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The statistical analysis of dynamic nonlinear models, for instance a model
such as

t =0, £1, 2, ...

y,_ = f(yt-l’xt’e) + e

t t

with serially correlated errors, is little different from the analysis of static
models as far as applications is concerned. The formula for estimating the
variance of the average of the scores -- the formula for 5 and 3 -- changes but
little else. Thus, as far as applications is concerned, the previous intuition
and methodology carries over directly to the dynamic situation.

The main theoretical difficulty is to establish regularity conditions that
permit a uniform strong law and nearly uniform central limit theorem that are
both plausible (reasonably easy to verify) and resilient to nonlinear
transformation. The time series literature is heavily oriented toward linear
models and is thus not of much use. The more recent martingale central limit
theorems and strong laws are not of much use either because martingales are
essentially a linear concept -- a nonlinear transformation of a martingale is
not a martingale of necessity. In a series of four papers McLeish (1974, 1975a,
1975b, 1977) developed a notion of asymptotic martingales which he termed
mixingales. This is a concept that does extend to nonlinear situations and

the bulk of this chapter is a verification of this assertion. The flavor of

the extension is this. Conceptually Ve in the model above is a function of
all previous errors € s gy cre - But if Y, can be approximated by §t that
is a function of € s sees € and the error of approximation Ilyt-§tl|p falls

off at a polynomial rate in m then smooth transformations of the form
g(yt,..., Yeogr%gs +ovs xt_z,y) follow a uniform strong law and a nearly uniform
central limit theorem provided that the error process is strong mixing. The

rest of the analysis follows along the lines laid down in Chapter 3 with a
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reverification made necessary by a weaker form of the uniform strong law: ‘

an average of random variables becomes close to the expectation of the average
but the expectation itself does not necessarily converge. These results
were obtained in collaborative research with Charles Bates, Halbert White, and
Jeffrey M. Wooldridge while they visited Raleigh in the summer of 1984. National
Science Foundation support for this work is gratefully acknowledged.

The reader who is applications oriented is invited to scan the regularity
conditions to become aware of various pitfalls, isolate the formula for & or ;
relevant to the application, and then apply the methods of the previous chapters
forthwith. A detailed reading of this chapter is not essential to applicationms.

The material in this chapter is intended to be accessible to readers familiar
with an introductory, measure theoretic, probability text such as Ash (1972),
Billingsly (1979), Chung (1974), or Tucker (1967). In those instances where the
proof in an original source was too terse to be read at that level, proofs with ‘
the missing details are supplied here. Proofs of new results or significant
modifications to existing results are, of course, given as well. Proofs by
citation occur only in those instances when the argument in the original source

was reasonably self contained and readable at the intended level.
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1. INTRODUCTION

This chapter is concerned with models which have lagged dependent variables
as explanatory variables and (possibly) serially correlated errors. Something

such as

Q
Ay, Fpoys X ¥]) = up

=e +v°
U T T Y2 %

t =0, 1, 2, ...
might be envisaged as the data generating process with {et} a sequence of, say,
independently and identically distributed random variables. As in Chapter 3,
one presumes that the model is well posed so that in principle, given Ye-12 Xp»

Y;, u,, one could solve for Yeo Thus an equivalent representation of the model
is
= o
yt Y(Ut: Yt_l, xt, Yl)

= o
U T e Yy e

t = O’ il’ iz!
substitution yields

- [~} o
Ve = Yleg + vy ys Ylep y F¥pe 00V po%ep0¥1)s Xps vy
and if this substitution process is continued indefinitely the data generating

process is seen to be of the form

v, = ¥(t, e, x_, ¥°) t =0, %1, *2,
with

e = (..., e 11 €y ©p» cee)

X, = (..., X_15 X Xps I I

e

Throughout, we shall accommodate models with a finite past by setting Yer X €

equal to zero for negative t; the values of yo, xo, and eO are the initial conditions

in this case.
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If one has this sort of data generating process in mind, then a least .

mean distance estimator could assume the form

N

A = argmin, sn(k)
with sample objective function

~

n
sn(x) = (1/n)Zt=1 S(t’yt’yt-l""’yt-l’xt’xt-l""’xt-ﬂﬁTn’A)

or

= n T .
Sn(x) (l/n)2t=1st(yt,yt_1, oo syoaxtsxt_I: o e ,xoaTns)\)’

the distinction between the two being that one distance function has a finite
number of arguments and the number of arguments in the other grows with t.

Writing

n

sn(A) = (1/n)2t=lst(yt,yt_l,...,yt_zt,xt,xt_l,...,xt_té,rn,l)

with Kt depending on t accommodates either situation. Similarly, a method of

moments estimator can assume the form

A, = argmin, sn(A) = d[mn(A),rn]

with moment equations

= n ~
m_(}) (l/n)zt=lmt(yt’yt-l’""yt-Lt’xt’xt-l’°'"xt-ﬁé’Tn’A)

In the literature, the analysis of dynamic models is unconditional for the
most part and we shall follow that tradition here. Fixed (nonrandom) variables
amongst the components of x_ are accommodated by viewing them as random variables
that take on a single value with probability one. Under these conventions there
is no mathematical distinction between the error process {et}:=_w and the process
{xtgl_mdescribing the independent variables. The conceptual distinction is that

the independent variables {x are viewed as being determined externally

0
t't=-=»

o

to the model and independently of the error process

le .} _ . In an unconditional
tit=-w
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analysis of a dynamic setting we must permit the process {xt}:;_°° to be dependent
and, since fixed (nonrandom) variables are permitted, we must rule out statiomarity.
We shall also permit the error process {et}:____co to be dependent and nonstationary
primarily because nothing is gained by assuming the contrary. Since there is no

mathematical distinction between the errors and the independent variables, we can

economize on notation by collecting them into the process {vt}:____cn with
v, = (et,xt);
denote a realization of the process by
v, = ('..,v_l,vo,vl,...) .
Recall that if the process has a finite past then we set v. = 0 for t < 0 and

t

take the value of v0 as the initial condition.

Previously, we induced a Pitman drift by considering data generating

processes of the form

Ve Y(et,xt,Y;)

and letting Y; tend to a point Y*- In the present context it is very difficult
technically to handle drift in this way so instead of moving the data generating
model to the hypothesis as in Chépter 3 we shall move the hypothesis to the model

by considering

*
o — * . . o
H: h(An) h ~ against A: h(An) # h

and letting h(A;) -h: drift toward zero at the rate 0(1/vn ). This method of
inducing drift is less traditional but in some respects is philosophically more
palatable. It makes more sense to assume that an investigator slowly discovers
the truth as more data becomes available than to assume that nature slowly
accommodates to the investigator's pigheadedness. But withal, the drift is only
a technical artifice to obtain approximations to the sampling distributions of

test statistics that are reasonably accurate in applications so that
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philisophical nitpicking of this sort is irrelevant.
If the data generating model is not going to be subjected to drift there

is no reason to put up with the cumbersome notation:

v = Y(t,e ,x_,¥°)

n ~
Sn(A) (1/n)zt=lst(yt’yt-1""’yt-ﬂt’xt’xt-l""’xt-ﬂz’rn’x)

Much simpler is to stack the variables entering the distance function into a

single vector

and view w, as obtained from the doubly infinite sequence

v, = (...,v_l, vor Vi eed)

by a mapping of the form

w, = Wt(vm) .

Let L be kt-dimensional. Estimators then take the form

~

A, = argmin, sn(A)

s (A) = (1/m)Ef_ s, (W, T _,2)

in the case of least mean distance estimators and

~

]

o = argmin, sn(l) = d[mn(X),;n]

m_(})
n

. n ~
(l/n)Zt=1mt(wt,Tn,A)

in the case of method of moments estimators. We are led then to consider limit ‘
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theorems for composite functions of the form
n
(1/n)2t=1gt[wt(vm),yl

which is the subject of the next section. There y is treated as a generic
parameter which could be variously v°, (1t,.), or am arbitrary infinite

dimensional vector.
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2. A UNIFORM STRONG LAW AND A CENTRAL LIMIT
THEOREM FOR DEPENDENT, NONSTATIONARY RANDOM VARIABLES

Consider a sequence of vector-valued random variables
Vt(w) t = 0,+1,+2,
. s : . £
defined on a complete probability space ({,0,P) with range in, say, R . Let

v = (..., Vs Vg Vys o)
s, Borel measurable

where each v jg in nga and consider vector-valuedeunctions of the form W (v,)
t
k
with range in R t for £t = 0, 1, ... . The subscript t serves three functions.
It indicates that time may enter as a variable. It indicates that the focus of

the function Wt is the component v_ of v_ and that other components vy enter the

t
computation, as a rule, according as the distance of the index s from the index

t, for instance

Wt(vm) = Zj=0kjvt-j
And, it indicates that the dimension k _ of the vector w, = Wt(vw) may depend on t.

Put

Vo(w) = Gy V_ (@), Vplw), v (w)y o)

then Wt[Vw(w)J is a kt-dimensional random variable depending (possibly) on infinitely
many of the random variables Vt(w). This notation is rather cumbersome and we shall

often write Wt(w) or W _instead. Let (T,p) be a compact metric space and let

{gnt(wt,y): n=1,2,...; t=0,1,...}

{gt(wt,y): t=0,1,...}

k
be sequences of real valued functions defined over R.t x I'. In this section we

shall set forth plausible regularity conditions such that
. : n =
£1mnaw suprl(l/n)2t=1[gt(wt,y) £ gt(Wt,y)Jl 0

almost surely (4,G,P) and such that



; n o - [ £+
(/e _ le (W ,y2) -&g (W .,y >N(0,1)

for any sequence {Y;} from I'; convergent or not. We have seen in Chapter 3 that
these are the basic tools with which one constructs an asymptotic theory for
nonlinear models. As mentioned earlier, these results represent adaptations
and extensions of dependent strong laws and central limit theorems obtained in
a series of articles by McLeish (1974, 1975a, 1975b, 1977). Additional details
and some of the historical development of the ideas may be had by consulting
that series of articles.

We begin with a few definitions. The first defines a quantitative measure
of the dependence amongst the random variables {V

[~ -]
tit=-=’

STRONG MIXING. A measure of dependence between two sigma-algebras § and §

a@FG) = o |P(FG) - P(F)P(G)| .

The measure will be zero if the two sigma-algebras are independent and positive

otherwise. Let {Vt}°° be the sequence of random variables defined on the

t:—w

complete probability space (i,G,P) described above and let

n

3m = U(Vm: s V )

Vm+1’ oo n
denote the smallest complete (with respect to P) sub-sigma-algebra such that the

random variables Vt for t = m, mtl, ..., n are measurable. Define

@ = sup, a@_mﬁtm) .0

Observe that the faster a ~converges to zero, the less dependence the sequence
{Vt}:;_°° exhibits. An independent sequence has a >0 form = 0 and a = 0 for
m > 0.

Following McLeish (1975b), we shall express the rate at which such a sequence

of nonnegative real numbers approaches zero in terms of size. .
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SIZE. A sequence {am}:=l of nonnegative real numbers is said to be of size
-q if @ = O(me) for some 8 < -q. [l

This definition is stronger than that of McLeish. However, the slight
sacrifice in generality is irrelevant to our purposes and the above definition
of size is much easier to work with. Recall that a = O(me) means that there is
a bound B with [aml s Bme for all m larger than some M.

Withers (1981, Corollary 4.a) proves the following. Let {et: t=0,+1,+2,...}
be a sequence of independent and identically distributed random variables each
with mean zero, variance one, and a density pe(t) which satisfies
ffmlpe(t) - pe(t+h)|dt s |h|B for some finite bound B. If each €. is normally

distributed then this condition 1is satisfied. Let

et = Ej=0 djet-j

odsz # 0 for complex valued z with

S const. < = for some § with 2/(v-1) < § < v + %.

where dj = O(j-v) for some v > 3/2 and Z;=
[z] s1. Suppose that l|€t||6
Then {et} is strong-mixing with {am} of size -[6(v-1)-2}/(8+1l). For normally
distributed {et} there will always be such a § for any v. These conditions are
not the weakest possible for a linear process to be strong-mixing; see

Withers (1981) and his references for weaker conditions.

The most frequently used time series models are stationary autoregressive

moving average models, often denoted ARMA (p,q),

. = + ... +
et + a1 t-1 + + apet-p Et + blet-l bqet-q

with the roots of the characteristic polynomials

mp + a mp-l + ... +a =20

1 P

md+bmd ™t .+ =0
1 q
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less than one in absolute value. Such processes can be put in the form

e, = zj=0 djet-j

where the dj fall off exponentially and Z? 27 # 0 for complex valued z

=0 dj
with |z| s 1 (Fuller, 1976, Theorem 2.7.1 and Section 2.4) whence dj = O(j-v)
for any v > 0. Thus, a normal ARMA (p,q) process is strong-mixing of size -q
for q arbitrarily large; the same is true for any innovation process {et} that
satisfies Withers' conditions for large enough §.

It would seem from these remarks that an assumption made repeatedly in
the sequel: "{Vt}:=-w is strong-mixing of size -r/(r-2) for some r > 2,"
is not unreasonable in applications. If the issue is in doubt, it is probably
easier to take {Vt} to be a sequence of independent random variables or a
finite moving average of independent random variables which will certainly
be strong-mixing of arbitrary size and then show that the dependence of
observed data Wt on far distant Vs is limited in a sense we make precise below.
This will provide access to our results without the need to verify strong-mixing.
'We shall see an example of this approach when we verify that our results apply

to a nonlinear autoregression (Example 1).




Consider the vector-valued function Wt(Vw) which, recall, depends (possibly)

on infinitely many of the coordinates of the vector

v = (..., V-1’ VO, vl,

If the dependence of Wt(Vw) on coordinates Vs far removed from the position

occupied by Vt is too strong, the sequence of random variables
W= W (V)

=]

will not inherit any limits on dependence from limits placed on {V as measured

t}t=-cu

by {am}:=o. In order to insure that limits placed on the dependence exhibited by

{v }7

t]pzew carry over to {W

t}:=0 we shall limit the influence of VS on the values

taken on by Wt(Vw) for values of s far removed from the current epoch t. A

quantative measure of this notion is as follows.

NEAR EPOCH DEPENDENCE. Let {Vt}w be a sequence of vector-valued random

t=-®
variables defined on the complete probability space (&,G,P) and 1et2§2 denote
the smallest complete sub-sigma-algebra such that the random variables Vt for
t =m, ml, ..., n are measurable. Let Wt = Wt(vm) for t = 0, 1, ... denote
k

sequence of Borel measurable, functions with range in R.t that depends (possibly)

on infinitely many of the coordinates of the vector

Vo= Coony V_ps Vo, Y,



Let {gnt(wt)} for n=1, 2, ... and t = 0, 1, 2, ... be a doubly indexed sequence .
k
of real valued, Borel measurable functions each of which is defined over R.t

The doubly indexed sequence {gnt(wt)} is said to be near epoch dependent of size -q if

t+m
v, = sup suPt”gnt(wt) - B[gnt(wt)lst-m]”

m 2

is size -q.
Let (T',p) be a separable metric space and let {gnt(wt,Y)} be a doubly indexed
family of real valued functions each of which is continuous in y for each fixed
v, and Borel measurable in v € mkt for fixed y. The family {gnt(wt,Y)} is said
to be near epoch dependent of size -q if
(a) The sequence {g;t(wt) = gnt(Wt,Y;)} is near epoch dependent of size -q for

every sequence Y; from T.

(b) The sequences

{

and

(Wt,Y)} .

aqQl

(Wt) = sup

nt p(y,y°)<s8nt

{gnt(wt) - infp(Y,y°) <5gnt(wt’Y)}

are near epoch dependent of size -q for each y° in ' and all positive
§ less than some §° which can depend on y°. ]
The above definition is intended to include singly indexed sequences

{g, (WL tal ith
B\ W)l -, 28 2 special case wit

v, = sup, ”gt(wt)-S[gt(Wt)Bz‘i—z] i

m 2

o

£=0 ° the definition

in this instance. For singly indexed families {gt(Wt,y)}
retains its doubly indexed flavor as {g;t(wt) = gt(Wt,Y;)} is doubly indexed even

if {gt(wt,v)} is not.




Note that if Wt depends on only finitely many of the Vt’ for instance

kL
wt = zj=0 fj(vt_j) s

then any sequence {gnt(wt)} or any family {gnt(wt’Y)} will be near epoch

dependent because one has

t+m _
lene W) -2 le, WO I, = 0

for m larger than £; similarly for {g;t(wt)}, {ént(wt)}, and {gnt(wt)}.

The situations of most interest here will have the dimension of Wt fixed

at k k for all t and gnt(W) or gnt(w,y) will be smooth so that

- o = ! o —‘
gnt(w,y) gnt(w,Y) (3/3w )gnt(w,y)(w W)
where W is on the line segment joining w to w. Letting
B (w,w,y) = |(a/aw')gnt(a,y)|

1
where lxl = [Z? xir§

we have
i=1

le (oY) = g G0, ¥)| s B (w,w,y)|w-ul

. < .
using |Z xiyi] s |x| |y]. For functions gnt(W) or gnt(w,y) that are smooth
enough to satisfy this inequality, the following lemma and proposition aid in
showing near epoch dependence.

PROPOSITION 1. Let {vt fmw? {wt}t=o, and {gnt(w,y): t=0,1,2,...; n=1,2,...

be as in the definition of near epoch dependence but with kt = k for all t. Let
|gnt(W,Y) - gnt(w,Y)l s Bnt(w,w,y)lw-wl

- - k

where |w-w| = [Z:=1(wi-wi)21% or any other convenient norm on R . Suppose that
. : ~t+m

there exist random variables Wt_m of the form

wt+m

o= WY, eV eV )

-m t t+m



Y=4-8

such that for some r > 2 and some pair p, q with 1 £ p,q £ =, 1/p + 1/q =1

we have:

~t+m . . .
(a) {Bnt(wt’wt-m , Y)} dominated by random variables d em with

- a4p L/ «
{|d [ﬂdntml dP| s A<=,

nt:m”q

“t+m ~t+m . . .
(b) {Bnt(wt,wt_m,y)lwt Wt_ml} dominated by random variables dntm with

If

g = supll 1w, - AR

is size -2q(r-1)/(r-2) then {gnt(wt,y)} is near epoch dependent of size -q. ]
First, we prove the following lemma.

LEMMA 1. Let {Vt :=_m and {W be as in Proposition 1 and let {gnt(w)}

ele=0

be a sequence of functions defined over R# with

|8, () - g, (W] s Bnt(w’;’)'w'ai .

~t+m R s e ~t+m
For {Wt_m},r and q as in Proposition 1 let ”Bnt(wt’wt-m)”q $ A (= and let
HBnt(Wt,WETZ)IWt-QET2| ”r $ A < ®, Then {gnt(Wt)} is near epoch dependent of size -q.

PROOF. Let g(w) = gnt(W)’ W==Wt,ﬁ=wtfz, and ¥ =3 ET: . For

c = {lllf'(W,f”IIq IIW-CJ||PJ[||B<w,€v)|w-€a| ||r1'r}1/<1-r>
let
~ B(W,W)  B(W,W)|W-W| s ¢
Bl(w,w) = ) A
0 B(W,W) W-W| > ¢

and let BZ(W,W) = B(W,W) - BI(W,W). Then

llgw -€ (e, s |lew - &Wll,

~

because s(gwlg) is the best F-measurable approximation to gW in Lz-norm and W

is J-measurable .




s [[BGw,w |u-w] ||,

s l|B1(W,W) | W-w| |, + ||B2(W,W) | W-w| I,

by the triangle inequality

1
“

(1B, 0,12 |w-w|? apf + {[18,00,W 1% -] 2}

%

Qr

% (2-r)/2 {I ~24r

{jB (W, W) |w-w|cu>} [B,(W, W] |w w| dp}

A

(2-x)/2

[T

c2||B1(W,W)“;|| |w-w| H;+ c {j[BZ(w,w)J |w-w| Tap}®

by the H®$lder inequality

1 ~ L - 1 - ~ -
S LAY N T e EICRON A

r/2
Il

1

2% || u-w] | 2“‘f’ns<w w>u4‘r—-f’ Isea,iy -] PEED

after substituting the above expression for ¢ and some algebra. If ”B(W,W)Hq s

and ”B(W,ﬁ) |W-§| ”r s A then we have
1 ~ 1 r'2
lew - ecaulm ], s 2% 4 | Ju-w] [[FFD,

whence

<
(]

-E(g

sup sup, |8 NUA :Sakel

m nt t
s ~eam, (S
s 2% asup, || |W, - W | || 2=
-2
= 21/2 A nz(%:T) .

If n, is size -2q(r-2)/(r-2) then v, is size -q. {1

PROOF OF PROPOSITION 1. Now
lgnt(w’Y) - gnt(w’Y)| s Bnt(w,w,Y)lw-wl

implies

-gnt(w,y) s Bnt(w,w,y)|w-w| - gnt(w,y)

A

-gnt(w’Y) Bnt(waw:Y)lw'wl = gnt(w’Y)
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whence, using sup{-x} = -inf{x}, one has

linfp(y,y°)<6 gnt(w,y) - lnfD(Y,Y°)<5 gnt(w,y)l

. - -
SUP. (1 1°)<s Bnt(w,w,y) [w=w] .
A similar argument applied to
gnt(w,y) < Bnt(w,w,y)lw-w] + gnt(w,y)
gnt(w,Y) < Bnt(w,w,Y)Iw-w| + gnt(w,Y)
yields
lsuPo(Y,y°)<5 Bae (VoY) - SUP5 (v,v°)<6 gnt(w’Y)l

. - -
S sup (. 9)¢s Bnt(w,w,y)lw wl.

We also have

Ignt(w’Y;) - gnt(a’Y;)l s Bnt(w,a,y;) [w-§| .

