and n, there exists a 0, 0 < °< 1, and an integer

such that

for all n ;;: nO
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Because W (0) = 0 for all n, (a) is trivially satisfied. To show (b)
n

let positive € and n be given. As in the proof of Lemma 6 let E X denotea

the integral of X over the set {w: X a}. Note that

A2 P[max < < Iw (s) - w (t)1 A{6] .t_s_t u n n

By hypothesis A can be chosen so large that both €2/A2<1 and the left hand side

of the inequality is less than n€2 for members of U. Set 0 = €2/A2 and set nO

equal to the largest of the N(io,o) for i = 0, 1, ... , [i/o]. If Is-tl < 0 then

either both t and s lie in an interval of the form [io, (i+1)0] or in abutting

intervals of that form whence

p{w: sUPls_tl<o Iwn(s) - wn(t> I 3€}

< [i/o] { I () ( )I }
= P Ui=O w: wn s - wn t €

EA2 Iwn(s) - wn (t)1
2
/0]

and if n > nO

::i [1 + 1/010 n

2n

CONTINUITY SET. Let Y be a (possibly) vector valued random variable. A

Y-continuity set is a Borel set B whose boundary aB has p(y in aB) = O. The

boundary aB of B consists of those limit points of B that are also limit points

of some seuence of points not in B. If P (B)n p(y in B), P'(B) = p(y in B),n

and B is a Y-continuity set then lim P'(B) = P(B) (Billingsly, 1968,n-+<x> n

Theorem 2.1).
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LEMMA 8. Let V ., Y ., Y. for i = 1, 2, ... , k be random variables definednl. nl. l.
on a probability space (11,a,p) such that

P
(a) V - Y -+0 for i = 1, 2, ... , k

ni ni

(b) Y Y. for i = 1, 2, ... , k
nl. l.

tim k k A.) }(c) {p[n i=1 (V in A.) J - lli=1 P(V in = 0
n-+<X> ni l. ni l.

Condition (c) is called asymptotic independence; the condition must hold for all

possible choices of Borel subsets A. of the real line. Then for all Y. - continuityl. l.

timn-+<X>
B.)} = O.l.

PROOF.
s:Conditions (a) and (b) imply that V. -+ Y. whence for Y.-continuitynl. l. l.

sets B. we havel.

timn-+<X>

timn-+<X>
B. )l.

k B. Y-continuity of the random variable Y = (Y1 , Y2 ,
Y ) 1since Xi =1 is a set ... ,

l. k

with boundary k aBo (Problem 10). Condition (c) implies the result.Xi =1 l.
PROOF OF THEOREM 2. Recall that we have set

Xnt

w (s) = /0
n t=1 nt n o :i s 1

and that we have the following conditions in force:
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(a) 1/02 = 0 (l/n)n

(b) lim Var[w (s)j = s, 0 s 1n

(c) II Xnt II r S t:,. < "" r > 2, 1 S t :i n, n = 1, 2,

(d) (Xnt ,3:",,) is a mixinga1e with {I/J } of size and c = maxi I, II Xnt II r}m nt

(e) \)m sUPn SUPt II Xnt e(Xnt 11 2 is of size

(£)

Condition (c) implies that

2{X :t=1,2, ... ,n;n=I,2, ... }nt

is a uniformly integrable set by Proposition 5. This taken together with

condition (d) implies that

15 { ( S )2/1;k+l 2= Sn,j+k - nk t=k+1 cnt I k + l S n, k 0, n I}

is a uniformly integrable set by Lemma 6. Condition (a) implies that for any

t, 0 t I, and any 0, 0 < 0 S l, if t s t + 0 then

([nsj - [ntJ)t:,.2/(o02)n

(n+l) 0 t:,. 2/( 0 ( 2 )n

S (n+l) t:,.2 O(n- l )

::; B t:,.2

for n larger than some nO. For each t and 0 put N(t,o) = nO whence

is dominated by B t:,.2 times some member of 15 for n > N(t,o). Thus Lemma 7 applies

whence {p } is tight and if pi is the weak limit of a sequence from {p } then pIn n

puts mass one C[O,lj; recall P is defined by P (A) = p{w: w (.) in A}n n n
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for every Borel subset A of 0[0,1].

Theorem 19.2 of Billingsly (1968) states that if:

(i) w (s) has asymptotically independent incrementsn

(ii) is uniformly integrable for each s

(iii) ew (s) + 0 and ew2(s) + 0n n

(iv) For each positive and n there is a positive 6, 0 < 6 < 1, and

an integer nO such that p{w: sUPls_tl<6 Iwn(s) - wn(t)1 n

for all n > nO

then w converges weakly in 0[0,1] to a standard Weiner process. We shall verify
n

these four conditions.

We have condition (iii) at once from the definition of X and condition (b).nt

We have just shown that for given t and 6 the set

is uniformly integrable so put 6=1 and t=O and condition (ii) obtains. We

verified condition (iv) as an intermediate step in the proof of Lemma 7. It

remains to verify condition (i).

Consider two intervals (O,a) and (b,c) with 0 < a < b < c 1. Define

Un =

V =e[w(c)-w(b)I:J""r ]Jn n n nc

Thus

By Minkowski's inequality and condition (e)
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II w (a) - U II 2 - 1 E[na J II x - e (X 1'1: [na J ) IIn n an t=l nt nt fJ'_00 2

:ii a-1E[naJ Ilx - e(x l:Jt+[naJ-t)11
n t=l nt nt t-[naJ+t

-l.. [naJ
S an 4 t =1 v[naj-t

00Since {v l is of size E v m < 00. By Kronecker's lemma (Hall andmJ m=O m
Heyde, 1980, Section 2.6)

-1 ->.:converges to zero as n tends to infinity. Since a is O(n 2) we have that
n

Ilw (a) - U 11 2 -+- 0 as m ... 0 whence w (a) - U p... O. A similar argument showsn n n n
that [w (c) - w (b)J - Vn n n

and v:l(C) g:J 7ncJ ' thus

p... O. For any Borel sets Band C, U-1(B) g:J [naJn -00

Ip (U in A) n (V in B)n n P(U in A) P(V in B)In n

which tends to zero as n tends to infinity by condition (f). We have now verified

conditions (a) and (c) of Lemma 8. Given an arbitrary sequence from {p } theren

is a weakly convergent subsequence {p ,} with limit P' by relative compactness.n
Since, by Lemma 7, pI puts mass one on C[O,lj the finite dimensional distributions

of w converge to the corresponding finite dimensional distributions of P' byn

Theorem 5.1 by Billingsly (1968). This implies that condition (b) of Lemma 8

holds for the subsequence, whence the conclusion of Lemma 8 obtains for the

subsequence. Since the limit given by Lemma 8 is the single value zero and the

choice of a sequence from {p } was arbitrary we have that condition (i),n

asymptotically independent increments, holds for the three points 0 < a < b < c.
The same argument can be repeated for more points. [j
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Theorem 2 provides a central limit theorem for the sequence of random

variables

{g (W .yO): n = 1. 2.nt t n
..., t=O.l .... } .

To make practical use of it. we need some means to estimate the variance of

a sum, in particular

Putting

this variance is

with

The natural estimator of a2 isn

T = 0, ±l, ±2, ... , ±(n-l).

A

RnT

with

where w is some set of weights chosen so that 02 is guaranteed to be positive.
T n

Any sequence of weights of the form (Problem 11)

W
T

will guarantee positivity of which the simplest such sequence is the modified

Bartlett sequence
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The truncation est1°mator (JA2 = RA d s thO ht th t to fn n, oe no ave we1g s a sa 1S y

the positivity condition and can thus assume negative values. We shall not

consider it for that reason.

If {X } were a stationary time series, then estimating the variancent
of a sum would be the same problem as estimating the value of the spectral

density at zero. There is an extensive literature on the optimal choice of

weights for the purpose of estimating a spectral density; see for instance

Anderson (1971, Chapter 9) or Bloomfield (197b, Chapter 7). In the theoretical

• discussion we shall use Bartlett weights because of their analytical tractability

but in applications we recommend Parzen weights

w =,
(

1 - ol,1 2Il2(n) + ol,1 3/l3 (n)

2[1 - 1,lll(n)]3

with l(n) taken as that integer 115nearest n See Anderson (1971, Chapter 9)

for a verification of the positivity of Parzen weights and for a

° f ° ° h h h· O()· 115 . .. h f hver1 1cat10n t at t e c 01ce n = n m1n1m1zes t e mean square error 0 t e

estimator.

At this point we must

that Wt is measurable with

assume that Wt
trespect to J
-QO

is a function of past values of Vt so

This is an innocuous assumption in

view of the intended applications while proceeding without it would entail

inordinately burdensome regularity conditions. The following describes the

properties of 02 subject to this restriction for Bartlett weights; see Problem 12n

for Parzen weights.

THEOREM 3.
QO

Let {V} be a sequence of vector valued random variablest t=-QO

that is strong - mixing of size -2qr/(r-2) with q = 2(r-2)/(r-4) for some r > 4.

Let (f,p) be a separable metric space and let W = W (V ) be a function of thet t QO
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k tpast with range in that is, Wt is a function of only

Let

t = 0, 1, ... t

be a sequence of random variables that is near epoch dependent of size -q.

Given a sequence {y:t:=l from r, put

x = g (W yO) - e g (W yO)
nt nt t' n nt t' n

and suppose that IIXntllr S 6 < for 1 S t n; n, t = 1, 2, ...• Define

n 1, 2, ...

T = 0, ±l, ±2, .•. , ±(n-l)R = En X X
nT t=l+ITI nt n,t-ITI

= [1 - ITl/t(n)JRnT 1 t(n) S n-1

Then there is a bound B that does not depend on n such that

PROOF. To establish the first inequality, note that

102 -e e2 1 :ii 2 t-1(n) T En e (X X ) In n t=l+T nt n,t-T

+ 2 n-l En e (X X ) IET=t(n) t=l+T nt n,t-T

S 2 t-1(n) n-l En e (X X ) 1ET=O T t=l+r nt n,t-T

Now
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Ie (X x ) I = Ie x e (X /3 t-,) Int n,t-, n,t-, nt -00

(l + Ilx Il r / 2 ) I/Jn,t-, r cnt ,

where 0 ;;ii c ;;ii max{l, Ilx til} ;;ii (1 + t:,.r/2) and 0;;;nt n r

Proposition 3; note that q > 2. Thus, we have

which establishes the first inequality.

