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CHAPTER 8. Nonlinear Simultaneous Equations Models

In this chapter, we shall consider nonlinear, simultaneous equations

models. These are multivariate models which cannot be written with the

dependent variables equal to a vector valued function of the explanatory

variables plus and additive error either because it is impossible or unnatural

to do so; in short, the model is expressed in an implicit form e =q(y,x,e)
where e and yare vector valued. This is as much generality as is needed

in applications. The model q(e,y,x,e) = 0 offers no more generality since

the sort of regularity conditions that permit an asymptotic theory of inference

also permit application of the implicit function theorem so that the form

e =q(y,x,e) must exit; the application where it cannot actually be produced

is rare. In this rare instance, one substitutes numerical methods for the

computation of e and its derivatives in the formulas that we shall derive.

There are two basic sets of statistical methods customarily employed with

these models; those based on a method of moments approach with instrumental

variables used to form the moment equations and those based on a maximum

likelihood approach with some specific distribution specified for e. We shall

discuss both approaches.

Frequently, these models are applied in situations where time indexes the

Y l' Y 2' etc. of the dependent variablet- t-

dynamic structure. In these situations, statistical methods cannot be derived

observations and the vector of explanatory variables xt has lagged values -

Yt as elements; models with a

from the asymptotic theory set forth in Chapter 3. But it is fairly easy to

see intuitively, working by analogy with the statistical methods developed thus

far from the asymptotic theory of Chapter 3, what the correct statistical
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procedures ought to be in dynamic models. Accordingly, we will lay down this

intuitive base and develop the statistical methods for dynamic models in this

chapter, deferring consideration of an asymptotic theory that will justify

them to the next.
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1. INTRODUCTION

In this chapter, the multivariate nonlinear regression model (Chapter 6)

will be generalized in two ways.

First, we shall not insist that the model be written in explicit form where

the dependent variables Yat are solved out in terms of the independent

variables xt ' the parameters Sq' and the errors eqt' Rather, the model may

be expressed in implicit form

t = 1,2, ... , n; a= 1,2, ••• , M

where each qa(y,x,Sq) is a real-valued function, Yt is an L-vector, xt is

a k-vector, each is a Pq-dimensional vector of unknown parameters, and

the represent unobservable observational or experimental errors. Note

specifically that the number of equations M is not equal to the number of

dependent variables L of necessity although in many applications this will be

the case.

Secondly, the model can be dynamic which is to say that t indexes

observations that are ordered in time and that the vector of independent

variables can include lagged values of the dependent variable (Yt-1' Yt - 2,

etc.) as elements. There is nothing in the theory (Chapter 9) that would

preclude consideration of models of the form

t = 1,2, ... , n; q= 1,2, .. ., M

or similar schemes where the number of arguments of qat(-) depends on t but

they do not seem to arise in applications so we shall not consider them. If

such a model is encountered, simply replace qq(yt,Xt,Sq) by

qat(Yt'."'Yo,xt, ... ,xo,Sa) at every occurrence in Section 3 and thereafter.
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Dynamic models frequently will have serially correlated errors (C{e ,e ) 0as j3t

for s t) and this fact will need to be taken into account in the analysis.

Two examples follow. The first has the classical regression structure, no

lagged dependent variables, the second is dynamic.

EXAMPLE 1. (Consumer demand) This is a reformulation of Example 1 of

Chapter 6. In Chapter 6, the analysis was conditional on prices and observed

electricity expenditure whereas in theory it is preferable to condition on

prices, income, and consumer demographic characteristics; that is, it is

preferable to condition on the data in Table 1b and Table 1c of Chapter 6

rather than condition on Table 1b alone. In practice it is not clear that this

is the case because the data of Tables 1a and 1b are of much higher quality

than the data of Table 1c; there are several obvious errors in Table 1c such as

a household with a dryer and no washer or a freezer and no refrigerator. Thus,

it is not clear that we are not merely trading an errors in variables problem

that arises from theory for a worse one that arises in practice.

To obtain the reformulated model, the data of Tables 1a, 1b, and 1c of

Chapter 6 are transformed as follows.

Y1 = ltn (peak expenditure share) - ltn (base expenditure share).

Y2 = ltn (intermediate expenditure share) - (base expenditure share) ,

Y3 = ltn (expenditure),

r 1 = ltn (peak price),

r 2 = ltn (intermediate price) ,

r 3 = ltn (base pr i ce) ,

do = 1
d1 = ltn [(10-peak price + 6-intermediate price + 8-base price)/24],

d2 = ltn (income) ,

d3 = ltn (residence size in SqFt) ,



d4 = 1, if the residence is a duplex or apartment,0, otherwise,

dS = 1, if the residence is a mobile home,0, otherwise,

dS = In (heat loss in Btuh), if the residence has central air
conditioning,

0, otherwise,

d7 = In (window air Btuh), if the residence has window air
conditioning,

0, otherwise,

da = In (number of household members + 1), if residence has an
electric water heater,

0, otherwise,

dg = 1, if the residence has both an electric water heater and
a washing machine,

0, otherwise,

= In (number of household members + 1), if residence has an
electric dryer,

0, otherwise,

d11 = In (refrigerator kw) , if the residence has a refrigerator,
0, otherwise,

d12 = in (freezer kw), if the residence has a freezer,
0, otherwise,

d13 = 1, if the residence has an electric range,0, otherwise.

as notation, set

= [ ] [ .
dO [:]y r = d =
d1 x =
•
•
•d13

a-1-3

dOt

dt =
dlt
•
•
•
d13 ,t

x. = [::]
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These data are presumed to follow the model

where 1 denotes a vector of ones and

.=[::] [ b11
b12 b13 I [ b!n ]

Co
c1B = b21 b22 b23 = b(2) c = •b31 b32 b33 biJ) •
•c3

The matrix B is symmetric and a3 = -1. With these conventions, the non-

redundant parameters are

The errors

are taken to be independently and identically distributed each with zero mean.

The theory supporting this model was given in Chapter 6. The functional

form of the third equation

and the variables entering into the equation were determined empirically from a

data set of which Table 1 of Chapter 6 is a small sUbset; see Gallant and

Koenker (1984).1
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EXAMPLE 2. (Intertemporal Consumption and Investment) The data shown in

Table 1a is transformed as follows

consumption at time t / population at time t

consumption at time t - 1 / population at time t - 1

Xt = (1 + stock returns at time t)

These data are presumed to follow the model

Put

deflator at time t -

deflator at time t

t = 1, 2, ... , 239.

What should be true of these data in theory is that

t = 2, 3, ... , 239,

t = 2, 3, ... , 239,

t * s.

Even though e t is a scalar, we use the Kroneker product notation to keep the

notation consistent with the later sections.

The theory supporting this model specification follows; the reader who has

no interest in the theory can skip over the rest of the example.

The consumers problem is to allocate consumption and investment over time

given a stream wO' w1, w2, ... of incomes; is the income that the
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consumer receives at time t. We suppose that the various consumption bundles

available at time t can be mapped into a scalar quantity index c t and that

the consumer ranks various consumption streams cO' c1 , c2, ... according to

the utility indicator

where is a discount factor, a < < 1, and u(c) is a strictly concave

increasing function. We suppose that there' is a corresponding price index POt

so that expenditure on consumption in each period can be computed according to

POtCt' Above, we took c t to be an index of consumption per capita on

nondurables plus services and POt to be the corresponding implicit price

deflator.

Further, suppose that the consumer has the choice of investing in a

collection of N assets with maturities m., j = 1, 2, ... , N; asset j
J

bought at time t cannot be sold until time t + m.,
J

or equivalently, an asset

j bought at time t - m. cannot be sold until time t. Let qjt denote the
J

quantity of asset j held at time t, Pjt the price per unit of that asset

at time t, and let r jt denote the payoff at time t of asset j bought at

time t - m.. If, for example, the jth asset is a default-free, zero coupon
J

bond with term to maturity m. then r. is the par value of the bond at
J J ,t+m.

J
time t + m.; if the jth asset is a common stock then, definitionally, m. =J J
and r jt =Pjt + djt where djt is the dividend per share of the stock paid at

time t, if any. Above, we took the first asset to be NYSE stocks weighted by

value.

In Tables la and lb, t is interpreted as the instant of time at the end of

the month in which recorded. Nondurables and services, population, and the
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implicit deflator are assumed to be measured at the end of the month in which

recorded, and assets are assumed to be purchased at the beginning of the month

in which recorded. Thus, for a given row, nondurables and services divided by

population is interpreted as c t ' the implicit price deflator is interpreted

as POt' and the return on asset j is interpreted as (P1t + d1t - P1t-1)/P1t-1'

For example, if a three month bill is bought February 1 and sold April 30

it's return is recorded in the row for February. If t+m. refers to midnight
J

April 30, the value of t+m.
J

is recorded in the row for April and

c t+m.
J

r.J, t+m .
J

April Nondurables and Services / April Implicit Deflator
=

January Nondurables and Services / January Implicit Deflator

January Implicit Deflator
= (February Return +1)

April Implicit Deflator

As another, if a one month bill is bought April 1 and sold April 30 it is

recorded in the row for April. If t+m.
J

refers to midnight April 30 then

c t+m.
J

r.J,t+m.
J

April Nondurables and Services / April Implicit Deflator
=

March Nondurables and Services / March Implicit Deflator

March Implicit Deflator
= (April Return +1)

April Implicit Deflator

With these assumptions, the feasible consumption and investment plans

must satisfy the sequence of budget constraints
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N
wt + 1 r 'tq · t 'L = J J, -m.

J

The consumer seeks to maximize utility so the budget constraint is effectively

where Wt =Wt/POt' r jt = rjt/POt
vector notation,

o

and or, in an obvious

The sequences {Wt }, {r t }, and {p t } are taken to be outside the consumers

control or exogenously determined. Because these variables are outside the

consumer's control, the sequence {c t } is determined by the budget constraint

once {qt} is chosen. Thus, the only sequence that the consumer can control in

attempting to maximize utility is the sequence {qt}. The utility associated

to some sequence {qt} is

We shall take the sequences {wt }, {r t }, and {pt } to be stochastic

processes and shall assume that the consumer solves his optimization problem by

choosing a sequence of functions Qt of the form
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which maximizes

where

It may be that the consumer can achieve a higher expected utility by having

regard to some sequence of vector-valued variables {vt } in addition to {w t },

{r t }, and {Pt} in which case the argument list of Q and & above is

replaced by the augmented argument list

Conceptually, vt can be infinite dimensional because anything that is

observable or knowable is admissible as additional information in improving the

optimum. If one wishes to accommodate this possibility, let St be tne

smallest sigma-algebra such that the random variables

{ws ' r s ' Ps' vsj : s = 0, 1, ... , t; j = 1, 2, .... }

are measurable, let Qt be St measurable, and let &t(X) =&(XISt ).
the augmented argument list or the sigma-algebra St is called the consumer's

information set, depending on which approach is adopted. For our purposes, the

augmented argument list provides enough generality.
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Let QOt denote the solution to the consumer's optimization problem and

consider the related problem

with solution Qst· Suppose we piece the two solutions together

[ QO t o t s - 1 ,
Qt =

Qst s t 00.

Then

&'0V( {Qt }) 00 t + r'Q -= &'OLt =1 f3 u(wt t t-m

= 0 )s-1 otU(W
t
+ r'Q _ p'Q ) + 0 &' otU(Wt + r'Q _ p'Q )t Ot-m t Ot sLt=s t st-m t st

This inequality shows that QOt cannot be a solution to the consumer's

optimization problem unless it is also a solution to the related problem for

each s.

If we mechanically apply the Kuhn-Tucker theorem (Fiacco and McCormick,

1968) to the related problem
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subject to: Qt 0

we obtain the first order conditions

(a/aQ. ) (&OV({Qt}) + >.. Q. ] = 0,
JS JS JS

A Q = 0,js js

>. . O.
JS

where the >.. are Lagrange multipliers. If a positive quantity of asset j is
J

observed at time s -- if Q. > 0 -- then we must have >.. = 0 and
JS JS

o = (a/aQ. ) & otU(Wt + r'Q - p'Q )
JS S =s "" t t-m t t

S= (alaQ. ) & f3 u(W
S
+ r' Q - p' Q )

JS S S s-m s s

s+m.
+ (a I aQ. ) & f3 J u(w +

JS s s+m.
J

= - f3s (a/ac) u(c ) p. +s JS

s+m.
J & (a/ac) u(C )s s+m.

J
r.J ,s+m.

J

A little algebra reduces the first order conditions to

m.
f3 J &t[(a/ac)u(Ct )/(a/ac)u(ct)](r. t Ip't) - 1 = 0+m. J, +m. J

J J
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for t = 0, 1, 2, ... and j = 1, 2, ... , N. See Lucas (1978) for a more

rigorous derivation of these first order conditions.

Suppose that the consumer's preferences are given by some parametric

function u(c,a) with u(c) = u(c,ao ) for some unknown value of a. Let Y =
and denote the true but unknown value of Y by yo. Let Zt be any

vector-valued random variable whose value is known at time t and let the index

j correspond to some sequence of securities

positive. Put

whose observed values are

If we could compute the moments of the sequence of random variables

we could put

and estimate by setting m (Y)n
o= em (Y )n and solving for Y.

