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CHAPTER 4. Univariate Nonlinear Regression: Asymptotic Theory

In this chapter, the results of the previous chapter are specialized

to the case of a correctly specified univariate nonlinear regression model

estimated by least squares. Specialization is simply a matter of restating

Assumptions 1 through 7 of Chapter 3 in context. This done, the

asymptotic theory follows immediately. The characterizations used in

Chapter 1 are established using probability bounds that follow from the

asymptotic theory.
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1. INTRODUCTION

Let us review some notation. The univariate nonlinear model is written

as

t::: 1,2, ... , n

TN'ith eO known to lie in some compact set 9* The functional form of f(x,8)

is known, x is k-dimensional, e is p-dimensional, and the model is assumed to

be correctly specified. Following the conventions of Chapter 1, the model

can be written in a vector notation as

y = f( eo ) + e

with the Jacobian of f(e) written as F(e) = (%e')f(e). The parameter e

is by e that minimizes

We are interested in testing the hypothesis

H: h( eO) = 0 against A: h(eO) * 0
which we assume can be given the equivalent representation

H: eo = g(pO) for some pO against A: eO * g(p) for any p
where h: RP -? Rq , g: Rr -? RP , and P = r + q. The correspondence with the

notation of Chapter 3 is as follows.
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NOTATION 1

General (Chapter 3)

et =
y e r
Y = Y(e,x,y)

s (yt ,xt ',.n':>..)

*A e !I.

Specific (Chapter 4)

et = Yt -

*e e e
Y .. f(x, e) + e

e E: e*
n ,..

Sn(A) = (l/n)};=ls(yt,xt'''n,A)

=
e

S*(A)=J J s[Y(e,x,y*),X,,.*,A]dP(e) dlJ,(x)
1. e

minimizes s (A)n n

rn minimizes Sn(A)
subject to h(A) = 0

sn(8) = - f(Xt ,e)]2

= r?+ - f(xt,A)]

s*(9) = r?+ J Lf(x,e*) - f(x,A)J2dlJ,(x)
1.

G minimizes S (8)n n

= g(p ) minimizes S (8)n n n

subject to h(8) = 0

SO (8)
n
= 0

8° minimizesn

*en = g(pO) minimizesn
subject to h( 8)

* *8 minimizes s (8)

AO minimizes SO (A)n n

*An minimizes
subject to h( i..) = 0

* *i.. minimizes S (A)
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2 . REGULARITY CONDITIONS

Application of the general theory to a correctly specified univariate

nonlinear regression is just a matter of restating Assumptions 1 through 7

of Chapter 3 in terms of the notation above. As the data is presumed to be

generated according to

t = 1, 2, ... , n

Assumptions 1 through 5 of Chapter 3 read as follows.

ASSUMPTION 1'. The errors are independently and identically distributed

with common distribution P(e). 0

ASSUM.PrION 2'. * * 0f(x,e) is continuous on X X 8 and 8 is compact.

ASSUMPTION 3'. (Gallant and Holly, 1980) Almost every realization of

[v 1 with v = is a Cesaro sum generator with respect to the productt- t v

measure

v(A) = SS IA(e,x) dP(e)
X e

and dominating function b(e,x). The sequence [xt } is a Cesaro sum generator

with res?ect to and b(x) =Sb(e,x) dP(e). For each x c X there is a
e

neighborhood N. such that S sUPN b(e,x) dP(e) < CI:l. 0.( e x

ASSUMPrION (Identification) The parameter eO is indexed by n and

'\ *the sequence [eo ; converges to A •n

* 2 *) ( )J2 ()s (8) = cr + j Lr(x,e - r x,9 x
X

* *has a unique minimum over e at e 0
ASSUMPrION e* is compact, [e + r(x,eO) - f(x,9)]2 is dominated by

b(e,x); b(e,x) is that of Assu,"llption 3· 0
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The sample objective function is

s (8) = (l/n) \\y - f(8)\\2n

with expectation

By Lemma 1 of Chapter 3, both s (A) and sO(8) have uniform, almost sure limitn n

* 2 S * 2s (8) = cr + [f(x,S) - f(x,S)]
1.