To establish the second inequality note that

P {I[l - ITI/l(n)JI 1Rn-r - eRn-r' < €/[Zl(n) + II}

= 1 - P ul(n) {I[l 1,I/l(n)JIIR -eR 1>€/[2l(n)+IJ},=-l(n) - n, n,

so that

Suppress the subscript n and put xt = 0 for t O. By applying in succession:

a change of variable formula, the law of iterated expectations, and Holders

inequality, we have
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= e (n-l-'r) En X X
Eh=-(n-l-'r) t=l+r+lhl t-Ihl-T t-Ihl Xt - T Xt

Z EZT En Ie ( x x ) Ih=O t=l+r+h Xt - h - T t-h t-T Xt

+ZE
CD

En IIX x 1111e(X XIJt-h)11h=ZT t=l+r+h t-h-T t-h Z t-T t -CD Z

::i 4 T n ( 1+112/4 ) + Z ECD En II X II II X II lie (X x l;f-h) ,_h=ZT t=l+r+h t-h-T 4 t-h 4 t-T t -CD

A t+h/Z
Write Xt - T = e (Xt - T I d t-h/Z) and Xt = e (Xt I J t-h/Z)· By applying the triangle

inequality twice, and the conditional Jensen's inequality (Problem 4), we obtain

+ II e [X (X - X ) IJ t-h 111 zt-T t t -CD



9-2-49

The argument used to prove Lemma 1 can be repeated to obtain the inequality

for s r/2 > 2. Then we have

s-2 s-2

IIX(X -X )11 -X II II II
t t-T t-T 2 t-T t-T t-T r Xt r

+ IIXt-T"r

r-4
t+h/2

=(const.) IIX -e (X IJ h/2)11 2n,t-T n,t-T t-

where the constant does not depend on n, h, or T. By the definition of near

epoch dependence we will have

II X - e(x /:Jt+h/2) II :£
n,t-T n,t-T t-h/2 2

provided that T ;S h/2. Thus we have

and by the same argument

where the constant does not depend on n, h, or T. Using Proposition 2 we have

S LHa - l/r
h/2
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l·(n)
1 (r-4)

(const.)n b+ E"" l(v )"2r=7+(a )(r-2)/ Zr r
,=-l(n) h=2T h/2-T h/2-T .

El(n)
_ !l (r-4)

(m) -q]"" 2= (const. )n IT + Em=O(m) r-2 +T=-t(n)

Thus we have

which establishes the second inequality. [J
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PROBLEMS

1. (Nonlinear ARMA) Consider data generated according to the model

t 1, Z, ...

y = 0 t 0t

where {et } is a sequence of independent random variables. Let

Ii sups g(e,e l, ... ,e ,S)II K < co for some p > 4 and putt t- t-q P

Show that {gt(wt,S)} is near epoch dependent. Hint: Show that

gt = g(e t , e t - l , ... , e t _q , SO) is strongly mixing of size -q for all positive q.

error

Z. Referring to

[y -
t

Example 1, show that if Vo =

dtlYI + dm djle .1
J=O t-m-J

is near epoch dependent.

(Y,O) then Yt,m has prediction

for t - m. Use this to show that

6.

3. Show that the definition of a mixingale implies that one can assume that

Wm+l Wm without loss of generality. Hint: See the proof of Proposition 3.

4. The conditional Jensen's inequality is for convex g.

Show that this implies e le (X 1p exP whence "e(x I " for p 1.
p P

5. Show that if X and Yare in and Y is with C'I

then II X -e(xl:J)lI z II X - Y liz. Hint: Consider [X - - YJZ

and show that e{[X -e - YJ} = O.

Show that the random variables Utk = e(X l:J t +k ) - e(X appearingnt -co nt -co

in the proof of Lemma Z form a two dimensional array with uncorrelated rows and

columns where t is the row index and k is the column index. Show that
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Show that the hypothesis r w2 / a -!a- 1 / < 00 permits the reordering of termsk k k-l ..

in the proof of Lemma 2.

8. Show that if ft(y) is continuous in r in t and (r,p) is a

compact metric space then {ft(y)} is an equicontinuous family.

9. Show that a compact metric space (X,p) is separable. Hint: Center a

ball of radius lin at each point in X. Thus, there are points xln ' ... , xmn
within p(x,x. ) < lin for each x in X. Show that the triangular array that results

In
by taking n= 1, 2, ... is a countable dense subset of X.

10. kShow that the boundary of X. lB.
1.= 1.

k
is X. loB.

1.= 1.
where oBi is the boundary

xn-l(n)

11. Write

Xl a a
Xz Xl a
X3 Xz Xl

X ..

X Xn-l Xn-Zn
a X Xn-lon X

a on
n+l(n)

and show that ;z .. a'X'Xa wheren

a
o
a

Xn

l
I

l(n)

and hence that

estimator ;Z •
n

w ..
T

R
nT can be negative.

Show that the truncation

12. Prove Theorem 3 for Parzen weights assuming that q 3. Hint:

Verification of the second inequality only requires that the weights be less

than one. As to the first, Parzen weights differ from one by a homogeneous

polynomial of degree three for l(n)/n and are smaller than one for

l(n)/n ;: .
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3. DATA GENERATING PROCESS

In this section we shall give a formal description of a data generating

mechanism that is general enough to accept the intended applications yet

sufficiently restrictive to permit application of the results of the previous

section, notably the uniform strong law of large numbers and the central limit

theorem. As the motivation behind our conventions was set forth in Section 1,

we can be brief here.

The independent variables

together into a single process {vt};=_a>

and the errors {e }a>_ are groupedt t--a>

in mt . In instances where we wish to indicate clearly that v t is being regarded

as a random variable mapping the underlying (complete) probability space

into mt we shall write V (w) or V and write {V (w)}a> or {V}a> for thet t t t=-a> t t=-a>

process itself. But for the most part we shall follow the usual convention in

statistical writings and let {v}a> denote either a realization of the processt t=-a>

or the process itself as determined by context.

Recall that is the smallest sub-sigma-algebra of G, complete with
m

-a> a> trespect to such that V , Vm+l' ... , V are measurable; J = n t - J .m n -a> --a>-a>

Situations with a finite past are accommodated by putting Vt = 0 for t < 0 and

letting Vo represent initial conditions, fixed or random, if any. Note that if
{Vt } has a finite past then J:a> will be the trivial sigma-algebra plus its

completion for t < O.

ASSUMPTION 1. {Vt(w)};=_a> is a sequence of random variables each defined

over a complete probability space ,n ,P) and each with range in lRt . 0

Let

denote a doubly infinite sequence, a point in X;=_a> mI. Recall, Section 1, that

the dependent variables {y }a> are viewed as obtaining from va> via a reducedt t=-a>
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form such as

t 0, ±l, ±2, ...

but, since we shall be studying the limiting behavior of functions of the form

s 0,)n

more convenient is to group observations into a vector

dispense with consideration ofY{tN ,yO), and put conditions directly on the mapping
00

w
t
= W (v )t 00

k
with range in lR t, kt = it + The most common

fixed for all t, and kt = (const.)·t. Recall that

choices for kt are kt = const.,

the subscript t associated to Wt(Voo )

serves three functions. It indicates that time may enter as a variable, it indicates

that W (v ) depends primarily on the component v t of v and to a lesser extent ont 00 00

components v of v with It-sl > 0, and it indicates that the dimension kt of thes 00

vector w = W (v ) may depend on t. As W (v ) represents data, it need only bet too too

defined for t = 0, 1, ... with Wo representing initial conditions, fixed or

random, if any. We must also require that Wt depends only on the past to invoke Theorem 3.

ASSUMPTION 2. Each function Wt(voo ) in the sequence {Wtt;=O is a Borel

00 __ XOO JRl into JRktmeasurable mapping of JR_oo t=-oo. That is, if B is a Borel subset
k t -1

of lR then the pre-image Wt (B) is an element of the smallest sigma-algebra
00
B containing all cylinder sets of the form
-00

1 1... x lR x Bm x Bm+l x ... x Bn x lR x

1where each Bt is a Borel subset of lR . Each function W(v ) depends only on the past;t 00

that is, depends only on ( .•. , v ,v ,v). U
t-2 t-l t
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The concern in the previous section was to find conditions such that a

sequence of real valued random variables of the form

will obey a uniform strong law and such that a sequence of the form

{g (W .yO): yO E r; t = 0.1 •... ; n = 1.2 •... }nt t n n

will follow a central limit theorem. Aside from some technical conditions, the

inquiry produced three conditions.

The first condition limits the dependence that {V}oo can exhibit.t t=-oo
00

{V } is strong-mixing of size -4r/(r-4) for some r > 4.t t=-oo

a bound lid II < 00 on the rth moment of the dominating
t r

functions d Ig (W ,Y)I in the case of the strong law and a similar rth momentt t t

condition - < 00 in the case of the central limit

theorem; r above is that of Assumption 3. There is a trade-off. the larger the

moment r that can be so bounded, the more dependence {Vt } is allowed to exhibit.

The third condition is a requirement that gt(Wt,y) or gnt(Wt,y) be nearly a

function of the current epoch. In perhaps the majority of applications the

condition of near epoch dependence will obtain trivially because W (V ) will bet 00

of the form

W (V ) = W (V , ... ,V)toot t-m t

for some finite value of m that does not depend on t. In other applications,

notably the nonlinear autoregression, the dimension of Wt does not depend on t.

gt(w.y) or g (w,y) is smooth in the argument w, and W is nearly a function ofnt t

the current epoch in the sense that n = II W - p, (W I;Jt+m) I/z falls off at am t t t-m

geometric rate in m in which case the near epoch dependence condition obtains

by Proposition 1. For applications not falling into these two categories, the

near epoch dependence condition must be verified directly.

u



9-4-1

4. LEAST MEAN DISTANCE ESTIMATORS

Recall that a least mean distance estimator is defined as the solutionn

of the optimization problem

Minimize: s (A)
n

As with we shall let denote either a realization of the processt

that is, data -- or the process itself as determined by context. For emphasis,

we shall write W (v ) when considered as a function defined on m__ , and write
t -

W (V), W , W tv (w)], or W (w) when considered as a random variable. The randomt t t t

variable; corresponds conceptoally to a preliminary estimator of nuisance parameters;
n

A is a p-vector and each St(Wt,T,A) is a real valued, Borel measurable function
k u

defined on some subset of m t x m x mP . A constrained least mean distance

estimator A is the solution of the optimization problem
n

*Minimize: s (A) subject to h(A) hn n

The objective of this section is to find the asymptotic distribution of the

estimator A under regularity condtions that do not rule out specification
n

error. Some ancillary facts regarding the asymptotic distribution of the

constrained estimator A under a Pitman drift are also derived for use in latern

sections on hypothesis testing. We shall leave the data generating mechanism

*fixed and impose drift by moving h ; this is the exact converse of the approachn

taken in Chapter 3. Example 1, least squares estimation of the parameters of a

nonlinear autoregression, will be used for illustration throughout this section.