To this point, the operator &(.) has represented expectations computed

according to the consumer's sUbjective probability distribution. We shall now

impose the Rational Expectations Hypothesis which states that the consumer's

sUbjective probability distribution is the same distribution as the probability

law governing the random variables (w t }, {r t }, {Pt}' and {vt }. Under this

assumption, the random variable mt(yO) will have first moment
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: & [&,fs°mj[(a/aC)U(C,+m
j
' aO)/(a/ac)u(ct , aO)](rj,,+mj/Pjt) - 1} e z,]

For s +mj t the random variables mt(Yo)

since

oand ms(Y) are uncorrelated

= 8 0 0 - ,} o Zt]a )/(a/ac)u(ct , a )](r. t /p· t )J, +m. J
J J

x + ' 0 0 1 o Zs] Ia )/(a/ac)u(c , a )](rj,s+m./Pjs) - 'Jsm. s
J J

=8 0 0 - ,} o Zt]a )/(a/ac)u(ct , a )] (r j, t+m .!Pjt)
J J

x
0 0

- 1} o Zs] Ia )/(a/ac)u(c , a )](rj,s+m./Pjs)s
J J

=8 [0 0 Zt]

x aO)/(a/ac)u(cs ' aO)](rj,s+m./Pjs) - ,} 0 Zs] I

J J

= o.

If we specialize these results to the utility function u(c,a) = ca/a
for a < 1 and take to be common stocKs we will have u'(c,a) =ca
and m. = 1 which gives the equations listed at the beginning of this

J
discussion. I
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Table la. Consumption and Stock Returns.

Nondurables Value Weighted Imp 1ic it
t Year Month and Services Population NYSE Returns Deflator

0 1959 1 381.9 176.6850 0.0093695102 0.6818539
1 2 383.7 176.9050 0.0093310997 0.6823039
2 3 388.3 177.1460 0.0049904501 0.6814319
3 4 385.5 177.3650 0.0383739690 0.6830091
4 5 389.7 177.5910 0.0204769890 0.6846292
5 6 390.0 177.8300 0.0007165600 0.6876923
6 7 389.2 178.1010 0.0371922290 0.6893628
7 8 390.7 178.3760 -0.0113433900 0.6910673
8 9 393.6 178.6570 -0.0472779090 0.6930894
9 10 394.2 178.9210 0.0164727200 0.6945713
10 11 394.1 179.1530 0.0194594210 0.6950013
11 . 12 396.5 179.3860 0.0296911900 0.6958386
12 1960 1 396.8 179.5970 -0.0664901060 0.6960685
13 2 395.4 179.7880 0.0114439700 0.6967628
14 3 399.1 180.0070 -0.0114419700 0.6983212
15 4 404.2 180.2220 -0.0163223000 0.7013855
16 5 399.8 180.4440 0.0328373610 0.7016008
17 6 401.3 180.6710 0.0231378990 0.7024670
18 7 402.0 180.9450 -0.0210754290 0.7034826
19 8 400.4 181.2380 0.0296860300 0.7047952
20 9 400.2 181.5280 -0.0568203400 0.7061469
21 10 402.9 181.7960 -0.0045937700 0.7078680
22 11 403.8 182.0420 0.0472565590 0.7100049
23 12 401.6 182.2870 0.0478186380 0.7109064
24 1961 1 404.0 182.5200 0.0654135870 0.7106436
25 2 405.7 182.7420 0.0364446900 0.7108701
26 3 409.4 182.9920 0.0318523910 0.7105520
27 4 410.1 183.2170 0.0058811302 0.7100707
28 5 412.1 183.4520 0.0251120610 0.7100218
29 6 412.4 183.6910 -0.0296279510 0.7109602
30 7 410.4 183.9580 0.0303546690 0.7127193
31 8 411.5 184.2430 0.0251584590 0.7132442
32 9 413.7 184.5240 -0.0189705600 0.7138023
33 10 415.9 184.7830 0.0265103900 0.7136331
34 11 419.0 185.0160 0.0470347110 0.7136038
35 . 12 420.5 185.2420 0.0006585300 0.7143876
36 1962 1 420.8 185.4520 -0.0358958100 0.7155418
37 2 420.6 185.6500 0.0197925490 0.7177841
38 3 423.4 185.8740 -0.0055647301 0.7191781
39 4 424.8 186.0870 -0.0615112410 0.7203390
40 5 427.0 186.3140 -0.0834698080 0.7206089
41 6 425.2 186.5380 -0.0809235570 0.7208373
42 7 427.0 186.7900 0.0659098630 0.7203747
43 8 428.5 187.0580 0.0226466300 0.7218203
44 9 431.8 187.3230 -0.0487761200 0.7264938
45 10 431.0 187.5740 0.0039394898 0.7262181
46 11 433.6 187.7960 0.1114552000 0.7269373
47 12 434.1 188.0130 0.0139081300 0.7270214

(Continued next page)
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Table la. (Continued) .

Nondurables Value Weighted Imolicit
t Year Month and Services Population NYSE Returns Deflator

48 1963 1 434.7 188.2130 0.0508059190 0.7292386
49 2 433.7 188.3870 -0.0226500000 0.7299977
50 3 436.2 188.5800 0.0347222910 0.7297111
51 4 437.0 188.7900 0.0479895880 0.7295194
52 5 436.9 189.0180 0.0206833590 0.7308308
53 6 440.2 189.2420 -0.0178168900 0.7319400
54 7 442.1 189.4960 -0.0018435300 0.7335444
55 8 445.6 189.7610 0.0536292610 0.7349641
56 9 443.8 190.0280 -0.0126571200 0.7347905
57 10 444.2 190.2650 0.0286585090 0.7361549
58 11 445.8 190.4720 -0.0047020698 0.7375505
59 12 449.5 190.6680 0.0221940800 0.7385984
60 1964 1 450.1 190.8580 0.0256042290 0.7398356
61 2 453.7 191.0470 0.0181333610 0.7399162
62 3 456.6 191.2450 0.0173465290 0.7402540
63 4 456.7 191.4470 0.0051271599 0.7407488
64 5 462.1 191.6660 0.0166149310 0.7405324
65 6 463.8 191.8890 0.0158939310 0.7416990
66 7 466.0 192.1310 0.0202899800 0.7429185
67 8 468.5 192.3760 -0.0109651800 0.7432231
68 9 468.0 192.6310 0.0315313120 0.7448718
69 10 470.0 192.8470 0.0100951200 0.7457447
70 11 468.0 193.0390 0.0013465700 0.7465812
71 12 474.4 193.2230 0.0034312201 0.7476813
72 1965 1 474.5 193.3930 0.0377800500 0.7481560
73 2 477.4 193.5400 0.0066147698 0.7488479
74 3 474.5 193.7090 -0.0107356600 0.7506849
75 4 479.6 193.8880 0.0345496910 0.7525021
76 5 481.2 194.0870 -0.0047443998 0.7554032
77 6 479.5 194.3030 -0.0505878400 0.7593326
78 7 484.3 194.5280 0.0169978100 0.7602726
79 8 485.3 194.7610 0.0299301090 0.7601484
80 9 488.7 194.9970 0.0323472920 0.7605893
81 10 497.2 195.1950 0.0293272190 0.7626710
82 11 497.1 195.3720 0.0008636100 0.7648361
83 12 499.0 195.5390 0.0121703600 0.7671343
84 1966 1 500.1 195.6880 0.0100357400 0.7696461
85 2 501.5 195.8310 -0.0102875900 0.7730808
86 3 502.9 195.9990 -0.0215729900 0.7757009
87 4 505.8 196.1780 0.0233628400 0.7785686
88 5 504.8 196.3720 -0.0509349700 0.7793185
89 6 507.5 196.5600 -0.0109703900 0.7812808
90 7 510.9 196.7620 -0.0118703500 0.7827363
91 8 508.3 196.9840 -0.0748946070 0.7867401
92 9 510.2 197.2070 -0.0066132201 0.7894943
93 10 509.8 197.3980 0.0464050400 0.7910945
94 11 512.1 197.5720 0.0138342800 0.7922281
95 12 513.5 197.7360 0.0047225100 0.7933788

(Continued next page)
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Table 1a. (Continued) •

Nondurables Value Weighted Imp 1ici t
t Year Month and Services Population NYSE Returns Deflator

96 1967 1 516.0 197.8920 0.0838221310 0.7941861
97 2 517.7 198.0370 0.0098125497 0.7948619
98 3 519.0 198.2060 0.0433843100 0.7959538
99 4 521 .1 198.3630 0.0420965220 0.7965842
100 5 521.0 198.5370 -0.0415207000 0.7988484
101 6 523.1 198.7120 0.0232013710 0.8015676
102 7 522.1 198.9110 0.0482556600 0.8038690
103 8 525.5 199.1130 -0.0056581302 0.8058991
104 9 528.2 199.3110 0.0336121990 0.8076486
105 10 524.9 199.4980 -0.0276739710 0.8094875
106 11 527.9 199.6570 0.0078005102 0.8124645
107 · 12 531.9 199.8080 0.0307225010 0.8155668
108 1968 1 533.0 199.9200 -0.0389530290 0.8200750
109 2 533.9 200.0560 -0.0311505910 0.8231879
110 3 539.8 200.2080 0.0068653398 0.8262319
111 4 540.0 200.3610 0.0898963210 0.8285185
112 5 541.2 200.5360 0.0230161700 0.8318551
113 6 547.8 200.7060 0.0118528200 0.8335159
114 7 550.9 200.8980 -0.0211507900 0.8359049
115 8 552.4 201.0950 0.0163246690 0.8388849
116 9 551.0 201.2900 0.0422958400 0.8421053
117 10 552.1 201.4660 0.0111537600 0.8462235
118 11 556.7 201.6210 0.0562853110 0.8492905
119 · 12 554.1 201.7600 -0.0372401590 0.8521928
120 1969 1 557.0 201.8810 -0.0072337599 0.8560144
121 2 561.2 202.0230 -0.0502119700 0.8578047
122 3 560.6 202.1610 0.0314719300 0.8619336
123 4 561.9 202.3310 0.0213753300 0.8667023
124 5 566.5 202.5070 0.0029275999 0.8704325
125 6 563.9 202.6770 -0.0623450020 0.8751552
126 7 565.9 202.8770 -0.0630705430 0.8784238
127 8 569.4 203.0900 0.0504970810 0.8816298
128 9 568.2 203.3020 -0.0220447110 0.8856037
129 10 573.1 203.5000 0.0547974710 0.8888501
130 11 572.5 203.6750 -0.0314589110 0.8939738
131 · 12 572.4 203.8490 -0.0180749090 0.8981481
132 1970 1 577 .2 204.0080 -0.0763489600 0.9019404
133 2 578.1 204.1560 0.0597185420 0.9058986
134 3 577.7 204.3350 -0.0023485899 0.9077376
135 4 577.1 204.5050 -0.0995834470 0.9123202
136 5 580.3 204.6920 -0.0611347710 0.9155609
137 6 582.0 204.8780 -0.0502832790 0.917697Q
138 7 582.8 205.0860 0.0746088620 0.9208991
139 8 584.7 205.2940 0.0502020900 0.9235505
140 9 588.5 205.5070 0.0426676610 0.9276126
141 10 587.3 205.7070 -0.0160981810 0.9324025
142 11 587.6 205.8840 0.0521828200 0.9361811
143 12 592.6 206.0760 0.0617985200 0.9399258
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Table la. (Continued) .

Nondurables Value Weighted Imp 1ici t
t Year Month and Services Population NYSE Returns Deflator

144 1971 1 592.2 206.2420 0.0492740680 0.9414049
145 2 594.5 206.3930 0.0149685600 0.9434819
146 3 592.4 206.5670 0.0441647210 0.9469953
147 4 596.1 206.7260 0.0341992900 0.9506794
148 5 596.3 206.8910 -0.0365711710 0.9548885
149 6 598.5 207.0530 0.0043891501 0.9597327
150 7 597.3 207.2370 -0.0398038400 0.9630002
151 8 599.1 207.4330 0.0409017500 0.9679519
152 9 601.1 207.6270 -0.0056930701 0.9698885
153 10 601. 7 207.8000 -0.0395274310 0.9729101
154 11 604.9 207.9490 -0.0000956400 0.9752025
155 12 608.8 208.0880 0.0907427070 0.9797963
156 1972 1 607.9 208.1960 0.0241155400 0.9825629
157 2 610.3 208.3100 0.0308808110 0.9875471
158 3 618.9 208.4470 0.0091922097 0.9891743
159 4 620.6 208.5690 0.0066767102 0.9911376
160 5 622.3 208.7120 0.0176741590 0.9942150
161 6 623.7 208.8460 -0.0221355410 0.9961520
162 7 627.6 208.9880 -0.0018799200 0.9996813
163 8 629.7 209.1530 0.0382015890 1.0031760
164 9 631.7 209.3170 -0.0064313002 1.0079150
165 10 638.2 209.4570 0.0099495398 1.0117520
166 11 639.8 209.5840 0.0497901590 1.0151610
167 12 640.7 209.7110 0.0116306100 1.0190420
168 1973 1 643.4 209.8090 -0.0253177100 1.0247120
169 2 645.3 209.9050 -0.0398146990 1.0309930
170 3 643.3 210.0340 -0.0054550399 1.0399500
171 4 642.1 210.1540 -0.0464594700 1.0478120
172 5 643.2 210.2860 -0.0183557910 1.0541040
173 6 646.0 210.4100 -0.0088413004 1 .0603720
174 7 651.9 210.5560 0.0521348010 1.0632000
175 8 643.4 210.7150 -0.0302029100 1.0792660
176 9 651.3 210.8630 0.0522540810 1.0815290
177 10 649.5 210.9840 -0.0018884100 1.0896070
178 11 651.3 211.0970 -0.1165516000 1.0993400
179 12 647.7 211.2070 0.0153318600 1.1093100
180 1974 1 648.4 211.3110 -0.0013036400 1.1215300
181 2 646.2 211.4110 0.0038444500 1.1363350
182 3 645.9 211.5220 -0.0243075400 1.1489390
183 4 648.6 211.6370 -0.0433935780 1.1558740
184 5 649.3 211.7720 -0.0352610800 1.1667950
185 6 650.3 211 .9010 -0.0193944290 1.1737660
186 7 653.5 212.0510 -0.0730255170 1 .1802600
187 8 654.5 212.2160 -0.0852853730 1.1926660
188 9 652.7 212.3830 -0.1098341000 1.2043820
189 10 654.5 212.5180 0.1671594000 1.2122230
190 11 651.2 212.6370 -0.0397416390 1.2205160
191 12 650.3 212.7480 -0.0234328400 1.2278950
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Table la. (Continued) .