All three inequalities have the form ‘

lg, (W) - g, (W] 5B (w,0)]|w-v]|

;Jt-f-m) ”

with |[B_ (W ,W T

$A<wand |[|B. W ,# ™ w - 75T
q nt r

W _ W
t” t-m

£ A  » yhence Lemma 1
t t-m

applies to all three. Thus part (a) of the definition of near epoch dependence
obtains for any sequence {y;} and part (b) obtains for all positive §. []
The following example illustrates how Proposition 1 may be used in applications.
EXAMPLE 1. (Nonlinear Autoregression) Consider data generated according to

the model

Y, f(yt_l,xt,6°) + e t =1, 2,

t

WA
o

Y. =0 t
Assume that f(y,x,08) is a countraction mapping in y; viz

| (3/3y)E(y,x,8)| s d <1
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Let the errors {et} be strong mixing with llet”p £ K < = for some p > 4; set

et = 0 for t = 0. As an instance, let

g&e =0, 8|et|p S K<

0 Yift-3 * %t

A
et = Zj=

with £ finite. With this structure, Vt = (0,0) for t s 0 and Vt = (et,xt) for

~

t =1, 2, ... . Suppose that 8° is estimated by least squares -- en minimizes

s (0) = (1/m)zl_ Iy, - £(y 012 .

t-1%¢
We shall show that this situation satisfies the hypotheses of Proposition 1.

To this end, define a predictor of Vg of the form

As = ~
Veom - ys(vt,vt_l,...,vt_m)
as follows:
- - <
¥, 0 tso0
- _ - o
¥, f(yt-l’xt’e ) 0<t
58 = v < -
Yem = Vs-m s £ max(t-m,0)
~8 - ~s-1 ° - <
Ye.m f(yt’m,xs,e ) + e, max(t-m,0) < s s t

For m 2 0, t 2 0 there 1is a §¥_ on the line segment joining y_ to ¥ _ such that
t J t yt

Iy 9. = 1€y, _1»%.,8%) + e - £(5__ .x ,0%)]

| (3/3y)£(3,,x,,8°) (y ) + e

t-1" Ye-1

A

a5 oyl * le]

[T}

2 -
1Y ep™ Teopl +dleg gl + lel

A
[~%
<
ol
‘1
o
+
[}
[

"
™
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For t-m>0 the same argument yields

~t-1

~t l -
yt,m’ t’

.- Ye,m

[} - o -
| £(y,_>%,,08%) + e, - £( 0°) - e |

at-1
dly,.y - Vel

A

UA s o

15y~ Feenl
t-m-1_j
dm£j=g dI]e

A

t-m-j
where the last inequality obtains by substituting the bound for |yt - ?t obtained

previously. For t - m < 0 we have

_ at m-t _ = = - qmpt-m=1.]
|ve = Yenl 34 Tlyg - Fol = 0= dEi g e e g
In either event,
~t m.t-m-1 m .
vy, = Ve all, 8 € 25m0 leomellp s K d"/(1-d)

This construction is due to Bierms (1981, Chapter 5).

Letting
wt = (yt’ yt_l!xt)
At _ st at-l
We-m (yt,m’yt,m’xt)
we have
_ n
sn(e) -(l/n)2t=1gt(wt,6)
with

- _ 2
g, (W,,0) = [y, - £y, ,x,,0" .

For t 2 1
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|8, (W0 - gt(ﬁz-m’e)l
= Ly, - £ %, @17 - 50 - Gy x, 91
= |y, + §§,m - £y, ox.50) - f(;t’m,xt,e)l
x |y, - 5{_1 - £(y,_;s%,.0) + f(;t’m,xt,9)|
= |2et + f(yt_l,xt,6°) - f(yt-l’xt’e)
+ f(§§’m,xt,e°> - £y Lax,,0))]
x |y, - §E,m T Byl ®) + f(;'E,m’xc’e)l
s 2(le | + dly,_y - 55 2D Cy- 55 ol + dly g - Spa
s 2(fe | + dng;g-z djlet-m-l-jl)(lyt' §§,m' *lyeyr
= B(W,, W._)|w_ - 6|
where we take as a convenient norm
W s Wt-m| N 'yt - §§,m| + |yt-1 B §§:;| + %, - Xy

We have at once:

HB(wt,ﬁE_m)Hp s 2K[1 + d"/(1-d)] s A < = all m,t .

~t m
I |wt - W] ]|p < 2K d /(1-d)

WA

A< ® all m,t .

Using the H8lder inequality, we have for r = p/2 that
~t ~t
IBw w:_ D fw - @ _ [,
~t ~t
s “B(wt’wt-m)HZr ” th B wt-ml ”2r

Note that B(Wt,ﬁt_m) is not indexed by 6 so the above serve as dominating random

variables.

s A2,

Put q = p/(p+l) < p whence

At ~t 1/
liBCw . W )||q s (1+ HB(wt,wt_m)Hg) 954° <o,

m

-13

|

~t-1
Ye,m

)
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Thus, the example satisfies conditioms (a) and (b)

of Proposition 1. Lastly, note that
~t m
n, = sup, |||Wt - wt_m|||p s 2k d/(1-d)

The rate at which o falls off with m is exponential since d < 1 whence N, is
size -q(r-1)/(r-2) for any r > 2. Thus all conditions of Proposition 1 are
satisfied.
If the starting point of the autoregression is random with Yo = Y where
I|Y||p S K the same conclusion obtains. One can see that this is so as follows.
In the case of random initial conditions, the sequence {Vt} is taken as Vt = (0,0)

for £t < 0, V, = (Y,0), and v, = (et,xt) for t > 0. For t - m > 0 the predictor

0

§§ 0 has prediction error (Problem 2)

v, = Ve ,ul 5 @]+ i e, ]

j=0
m m.t=-m-1_j
sdi|Y| +d Lieg ¢ |et_m_j| . ‘

For t-m < O one is permitted knowledge of Y and the errors up to time t so that Ve

e
t-m-j

can be predicted perfectly for t-m < 0. Thus, it is possible to devise a predictor

~t
with
Ye,m V1t

j
0 d et-m-j

- ~t
Ve " Yeom

m m.t-m-1
. |sd|Y|+de=

The remaining details to verify the conditions of Proposition 1 for random initial
conditions are as above. ]

McLeish (1975b) introducted the concept of mixingales -- asymptotic martingales -~
on which we rely heavily in our treatment of the subject of dynmaic nonlinear models.
The definition is as follows

MIXINGALE. Let
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be a doubly indexed sequence of real valued random variables in LZ(Q,G,P) and
let 35@ be an increasing sequence of sub-sigma-algebras. Then (xnt’gfm) is a
mixingale if for sequences of nonnegative constants {cnt} and {wm} with

Kimm+mwm = 0 we have for all t 21, n 2 1, and m 2 0 that

(a) flex |3 MI, s v e,

o t+m
(b) Jlx., - c,(Xnt|3_c° )”2 SV¥oiy Spe - U

nt

w©

t}t=1 as a special

The intention is to include singly indexed sequences {X
case of the definition. Thus (Xt,SEm) is a mixingale if for nonnegative wm and

¢ with £im ¥ = 0 we have
t me ‘m

(a) Jle, |3, s v e

2 mt

t+m
) flx, -e&x [T DI, s v e,

There are some indirect consequences of the definition. We must have

(Problem 3)

t-(m+1l) t-
e |35, ", s llex 132D,

|

t+(mt+1)

x -2 |35t FETOI, -

nt nt )I|2 s lent B 8(Xn

t

Thus, wm appearing in the definition could be replaced by wé = minn<m wn so that

one can assume that wm satisfies wm+1 s wm without loss of generality. Letting
- 00 o« t o .
& =N - 3_@ and letting &__ denote the smallest complete sub-sigma-

algebra such that all the Vt are measurable, we have from
- t-m
lex BN, s lletx BE™I s v e

L1 ex_ |32, =0 e(x_|§) =0 al 1
and £im wm = 0 that ” xntl o ”2 = 0 whence © Xnt o’ = 0 almost surely.
Consequently, €(Xnt) = 0 for all n, t 2 1. By the same sort of argument

xnt-E(Xntlgfw) = 0 almost surely.



Every example that we consider will have Xnt a function of the past, not ‘
the future, so that Xnt will perforce be 'J‘fm measurable. This being the case,
condition (b) in the definition of mixingale will be satisfied trivially and is
just excess baggage from <;ur point of view. Nonetheless, we shall carry it along
through Theorem 2 because it is mnot that much trouble and it keeps us in conforu;ity
with the literature.

The concept of a mixingale and the concepts of strong mixing and near epoch
dependence are related by the following two propositions. Recall that if X is a

. . , k
random variable with range in R then

k 1
Il = (o 1%, 1 Taey e

PROPOSITION 2. Suppose that a random variable X defined over the probability

space ({,3,P) is measurable with respect to the sub-sigma-algebra ( and has range

in ]Rk . Let g(x) be a real valued, Borel measurable function defined over ]Rk .

with €g(X) = 0 and Hg(x)”r { = for some r > 2. Then
LI
leex| DI, s 202% + DIaEHI T
for any sub-sigma-algebra &.
PROOF. (Hall and Heyde, 1980, Theorem A.5; McLeish, 1975b, Lemma 2.1)
Suppose that U and V are univariate random variables, each bounded in absolute

value by one, and measurable with respect to J and G respectively. Let

v = sgn|&(V|F -& V] which is F measurable. We have

|€uv -€ yev| = |e{ulew|® -ev]}]

[

eluf |ew|® -2v|. :

A

elev|s -ev|

A

g view|® -ev]

ele(vy[3) -g vev]

g(vv) ~gvev .



The argument is symmetric so that for p = sgn[&(UlQ) -8 U] we have

|€uv -E UEv| s E(uU) - EnEU .

But'v 1s just a particular instance of an ¥ measurable function that is bounded

by one so we have from this inequality that
[evv - evev| s &(uv) - Epev
Combining this inequality with the first we have
[Euv - cvev| s E[e(v|F) - &v| s &(mv) - Euly

Put §].= {we v = -1}, F1 = {w: v = 1}, G_1 = {w: pu = -1}, and Gl = {w: u=1}. Then

e - = - -
(uv) -€ pev P(F_,G_,) P(F_l)P(G_1)+P(FlG1) P(F )P(G,))

P(F_lcl) + P(F_l)P(Gl) - P(FlG_l) + P(Fl)P(G_l)

A

4 o(F,G).

We have
|[euv - euev| s E[e(v|F) - ev]| s 4 a(F,G)
of which the second inequality will be used below and the first is of some
interest in its own right (Hall and Heyde, 1980, p. 277).
The rest of the proof is much the same as the proof of Lemma 1. Put

-1l/r

a=aFL), c=a Ilgxllr, X = I(|gX| s ), X, = gX - X, where I(|gx| se) =1

1

if |gX| s ¢ and zero otherwise. IfF and G are independent we will have a = 0

and € (gX|F) = 0. Fora > 0

He(gxla«')llp = llex [® + ex,|® - ex; + e:xlup
s Jlex D - SXLHP + ”e(les)”p + HSXIHP
by the triangle inequality

s ey |® - el + Nl + 1%,



by the conditional Jensen's inequality (Problem 4) and the fact that,lle 2 cz2

Ulew 3 - ex 1P e, |3) - ex |ap)t/P

|

+ 21cP7F [ TP %, 1P ap) /P

WA

1(2¢)P"! [iex, %) - 8X1]dPJI/P + 2|cP7T [1%,1" ap) /P

<
because X1 s c¢cs xz

. (p-1)/p 1/ (p-r)/
(2¢) e lex3) - ex |1+ 2 PTP le

s (20) PP (qeq) /P 4 g PTE/R gy ¥/

by the inequality derived above and the fact that |gX| 2 ]XZI

- 1/r

s 2021/P 4 1)al/P ]ngllr

after substituting the above expression for c and some algebra. |

PROPOSITION 3. Let {Vt}°° be a sequence of vector valued random variables .

Lt~

that is strong-mixing of size -2qr/(r-2) for some r > 2 and q > 0. Let W = Wt(Vm)
k

denote a sequence of functions with range in R © that depends (possibly) omn

infinitely many of the coordinates of the vector

Vo= Coony V_ 1y Vo, ¥ ).

o 1’
Let {gnt(wt)} forn =1, 2, ... and t = 0, 1, 2, ... be a near epoch dependent
sequence of real valued functions that is near epoch dependent of size -q. Let

e : .
&__ denote the smallest complete sub-sigma-algebra such that the random variables

Vt for t = n, n-1, ... are measurable. Then
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(a) Jle(g_ w [gt™m <
nt Cl - )”2 = wmcnt

b - +m
) Mepeh, - e o u 5y, s V1o

with_{wm} of size -q and St = max{1, llg Y Il } {
nt ¢cle! °

PROOF. Recall t o
hat 5m denotes the smallest complete sub-sigma-algebra such

that v
o’ Vm+1’ ceey Vn 4re measurable.

| (g

Let m be even. Then

’3t-(m+1)

ntwt )”2

2

by the law of iterated expectations

Sung

nt t' - 2

by the conditional Jensen's inequality (Problem &)

LtHm/ 2, gt
s llete (s, W, I8, 0 135" 111,

t+m/2) lsf;mj ” )

+ He,(gntwtlgf;m ) - é"[e(gntwtlgt-mlz

by the triangle inequality

L . -
s 22D @RI T g )
t+m/2
+ ”gntwt - E(g W, 3t:-m/z)uz

by Proposition 2 applied to the first term and by the conditional Jensen's

inequality (Problem 4) applied to the second

+

N 35-1 |
s 22%1)(a, )7 SIFA Vu/2

1 1
by definition of near epoch dependence. Put y . =y = 2(26+1)(am/2)1 1z, ¥/ 2

and c, = max{l, ||g llr} whence

W
nt t



9~2-20

t-
(a) |l€<gntwt|3-wm)llzé boe .

for all m 20, n 2 1, t 2 1 and wm is size -q . Again, let m be even whence

t+mtl
lgqe = € CoeMe 137D,

+m
= llgge '8(gncwt|35w M,

+mhly | : . t+mt+1
thafm ) is the best L, approximation to g W, by an &__

- SUSIEPE: Lt

because E(gnt

measurable function and E(g“twt measurable (Problem 5)

< _ t+m
s llg W, -€ e W I3 DI

nt t 2

by the same best L2 approximation argument

sV
m

by the definition of near epoch dependence

<
= VYo
by the best L2 approximation argument. We have
) g W -e(e w FE™) sy e
nt t 7 "ot £ - 2 mt+l nt

for allmz20. ]

% will obey a strong law of large

A mixingale (X ,3t ) with {y_} of size -
nt" - m
numbers and a central limit theorem provided that additional regularity conditions
are imposed on the sequence {cnt}. An inequality that is critical in showing

both the strong law and the central limit theorem is the following.

C o s : t s 5]
LEMMA 2. (McLeish's inequality) Let (Xnt,ﬁ_m) be a mixingale and put Snj z lxnt.

t=
Let {ak}:=—w be a doubly indexed sequence of constants with a = a_, and
o 2 -1 -1
zk=1wk|ak ak-l’ < ® . Then
2 K 2 x [ -1 -1
e < 2 2 2 -
(max;cp Sny? S 4T cayCne) Fianad g + ¥/ + 28,91 (a 7= oy )]
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PROOF. (McLeish, 1975a) We have from Doob (1953, Theorem 4.3) that

: t-m, _ oy
1’.1mm_m° e(xnt'g-m ) =€ (Xnt |3_°°) 0
Lim e(xnt| My o-e(x ¥ i) =X,
almost surely. It follows that
I 2 +ky +k-1
Xat zk=-w[4(xnt|3f® ) e(xntlafw )]

almost surely since

i, e B - e gD

_ t+m t -£-1
=ex |3, ) -ex |37
Put
= ] t+k, t+k-1
L. Iogex JE) - e |30

whence Snj = ).‘.w__ Yj almost surely. By the Cauchy-Schwartz inequality

2 _ © 1/2 55 < o @® 2
Shi T (o 4 (ij/ak)l s (Zk=-wak)(zk=-ijk/ak)

whence

SZ < © o
MAX4sL Pnj T Vk=-o®k Ck=-e ME¥yg

By the monotone convergence theorem

2 )
8(maxj§£ Snj) s (Zk__w )0 &(max, <£ )/ak .
. j+k v . .
For fixed k, {(YJk,3 ): 1 £ js &} is a martingale since
k+j-1, _ _]+k jtk-1 k+j- 1 -
&Y, JELTD Yo+ BE |3 [3 "Wa, Tk

A martingale with a last element £, such as the above, satisfies Doob's inequality
2 2
e s
V(maxjgl ij) 46(Y£k)
(Hall and Hyde, 1980, Theorem 2.2 or Doob, 1953, Theorem 3.4) whence

2 o © 2
B(maxjét Snj) s 4(2k=-°° ak) L e 8(Yﬂk)/ak
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Now (Problem 6)

£ 2 I t+k

2 = ap? t+k-1
eY, /o, =L _ €8x |F__")/a -ee (X )/a

ntl - k

Let 2, = X .~ E(Xn |3E *k) vhence exex|migl = EZ(X]B) implies

2 2 _ ap2 pt+k
Ezntk exnt ee (Xntl o )

]

and

t+k - 88 (x I t+k 1)/&

z ee? (x |3 ) /a o K

)/a

t t-1
el Tl /a8y - ee (x M SR YEN

2
nt,k-1

EBZ(X

- z“ ez2 ja +ez

=1 ntk’ 2k /ay

t-k t-k-1

+ 5 et x 1350 a, - edfx 135 /e,

2 t-1
o - EERx 135 h/a

(]

2 t
ee(x_ |3 _)/a 0

2
nt0
-1 -1

® 2
aek B T 3 )

2 t
+ &z o /a, - BEUX |F])/a

® 2 t-ky, =1_ -1
+ I, 8 | ("= a ) (Problem 7)

2 2 2
wo/a0 + c

[}
0

2
nt wl/al

-1 -1
k=1 Sat Yi+1 Crer T %)

-1 -1
MEC T W

-1 -1
=1 l"k (a " - 2 ]

2 2
. [wO/a + w /a + 22

Thus,

© Va -1
z GYZ la, s (Z _;c )[(wo + ¥ )/ay + sz_l wk(a L a1

Kmmen ). 0
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A consequence of Lemma 2 is the following inequality from which the strong

law of large numbers obtains directly.

LEMMA 3. Let (X_ ,EEW) be a mixingale with {wm}

t

of size -’ and let §_, = zd x . Then there is a finite constant K that depends
nj t=1"nt :

only on {wm} such that

2 va 2

<
6(maxj§£ Snj) s K(Zt=l cnt)'
If ¥ > 0 for all m then
m
_ © ok =2,-3% 2
K =16z _ (2 v °) 71" .

PROOF. (McLeish, 1977) By Lemma 2 the result is trivially true if wm =0

- > -
for some m since wm z wm+1' Then assume that wm > 0 for all m, put a, wo, and

put a, = [wk(wi + 4ak_1)% - Wil/ak_l for k 2 1 whence a, is positive and solves
a;1- a;fl = aklwi .

Then
w'z s (a;1+ a;fl)(a;l- a;fl) = a;z - a;gl

so that

a.'2 2 Zk w_z ,

k m=0 "m
o © k2.3
Lm0k 5 Zk=0Cm=o Vn ) -

Now wm £ B me for some 8 < =% and using an integral approximation we have

k "2 B'k_26+1 for some B'. Thus
m=l m
o 2 -1 -1
0 <z, ;¥ (ak ak-l)
T =1 %
@ k -2 -3
= k=1(zm=0 Vo )
- 9‘1/2
! 2
s (B') "I _ Kk
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Further, (wg + wi)/ao S 2a_, because wm is a decreasing sequence and ag = wg

0

Putting a_, = a, and substituting into the inequality given by Lemma 2 yields the
result. []

A strong law of large numbers for mixingales follows directly using the
same argument that is used to deduce the classical strong law of large numbers
from Kolmogorov's inequality. For detailed presentation of this argument see
the proof of Theorem 2, Section 5.1, and Theorem 1, Section 5.3, of Tucker (1967).
The strong law reads as follows.

PROPOSITION 4. Suppose that (Xt,3EW) is a singly indexed mixingale with

v of size -% (whence, recall, Ext = 0 for all t).

oo 2 n
(a) If Zt=1 e < = then zt=1 X, converges almost surely.
© 2,2 . n -
(b) 1If ey ct/t < = then llmn (l/n)Zt=1 X, 0 almost surely. {]

We are now in a position to state and prove a uniform strong law of large

numbers. The approach is due to Hoadey (1971). Below, we state some standard
definitions and results (Neveu, 1965, p. 49-54), prove an intermediate result,
then state and prove the uniform strong law.

UNIFORMLY INTEGRABLE. A collection {XA: A £ A} of integrable random variables

is uniformly integrable if
Lim, SUP, p IIXA|>M |XA| dP = 0.

PROPOSITION 5. If ”Xkllr £ A < = for all A in some index set A and for some
r > 1 then {XA: A e A}l is uniformly integrable.
PROPOSITION 6. The following are equivalent

_, is uniformly integrable and X E*X
n‘'n=1 n

(b) X is integrable and f,imn

~»00

”Xn - xlll = 0.
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PROPOSITION 7. Let (T',p) be a separable metric space and let Xn(Y) be
continuous in y forn =1, 2, ... . If {Xn(y): n=l,2,...; Y € F} is uniformly

integrable and zle;¥° Xn(y) =X almost surely then {Xn}

a=1 18 uniformly

integrable. If in addition,

Kle*YO sup_ |Xn(Y) - an =0

almost surely then

a(’.imY_)'Y° sup 8|Xn(y) - an =0

Limg,yo SUP, le x (v) -ex | =o0.
PROOF (Hoadley, 1971). Choose M large enough that
len(Y)|>M |x (v)] dp < € .