EXAMPLE 1 (Continued). The data generating model is

o

t = 1, 2, ...

t :;; 0
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with 1(3/3y)f(y,x,y)1 S d < 1 for all relevant x and Y'

The process

t = 1, 2, ...

t S °
generates the underlying sub-sigma-algebras Jt that appear in the definition

-og

of strong mixing and near epoch dependence. Data consists of

t = 0, 1, 2, ....

As we saw in Section 2, IIellS t::,. < og for some p > 4 is enough to
t p

guarantee that, for the least squares sample objective function

s Odn

the family

t = 0, 1, ...

is near epoch dependent of size -q for any q > 0. The same is true of the family

of scores

t = 0, 1, ...

assuming suitable smoothness (Problem 2).

If we take IIV II t::,. < og for some r > 4 and assume that {Vt } is strong-t r

mixing of size -r/(r-2), then Theorems 1 and 2 can be applied to the sample

objective function and the scores respectively. If {Vt } is strong-mixing of

size -4r/(r-4) then Theorem 3 may be applied to the scores.

As we shall see later, if the parameter A is to be identified by least

squares, it is convenient if the orthogonality condition

holds for all square integrable g(Yt-l'x t ). The easiest way to guarantee that
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the orthogonality condition holds is to assume that {e t } is a sequence of

independent random variables and that the process {e t } is independent of {xt }

whence e and (Y t l'x ) are independent. U
t - t

In contrast to Chapter 3, s (A) and, hence, A do not, of necessity,n n

possess almost sure limits. To some extent this is a simplification as the

*ambivalence as to whether some fixed point A or a point AO that varies withn

n ought to be regarded as the location parameter of A is removed. Here, AOn n

is the only possibility. This situation obtains due to the use of a weaker

strong law, Theorem 1 of this chapter, instead of Theorem 1 of Chapter 3.

The estimator, is centered at ,0 defined in Assumption 4.n n

NOTATION 1.

s (A)
n

s°(A) = (l/n) En e s (W "O,A)n t=l t t n

minimizes s (A)n n

A minimizes s (A) subject to h(A) = 0n n

AO minimizes SO (A)
n n

A* minimizes s°(A) subject to h(A) = 0 . Un n

In the above, the expectation is computed as

est(Wt",A) = J StLWt(W)",A] dP(w)

Identification does not require that the minimum of SO(A) becomes stable
n

as in Chapter 3 but does require that the curvature near each AO becomes stablen

for large n.

ASSUMPTION 4. (Identification) The nuisance parameter estimator, isn

centered at ,0 in the sense that tim (Tn n ,0) = 0 almost surely andn
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- TO) is bounded in probability. The estimation space A* is compact and
n n

for each € > 0 there is an N such that

inf >N inf, 1 ls°o.)n A-A ° nn

In the above, IA-Aol = lEP (A.
i=l l.

- or any other convenient norm and
i

it is understood that the infimum is taken over A in A* with IA - AOI > €

For the example, sufficient conditions such that the identification

condition obtains are as follows.

EXAMPLE 1. (Continued) We have

= (l/n) P- + (2/n) e etlf(Yt_l,Xt'YO) - f(yt_l,xt,A)]

+ (l/n) If(yt_l,xt,yO) - f(Yt_l,X t ,A)]2

= (l/n) + (l/n) e If(yt_l,xt,yO) - f(Yt_l,X t ,A)]2

Using Taylor's theorem and the fact that yO minimizes SO(A)n

O-yO)'{O/nHn le l(a/aA)f(y l'xt= t- t -

A sufficient condition for identification is that the smallest eigenvalue of

be bounded from below for all A in A* and all n larger than some N. We are

obliged to impose this same condition later in b. U
We append some additional conditions to the identification condition to

permit application of the Uniform Strong Law.

ASSUMPTION S. The sequences {T } and {TO} are contained in T which is an n

closed ball with finite, nonzero radius. On T x A*, the family {StlWt(W),T,AJ};=O
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is near epoch dependent of size is continuous in (T,A) uniformly in t for

each fixed w in some set A with P(A) = I (Problem 1), and there is a sequence

for all t where r is that of Assumption 3. U

LEMMA 9. Let Assumptions I through 5 hold. Then

lim suP.* Is (A) - SO(A)! = 0
lL n n

almost surely and is an equicontinuous family.

PROOF. Writing eSt(Wt';n,A) to mean eSt(Wt,T,A)'T=; we have
n

Except on an event that occurs with probability zero, we have that the first term

on the right hand side of the last inequality converges to zero as n tends to

infinity by Theorem I and the same for the second term by the equicontinuity of

the average guaranteed by Theorem I and the almost sure convergence of Tn
to zero guaranteed by Assumption 4. U

THEOREM 4. (Consistency) Let Assumptions I through 5 hold. Then

almost surely.

°- Tn

PROOF. Fix w not in the exceptional set given by Lemma 9 and let € > 0

be given. For N given by Assumption 4 put

C = infn>N inflA_Aol
n
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Applying Lemma 9, there is an N' such that suP.* Is (A) - sO(A)1 < 6/2 for all
H n n

n > N'. Since s (A ) s (AO) we have for all n > N' thatn n n n

A A

SO(A ) - 6/2 s (A ) s (AO) SO(AO) + 6/2n n n n n n n n

orls06) - sOOO)I< o. Then for all n > max(N,N') we must have Un n n n

The asymptotic distribution of A is characterized in terms of the followingn

notation.

NOTATION 2.

11 0)
n

lj, (A) =
nT {

(I / n)I;nt }..1..- l ec a/ ;n ) s (Wt ' TO, A) Jle (a/ ;n ) s (W , TO, A) J'= t n t-T t-T n

,
U. (A)n,-T

T 0

T < 0

(,) = n (,)

09* = J 0*) (1* = n 0*) u.* = 0*)n n n ' ifn ifn n' n n n
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We illustrate their computation with the example

EXAMPLE 1. (Continued) The first and second partial derivatives of

are

Zl(a/aA)f(y l'x ,A)Jl(d/aA)f(y l'x ,A)J't- t t- t

Evaluating the first derivative at A = yO and Yt

recalling that e t and (Yt-l'xt ) are independent;

e (a / aA) s (Wt ' A) I = - ze e e (a / aA)f (Y 1 ' x t ' yO) 0A=Yo t t-

whence tl° = o.n

Put

(a/aA)f(y l'x ,A)It- t A=Yo

Then

s = t

s < t

0 2 e F F't t t s = t

s < t
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and

In summary,

General purpose estimators of (JO,:J 0) and (J*,:J *)n n n n- -(c9 , :J ) respectively -- may be defined as follows.n n

NOTATION 3.

In(A) = wlT/l(n)] JnT(A)

(09 ,9 ) andn n

J (A) =nT

t 2 3 Ixl1 - olxl : olxl 0
w(x) =

2(1 - Ixl) Ixl 1

l(n) = the integer nearest 1/5n

:In(A) = n 2 -(l/n)E t l(a /aAaA')S (w ,T ,A)= t t n

- J - :J - -J = :J= J = J :J= :Inn n n

T 0

T < 0

The special structure of specific applications will suggest alternative

estimators. For instance, with Example lone would prefer to take J (h) = 0nT

for T :f o.
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The normalized sum of the scores is asymptotically normally distributed

under the following regularity conditions as we show in Theorem 4 below.

ASSUMPTION 6. The estimation space A* contains a closed ball A with

finite, non-zero radius. The points {AO} are contained in a concentric ball
n

of smaller radius. Let gt(Wt,T,A) be a generic term that denotes an element

of (OIOA)St(Wt,T,A), (o2IoAOA')St(Wt,T,A), (o2IoTOA')St(Wt,T,A), or

l(oloA)St(Wt,T,A)Jl(oloA)St(Wt,T,A)J'. On T x A, the family {gtlWt(W),T,AJ} is

near epoch dependent of size -q with q = 2(r-2)/(r-4) where r is that of Assumption 3,

gtlWt(W),T,AJ is continuous in (T,A) uniformly in t for each fixed w in some

set A with P(A) = I, and there is a sequence of random variables {dt } with

sUPTxAlgtlWt(W),T,AJI:il dt(w) and IIdtllr:£ t:" < CD for all t. There is an Nand

constants Co > 0, c l < CD such that for all 0 in we have

c 0'0 :ii (A) 0 :£ clo'o all n > N, all A in A0 n

c 0'0 :iii o'Joo :iii c 0'0 all n > N0 n 1

*c 0'0 :£ o 'J 0 ;:;; c 0'0 all n > N0 n 1
1 I

.tim 0'(09°) 2 JO 0 0'0 all 0 < s :;l 111-+«> n lnsJ n
* J* * _1 '

.tim 0' 0 ) 2 (09 ) a 0'0 all 0 < s :£ 1 .n-+«> n lnsJ n

Also,

Recall that lnsJ denotes the integer part of ns, that J 2 denotes a matrix

with J- l = and a matrix with J = and that factorizations

are always taken to be compatible so that J 2 = I.

As mentioned in Chapter 3, the condition
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permits two-step (first T then A) estimation. If it is not satisfied, the

easiest approach is to estimate T and A jointly.