Note that the true value SO of the narameter is also a minimizer ofn -
SO (e) so that our use of So to denote them both is not ambiguous. i're mayn n

apply Theorem 3 of Chapter 3 and conclude that

*im 80 = 8
JfJ n '

Lim A = 8* almost surely.n

Assumption 6 of Chapter 3 may be restated as follows.

* *ASSUMPTION e contains a closed ball e centered at 8 with finite,

nonzero radius such that

(0/d8 i )s[Y(e,x,8° ),x,81 = -2[e + f(x,eO) - f(x,e)J(0/08 i ) f(x,A)

(02/08.08. )s[Y(e ,x,8" ) ,x,8 J '" 2[(0/08 .)f(x, e) 1(0/08. )f(x, e))J J.

- 2[e + f(x,eO) - f(x,e)](02/oeioAj)f(X,A)

[(0 /oA i )s[Y( e ,x ,Ao ) ,:{, A]}[ (C/06 j ) s[Y( e ,:{, eO ) ,x, A]}

'" 4[e + f(x,S") - f(X,A)J2 [(0/08 i )f(x,A)J[(0/OAj )f(X,Cl)]

*are continuous and dominated by b(e,x) on e X 1. X e X e for i, j = 1, 2, ... , P .

Moreover,

2 S
1

is nonsingular. 0
Define
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NOTATION 2

Q. =S[(O/oe)f(X,e*)JL(o/Oe)f(X,e*)]'dfJ,(X),
1.

Q.0 =' (1/n) F' (eO) F (eO) ,n n n
* * *Q.n = (l/n) F'(8n ) F(en). 0

Direct computation according to Notations 2 and 3 of Chapter 3 yields

(Problem 1).

*J = 2 Q.

*u = a
.fJ = 4i Q.°nn

J* = 2 Q.* - (2/n)2:t
n l[f(xt,eO) - f(Xt,e*)](02/oeoe')f(Xt,r/)n n = n n n

u: = - (O/OA)f(Xt,e:)][ (%e) f(xt,e:)J'
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Noting tl::at

we have from Theorem 4 of Chapter 3 that

and from Theorem 5 that

The Pitman drift assumption is restated as follows.

ASSUMPl'ION 7: (Pitman drift) The sequence is chosen such thatn
* *.tim In( eO - 8 ) = D.. Moreover, h( e ) = 0 .

n-- n n

Noting that

(%(1)SO (8) = (-2/n)P'((1) [f(eO) - f(e)]n n

we have from Theorem 6 that

*tim A = A aJJnost surelyn

* *tim e = en

*tim Q = Qn

(l/Jii.) p'(e*) eL N(O,c,.2 Q)n

LimrHO' (l/Arn) - f(e:)] = QD. •

Assumption 13 of Chapter 3 is restated as follows.

PBSUMPTION The function h(e) is a once continuously differentiable

mapping of e into Rq . Its Jacobian H(A) = (%A')h(e) has full rank
*(=q) at e = e . 0
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PROBLEMS

-
1. Use the derivatives given in Assumption 6 to compute J(8) , ,

and J(8) , 1(8) , G(8) as defined in Notations 2 and 3 of Chapter 3.
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3· CHARACTERIZATIONS OF LEAST SQ.UARES ESTJMATORS AND TEST STATISTICS

The first of the characterizations appearing in Chapter 1 is

It is derived using the same sort of as used in the proof of

Theorem 5 of Chapter 3 so we shall be brief here; one can look at Theorem 5

for details. By 2 of Chapter 3 we may assume without loss of generality

that and eo are in e and that (c/ce)s (8 ) = 0 (l/Jii). Recall thatn n n n p
*= Q. + 0(1) whence bPn= J + 0(1). By Taylor's theorem