Holding n fixed, let

A= {w: Zimw_+¥° X (y) = xn}

B(y) = {w: |x ()] > M}
B = {w: IXnI >M} 3

continuity and separability insure the measurability of these sets. Let I(A)

equal one if w is in A and zero otherwise. Then
I_imY+Y° 1{anB(y)] [X (¥)| = 1(anB)|x |

and by Fatou's lemma (Royden, 1963)
y

i |x | dp = [ I(anB)|x | 4P

IXn|>M
s Limg inf (o o¢s [ tlanB(V][X_(v)| dP
=]

< €

|x (y)| dpP
|xn(Y)|>M n
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This proves the first assertion. As to the second, suppose that supn6|Xn(Y) - an .
does not converge to zero. Then there is an €>0, a subsequence nj -+ o, and a

sequence Yj with p(yj,Y°) +0 such that 0 < € < & |Zj| where

z, = |X_.(y,) - X_,
j nj 'j nj

Now {an(yj)} is uniformly integrable by assumption and we have just shown that

{x_.} is uniformly integrable. Using |Z.| s |[X_.(y.)| + |X_,| we see that {z_ }
] nj 'J nj ]

nj

must be uniformly integrable. Proposition 6 implies that Kimj_m ”zjlll = 0.

This contradicts ||ZJ” > € whence it must be true that
ﬂlmy_wo sup_ € |Xn(Y) - Xn| = 0.
Using Clxn(y) - Xn| z|e Xn(y) -8 an we have the last assertion. |[]

We are now in a position to state and prove the Uniform Strong Law. In reading it

the statement "ft(Y) is continuous in y uniformly in t'" means that for each fixed .

-}

Yy in T

Lim

o(y,y°)»0 *"Pt l£.() - £.6%)] = 0.

If a family {ft(Y)} is continuous in y uniformly in t and (I',p) is a compact metric
space then the family {ft(y)} is equicontinuous; that is, given € > 0 there is a

§ > 0 that depends only on € such that
p(y,y°%) < & => Ift(Y) - ft(y°){ < €

for all y,y° and all t. (Problem 8)
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THEOREM 1. (Uniform Strong Law) Let {Vt(w)}:=_m be a sequence of vector-
valued random variables defined on a complete probability space (2,0,P) that is

strongly mixing of size -r/(r-2) for some r > 2. Let (I',p) be a compact metric

space and let Wt = wt(Vm) = wt(w) be a Borel measurable function of
Vo= Covns V_ 10 Vg, Vyy o0d)
ke ©
with range in R . Let {gt(wt,y)}t=o be a sequence of real-valued functionms,

each Borel measurable for fixed y. Suppose:

(a) {gt(wt,y)}:=0 is a near epoch dependent family of size -%.

(b) gt[wt(w),Y] is continuous in y uniformly in t for each fixed w in
some set A with P(A) = 1.

(¢) There is a sequence {dt} of random variables with
supy, |g[Wt(w),yJ| s dt(w)
la ll_sa <
t''r
fort=0,1’29
Then
. n . -
llmn*m supy, |(l/n)2t=1[gt(wt,y) Sgt(Wt,Y)J| 0
almost surely and

{(1/n) "

t=1 3gt(wt’Y)}n=1

is an equicontinuous family.
PROOF (Hoadley, 1971). A compact metric space is perforce separable
(Problem 9). Hypothesis (c) together with Proposition 5 implies that {gt(wt,y)}

is uniformly integrable. Hypothesis (b) states that
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: - ° =
ﬂle+Y° sup, ]gt(Wt,Y) gt(Wt,Y )| 0

almost surely whence by Proposition 7

. i ol -
tim o sup, elg, (W.,v) - g, (W.,vy)| =0.

Then

- n °
Kle+Y° sup_ |(1/n)Zt=1 E[gt(wt,y) - gt(wt’Y )]

. n - o
s lle+Y° supn(l/n)Zt=1 Blgt(Wt,Y) gt(Wt,Y )|

[T

. - °
Kle o sup, 6|gt(wt,y) gt(wt,y )l
= 0.

This proves the second assertion; see the remarks preceding the statement of

Theorem 1. Proposition 7 also implies

: - ° =
Kle+Yo sup, e gt(wt,Y) 8gt(Wt,Y )| =0

whence hypothesis (b) is satisfied by
gt(wt,y) - ggt(wt,y)
Since hypotheses (a) and (c¢) are trivially satisfied as well, we may assume that
Bg(wt,y) = 0 in the rest of the proof without loss of generality.
Let
ﬁt(wt,y°,6) = supr{gt(wt,y): ply,y®) < &},

o - 3 . ]
Et(wt’Y ,6) = inf, {gt(Wt,Y). p(y,y°) < &}

The continuity of gt(w,y) in Yy and the separability of (I',p) insure measurability.

From hypothesis (b) we have




Y=2L=LY

]
(]

. = 0 - o
KlmG*O sup, [ht(Wt,Y ,8) gt(Wt,Y )|

4

]
o

. o - o
img o SUP, Iht(wt’Y »8) gt(Wt,Y )I

almost surely. Hypothesis (c) implies uniform integrability and application of

Proposition 7 yields

'

L}
o

im6+0 sup, |Eﬁt(y°,6)l

£

i
(=]

img o sup, I&ht(Y°,5)|

Thus, given € > 0 there is for each y® in I' a §° > 0 so small that
-€/258 h (v°,8°) € b (¥°,8°) 5 €/2

for all t. The collection {©Y°}Y°€F with(QYo = {y: p(y,y°) < 8°} is an open
N

covering of the compact set T so there is a finite subcovering {®Y°}i=1

1
The sequence {ht(wt,Y;,G;)} satisfies the hypotheses of Proposition 3 whence

h (W_,v%,8°) is a mixingale with {y_|} of size -% and
t t 171 t
c_ = max{l,llht(wt,Y;,GZ)Ilr} s A < » (taking 4 > 1 if necessary). Now

2,.2
c

z =1 t/t { ® and Proposition 4 applies. Then for w not in the exceptional

o = T o ]

set Ei given by Proposition 4 put w, = Wt(w) and there is an Ni such that n > Ni

implies

n

< n [} o -
-e/2 s (/m)Z _, b (v ,v{,80) - (1/n)Z

o o
Egt(wt,Yi,éi)
whence

- n o o
€ s (/)X _; b (w,,v],687)

A similar argument applies to ﬂt(wt,yz,éi) . Now every y is in Gyo for some
i

i and we have that n > max Ni implies

- € s (1/n) 2 g (W ,Y) 5 €

for w ¢ U?= Ei with P(Ul:= Ei) = 0. This establishes the first assertion. [J

1 1
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As seen in Chapfer 3, there are two constituants to an asymptotic theory ‘
of inference for nonlinear models: a Uniform Strong Law of large numbers and a
"nearly uniform" Central Limit Theorem.

THEOREM 2. (Central Limit Theorem) Let {Vt}:;_°° be a sequence of vector
valued random variables that is strongly mixing of size -r/(r-2) for some r > 2.

Let (T',p) be a separable metric space and let Wt = Wt(Vw) be a function of

Vo = Cooes V_1h Vo, ¥y o)
ke
with range in R . Let
{gnt(Wt,Y): n=1,2, ...; t=0,1, 2, ...}

be a near epoch dependent sequence of real valued functions that is near epoch

dependent of size -% . Given a sequence {y;}:=1 from 'y put
2 = n ° =
o Var[£t=1 gnt(wt’Yn)J n=1, 2, ...

_ ¢lns] oy _ )
wi(s)=12 _,'lg, (Wov)-¢8 8 (Weovp)1/0, 0sssl
where [ns] denotes the integer part of ns -- the largest integer that does not

exceed ns -- and wn(O) = (. Suppose that:

(a) 1/o§ = 0(1/n)

WA
fuy

(b) Lim Var[w (s)] = s, 0 s s
n+o n

A
>

° - ° -] 1 < =
() |lg  W.ov2) - eg  Woov Dl e, 1Stsn, t=1,2,

Then wn(~) converges weakly in D[0,1] to a standard Wiener process. In particular,

£
Zpay 8 (Wo,¥2) - €8 (W ,¥2)]/o = w (1)=N(0,1). I
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The terminology appearing in the conclusion of Theorem 2 is defined as
follows. D[0,1] is the space of functions x or x(*) on [0,l] that are right
continuous and have left hand limits; that is, for 0 = t < 1,
x(t+) = timh*O x(t+h) exists and x(t+) = x(t) and for 0 < t s 1, x(t-) = Limh+0x(t-h)
exists. A metric d(x,y) on D[0,1] may be defined as follows. Let A denote the
class of strictly increasing, continuous mappings A of [0,1] onto itself; such a
A will have A(0) = 0 and A(1) =1 of necessity. For x and y in D[0,1l] define
d(x,y) to be the infinum of those positive € for which there is a A in A with
sup, |At-t] < € and sup, [x(At) - y(t)| < € . The idea is that one is permitted

to shift points on the time axis by an amount € in an attempt to make x and y
coincide to within €; note that the points 0 and 1 cannot be so shifted. A
verification that d(x,y) is a metric is given by Billingsly (1968, Section 1l4).

If 8 denotes the smallest sigma-algebra containing the open sets -- sets of the
form 6 = {y: d(x,y) < 8} -- then (D)) is a measurable space. ® is called the
Borel subsets of D{0,1]. The random variables wn(') have range in D[0,1] and,
preforce, induce a probability measure on (D,8) defined by
P (4) = ngl(A)==P{m: w () in A} for each A in 8. A standard Wiener process
w(*) has two determining properties. For each t, the (real valued) random
variable w(t) is normally distributed with mean zero and variance t. For each
partition 0 s to s tl £ ... s tk £ 1, the (real valued) random variables

wit,) - w(ty), wit,) - w(t ), «ens w(e ) - wie, 1)
are independent; this property is known as independent increments. Let W be the
probability measure on (D,8) induced by this process; W(A) = P v i) = P{w: w(+) in A}.
It exists and puts mass one on the space C[0,1] of continuous functions defined omn
[0,1] (Billinglsy, 1968, Section 9). Weak convergence of wn(') to a standard

Weiner process means that
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for every bounded, continuous function f defined over D[0,1]. The term weak
convergence derives from the fact that the collection of finite signed measures
is the dual (Royden, 1963, Chapter 10) of the space of bounded, continuous
functions defined on D[0,l] and ﬂimn*w f fdPn = f f dW for every such f is weak™
convergence (pointwise convergence) in this dual space. (Billingsly, 1968,
Section 2) If h is a continuous mapping from D{0,1] into ]Rl then weak convergence
implies £im ] £hdP_ = f h dW for all f bounded and continuous on R'

o= “p n D
whence by the change of variable formula {im f f dP h-1 = f £ dWh-1 . Thus

> TR n R

the probability measures Pnh-l defined on the Borel subsets of m} converge
1

- 1
weakly to Wh On R convergence in distribution and weak convergence are

equivalent (Billingsly, 1968, Section 3) so that the distribution of h wn('),

F (x) = P[hw (+) S x] = P b~ (-=,x],
n n n

converges at every continuity point to the distribution of h w(:). In particular

the mapping Wlx(') = x(1) is continuous because Zimn*m d(yn,x) = 0 implies

Kimﬂ»@ yn(l) = x(1); recall one cannot shift the point 1 by choice of X in A.

Thus we have that the random variable wn(l) converges in distribution to the

random variable w(1l) which is normally distributed with mean zero and unit variance.
The proof of Theorem 2 is due to Wooldridge (1984) and is an adaptation of

the methods of proof used by McLeish (1975, 1977). We shall need some preliminary

definitions and lemmas.

Recall that {Vt(w)}:=_°° is the underlying stochastic process on (8,G,P);

that Eﬁ denotes the smallest complete sub-sigma-algebra such that Vm’ Vm+1, oy Vn

are measurable, 3:: = n:;_m 3&@, 3Tm = U(U:;_°° 35@); that Wt(Vw) is a function of
k

possibly infinitely many of the Vt with range in R t for t = 0, 1, ..., and that

k
gnt(wt’Y;) maps R Y into the real line for n = 1, 2, ... and t =0, 1, ... . '
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Set

= o - o
e = BueWeovy) - S (Woav))

for t 2 0 and Znt = 0 for t < 0 whence

2 = n
ol Var(2t=1xnt)
_ [ns] 2

wn(s) Zt=1 Xnt/on .
By Proposition 4, (Xnt,gf°° ) forn=1, 2, ... and t = 1, 2, ... is a mixingale
with {wm} of size -% and ¢ = max {1, ”xnt”r}' That is,

t-m
(a) flex 3 Ol s v, e,
t+m
(b) ||Xnt e(xntls-m )|I2 s ¢m+1 nt

forn 21, t 21, m 2 0. We also have from the definition of near epoch

dependence that

_ ) t+m

Vg = supg sue flxg, - e Il Dl

is size -%. Define
_ [ns}

S,(s) Zt=1 xnt
and

s .=z x =35 (jm) .

nj t=1 "nt n
Take S (0) = S = Q.

n n0

0 1
MARTINGALE. Note that F__, &__, ... is an increasing sequence of sub-sigma-

algebras. Relative to these sigma-algebras, a doubly indexed process

is said to be a martingale if
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. . t
(a) z_ . is measurable with respect to & _

(b) elz | <=
(c) &z  [B2) =x  fors <ct.

The sequence

)rn=1,2, ...;t=1, 2, ...}

]

with Y . =2 _, and Y
n nt

- L
0 n0 -z for t =1, 2, ... and (znt’s?w) as above

znt n,t-1

is called a martingale difference sequence.

LEMMA 4. Let (Xn ,35@) be a mixingale and put

t

I 3t"‘k' 1

-C0

= zJ
Y T, 8 &

. FH - e ) .
jk © n

¢! ¢

Then for any Y > 1 and nonnegative sequence {ai} we have

(- -]

o -1 1-
Bmax gy 15,517 s T/ GeDITGET )" 5L a Y ey, |7

k==

PROOF. (McLeish, 1975b, Lemma 6.2).

LEMMA 5. Let (Ynt,afm) for n =1, 2, ... and t = 1, 2, ... be a martingale
difference sequence (so(i(YntlaF;l) = 0 almost surely for all t 2 1) and assume
that IYnt‘ s K C ¢ almost surely for some sequence of positive constants {cnt}
Then
2 .2

n 4 4, n
8(Zt=1 Ynt) s 10 K (£t=1 cnt) .

PROOF. McLeish (1977, Lemma 3.1).
LEMMA 6. Let (xnt’afw) be a mixingale with {wm} of size -% and

c = max {1’”Xnt”r} for r > 2. 1If

{ch‘ t=1,2, ..., n; n=1,2, ...}

is uniformly integrable then
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2, k+l 2

{maxj§£ o, 54k~ Sk /Temiar Cne 1

is uniformly integrable.

PROOF. (McLeish, 1977) For ¢ 2 1 and m to be determined later, put

c

Xoe = *ae I(ant| Y
=8 c 3t+m ) C t-m
nt (xntl e ) (Xnt|3_°° )
o) t+m t-m
= -C +
Unt xnt (xnt'g-°° ) 8(Xntlg-m )
d t+m c t-m
= - - -
Znt E(Xnt xntls'w ) L"(xnt Xntls-w )
= + S j
and note that xnt Ynt Znt +U . LetEX = j Xdp, Y , = zJ Y .,
nt a [X2a] nj t=1 "nt
- - j - _ o _2 - ya 2 . . . :
an Zt=l Znt’ Unj Zt=1 Unt’ €l Zt=1 Cht” Jensen's inequality implies that

2 2 .
< i1 =
(z pixi) sz P X, for any positive piw1th z P, 1 whence

s s 30%. + 2. +32%2)
nj nj © nj " “nj

by taking P; 1/3. In general

(X+Y+2Z>a)es (X>af/3)u (Y>a/3)u (Z>a/3)

whence
X+Y+2) IX+Y+ 2> a)
S3XIX>a/3)+3YI(Y>a/3)+32ZI1(Z>a/3)
and
Ea(X+Y+Z)§3Ea/3x+3Ea/3Y+3Ea/3Z.

It follows that
E (max,_, S>./8%,) s 9(y + z + u)
a js€ “nj’ ok

where
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Yy =E./s3 (maxJ <0 Y /-nﬂ) s

> =2 -2
z = v(maxj§£ an/cnz) >

e
[

-2 ,.2
C(maxjsz Unj/cnﬂ)
For some 8 < -% we have
-1 -
0svy, = ok®) = o[k %(Ln k) 72)
Note that for k = m

+k
10, -0 BEO, 5 1] %, - e Jat

and for m > k

t+k t+k
o -eco B, = (e, - e B8 e v, -

Similarly [|S(Untl3f;k)”2 is less than c wi for k s m and is less than c_ ¥

nt nt

for k 2 m. Therefore (U__, 35@) is a mixingale with @k =y of size -%

nt max(m, k)

3 2
and wk s B/[k’5 lﬁ(k)] for all k > m. By Lemma 2 with a =m 4n m for |k| S m and

a, = 1/(k K% k) for Ikl z m we have

k
s 4 a)l(const)v2m Lh m+ 2 w2 (at - al))]
= i==~» k=mt+l "k k k-1
Now fm x tta x)72 = Iw w2 du< e implies that 0 S I a, < » . Further
2 £n2 k=== "k ’
by Taylor's theorem 0 s k £ « - (k-l)l%(k-l) s k[K% k - K%(k-l)] s 2 £n k for
- b *® 2 -1 - -1 s 4
k -~ 15 ks k whence 0 s Zk=2 wk(ak ak-l) s 2 Zk=2 £n k/(k £n k) < » . Thus,

for arbitrary € > 0 we may choose and fix m sufficiently large that u s €/27.
Note the choice of m depends only on the sequence {wk}, not on n. Also note that
if some of the leading Unt wre set to zero Unt would be a mixingale with the

same @k but the leading ot would be zero. Thus the choice of m does not depend

on where the sum starts.
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Similarly, for k s m ||z - El(zntl:i'_::;k)ll2 and || € (znt|3'_ﬂ;k)||2 are less
than ||Znt”2 and
c 2
||chl|2 s I|xnt ) xntllz S maXi<n 6cxnt :
t+k t+k - . = =
For k > m ”Znt - S(Znt|3_°° )”2 = ||8(Zntl3_°° )”2 = 0. By Lemma 2, with a =1a , =1
for k s m+l and a =3 = k2 for k > mt+l we have

2
tsn ¢ cxnt )

z £ 4(2mt+4) (max
For our now fixed value of m we may choose c large enough that z < €/27 since

{x?

nt} is a uniformly integrable set. Note again that c depends neither on n nor

on where the sum starts.
With ¢ and m thus fixed apply Lemma 4 to the sequence {Ynt} with y=4 and a=1

for |i] s m and a, = i% for |i] > m to obtain

=4 4 3 .m 4
S(maxjﬁz Ynj) s (4/3) (2m+3) Emen E(Ytk)
where
_ A t+k, +k-1
Tp, = Tooy ECY_ TG - ey T
m a 4 4, L 2 .2
By Lemma 5, Zk=-m C(sz) < 10(2¢) (Zt=1 cnt) so

Emax,_, T2./2%) s 10 (4/3)*(2m3) (20)* .
J nj n

For fixed m and ¢ as chosen previously, one sees from this inequality that there

is an a large enough that y < €/27. Thus
2 .2
8a(maxj$£ Snj/cn) <e .

Note once again that the choice of o depends neither on n nor on where the sum-

starts thus

- Sn,k)zl(zkﬂ/‘ c2 ): 1l sk+4£sn, k20, n21}

{maxjs!. (s t=k+1 “nt

n, jtk

is a uniformly integrable set. |[]
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TIGHTNESS. A family of probability measures {Pn} defined on the Borel
subsets of D[0,Ll] is tight if for every positive € there exists a compact set
K such that Pn(K) > 1 - € for all n. The importance of tightness derives from
the fact that it implies relative compactness: every sequence from {Pn} contains
a weakly convergent subsequence.

LEMMA 7. Let v be a sequence of random variables with range in D[0,1]

and suppose that

U = {max [wn(s) - wn(t)lzldz n>N(t,8), 0stsl, 0<8§<1}

tssst+é

is a uniformly integrable set where N(t,§) is some nonrandom finite valued
function. It is understood that if t+8>1 then the maximum above is taken over

[t,1]. Then {Pn} with
P_(A) = P{w: w_(+) in A}
n n

is tight and if P' is the weak limit of a subsequence from Pn then P' puts mass
one on the space C{0,1}.
PROOF. The proof consists in verifying the conditions of Theorem 15.5 of

Billingsly (1968). These are:

(a) For each positive n there exists an a such that P{w: |wn(0)| > al sn
for n =z 1.
(b) For each positive € and n, there exists a §, 0 < § < 1, and an integer

L such that

Plw: suPIs-t|<6 |wn(s) - wn(t)l 2 €}l sn

for all n 2 n°
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Because wn(O) = 0 for all n, (a) is trivially satisfied. To show (b)
let positive € and n be given. As in the proof of Lemma 6 let Ea X denote

the integral of X over the set {w: X 2 a}. Note that

E , [max lw_(s) = w_(£)]%/5)

tssst+6

2 A2 P[max |w (s) - w (t)] z A/8]
n n

tssst+d
By hypothesis A can be chosen so large that both €2/22<1 and the left hand side
of the inequality is less than ne? for members of U. Set 6§ = €2/A2 and set n°
equal to the largest of the N(i§,§) for i = 0, 1, ..., [i/6]. If |s-t[ < 6§ then

either both t and s lie in an interval of the form [i§, (i+1)8] or in abutting

intervals of that form whence

Plw: Sup|s-t|<6 Iwn(s) - wn(t)l 2 3e}

=F Ugit/)dj{““ max;sco<(i+1)s 1¥alS) T V()] = €}
< zgiésl;\-z E . [max; oo (ie1)s [¥a(s) - "’n(t)lz/‘sl
and if n > n°
s plt/8ly-2  e2

i=0

< [1 + 1/8]8 n

A

2n .