The requirement that

lim 0'0,

is particularly unfortunate because it is nearly the same as requiring that

as in Chapter 3. This has the effect of either restricting the amount of

heteroscedasticity -that (a/aA)S (W ,TO,AO) can exhibit or requiring the uset t n n

of a variance stabilizing transformation (see Section 2 of Chapter 3). But

the restriction is dictated by the regularity conditions of the Central Limit

Theorem and there is no way to get around it because asymptotic normality cannot

obtain if the condition is violated (Ibragimov, 1962). We verify that the

condition holds for the example.

EXAMPLE 1. (Continued) For the example,

t 1, 2, ...

y = 0
t

with l(a/ay)f(y,x,yO)1 S d < 1, we shall verify that

t 0

satisfies the condition

To do so, define

0' 0 •
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Yt 0

Yt f(yt_l,xt,yO)

0Yt,m

0

Yt ,m = f(Y t ,x ,y ) + e,m s s

y t-l j
L. 0 die .1t J= t- J

t 0

o < t

s max(t-m,O}

max(t-m,O) < s t

g(y,x) = a typical element of G(y,x}

and assume that {e t } and tXt} are sequences of identically distributed random

variables, and that Iytl and 1(3/3y)g(y,x)1 are bounded by some < 00. As

in Section 2, for m 0 and t 0 there is a Yt on the line segment joining

Yt to Yt such that

For t - m > 0 the same argument yields

;:;;dml- I +dml - IYt - l Yt-m - Yt -m

d + y )t-m
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The assumption that the sequences of random variables {e t } and {xt } are

At-l
identically distributed causes the sequence of random variables {G(Yt-l,m'xt )}

to be identically distributed. Thus

But

where the constant does not depend on n or t. Thus

,
= o'lv + + O(dm)jlV + 0

Now m is arbitrary so we must have

u

With Assumption b one has access to Theorems 1 through 3 and asymptotic

normality of the scores and the estimator follows directly using basicallyn

the same methods of proof as in Chapter 3. The details are as follows.

LEMMA 10. Under Assumptions 1 through b, interchange of differentiation

and integration is permitted in these instances:



9-4-13

Moreover,

lim supl\. l(a/aA)S (A) - (a/aA)SO(A)1 = 0 almost surely,n-+<JO n n

lim supl\. /(a 2 /aAaA')S (A) - (a 2 /aAaA')SO(A)1 = 0 almost surely,n-+<JO n n

and the families

are equicontinuous on A .

PROOF. The proof that interchange is permitted is the same as in Lemma 3

of Chapter 3. Almost sure convergence and equicontinuity follow directly from

Theorem 1 using the same argument as in Lemma 9. lJ

THEOREM 5. (Asymptotic normality of the scores) Under Assumptions 1

through 6

lim 0° +ll. ° - J) = 0 in probability.n-+<JO n n

PROOF. For each i where i = 1, 2, ... , P we have

where T is on the line segment joining T to TOn n n By Assumption 4

lim T - TO = 0 almost surely and (;n-+<JO n n n TO) = 0 (1) whence
n p
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almost surely. By Assumption 0 we have

almost surely. As the elements of must be bounded (Problem 3), we have,
n

where the interchange of integration and differentiation is permitted by Lemma 10.

Let 6 be a non-zero p-vector and put

00

Assumption 3 guarantees that {V } is strong-mixing of size -4r/(r-4) witht t=-oo

r > 4 so {V lOOt is strong mixing of size as required by Theorem Z and
t =-00

Assumption 0 guarantees that {g (Wt,yO)} is near epoch dependent of size -q withnt n

q = Z(r-Z)/(r-4) > (Problem 4). We have

which, by Assumption 0, satisfies

(a) l/oZ = l/oZ = O(l/n)
n lnJ

(b) tim 0 2 /oZ = s .
n--- lnsJ n
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Further, Assumption 6 and Problem 3 implies

II g t (Wt ,yO) - e. g t (Wt ,yO) "n n n n r

Thus,

1

=

t
- N(O,o'o)

by Theorem 2. This proves the first assertion. To prove the second, put

and note that

A 2 ..l (n ) l I II U ( ) j RA n J:' _" ° ) J:an = LoT=-l(n) W T .(. n nT = U 2J u'n U

where w(x) can be either Bartlett or Parzen weights.
00

By Assumption 3 {V } ist t=-oo

strong-mixing of size -4r/(r-4) for r > 4 as required by Theorem 3, by Assumption 2

Wt depends only on the past, by Assumption 6 {gnt(Wt,y)} is near epoch dependent

of size -q with q = 2(r-2)/(r-4) so we have from Theorem 3 that
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whence

for every 0 O. U

J + UO)o = 0 in probabilityn

THEOREM 6. (Asymptotic normality) Let Assumptions 1 through 6 hold. Then:

lim (:;0. §) = 0 almost surely.n-+<Xl n

PROOF. By Lemma 2 of Chapter 3 we may assume without loss of generality

that AO E A and that (a/aA)S ) = 0 (a/aA)SO(AO) =n' n n n s n n

By Taylor's theorem

where 9 has rows (a/aA' Ha/dA.)s (i. ) with IIi. - AOIl - AOll. Lemma 91. n 1.n 1.n n n n

permits interchange of differentiation and integration, we have lim II - A° II = 0n-+<Xl n n
almost surely by Theorem 4, so that application of Theorem 1 yields lim po -9 = 0n-+<» n

almost surely (Problem 5). Thus, we may write

-;.,
(c9 0) 2 lp ° + 0 (1) j - A0) = -n n s n n

(Problem 3). The right hand side is 0 (1) by Theorem 5,
p

0(1) by Assumption 6 so that - AO) = 0 (1) and wen n p

recalling that (a/aA)S ) = 0 and that =n n s n 0(1) by Assumption 6
;., -1
2 and are

can write
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which proves the first result.

The same argument used to show tim - = 0 almost surely can be usedn-+<x> n
A

to show that lim - = 0 almost surely. lJn-+<x> n

Next we shall establish some ancillary facts concerning the estimator A
n

that minimizes s (A) subject to H: h(A) = h* under the assumption that the elementsn n

of the q-vector lh(AO) - h*] are bounded. Here h* is a variable quantity chosenn n n

to adjust to AO so that the elements of the vector are bounded which contrastsn
with Chapter 3 where AO was taken as the variable quantity and h* was held fixedn n

at zero. As in Chapter 3, these results are for use in deriving asymptotic

distributions of test statistics and are not meant to be used as a theory of

constrained estimation. See Section 8 of Chapter 3 for a discussion of how a

general asymptotic theory of estimation can be adapted to estimation subject to

constraints.

ASSUMPTION 7. (Pitman drift) The function h(A) that defines the null

hypothesis H: h(AO)n h* is a twice continuously differentiable mapping of A as
n

defined by Assumption 0 into R q with Jacobian denoted as H(A) = (a/aA')h(A)

2The eigenvalues of H(A)H'(A) are bounded below over A by Co > 0 and above by

In the case where p = q, h(A) is assumed to be a one-to-one mapping

with a continuous inverse. In the case q < p, there is a continuous function

cP(A) such that the mapping

(p)., h(A)

has a continuous inverse

A = ljJ(p,,)

defined over S = {(p,,): p = cP(A), ' = h(A) , A in A}. Moreover, ljJ(p,,) has a

continuous extension to the set
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The sequence {h*} is chosen such thatn

O( 1). U

The purpose of the functions 4>0,) and W(p or) in Assumption 7 is to insure the

existence of a sequence {A that satisfies h(/) = 0 but has lim - AO o.n n n n

This is the same as assuming that the distance between AO and the projection ofn

AO onto A* = {A: h(A) = h*} decreases as Ih* - h(AO)1 decreases. The existencen n n n n

of the sequence {A#} and the Identification Condition (Assumption 4) is enough
n

to guarantee that lAo - A*I decreases as Ih(AO) - h*1 decreases (Problem 7).n n n n

The bounds on the eigenvalues of H(>.)H'(>.) (Assumption 7) and (A) (Assumption 0)n

guarantee that 1>.° - >.*1 decreases as fast as Ih(AO) - h*1 decreases as we shown n n

in the next two lemmas.

LEMMA 11. Let 9 be a symmetric p by P matrix and let H be a matrix of order

q by P with q < p.
and above by c l <

Suppose that the eigenvalues of 9 are bounded below by Co > 0

2and that those of HH' are bounded below by Co and above by

2c l . Then there is a matrix G of order p by (p-q) with orthonormal columns such

that HG = 0, the elements of

are bounded above by pc l , and Idet AI

PROOF. Let

be the singular value decomposition (Lawson and Hanson, 1974, Chapter 4) of H
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where S is a diagonal matrix of order q with positive entries on the diagonal,

V(l) is of order q by p and U'U = UU'

HH' = US
2
U' we see that

v =

,
= V(l)V(l) = I of order q. From

,
Choose V(2) of order p-q by p such that

satisfies

I
IV V

I I
Put G = V(2) note that HG = o and consider

I } V(1) SU I JAA = V(2)
USVo

r<2; V(2)
, V(lJ SU.]V(2;=

us V(Up V( 2 ) US2 U'

[:(2) :] [: :] [: (lJ V(2)] [V lJ :] [: :] [:(2) :Jo V(2)

, I ,

= BCD D C B

The elements of Band D are bounded by one so we must have that each element of

BCD is bounded above by pc l .
I 2 2Then each element of AA is bounded above by p c l .

, 2
Since a diagonal element of AA has the form Lia ij we must have laijl p c l . Now

(Mood and Graybill, 1963, p. 206)
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= det 8 2 det<v(2) V(2) - V(2) V(l)

2
de t< V( V( 2) V( 2) V( 2) )= det 8

(co)2
P 2 ,;:: de t ( V( 2) V( 2 ) )

But

whence (cO)P :s det V(2) and

2det A'A = det A lJ

LEMMA 12. Under Assumptions 1 through 7 there is a bound B that does not

depend on n such that lAo - A*I Blh(AO) - h*1 where IAI = (EPn n n n i=1 i

PROOF. The proof for the case q = p is immediate as the one-to-one mapping

T h(A) has a Jacobian whose inverse has bounded elements. Consider the case

q < p.