J:i (c/ce)s (eO) = In (O/OA)S (8 ) + [} Jii (eO - 8 )n n n n n n

where [} = J* + 0 (1). Thens

[c9* + 0 (1) J Jii (8 - eO) = - In (c/oe )s (eO) + 0 (1)s n n n n s

which can be rewritten as

Now [9* - :t + 0 (l)J = 0 (1) and Jr; - N(o,iQ.) which implies thatn s s n n . -
Jii. (9 - eO) = 0 (1) whence Ct?* -1. + 0 (l)J In (8 - eO) = 0 (1) Thus wen n p n s n n p

have that

rP Jii (8 - eO) = Jii (d/de)S (eO) + 0 (1) .tfn n n n n p

There is an N such that for n > N the inverse of Bxists whencen

or
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Finally, -(1:,) -1(0/08)s (eo) = [F' (eO )F( 8° ) (8°)e which completes then nn· n n n
argument.

The next characterization that needs justification is

The derivation is similar to the arguments used in the proof of Theorem 15

of Chapter 3; again we shall be brief and one can look at the proof of

Theorem 15 for details. By Taylor's theorem

nCs (8°) - s (9)]n n n n
,

= n[ (0/08) s ) J (tl - 8° )n n n n

+ -80 )'C(i/0808')s (8 )J(e _8°)n n n n n n

= n 0 - 8'J) + (n/2)(8 - eO) 'C/o + 0 (1)](8 _ 8°)s n n n n n s n n

From the proceeding result we have

whence

This equation reduces to

which completes the argument.
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Next we show that

A straightforward argument using Taylor's theorem yields

where H has rows (%e ') h(e.) 'tlith e. == A. Q + (l-A.)eO for some A. withn 1. n
o 5 A. -:; 1 whence

Since JD. (8 - eO) is bounded in probability we haven n

In h (e ) == In h ( eO) + In H( eO )(8 - eO) + 0 (1 )n n n n n s

== JD. h(eO) + H(eO) JD. f[F'(eO )F(eO + 0 (l/Jnn + 0 (1)n n - n n n p s

We next show that

where

P == F(eO )[F'(eO )F(eO .F n n n n

Fix a realization of the errors [et } for which == 02 and

== cl; aL"llost every realization is such (Problem 2).

Choose N so that if n > N then s2 > 0 and e' (I - PF)e > o. Using

and Taylor's theorem we have
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The term [(n - p)/e' (I - PF)ef is bounded for n > N because
2 4(n - p)/e' (I - PF)e] =0 1/0 . One concludes that

1/s2 = (n-p)/e'(I-PF)e + 0p(l/n) which completes the argument.
The next task is to show that if the errors are normally distributed then

If = Y + 0 (1)
P

where

y"" F'(q, n -p, )..)

Now

and as notation write
.

JU hee ) = Jri h(eO) + In H(AO)[F'(eO)F(e0 + 0 (1)n n· n n n n p

= \.J. + U + a (1)p

[He (l/n)F'(e )F(8 )J-J-rr'r l = [H(eO)[ (1/n)F'(9° )F(eO)]-lH'(8° )}-l+ 0 (1)n n n n n n p

= A-1 + 0 (1)
p

whence

W= [\.J.+U + 0 (l)J'A-1t\.J.+ U+ 0 (l)][(n-p)/e'(1-PF)e+ 0 (l)]/qp p p

= + 0 (1)
e'(1 - PF)e/[l(n - p)J P

= Y + 0 (1)p

Assuming normal errors then
?

U "" N (0, o-A)q
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which implies that (Appendix 1)

with

Since A(1 - PF ) := 0, U and (I - PF)e are independently distributed whence

(\Jo+U)'A-l(\Jo+U) and e'(1-PF)e:= e'(1-PF)'(1-PF)e are independently distributed.

This implies that Y rv F' (q, n - p,)J which complete s the arg\L.llent.