CONTINUITY SET. Let Y be a (possibly) vector valued random variable. A
Y-continuity set is a Borel set B whose boundary 3B has P(Y in 3B) = 0. The

boundary 3B of B consists of those limit points of B that are also limit points

of some seuence of points not in B. If Pn(B) P(Yn in B), P'(B) = P(Y in B),

and B is a Y-continuity set then Zimn*m P;(B) P(B) (Billingsly, 1968,

Theorem 2.1).
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LEMMA 8. Let Vni’ Yni’ Yi for i =1, 2, ..., k be random variables defined .

on a probability space (&,G,P) such that

P
(a) Vv, ~-Y .  »0 for i

ni ni =1, 2, ..., k
£ .
(b) Y .» Y, for i =1, 2, ..., k
ni i
. k , k .
(¢) 4Lim {P[n] (V . in A,)] -1,  P(V_, in A_)} =0 .
n>o i=1 ni i i=1 ni i

Condition (c) is called asymptotic independence; the condition must hold for all
possible choices of Borel subsets Ai of the real line. Then for all Yi - continuity

sets B,
i

£im {P[n ?=1

ol o=

K (L inB)] -1

o P(Y . in B )} = O.
i=1""ni ni i

PROOF. Conditions (a) and (b) imply that Vi S# Yi whence for Yi-continuity

sets Bi we have

. k . Lok .
Zlmn+w P[ni=1 (Vni in Bi)J P[ni=1(Yi in Bi)J

. k . =k .
Lim M, P(V . in B =T, P(Y, in B,)

since X§=1 Bi is a Y-continuity set of the random variable Y = (Yl’ YZ’ cees Yk)'
with boundary X§=l aBi (Problem 10). Condition (c¢) implies the result.

PROOF OF THEOREM 2. Recall that we have set

oy o
xnt gnt(wt’Yn) Egnt(wt’Yn)

2 = n
o Var(Zt=1 xnt)

_ [ns]
wn(s) Zt=1 Xnt/on , 0sss1

and that we have the following conditions in force:
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(a) 1/o§ =0(1/n)
(b) limn_,°° Var[wn(s)J =g, 0sss1

() |llx I, sa<=,r>2, 1stsn,0n=1, 2,

t . .. . . = 4
(d) (Xnt’s-w) is a mixingale with {wm} of size ~% and cnt-max{l, ”X

.}

nt"r

= - t+m i i .
(e) vy = Sup_ Sup ”xnt E(XnCIEt_m)“z is of size -%
— t d -] ] - -
(£) @ = sup, a(&F__, ¥, ) is of size -r/(r-2)

Condition (c¢) implies that

2 ,
{xnt= t=1,2, ...,n3;n=1, 2, ...}

is a uniformly integrable set by Proposition 5. This taken together with
condition (d) implies that

2, k+l 2

= - . > 2 ]
17 {maxjsz (Sn,j+k s_) /zt=k+1 c .t lsk+ L sn, k20, nz2l}

nk

is a uniformly integrable set by Lemma 6. Condition (a) implies that for any

t, 0sts1l, and any 8§, 0 < §s1l, if t £ s s t + § then

[ns]

[ns] 2
. j=[nt]

2
VA CEL)

max(l,”Xntni)/(Gog)

"

([ns] - [ntJ)AZ/(Goi)

A

(n+l) & A2/(5 02)
s (n+1) A2 o(n"1)

B A2

A

for n larger than some n°. For each t and § put N(t,$) = n, whence

max v (s) - w (£)]2/s
n n

tssst+¢

is dominated by B A2 times some member of v for n > N(t,6). Thus Lemma 7 applies
whence {Pn} is tight and if P' is the weak limit of a sequence from {Pn} then P'

puts mass one C[0,1]; recall Pn is defined by Pn(A) = P{w: wn(') in A}
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for every Borel subset A of D{O,1}.

Theorem 19.2 of Billingsly (1968) states that if:

(1) wn(s) has asymptotically independent increments

(ii) {wi(s)}:=1 is uniformly integrable for each s

(iii) Cwn(s) + 0 and €wr21(s) + 0 asn >

(iv) For each positive € and n there is a positive §, 0 < § < 1, and
an integer ng such thatc P{w: sup|s-t|<6 |wn(s) - wn(t)l ze} s n

for all n > no

then v converges weakly in D[0,1] to a standard Weiner process. We shall verify
these four conditions.

We have condition (iii) at once from the definition of X . and condition (b).
We have just shown that for givem t and & the set

-]

2
[wn(s) - wn(t)] /6}n=N(t,6)

{maxt$s§t+6

is uniformly integrable so put §=1 and t=0 and conditiom (ii) obtains. We
verified condition (iv) as an intermediate step in the proof of Lemma 7. It
remains to verify condition (i).

Consider two intervals (0,a) and (b,c) with 0 < a < b < c s 1. Define

-0

v = elv_(a)|3'28)
v, =€ [wn(c) - wn(b)ls[nclj

Thus

[na]

_ _ [na}
v (a) -u =z VX, ex g, /e .

By Minkowski's inequality and condition (e)
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gt - o ll, s o)t 228 1, - ecx J312h1l,
RN ERRET I St wsoveal
s o;lzigijv[naj-t
ozl
Since {%n} is of size -%, Z:=0 Vi m-;i < ® . By Kronecker's lemma (Hall and
Heyde, 1980, Section 2.6)
[naj-% ZL:?Jm%(\E m-%) = [naJ-l/2 ZiZTIvm

-1 . -3
converges to zero as n tends to infinity. Since o, is 0(n ) we have that

”wn(a) - Un”Z > 0 as m > 0 whence w_(a) - U P 0. A similar argument shows

1

that [wn(c) - wn(b)J - Vn P, 0. For any Borel sets B and C, U; (B) el?E:aJ

and V«-l(C) e&m , thus
n [ne]

[P(U_ in A) n (V_ in B) - P(U_ in A) P(V_ in B)|
n n n n

sa @z )

nc]
which tends to zero as n tends to infinity by condition (f). We have now verified
conditions (a) and (c¢) of Lemma 8. Given an arbitrary sequence from {Pn} there

is a weakly convergent subsequence {Pn,} with limit P' by relative compactness.
Since, by Lemma 7, P' puts mass one on C[0,l] the finite dimensional distributions
of W converge to the corresponding finite dimensional distributions of P' by
Theorem 5.1 by Billingsly (1968). This implies that condition (b) of Lemma 8
holds for the subsequence, whence the conclusion of Lemma 8 obtains for the
subsequence. Since the limit given by Lemma 8 is the single value zero and the
choice of a sequence from {Pn} was arbitrary we have that condition (i),
asymptotically independent increments, holds for the three points 0 < a < b < ec.

The same argument can be repeated for more points. |]
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Theorem 2 provides a central limit theorem for the sequence of random .

variables

g (W ,yD:n=1,2, ...5£=0,1, ...}

To make practical use of it, we need some means to estimate the variance of

a sum, in particular

2 = n o
o> Varlzt=1gnt(wt,yn)].
Putting
= Q _8 o
xnt gnt(wt’Yn) gnt(wt’Yn)’
this variance is
02 = (n-l)
n 7=-(n-1) Tnr
with
n
= = + + .
Rt 2:l:-‘-];+|r| 8(xntxn,t-!1|) T =0, £l, 2,

The natural estimator of cﬁ is

~y _ A(n) .
%a ZT=-£(n) Ve Par
with
Rz zt=l+|'c| Xnt xn,t-[rl

.5 *(n-1). .

where v, is some set of weights chosen so that Si is guaranteed to be positive.

Any sequence of weights of the form (Problem 11)

_ A(n)

Yo T Pyelfe| 25 2]

will guarantee positivity of which the simplest such sequence is the modified

Bartlett sequence

w_=1-|]/&(n)

T
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The truncation estimator Gi = Zfi?é(n) ﬁnr does not have weights that satisfy
the positivity condition and can thus assume negative values. We shall not
consider it for that reason.

If {Xnt} were a stationary time series, then estimating the variance
of a sum would be the same problem as estimating the value of the spectral
density at zero. There is an extensive literature on the optimal choice of
weights for the purpose of estimating a spectral density; see for instance
Anderson (1971, Chapter 9) or Bloomfield (1976, Chapter 7). In the theoretical

discussion we shall use Bartlett weights because of their analytical tractability

but in applications we recommend Parzen weights
1 - 6]t]2/8%(m) + 6]7]/83 () 0s [t|/8a) s %

201 - |7[/8m)3 55 [t1]/8(a) s 1

with £(n) taken as that integer nearest nl/s. See Anderson (1971, Chapter 9)

for a verification of the positivity of Parzen weights and for a
verification that the choice £(n) = nl/5 minimizes the mean square error of the
estimator.

At this point we must assume that Wt is a function of past values of Vt so
that Wt is measurable with respect tolffw . This is an innocuous assumption in
view of the intended applications while proceeding without it would entail
inordinately burdensome regularity conditions. The following describes the
properties of ai subject to this restriction for Bartlett weights; see Problem 12

for Parzen weights.

THEOREM 3. Let {V |

t__mbe a sequence of vector valued random variables

that is strong - mixing of size -2qr/(r-2) with q = 2(r-2)/(r-4) for some r > 4.

Let (I',p) be a separable metric space and let Wt = Wt(Vm) be a function of the
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k
past with range in R t; that is, Wt is a function of only

V)

(.v.y v Voo Ve

t-2°
Let

{g (W, ¥): n=1,2, ...5 e=0,1, ...}

be a sequence of random variables that is near epoch dependent of size -q.

° o
Given a sequence {yn} from I', put

n=1

= ] _6 ]
xnt gnt(wt’Yn) gnt(wt’Yn)

and suppose that ”XntHr sA<=oforlstsn; n,t=1, 2, ... . Define

2 = n 2 =

ol =€(z, _; X ) n=1, 2,

~ n — _
Rn‘r Zt=1+|Tl Xnt Xn,t-'rl T = 0, Ztl, :‘:2, ceny :I:(n l)
~ £(n) -

2 = - < -

Of = Tiamp(my !} |r|/£(n)]Rn_r 1 s 4(n) sn-1L

Then there is a bound B that does not depend on n such that
|02 - €52 | s Bn JARTEY)
n n
“2 _en2 2 4
P(Ion - €2 | > €) s (B/€”) n £7(n)

PROOF. To establish the first inequality, note that

-1

-~ £(n) n
2 .8 52 e
|on °n| 242 () L0 T Zpegar | (xntxn’t_T)l
n-1 n
e
+2 ZT=£(n) zt=1+'r | (xntxn,t-r)l
-1 n-1 n
242 (n)z T2 €
=0 t=1+1 | (Xntxn,t-r)l

Now
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& Xy ol = 18 %, B 30D
s llx, ool e 1322010,
sl T e,
where 0 s c_ s max{1, [[x . [[_} s 1+ 2™/2) and 0 s z:=0 <= by

Proposition 3; note that q > 2. Thus, we have

lo2 - e 62] s 21 + a"%2 0t lm) £ 1w
n n =0 T
which establishes the first inequality.
To establish the second inequality note that
£(n) : - -
P{E oy L - [TlRIIR -ER ] < €}
zp ot - [ojsem)] R - €R_| < e/128(n) + 11}
- t=-£(n) nt nt
=1 -p ot L - el R - R[> e/122(a)+11}
1=-£(n) nt nt
£(n) a ~ 2, 2, 2
21 - zT=’_‘£(n) var(|R _ - ER__[)128(n)+1]°[1 - |t]/&(n)|/e
s 1 . £(n) s _es 12 2, 2
21 t=-2(n) IR . - &R _|"12&(n) + 1]7/¢

so that

£(n)

2 32y 2, 2
re-t(n) CR DTL2E(m)+LIT/e” .

Plo2 -€062] > el sz

Suppress the subscript n and put Xt = 0 for t s 0. By applying in succession:
a change of variable formula, the law of iterated expectations, and Hélders

inequality, we have
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A 2 n n
e =
V(Rnr) & Z:s=l+'r Zt=l+*r Xs-r szt-r xt
=6 Z(n-l-'r) e

n
h=-(n-1-1) Et=1+1+|h] xt—|h|--r Xt:-|h| Xer %

2t n

S 2 Zog Teateran 1€ Fpoper Xeon Xeor %)
+25z5_ " | e(x X X X))
h=2t t=1l+t+h t-h-t "t-h "t-1t 't
= 2 g27 50 | e(x X X __ X))
h=0"t=1+r+h t-h-t "t-h "t-1 't
+25_ It | €1x X e, x 35 M)
h=21 t=l+t+h t-h-1 "t-h t=t "t e
< 2 ZZT n

=0 Ze=ltr+n Xeon-r Xe-nllz 1Xer %l

+2 gt

t-h
b2t Te=ttetn [¥eonr Zeenllz 1€ e X013 0,

2/4 ® n -h
SIS Scas B JE AR SR | N P SO (D [T C e 0 )lb

© n t-h
s (comst.)tn + (const )L, I _ . . |le (X, _. Xt|3 . )||2 .

~t+h/2

3 t+h/2
t-h/2

Write Xt_T = £(X ) and Xt ==8(Xt| gt-h/z)' By applying the triangle

e

inequality twice, and the conditional Jensen's inequality (Problem 4), we obtain

t-h
e x5 5O,

[T}

s s -h s = -h
ek, & 130, + e, x, - & _ X 15Dl

2
s lle &, & 135, + (e x, - &, 0135,
sl 21k, - %013 20
s l1e G &3 NI, + e - R 0l + 1R - B0,
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The argument used to prove Lemma 1 can be repeated to obtain the inequality

s
- 1 6(§=T) z(‘TI) - (=1
(ERCHIEE NPT PR M i P g PR AN M
for s = r/2 > 2. Then we have
- i - %(2;%) r/2 z(——T)
1%, G - % Nl 5 2% fIx - R (e e, 11 0%,
. %(521)
IR X )
- ) t+h/2, 5(Eg)
(const.)”Xn’t_T e (xn,t-rl t-h/2 ”

where the constant does not depend on n, h, or 1. By the definition of near
epoch dependence we will have

t+h/2

| x -ex la't_h/z)ll2 S Vy/oer

n,t-t n,t-t

provided that T s h/2. Thus we have

1552
th(xt-r - Xt_T)H2 S (const.) (vh/z-r)
and by the same argument
-4 r-4
. . %(3=7) 5(3=7)
- <
||Xt-r(xt Xt)IIZ s (const.)(vh/z) =(const.)(vh/z_r)

where the constant does not depend on n, h, or 1. Using Proposition 2 we have

3t h t+h/2 -1/r

t h/Z)J

& (k& |3 h)||2 s 2(2%1) o

t-7 t ”xnt”r

-1/r

2(21/2+1) Ala )

iA

h/2

(r-2)/2r

[T}

)

(const.)(ahlz_T
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Combining the various inequalities we have

£(n) A 2
Zr=-1’.(n) ¢ (Rnr)
2(n) e (
n w T~ r=-2)/2r,
s Ceonst.)n 2y o+ T o L0y p ) *p2-0) g
- -4 (IL& -
= (const.)n Zfifz(n) [t + zm=o(m) 2 2" & (m) q]

(const.)n 1£%(n) + £(n)]

A

Thus we have

P(]52 - €52 > €) s {l2£(n) + 11%/€?}(const.)n 1£23(n) + £(n)]

which establishes the second inequality. |]
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PROBLEMS

1. (Nonlinear ARMA) Consider data generated according to the model

.,e ,B°) t =1, 2,

o
Ve = E0pp0%e87) +glepe paeiiier g

yt=0 tso0

where {et} is a sequence of independent random variables. Let
< ©
”supB g(et,et_l,...,et_q,ﬁ)”p £ K < » for some p > 4 and put

- . 2
g, (W.,0) = [y, - £ly__ ,x,0)1° .

Show that {gt(wt,e)} is near epoch dependent. Hint: Show that

g, = g(et, & s s et-q’ B°) is strongly mixing of size -q for all positive q.

2. Referring to Example 1, show that if V0 = (Y,0) then ;t has prediction

t,m

error |yt -y t-m-1 dj|

t
| < d|y|] + d" Zim0

e .] for t = m. Use this to show that

t,m t-m-j

[y, - f(y__,,x ,8)]2 is near epoch dependent.
t t-1’"t
3. Show that the definition of a mixingale implies that one can assume that

v

a1 s wm without loss of generality. Hint: See the proof of Proposition 3.

A

4. The conditional Jensen's inequality is gl|&(X|F)| s €(gX|F) for convex g.

HA

Show that this implies €1€(X|F)]P = exP whence [| ex| 3)Hp HXHP for p 2 1.
5. Show that if X and Y are in LZ(R,G,P) and Y is J-measurable with § <4
then || x -ex|®)||, s || x - ¥, Hint: Consider [X - &X|F) +&(x|F) - v]?

and show that E{[X -€& (x|®)][(x|F) - Y]} = o.
C+k) - (X |3t+k-

-0 nt -0

¢

6. Show that the random variables Utk = 8(Xn |3 1) appearing

t

in the proof of Lemma 2 form a two dimensional array with uncorrelated rows and

columns where t is the row index and k is the column index. Show that

£
t=1

t+k-1

-0

t+k

L ~ 2 2
Var(x_ U ) = I _ €&T(x [F %) -ee(x |3 )
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a-l
k-1

7. Show that the hypothesis I wi[a;l { = permits the reordering of terms .

in the proof of Lemma 2.

8. Show that if ft(Y) is continuous in I uniformly in t and (I',p) is a
compact metric space then {ft(y)} is an equicontinuous family.

9. Show that a compact metric space (X,p) is separable. Hint: Center a

ball of radius 1/n at each point in X. Thus, there are points x X

In’ """ “mm

within p(x,xjn) < 1/n for each x in X. Show that the triangular array that results

by taking n.= 1, 2, ... is a countable dense subset of X.
10. Show that the boundary of x§=lBi is X:=1BBi where SBi is the boundary
of B, < :ml.
i
11. Write
- —
X1 0 o 0
XZ Xl 0 C
X3 XZ X1 0
T E s
X Xh-1 in-z te xn-(.(n)
0 X n-1
0 o X_
0 0 0 Xn J
a+l(n) " £(n)

and show that ai = a'X'Xa where

a= (al, 855 cees al(n))

and hence that g2 2 0 if w = Zg(ni a, a, .
n T j=1+| %3 -7
Z(n)

estimator ¢2 = I R can be ne ive.
n t=-£(n) “nt n gative

Show that the truncation

12. Prove Theorem 3 for Parzen weights assuming that q 2 3. Hint:
Verification of the second inequality only requires that the weights be less

than one. As to the first, Parzen weights differ from one by a homogeneous '

polynomial of degree three for £(n)/n s ) and are smaller than one for

Z(n)/n 2z % .



3. DATA GENERATING PROCESS

In this section we shall give a formal description of a data generating
mechanism that is general enough to accept the intended applications yet
sufficiently restrictive to permit application of the results of the previous
section, notably the uniform strong law of large numbers and the central limit
theorem. As the motivation behind our conventions was set forth in Section 1,

we can be brief here.

are grouped

o« o«
The independent variables {Xt}t=-w and the errors {et}t=_°°

o0
v with v. = X each v_ havi range
t}t=-°° t (et’ t:)’ ¢ t ng rang

together into a single process {

in R#. In instances where we wish to indicate clearly that v, is being regarded

as a random variable mapping the underlying (complete) probability space (%,G,P)
L © %

into R~ we shall write Vt(w) or V_ and write {Vt(w)}t=_°° or {Vt}t____°° for the

process itself. But for the most part we shall follow the usual convention in

- denote either a realization of the process

o«
statistical writings and let {Vt}t=-

or the process itself as determined by context.

Recall that 3; is the smallest sub-sigma-algebra of a, complete with

-0 o©

., V_ are measurable; & = n gt
n -Co

t=-w -0

respect to (#,0,P), such that Vm, Vm+1’
Situations with a finite past are accommodated by putting Vt = 0 for t < 0 and

letting V. represent initial conditions, fixed or random, if any. Note that if

0
{Vt} has a finite past then 35@ will be the trivial sigma-algebra {¢,%} plus its
completion for t < 0.

ASSUMPTION 1. {Vt(w)}:;_°° is a sequence of random variables each defined
over a complete probability space (8,8,P) and each with range in mﬁ. [

Let

v = (..., V.10 Voo Vyo R |

denote a doubly infinite sequence, a point in X:=_w R;. Recall, Section 1, that

«©
t=-o are viewed as obtaining from v, via a reduced

the dependent variables {yt}
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form such as

Yo = Y(E,v57°) t =0, *1, *2,
but, since we shall be studying the limiting behavior of functions of the form

- n
sn(A) (l/n)Zt=1 st(yt’yt-l’ vees yt-lt’xt’ Xeqsees xt-lé’ Tn,A) .

more convenient is to group observations into a vector

X__g
t(’,t
dispense with consideration on(twg,Y°), and put conditions directly on the mapping

v, = Wt(vm) I

k
with range in m.t, kt = £t + Eé . The most common choices for kt are kt = const.,

fixed for all t, and kt = (const.)*t . Recall that the subscript t associated to Wt(Vw)

serves three functions. It indicates that time may enter as a variable, it indicates
that Wt(vm) depends primarily on the component v, of v_ and to a lesser extent on
components V_ of v_ with |t-s] > 0, and it indicates that the dimension kt of the
vector w_ = Wt(vw) may depend on t. As Wt(vw) represents data, it need only be
defined for t = 0, 1, ... with WO representing initial conditions, fixed or

random, if any. We must also require that Wt depends only on the past to invoke Theorem 3

ASSUMPTION 2. Each function Wt(vm) in the sequence {Wt} is a Borel

ke

t=0

measurable mapping of Rfm = XQ_ - R} into R That is, if B is a Borel subset

k -
of R © then the pre-image th(B) is an element of the smallest sigma-algebra

ﬁfw containing all cylinder sets of the form

1 ! ®
X R'x Bm X Bm+1 X «.. X Bn x R x ...

where each Bt is a Borel subset of R}. Each function Wt(vw) depends only on the past;

that is, depends only on (..., vt-Z’ vt-l’ vt). 1}
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The concern in the previous section was to find conditions such that a

sequence of real valued random variables of the form
{gt(Wt,Y): yel, t =0,1,...}

will obey a uniform strong law and such that a sequence of the form
{gnt(wt,Y;)z Y; €eT; t =0,1,...5 n=1,2,...}

will follow a central limit theorem. Aside from some technical conditions, the
inquiry produced three conditions.

The first condition limits the dependence that {V can exhibit.