Let > 0 be given. For NO given by Assumption 4 put

Let be the continuous function defined on R x T given by Assumption 7. Now

h* = h(A*) by definition and put p* = hO = h(AO), and Pno = The image ofn n n n n n n

a compact set is compact and the Cartesian product of two compact sets is compact

so R x T is compact. A continuous function on a compact set is uniformly con-

tinuous so lim Iho - h*1 = 0 implies thatn-+<x> n n
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In particular, putting A#n

By Assumption 6 the points {AO} are in a concentric ball of radius strictlyn

smaller than the radius of A so we must have A# in A for all n greater thann

some N1 . By Lemma 9, the family {SO(A)} is equicontinuous so that there isn

an N2 such that IA - < n implies that

for all n

The point

> N2 · Choose N3
,IF ° fO h
1\ sat1.S l.es t en

IFlarge enough that IAn
constraint h(A#) = h*n n

- < n for all n > N3 .
so we must have SO(A*) S SO(A#)n n n n

whencelsO(A*) - SO(AO) 1< 0 and we must have IA* - AOI < €n n n n n n

AO - A* = 0(1) as Iho - h*1 tends to zero.n n n n

We have shown that

The first order conditions for the problem minimize SO(A) subject to h(A) = h*
n n

are

h(A*) = h*n n

By Taylor's theorem we have



9-4-22

Using (a/a;\)sO(;\O) = 0 for large nand h(;\*) - h* = 0, we have upon substitutionn n n n

into the first order conditions that

+ o(l)j(;\o - ;\*) = -H*'en n n n

Let G* be the matrix given by Lemma 11 with orthonormal columns, H*G* = 0,n n n

O < (cO) 2P :5 det A* d I * I < < h- n' an maxij a ijn P c l were

A: -
Let a .. denote the elements of a matrix A and consider the region

On this region 'Je must have laijl < B < - h ij d 1 f A-
l• ." = - were a enotes an e ement 0 •

For large n the matrix A* is in this region by Lemma 11 as is the matrix
n

An

*since the elements of G are bounded by one. In consequence we have
n

-1where the elements of A are bounded above by B for all n larger than some N.
n

Thus we have 1;\° - ;\*1 B IhOO) - h*1 for large n. LJn n n n
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THEOREM 7. Let Assumptions 1 through 7 hold. Then:

.lim A - A*n-+<><> n n o almost surely,

lim (J* +1..1.* - J) = 0 in probabilityn-+<><> n n

-lim {)* - {) = 0 almost surely.n-+<><> n

PROOF. The first result obtains from Lemma 12 since lh(A O
)n

by Assumption 7.

h*J = 0(1)n

The proof of the second is nearly word for word same as the first part of

the proof of Lemma 12. One puts

and for fixed w has from Lemma 9 that IA - AO ! < n impliesn

for all n larger than Nl . For n larger than N2 one has

as in the proof of Lemma 12. The critical inequality becomes, for the same fixed w,

-SO(A ) - 0/2 < s (A )n n n n

the first result gives the second.

Combining this with
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The proof of the third and fourth result is the same as the proof of

Theorem 5 recalling that' (a/aA)SO(A*) is the mean of (a/aA)S (A*) by Lemma 10.n n n n

The fifth result is an immediate consequence of Lemma 10 and the second

result. Ll

PROBLEMS

1. Show that if wt has fixed dimension, kt = k all t, and the dependence

of St(wt , T,A) on t is trivial, St(W,T ,A) = S(W,T ,A) all t, then continuity of

S(W,T,A) in (W,T,A) implies that StlWt(W),T,AJ is continuous in (L,A) uniformly

in t for each fixed W; that is lim(T,A) SUPtIStlWt(W),T,A] - StlWt(W),TO,AOjl=o

for each fixed w.

is near epoch dependent of size -q for any q ) O. List the regularity conditions

used.

3. Let cOn be the smallest eigenvalue of and c ln the largest. Prove that

all n ;;: N.Assumption 6 implies that Co
, -1all n ;;: N and that 0 (j 0) 0n

Prove that det JO ;;: (c )p
n 0

Show that (Jo)-l can alwaysn
be factored such that the elements of are bounded.n

4. Show that if the elements of are near epoch dependent

of size -q then so are the elements of o'A (a/aA)S (W ,TO,AO) if A has boundedn t t n n n
elements.

5. Let sUPTxA ft(T,A) -e ft(T,A)1 = 0 almost surely,

e ft(T,A)}:=l be an equicontinuous family on T x A, and let

lim - (TO,AO)I = 0 almost surely. Show thatn n n n

lim l(l/nHnt __ l f (T ) - e f (TO,AO)I = 0 almost surely.n-+«> t n n t n n

-------- J
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b. Prove Lemma 11 with not necessarily symmetric but with the singular

values of bounded below by Co > 0 and above by c l <

7. The purpose of the function W(P,T) in Assumption 7 is to guarantee the

existence of a sequence {A#} that satisfies h(A#) = 0
n n

Prove Lemma 12 using this condition instead of the existence of W(p,T).
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5. METHOD OF MOMENTS ESTIMATORS

Recall that a method of moments estimator A is defined as the solutionn

of the optimization problem

Minimize: s (A) = dLm (A),; Jn n n

where d(m,T) is a measure of the distance of m from zero, T is an estimatorn

of nuisance parameters, and m (A) is a vector of sample moments,n

m (A) = (l/n) En m (w ,; ,A).
n t=l t t n

The dimensions involved are as follows: wt is a kt-vector, T is au-vector,

A is a p-vector, and each mt(wt,T,A) is a Borel measurable function defined
k

on some subset of .lR t x lRu x lRP and with range in lRv . Note that v is a constant;

specifically, it does not depend on t. As previously we use lower case wt to

mean either a random variable or data as determined by context. For emphasis, we
ClO

shall write Wt(v
ClO

) when considered as a function on lR ,and write Wt(V ), W ,
-ClO ClO t

WtlV (w)J, or W (w) when considered as a random variable depending on the under-
ClO t

lying probability space (!2,a,p) through function composition with the process

A constrained method of moments estimator A is the solution of then

optimization problem

Minimize: s (A) subject to h(A) = h*n n

where h(A) maps .lRP into lRq •

As in the previous section, the objective is to find the asymptotic dis-

tribution of the estimator under regularity conditions that do not rule outn

specification error. -Some ancillary facts regarding A under a Pitman driftn

are also derived for use in the next section. As in the previous section, drift

is imposed by moving h*.n

As the example, we shall consider the estimation procedure that is most

commonly used to analyze data that are presumed to follow a nonlinear dynamic
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model. The estimator is called nonlinear three-stage least squares by some

authors (Jorgenson and Laffont, 1974; Gallant, 1974; Amemiya, 1977; Gallant

and Jorgenson, 1979) and generalized method moments by others (Hansen, 1982).

The estimation procedure is as follows.

EXAMPLE 2. (Three-stage least-squares). Data is presumed to follow the

model

t = 0, I,

where Yt is an M-vector of endogenous variables, xt is a kt-vector with exogenous vari-

ables and (possibly) lagged values of Yt as elements (the elements ofxt are collectively

termed predetermined variables rather than exogenous variables due to the presence
M k'

of lagged values of Yt)' yO is a p-vector, and qt(y,x,y) maps m x m t x mP into
mL with L S M. Note that M, L, and p do not depend on t. Instrumental variables

a sequence of K-vectors {Zt} -- are assumed available for estimation. These

variables have the form Zt = Zt(xt ) where Zt(x) is some (possibly) nonlinear, 4It
vector valued function of the predetermined variables that are presumed to satisfy

t = 0, I, ...

where, recall (Chapter b, Section 2),

e Z =

More generally, Zt may be any K-vector that has ee t Zt = 0, but since a trivial

dependence of qt(Yt'xt,y) on elements of xt is permited, the form Z =
t

not restrictive. Also, Zt may depend on some preliminary estimator Tn and be

of the form
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or depend on the parameter yO (Hansen, 1982) with

The moment equations are

with w' = (y' x') andt t' t

or

Hereafter, we shall consider the case Zt = Zt(xt ) because it occurs most

frequently in practice. Our theory covers the other cases but application is more

tedious because the partial derivatives of mt(wt,T,A) with respect to T and A

become more complicated

If L = P one can use method of moments in the classical sense by putting

sample moments equal to population moments, viz. m (A) = 0, and solving for An

to get A. But in most applications L > p and the equations cannot be solved.
n

However, one can view the equation

as a nonlinear regression with p-parameters and L x K observations and apply the

and put

principle of generalized least squares to estimate yO

triangle of l(l/n) e t 0 zt)(E:=l e s 0 zs)' J-
l

= l(l/n)e 0 Zt)(E:=le
S
0 zs)' J- l

Let TO denote the uppern

Using the generalized least squares heuristic, one estimates yO by A thatn

minimizes
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dlm 0'>,;] D(;)m Odn n n n n

We shall assume that the estimator T satisfies T - TO = 0 almostn n-+oo n n

surely and that (; - TO) is bounded in probability. The obvious approachn n

to obtain such an estimate is to find the minimum of m'(A)m (A), and putn n

where

S (A) =nT
S' (A)n, -T T < 0 ,

If e t Zt and e s Zs are uncorrelated for all time gaps Is-tl larger than some

t as in many applications to financial data (Hansen and Singleton, 1982) then we

can obtain the conditions tim; - TO = 0 and (; - TO) bounded in probability
n n n n

using Taylor's series expansions and Theorems 1 and 2 with ten) = t and w(x) = 1.
But if e t Zt and e s e s are correlated for every s, t pair then this sort of

approach will fail for any with = because Theorem 3 is notn-+oo

enough to imply the critical result that O'lD- l (; )n

probability. But as noted in the discussion preceding

- D-l(,O)]o is bounded in
n

-1 A

Theorem 3, o'D (T)O is ann

estimate of a spectral density at zero so that if {e t Zt} were stationary we

should have the critical result with w(x) taken as Parzen weights and ten) = ln l/5 ].