Nondurables Value Weighted Imp1ici t
t Year Month and Services Population NYSE Returns Deflator

-------------------------
192 1975 1 653.7 212.8440 0.1358016000 1.2337460
193 2 657.4 212.9390 0.0607054380 1.2376030
194 3 659.4 213.0560 0.0293416310 1.2406730
195 4 659.7 213.1870 0.0470072290 1.2457180
196 5 670.4 213.3930 0.0546782990 1.2502980
197 6 669.7 213.5590 0.0517648310 1.2593700
198 7 668.3 213.7410 -0.0637501480 1.2721830
199 8 670.1 213.9000 -0.0203062710 1.2786150
200 9 670.2 214.0550 -0.0366309580 1.2821550
201 10 670.8 214.2000 0.0609995690 1.2904000
202 11 674.1 214.3210 0.0314961600 1.2966920
203 12 677.4 214.4460 -0.0105694800 1.3039560
204 1976 1 684.3 214.5610 0.1251743000 1.3081980
205 2 682.9 214.6550 0.0012425600 1.3069260
206 3 687.1 214.7620 0.0300192200 1.3092710
207 4 690.6 214.8810 -0.0108725300 1.3132060
208 5 688.7 215.0180 -0.0088088503 1.3206040
209 6 695.0 215.1520 0.0472505990 1.3256120
210 7 696.8 215.3110 -0.0073758499 1.3307980
211 8 699.6 215.4780 0.0005799900 1.3381930
212 9 702.5 215.6420 0.0261333100 1.344911 0
213 10 705.6 215.7920 -0.0214380810 1.3520410
214 11 709.7 215.9240 0.0046152598 1.3587430
215 12 715.8 216.0570 0.0585772800 1.3657450
216 1977 1 717.6 216.1860 -0.0398427810 1.3720740
217 2 719.3 216.3000 -0.0162227190 1.3831500
218 3 716.5 216.4360 -0.0106509200 1.3884160
219 4 719.1 216.5650 0.0038957901 1.3953550
220 5 722.6 216.7120 -0.0126387400 1.4014670
221 6 721.5 216.8630 0.0509454310 1.4105340
222 7 728.3 217.0300 -0.0156951400 1.4159000
223 8 727.0 217.2070 -0.0140849800 1.4244840
224 9 729.1 217.3740 0.0006794800 1.4295710
225 10 735.7 217.5230 -0.0394544790 1.4350960
226 11 739.4 217.6550 0.0419719890 1.4442790
227 12 740.1 217.7850 0.0052549900 1.4508850
228 1978 1 738.0 217.8810 -0.0568409600 1.4581300
229 2 744.8 217.9870 -0.0121089800 1.4663000
230 3 750.5 218.1310 0.0318689010 1.4743500
231 4 750.4 218.2610 0.0833722430 1.4862740
232 5 750.3 218.4040 0.0186665390 1.5033990
233 6 753.1 218.5480 -0.0129163500 1.5146730
234 7 755.6 218.7200 0.0564879100 1.5199846
235 8 761 .1 218.9090 0.0372171590 1.5284460
236 9 765.4 219.0780 -0.0063229799 1.5412860
237 10 765.2 219.2360 -0.1017461000 1.5541030
238 11 768.0 219.3840 0.0313147900 1.5640620
239 12 774.1 219.5300 0.0166718100 1.5694350

Source: Hansen and Singleton (1982,1984)
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Table lb. Treasury Bill Returns.

Holding Period

t Year Month 1 Month 3 Months 6 Months

0 1959 1 0.0021 0.0067620277 0.0149464610
1 2 0.0019 0.0067054033 0.0153553490
2 3 0.0022 0.0069413185 0.0156610010
3 4 0.0020 0.0071977377 0.0164365770
4 5 0.0022 0.0072308779 0.0162872080
5 6 0.0024 0.0076633692 0.0175679920
6 7 0.0025 0.0080889463 0.0190058950
7 8 0.0019 0.0075789690 0.0191299920
8 9 0.0031 0.0097180605 0.0230187180
9 10 0.0030 0.0103986260 0.0247714520
10 11 0.0026 0.0101703410 0.0219579940
11 12 0.0034 0.0112402440 0.0246732230
12 1960 1 0.0053 0.0111309290 0.0253483060
13 2 0.0029 0.0101277830 0.0230150220
14 3 0.0035 0.0106238130 0.0225163700
15 4 0.0019 0.0076926947 0.0172802210
16 5 0.0027 0.0076853037 0.0174299480
17 6 0.0024 0.0079696178 0.0172280070
18 7 0.0013 0.0055410862 0.0131897930
19 8 0.0017 0.0055702925 0.0127488370
20 9 0.0016 0.0057605505 0.0142772200
21 10 0.0022 0.0058845282 0.0143817660
22 11 0.0013 0.0053367615 0.0121047500
23 . 12 0.0016 0.0060379505 0.0138461590
24 1961 1 0.0019 0.0055921078 0.0121918920
25 2 0.0014 0.0058113337 0.0127416850
26 3 0.0020 0.0065517426 0.0141991380
27 4 0.0017 0.0060653687 0.0131639240
28 5 0.0018 0.0057235956 0.0120902060
29 6 0.0020 0.0059211254 0.0130860810
30 7 0.0018 0.0057165623 0.0123114590
31 8 0.0014 0.0056213140 0.0128748420
32 9 0.0017 0.0059502125 0.0135532620
33 10 0.0019 0.0056616068 0.0136462450
34 11 0.0015 0.0057950020 0.0132193570
35 . 12 0.0019 0.0064492226 0.0142288210
36 1962 1 0.0024 0.0067474842 0.0148699280
37 2 0.0020 0.0068224669 0.0148422720
38 3 0.0020 0.0068684816 0.0148569350
39 4 0.0022 0.0069818497 0.0147231820
40 5 0.0024 0.0068957806 0.0145040750
41 6 0.0020 0.0068334341 0.0141508580
42 7 0.0027 0.0073847771 0.0149892570
43 8 0.0023 0.0072803497 0.0155196190
44 9 0.0021 0.0071101189 0.0151845220
45 10 0.0025 0.0069708824 0.0148054360
46 11 0.0020 0.0068755150 0.0143437390
47 12 0.0023 0.0072675943 0.0150616170
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Table lb. (Continued) .

Holding Period

t Year Month 1 Month 3 Months 6 Months

48 1963 1 0.0025 0.0073993206 0.0151528120
49 2 0.0023 0.0074235201 0.0153222080
50 3 0.0023 0.0073300600 0.0150877240
51 4 0.0025 0.0073734522 0.0152205230
52 5 0.0024 0.0073573589 0.0153070690
53 6 0.0023 0.0076377392 0.0158174040
54 7 0.0027 0.0075825453 0.0157427790
55 8 0.0025 0.0083107948 0.0174001460
56 9 0.0027 0.0086047649 0.0178933140
57 10 0.0029 0.0085899830 0.0179922580
58 11 0.0027 0.0088618994 0.0184588430
59 12 0.0029 0.0088895559 0.0187247990
60 1964 1 0.0030 0.0089538097 0.0187361240
61 2 0.0026 0.0088821650 0.0185148720
62 3 0.0031 0.0091063976 0.0192459820
63 4 0.0029 0.0089648962 0.0188522340
64 5 0.0026 0.0087850094 0.0184588430
65 6 0.0030 0.0088362694 0.0184062720
66 7 0.0030 0.0087610483 0.0180916790
67 8 0.0028 0.0088040829 0.0182579760
68 9 0.0028 0.0087461472 0.0181269650
69 10 0.0029 0.0090366602 0.0189046860
70 11 0.0029 0.0089949369 0.0189571380
71 . 12 0.0031 0.0096279383 0.0203764440
72 1965 1 0.0028 0.0097374916 0.0201922660
73 2 0.0030 0.0097503662 0.0203632120
74 3 0.0036 0.0101563930 0.0207239390
75 4 0.0031 0.0098274946 0.0205006600
76 5 0.0031 0.0099694729 0.0204553600
77 6 0.0035 0.0098533630 0.0202448370
78 7 0.0031 0.0096805096 0.0197677610
79 8 0.0033 0.0096729994 0.0199424030
80 9 0.0031 0.0096987486 0.0202448370
81 10 0.0031 0.0102273230 0.0216147900
82 11 0.0035 0.0102949140 0.0214961770
83 12 0.0033 0.0104292630 0.0217467550
84 1966 1 0.0038 0.0114099980 0.0241273640
85 2 0.0035 0.0117748980 0.0235883000
86 3 0.0038 0.0116740470 0.0245782140
87 4 0.0034 0.0115190740 0.0244190690
88 5 0.0041 0.0118079190 0.0243724580
89 6 0.0038 0.0116353030 0.0239523650
90 7 0.0035 0.0116611720 0.0240478520
91 8 0.0041 0.0120524170 0.0255184170
92 9 0.0040 0.0125415330 0.0282398460
93 10 0.0045 o.0136051180 0.0286009310
94 11 0.0040 0.0133793350 0.0278792380
95 12 0.0040 0.0131639240 0.0271854400
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Table lb. (Continued) .

Holding Period

t Year Month 1 Month 3 Months 6 Months

96 1967 1 0.0043 0.0122823720 0.0254547600
97 2 0.0036 0.0114994050 0.0231827500
98 3 0.0039 0.0115102530 0.0232950450
99 4 0.0032 0.0102145670 0.0208503010
100 5 0.0033 0.0094506741 0.0197293760
101 6 0.0027 0.0087846518 0.0192024710
102 7 0.0031 0.0100209710 0.0223804710
103 8 0.0031 0.0105757710 0.0241363050
104 9 0.0032 0.0111052990 0.0248435740
105 10 0.0039 0.0111955400 0.0259439950
106 11 0.0036 0.0115144250 0.0258800980
107 12 0.0033 0.0126451250 0.0286339520
108 1968 1 0.0040 0.0127922300 0.0286719800
109 2 0.0039 0.0123600960 0.0252685550
110 3 0.0038 0.0128250120 0.0269453530
111 4 0.0043 0.0130600930 0.0273784400
112 5 0.0045 0.0138714310 0.0293196440
113 6 0.0043 0.0146449800 0.0306105610
114 7 0.0048 0.0135078430 0.0283122060
115 8 0.0042 0.0131379370 0.0273113250
116 9 0.0043 0.0132676360 0.0269986390
117 10 0.0044 0.0130808350 0.0272654290
118 11 0.0042 0.0140209200 0.0285472870
119 . 12 0.0043 0.0139169690 0.0287613870
120 1969 1 0.0053 0.0156394240 0.0327807660
121 2 0.0046 0.01584-72060 0.0329054590
122 3 0.0046 0.0159218310 0.0330774780
123 4 0.0053 0.0152308940 0.0315673350
124 5 0.0048 0.0150020120 0.0310289860
125 6 0.0051 0.0155957940 0.0331374410
126 7 0.0053 0.0159739260 0.0351030830
127 8 0.0050 0.0181180240 0.0373669860
128 9 0.0062 0.0177775620 0.0368773940
129 10 0.0060 0.0182124380 0.0373669860
130 11 0.0052 0.0178167820 0.0382032390
131 . 12 0.0064 0.0192197560 0.0406687260
132 1970 1 0.0060 0.0201528070 0.0415455100
133 2 0.0062 0.0201845170 0.0399575230
134 3 0.0057 0.0175420050 0.0353578330
135 4 0.0050 0.0160522460 0.0327900650
136 5 0.0053 0.0176727770 0.0373940470
137 6 0.0058 0.0176465510 0.0366872550
138 7 0.0052 0.0163348910 0.0338231330
139 8 0.0053 0.0161305670 0.0333294870
140 9 0.0054 0.0157260890 0.0328800680
141 10 0.0046 0.0148160460 0.0328979490
142 11 0.0046 0.0148533580 0.0315511230
143 12 0.0042 0.0125738380 0.0254547600
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Table 1b. (Continued) .