}oo

t t=-
ASSUMPTION 3. {Vt}:=_°° is strong-mixing of size -4r/(r-4) for some r > 4.
The second is a bound I|dt”r £ A < » on the rth moment of the dominating

functions dt z Igt(Wt,Y)| in the case of the strong law and a similar rth moment
2 . [+ - 8 [+] < r3 . .

condition Ilgnt(wt’Yn) gnt(wt,yn)Hr s A <= in the case of the central limit

theorem; r above is that of Assumption 3. There is a trade-off, the larger the

moment r that can be so bounded, the more dependence {Vt} is allowed to exhibit.
The third condition is a requirement that gt(wt,y) or gnt(wt,y) be nearly a

function of the current epoch. In perhaps the majority of applications the

condition of near epoch dependence will obtain trivially because Wt(Vw) will be

of the form
Wt(Vw) = wt(vt-m""’vt)

for some finite value of m that does not depend on t. In other applications,
notably the nonlinear autoregression, the dimension of Wt does not depend on t,

gt(w,Y) or gnt(w,Y) is smooth in the argument w, and Wt is nearly a function of

3t+m

the current epoch in the sense that L = HW t-m

-e (wtl )”2 falls off at a

t
geometric rate in m in which case the near epoch dependence condition obtains

by Proposition 1. For applications not falling into these two categories, the

near epoch dependence condition must be verified directly.



4. LEAST MEAN DISTANCE ESTIMATORS

Recall that a least mean distance estimator Xn is defined as the solution
of the optimization problem
s s = - n ~
Minimize: sn(A) (1/n) Zt=1 st(wt,rn,l) .

As with {vt}°° we shall let {wt}:=0 denote either a realization of the process --

t=-
that is, data -- or the process itself as determined by context. For emphasis,
we shall write W (v ) when considered as a function defined om ]f:”, and write
Wt(Vm), Wt, thvw(w)J, or Wt(w) when considered as a random variable. The random
variable ;n corresponds conceptually to a preliminary estimator of nuisance parameters;
A is a p-vector and each st(wt,r,k) is a real valued, Borel measurable function

k
. u . R
defined on some subset of Rt x R x RP. A constrained least mean distance

estimator An is the solution of the optimization problem
*
Minimize: sn(A) subject to h(i) = hn

where h(}A) maps RP into RY.

The objective of this section is to find the asymptotic distribution of the
estimator Xn under regularity condtions that do not rule out specification
error. Some ancillary facts regarding the asymptotic distribution of the
constrained estimator ;n under a Pitman drift are also derived for use in later
sections on hypothesis testing. We shall leave the data generating mechanism
fixed and impose drift by moving h:; this is the exact converse of the approach
taken in Chapter 3. Example 1, least squares estimation of the parameters of a

nonlinear autoregression, will be used for illustration throughout this section.

EXAMPLE 1 (Continued). The data generating model is

- o 3
Ve f(yt_l,xt,y ) + e, t 1, 2, ...

IA
o

y, =0 t
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with l(a/ay)f(y,x,y)l s d <!l for all relevant x and v.
The process

(et, xt)

[ng
"
[
-
N
-

HA
o

(o, 0) t

generates the underlying sub-sigma-algebras 35@ that appear in the definition

of strong mixing and near epoch dependence. Data consists of

wt = (yt:yt_l’xt) t=20,1, 2,

As we saw in Section 2, ”etl'p £ A <= for some p > 4 is enough to

guarantee that, for the least squares sample objective function

s (W) = (/m)z _ ly, f(*t_l,xt,k)l ,

the family

2
st(wt,k) = |y - f(yt_l,xt,A)J t=0,1, ...

t

is near epoch dependent of size -q for any q > 0. The same is true of the family

of scores

(B/BA)st(Wt,A) = (a/ax)lyt - f(yt_l,xt,A)j t =20, 1,

assuming suitable smoothness (Problem 2).

If we take Ilvt”r s 4 < = for some r > 4 and assume that {Vt} is strong-
mixing of size -r/(r-2), then Theorems 1 and 2 can be applied to the sample
objective function and the scores respectively. If {Vt} is strong-mixing of
size -4r/(r-4) then Theorem 3 may be applied to the scores.

As we shall see later, if the parameter A is to be identified by least

squares, it is convenient if the orthogonality condition
g =
etg(yt_l,xt) 0

holds for all square integrable g(yt_l,xt). The easiest way to guarantee that
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the orthogonality condition holds is to assume that {et} is a sequence of
independent random variables and that the process {et} is independent of {xt}
whence et and (yt-l’xt) are independent. |]

In contrast to Chapter 3, sn(l) and, hence, Xn do not, of necessity,
possess almost sure limits. To some extent this is a simplification as the
ambivalence as to whether some fixed point A* or a point A; that varies with
n ought to be regarded as the location parameter of in is removed. Here, A;
is the only possibility. This situation obtains due to the use of a weaker

strong law, Theorem 1 of this chapter, instead of Theorem 1 of Chapter 3.

The estimator ;n is centered at r; defined in Assumption 4.

NOTATION 1.
- n by
s () = (1/n) 2 __, s (W T ,})
o = n o
sn(l) (1/n) Zt=1 e st(wt,rn,k)

A minimizes s (X)
n n

"
(=}

A minimizes sn(A) subject to h(})

A° minimizes s;(A)

L[}
o
=

A* minimizes s;(A) subject to h(A)

In the above, the expectation is computed as

Bst(wt,T,A) = fn stlwt(m),r,kl dP(w)

Identification does not require that the minimum of s;(k) becomes stable
as in Chapter 3 but does require that the curvature near each A; becomes stable
for large n.

ASSUMPTION 4. (Identification) The nuisance parameter estimator ?n is

centered at t° in the sense that £im (t_ - 1°) = 0 almost surely and
n n*® - n n



9-4-4

/t_{(;n - T;) is bounded in probability. The estimation space A* is compact and .

for each € > 0 there is an N such that

. : o - «9(30
1.nfn>N 1nf|x-x°|;e lsn(A) sn(kn)] >0 . 1
n
o p or2 % .
In the above, |[A-A°| = Lz l(ki - Ai) |? or any other convenient norm and
1=

it is understood that the infimum is taken over A in A* with |x - A°] > €
For the example, sufficient conditions such that the identification
condition obtains are as follows.

EXAMPLE 1. (Continued) We have

€ le

o n oy o
sn(l) (1/n) Zt=1 . + f(yc-l’ X, Y ) f(yt-l’ xt,A)J

[}

n 2 n o
(1/n) zt=1€'et + (2/n) zt=1€'etlf(yt-1’xt’Y ) - £y )]

t-1"%¢’

n oy 2
+ (1/n) Zt=18 lf(yt-l’xt’Y ) f(yt_l,xt,x)]

n 2 n e [} - 2
(1/n) Zt=1 of + (1/n) Zt=1 lf(yt_l,xt,*{ ) f(yt-l’xt’“J . .
Using Taylor's theorem and the fact that y° minimizes s;(k)

s2(0) = s2(y*) = (=¥ ' {(/myz_ € L3/ ECy, _ x s D ILGB/BDECy _ux D 1 =y ®)

A sufficient condition for identification is that the smallest eigenvalue of

= n '
s = (1/m)2 _ € 1/ £y, 1%, )L/ E(y, _ ,x ,0)]

be bounded from below for all A in A* and all n larger than some N. We are
obliged to impose this same condition later in Assumption 6. |

We append some additional conditions to the identification condition to
permit application of the Uniform Strong Law.

ASSUMPTION 5. The sequences {Tn} and {r;} are contained in T which is a

closed ball with finite, nonzero radius. On T x A*, the family {stlwt(w),T,A]

@
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is near epoch dependent of size -%, is continuous in (t,A) uniformly in t for
each fixed w in some set A with P(A) =1 (Problem 1), and there is a sequence
of random variables {dt} with sup, s W (w),7,A]|s d (&) and HdtHr SA<
for all t where r is that of Assumption 3. |]

LEMMA 9. Let Assumptions 1 through 5 hold. Then

1’.imn_,W sup, * Isn(A) - s;(x)l =0

almost surely and {s;(l)}:=o is an equicontinuous family.

PROOF. Writing €s_(W_,t_,A) to mean €s_ (W ,T,A)| . we have
t t’'n tt .

n
sup, * lsn(k) - s ()]

A

n ~ ~
sup, * |(1/n)£t=llst(wt,rn,x) - SSt(Wt,rn,A)]|

n ~ o
+ sup,x |(1/n)2t=l Est(wt,rn,k) Est(wt,rn,k)]

WA

SUp,*_ ¢ |(1/n)22=llst(wt,r,k) - & st(Wt,T,A)JI
+ SUp, * |(1/n)£:=1 est(wt’;n’k) - Est(wt,r;,x)l

Except on an event that occurs with probability zero, we have that the first term
on the right hand side of the last inequality converges to zero as n tends to
infinity by Theorem 1 and the same for the second term by the equicontinuity of
the average guaranteed by Theorem 1 and the almost sure convergence of %n - T;

to zero guaranteed by Assumption 4. |}

THEOREM 4. (Consistency) Let Assumptions 1 through 5 hold. Then

Lim

< e
L G- =0

almost surely.

PROOF. Fix w not in the exceptional set given by Lemma 9 and let € > 0

be given. For N given by Assumption 4 put

= i . o _ .9(31°
§ = 1nfn>N mfl)‘_)‘OI s e lsn(k) sn(An)J
n
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Applying Lemma 9, there is an N' such that Sup,x Isn(k) - s;(A)| < §/2 for all

n > N'. Since s (A ) s s (A°) we have for all n > N' that
n n n'n
s°(A ) - 6/2 s s (A ) s s (%) s s°(A°) + §&/2
n n n’n n' n o 'n

orls;(kn) - s2(A2)[< 8. Then for all n > max(N,N') we must have IAn"A;|< €. Ul

The asymptotic distribution of An is characterized in terms of the following

notation.

NOTATION 2.

- _ o(n-1) _
Ha(d) = ZT='(n‘1)anT(X)
n o o ! >
(1/n)Zt=1+TlE(B/BX)st(Wt,rn,A)JlS(B/BA)st_T(Wt_T,T A 120
o) =
nt '
un;T(A) t<0
< _ «(n-1) -
§n(x) © “r=-(n-1) cgn'r(“
n o o ' '
(1/m)z ;. 8[(a/ax)st(wt,rn,x)1 L(3/an)s, (W __,T2,0)] =0 (AT 20
SnT(A) = ) <0
3 (A
n,-t

= n 2 ' o
.0 = (/mx _, € (32/3x3r")s (W ,12,1)

I°=3 (), 72=5 02, U= L ()

n nn

* _ 3 * * o 4 * * _ - *
I, =9, () o =2 Q) u u (A0)




9-4-7

We illustrate their computation with the example

EXAMPLE 1. (Continued) The first and second partial derivatives of

_ - 2
st(wt,l) = lyt f(yt-l’xt’“J

are

(B/BA)s(wt,A) = -2[yt - f(yt_l,xt,l)](B/BA)f(yt_l,xt,A)

(32/3032")s(w 1) = 21(3/3N)E(y, _»x M ILG/3ECy, 4%, 001

-2ly, - £(y,_1»x, M) 13273030 ) £y W)

t-1"%¢

Evaluating the first derivative at A = y° and V. = f(yt_l,xt,y°)+ e, we have,

recalling that e_ and (yt-l’xt) are independent;

t

€aranysw )| = -28 e €(3/aE(y _;x,Y°) = 0

=Y
whence U° = 0.
n

Put

rry
]

GV, x|

2 = 2
oL Set
Then

o

El(a/ax)s(wt,x)]l(a/ax)s(wt,x)J'|
A=

¥
( 2 :
' =
4 e 8.FtFt s t
= {
]
‘46 et{", esFth s <t
4 g2 ¢ FtFé s =t

= t
10 s < t



and

2 ' = [ ] o
€(3%/3x3x )s(Wt,A) Nmy® 2¢€ F Fl 2& ete (3/3x3x )f(yt-l’xt’Y ).

In summary,

© = n 2 '
Jn (4/n)Zt=l o¢ ’FtFt
Q n ]
= <) R
7o (2/n)z _, EF F/ U
, . * % " a
General purpose estimators of (J;, y;) and (Jn,gn) -- (Jn,gn) and
(jn’ ﬁn) respectively -- may be defined as follows.

NOTATION 3.

_ A(n)
Jn(A) = ZT=-K(n) wlt/€(n)] JnT(A)
n - - '
(1/n)Xt=1+,r l(a/ax)st(wt,rn,A)Jl(a/ak)st_r(wt_T,rn,A)] T 20
d (A = ¢
nt
( ' ) <0
n,-t
1 - b]xlz + b|x|3 0 s le £k
wix) = 3
2(1 - |x]) s x| s1

1/5

£(n) = the integer nearest n

= n 2 ' =
7,0 (1/m)z _,(3%/333x")s (v _,T_,2)

d= 3 M), J= g Q) I=90K, = 720

n

The special structure of specific applications will suggest alternative

estimators. For instance, with Example 1 one would prefer to take JnT(A) 0

for t # 0. "'
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The normalized sum of the scores is asymptotically normally distributed
under the following regularity conditions as we show in Theorem 4 below.
ASSUMPTION 6. The estimation space A* contains a closed ball A with
finite, non-zero radius. The points {A;} are contained in a concentric ball
of smaller radius. Let gt(wt,T,A) be a generic term that denotes an element
of (3/3A)s (W, ,T,1), (3%/3x31")s (W ,7,}), (32/373X')s (W ,T,A), or
l(a/ax)st(wt,r,x)ll(a/ax)st(wt,r,A)J'. On T x A, the family {g W _(w),7,A]} is
near epoch dependent of size -q with q = 2(r-2)/(r-4) where r is that of Assumption 3,
gtlwt(w),T,AJ is continuous in (t,A) uniformly in t for each fixed w in some
set A with P(A) = 1, and there is a sequence of random variables {dt} with
supy 4 8 W (w) T 2] [s d (w) and “dtHr s A < = for all t. There is an N and

constants c0 > 0, c1 < » guch that for all § in RP we have

cpd's = G'QH(A) § 5c 8" all n > N, all A inA
c.6'6 s 8'9°5 5 ¢,8'S alln >N
0 n 1
*
c, . 6'6 S 6'3 S8 s ¢c.8'S all n > N
0 n 1
'1/2 o o "55'
Lim §'(9°) 2 J (8°) 28 =468'§6 all 0 <s £ 1
N n Ins] n
* =1 * w o1
Lim _ §'(8 )72 (3 ) %6 =5"s all 0 <s s 1
N> n Ins] n

Also,

. n 2 ' [} [} =
Lim _ (/m)z _, E(32/3rar")s (W ,t°,2°) = 0. |

-1
“3

Recall that |ns] denotes the integer part of ns, that J ° denotes a matrix

- =i -l 1 1 1
with c91 = (375" (3™ and I? a matrix with J= (Jé)(Jé)', and that factorizationms

1
=3

1
are always taken to be compatible so that J% 9 = I.

As mentioned in Chapter 3, the condition

. n £(x2 ' 0 30y o
Zunn_)m (l/n)Zt=1 (34/31ax )st(wt’rn’}n) 0



9-4-10

permits two-step (first t then A) estimation. If it is not satisfied, the
easiest approach is to estimate T and A jointly.

The requirement that

-1
29° %)

[ns] T

Lim §'(I9°)
n

n-rw

is particularly unfortunate because it is nearly the same as requiring that

Lim J° = 3*

n>® " n
as in Chapter 3. This has the effect of either restricting the amount of
heteroscedasticity -that (B/BA)st(Wt,T;,A;) can exhibit or requiring the use
of a variance stabilizing transformation (see Section 2 of Chapter 3). But
the restriction is dictated by the regularity conditions of the Central Limit
Theorem and there is no way to get around it because asymptotic normality cannot
obtain if the condition is violated (Ibragimov, 1962). We verify that the
condition holds for the example.

EXAMPLE 1. (Continued) For the example,

<
|

= f(yt_l,xt,y°) + e, t =1, 2,

A
o

yt=0 t

with [(3/3y)f(y,x,y°)| s d < 1, we shall verify that

° - n 2
Jn (4/n)2t=1€et SG(yt_l,xt)

Gly,x) = L(3/3E(y, _,x, )1/ E(y 1%, M) -

satisfies the condition

Lim  8'(I)E L (9°)Es = s's
n>o n Ins] n

To do so, define
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y. =0 ts0

V. = f(yt_l:xt,Yo) 0<t¢t

§i,m =0 s s max(t-m,0)
A:,m = f(;i:i,xs,y°) e, max(t-m,0) < s s t
Y, = zg;(l) djlet_jl

gly,x) = a typical element of G(y,x)

and assume that {et} and {xt} are sequences of identically distributed random
variables, and that |§t| and |(3/3y)g(y,x)| are bounded by some A < = . As
in Section 2, for m 2 O and t 2 0 there is a ?t on the line segment joining

y, to ?t such that

t

Iy, = 7.0 = [y 0% %) + e = £5,_1,x,77)]

|(3/3y)f(yt,xt,y°)(yt_l sVt etl

WA

dlyey = Feql + el

7
Q.

For t ~ m > 0 the same argument yields

o - ~t-1 o -
lf(yt-l’xt’Y ) + et f(Yt,m,x »Y) e

~t
ly, = ¥ ¢ e

t,m

~t-1
dlyt-l - yt,mI

IIA

[T

m
d |y, _|

HA

dml?t-ll +dm|yt-m h glt-ml

A

a™a +Y )
t-m
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The assumption that the sequences of random variables {et} and {xt} are
~t-1
identically distributed causes the sequence of random variables {G(yz_1 ,xt)}

to be identically distributed. Thus

Ee

2 ~t-1 ~
N 8G(yt-1,m’xt) =V all t.

But

~t-1
E"lg(yt-l’xt) N g(yt-l,m’xt)'

A

) ~t-1
Rl(a/ay)g(yt_l,xt)llyt_l = yt-l,ml

- ‘t'l l
t-1 yt-l,m

A

APy
sade(a+yY )
t-m

dd ele

A

A d™ (s + Zf=

j=0 0l

(const.)9™

where the constant does not depend on n or t. Thus

. 1 o -% o ‘1/2'
Lim 8 (Jn) Q

e )@°) ¢ 8

ns

'
1
../26

= 51V + 0(d™ | E Y + 0@V + 0(d™)]

Now m is arbitrary so we must have

)
-1
3

. ' o °% [} [ = '
Lin _ §'ODTHES WD TFs =85 . |l

lns

With Assumption 6 one has access to Theorems 1 through 3 and asymptotic
normality of the scores and the estimator Xn follows directly using basically
the same methods of proof as in Chapter 3. The details are as follows.

LEMMA 10. Under Assumptions 1 through 6, interchange of differentiation

and integration is permitted in these instances:




9-4-13

(3/3A)8°(A) = (L/m)Z" . e (a/ar)s (W_,t°,A),
n t= t t' n

1
1) o©° = n ' )
(3%/3x3r")s>(X) = (1/m)Z__, € (32/3X3x")s (W _,7°,})

Moreover,

. - ° =
Klmn*w sup, |(3/3A)sn(l) (B/BA)sn(A)I 0 almost surely,
Zimn+® sup, l(az/axax')sn(x) - (BZ/BABA')s;(A)l = 0 almost surely,

and the families

{€a/a0)s2 (1)} and {(az/axax')s;(A)}

™ ®
n=1 n=1
are equicontinuous on A

PROOF. The proof that interchange is permitted is the same as in Lemma 3
of Chapter 3. Almost sure convergence and equicontinuity follow directly from
Theorem 1 using the same argument as in Lemma 9. |[]

THEOREM 5. (Asymptotic normality of the scores) Under Assumptions 1

through 6

L
“3

Vn (9°) 72 (3/3r)s (A°)—§» N(0,I)
n n n

Lim (9° +4° - 3) = 0 in probability.
n-o n n
PROOF. For each i where i =1, 2, ..., p we have

oy - n o o
/n (3/ax)s (A2) = (1//n)El_ (3/3x )s (W _,7°,3°)

+ (1/n)x]_ (32/3r 31")s (W % ,2°) Vo (7 - ©2)

1

where ?n is on the line segment joining ;n to T; . By Assumption 4

Lim T_ - 1° =0 almost surely and vn (T_ - t°) = 0 _(1) whence
n>e n n n n p

. n 2 /- = ] - o o > - ° =
Lim | (1/m)Z]_ (32/3) 31)1s (W ,T ,A°) = s (W ,t°,2°)] /o (- %) =0
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almost surely. By Assumption 6 we have

: n 2 ' o yo0 2 L9y =
Zlmn*m(l/n)2t=1(a /axiar )st(Wt, tn,An) /;(Tn Tn) 0

almost surely. As the elements of (J;)

e

must be bounded (Problem 3), we have,

recalling that (a/ax)s;(xg) = 0,

1
“

Yo (9°)72 (3/3r)s_(A°)
n nn

= (1//a):" (:9;)'1’2

t=1 l(a/ax)st(wt,r;,x;) - & (B/EA)st(Wt,Tn,X;)]+ os(l)

where the interchange of integration and differentiation is permitted by Lemma 10.