It is an open question as to whether r -1 A -1¥n o'lD (T) - D (TO)]O is bounded inn n

probability under the sort of heteroscedasticity permitted by Theorem 2 or if

stationarity is essential. U
We call the reader's attention to some heavily used notation and then state

the identification condition.
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NOTATION 4.

s (A) = dLm (A),T jn n n

A minimizes s (A)n n

A minimizes s (A) subject to h(A) = 0
n n

A* minimizes SO(A) subject to h(A) = o. Un n

ASSUMPTION 8. (Identification) The nuisance parameter estimator T isn

centered at TO in the sense that lim T - TO = 0 almost surely and I; (T - TO)n n n n

is bounded in probability. Either the solution AO of the moment equationsn

mO(A) = 0 is unique for each n or there is one solution that can be regardedn

being naturally associated to the data generating process.

and M* = (3/3A')mO(A*); there is an N and constants Co > 0, c < 00 such that forn n n 1

all 0 in lR we have

0'0 S o'M*'M*o
n n LJ

As mentioned in Section 4 of Chapter 3, the assumption that mO(AO) = 0 isn n

implausible in misspecified models when the range of m (A) is in a highern

dimension than the domain. As the case mO(AO) 0 is much more complicated thann n

the case mO(AO) = 0 and we have no need of it in the body of the text, considerationn n
of it is deferred to Problem 1. The example has mO(AO) = 0 with AO = yO all nn n n

by construction.
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The following notation defines the parameters of the asymptotic distribution

of n

NOTATION 5.

K(A) = L(n-l) K (A)
n T=-(n-l) nT

K (A)nT

S (A)n

S (A)nT

= {( lin)

K' (A)n,-T

=

S' (A)n, -T

T 0

T < 0

T 0

T < 0

£1 (A) = en

D (A) = (a 2/amam')dLmO(A),ToJn n n

.1 (A) = £1' (A) D (A) S (A) D (A) £1 (A)n n n n n n

9 (A) = H' (A) jj (A) H (A)n n n n

G (A) = £1' (A) D (A) K (A) jj (A) M(A)n n n n n n

<9° = J (A0), = 9 (AO), h O =i:i (A0), SO = S(A0)n n n n n n n n n n n

09* =J (A*), = (A*) u* =ii: (A*), s* = S(A*) Un n n n n n ' n n n n n

We shall illustrate the computations with the example.

EXAMPLE 2. (Continued) Recall that data follows the model

with

t = 1, 2, ... , n .
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Further,

= 0 we have KU = o.n

T ;;: 0

T < 0

We have

M0.) = (l/n) (a/aU m(Wt'A)n

= (l/n) (a/aA' Hqt (Y t ,xt ,A) o Zt J

(l/n) L(a/aA')qt(yt,Xt,A)] 0 Zt

= (l/n) 0 Zt

Recall that

with

L(l/ ) '" ("n )("n e l\Il Z ) I J- ln ,:" <Ot=l e t 0 Zt <0 8 =1 8 lO' 8
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Thus,

- -1D (A) = (a 2/amam') mi'
n n m=m (A)

n

and

=:J0 •n

An important special case is the instance where the xt are taken as fixed

(random variables with zero variance) and the errors {e t } are taken as independently

and identically distributed with = L. In this case

and

n= L (l/n) Lt=l z z't t

=:Jo Un

General purpose estimators of (Jo, /0) and (J*, :J*), denoted (J,:J) and (J,j)n . n n n

respectively, may be defined as follows.

NOTATION 6.

Sn(A) = wLT/!(n)] SnT(A)

Sn
(A)

={( lin)

s' 0,)n, -T

mt(wt ,; ,A)mt (wt ,; ,A)n -T -T n T 0

T < 0

w(X)

= t: 3- Ixl>
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list(n) = the integer nearest n

D 0,) = <aZ/amam') dLm 0.) ,T jn n n

(1) = M'(l) D (1) S (1) D (1) M (1)n n n n n n

:; 0.) = M' (1) D (1) M (1)n n n n
A

.:9 ) ,§ = :; ).:9 = n n n n

- -.:9 = r.9 (1 ), :; = :;0.) Un n n n

For the example, three-stage least squares, one is presumed to have an

estimate D(T ) of (Su)-l available in advance of the computations. In applications,n n

it is customary to reuse this estimate to obtain an estimate of .:9u rather thann

trying to estimate SU afresh. We illustrate.n

EXAMPLE 2. (Continued) A -1Recall that by assumption tim D(T) - (SO) = 0n-+- n n

almost surely and lD(T ) - (So)-l j is bounded in probability. Thus, for the casen n

we will have

where, recall,

In the special case where {e t } is a sequence of independent and identically

distributed random variables with Pe e' = and z taken as fixed we have/ t t t
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and

= :J. U

The following conditions permit application of the uniform strong law for

dependent observations to the moment equations, the Jacobian, and the Hessian

of the moment equations.

ASSUMPTION 9. The sequences F } and {T"}n n are contained in T which is a

closed ball with finite non-zero radius. The sequence {A"} is contained in A*n

which is a closed ball with finite, non-zero radius. Let qt(Wt,T,A) be a generic

term that denotes, variously,

<a/cu.) m (W ,T,A), (3 2 /CU.3A.) m"'t(Wt,T,A),
1. at t 1. J ...

for i, j = 1, Z, ... , p, t = 1, Z, ... , u and a = 1, Z, ... , M. On T x A*, the

family {gtLWt(W),T,AJ} is near epoch dependent of size -q with q = Z(r-Z)/(r-4)

where r is that of Assumption 3, gtLWt(W),T,AJ is continuous in (T,A) uniformly

in t for each fixed w in some set A with peA) = 1, and there is a sequence of

random variables {d t } with sUPTxA* gtLWt(W),T,AJ dt(W) and IIdtllr /::, < QO for

all t. U

Observe that the domination condition in Assumption 9 guarantees that m"(A)n

takes its range in some compact ball because

We shall need to restrict the behavior of the distance function d(m,T) on a
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slightly larger ball The only distance functions used in the text are

quadratic

with D(T) continuous and positive definite on T. Thus, we shall abstract

minimally beyond the properties of quadratic functions. See Problem 1 for the

more general case.

CD {o *}ASSUMPTION 10. Let rn be a closed ball that contains U 1 m = m (;\): ;\ e: An= n

as a concentric ball of smaller radius. The distance function d{m,T) and derivatives

(a/am)d(m,T), (a 2 /amam' )d(m,d, <a 2 /amch' )d(m,T) are continuous on ;n x T. Moreover,

(a/am)d(O,t) =0 for all T in T{which implies (a 2 /amaT')d(Q,T) = 0 for all T in T)

and (a 2/amam' )d(m,T) is positive definite over ;n x T. lJ

Before proving consistency, we shall collect together a number of facts needed

throughout this section as a lemma.

LEMMA 13. Under Assumptions 1 through 3 and 8 through 10, interchange of

differentiation and integration is permitted in these instances:

Moreover,

lim sUPA* 1m (;\) - mO (;\)1 = 0 almost surely,n-l'<lD an an

lim sUPA* l(a/aA.)lm (A) -mO(;\)JI = 0 almost surely,n-l'<lD 1. an an

lim suPA* l(a 2 /a;\.a;\.)lm (;\) - mO (;\) J I = 0 almost surely,n-l'<lD 1. J an na

lim sUPA* Is (;\) - sO(;\)1 = 0 almost surely,n-l'<lD n n

lim sUPA* l(a 2 /a;\.o;\.)ls (;\) - sO(;\)JI = 0 almost surely,n-l'<lD 1. J n n
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and the families {mO (A)}, {(a/aA.)mO (A)}, {(a 2 /aA.aA.) mO (A)}, {SO(A)},an 1 an 1 J an n

{(a/aA.)SO(A)}, and {(a 2 /aA.aA.)SO(A)} are equicontinuous; indices range over
1 n 1 J n

i, j = 1, 2, ... , p; a = 1, 2, ... , M, and n = 1, 2, ... , CD in the above.

PROOF. The proof for the claims involving m (A) and mO(A) is the same
n n

as the proof of Lemma 10.

For m (A) in 1l\ we have
n

s (A) = dlm (A), , jn n n

(a/aA.)S (A) = L (a/am )dlm (A),; j(a/aA.)m (A)
1 n a ann 1 an

and

(a 2 /aA.aA.) = L Le(aZ/am ame)dlm (A),; j(a/aA.)m (A)(a/aA.)me (A)
1 J a ann 1 an J n

+ L (a/am )dlm (A),; j(aZ/aA.aA.)m (A)a ann 1 J an

Consider the second equation. A continuous function on a compact set is uniformly

continuous thus (a/am) d(m,,) is uniformly continuous on x T. Given €> 0 choosea

a small enough that 1m - mOl < a and ,; - ,°1 < a imply

Fix a realization of {Vt};=l for which

tim I; - ,°1 0 and tim suP.* 1m (A) - mO(A)1 = 0, almost every realizationn-+= n n II n n

is such by Assumption 9 and Theorem 1. Choose N large enough that n > N implies

suP.* 1m (A) - mO(A)1 < a and I; - ,°1 < o. This implies uniform convergence
II n n n n

since we have sup.* I(a/am ){dlm (A),; J -d lm°(A)"Ol}1 < € for n > N. By
II ann n n

equicontinuity, we can choose n such that IA - AOI < n implies ImO(A) - mO(AO)1 < 0,n n

For IA - AOI < n we will have

which implies that {(a/am )d lmO(A)"Oj} is an equicontinuous family.ann n
As (a/aA.)S (A) is a sum of products of uniformly convergent, equicontinuous

1 n

functions, it has the same properties.
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The argument for s (>..> and (a2./aA aAS)s (A) is the same. Un ex n

As we have noted earlier, in many applications, it is implausible to assume

h "(\) h 1 A*.t at m as on y one root over J1n Thus, the best consistency result that we

can show is that s (A) will eventually have a local minimum near A" and that alln n
other local minima of s (A) must be some fixed distance 0 away from A" where thisn n

distance does not depend on A" itself. Hereafter, we shall take A to mean then n

root given by Theorem 8.

THEOREM 8. (Existence of consistent local minima). Let Assumptions 1 through

3 and 8 through 10 hold. Then there is a 0 > 0 such that the value of which
n

minimizes s (A) over IA - A"I 0 satisfiesn n

lim A") = 0n-+oo n n

almost surely.

PROOF. By Lemma 13 the family

Then there is a 0 small enough that

{M. (A)=(Cl/aA')m"(A)}n n

- A"I S 0 impliesn

is equicontinuous over A*.