Simply by rescaling s2 in the foregoing we have that

1
(SSEfull)/n:: e'PFe/n + 0p(l/n)

n/(SSEfull ) :: + 0p(l/n)

where

recall that

SSEfull :: \\y - f( en) 1\2

SSEreduced :: \\y - fCen )\\2 :: \\y - :r[g(Pn)J\l2

The claim that

with

6 :: *f(eO) - f(A ) :: f(eO) - f[g(p0)Jnn n n

I - P
FG

:: I - F(eO )G(pO )[G'(pO )F'(eO )F(eO )G(pO )J-1G'(po )F'(eO)n n n n n n n n

comes fairly close to being a restatement of a few lines of the proof of



4-3-6

Theorem 13 of Chapter 3. In that proof we find the

iLfri (8 - e*) == 0 (1)n n s

In (8 - e*) == -1 In (0/08)s (8 ) - -l)!i (%e)s (e*) + 0 (1)n n nn nn s

which, using arguments that have become repetitive at this point, can be

rewritten as

H..[ri (8' -e*) == 0 (1)n n s

In (8 - e*) == (%A)s (8 ) - Jii (0/08)S (e*)] + 0 (1)n n n:J. nn p

with == and H== H(e*). Using the conclusion of Theorem 13 of Chapter 3c1n n
one can substitute for Jii (0/08)s (8 ) to obtainn n

rn [(0/08)s ce )j'..[ri (8' - 8*) == 0 (1)n n n 'n p

in - e:) == - - Jfi (0/08)sn(8:) + Opel)

Then using Taylor's theorem

nes' ('A' ) - s (e*)]n n n n

= -n[(%q)s (8 )](8 - 8*) - (n/2)(e - + 0 (l)J(8 - 8*)n:J. n n n n s n n

== (-n/2)(8' - e*) - e*) + 0 (1)n n n n p

Using the identi:;y obtained in Section 6 of Chapter 3 we have
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whence

n s (8):= ns (e*) - (nj2)[(ojoe)s GrlG'[(ojoe)s (e*)] + 0 (1)nn nn nn- nn p

Using Taylor's theorem, the Uniform strong Law, and the Pitman drift assumption

we have

x .
(ojoA')(ojoAp)f(xt,epn )

= (-2jn) + 0) + 0p(l/,[ri.)

Substitution and algebraic reduction yields (Problem 3)

ns (6')= (e+6)'(e+ 6) - (e+ I))'p (e+ 6)+ 0 (1)n n FG p

which proves the claim.

The followirliS are the characterizations used in Chapter 1 that have not

yet been verified
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=' (e+ 6)/(PF -PFG)(e+ 6)/n + 0p(l/n)

(e+ 6)/(PF -PFG)(e+ 6)/11
e'(I - PH,)e/(n _ p) + Opel)

J:

nD'(F'F) D == n(e+ 6)/(PF -PFG)(e+ 6) + 0 (1)
SSE (8) (e+6)/(I-PFG )(e+6) p

Except for the second, these are obvious at sight. Let us sketch the

verification of the second characterization

== (n/4)[ (0/06) sn (en)] '[ (l/nYF 'Frlc (%A) sn(en)]

(n/2)[(0/08)s (e )1'[,9+ 0 (l)f\(%o)s (e)Jn n s n n

== + opel)

== (n/2)[ (%A)sn(8:)J '[1-1 _ G(G',9G)-lG / ][ (%e)Sn(e:)J + Jp(l)

== (l/n)(e+ 6)/F(AO)[ (Qo )-1_G(G' QoG)-lG']F / (8° )(e+ 6) + 0 (1)'n n n n p
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PROBLEMS

1. Give a detailed derivation of the f8ur characterizations listed in

the preceding paragraph.

2. Cite the theorem which permits one to claim that tim s2
n-*O

aL:nost surely and prove directly that tim e' (I - P.., )e/ (n _ p) == 0
2

l!

surely.

2
== 0

almost

*3. Show in detail that (0/08)s (e )n n
* ,suffices toreduce (n/2)[(0/oe)sn(An )] G(G',9

(e + 6) 'PFG(e+ 6) .

(-2/n)F'(eO )(e+ 6) + 0 (l/Jn)n p

to
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