Let § be a non-zero p~vector and put

Oy = K1 (a® -% °o 4o
gnt(wt’Yn) 8 Qan) (a/ax)st(wt,rn,xn)

o®©

Assumption 3 guarantees that {vt}t=-°° is strong-mixing of size -4r/(r-4) with .

bt 1

r > 4 so {Vt} is strong mixing of size =% as required by Theorem 2 and

t=-o

Assumption 6 guarantees that {gnt(wt,yg)} is near epoch dependent of size -q with

q = 2(r-2)/(r-4) > *% (Problem 4). We have

2 = Ins] o
% ne] VarlZ _ '8 ,(W.,v )l
= |ns] IS'(J;)./2 3° (W) %5

Ing] B

which, by Assumption b, satisfies

0(1l/n)

(a) 1/02 = 1/02
n nJ

(b) Lim a2 /o2 = s .,
e pg] 0
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Further, Assumption 6 and Problem 3 implies
oy . o
(c) Ilgnt(wt,Yn) egnt(wt,yn)ur

190 %
<
s 8" ( n)6] max, .o

o -] - -] o
p[ka/axi)st(wt,rn,xn) 8(3/ax)s (W ,T0,A0) |
1.
s L(1/egdstsl™ld || + a1l -

Thus,

/o §'(3°) %(5/ax)s (A%)
n n n

n o - o
W Le (Weovg) = Egg (Wvp) ]

n
t=lgnt

(6'6)72 (1/0 )z (W, ¥2)

£
-~ N(0,58'6)

by Theorem 2. This proves the first assertion. To prove the second, put

= oy o o
xnt gnt(wt’Yn) E"gnt(wt:’yn)

and note that

o2 = et x )2

= 1 90
n t=1 nt n s Jn(S

a - oIt = ' by - o
Rnt B zt=1+]1:| Xntxn,t-lrl n 9 l‘Sn,ltl (An) unJ<S

~2 = Zt(n)
n t==£(n)

Q

wi[t|/&m)IR__=n 83 -u2)s

1/5

Z(n) = |n ]

where w(x) can be either Bartlett or Parzen weights. By Assumption 3 {Vt}t=-w
strong-mixing of size -4r/(r-4) for r > 4 as required by Theorem 3, by Assumption 2

Wt depends only on the past, by Assumption 6 {gnt(wt,y)} is near epoch dependent

of size ~-q with q = 2(r-2)/(r~-4) so we have from Theorem 3 that
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Lim (1/n)|o2 - £62| = Lim B L(n) = 0
Lim Pl(l/n)la2 - 662| >e] = Lim (B/EZ)KQ(n)/n =0
n+e n n n->wo
whence

Lim §'(9° - 3+ u°)8 = 0 in probability

n->re
for every 6§ # 0. |}
THEOREM 6. (Asymptotic normality) Let Assumptions 1 through 6 hold. Then:
-3 - £
Yo (9°)72F°(X_ - a%)=> N(0,I),
n n n n

Lim (?; -3) = 0 almost surely.

1>
PROOF. By Lemma 2 of Chapter 3 we may assume without loss of generality

- n -1 1
that A , A° € A and that (3/3A)s (X ) = o (n %), (3/3A)s°(A°) = o(n” 2). ||}

n n n n S n n

By Taylor's theorem

Vo (8/3x)s_(A°) = vn (8/30)s (X ) +F Vo (A° - &)
n n n n n

n
where J has rows (3/3X')(3/3x)s_(X, ) with [[X, = A°|| s |]A - 2°]|. Lemma 9
i"n Tin in n n n
permits interchange of differentiation and integration, we have Kimn+mHin-A;” =0

almost surely by Theorem 4, so that application of Theorem 1 yields Eimnaw 9; 19 =0

almost surely (Problem 5). Thus, we may write

1
]

/a (9°) 72 19° + o (L)X - A°) = - ¥n (3°) % (8/3))s_(A°) + o (1)
n n ] n n n n n ]

1
“

-~ -,
recalling that (B/BA)sn(An) = Os(n 2) and that (J;) = 0(1) by Assumption 6

3 -1
(Problem 3). The right hand side is 0 (1) by Theorem 5, @2)* and (g°) © are

0(1) by Assumption 6 so that vn (in - A;) = Op(l) and we can write

=1 -1
% %

/n (9°) 29°%X - A°) = -vn (I°) 2 (3/3A)s (A°) + o (1)
n n n n n n n p
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which proves the first result.

The same argument used to show Kimn*w 2; - 3 = 0 almost surely can be used
to show that limn»w 9; - j' = 0 almost surely. |]

Next we shall establish some ancillary facts concerning the estimator ;n
that minimizes sn(l) subject to H: h(1) = h: under the assumption that the elements
of the q-vector vn lh(A;) - h:] are bounded. Here h: is a variable quantity chosen
to adjust to A; so that the elements of the vector are bounded which contrasts
with Chapter 3 where A; was taken as the variable quantity and h; was held fixed
at zero. As in Chapter 3, these results are for use in deriving asymptotic
distributions of test statistics and are not meant to be used as a theory of
constrained estimation. See Section 8 of Chapter 3 for a discussion of how a
general asymptotic theory of estimation can be adapted to estimation subject to
constraints.

ASSUMPTION 7. (Pitman drift) The function h(A) that defines the null
hypothesis H: h(l;) = h; is a twice continuously differentiable mapping of A as
defined by Assumption 6 into RY with Jacobian denoted as H(A) = (3/3A')h(1)

The eigenvalues of H(A)H'(A) are bounded below over A by cg > 0 and above by

2
1

with a continuous inverse. In the case q< p, there is a continuous function

c; < » ., In the case where p = q, h(A) is assumed to be a one-to-one mapping

¢(1) such that the mapping
AN ¢(1)
T h(x)

has a continuous inverse

A= yl(p,T1)

defined over S = {(p,7): p = ¢(X), © = h(A), A in A}. Moreover, ¥(p,t) has a

continuous extension to the set
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RxT={p:t p=0¢M)} x {t: T =nN)}
The sequence {hz} is chosen such that
o - * =
/a [h(x?) - hY] = o(1). U

The purpose of the functions ¢(A) and ¢(p,T) in Assumption 7 is to insure the
existence of a sequence {A#} that satisfies h(k#) = 0 but has {im A_ - A% = 0.
n n n>e n n
This is the same as assuming that the distance between A; and the projection of
A; onto A: = {Ax: h(}) = h:} decreases as |h: - h(A;)] decreases. The existence
of the sequence {Aﬁ} and the Identification Condition (Assumption 4) is enough
to guarantee that IA; - A§| decreases as |h(A;) - h:| decreases (Problem 7).

The bounds on the eigenvalues of H(A)H'(A) (Assumption 7) and jn(l) (Assumption 6)

guarantee that |A; - A:l decreases as fast as Ih(A;) - h*| decreases as we show

in the next two lemmas.
LEMMA 11. Let 7 be a symmetric p by p matrix and let H be a matrix of order

q by p with q < p. Suppose that the eigenvalues of 7 are bounded below by c, > 0

0
and above by N < » and that those of HH' are bounded below by cg and above by
ci. Then there is a matrix G of order p by (p-q) with orthonormal columns such

that HG = 0, the elements of
G'%

H

>
]

are bounded above by pc., and |det A| 2 (cO)ZP.

13
PROOF. Let

- '

H U s V(l)

be the singular value decomposition (Lawson and Hanson, 1974, Chapter 4) of H .
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where S is a diagonal matrix of order q with positive entries on the diagonal,

L} . ' N ]
= =V Vv = .
V(l) is of order q by p and U'U uu 1Y) I of order q From

HH' = USZU' we see that cg s sii s ci. Choose VEZ) of order p-q by p such that
Vl
v 51)
Y(2)
satisfies
L= y'y = - o YaYay o Yo Ve (a0
=vvVv=y v + v ' = =
(1) (1) (2) "(2) v v v\ v 0o I
(2) (1) (2) (2) (2)
Put G' = VEZ) note that HG = 0 and consider
[v! g
v (2) s '
AA = . 17 Yoy FV(,,)SU
usv
-7 (1
2?7V Ve Ya S
[} 2 '
_US V(lyg V(Z) Us" U i
Yo O 17 o Y Yool Yo I} 17 9 [V ®
0 U o S I (0] i V(Z) 0 0o S (0] U

L
= BCDDCB

The elements of B and D are bounded by one so we must have that each element of

BCD is bounded above by pc Then each element of AA' is bounded above by pzci.

1
Since a diagonal element of AA' has the form Ziaij we must have Iaijl spc;. Now

(Mood and Graybill, 1963, p. 206)
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' ' 2. v.-1 [
- v(z)g V(1) SU (Us“u ) “Us V(l)?V(Z)J

det AA' = det(us?u') dec[vzz)gyv

(2)

7 v v,

2 ' ' '
det 5% det(V(,) 77 Viyy =~ V()7 V(1) Y(1)7 V(4

2 ' '
det S det(v(z)g V(2) v(z)gv(z))

3%

2 2, 1
(c)°P det (Vipy 9V

0 (2)

But
Sp X'x = cox'Vigy V)X 3% V(g) @ Y(p)*
whence (co)P s det VEZ)QV(Z) and

(co)4p s det A'A = det?A . |

LEMMA 12. Under Assumptions 1 through 7 there is a bound B that does not

1
depend on n such that |[A° - A*| s B|h(A°) - h*| where |A| = (ZP_ A3)%
n n n n i=1"1i
PROOF. The proof for the case q = p is immediate as the one-to~one mapping
T = h(A) has a Jacobian whose inverse has bounded elements. Consider the case
q < p.

Let € > 0 be given. For N0 given by Assumption 4 put

§ = inf [s2(x) - s2(A%)].
n n n n

inf
Mo aag) e

Let y(p,T) be the continuous function defined on R x T given by Assumption 7. Now
* * . - * _ * o . -] o o .
hn h(An) by definition and put o ¢(An), hn h(An), and o ¢(An). The image of
a compact set is compact and the Cartesian product of two compact sets is compact
so R x T is compact. A continuous function on a compact set is uniformly con-

tinuous so £im |h® - h*| = 0 implies that
n>e n n
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Kimn*w supp Iw(p,h;) - w(p,hz)l =0 .

In particular, putting lﬁ = w(p;, h:) we have

By Assumption 6 the points {A;} are in a concentric ball of radius strictly
smaller than the radius of A so we must have Aﬁ in A for all n greater than

some N,. By Lemma 9, the family {s;(k)} is equicontinuous so that there is

an N, such that [A - A;I < n implies that

[s°(x) - 8°(A°)] < &
n n n

for all n > NZ. Choose N3 large enough that Ikﬁ - A;l <n for all n > N3.

*

The point A# satisfies the constraint h(A#) = h* so we must have s°(A*) s s°(A#)
n n n n'n n'n

for n > N,. For n > max(N_, N N3) we have

o Ni» Np»

°(A%) 5 s° ) < 5220 + 5
n n n n n n

whence [s°(1¥) - s°(A°)|< & and we must have |A* - A°] < € . We have shown that
n 'n n 'n n ‘n
A° - A¥ =o(1) as |[h® - h¥| tends to zero.
n n n n
*

The first order conditions for the problem minimize s;(k) subject to h(A) = hn

are

L}
(=]

(3/3x") s°(AF) + 9'H(AT)
n n n

"
=
*

h(A®)
n
By Taylor's theorem we have
o ° = cryk * o _ 4%
(a/ax)sn(xn) (a/ax)sn(xn) + lgn + o(l)](J\n An)

h(A°) - h* = h(A®) - W™ + |H* + o(1)](1° - ™)
n n n n n n n
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Using (a/ak)s;(A;) = 0 for large n and h(Az) - h: = 0, we have upon substitution
into the first order conditions that

*!
n

Lg% + o(LII(A2 - A%) = -HY '@

*

LH* + o(1)](A° - %)
n n n n

h(A°) = h
n

Let G; be the matrix given by Lemma 11 with orthonormal columms, H:G: = 0,

| s pec, <= where

0 < (c.)?P 5 det A*, and max, |a*
0 n ij 1

ijn

Let aij denote the elements of a matrix A and consider the region

2
{a,.: 0K (co) P _ ¢ s det A, |aij| s pc, +e}.

ij 1

On this region we must have IalJl s B < = where a'J denotes an element of A-l.

For large n the matrix A: is in this region by Lemma 1l as is the matrix

*' ak
Gn lgn + o(l1)]

H* + o(1)
n

since the elements of G; are bounded by one. In consequence we have

(x° - A:) =at 0

n n
h(A°) - h*
n n

where the elements of A;l are bounded above by B for all n larger than some N.

Thus we have |A° - A*| s B [h(A°) - h¥| for large n. |l
n n n n
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THEOREM 7. Let Assumptions 1 through 7 hold. Then:
/n (A2 =A%) = 0(1)
Lim A - A7 =0 almost surely,
* '1’2 * Of % £
o %) 2 (3/an)ls_(AF) - s°2(A¥)| = N(0,I)
n n'n n'n
Lim @* +u* -J3) = 0 in probability
n>e n n
. * a =
llmn*@‘yn - 2 = 0 almost surely.

PROOF. The first result obtains from Lemma 12 since vn lh(k;) - h:] = 0(1)

by Assumption 7.
The proof of the second is nearly word for word same as the first part of

the proof of Lemma 12. One puts

§ = inf i
n

o _ &9(y©
sy 1RE ) oy e LAY T 5i00)]
n

and for fixed w has from Lemma 9 that IA - A;l < n implies

|s_(A) - s°(A%)| < &/2
n n n

For n larger than N, one has

for all n larger than N 2

L
Nt -

A% < n
n

n

as in the proof of Lemma 12. The critical inequality becomes, for the same fixed w,
(1) - 6/2<s (1) s s (AF) < 52000 + 672
n'n n 'n n n n n

whence s°(A ) - s°(A°) < § and we must have |A_ - A°| < € . Combining this with
n ‘n n 'n n n

the first result gives the second.
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The proof of the third and fourth result is the same as the proof of
Theorem 5 recalling that‘(alal)s;(lz) is the mean of (alal)sn(A:) by Lemma 10.
The fifth result is an immediate consequence of Lemma 10 and the second

result. |]

PROBLEMS

1. Show that if v, has fixed dimension, kt = k all t, and the dependence

of st(wt, T,A) on t is trivial, st(w,r,k) = s(w,T,\) all t, then continuity of
s(w, 1,A) in (w,t,A) implies that stht(w),T,AJ is continuous in (1,1) uniformly

in t for each fixed w; that is £im Supt'stlwt(m),r,xl - stlwt(w),r°,l°1|=0

(t,12) »(1°%,1°)
for each fixed w.

2. Referring to Example 1, show that the family {(B/BAi)lyt-f(yt_l,xt,x)lz}

is near epoch dependent of size -q for any q > 0. List the regularity conditions .

used.

3. Let ¢ be the smallest eigenvalue of J; and ¢ the largest. Prove that

On 1n
N.

A

0 cOn s S s Cl all n 2
all n 2 N and that 6’@9;)—16 (1/c0)6'6 all n 2 N, Show that (J;)-l can always

Assumption 6 implies that c Prove that det J; z (co)p

[\%

A

o1
be factored such that the elements of (J;) 2 are bounded.

4, Show that if the elements of (B/Bk)st(wt,T;,A;) are near epoch dependent
of size -q then so are the elements of §'A (3/3A)s (W _,1°,A°) if A_ has bounded
n t t’n’'n n
elements.
. n -
5. Let Elmn*m SUPL_» I(l/n)2t=1 ft(T,A) C,ft(r,l)l 0 almost surely,
{(1/n)22=1€fft(1,k)}:=1 be an equicontinuous family on T x A, and let

£im I(; A) - (t°,1°)| = 0 almost surely. Show that
o n’"n n’'n

s n > 3 - o 4o =
llmn*w |(1/n)Zt=1 ft(Tn,An) e ft(Tn’An)I 0 almost surely.
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6. Prove Lemma 11 with J not necessarily symmetric but with the singular

values of J bounded below by ¢, > 0 and above by ¢, < =,

0 1

7. The purpose of the function ¥(p,T) in Assumption 7 is to guarantee the

existence of a sequence {A#} that satisfies h(A#) = 0 and £im Ao =0,
n n n-+e n n

Prove Lemma 12 using this condition instead of the existence of y(p,t).



5. METHOD OF MOMENTS ESTIMATORS

Recall that a method of moments estimator Xn is defined as the solution

of the optimization problem

Minimize: s_ (A) = dlm (A),T_]
n n n

~

where d(m,7) is a measure of the distance of m from zero, T is an estimator

of nuisance parameters, and mn(l) is a vector of sample moments,
- n o
m (A) = (1/n) Zt=1 m (v ,T _5A).

The dimensions involved are as follows: wt is a kt-vector, T is a u-vector,
A is a p-vector, and each mt(wt,T,A) is a Borel measurable function defined

k u v
on some subset of R & x R x RP and with range in R . Note that v is a constant;
specifically, it does not depend on t. As previously we use lower case w_ to
mean either a random variable or data as determined by context. For emphasis, we
shall write Wt(vw) when considered as a function on wa, and write Wt(Vw), wt,
thvw(w)], or Wt(w) when considered as a random variable depending on the under-
lying probability space (2,0,P) through function composition with the process

@«
{Vt(w)}t=_°D . A constrained method of moments estimator A, is the solution of the

optimization problem

Minimize: sn(l) subject to h()) = h:
where h()) maps RP into RY.

As in the previous section, the objective is to find the asymptotic dis-
tribution of the estimator in under regularity conditions that do not rule out
specification error. Some ancillary facts regarding in under a Pitman drift
are also derived for use in the next section. As in the previous section, drift
is imposed by moving h;.

As the example, we shall consider the estimation procedure that is most

commonly used to analyze data that are presumed to follow a nonlinear dynamic



model. The estimator is called nonlinear three-stage least squares by some .

authors (Jorgenson and Laffont, 1974; Gallant, 1974; Amemiya, 1977; Gallant
and Jorgenson, 1979) and generalized method moments by others (Hansen, 1982).
The estimation procedure is as follows.

EXAMPLE 2. (Three-stage least-squares). Data is presumed to follow the
model

qt(yt,xt,y") =e, t =0, 1,

where Ye is an M-vector of endogenous variables, X, is a kt-vector with exogenous vari-
ables and (possibly) lagged values of v, as elements (the elements ofxtare collectivel
termed predetermined variables rather than exogenous variables due to the presence
of lagged values of yt), v® is a p-vector, and qt(y,x,y) maps RM x Rké x RP into
RL with L £ M. Note that M, L, and p do not depend on t. Instrumental variables -~

a sequence of K-vectors {zt} -- are assumed available for estimation. These

variables have the form z = Zt(xt) where Zt(X) is some (possibly) nonlinear, ‘

vector valued function of the predetermined variables that are presumed to satisfy

[
@
]

"

More generally, z,_ may be any K-vector that has Eet ® z_ = 0, but since a trivial

t t

dependence of qt(yt’xt’Y) on elements of X, is permited, the form z, = Zt(xt) is
not restrictive. Also, z, may depend on some preliminary estimator T and be
o

of the form

- = = 1 8 ° =
z, Zt(xt,rn) with e, e Zt(xt,rn) 0
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or depend on the parameter y° (Hansen, 1982) with
€et ® Zt(xt,Y°) =0

The moment equations are
m (A) = (/L)) m (W ,T_,A)

with wé = (yé,xé) and
mt(wt,?n,A) = qt(yt,xt,l) 8 Zt(xt)

m (et A = g (y %)) 8 2 (x T )

or

mt(wt,rn,l) = qt(yt,xt,k) (] Zt(xt,k)

Hereafter, we shall consider the case z_ = Zt(xt) because it occurs most

t
frequently in practice. Our theory covers the other cases but application is more
tedious because the partial derivatives of mt(wt,T,A) with respect to 7 and A
become more complicated

If L = p one can use method of moments in the classical sense by putting
sample moments equal to population moments, viz. mn(A) = 0, and solving for A

to get Xn' But in most applications L > p and the equations cannot be solved.

However, one can view the equation

mn(Y°) = (1/n)22=1 e 8z,

as a nonlinear regression with p-parameters and L x K observations and apply the

principle of generalized least squares to estimate y°. Let r; denote the upper

triangle of [(1/n) 8(22=1 e 8 zt)(Z:=1 e 6 zs)'J-1 and put

oy n n -1
D(Tn) = l(l/n)S(Zt=1et ® zt)(ils___les ® zs) ]

Using the generalized least squares heuristic, one estimates v° by Xn that

minimizes
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d[uh(x),?nl =% m' () D(?n)mn(x>

We shall assume that the estimator T_ satisfies £im T_-1° =0 almost
n n>® n n
surely and that vn (?n - T;) is bounded in probability. The obvious approach

to obtain such an estimate is to find the minimum i# of m;(l)mn(l), and put

£(n)
7==£(n)

1

D(: ) = L(1/n) = wlt/L(m)] snT(i#)J'

where

n >
/T e 19 M) 8 2l (y o M) @2 )] w20

t-
s _(\) =
nt

Sn,-r(k) T < 0.

\

If e ® z, and e @ z_ are uncorrelated for all time gaps |s-t| larger than some
£ as in many applications to financial data (Hansen and Singleton, 1982) then we

can obtain the conditions £im ;n - ’l’:l =0 and va (;n - ‘r;) bounded in probability .

using Taylor's series expansions and Theorems 1 and 2 with £(n) = £ and w(x) = 1.
But if e, ® z, and e ® e, are correlated for every s, t pair then this sort of
approach will fail for any £(n) with Kimn+w £(n) = » because Theorem 3 is not
enough to imply the critical result that /n 6'[D_1(€n) - D-l(r;)]d is bounded in
probability. But as noted in the discussion preceding Theorem 3, 6'D‘1(€n)6 is an
estimate of a spectral density at zero so that if {et ;] zt} were statiomary we

1/5],

should have the critical result with w(x) taken as Parzen weights and £(n) = [n
It is an open question as to whether vn G'lD-l(;n) - D-l(T;)JG is bounded in
probability under the sort of heteroscedasticity permitted by Theorem 2 or if
stationarity is essential. (]

We call the reader's attention to some heavily used notation and then state

the identification condition.




NOTATION &.
m () = (1/m)I]_ m (W ,T ,})
m’(A) = (1/n)f}_ em (W ,72,1)
s (V) = dlm (A),7_]

s;(A) = dlm> (1),

A minimizes s (X)
n n

A minimizes sn(A) subject to h(A) = 0
A° minimizes s;(l)
A* minimizes s;(A) subject to h(A) = 0. |

ASSUMPTION 8. (Identification) The nuisance parameter estimator ;n is

centered at T° in the sense that {£im T_ - 1° = 0 almost surely and vn (1_ - 1°)
n n>e n n n n

is bounded in probability. Either the solution A; of the moment equations
m;(A) = 0 is unique for each n or there is one solution that can be regarded
being naturally associated to the data genmerating process. Put M; = (B/BA')m;(A;)

> 0, ¢, < «» such that for

and M; = (3/3)')m§(A:); there is an N and constants c L

0

all § in R we have

c2 §'6 s §'M°'M°§
0 n n

HA
(2]
(o]
o
-

2

0 §'¢ . U

WA
(¢}

cs §'s s §'MF'M*s
n n

As mentioned in Section 4 of Chapter 3, the assumptiom that m;(A;) =0 is
implausible in misspecified models when the range of mn(A) is in a higher
dimension than the domain. As the case m;(A;) # 0 is much more complicated than
the case m;(l;) = 0 and we have no need of it in the body of the text, consideration
°

of it is deferred to Problem 1. The example has m;(lg) = 0 with A; = v° alln

by construction.
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The following notation defines the parameters of the asymptotic distribution ‘

of X .
n

NOTATION 5.