Holding Period

t Year Month 1 Month 3 Months 6 Months

144 1971 1 0.0038 0.0123342280 0.0249764920
145 2 0.0033 0.0104724170 0.0215225220
146 3 0.0030 0.0085597038 0.0180971620
147 4 0.0028 0.0086690187 0.0190058950
148 5 0.0029 0.0100854640 0.0215620990
149 6 0.0037 0.0109888320 0.0232796670
150 7 0.0040 0.0131714340 0.0277613400
151 8 0.0047 0.0134450200 0.0293101070
152 9 0.0037 0.0109888320 0.0238093140
153 10 0.0037 0.0116611720 0.0252420900
154 11 0.0037 0.0109502080 0.0227504970
155 12 0.0037 0.0108597280 0.0224862100
156 1972 1 0.0029 0.0091836452 0.0203764440
157 2 0.0025 0.0084762573 0.0186685320
158 3 0.0027 0.0085406303 0.0192197560
159 4 0.0029 0.0096729994 0.0224862100
160 5 0.0030 0.0091643333 0.0205764770
161 6 0.0029 0.0096213818 0.0212192540
162 7 0.0031 0.0102015730 0.0230324270
163 8 0.0029 0.0093638897 0.0218169690
164 9 0.0034 0.0115317110 0.0257205960
165 10 0.0040 0.0114973780 0.0267322060
166 11 0.0037 0.0118292570 0.0260753630
167 . 12 0.0037 0.0123860840 0.0266788010
168 1973 1 0.0044 0.0129822490 0.0277190210
169 2 0.0041 0.0144283770 0.0300337080
170 3 0.0046 0.0148830410 0.0311747790
171 4 0.0052 0.0163263080 0.0353578330
172 5 0.0051 0.0159218310 0.0385923390
173 6 0.0051 0.0176727770 0.0363070960
174 7 0.0064 0.0192872290 0.0398482080
175 8 0.0070 0.0212606190 0.0439169410
176 9 0.0068 0.0221503970 0.0455567840
177 10 0.0065 0.0179196600 0.0393607620
178 11 0.0056 0.0188183780 0.0385221240
179 12 0.0064 0.0187247990 0.0404498580
180 1974 1 0.0063 0.0191034080 0.0378948450
181 2 0.0058 0.0192459820 0.0377205610
182 3 0.0056 0.0191277270 0.0383199450
183 4 0.0075 0.0215357540 0.0431109670
184 5 0.0075 0.0226182940 0.0460462570
185 6 0.0060 0.0207901000 0.0436338190
186 7 0.0070 0.0189310310 0.0415712590
187 8 0.0060 0.0196549890 0.0430125000
188 9 0.0081 0.0232796670 0.0497723820
189 10 0.0051 0.0157541040 0.0382287500
190 11 0.0054 0.0199817420 0.0407782790
191 12 0.0070 0.0190396310 0.0393673180
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Table lb. (Continued) .

Holding Period

t Year Month 1 Month 3 Months 6 Months

192 1975 1 0.0058 0.0180318360 0.0361442570
193 2 0.0043 0.0144213440 0.0303153990
194 3 0.0041 0.0137765410 0.0290288930
195 4 0.0044 0.0141247510 0.0309060810
196 5 0.0044 0.0138258930 0.0305682420
197 6 0.0041 0.0132120850 0.0280662780
198 7 0.0048 0.0151025060 0.0319100620
199 8 0.0048 0.0159218310 0.0347890850
200 9 0.0053 0.0162349940 0.0358686450
201 10 0.0056 0.0166865590 0.0402698520
202 11 0.0041 0.0141117570 0.0294467210
203 . 12 0.0048 0.0141172410 0.0310940740
204 1976 1 0.0047 0.0131934880 0.0284404750
205 2 0.0034 0.0120286940 0.0256940130
206 3 0.0040 0.0127384660 0.0284404750
207 4 0.0042 0.0125932690 0.0277762410
208 5 0.0037 0.0125379560 0.0275914670
209 6 0.0043 0.0140357020 0.0306911470
210 7 0.0047 0.0136423110 0.0298480990
211 8 0.0042 0.0132082700 0.0285162930
212 9 0.0044 0.0129737850 0.0276085140
213 10 0.0041 0.0129562620 0.0273720030
214 11 0.0040 0.0124713180 0.0261569020
215 . 12 0.0040 0.0112657550 0.0235443120
216 1977 1 0.0036 0.0110250710 0.0232796670
217 2 0.0035 0.0120649340 0.0258269310 -
218 3 0.0038 0.0119923350 0.0256673100
219 4 0.0038 0.0115835670 0.0246578450
220 5 0.0037 0.0119640830 0.0254743100
221 6 0.0040 0.0127894880 0.0269986390
222 7 0.0042 0.0127229690 0.0268921850
223 8 0.0044 0.0137610440 0.0295736790
224 9 0.0043 0.0142158270 0.0304151770
225 10 0.0049 0.0150877240 0.0321971180
226 11 0.0050 0.0159218310 0.0339560510
227 12 0.0049 0.0154412980 0.0331405400
228 1978 1 0.0049 0.0156871080 0.0336534980
229 2 0.0046 0.0164700750 0.0349206920
230 3 0.0053 0.0164960620 0.0349899530
231 4 0.0054 0.0166230200 0.0351681710
232 5 0.0051 0.0163058040 0.0359042880
233 6 0.0054 0.0170561080 0.0374757050
234 7 0.0056 0.0180656910 0.0388967990
235 8 0.0056 0.0175942180 0.0384653810
236 9 0.0062 0.0193772320 0.0403403040
237 10 0.0068 0.0206396580 0.0438541170
238 11 0.0070 0.0223728420 0.0483353140
239 12 0.0078 0.0232532020 0.0490025280

Source: Hansen and Singleton ( 1982, 1984)
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2. THREE-STAGE LEAST SQUARES.

Multivariate responses Yt' L-vectors, are assumed to be determined by k-

dimensional independent variables xt according to the system of simultaneous

equations

c:x = 1, 2, ... , L; t = 1, 2, ... , n,

where each is a real-valued function, each is a p -c:x
dimensional vector of unknown parameters, and the ec:xt represent unobservable

observational or experimental errors. The analysis is conditional on the

sequence of independent variables {xt } as described in Section 2 of Chapter 3

and the xt do not contain lagged values of the Yt as elements. See the next

section for the case when they do.

For any set of values e1, e2, ... , eL of the errors, any admissible value

for the vector x of independent variables, and any admissible value of the

parameters e l , e 2, ... , em ' the system of equations

ec:x c:x=1,2, .. .,L

is assumed to determine y uniquely; if the equations have multiple roots,

there is some rule for determining which solution is meant. Moreover, the -

solution must be a continuous function of the errors, the parameters, and the

independent variables. However, one is not obligated to actually be able to

compute y given these variables or even to have complete knowledge of the

system in order to use the methods described below it is just that the theory

(Chapter 3) on which the methods are based relies on this assumption for its

validity.
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There is one feature of implicit models that one should not lose sight of

in applications. If an equation of the system

is transformed using some one-to-one function to obtain

U
Q

where

the result is still a nonlinear equation in implicit form which is equivalent

to the original equation for the purpose of determining y from knowledge of

the independent variables, parameters, and errors. However, setting aside the

identity transformation, the distribution of the random variable will

Thus one has complete freedom to use transformationsdiffer from that of e
Q

of this sort in applications an attempt to make the error distribution more

nearly normally distributed. Doing so is sound statistical practice.

In an application it may be the case that not all the equations of the

system are known or it may be that one is simply not interested in some of

them. Reorder the equations as necessary so that it is the first M of the

L equations above that are of interest, let 6 be a p-vector that consists of

the non-redundant parameters in the set 61 , 62 , 6M, and let

ql(y,X,61 ) e1

q(y,x,e)
q2(y,x,e2 ) e =

e2
• •
• •

•
qM(y,x'6M> eM
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r q,(Yt,xt,e,)
q2(Yt,xt ,e2)

I •l •
•
•

We assume that the error vectors are independently and identically

distributed with mean zero and unknown variance-covariance matrix E,

t = ',2, .... , n.

Independence implies a lack of correlation, viz.

t ':f; s.

This is the grouped-by-observation or multivariate arrangement of the data

with the equation index « thought of as the fastest moving index and the

observation index t the slowest. The alternative arrangement is the grouped-

by-equation ordering with t the fastest moving index and « the slowest. As

we saw in Chapter 6, the multivariate scheme has two advantages, it facilitates

writing code and it meshes better with the underlying theory (Chapter 3).

However, the grouped-by-equation formulation is more prevalent in the

literature because it was the dominant form in the linear simultaneous

equations literature and got carried over when the nonlinear literature

developed. We shall develop the ideas using the multivariate scheme and then

conclude with a summary in the alternative notation. Let us illustrate with

the first example.
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Y + r'b Y l'b )/(a + r'b Y3t
Ilb
(3»] + e

1t t (1) 3t (1 ) 3 t (3) 1t

Y + r'b y l'b )/(a + r'b - Y3tIlb(3»] + e 2t2t t (2) 3t (2) 3 t (3)

Y3t = d'c + et 3t

where 1 denotes a vector of ones,

[ 'It ] [ r
It

]

dOt

[ ]dltYt Y2t ' r t = r 2t ' dt x t-Y3t r 3t --d13 ,t
and

I::] [bl1 bI2 bI3

] [bit l ]
Co
c1a = B b2I b22 b23 , c = -b3I b32 b33 b(3) --c3

The matrix 8 is symmetric and a = -l.3
Our interest centers in the first and second equations so we write

a l + a 2-rl + a3-r2 + a 4-r3 - (a2+ a 3+ a4 )-Y3

YI - !l.n
-1 + a4-r l + a7-r2 + as -r3 - (a4+ e7+ as) eY3

q(Y,x,a)
a5 + a3-r l + a6-r2 + a 7-r3 - (a3+ a6+ a7 ) -Y3

Y2 - !l.n
-1 + e4-rl + a7er 2 + a8-rS - (e4+ a7+ es ) -Ys
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Taking values from Table 1 of Chapter 6, we have

(r' I d' )'XIII

(1.36098, 1.05082, 0.058269 I 1, 0.99078, 9.7410, 6.39693, 0,
1,0.0000, 9.4727, 1.09861, 1, 0.00000, -0.35667,0.00000, 0)'

(1.36098, 1.05082, 0.058269 I I, 0.99078, 9.5104, 6.80239, 0,
0, 0.0000, 0.0000, 1.94591, I, 0.00000, -0.35667,0.27763, I)'

•
•
•

•
•
•

(1.36098, 1.05082, 0.058269 I I, 0.99078,
0, 0.0000,10.0858, 1.38629, I, 0.00000,

(1.36098, 1.05082, 0.576613 I I, 1.07614,
0, 0.0000, 0.0000, 1.60944, I, 1.60944,

8.7903, 6.86693, 0,
0.58501, 0.27763, I)'

9.1050, 6.64379, 0,
0.58501, 0.00000, I)'

(1.36098, 1.05082, 0.576613 I 1, 1.07614, 11.1664, 7.67415, 0,
0, 9.7143, 0.0000, 1.60944, I, 1.60944, 0.33647, 0.27763, I)'

•
•
•

(1.36098, 1.36098, 0.058269 ! I, 1.08293,
0, 8.3701, 0.0000, 1.09861, I, 1.09861,

(1.88099, 1.36098, 0.576613 I I, 1.45900,
0, 0.0000, 9.2103, 0.69315, I, 0.69315,

8.8537, 6.72383, 0,
0.58501, 0.68562, I)'

8.8537, 6.88653, 0,
o.58501, O. 00000, ·1) ,

for the independent or exogenous variables and we have
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Yl (2.45829, 1.59783, -0.7565) I

Y2 (1. 82933, 0.89091, -0.2289) ,
•
•
•
Y19 (2.33247, 1.31287, 0.3160)'

Y20 (1. 84809, 0.86533, -0.0751) I

•
•
•
Y40 (1.32811 , 0.72482, 0.9282) ,

Y41 (2.18752, 0.90133, 0.1375) I

•
•
•
Y224 (1. 06851, 0.51366, 0.1475)'

for the dependent or endogenous variables.

One might ask why we are handling the model in this way rather than simply

substituting d'c for above and then applying the methods of Chapter 6.

After all, the theory on which we rely is nonstochastic and we just tacked on

an error term at a convenient moment in the discussion. As to the theory, it

would have been just as defensible to substitute d'c for in the

nonstochastic phase of the analysis and then tack on the error term. By way of

reply, the approach we are taking seems to follow the natural progression of

ideas. Throughout Chapter 6, the variable Y3 was regarded as being a

potentially error ridden proxy for what we really had in mind. Now, a direct

remedy seems more in order than a complete reformulation of the model.

Moreover, the specification [;y = d'c3 was data determined and is rather ad

hoc. It is probably best just to rely on it for the purpose of suggesting

instrumental variables and not to risk the specification error a substitution

of d'c for Y3 might entail .•

Three-stage least squares is a method of moments type estimator where

instrumental variables are used to form the moment equations. That is, letting
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Zt denote some K-vector of random variables, one forms sample moments

m (e)n

where

equates them to population moments

=

q'(Yt,xt,e,).Zt
q2(Yt,xt ,e2)·zt•
•

,

and uses the solution e as the estimate of eO. If, is as usually the case,

the dimension M.K of mn(e) exceeds the dimension p of e these equations

will not have a solution. In this case, one applies the generalized least

squares heuristic and estimates oe by that value e that minimizes

s(e,v)

with

To apply these ideas, one must compute &[m (eo)] and e[m (eo),m'(eo»).n n n
Obviously there is an incentive to make this computation as easy as possible.