(A - - M"'M"J(A - AnO) > - (cOZ/Z)IA - AnolZn n n n n

where is the eigenvalue defined in Assumption 8. Let YO be the smallest eigenvalue

of (a2./amam' )d(m,T) over lnx T which is positive by Assumption 10 and continuity over

a compact set. Recalling that m"(A") = 0, d(O,T) = 0, and (a/am)d(O,T) = °we haven n

by Taylor's theorem that for N given by Assumption 8

= \) . f 1· f M.o 1n n>N n n 1\ n
n
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where m is on the line segment joining the zero vector to m, and A is on the

line segment joining A to AU.

Fix w not in the exceptional set given by Lemma 13. Choose N' large enough

that n > N' implies that sUPA* ISn(A) - < for all n > N'. Since

s ) s (AU) we have for all n > N' thatn n n n

- AUI < Un n

We append some additional conditions needed to prove the asymptotic normality

of the score function (a/aA')s (AU).n n

ASSUMPTION 11. The points {AU} are contained in a closed ball A that isn

concentric with A* but with smaller radius. There is an N and constants Co > 0,
c l < such that for 0 in mP we have

Co 0'0 n ( A) 0 c 10 ' 0 all n > N, all A in A

lim SU (SU) 2 0 = 0'0 all 0 < s :iii 1n-+oo n LnsJ n
-!.:: _1 ,

lim o'(S*) 2 s* (s*) 0 = 0' 0 all 0 < s ;S 1n-+oo n LnsJ n

Also,

THEOREM 9. (Asymptotic normality of the scores) Under Assumptions 1 through

3 and 8 through 11



9-5-15

r -% S-rn (09°) 2 (a/O).)s 0.°)-+ N(O,I)n n n

limn_ + - J) = 0 in probability.

PROOF. By the same argument used to prove Theorem 5 we have

(AO) - N(O,I)
n n n n n

tim lSo + KO - S )j = 0 almost surely.n- n n n n

A typical element of the vector (a/am) dlm (AO),T j can be expanded aboutn n n
lmO(AO),TOj to obtainn n n

(a/am) dlm (AO),T jann n

+ (a / am' )( a / am ) d (Ji,;) lmo.°) - m° (A° ) jann n n

where (Ji,;) is on the line segment joining lm (AO),T j to LmO(AO),TOj. We haven n n n n n
that Lm (AO) - mO(AO)j converges in distribution and so is bounded in probability;n n n n

we have assumed that (T - TO) is bounded in probability. Then using the uniformn n

convergence of lm (A) - mO(A)j to zero given by Lemma 13, the convergence ofn n

(T - TO) to zero, and the continuity of d(m,T) and its derivatives we can writen n

(a/am) dLm (AO),T jn n n

= (a/am) dlmO(AO),TOjn n n

+ (a 2/amaT') dLmO(AO),TOj (T - TO)n n n n n

+ (a 2/amam')d LmO(AO),TOj lm 0.°) - mO(AO)jnn n nn nn

+ 0 (1)
P

Since AO is an interior point of A* by Assumption 11, we have = 0(1)n n n

whence
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(a/aA)s (A0)
n n

In general this simplification will not obtain and the asymptotic distribution

of (a/aA)s (AU) will be more complicated than the distribution that we shalln n

obtain here (Problem 1).

Now = (DU)-l (MU,)-l
n n n n

Assumptions 8, 10, and 11 assure the existence of the various inverses and the

existence of a uniform (in n) bound on their elements. Then

and the first result obtains. Lemma 13 and Theorem 8 guarantee that lim (MU - M ) = 0n n

almost surely, Assumption 10 and Theorem 8 guarantee that lim (DU - D) = 0n n

almost surely, we have already that lim (SU + KU - S ) = 0 almost surely whencen n n

the second result obtains. U
Asymptotic normality of the unconstrained estimator follows at once

THEOREM 10. (Asymptotic normality) Let Assumptions 1 through 3 and 8

through 11 hold. Then:
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A

lim - ) = 0 almost surely.n-fo<lO

PROOF. The proof is much the same as the proof of Theorem b. lJ

Next we establish some ancillary facts regarding the constrained estimator

subject to a Pitman drift for use in the next section.

ASSUMPTION 12. (Pitman drift) The function h(A) that defines the null

hypothesis H: h(AO)n h* is a twice continuously differentiable mapping of A asn

defined by Assumption 11 into mq with Jacobian denoted as H(A) = (a/aA')h(A)

The eigenvalues of H(A) H'(A) are bounded below over A by Co > 0 and above by

In the case where p = q, h(A) is assumed to be a one-to-one mapping

with a continuous inverse. In the case p < q, there is a continuous function

such that the mapping

(p) = (A»)
T h(A)

has a continuous inverse

defined over S = {(P,T); p = T = h(A), A in A}. Moreover, has a

continuous extension to the set

R x T = {p: p = x {T: T = h(A)} .

The sequence {h*} is chosen such thatn

THEOREM 11. Let Assumptions 1 through 3 and 8 through 12 hold. Then there

is a 0 > 0 such that the value of A which minimizes s (A) over IA - A*I < 0n n n

subject to h(A) = h* satisfiesn



lim (A - A*)n"'- n n

Moreover,

o almost surely.
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tim (J* + U* - J) = 0 in probabilityn"'- n n

lim - = 0 almost surely.
n"'- n

PROOF. The proof is much the same as the proof of Theorem 7. U

PROBLEMS

1. Let Assumptions 1 through 3 and 8 through 11 hold except that 0;

also (a/am) d(O,T) and (aZ/amam') d(O,T) need not be zero. Presume that the estimator

of the nuisance parameter TO can be put in the formn

where {ft(Wt )} satisfies the hypotheses of Theorem 2 and cOo'o

for finite, non-zero cO' c l and all n larger than some N. Define

c 0'01

Zt = vec

f t (Wt )

KO = r(n-l) KOn T=-(n-l) nT

{ (lIn) r n (eZ )(eZ )'t=l+T t t-T
XO =nT

KOn,-T

go = r(n-l) go
n T=-(n-l) nT

T 0

T < 0



go = {(lIn)
nT

go
n, -T
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T :;: 0

T < 0

JO = CLog 0 G. 0 ,

n n n n

Show that

,0)L (0 I)1\ N,.n
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6. HYPOTHESIS TESTING

The results obtained thus far may be summarized as follows:

SUMMARY. Let Assumptions 1 through 3 hold and let either Assumptions 4

through 7 or 8 through 12 hold. Then on a closed ball A with finite, non-

zero radius:

S ( ') - SU(,) a.s., 0 of 1 A1\ 1\ unl. orm y on ,n n

(a/ )l ( ') U()J a.s. f Aa:A. s 1\ - s:A. 1 0 uni ormly on ,n n

(a 2 /a:A.a:A.')ls (:A.) - SU(:A.)j a.s., 0 uniformly on A,n n

is equicontinuous

is equicontinuous

iIi" (09 U) <a / aA)s (:A. U) -L. N(0 , 1)n n n

iIi" (a/a:A.)ls (:A,*) - N(O,I)n n n n n

:A,
n

, 0

0, (09* + u* - J)n n
P- o U U u*, n' n 0(0

(p 0 _ p ) -+1 0,
n

(p* - 3)
n

a. S. 1 0

c 0'0 °'9(:A.)0 S clo'o all n > N, all ° in lRP , all :A, in A0

c 0'0 0',9*0 C 0'0 all n > N, all ° in lRP0 n 1

cOo'o :i 0'09*0 c l 0'°all n > N, all ° in lRPn

ouuo S clo'o, o'u*o :;; clo'o all n > N, all <5 in lRPn n

where 0 < Co < c l < 00 • Moreover,:A. and:A, are tail equivalent to randomn n
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variables that take their values in the interior of A and AO and A* are interiorn n

to A for large n. Thus, in the sequel we may take A , A ,Ao and A* interiorn n n' n

to A without loss of generality. U
Taking the summary as the point of departure, consider testing

where h(A) maps A C R P into R q . As in Chapter 3, we shall study three test

statistics for this problem: the Wald test, the "likelihood ratio" test, and the

Lagrange multiplier test. Each statistic, say T as a generic term, is decomposed

into a sum of two random variables

T = X + an n n

where a converges in probability to zero and X has a known, finite sample dis-
n n

tribution. Such a decomposition permits the statement

tim lP(T > t) - P(X > t)J = O.n n

Because we allow specification error and nonstationarity we will not necessarily

have T converging in distribution to a random variable X. However, then

practical utility of convergence in distribution in applications derives from

the statement

tim lp(T > t) - p(X > t)J = 0n

because p(X < t) is computable so can be used to approximate P(T > t). Sincen

the value P(X > t) that we shall provide is computable, we shall capture then

full benefits of a classical asymptotic theory.

We introduce some additional notation.
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NOTATION 7.

VO <p 0 )-1 <.9 0 <p 0 )-1 V* = <p*)-l <.9*<p*)-1
n n n n ' n n n n

= - -V , V - J

h = HOJ = (a/aA')h(A)

HO = HO.O), H* = H(A*)n n n n

H = ), H = H(A )n n

THEOREM 12.

V = VO J = <.9 ° n = nOll = 11 ° H = HOn' n'lf If n ' n' n

THEOREMS 13, 14, 15, and lb.

V = V* =J * n = n * 1A = tt * H = H*n' n'lf If n ' n' n

The first test statistic considered is the Wald test statistic

As shown below, one rejects the hypothesis H: h(AO) = h* when Wexceeds the
n n

upper a x 100% critical point of a chi-square random variable with q-degrees of

freedom to achieve an asymptotically level a test in a correctly specific

situation. As noted earlier, the principal advantage of the Wald test is that

it requires only one unconstrained optimization to compute it. The principal

disadvantages are that it is not invariant to reparameterization and its sampling

distribution is not as well approximated by our characterizations as are the

"likelihood ratio" and Lagrange multiplier tests.

THEOREM 12. Let Assumptions 1 through 3 hold and let either Assumption 4

through 7 or 8 through 12 hold. Let
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Then

W - Y + 0 (1)
P

where

and

Z - N {In l h (AU) - h* j, HVH'}q n n

Recall: v = VU J = JU rz = rzun' n' if ifn ' 1), = tl u, and H = HU
•n n If = 0 then Y has the

non-central chi-square distribution with q degrees of freedom and non-centrality

parameter a

a = O.