(n-1)
t==(n-1) "nt

K (A) =2 ()
n

n Q Q )
) (1/n) Zt=1+1 e mt(wt,rn,l)lla mt_T(Wt_T,Tn,A)] T 20
K _(x) =
nt
n, - (1) t <0
- (n-1) -
$, (M) t=-(n~-1) “nr
n 4] ] ) - @

_ (1/n)Et=1+Téimt(Wt,Tn,A) mt_T(Wt_T,Tn,A) KnT(A) T20
S () =
nt -

s’ (1) T <0

n,-t
= n ' o

Mn(A) = (1/n)zt=18,(a/ax )mt(wt,rn,k)
D (A) = (3%/3mdm' )d|lm°(A),t°]
n n n
3 (A) = M'(A) D_(A) S_(A) D (1) M (1)

n n n n n
J (X)) =M () D (A) M (A)
n n n n
U (A) = M'(A) D (A) K (X)) D_(A) M_(X)

n n n n n .
I =3 G0, I = gn(xt"l), Wo=u (), s = 5(x)
I¥ =3 (AF), FF=F (), uF =0 (), sF=s0%) . |
n n n n n n n n n n n

We shall illustrate the computations with the example.
EXAMPLE 2. (Continued) Recall that data follows the model

qt(ytsxt,Yo) = et t=1, 2, ..., n.

with




mt(wt,x) =qt(yt,xt,k) 8 Z(xt)

and

m (1) =
n

Since

m;(y ) =

[¢] = Q : R4 = = [+
An Y~ for all n and since, for each t, Smt(wt,ln) eet ® zt 0 we have Kn

=q,(ysx53) @z,

(1/n) Z:= mt(wt,k).

1

£(1/n) 22=1 e, 8 z =0,

Further,
n 1 1
(1/n) Zt=1+¢ e e B2z 2z _
S (A%) =
nt n
(A2%)
n,-t n
o _ (n-l) o
Sn t=-(n-1) nr(xn)
We have
- B n
Mn(l) = (1/n) zt=1€,(a/ax) m(wt,x)

Recall that
d(m,1°)
n

with

D(t°)
n

n 1

(1/n) z__, 2 (3/a")lq (y, ,x ,2) @ 2]
n ]

(1/n) £ e 1/ aly, x )] 8 2 -

(1/n) £7_,2Q.(\) 8 2z, -

= L7 o
*5m D(rn)m

~ n n "
t(1/n)2 (Zt=1 e, 8 zt)(ZS=1 e, ] zs) ]

(s®)"L .
n

1
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0.



Thus, '

D (A) = (32/3mam') %m'(s°) 'm i
n n a=m_(1) n
and
9° = ((1/m) ™ . 2Q. (A% @ z.1" (97 (1/m) . 2Q (%) @ 2|
n t=1 "t 'n t n t=1 "t 'n t

]

7a

An important special case is the instance where the x, are taken as fixed
(random variables with zero variance) and the errors {et} are taken as independently

and identically distributed with 8ete = % . In this case

1
t

o _ n '
s> = @ (1/n) Et=1 z, 2,
and
o o n o 1 n ' ‘l n o
92 = 1(1/m) £ 8Q (A @z 1'lZ @ (1/n) £7_, =z 2] "L(1/n) £ _, Q. (A) @‘

7o .0
General purpose estimators of (J;, g;) and (33, 2:), denoted (3,4) and (J,7)

respectively, may be defined as follows.

NOTATION 6.

_ A
S, (M) = I _pqy WIT/EM@ID S ()
n T 7 >
(1/m) Zt=l+1 mt(wt’rn’k)mt-r(wt-T’Tn’l) 120
s (A) =
n
s' ) <0
n,-t
1 - blx]z + 6|x|3 0sxsh
w(x) =
3 1
2(1 - |x|) sxsl




1/5

£(n) = the integer nearest n

n . ~
Mn(A) (1/n) Zt=1 (3/3x') mt(wt,Tn,A)

D (A (32/3mam') dlmn(x),?nl

)
N
~~
P
e’
i

M'(A) D (A) s (A) D (X)) M (A)
n n n n n

5\3
~
=4
~

L}

M'(A) D _(A) M ()
n n n
d = ég(xn),y = yn(xn)

~ ~

2 g = yn(xn) U

(V59
[}
ch
~~
b4
g

For the example, three-stage least squares, one is presumed to have an
estimate D(?n) of (S;)-l available in advance of the computations. In applications,
it is customary to reuse this estimate to obtain an estimate of J; rgther than
trying to estimate S; afresh. We illustrate.
EXAMPLE 2. (Continued) Recall that by assumption Kimn*m D(?n) - (S;)-1 =0

almost surely and v/n [D(;n) - (S;)-ll is bounded in probability. Thus, for the case

mt(wt,k) =qt(yt,xt,k) 2] z,

we will have

~

3

n o f ~ n ~
l(i/m) 2, _,Q, (A ) 8z 1" D(x HI(1/n) 2, _,Q (A ) @ z|

=7
where, recall,
Qt(A) = (3/3r") qt(yt,xt,l)

In the special case where {ec} is a sequence of independent and identically

distributed random variables with Reteé = X and Zt taken as fixed we have
n ,J-l

D(Tn) =2 g (1/n) thlztzt
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and ‘I'

n s i1 a n =1 n s
1(t/n) Zt=th(An) ] ztj (2 @ (1/n) Zt=lztztj 1(1/n) Zt?th(An) 8 th

Jd
=g. U

The following conditions permit application of the uniform strong law for
dependent observations to the moment equations, the Jacobian, and the Hessian
of the moment equations.

ASSUMPTION 9. The sequences {%n} and {T;} are contained in T which is a
closed ball with finite non-zero radius. The sequence {A;} is contafned in A*
which is a closed ball with finite, non-zero radius. Let qt(Wt,T,A) be a generic

term that denotes, variously,
£ 2
mat(wt,r,l), (a/axi) mat(Wt,T,A), (3 /axiaxj) mat(wt,r,x),

L]
(a/arz) mat(wt,r,k), or mt(Wt,t,A) mt(wt,r,k)

for i, j=1, 2, ..., pb£=1,2, ..., uanda =1, 2, ..., M. On T x A*, the
family {gtlwt(w),r,kj} is near epoch dependent of size -q with q = 2(r-2)/(r-4)
where r is that of Assumption 3, gtht(w),r,AJ is continuous in (1,A) uniformly
in t for each fixed w in some set A with P(A) = 1, and there is a sequence of
random variables {dt} with SUPp_ % gtht(w),r,AJ s dt(w) and ”dt“r s &4 < = for
all . |l

Observe that the domination condition in Assumption 9 guarantees that m;(l)

takes its range in some compact ball because
o

max Sup  Sup, .« |ﬂhn(A)|
n

s sup_ (1/n) Xt=1 e dt

r
S+ e D <o

We shall need to restrict the behavior of the distance function d{(m,t) on a
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slightly larger ball M. The only distance functions used in the text are

quadratic
d(m,t) = m'D(t)m

with D(t) continuous and positive definite on T. Thus, we shall abstract
minimally beyond the properties of quadratic functions. See Problem 1 for the
more general case.

ASSUMPTION 10. Let M be a closed ball that contains U:=1{m = m;(k): A e A%}
as a concentric ball of smaller radius. The distance function d{(m,t) and derivatives
(3/8m)d(m,t), (3%/3mom')d(m,t), (32/3mdt')d(m,7) are continuous on M x T. Moreover,
(3/3m)d(0,t) =0 for all Tt in T (which implies (3%/3m3t')d(0,t) = 0 for all t in T)
and (3%/3mdm')d(m,r) is positive definite over Mmx T . |l

Before proving consistency, we shall collect together a number of facts needed
throughout this section as a lemma.

LEMMA 13. Under Assumptions 1 through 3 and 8 through 10, interchange of

differentiation and integration is permitted in these instances:
% (1) = n o
(3/3Ai)man(l) (1/n) 2t=1 9(3/3li)mat(wt,Tn,A)
2 ° (3) = 0 a(52 °
(3 /alialj)man(k) (1/n) Zt=l £(3 /axiaxj) mat(wt,r sA) .
Moreover,
Lim sup, |man(k) - m;n(A)| = 0 almost surely,
Lim sup, * |(8/3Ai)lman(k) - m;n(A)J| = 0 almost surely,
Lim Sup, * ](BZ/BXiBAj)lman(l) - m;a(l)]l = 0 almost surely,
Lim sup,x |s (1) - s2(A)| = 0 almost surely,
£im Sup,x I(a/axi)lsn(x) - s;(A)J| = 0 almost surely,

. 2 . - o =
£im SUp, % | (3 /BAiaAj)lsn(A) sn(A)JI 0 almost surely,
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and the families {m% ()}, {3/ )me (D}, {(G#/a034) (W}, {s2(0}, ()
{(a/axi)s;(x)}, and {(az/axiaxj)s;(x)} are equicontinuous; indices range over
i, j=1, 2, ..., p;a=1,2, ..., M, andn =1, 2, ..., @ in the above.
PROOF. The proof for the claims involving mn(A) and m;(l) is the same
as the proof of Lemma 10.

For mn(A) in M we have
sn(k) = dlmn(l), Tn]

(3/3x.)s_(X) = I (3/3m )dlm_(A),T_](3/3A,)m__(A)
1 n o Q n n 1 an

and =+

r = 2 ~
(a‘/axiaxj) zazs(a /amaams)dlmn(x),rnl(a/axi)man(x)(a/axj)msn(x)

+ I (3/3m )dlm (A),T_1(32/3x.3x )m__(A)
a o n n i) an

Consider the second equation. A continuous function on a compact set is uniformly ‘
continuous thus (a/ama) d(m,7) is uniformly continuous on M x T. Given £> 0 choose
§ small enough that |m - m°| < § and |t - t°| < & imply

|(3/3ma)ld(m,;) - d(m°,t°)]| < € . Fix a realization of {v for which

ehe=1
Lim

oo I;n - T;' = 0 and Zimnam SUp, * Imn(k) - m;(k)| = 0, almost every realization

is such by Assumption 9 and Theorem l. Choose N large enough that n > N implies

sup, * |mn(A) - 22| <8 and I;n - 12| < 6. This implies uniform convergence

since we have sup,x I(B/Bma){dlmn(x),rnl -d lm;(k),r;]}| < e for n > N. By
equicontinuity, we can choose n such that |A - A°| < n implies ImZ(A) - m;(k°)| < 8.

For |A - A°] < n we will have
sup_ I(B/Bma){dlm;(k),rgj -d lm;(k;),rgj}l < g

which implies that {(B/Bma)dnlm;(k),rgj} is an equicontinuous family.

As (B/BAi)sn(A) is a sum of products of uniformly convergent, equicontinuous

functions, it has the same properties. .
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The argument for sn(A) and (az/akaals)sn(A) is the same. |[]

As we have noted earlier, in many applications, it is implausible to assume
that m;(k) has only one root over A*. Thus, the best consistency result that we
can show is that sn(l) will eventually have a local minimum near A; and that all
other local minima of sn(k) must be some fixed distance § away from A; where this
distance does not depend on A; itself. Hereafter, we shall take Xn to mean the

root given by Theorem 8.
THEOREM 8. (Existence of consistent local minima). Let Assumptioms 1 through
3 and 8 through 10 hold. Then there is a § > 0 such that the value of Xn which

minimizes s (1) over [A - A;I s 6 satisfies

Lim (A_ -2y =0
n->-x n n

almost surely.

PROOF. By Lemma 13 the family {ﬁn(k)= (B/BA')m;(A)} is equicontinuous over A*.

Then there is a § small enough that |i - A;I = § implies

(o= A9 LRVGDR () - MO'MCT( - A% > - (2/2)|a - 222
n n n n n n 0 n

where cg is the eigenvalue defined in Assumption 8. Let Yo be the smallest eigenvalue

of (34/3m3m')d(m,7) over Mx T which is positive by Assumption 10 and continuity over
a compact set. Recalling that m;(A;) = 0, d(0,7) = 0, and (3/9m)d(0,7) = 0 we have

by Taylor's theorem that for N given by Assumption 8

- . o - Q Q
1nfn>N 1nf€$|l‘lgl§5 |sn(A) sn(ln)|

in

= inf o m;'(x)l(az/amam')d(a,r;;nm;(x)

fesa-1°|ss
n

2 v, inf in

2} Q
0 >N m (A)mn(A)

fe§|A-A°|§6
n

= : : 1Y TM XY M () -3 °
Vo lnfn)N lnf€§|A-A;|§6 (x An) Mn(k) Mn(l)(k Xn)
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v

» - - [¢] 1 O Q o Q - o
Vo 1nfn>N 1nf€§|>‘_)\;,lI§(S (A An) Mn (An)Mn(An)(A An)

2 012
= voleg/2)[A-2°]

[\

vo(cg/z)ez

where m is on the line segment joining the zero vector to m, and A is on the
line segment joining A to A°.

Fix w not in the exceptional set given by Lemma 13. Choose N' large enough
that n > N' implies that sup, lsn(A) - s;’l()\)| < V0c§€2/4 for all n > N'. Since
sn(xn) s sn(A;) we have for all n > N' that

or - 2 2 > o Q o) 2 2
sn(}‘n) Vocoe /& s sn(ln) s sn(An) s sn(kn) + Vocoe /4

or 0 < 8°(X ) - s°(A°) < v c2€2/2. Then for all n > max(N,N') we must have
n n n n 070

” - o

A -] <e. Ul

We append some additional conditions needed to prove the asymptotic normality .
of the score function (a/ax')sn(xg).

ASSUMPTION 11. The points {)\;’1} are contained in a closed ball A that is
concentric with A* but with smaller radius. There is an N and constants o > 0,

cl <{ = guch that for § in rP we have

cy §'6 s syjn(x)c $c;6'6 allmn >N, all X in A

. ' o’li o [
Lim _ 67(s2) 72 8% (s2)

O
]

§'§ all 0 < ¢

A
(2

§'6§ all 0 < s =1

Lim__ §'(s*)7% g* (s*)7% s
n->o n lns] n

Also,

Lim  (1/n) T0_; & (3/3t")m (W ,t,3%) = 0. ||

1

THEOREM 9. (Asymptotic normality of the scores) Under Assumptions 1 through

3 and 8 through 11 ‘
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L
ke ]

/n (9°)

o
n

£
(3/3x)s_(A?)—— N(O,I)
n'n
- [} Q - -~ = . . .
Zlmh+m (Jn +u- -Jd ) = 0 in probability.
PROOF. By the same argument used to prove Theorem 5 we have
-k £
vn (5°) ?lm_(A%) - m>(A°)]— N(O,I)
n n n n n
Lim [S° + K° - S (X )] =0 almost surely.
e T n n n''n
A typical element of the vector va (3/3m) dlmn(A;),;nJ can be expanded about
lm°(1°),1°] to obtain
n n’n
Yn (3/3m ) dlm_(A°),T_]
a n ' n’n
= vn (3/3m_) d [m°(A°),1°]
a n n’’'n

+ (3/31')(3/3m_) d(m,t) /n (T_ - 1°)
[s3 n n

+ (3/3m')(3/3m_) d (m,7) vn lm_(A°) - m°(A°)]
a n n n n

= TN s . P oy 2 Ory0y _ 0
where (m,t) is on th? line segment joining lmn(ln),rnl to lmn(kn),rn]. We have
that v/n lmn(A;) - m;(A;)J converges in distribution and so is bounded in probability;
we have assumed that vn (Tn - T;) is bounded in probability. Then using the uniform
convergence of lmn(A) - m;(A)J to zero given by Lemma 13, the convergence of

(t

n - r;) to zero, and the continuity of d(m,T) and its derivatives we can write

Yan (3/3m) dlm_(A°),t_]
n n n
= Ya (3/3m) dlm°(1°),7°]
n n n
+ (32/3mdt') dlm°(A°),Tt°] /o (T - 1°)
n n n n n
+ (32/0mdm') d [m°(A°),7°] va [m (A°) - m®(A°)]
n n n n n n n

+ o (1)
P

Since A; is an interior point of A* by Assumption 11, we have /E(a/ax)s;(x;) = 0(1)

whence
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vn (3/3x)s_(A°) = vn (3/3A)s_(A°) - vn (3/3A)s°(A°) + o(l) '
n n n ) n n n
= v/n M'(A2)(3/3m) dlm (A2),T | - /n M'(A2)(3/3m) dlm2(A2),T2] + o(1)
= /o IM'(A°) - M'(A°)](3/3m) d [m®°(A°),t°]
n n n n n n n
+ M'(A°) {(32/3mat') dlm®(A°),t°]} /n (T_ - ©°)
n n n n n n n
+ M'(2°) {(32/3mam')d lm°(A°),r°%]} /n lm (A°) - m°(A°)] + o_(1)
n n n n n n n n n P
We have assumed that m°(A°) = 0 whence (3/6m) d[m°(A°),t°] = 0 and
n n n n n
(3%/3mat') d [m;(x;),r;J = 0 and this equation simplifies to
vn (3/3x)s_(1°)
n n
= M'(1°) {(32/3mam') dm®(A°),t°]}/n lm (A°) - m°(A°)] + o (1)
n n n n n n n n n P

In general this simplification will not obtain and the asymptotic distribution

of vVn (B/BA)sn(A;) will be more complicated than the distribution that we shall ‘

obtain here (Problem 1).

Now (c9")'55 = (s")';5 (0°)" L (ueryL
n n n n

Assumptions 8, 10, and 11 assure the existence of the various inverses and the
existence of a uniform (in n) bound on their elements. Then

-1 -1
5 %

Yn (3°) 72 (3/30)s_(A°) = va (8°) 2 lm_(A°%) - m°(A°)] + o (1)
n n'n n n'n n n p

and the first result obtains. Lemma 13 and Theorem 8 guarantee that Zimn+m (M;-ﬁn)=()
almost surely, Assumption 10 and Theorem 8 guarantee that Eimn*m (D; - ﬁn) =0
almost surely, we have already that {£im (S° + K° - § ) = 0 almost surely whence
n*e n n n
the second result obtains. |
Asymptotic normality of the uncomstrained estimator follows at once

THEOREM 10. (Asymptotic normality) Let Assumptions 1 through 3 and 8

through 11 hold. Then:
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_1
2

M (g g A - A;)_§_» N(0,I)

[}
n

- Q - =
Klmn+w (gn F) = 0 almost surely.

PROOF. The proof is much the same as the proof of Theorem 6. |]

Next we establish some ancillary facts regarding the constrained estimator
subject to a Pitman drift for use in the next section.

ASSUMPTION 12. (Pitman drift) The function h()A) that defines the null
hypothesis H: h(A;) = h: is a twice continuously differentiable mapping of A as
defined by Assumption 11 into RY with Jacobian denoted as H(A) = (3/3A')h(A)
The eigenvalues of H(A) H'(A) are bounded below over A by o > 0 and above by
<, { @ . In the case where p = q, h(A) is assumed to be a one-to-one mapping
with a continuous inverse. In the case p < q, there is a continuous function
¢(A) such that the mapping

o} ¢ (1)
T h(A)

has a continuous inverse
A= ylp,t)

defined over S = {(p,7); p = ¢(A), T = h(A), A in A}. Moreover, y(p,t) has a

continuous extension to the set

RxT-={p:p =0} x {r: T =hnN)} .

The sequence {h:} is chosen such that
/o {h(A%) - n¥] = o(1). |
n n

THEOREM 11. Let Assumptions 1 through 3 and 8 through 12 hold. Then there

is a § > 0 such that the value of An which minimizes sn(k) over |A - A:I < 8

*

subject to h(i) = hn satisfies
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~

Lim (- A:) = 0 almost surely.

n->® n

Moreover,
/n (A - %) = 0(1)
n n
* '% * o * £
/o (9%)72 (3/31) ls_(A¥) - s°(AF)]—=— N(0,I)
n n n n'n
: * * _ 4y = 0 4 1
ﬂlmn (Jn + U.n Jd) = 0 in probability
. * _ g =
f’.lmn }n - 7 = 0 almost surely.

PROOF. The proof is much the same as the proof of Theorem 7. ||

\ PROBLEMS

1. Let Assumptions 1 through 3 and 8 through 11 hold except that ma(l:l) # 0;
also (3/om) d(0,t) and (3%/3mom') d(0,7) need not be zero. Presume that the estimator

of the nuisance parameter ‘r; can be put in the form .

- ©y o a© n
/mor - ) = AN/YR) L F (W) + 0, (1)

1

where {ft(Wt)} satisfies the hypotheses of Theorem 2 and c06'6 pS 6'(A;)'(A;)6 s c16'6

for finite, non-zero co, <y and all n larger than some N. Define

Q o
mt(Wt,rn,An)

zZ = [ 5} o
t vec (E)/E))\)tnt (Wt,rn,kn)

ft(wt)
o - (n‘l) o
Kn z'r=-(n-1) nt

n '

(1/n) zt=1+'r (8Zt)(8zt__l_) T 20
X =
nt

Mn,-r Tt <0

g; - z(n-l) go .

t==(n~-1) " nt



n ' _y 0
o . (1/n) £, €22  -H°
nt
SO
n,~T

cgo = Go go Gov
n n n n
o 2 1 Q ]
gn (32/3x3x )sn(xn)
Show that

/o (3°)7% 5 (1) N(0,1)
n n n

1
3

R

Gy = M3’ D2 i(3/om') d(ml, ) @ I

Jo - A;)—g—» N(0,I).