Since

°we will have =0 if Zt is uncorrelated with e t and
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=

if {Zt} is independent of {et }. These conditions will obtain (Problem 1) if

we impose the requirement that

where Z(x) is some (possibly nonlinear) function of the independent

variables.

We shall also want to be correlated with q(Yt,xt,e) for values of e

other than eO or the method will be vacuous (Problem 2). This last condition

is made plausible by the requirement that Zt = Z(xt ) but, strictly speaking,

direct verification of the identification condition (Chapter 3, Section 4)

ltim m(e)=On-oclD n

is required. This is an almost sure limit. Jts computation is discussed in

Section 2 of Chapter 3 but it usually suffices to check that

o.. e =e .

As we remarked in Chapter 1, few are going to take the trouble to verify this

condition in an application but it is prudent to be on guard for violations

that are easily detected (Problem 3).

The matrix V is unknown so we adopt the same strategy that was used in

multivariate least squares: Form a preliminary estimate of and

then estimate V from residuals. Let

and put
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There are two alternative estimators of V in the literature. The first

of these affords some protection against heteroskedasticity

The second uses two-stage least-squares residuals to estimate E. The two-

stage least-squares estimate of the parameters of the single equation

is

t = 1,2, ... , n

Two-stage least squares is vestigial terminology left over from the linear case

(Problem 4). Letting

the estimate of E is the matrix E with typical element viz.

E

and the estimate of V ;s

Suppose that one worked by analogy with the generalized least squares

approach used in Chapter 6 and viewed

as a nonlinear regression in vector form and viewed
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S(9,V) = [y - f(9)]' V- 1[y - f(9)]

as the objective function for the generalized least-squares estimator of 9.

One would conclude that the estimated variance-covariance matrix of 9 was

C = [{(a/a9' )[y-f (;)]} I v- 1{(a/a9' )[y-f (;)]}] -1

= 0 0 Zt]}-l

This intuitive approach does lead to the correct answer (Problem 5).

The Gauss-Newton correction vector can be deduced in this way as well

(Problem 6),

The modified Gauss-Newton algorithm for minimizing S(9,V) is:

0) Choose a starting estimate 90 , Compute DO = 0(90 ,V) and find a

AO between zero and one such that S(90+AOOO'V) < S(90 ,V)

1) Let 91 = 90 + AOOO' Compute 01 = 0(91,V) and find a

A1 between zero and one such that S(91+A101,V) < S(91 ,V)

•
•
•
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The comments in Section 4 of Chapter' regarding starting rules, stopping

rules, alternative algorithms apply directly.

In summary, the three-stage least-squares estimator is computed as follows.

The set of equations of interest are

q,(Yt,xt,a,)
q2(Yt,x t ,a2)

•
t =',2, .. ., n

and instrumental variables of the form

are selected. The objective function that defines the estimator is

One minimizes to obtain a preliminary estimate
A#
a , viz.

and puts

The estimate of aO is the minimizer a of s(a,V), viz.

a = argmina s(a,V).

The estimated variance-covariance of a is
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We illustrate with the example.

EXAMPLE 1 (continued). A three-stage least-squares fit of the model

91 + 92-r1 + 93-r2 + 94-r3 - (92+ 93+ 94 ) -Y3

Y1 - ltn
-1 + 94-l'1 + 97-l'2 + 9s -l'3 - (94+ 97+ 9S ) -Y3

q(Y,x,9)
(93+ 97 ) -Y395 + 93-l'1 + 96-r2 + 97-l'3 - 96+

Y2 - ltn
-1 + 94-l'1 + 97-r2 + 9S-r3 - (94+ 97+ 9S ) -Y3

to the data of Table 1, Chapter 6, is shown as Figure 1.
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Figure 1. Example 1 Fitted by Nonlinear Three-Stage Least Squares.

SAS statements:

PROC MODEL OUT=M0001;
ENDOGENOUS Y1 Y2 Y3;
EXOGENOUS R1 R2 R3 DO 01 02 03 04 05 06 07 08 09 010 011 012 013;
PARMS T1 T2 T3 T4 T5 T6 T7 T8 CO C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13:
PEAK= Tl+T2*Rl+T3*R2+T4*R3-(T2+T3+T4)*Y3;
INTER=T5+T3*Rl+T6*R2+T7*R3-(T3+T6+T7)*Y3;
BASE= -1+T4*Rl+T7*R2+T8*R3-(T4+T7+T8)*Y3;
Y1=LOG(PEAK/BASE); Y2=LOG(INTER/BASE);
Y3=00*CO+Ol*Cl+02*C2+03*C3+04*C4+05*C5+06*C6+07*C7+08*C8+09*C9+010*C10+011*C11

+012*C12+013*C13;
PROC SYSNLIN OATA=EGOl MOOEL=MOOOI N3SLS METHOO=GAUSS MAXIT=50 CONVERGE=1.E-8

SOATA=IOENTITY OUTS=SHAT OUTEST=THAT;
INSTRUMENTS R1 R2 R3 00 01 02 03 04 05 06 07 08 09 010 011 012 013 / NOINT;
FIT Y1 Y2 START=(T1 -2.98 T2 -1.16 T30.787 T4 0.353 T5 -1.51 T6 -1.00

T70.054 T8 -0.474);
PROC SYSNLIN OATA=EG01 MOOEL=MOOOI N3SLS METHOO=GAUSS MAXIT=50 CONVERGE=1.E-8

SOATA=SHAT ESTOATA=THAT;
INSTRUMENTS Rl R2 R3 DO 01 02 03 04 05 06 07 08 09 010 011 012 013 / NOINT;

Output:
SAS 7

SYSNLIN PROCEDURE

NONLINEAR 3SLS PARAMETER ESTIMATES

APPROX. 'T' APPROX. 1ST STAGE
PARAMETER ESTIMATE STO ERROR RATIO PROB>!T! R-SQUARE

T1 -2.13788 0.58954 -3.63 0.0004 0.6274
T2 -1.98939 0.75921 -2.62 0.0094 0.5473
T3 0.70939 0.15657 4.53 0.0001 0.7405
T4 0.33663 0.05095 6.61 0.0001 0.7127
T5 -1.40200 0.15226 -9.21 0.0001 0.7005
T6 -1.13890 0.18429 -6.18 0.0001 0.5225
T7 0.02913 0.04560 0.64 0.5236 0.5468
T8 -0.50050 0.04517 -11. 08 0.0001 0.4646

NUMBER OF OBSERVATIONS
USEO 220
MISSING 4

STATISTICS
OBJECTIVE
OBJECTIVE*N

FOR SYSTEM
0.15893
34.96403

COVARIANCE OF RESIOUALS MATRIX USEO FOR ESTIMATION

,
I

S
Y1
Y2

Y1
0.17159
0.09675

Y2
0.09675
0.09545
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9 = =

-2.137881
-1.98939
0.70939
0.33663

-1.40200 I
-1.13890

0.02913 j
-0.50050

(from Figure 1),

A

E = [ 0.17159
0.09675

0.09675 ]
0.09545

(from Figure 1),

S(9,E) =34.96403 (from Figure 1).

These estimates are little changed from the multivariate least-squares

estimates

9 1 -2.92458
92 -1.28675
A

93 0.81857
9 = 94 = 0.36116 (from Figure 3c, Chapter 6).

9 5 I -1.53759

j -1.04896
I

97 0.03009 j
98 -0.46742

The main impact of the use of three-stage least squares has been to inflate the

estimated standard errors. I
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The alternative notational convention is obtained by combining all the

observations pertaining to a single equation into an n-vector

n

CIq(Yl,x,aa)
qa(Y2,x,aa)
•
•

1

(a I, 2, ... , M)

and then stacking these vectors equation-by-equation to obtain

ql (a1 )
q(a) = q2 (a2 )·•

•

n.M 1
with

•
•

If desired, one can impose across equations restrictions by deleting the

redundant entries of a. Arrange the instrumental variables into a matrix Z

as follows

Zl
1

Z Zl2
•
•
•
z'n

n K
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and put

With these conventions the three-stage least-squares objective function is

An estimate of E can be obtained by computing either

A#
a = argmine S(a,(1 8 ZIZ)]

or

A#
argmina Pz q (e )a =ex ex exex

and letting E be the matrix with typical element

A# A#
0<X13 = )qex(aex ).

The estimate of aO is

(ex = 1,2, .•. , M)

a = argmina S[a,(E 8 ZIZ)]

with estimated variance-covariance matrix

These expressions are svelte by comparison with the summation notation used

used above. But the price of beauty is an obligation to assume that the errors

each have the same variance E and are uncorrelated with the sequence

{Zt}' Neither the correction for heteroskedasticity suggested above nor the

correction for autocorrelation discussed in the next section can be

accommodated within this notational framework.
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Amemiya (1977) considered the question of the optimal choice of instrumen-

tal variables and found that the optimal choice is obtained if the columns of

Z span the same space as the union of the spaces spanned by the columns of

c(a/ae l)q(eO). This can necessitate a large number of columns of Z whicha a
presumably adds to the small sample variance of the estimator but will have no

effect asymptotically. He proposes some alternative three-stage least-squares

type estimators obtained by replacing (E- 1 PZ) with a matrix that has

smaller rank but achieves the same asymptotic variance. He also shows that the

three-stage least-squares is not as efficient asymptotically as the maximum

likelihood estimator, discussed in Section 5.

The most disturbing aspect of three-stage least squares estimators is that

they are not invariant to the choice of instrumental variables. Various sets of

instrumental variables can lead to quite different parameter estimates even

though the model specification and data remain the same. A dramatic illustra-

tion of this point can be had by looking at the estimates pUblished by Hansen

and Singleton (1982,1984). Bear in mind when looking at their results that

their maximum likelihood estimator is obtained by assuming a distribution for

the data and then imposing parametric restrictions implied by the model rather

than deriving the likelihood implied by the model and an assumed error distri-

bution; Section 5 takes the latter approach as does Amemiya's comparison.

One would look to results on the optimal choice of instrumental variables

for some guidance that would lead to a resolution of this lack of invariance

problem. But they do not provide it. leaving asiae the issue of either having

to know the parameter values or estimate them, one would have to specify the
oerror distribution in order to compute c(a/ae ')q(e). But if the errora a

distribution is known, maximum likelihood is the method of choice.
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In practice, the most common approach is to use the independent variables

II

and low order monomials in such as as

instrumental variables, making no attempt to find the most efficient set using

the results on efficiency. We shall return to this issue at the end of the

next section.
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PROBLEMS

1. Consider the system of nonlinear equations

t=1,2, ...

where the errors e t = (e1t , e2t ) are normally distributed and the independent

variable xt follows the replication pattern

x =0, 1, 2, 3, 0, 1, 2, 3, •...t

Put

Show that

almost surely,

1 3 1.5 bo bOc Lx=O - 0

ll.imn-t(X)mn(9) 1.5 3 x 3.5 b, _ bO= c Lx=O ,
3.5 3 9 b2 bOc Lx=O - 2

almost surely where 0c = (1/4) exp[var(e1)/2 - ao].
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2. Referring to Problem " show that if a2 0 then

•

3. Referring to Problem " show that the model is not identified if either

a2 = 0 or Zt = ("xt )·

4. Consider the linear system

y'r =x'Bt t + e l

t ' t = ',2, ... , n.

where r is a square, nonsingular matrix. We shall presume that the elements

of and are ordered so that the first column of r has L'+' leading

nonzero entries and the first column of B has k' leading nonzero entries; we

shall also presume that Y" =,. With these conventions the first equation of

the system may be written as

••. , YL " X,t' x2t ' ... ,
•
•

=wi: & + e,t

The linear two-stage least-squares estimator is obtained by putting x -.
t'

that is, the linear two-stage least-squares estimator is the minimizer & of



denote the predicted values from a regression of on
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x t ' viz.

W' =t
n -1 nx I (t' X X ') t' X w't 's=1 s s 's=1 s s t = 1,2, •.• , n.

Show that a regression of Y1t on wt yields 0 that is, show that

It is from this fact that the name two-stage least squares derives; the first

stage is the regression of wt on xt and the second is the regression of
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3. THE DYNAMIC CASE: GENERALIZED METHOD OF MOMENTS.

Although there is a substantial difference in theory between the dynamic

case where errors may be serially correlated and lagged dependent variables may

be used as explanatory variables and the regression case where errors are

independent and lagged dependent variables are disallowed, there is little

difference in applications. All that changes is that the variance V of

n.m (eo) is estimated differently.n
The underlying system is

t = 0, ±1, ±2, ... <X = 1,2, .•. , l

is a

;s a p-<X

where t indexes observations that are ordered in time, q (y,x,e )<X <X
real-valued function, Yt is an l-vector, xt is a k-vector,

vector of unknown parameters, and e<Xt is an unobservable observational or

experimental error. The vector xt can include lagged values of the dependent

variable (Yt-l' Yt-2' etc.) as elements. Because of these lagged values, xt
is called the vector of predetermined variables rather than the independent

variables. The errors e<Xt will usually be serially correlated

o = 1, 2, ••• , M; s,t = 1,2, ...

We do not assume that the errors are stationary which accounts for the st

index; if the errors were stationary we would have

Attention is restricted to the first Mequations

t = 1, 2, •.. , n; <X = 1, 2, .•. , M.