Under the null hypothesis

PROOF.

(a/aA)s )n n

We may assume without loss of generality that , AU € An n

= 0 (n ), (a/aA)SU(A U
) = o(n ). By Taylor's theorems n n

and that

In ) - h (AU)j = ) Inn i n n i=1,2, .•. ,q

where II - II II - II·
to zero, lim II . - AU II = 0n-+<:c 1.n n

By the almost sure convergence of

almost surely whence limn-+<:c 1. 1.n
- (a/aA)h.(AO)j = 0 almost surely. Thus we may write1. n

Again by Taylor's theorem

!.: 1By the Summary, the left hand side is 0p(l), and and are both 0(1)

whence - AU) = 0 (1) andn n p

Combining these two equations we have
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because all terms are 0 (1) save the 0 (1) and 0 (1) terms. The equicontinuityssp

of P OJ}, {iA OJ}, CU}, the almost sure convergence of - AOIl to zero,n n n n n

and det§(A), det09(A) t:.. > ° imply that
o (1)s

Since

and all terms on the right are bounded in probability we have that

W= ) - h*J (HVH,)-l ) - h*J
n n n n

= ) - h*J LH (J +u ) H' j-l ) - h*l + 0 (1)
n n n n p

By the Skorokhod representation theorem (Serfling, 1980, Section l.b), there are

-xrandom variables X with the same distribution as J 2 (a/aA)s (AU) such thatn n n

X = X + 0 (1) where X - N(O,I). Thenn s

-1 x
because H, ,J 2 are bounded.

result follows. U
In order to characterize the distribution of the Lagrange multiplier and

"likelihood ratio" test statistics we shall need the following characterization

of the distribution of the score vector evaluated at the constrained value A*
'n

THEOREM 13. Let Assumptions 1 through 3 hold and let either Assumptions 4

through 7 or 8 through 12 hold. Then
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(3/3A)S (A*) - X + 0 (1)n s

where

x - N (3/3A)S"(A*),n n

PROOF. By either Theorem 7 or Theorem 11

Let(3/3A)S"(A*) = Y + 0 (1) where Y - N(O,I).n n s

By the Skorokhod representation theorem (Serfling, 1980, Section 1.6) there are

with the same distribution as (09*) 2 (3/3A)S (A*) suchn n nrandom variables Yn

that Y -
n n

1
X = - (3/3A)S"(A*)n n n

whence

,o9*J.n n n

1 1
Since is bounded, 0 (1) = 0 (1) and the result follows. Un n s s

Both the "likelihood ratio" and Lagrange multiplier test statistics are

effectively functions of the score vector evaluated at A. The following resultn

gives an essential representation.

THEOREM 14. Let assumptions 1 through 3 hold and let either Assumptions

4 through 7 or 8 through 12 hold. Then:

(3/3A)S (A ) = HP- l (3/3A)S (A*) + 0 (1) = 0 (1)
n n n n p p

where :J =:J * and H = H*n n

PROOF. By Taylor's theorem

(3/3A)S (A ) = (3/3A)S (A*) +:J - A*)n n n n n n

) = h(A*) + H (A - A*)n n n n
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where has rows

(a/aA')(a/aA.)S )1. n 1.n

-and H has rows

(o/aA')h.(L)
J In

i = 1, 2, ... , P

j = 1, 2, ... , q

with A. and A. on the line segment joining A to A* Now lh(A ) - h*j = 0 (1).1.n In n n n n s
Recalling that In lh(A*) - h*j = 0, we have HIn - A*) = 0 (1). Sincen n n n s

IIA - A*II converges almost surely to zero, - A*) and - A*) convergen n n n In n

almost surely to zero and = + 0s(l) by the equicontinuity of {Pn(A)t:=l;

continuity of H(A) on A compact implies equicontinuity whence H H+o (1).s

Moreover, there is an N corresponding to almost every realization of {Vtt such

that det(9) > 0 for all n > N. --1 -Defining arbitrarily when det(d) = 0 we have

for all n > N. Thus, - A*) =n n - A*) + 0 (1).n s Combining

these observations, we may write

H In - A*) = 0 (1)n n s

(A - A*) = 9- 1 (a/aA)S ) - j-l In (a/aA)S (A*) + 0 (1)n n nn nn s

whence

Now l(a/aA)S (A*) - (a/aA)SO(A*)j converges in distribution and by Taylor'sn n n n

theorem

r-yn J

= 0(1) + 0(1)

r- -%so we have that yn J 2 (a/aA)SO(A*) is bounded. Since J is bounded,
n n
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(a/aA)S (A*) is bounded in probability. By Lemma 2 of Chapter 3, there isn n

a sequence of Lagrange multipliers e such thatn

(a/aA)S ) + H' e = 0 (1)n n n s

By continuity of H(A) and the almost sure convergence of - A*II to zero wen n
- --1 - -1 --1have H = H + 0 (1). Defining (H9 H) similarly to 9 above and recallings

that (a/aA)S (A*) is bounded in probabilityn n

H' (H9- 1H' ) -1 Hf 1 In (a/aA)S (A*)
n n

H'(Hj"-l H' )-1 - --1 (a/aA)s 0*) (1)= H9 + 0n n p

H'(Hj"-l H') -1 - --1 ( a/aA)s (A ) (1)= H9 + 0n n p

H'(Hj-1 H' )-1 - --1 - (1)= H9 H' + 0n p

= H' e + 0 (1)n p

The second test statistic considered is the "likelihood ratio" test statistic

L = 2nls (A ) - s )Jn n n n

As shown below, one rejects the hypothesis H: h(A U
) = h* when L exceeds then n

upper a x 100% critical point of a chi-square random variable with q degrees of

freedom to achieve an asymptotically level a test in a correctly specified

situation. The principal disadvantages of the "likelihood ratio" test are that

it takes two minimizations to compute it and it requires that

to achieve its null case asymptotic distribution. As seen earlier, when this

condition holds, there is Monte Carlo evidence that indicates that the asymptotic

approximation is quite accurate if degrees of freedom corrections are applied.
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THEOREM 15. Let Assumptions 1 through 3 hold and let either Assumptions

4 through 7 or 8 through 12 hold. Let

L = 2nLs (A ) - s )J .n n n n

Then

L - Y + 0 (1)
P

where

and

Recall :

If H VH'

v = V*, J = J *, {} = {}*, 1A = 1.4*, and H = H* .n n n n n
-1H{j H' then Y has the non-central chi-square distribution with q

degrees of freedom and non-centrality parameter

a = Under the null hypothesis,

a = O.

PROOF. By Taylor's theorem

2nls (A ) - s )jn n n n

= 2nL(%A)S - ) + n(A - )'l(OZ/OAOA')S - )nn n n n n nn n n

where II - II :s II i - II· By the Summary, IIi - A* II and II - A() IIn n n n n n n n

almost surely to zero and {(oZ/oAoA')sn(A)}:=l is equicontinuous whence

(OZ/OAOA')S ) = Ln + 0 (l)j. By Lemma 2 of Chapter 3,n n tr s

2nL(o/OA)S - ) = 0 (1) whencen n n n s

2nLs (A ) - s )j = n(A - )IL{j + 0 (l)j(A - ) + 0 (1)nn nn n n s n n s

converge
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Again by Taylor's theorem

l,? + 0 (l)J - ) = (a/aA)S (A )s n n n n

whence, using the same type of argument as in the proof of Theorem 14

) = + 0 (1)J- 1 + 0 (1)J - ) + 0 (1)n s s n n s

= + 0 (1)J- 1 (a/aA)S ) + 0 (1)s n n s

which is bounded in probability by Theorem 14. Thus

2n l S (A ) - s ) J = n (A - (A - ) + 0 (1)n n n n n n n n p

whence

(An
) (a/aA)S (A ) + 0 (1)

n n n p

2n l s <i ) - s ( ) J = n l ( a / aA ) s ( ) J I -1 l ( a / aA) s ( ) J + 0 (1)nn nn nn nn p

and the distributional result follows at once from Theorems 13 and 14. To see

that Y is distributed as the non-central chi-square when HVH' = Hi l H' note

-1 -1 -1 -1that H' (H,? H') H,? J is idempotent under this condition. U

The last statistic considered is the Lagrange multiplier test statistic

As shown below, one rejects the hypothesis H: h(AO) = h* when R exceeds then n

upper a x 100% critical point of a chi-square random variable with q degrees

of freedom to achieve an asymptotically level a test in a correctly specified

situation. Using the first order condition

(a/aA)'£(A ,6) = (a/aA){S (A)+6 ' lh(A) - h*J} 0n n n n n

for the problem:
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Minimize s (A) subject to h(A) = h*
n n

one can replace (a/aA)S (A) by e'(a/aA)h(A ) in the expression for R whence then n

term Lagrange multiplier test; it is also called the efficient score test. Its

principal advantage is that it requires only one constrained optimization for

If the constraint h(A) = h* completely specifies or resultsn n

in a linear model, this can be an overwhelming advantage. The test can have

rather bizarre structural characteristics. Suppose that h(A) = h* completelyn

specifies A. Then the test will accept any h* for which A is a local minimum,n n n

maximum, or saddlepoint of s (A) regardless of how large is - h*lI. Asn n

we have seen, Monte Carlo evidence suggests that the asymptotic approximation

is reasonably accurate.

THEOREM lb. Let Assumptions 1 through 3 hold and let either Assumptions

4 through 7 or 8 through 12 hold. Let

Then

R - Y + 0 (1)
P

where

and

Recall: v = V* J = J* {} .: n* 1J = 1J* and H = H* .n' n' d"n' n' n

If 11 = a then Y has the non-central chi-square distribution with q degrees of

* -1 -1 -1freedom and non-centrality parameter a = nl(a/aA)SO(A )J'{} H'(HVH')
n n

x l(a/aA)SO(A*)J/2. Under the null hypothesis, a = O.n n
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PROOF. By the summary,

By Theorem 14, <a/aA)S ) is bounded in probability whence we haven n

The distributional result follows by Theorem 13. The matrix

rz- l H' lHrz- 1 .n 11- 1 H' j-l H rz- 1 .n ° °d Y f 11 h 1 h O

if if·J empotent so 0 ows tenon-centra

square distribution if = o. lJ
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