P M°'(32/3mat') d (m°,T°)A°]
* n n’ n’"n
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v



6. HYPOTHESIS TESTING

The results obtained thus far may be summarized as follows:

SUMMARY. Let Assumptions 1 through 3 hold and let either Assumptions &
through 7 or 8 through 12 hold. Then on a closed ball A with finite, non-
zero radius:

sn(A) - s;(l)4§;§;+ 0 uniformly on A,

(a/aM) s (V) - s;(A)J-f—'-‘i'—'-» 0 uniformly on A,
(32/3x31")ls_(2) - s;(x)jﬁﬁ'—'» 0 uniformly onm A,
{s;(x)}:=l is equicontinuous

{(B/BA)s;(A)}:=1 is equicontinuous
{(BZ/BABA')SS(A)}:zl is equicontinuous

/o (3°)7% (3/3n)s (A°) === N(O,1)
n n n

)

*y =% %* oy 1 L,
@) * (3/3)ls (A)) - s (A )] N(0,I)

vn (A° - A%) = o(1), vn [h(A°) - n*] = o(1)
n n n n

; - o 2:8: 0, i - 3% 28 0

n n n

@° +u° -d) oo, @* +u*-9) L0, u°,u* = o(1)
n n n n n n

~ ~

(g:l _g a.8. 0, (g: _g d.8. O
co8' 5 §'J(A)6 s ¢,6'6 alln > N, all § in RP, all A in A
c.8'6 s 6'9% 5 ¢ 6'S alln >N, all 6 in RP
0 n 1
cy8's s G'J;'G S c6'6all n >N, all § in RrP
SUS s ¢.8'S, 'S s ¢.6'6 all n > N, all § in RP
n 1 n 1

where 0 < <o < < { =, Moreover, Xn and An are tail equivalent to random



variables that take their values in the interior of A and A; and Az are interior
to A for large n. Thus, in the sequel we may take in, An, A;, and A; interior
to A without loss of generality. |]

Taking the summary as the point of departure, comsider testing
H: h(A°) = h* against A: h(A°) # h* ,
n n n n

where h(A) maps A © RP into RY . As in Chapter 3, we shall study three test
statistics for this problem: the Wald test, the "likelihood ratio'" test , and the
Lagrange multiplier test. Each statistic, say T as a generic term, is decomposed

into a sum of two random variables

where a_  converges in probability to zero and Xn has a known, finite sample dis-

tribution. Such a decomposition permits the statement
Lim IP(T_ > t) - P(X_ > t)] = 0.
N n n

Because we allow specification error and nonstationarity we will not necessarily
have Tn converging in distribution to a random variable X. However, the
practical utility of convergence in distribution in applications derives from

the statement

Zimn*w [P(Tn >t) ~P(X>t) =0

because P(X < t) is computable so can be used to approximate P(Tn > t). Since
the value P(Xn > t) that we shall provide is computable, we shall capture the
full benefits of a classical asymptotic theory.

We introduce some additional notation.




situation.

NOTATION 7.
o - o -1 ) o -1 * _ * -1 * & -1
Vn (gn) Jn(jn) ’ Vn (gn) Jn(‘?n)
i =37t 3 Vg e
h = h(X), H(A) = (3/37")h(}A)
H® = H(A°), H* = H(AY)
n n n n
i o=H(), H=HQ)
n n
THEOREM 12.

vV = V:I’ 3:3;’9 =vg:1’ 1 =“:1’ H = H;

THEOREMS 13, 14, 15, and 16.

The first test statistic considered is the Wald test statistic

W= n(h - W)@EFEH LA - n%)
n n

it requires only one unconstrained optimization to compute it.

"likelihood ratio" and Lagrange multiplier tests.
THEOREM 12. Let Assumptions 1 through 3 hold and let either Assumption &

through 7 or 8 through 12 hold. Let

W= nlh - b)) @A - 0
n n

9-6-3

Ag shown below, one rejects the hypothesis H: h(k;) = h: when W exceeds the

upper a x 100% critical point of a chi-square random variable with q-degrees of
freedom to achieve an asymptotically level a test in a correctly specific
As noted earlier, the principal advantage of the Wald test is that
The principal
disadvantages are that it is not invariant to reparameterization and its sampling

distribution is not as well approximated by our characterizations as are the



Then

W-~Y+ op(l)
where

Y = z'ug teay 7 la Tl
and

z ~N {/n |h(A°) - n*], HVH']}
q n n

Recall: Vv =v°, d=J49° 9=49° NU=0Uu° and H=H° . If W= 0 then Y has the
n n n n n

non-central chi-square distribution with q degrees of freedom and non-centrality

parameter a = n[h(A;) - h:]'(HVH')-llh(A;) - h:J/Z . Under the null hypothesis

a = 0.

PROOF. We may assume without loss of generality that Xn’ A; € A and that

~ =1 wl
(3/an)s_(R.) = o (0" %), (3/3r)s°(A°%) = o(n 2). By Taylor's theorem
n'n s nn

/alh (X)) - h (A = (/DR (X, ) (A=A i=1,2, ..., ¢

~

where ”Xin - A s f[A, - A2|l. By the almost sure convergence of I]A; - Xn”

n

to zero, {im | A
n->-«

- ° = i A
in An” 0 almost surely whence ﬂlmn*w l(a/BA)hi(Ain)

- (a/ax)hi(A;)J = 0 almost surely. Thus we may write

/a [h(X ) - h(A°)] = |H + o (1)] /n (X_ - A°)
n n S n n

Again by Taylor's theorem

-1 1
* *

Yo (&) 2 (3/3r)s_(A°) = vn (&°)
n n n

< [ "% ) ¢ o
) (@/an)s (R ) + W2) CLgl+o (VR -x%).

L -
By the Summary, the left hand side is Op(l), and (J;’l)/2 and Qg;) 1 are both 0(1)

whence vn (X_ - A°) = 0 (1) and
n n p

Yo (3/3x)s_(A°) = g° /o (X_ - A°) + 0 (1)
n n n n n P

Combining these two equations we have
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W

/A In(B ) - RS = 1+ o ()] JTH IF S

g /o (X - A2

n

Ny

B+ o0 ()] F713% 37% /4 (3/30)s_(A°) + o (1))
s n n P

L g% 475 /2 (a3/a0)s (A°) + o (1)
n 'n p

Y
because all terms are Os(l) save the os(l) and op(l) terms. The equicontinuity
of {3n(k)}, {ﬁn(l)}, {gn(k)}, the almost sure convergence of “Xn - A;” to zero,
and det (1), detJ(A) 2 A > 0 imply that

@D - gt o g7 et = o (1)

Since
vn [h(X_ ) - h*] = /a4 [h(A°) - n¥]
n n n n

1 %

+ugtatagt A (3/a0)s (A2) + o (1)

and all terms on the right are bounded in probability we have that

-~ * "'\“' "1 ~ - *
W= nlh(X ) - h*] (HVH') © [n(R) hnl

o * -1 -1 ..,,-1 a _o*
nlh(ln) - th lH Z & +4U) g H') [h(An) hn] + op(l)

By the Skorokhod representation theorem (Serfling, 1980, Section 1.6), there are

-1
random variables Xn with the same distribution as J 2 vn (B/EA)sn(A;) such that

Xn = X + os(l) where X ~ N(0,I). Then
Ja ln(R) - h*l = /& Lh(A®) - n¥] +H g} ST X + 0 (1)
n n n n p

1

1
“3

because H, g' , 3° are bounded. Let Z = vn lh(A;) - h:] + H 9—1 J% X and the
result follows. |]

In order to characterize the distribution of the Lagrange multiplier and
"likelihood ratio" test statistics we shall need the following characterization
of the distribution of the score vector evaluated at the constrained value.A: .

THEOREM 13. Let Assumptions 1 through 3 hold and let either Assumptions 4

through 7 or 8 through 12 hold. Then
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Yn (3/3M)s_(A%) ~ X + o_(1)
n s

where

*
X~ N /A (3/30)s200%), 3]

PROOF. By either Theorem 7 or Theorem 11

Ja (7% (373108 (OF) - va (3)7F (3/50)8° (AF) == N(0,1)
n n n n n n

By the Skorokhod representation theorem (Serfling, 1980, Section 1.6) there are
*\ =% *
random variables Y with the same distribution as vn (Jn) (B/BA)sn(An) such

that Y - v/n (J*)_% (3/32)s°(A*) = Y + o (1) where Y ~ N(0,I). Let
n n n n 8
X = (% - /o (3/3r)s°(A®)
n n n
whence
X - N|vn (B/BA)s;(A:) ,J:J .

1 1
Since (:9;’1)/§ is bounded, (,9;’1)’5 os(l) = os(l) and the result follows. |

Both the "likelihood ratio'" and Lagrange multiplier test statistics are
effectively functions of the score vector evaluated at An. The following result
gives an essential representation.

THEOREM 14. Let assumptions 1 through 3 hold and let either Assumptions

4 through 7 or 8 through 12 hold. Then:
N vrwa=Lloy -1 -1
/n (3/3\)s (A ) = H'(H} "H') " HJ /n (B/Bl)sn(A:) + op(l) = o%(1>

where & ?n and H = H_ .

PROOF. By Taylor's theorem

~

Va (3/30)s (A ) = va (3/3M)s (A%) +9va (A - A%)
n n n n n n

Va h(A ) = ¥a h(Q®) +8 v/a (A - A%)
n n n n




where 7 has rows
(3/3X')(3/3x Ds_(X, ) i=1,2, ..., p
and H has rows

3/3A")h (X, i=1, 2, ...,
(a/ ) J( Jn) J q

with A, and A, on the line segment joining A_ to A* . Now vn |h(Ax_) - h¥*] = o (1).
in jn n n n n s

Recalling that /o lh(A:) - h:] = 0, we have H v/n (An - A:) = os(l). Since

~ N -
”An An” converges almost surely to zero, (A,

- A%) and (A, - A¥) converge
n jn n

almost surely to zero and § = J + os(l) by the equicontinuity of {Qn(l)}zzl;

continuity of H(A) on A compact implies equicontinuity whence H = H + os(l).

Moreover, there is an N corresponding to almost every realization of {Vt} such

that det(j) > 0 for all n > N. Defining 5-1 arbitrarily when det(J) = 0 we have

274 - 2%) = va (L - %)
n n n n

- -~

for all n > N. Thus, 3-1 3 /n (An - A:) = v/n (An - A;) + os(l). Combining
these observations, we may write
Hvn (A_ - A%) = o (1)
n n ]

a Gl -am =3 Grans () - 37 VR (a7an)s_ (3F) + 0 (1)
n n n n n n 8

whence

i7"t/ (a/ax)sn(;n) =1yt (3/30)s, (A7) + o (1)

o1
Now /o & 2 l(a/ak)sn(A:) - (B/SA)s;(A;)J converges in distribution and by Taylor's

theorem

1

/o 37 (3/3r0)s° (W)
n n

/o 7% (3/30)8°(A°) + Ya 3T D (0 - 2°)
n n n n

o(1l) + 0(1)

L
i)

-1
so we have that /o J 2 (a/al)s;(A:) is bounded. Since J ° is bounded,
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/n (3/8A)sn(>\:) is bounded in probability. By Lemma 2 of Chapter 3, there is '

a sequence of Lagrange multipliers én such that
/n (3/83)s (A ) + H' /n 8= o (1) .
n n n s

By continuity of H(A) and the almost sure convergence of ”)‘n - A:“ to zero we

- ol o~ .1 .
have H = H + os(l). Defining (HZ ! H) t similarly to % above and recalling
that /o (a/ax)sn(x;) is bounded in probability

wag w7t

Hg't /A (a/an)s_(A%)
Yo (3/ax)s_(A%) + o (1)
n n P

Ya (3/3\)s (A_) + o (1)
n 'n P

=w@g et E e e+ 0, (1)
=H' Vo e +o (1)
n P
= vn (3/30)s (A ) + op(l) .U .

The second test statistic considered is the "likelihood ratio'" test statistic
L=2nls (A_) - s_(X)]
n 'n n 'n

As shown below, one rejects the hypothesis H: h()\;) = h: when L exceeds the
upper o x 100% critical point of a chi~square random variable with q degrees of
freedom to achieve an asymptotically level a test in a correctly specified
situation. The principal disadvantages of the "likelihood ratio" test a;:e that

it takes two minimizations to compute it and it requires that
HO®) 1M 90% F10%) 1'% = 1% F10% 51 0®) + o)
n n n n n n n n
to achieve its null case asymptotic distribution. As seen earlier, when this

condition holds, there is Monte Carlo evidence that indicates that the asymptotic

approximation is quite accurate if degrees of freedom corrections are applied. ‘



THEOREM 15. Let Assumptions 1 through 3 hold and let either Assumptions

4 through 7 or 8 through 12 hold. Let

L
Then

L
where'

Y
and

Z
Recall: V
If HVH' =

degrees of

a = n(3/3xr’
a =0,
PROOF.

2n[sn(An) - sn(An)J

¢

Y + o0 (1)
P

1

228 Y wwg )y ugls

2

o *
Nlvn (3/30)82(2%), 9 |

* * * * *
Vn’ J=Jn,9=gn,u=un, andH=Hn .

nglH' then Y has the non-central chi-square distribution with q

freedom and non-centrality parameter

)s;(A:);flu'(ugfla')'lugfl(a/ax)s;(xz)/z. Under the null hypothesis,

By Taylor's theorem

Zn[sn(kn) - sn(kn)]

= 2nl(a/ax)sn(xn)1'(xn - An) + n(An - xn)'[(az/axax')sn(xn)l(xn - An)

where llin - anl =S "An - in"' By the Summary, IIAn - A:II and ||in - A;I| converge

almost surely to zero and {(BZ/BAGA')sn(A)}:=1 is equicontinuous whence

2/9%93 ' Ye (3 ) =
(3%/3x3x )sn(kn) lg+ os(l)J. By Lemma 2 of Chapter 3,

2n|(3/31)s
n

(A )J'(; - X ) = o (1) whence
n n n 8

2nls (A ) - s (A1 =n(a_ - A )19+ 0 (DI - 3) + 0 (1)
n n n n n n 8 n n S
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Again by Taylor's theorem
19+ 0 ()] Ya (i - %) =+/a (3/30)s_(A)
s n n n n

whence, using the same type of argument as in the proof of Theorem 14

/a (in -R) = 1g+ 08(1)1'1 19 + o (1] Ya (Zn -5 + 0 (1)

_1 ~
17 + o (1)) /n (3/3%)s_(A_) + o (1)
which is bounded in probability by Theorem 1l4. Thus
2nls (A_) - s (A )] =n(A_ - X )'9(x_ - X ) + o (1)
n n n n n n n n P

fa i -5 =91 VA (s/an)s () + o (1)
n n n'n P

whence
20ls (A - s (R )1 = nl@/a0)s Q01" 27 1G6/a0)s (A1 + o0 (1)

and the distributional result follows at once from Theorems 13 and 14. To see

that Y is distributed as the non-central chi-square when HVH' = H;fl H' note

that g-lﬁ'(Hg-IH')-IHg-lcg is idempotent under this condition. |]

The last statistic considered is the Lagrange multiplier test statistic

-1

- 3 , -1°7-1
R = nl(B/BA)sn(An)J 7

n@gts g7t )Ty T /as_G))

As shown below, one rejects the hypothesis H: h(x;) = h: when R exceeds the
upper & x 100% critical point of a chi-square random variable with q degrees
of freedom to achieve an asymptotically level a test in a correctly specified

gituation. Using the first order condition
(3/ax) £ (x_,6 ) = (3/3n){s_(A)+e6'[h(r_) - n¥]} =0
n’’'n n n n

for the problem:
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Minimize sn(k) subject to h(}) = h:

one can replace (B/BA)sn(;) by 5'(8/Bl)h(;n) in the expression for R whence the
term Lagrange multiplier test; it is also called the efficient score test. Its
principal advantage is that it requires only one constrained optimization for
its computation. If the constraint h(A) = h; completely specifies ;n or results
in a linear model, this can be an overwhelming advantage. The test can have
rather bizarre structural characteristics. Suppose that h(i) = h: completely
specifies ;n' Then the test will accept any h: for which ;n is a local minimum,
maximum, or saddlepoint of s (1) regardless of how large is l|h(X) - h:“. As

we have seen, Monte Carlo evidence suggests that the asymptotic approximation

is reasonably accurate.

THEOREM 16. Let Assumptions 1 through 3 hold and let either Assumptions

4 through 7 or 8 through 12 hold. Let

- N Vgt Svemoniylgatl N

R = nl(a/ax)sn(xn)J g H'(HVH') "HZ l(a/ax)sn(xn)J
Then

R~Y+ o (1)

P

where

=29t wmgt @+uwgtu g tagtz
and

Z ~ Nlvn (B/BA)s;(A:), 3]
Recall: Vv =v* 3 =9% g2 =9% 4 =u* and H = §* .

n n n n n

IfV = 0 then Y has the non-central chi-square distribution with q degrees of
1 .-1
H7

freedom and non-centrality parameter o = n[(a/BA)s;(A:)]'y-lH'(HVH')—

x l(a/ak)s;(A;)J/Z. Under the null hypothesis, a = 0.
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PROOF. By the summary,

bl -1

gl pravany P gt =gt wngte +u)g‘1 gyt Hg'l + o (1).

By Theorem 14, vn (8/8A)sn(kn) is bounded in probability whence we have

R = nl(a/on)s )17 w gt rwgt n 1Tty THce/an)s (X)) + 0, (1)

nl(B/BA)sn(A:)]'g-l B g (9 +u)g H'J'lug'll(a/ax)sn(;\:)J + 0 (1)

The distributional result follows by Theorem 13. The matrix
1 H g-l

square distribution if U = 0. ||

9'1 H' [Hg'l &g’l ']

Jd is idempotent so Y follows the non-central chi-
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8. INDEX TO CHAPTER 9.

Assumpticn 1,
Assumption 2,
Assumption 3,
Assumption 4,
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Assumption 6,
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Assumption 7, 9-4-17
Assumption &, 9-3-

Assumption 9, 9-3-10
Assumption 10, 9-5-11
Assumption 11, 9-5-14
Assumption 12, 9-5-17

Asymptotic normality
of lezst mean distance estimators, 9-4-16, 9-4-1213
of method of moments estimators, 9-5-16, 9-5-17
Asymptotic normality of scores
least mean distance estimators, 9-4-13
method of moments estimators, 9-5-14
constrained estimators under Pitman drift, 9-6-6
Bartlett weights, 9-2-44
Central Limit Theorem
stated, 9-2-30
definition of terminology, 9-2-31
variance estimation, 9-2-44
Conditional analysis, 9-1-2
Conditional Jensen's inequality, 9-2-51
Consistency
of least mezn distance estimators, 9-4-3%
of method of moments estimators, 9-5-13
Coenstraint
equivalent representations, %-4-17
Continuity set, 9-2-39
Datz generating model
defined, 9-3-1
introductory discussion, 9-1-1
Distance function
for least mean distance estimators, 9-4-1
for method of moments estimators, 9-5-1
Efficient score test
see Lagrange multiplier test
Estimated parameter
discussed, 9-4-3
Identification condition
least mean distance estimators
defined, 9-4-3
example, 9-4-5
method of moments estimators
defined, 9-3-3
discussed, 9-5-§



Instrumental variable estimator
s2e three-stage le2ast-squares estimator
Lagrange multiplier test
asymptotic distribution, 9-46-11
defined, 9-46-10
discussed, 9-4-10
Least mean distance estimator
consistency, 9-4-5
constrained, 9-4-1
defined, 9-4-1
introductory discussion, 9-1-2
identification, 9-4-3
summary of results, 9-4-1
Likalihood ratio test
asymptotic distribution, 9-4-9
defined, 9-4-8
discussed, 9-6-8
Martingale., 9-2-33
Mcleish's inequality, 9-2-20
Method of moments estimator,
consistency, 9-5-13
constrained, 9-35-1
defined, 9-5-1
introductory discussion, 9-1-2
identification, 9-5-5
summary of results, 9-6-1
under misspecification, 9-5-5, 9-4-19
Mizingale
defined, 9-2-114
sufficient conditions for, 9-2-18
Near epoch dependence
defined, 9-2-35
sufficient conditions for, 9-5-7
exsmple of, 9-2-10
Nonlinear autoregression, 9-2-10, 9-4-1, 9-4-4, 9-4-7, 9-4-10
Nonlinear ARMA, 9-2-351i
Notation 1, 9-4-3
Notation 2, 9-4-4
Notation 3, 9-4-8
Notation 4, 9?-5-5
Motation §, 9-5-4
9-5-8
9-6-3

Notation ¢,
Notation 7,
Null hypothesis
defined, 9-4-2
Parzen weights, 9-2-44
Pitman drift
introductory discussion, 9-1-3
least mean distance estimators, 9-4-17
method of moments estimators, 9-5-17
Sample objective function
for leazst mean distance estimators, 9-4-1
for method of moment estimators, 9-9-1




Score
see asymptctic normality of the scores
Size, 9-2-3
Strong law of large numbers, 9-2-24, 9-2-27
Strong mixing
sufficient conditions for, 9-2-23
defined, 9-2-2
Tigqhtness, 9-2-38
Theorem 1, 9-2-27
Theorem 2, 9-2-30
Theorem 3, 9-2
Theorem 4, 9-4
Theorem 5, 9-4
Theorem 4, 9-4-
Theoram 7, 9-4
Theorem 8, 9-95
Theorem 9, ?-5-
Thecrem 10, 9-3
Theorem 11, 9-3
Theorem 12, 9-6
9-46
9-4
9-6
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Theorem 13,
Theorem 14,
Theorem {3,
Theorem 146, 9-6-11
Three-stage least-squares, 9-5-2, 9-5-4, 9-5-9
Underlying probability space

formal description 9-2-1
Uniform Strong Law of Large Mumbers, 9-2-27
Uniformly integrable, 9-2-24
Variance of 2 sum, 9-2-44
Wald test statistic

csymptotic distribution, 9-6-3

defined, 9-6-3

discussed, 9-46-3