As in the regression case, let e be a p-vector containing the non-redundant

parameters in the set e 1, e2, ... , eM and let



8-3-2

q,(y,X,9,) e,

q(y,x,9) =
q2(y,x,92) e =

e2
• •

•
• •
qM(y,x,9M) eM

q,(Yt,Xt ,9,) e, ,t

q(Yt,X t ,9) =
q2(Yt,x t ,92 ) e t = e2,t
• •
• •
• •
QM(Yt,Xt ,9M) eM,t

The analysis unconditional; indeed, the presence of lagged values of Yt

as components of xt precludes a.conditional analysis. The theory on which

the analysis is based (Chapter 9) does not rely explicitly on the existence of

a smooth reduced form as was the case in the previous section. What is

required is existence of measurable functions

infinite sequence

= ( ... , v_ 1 , vo' v" ... )

such that

that depend on the

and mixing conditions that limit the dependence between (e ,x )s s
for t * s. The details are spelled out in Sections 3 and 5 of Chapter 9.

The estimation strategy is the same as nonlinear three-stage least

squares (Section 2). One chooses a K-vector of instrumental variables Zt of

the form



forms sample moments
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=

M·K

q'(Yt,xt,e').Zt

•
•
qM(Yt,xt,eM)·zt

and estimates eO by that value e that minimizes

wi th

In this case, the random variables

are correlated and we have

n n Z ) IV = Zt) 5

n n Z ) I= s

n-' 0= n.r S't"=-n-' n't"

0= n.Sn

t =',2, .. ., n
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where

To estimate V, we shall need a consistent estimator of

estimator S withn

P(ISo na- S na l > e) = 0

't' 2: 0,

-r < O.

so, that is, ann

a, = 1, 2, ... , M

for any e > 0 This is basically a matter of guaranteeing that

Var( S NO) = 0;

see Theorem 3 in Section 2 of Chapter 9.

A consistent estimate

putting

S ofn't' SO can be obtained in the obvious way byn-r

where

't' 2: 0,

't' < o.

However, one cannot simply add the S for 't' ranging from -(n-l) ton't'
(n-1) as suggested by the definition of SO and obtain a consistentn
estimator because Var(S ) will not decrease with n. The variance wi 11n
decrease if a smaller number of summands is used, namely the sum for 't'

ranging from to where = the integer nearest n1/ 5 .
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Consistency will obtain with this modification but the unweighted sum will not

be positive definite in general. As we propose to minimize S(e,V) in order

to compute e, the matrix V

weighted sum

=n.Sn must be positive definite. The

constructed from Parzen weights

w(x) ={
o x 1/2

1/2 x 1.

is consistent and positive definite (Theorem 3, Section 2, Chapter 3). The

motivation for this particular choice of weights derives from the observation

that if were a stationary time series then SO would be then
spectral density of the process evaluated at zero; the estimator with Parzen

weights is the best estimator of the spectral density in an asymptotic mean

square error sense (Anderson, 1971, Chapter 9 or Bloomfield, 1976, Chapter 7).

The generalized method of moments differs from the three-stage least-

squares estimator only "in the computation of V. The rest is the same, the

estimate of eO is the minimizer e of S(e,V), viz.

e = argmine S(e,V).

the estimated variance-covariance of e is

where
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and, the Gauss-Newton correction vector is

We illustrate.

EXAMPLE 2 (Continued). Recall that

t = 1, 2, ... , 239.

where, taking values from Table la,

consumption at time t / population at time t

consumption at time t - 1 / population at time t - 1

Xt = (1 + stock returns at time t)
deflator at time t -

deflator at time t

The instrumental variables employed in the estimation are

Zt = (1, Yt-l' Xt _1 ) I •

or instance, we will have

Y2 = 1.01061, x2 = 1.00628, and Z2 = (1, 1.00346, 1.008677)'.

Recall also that, in theory,

t = 2, 3, ... , 239,

t = 2, 3, ... , 239,
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t s.

Because the variance estimator has the form

where

and

1/S
!len) = (n) ,

__ { 1- 61x,2 +36IXI3,
w(x)

2(1 - Ixl),

o 5 x 5 1/2,

1/2 5 x 5 1,

't' 0,

't' < O.

whereas PROC SYSNLIN can only compute a variance estimate of the form

we are sort of on our own as far as writing code is concerned. Our strategy

will be to use PROC MATRIX using

DATA WORK01: SET EG02:
NDSPER=NDS/PEOPLE: Y=NDSPER/LAG(NDSPER): X=(1+STOCKS)*lAG(DEFlATOR)/DEFlATOR:
DATA WORK02: SET WORK01: ZO=1: Z1=LAG(Y): Z2=LAG(X): IF _N_=1 THEN DELETE:
PROC MATRIX: FETCH Y DATA=WORK02(KEEP=Y): FETCH X DATA=WORK02(KEEP=X):

FETCH Z DATA=WORK02(KEEP=ZO Z1 Z2): Z(1,)=O 0 0:
A=-.4: B=.9: V=Z'*Z: %GAUSS 00 WHILE (S>OBJ#{1+1.E-S»: %GAUSS END:
TSHARP=A II B: PRINT TSHARP:
%VARIANCE V=VHAT; %GAUSS 00 WHILE (S>OBJ#(1+1.E-S»: %GAUSS END:
THAT=A II B: PRINT VHAT THAT CHAT S:
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where %GAUSS is a MACRO which computes a modified (line searched) Gauss-
Newton iterative step,

%MACRO GAUSS; .
M=O/O/O; DELM=O % % 0; ONE=1;
00 T=2 TO 239;
QT = B#Y(T,1)##A#X(T,1)-ONE;
DELQTA = B#LOG(Y(T,1»#Y(T,1)##A#X(T,1); DELQTB = Y(T,1)##A#X(T,1);
MT = QT @Z(T,)%STR(%'); DELMT = (DELQTA I I DELQTB) @Z(T,)%STR(%');
M=M+MT; DELM=OELM+DELMT;
END;
CHAT=INV(DELM%STR(%')*INV(V)*DELM); D=-CHAT*DELM%STR(%')*INV(V)*M;
S=M%STR(%')*INV(V)*M; OBJ=S; L=2; COUNT=O; AO-A; BO=B;
00 WHILE (OBJ>=S & COUNT<=40);
COUNT=COUNT+ONE; L=L#.5; A=AO+L#D(1,1); B=BO+L#D(2,1); M=O;
00 T=2 TO 239; M=M+(B#Y(T,1)##A#X(T,1)-ONE)@Z(T,)%STR(%'); END;
OBJ=M%STR(%')*INV(V)*M;
END;

%MEND GAUSS;

and %VARIANCE is a MACRO which computes a variance estimate

%MACRO VARIANCE;
SO=O 0 % 0 % 0 0; S1=0 0 % 0 % 0 0; 52=0 0 % 0 % 0 0; ONE=1;
00 T=2 TO 239;
MTO=(B#Y(T,1)##A#X(T,1)-ONE) @Z(T,)%STR(%');
IF T>3 THEN 00;
MT1=(B#Y(T-1,1)##A#X(T-1,1)-ONE)@Z(T-1,)%STR(%'); Sl=Sl+MTO*MT1%STR(%'); END;
IF T>4 THEN 00;
MT2=(B#Y(T-2,1)##A#X(T-2,1)-ONE)@Z(T-2,)%STR(%'); S2=S2+MTO*MT2%STR(%'); END;
END;
WO=1; W1=ONE-6#(1#/3)##2+6#(1#/3)##3; W2=2#(ONE-(2#/3»##3; W3=0;
VHAT=(WOISO+WlIS1+W1IS1%STR(%')+W2#S2+W2#S2%STR(%'»;

%MEND VARIANCE;

The code is fairly transparent if one takes a one by one matrix to be a

scalar and reads

for @.

for %STR(%'), * for #, ** for 1#, / for 1/, and

While in general this code is correct, for this particular problem

t s.



W2=2#(ONE-(2#/3))##3; W3=O;

with the line

so we shall replace the line

WO=1; W1=ONE-6#(1#/3)##2+6#(1#/3)##3;

in %VARIANCE which computes the weights

WO=1; W1=O; W2=O; W3=O;

The computations are shown in Figure 2.

8-3-9
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Figure 2. The Generalized Method of Moments Estimator for Example 2.

SAS Statements:

%MACRO GAUSS;
M=O/O/O; DELM=O % % 0; ONE=l;
DO T=2 TO 239;
QT = B#Y(T,l)##A#X(T,l)-ONE;
DELQTA = B#LOG(Y(T,l»#Y(T,l)##A#X(T,l); DELQTB = Y(T,l)##A#X(T,l);
MT = QT @Z(T,)%STR(%'); DELMT = (DELQTA ! i DELQTB) @Z(T,)%STR(%');
M=M+MT; DELM=DELM+DELMT;
END;
CHAT=INV(DELM%STR(%')*INV(V)*DELM); D=-CHAT*DELM%STR(%')*INV(V)*M;
S=M%STR(%')*INV(V)*M; OBJ=S; L=2; COUNT=O; AO=A; BO=B;
00 WHILE (OBJ>=S & COUNT<=40);
COUNT=COUNT+ONE; L=L#.S; A=AO+L#D(l,l); B=BO+L#D(2,1); M=O;
00 T=2 TO 239; M=M+(B#Y(T,l)##A#X(T,l)-ONE)@Z(T,)%STR(%'); END;
OBJ=M%STR(%')*INV(V)*M;
END;

%MEND GAUSS;
%MACRO VARIANCE;
SO=O 0 % 0 % 0 0; Sl=O 0 % 0 % 0 0; S2=0 0 % a % a 0; ONE=l;
00 T=2 TO 239;
MTO=(B#Y(T,l)##A#X(T,l)-ONE) @Z(T,)%STR(%'); SO=SO+MTO*MTO%STR(%');
IF T>3 THEN 00;
MT1=(B#Y(T-1,1)##A#X(T-1,1)-ONE)@Z(T-1,)%STR(%'); Sl=Sl+MTO*MT1%STR(%'); END;
IF T>4 THEN 00;
MT2=(B#Y(T-2,1)##A#X(T-2,1)-ONE)@Z(T-2,)%STR(%'); S2=S2+MTO*MT2%STR(%'); END;
END;
WO=l; W1=0; W2=0; W3=O;
VHAT=(WO#SO+W1#Sl+W1#Sl%STR(%')+W2#S2+W2#S2%STR(%');

%MEND VARIANCE;
DATA WORK01; SET EG02;
NDSPER=NDS/PEOPLE; Y=NDSPER/LAG(NDSPER); X=(l+STOCKS)*LAG(DEFLATOR)/DEFLATOR;
DATA WORK02; SET WORK01; ZO=l; Zl=LAG(Y); Z2=LAG(X); IF _N_=l THEN DELETE;
PROC MATRIX; FETCH Y DATA=WORK02(KEEP=Y); FETCH X DATA=WORK02(KEEP=X);

FETCH Z DATA=WORK02(KEEP=ZO Zl Z2); Z(l,)=O 0 0;
A=-.4; B=.9; V=Z'*Z; %GAUSS DO WHILE (S>OBJ#(l+l.E-S)); %GAUSS END;
TSHARP=A // B; PRINT TSHARP;
%VARIANCE V=VHAT; %GAUSS DO WHILE (S>OBJ#(l+l.E-S»; %GAUSS END;
THAT=A // B; PRINT VHAT THAT CHAT;
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Figure 2. (Continued) .

Output:
SAS 1

TSHARP COll

ROWl -0.848852
ROW2 0.998929

VHAT COll COl2 COl3

ROWl 0.405822 0.406434 0.398737
ROW2 0.406434 0.407055 0.399363
ROW3 0.398737 0.399363 0.392723

THAT COll

ROW1 -1.03352
ROW2 0.998256

CHAT COLl COl2

ROW1 3.58009 -0.00721267
ROW2 -0.00721267 .0000206032

S COLl

ROW1 1.05692
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Tauchen (1986) considers the question of how instruments ought to be chosen

for generalized method of moments estimators in the case where the errors are

uncorrelated. In this case the optimal choice of instrumental variables is

(Hansen, 1985)

where & (.)
t denotes the conditional expectation with respect to all variables

(information) relevant to the problem from the present time t to as far into

the past as is relevant; see the discussion of this point in Example 2 of

Section 2. Tauchen, using the same sort of model as Example 2, obtains the

small sample bias and variance for various choices of instrumental variables

which he compares to the optimal choice. He finds that, when short lag lengths

are used in forming instrumental variables, nearly asymptotically optimal

parameter estimates obtain and that, as lag length increases, estimates become

increasingly concentrated around biased values and confidence intervals become

increasingly inaccurate. He also finds that the test of overidentifying

restrictions performs reasonably well in finite samples.

The more interesting aspect of Tauchen's work is that he obtains a computa-

tional strategy for generating data that follows a nonlinear, dynamic model

that can be used to formulate a bootstrap strategy to find the optimal instru-

mental variables in a given application.
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PROBLEMS

1. Use the data of Tables la and lb of Section 1 to reproduce the results of

Hansen and Singleton (1984).

2. Verify that if one uses the first order conditions for three month treasury

bills, Zt = (l'Yt ,xt ) with s chosen the smallest value that will ensure-s -s
othat Zt) = 0 , and Parzen weights then

VHAT

ROW1
ROW2
ROW3

TSHARP

ROWl
ROW2

COLl

0.24656
0.248259
0.246906

COLl

-4.38322
1.02499

COL2

0.248259
0.249976
0.248609

COL3

0.246906
0.248609
0.247256

THAT COLl

ROWl -4.37803
ROW2 1.02505

CHAT COLl COL2

ROW1 22.8898 -0.140163
ROW2 -0.140163 0.00086282

Should Parzen weights be used in this instance?
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4. HYPOTHESIS TESTING

As seen in the last two sections, the effect of various assumptions

regarding lagged dependent variables, heteroskedasticity, or autocorrelated

errors is to alter the form of the variance estimator V without affecting

the form of the estimator a. Thus, each estimator can be regarded as, at

most, a simplified version of the general estimator proposed in Section 5 of

Chapter 9 and, in consequence, the theory of hypothesis testing presented in

Section 6 of Chapter 9 applies to all of them. This being the case, here we

can lump the preceding estimation procedures together and accept the following

as the generic description of the hypothesis testing problem.

Attention is restricted to the first Mequations

t =" 2, •.. , n; a =" 2, ... , M.

of some system. Let a be a p-vector containing the non-redundant parameters

in the set a" a2, •.. , aM and let

q,(y,x,a,) 1 r
e, 1
Iq2(y,x,a2) I e2q(y,x,a) = e = I

• I • I
• • j• •
qM(y,x,aM) J L eM

To estimate

form

oa , one chooses a K-vector of instrumental variables of the

constructs the sample moments
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m (a)n

with

=
f q,(Yt,xt,a,).Zt 1
Q2(yt ,xt ,a2 )·Zt•
•

and estimates aO by the value a that minimizes

A_l
5(a,V) = [n.m (a)] I V [n.m (a)]n n

where V is some consistent estimate of

The estimated variance-covariance of a is

where

The Gauss-Newton correction vector is

With this as a backdrop, interest centers in testing a hypothesis that can

be expressed either as a parametric restriction
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or as a functional dependency

H: 90 = g(po) for some po against A: eO g(p) for any p.

Here, h(e) maps RP into Rq with Jacobian

H(e) = (alae') h(e)

which is assumed to be continuous with rank q at eO; g(p)

RP and has Jacobian

G(p) = (a/ap') g(p).

rmaps IR into

The Jacobians are of order q by P for H(e) and P by r for G(p); we

assume that p = r + q and from h[g(p)] = 0 we have H[g(p)]G(p) =O. For

complete details, see Section 6 of Chapter 3. Let us illustrate with the

example.

EXAMPLE' (Continued). Recall that

9, + e2er, + e3er 2 + 94er 3 - (e2+ 93+ 94)eY3 1
y, - ll.n I

-1 + 94er, + 97er Z + 9s·r3 - (94+ 97+ 9S)·Y3

q(y,x,9) =
95 + 93er, + 96·r2 + 97·r3 - (93+ 96+ 97 ' eY3

Y2 - ll.n I-, + 94·r, + 97·r2 + 9S·r3 - (94+ 97+ 9S)·Y3 J
wi th
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The hypothesis of homogeneity, see Section 4 of Chapter 6, may be written as

the parametric restriction

hIe) • [

92 + 93 + 94 ]93 + 96 + 97 = 0
94 + 9 7 + 9a

with Jacobian

H(e) • [

1 1 0 0 0 0 10 1 0 0 1 0

0 0 0 0 J
or, equivalently, as the functional dependency

9 1 9 1 P1

192 -93- 9 4 -P2- P3
93 93 P2

9 =
9 4 =

94 = P3 = g(p)
9S 9S P4
96 -97- 93

I
-Ps- P2

9 7 97 Ps j9a -94- 9 7 L -Ps- P3

with Jacobian

r
1 0 0 0 0 1
0 -1 -1 0 0 I
0 0 0 0 I

G(p) = 0 0 0 0 . I
0 0 0 1 0

0 -1 0 0 -1

0 0 0 0 1

0 0 -1 0 -1
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The Wald test statistic for the hypothesis

is

where h =h(e), H(e) = (a/ae') h(e), and H =H(e). One rejects the

hypothesis

2when W exceeds the upper a x 100% critical point of the chi-square
2 2 -1distribution with q degrees of freedom; = (X) (1-a, q).

Under the alternative A: h(eo ) ¢ 0, the Wald test statistic is

approximately distributed as the non-central chi-square with q degrees of

freedom and non-centrality parameter

where

Note in the formulas above, that if xt is random then the expectation is



8-4-6

dependent variables (and the analysis is conditional), these two expectations

will be the same.

EXAMPLE 1. (continued). Code to compute the Wald test statistic

for the hypothesis of homogeneity

h(9) =

is shown in Figure 3. The nonlinear three-stage least-squares estimators 9

and C are computed using the same code as in Figure 1 of Section 3. The

computed values are passed to PROC MATRIX where the value

W=3.01278 (from Figure 3)

is computed using straightforward algebra.

hypothesis is accepted at the 5% level.

2 -1Since (X) (.95,3) = 7.815, the

In Section 4 of Chapter 6, using the multivariate least-squares estimator,

the hypothesis was rejected. The conflicting results are due to the larger

estimated variance with which the three-stage least-squares estimator is

computed with these data. As remarked earlier, the multivariate least squares

estimator is computed from higher quality data than the three-stage least-

squares estimator in this instance so that the multivariate least-squares

results are more credible ••
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Figure 3. Illustration of Wald Test Computations with Example 1.

SAS Statements:

PROC MODEL OUT=M0001;
ENDOGENOUS Yl Y2 Y3;
EXOGENOUS R1 R2 R3 00 01 02 03 04 05 06 07 08 09 010 011 012 013;
PARMS Tl T2 T3 T4 T5 T6 T7 T8 CO C1 C2 C3 C4 C5 C6 C7 C8 C9 Cl0 Cll C12 C13;
PEAK= Tl+T2*Rl+T3*R2+T4*R3-(T2+T3+T4)*Y3;
INTER=T5+T3*R1+T6*R2+T7*R3-(T3+T6+T7)*Y3;
BASE= -1+T4*R1+T7*R2+T8*R3-(T4+T7+T8)*Y3;
Yl=LOG(PEAK/BASE); Y2=LOG(INTER/BASE);
Y3=00*CO+Ol*C1+02*C2+03*C3+04*C4+05*C5+06*C6+07*C7+08*C8+09*C9+010*C10+011*Cll

+012*C12+013*C13;

PROC SYSNLIN OATA=EG01 MOOEL=MOOOl N3SLS METHOO=GAUSS MAXIT=50 CONVERGE=1.E-8
SOATA=IOENTITY OUTS-SHAT OUTEST=TSHARP;

INSTRUMENTS Rl R2 R3 00 01 02 03 04 05 06 07 08 09 010 011 012 013 / NOINT;
FIT Yl Y2 START = (Tl -2.98 T2 -1.16 T3 0.787 T4 0.353 T5 -1.51 T6 -1.00

T7 0.054 T8 -0.474);
PROC SYSNLIN OATA=EG01 MOOEL=MOOOl N3SLS METHOO=GAUSS MAXIT=50 CONVERGE=1.E-8

SOATA=SHAT ESTOATA=TSHARP OUTEST=WORKOl COVOUT;
INSTRUMENTS Rl R2 R3 DO 01 02 03 04 05 06 07 08 09 010 011 012 013 / NOINT;
FIT Y1 Y2;

PROC MATRIX; FETCH WOATA=WORK01(KEEP = T1 T2 T3 T4 T5 T6 T7 T8);
THAT=W(l,)'; CHAT=W(2:9,);
H=O 1 1 1 a a 0 a /00 1 001 1 a / a a a 1 a a 1 1;
W=THAT'*H'*INV(H*CHAT*H')*H*THAT; PRINT W;

Output:

W

ROWl

SAS

COLl

3.01278

8
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Let a denote the value of a that minimizes S(a,V) sUbject to

h(a) = o. Equivalently, let p denote the value of p that achieves the

unconstrained minimum of S(g(p),V) and put a =g(p). The "likelihood

ratio" test statistic for the hypothesis

is

L =S(a,V) - S(a,V).

It is essential that V be the same matrix in both terms on the right hand

side, they must be exactly the same not just "asymptotically equivalent."

One rejects H: h(ao ) = 0 when L exceeds the upper «x 100% critical

point of the chi-square distribution with q degrees of freedom;
2 2 -1\t = (X) (1-«, q).

*Let a denote the value of a that minimizes

sUbject to

h(a) = o.

°s (g(p),V)
Equivalently, let

minimum of

op denote the value of p

* °and pu t a = g (p ).

that achieves the unconstrained

Under the alternative, A: h(ao) * 0, the "likelihood ratio" test statistic
L is approximately distributed as the non-central chi-square with q degrees

of freedom and non-centrality parameter
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A = e e Z(Xt )]}

where

Q(yt,xee) = (alae' )q(YeXt,e) ,

J = e e Z(Xt )]} ,

* *H = H(e ) = (alae') h(e ) •

Alternative expressions for A can be obtained using Taylor's theorem and the

relationship H'(HJ-'H,)-'H = J - JG(G'JG)-'G'J from Section 6 of Chapter 3;

see Gallant and Jorgenson ('979).

EXAMPLE ,. (continued). The hypothesis of homogeneity in the model

e, + e2-r, + e3-r2 + e4-r3 - (e2+ e3+ e4)-Y3 1Y, - Itn -, + e4-r, + e7-r2 + e8-r3 - (e4+ e7+ e8 )-Y3

q(y,x,e) =
es + e3-r, + e6-r2 + e7-r3 - (e3+ e6+ e7)-y3

Y2 - Itn -, + e4-r, + e7-r2 + e8-:3 - (e4+ e7+ e8 )-Y3 J
can be expressed as the functional dependency
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a 1 a1 P1
a2 -a3- a 4 -P2- P3
a3 a3 P2

a =
a4 =

a4 = P3 = g(p) .
as as P4
a6 -a7- a3 -Ps- P2
a7 a7 Ps
a8 -a4- a7 -Ps- P3

Minimization of . S[g(p),V] as shown in Figure 4 gives

s(a,v) = 38.34820 (from Figure 4)

and we have

s(a,v) = 34.96403

from Figure 1 of Section 2. Thus

L =S(a,V) - S(a,V)

=38.34820 - 34.96403

=3.38417.

(from Figure 1)

Since (X2)-1(.9S,3) = 7.81S, the hypothesis is accepted at the S% level.

Note in Figures 1 and 4 that V is computed the same. As mentioned severa'

times, the test is invalid if care is not taken to be certain that this is

so. 1
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Figure 4. Example 1 Fitted by Nonlinear Three-Stage Least Squares,
Homogeneity Imposed.

SAS Statements:

PROC MODEL OUT=M0002;
ENDOGENOUS Yl Y2 Y3;
EXOGENOUS Rl R2 R3 00 01 02 03 04 05 06 07 08 09 010 011 012 013;
PARMS ROl R02 R03 R04 R05 CO Cl C2 C3 C4 C5 C6 C7 CS C9 Cl0 Cll C12 C13;
Tl=R01; T2=-R02-R03; T3=R02; T4=R03; T5=R04; T6=-R05-R02; T7=R05; T8=-R05-R03;
PEAK= Tl+T2*Rl+T3*R2+T4*R3-(T2+T3+T4)*Y3;
INTER=T5+T3*Rl+T6*R2+T7*R3-(T3+T6+T7)*Y3;
BASE= -1+T4*Rl+T7*R2+T8*R3-(T4+T7+T8)*Y3;
Yl=LOG(PEAK/BASE); Y2=LOG(INTER/BASE);
Y3=00*CO+Ol*Cl+02*C2+03*C3+04*C4+05*C5+06*C6+07*C7+0S*CS+09*C9+010*Cl0+0ll*Cll

+012*C12+013*C13;
PROC SYSNLIN OATA=EGOl MOOEL=M0002 N3SLS METHOO=GAUSS MAXIT=50 CONVERGE=1.E-8

SOATA=SHAT;
INSTRUMENTS Rl R2 R3 DO 01 02 03 04 05 06 07 OS 09 010 011 012 013 / NOINT;
FIT Yl Y2 START = (ROl -3 R02 .S R03 .4 R04 -1.5 ROS .03);

Output:

SAS 8

NONLINEAR 3SLS PARAMETER ESTIMATES

APPROX. 'T' APPROX.
PARAMETER ESTIMATE STO ERROR RATIO PROB>!T!

ROl -2.66573 0.17608 -15.14 0.0001
R02 0.84953 0.06641 12.79 0.0001
R03 0.37591 0.02686 13.99 0.0001
R04 -1.56635 0.07770 -20 .16 0.0001
R05 0.06129 0.03408 1.80 0.0735

NUMBER OF OBSERVATIONS
USED 220
MISSING 4

STATISTICS FOR SYSTEM
OBJECTIVE 0.17431
OBJECTIVE*N 3S.34820

COVARIANCE OF RESIDUALS MATRIX USED FOR ESTIMATION

S

Yl
Y2

Yl

0.17159
0.09675

Y2

0.09675
0.09545
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The Lagrange multipl;er test ;s most apt to be used when the constrained

estimator e is much easier to compute than the unconstrained estimator e

so it is somewhat unreasonable to expect that a variance estimate V com-

puted from unconstrained residuals will be available. Accordingly, let

If the model is a pure regression situation put

if model is the regression situation with heteroskedastic errors put

or if the model is dynamic put

V = n-Sn

where

S = Sn n'T

r
61x1 2+ 61xI 3

1
1 -

w(x) =
2(1 _ Ixl)3

o x 1/2

'T 2 0,

'T < o.
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Let

e =argminh(e) =a s(e,V).

The Gauss-Newton step away from e (presumably) toward e is

D =D(e,V)

The Lagrange multiplier test statistic for the hypothesis

is

where

One rejects H: h(eo) =a when R exceeds the upper a x 100% critical

point of the Chi-square distribution with q degrees of freedom;
2 2 -1\x = (X) (1-a, q).

The approximate non-null distribution of the Lagrange multiplier test

statistic is the same as the non-null distribution of the "likelihood ratio"

test statistic.

EXAMPLE 1. (continued). The computations for the Lagrange multiplier test

of homogeneity are shown in Figure 5. As in Figure 4, PROC MODEL defines the

model q[(y,x,g(p»). In Figure 5, the first use of PROC SYSNLIN computes
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A#
P = argminp s(a, I

V= xt ' e#) q'(Yt , xt ' ell]
where

-# A#a = g(p ).

The second use of PROC sysNLIN computes

p = argmin s[g(p),V].
P

The sUbsequent DATA WO, statement computes

where

_ A#
a = g(p ).

Finally PROC MATRIX ;s used to compute

and

= 3.36375 (from Figure 5).

s;nce (X2)-'(.95,3) = 7.815, the hypothesis is accepted at the 5% level.
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Figure 5. Illustration of Lagrange Multiplier Test Computations
with Example 1.

SAS Statements:

PROC MODEL OUT=M0002i
ENDOGENOUS Yl Y2 Y3;
EXOGENOUS Rl R2 R3 DO 01 02 03 04 05 06 07 OS 09 010 011 012 013;
PARMS ROl R02 R03 R04 ROS CO Cl C2 C3 C4 CS C6 C7 CS C9 Cl0 Cll C12 C13;
Tl=R01; T2=-R02-R03; T3=R02; T4=R03; T5=R04; T6=-R05-R02; T7=R05; TS=-R05-R03;
PEAK= Tl+T2*Rl+T3*R2+T4*R3-(T2+T3+T4)*Y3;
INTER=T5+T3*Rl+T6*R2+T7*R3-(T3+T6+T7)*Y3;
BASE= -1+T4*Rl+T7*R2+T8*R3-(T4+T7+TS)*Y3;
Yl=LOG(PEAK/BASE); Y2=LOG(INTER/BASE);
Y3=OO*CO+Ol*Cl+02*C2+03*C3+04*C4+0S*C5+0S*CS+07*C7+0S*C8+09*C9+010*Cl0+011*Cl1

+012*C12+013*C13;

PROC SYSNLIN OATA=EGOl MOOEL=M0002 N3SLS METHOO=GAUSS MAXIT=50 CONVERGE=1.E-8
SOATA=IOENTITY OUTS=STILOE OUTEST=TSHARP;

INSTRUMENTS Rl R2 R3 DO 01 02 03 04 05 OS 07 08 09 010 011 012 013 / NOINT;
FIT Yl Y2 START = (ROl -3 R02 .8 R03 .4 R04 -1.5 R05 .03);
PROC SYSNLIN OATA=EGOl MOOEL=M0002 N3SLS METHOO=GAUSS MAXIT=50 CONVERGE=1.E-7

SOATA=STILOE ESTOATA=TSHARP OUTEST=RHOHAT;
INSTRUMENTS Rl R2 R3 DO 01 02 03 04 05 OS 07 OS 09 010 011 012 013 / NOINT;
FIT Yl Y2;

DATA W01; IF _N_=l THEN SET RHOHAT; SET EG01; RETAIN R01-R05;
Tl=R01; T2=-R02-R03; T3=R02; T4=R03; T5=R04i T6=-R05-R02i T7=R05; T8=-R05-R03;
PEAK= Tl+T2*Rl+T3*R2+T4*R3-(T2+T3+T4)*Y3;
INTER=T5+T3*Rl+T6*R2+T7*R3-(T3+T6+T7)*Y3;
BASE= -1+T4*Rl+T7*R2+TS*R3-(T4+T7+T8)*Y3;
Ql=Yl-LOG(PEAK/BASE); Q2=Y2-LOG(INTER/BASE);
OQ1Tl=-1/PEAK; OQ2T1=0;
OQ1T2=-(Rl-Y3)/PEAK; OQ2T2=0;
OQ1T3=-(R2-Y3)/PEAK; OQ2T3=-(Rl-Y3)/INTER;
OQ1T4=-(R3-Y3)/PEAK+(Rl-Y3)/BASE; OQ2T4=(Rl-Y3)/BASE;
OQ1T5=0; OQ2T5=-1/INTER;
OQ1TS=0; OQ2T6=-(R2-Y3)/INTER;
OQ1T7=(R2-Y3)/BASE; OQ2T7=-(R3-Y3)/INTER+(R2-Y3)/BASE;
OQ1T8=(R3-Y3)/BASE; OQ2TS=(R3-Y3)/BASEi
IF NMISS(OF 00-013) > 0 THEN DELETE;
KEEP Q1 Q2 OQ1T1-0Q1TS OQ2Tl-0Q2T8 Rl-R3 00-013;
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Figure 5. (Continued).

PROC MATRIX;
FETCH Ql DATA=W01(KEEP=Q1); FETCH DQl DATA=W01(KEEP=DQ1Tl-0Q1T8);
FETCH Q2 OATA=W01(KEEP=Q2); FETCH OQ2 OATA=W01(KEEP=OQ2Tl-0Q2T8);
FETCH Z OATA=W01(KEEP=Rl-R3 00-013); FETCH STIlOE OATA=STIlOE(KEEP=Y1 Y2);
M=J(34,1,0); OElM=J(34,8,0); V=J(34,34,0);
DO T=1 TO 220;
QT=Ql(T,)//Q2(T,); OElQT=DQ1(T,)//OQ2(T,);
MT = QT @Z(T,)'; OELMT = OELQT @Z(T,)';
M=M+MT; DELM=OELM+OELMT; V=V+STIlOE @ (Z(T,)'*Z{T,»;
END;
CHAT=INV(OElM'*INV(V)*OELM); O=-CHAT*OELM'*INV(V)*M;
R=O'*INV(CHAT)*D; PRINT R;

Output:

SAS 8

R COLl

ROW1 3.36375
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There is one other test that is commonly used in connection with three-

stage least-squares and generalized method of moments estimation called the

test of the overidentifying restrictions. The terminology is a holdover from

the linear case, the test is a model specification test. The idea is that

certain linear combinations of the rows of In.m (a)n are asymptotically

normally distributed with a zero mean if the model is correctly specified.

The estimator a is the minimizer of s(a,V) so it must satisfy the

restriction that [(a/aa)m Ca)]'Vm (a) =O. This is equivalent to an n
statement that

[In mea)]' - T'H =0n

for some full rank matrix H of order M.K - P by P that has rows which are

orthogonal to the rows of [Ca/aa)mn(a)] 'V. This fact and arguments similar

to either Theorem 13 of Chapter 3 or Theorem 14 of Chapter 9 lead to the

conclusion that In.m (a) is asymptotically distributed as the singularn
normal with a rank M.K - P variance-covariance matrix. This fact and

arguments similar to the proof of Theorem 14 of Chapter 3 or Theorem 16 of

Chapter 9 lead to the conclusion that S(a,V) is asymptotically

distributed as a chi-square random variable with M.K - P degrees of freedom

under the hypothesis that the model is correctly specified.

One rejects the hypothesis that the model is correctly specified when

S(a,V) exceeds the upper ex x 100% critical point x2 of the chi-square
(X

distribution with M.K - P degrees of freedom; 2 2 -1 M.K - p).\x = (X) (1-a.,



EXAMPLES 1 & 2. (continued). In Example 1 we have

s(e,v) = 34.96403

M.K - P = 2.17 - 8 =26
2 -1(X) (.95,26) = 38.885

and the model specification is accepted. In Example 2 we have

s(e,v) = 1.05692

M.K - P =1.3 - 2 = 1
2 -1(X) (.95,1) =3.841

and the model specification is accepted.1
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(from Figure 1)

(from Figure 1)

(from Figure 2)

(from Figure 2)
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PROBLEMS

1. Use Theorem 12 of Chapter 9 and the expressions given in the example of

Section 5 of Chapter 9 to derive the Wald test statistic.

2. Use Theorem 15 of Chapter 9 and the expressions given in the example of

Section 5 of Chapter 9 to derive the "likelihood ratio" test statistic.

3. Use Theorem 16 of Chapter 9, the expressions given in the example of

Section 5 of Chapter 9, to derive the Lagrange multiplier test statistic in the

form

Use

(a/09) [S(e,V) + =a for some Lagrange multiplier

and HG =a to put the statistic in the form
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5. MAXIMUM LIKELIHOOD ESTIMATION

The simplest case, and the one that we consider first, is the regression

case where the errors are independently distributed, no lagged dependent

variables are used as explanatory variables, and the analysis is conditional on

the explanatory variables.

The setup is the same as in Section 2. Multivariate responses Yt , L-

vectors, are assumed to be determined by k-dimensional independent variables

xt according to the system of simultaneous equations

a =" 2, ... , L, t =" 2, •.• , n,

where each is a real-valued function, each ;sa p -a
dimensional vector of unknown parameters, and the eat represent unobservable

observational or experimental errors.

All the equations of the system are used in estimation so that, according

to the notational conventions adopted in Section 2, M=Land

q,(y,x,9,) e,

q(y,x,9) =
q2(y,x,92) e = e2
• •
• •
• •qM(y,x,9M) eM

q,(Yt,Xt ,9,) e"t

q(Yt,x t ,9) =
q2(Yt,xt ,92) e t = e2,t
• •
• •
• •
QM(Yt,Xt ,9M) eM,t
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where e is a p-vector containing the non-redundant elements of the parameter

vectors ea , a = 1, 2, ... , M. The error vectors e t are independently and

identically distributed with common density p(elao ) where a is an

r-vector. The functional form p(ela) of the error distribution is assumed to

be known. In the event that something such as =ut with Pt(u t ) =
P(UtIXt,T,a) is envisaged, one often can find a transformation

which will put the model

into a form that has pt(e t ) =p(etla) where e =
Usually normality is assumed in applications which we indicate by writing

n(ela) for pee/a) where a denotes the unique elements of

viz.

Let E = E(a) denote the mapping of this vector back to the original matrix E.

With these conventions, the functional form of n(ela) is

n(ela) = (2n)-M/2det[E(a)]-1/2exp[-(1/2)e'E(a)-1e]

The assumption that the the functional form of p(ela) must be known is

the main impediment to the use of maximum likelihood methods. Unlike the

multivariate least squares case where a normality assumption does not upset the

robustness of validity of the asymptotics, with an implicit model such as

considered here an error in specifying p(ela) can induce serious bias. The
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formula for computing the bias is given below and the issue is discussed is

some detail the papers by Amemiya(1977,1982) and Phillips(1982).

Given any value of the error vector e from the set of admissible values &

RM, any value of the vector of independent variables x from the set of
kadmissible values Z R , and any value of the parameter vector 9 from the

set of admissible values e the model

q(y,x,9) = e

is assumed to determine y uniquely; if the equations have multiple roots,

there is some rule for determining which solution is meant. This is the same

as stating the model determines a reduced form

y =Y(e,x,9)

mapping· & x Z x e onto V RM; for each (x,9) in Z x e the mapping

Y(.,e;9)

is assumed to be one-to-one, onto. It is to be emphasized that while a reduced

form must exist, it is not necessary to find it analytically or even to be able

to compute it numerically in applications.

These assumptions imply the existence of a conditional density on V

p(Ylx,9,a) = Idet(a/ay')q(y,x,9)I·p[q(y,x,9)la].

A conditional expectation is computed as either

&(Tlx) =fVT(Y) p(ylx,9,a) dy

or
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&(Tlx) =f&T[Y(e,X,e)] p(ela) de,

whichever is the more convenient.

EXAMPLE 3. Consider the model

The reduced form is

Y(e,x,e) = [
e2

Under normality, the conditional density defined on V = has the

form

-1 -1/2 -1p(ylx,e,a) = (2rr) (det E) (1/Y1)exp[-(1/2)q'(y,x,e)E q(y,x,e)].

where E =E(a).1
The normalized, negative, log likelihood is

and the maximum likelihood estimator is the value (e,a) that minimizes

sn(e,a); that is,

Asymptotically,



[e eO]
In A 0

a-a
I.-
... N (O,V).

p+r
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Put A = (e,a). Either the inverse of

or the inverse of

will estimate V consistently.
A A_1

Suppose that V = J is used to estimate

V. With these normalization conventions, a 95% confidence interval on the ;th

element of e is computed as

and a 95% confidence interval on the i th element of a is computed as

where Jij denotes the ijth element of the inverse of a matrix J and
-1Z.025 = N (.02510,1).

Under normality

sn(e,a) = const. - + (1/2) det E(a)

Define
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J(y,x,9) = (a/ay')q(y,x,9).

Using the relations (Problem 4, Chapter 6)

A(9)1 = tr [A(9)]-1(a/3e.)A(9),, ,
(a/aa.)[E(a)]-l =, ,

where is the i th elementary M(M+1)/2-vector and,
p[y!x,9,a] =const. - J(y,x,9)! + (1/2) det E(a)

-1+ (1/2)q'(y,x,9)[E(a)] q(y,x,9)

we have

p[Ylx,9,a] = - tr{[J(y,X,9)]-1(a/aei )J(y,X,9)}

-1+ q' (y ,x,9)[E(a)] (a/a9. )q(y ,x,9),

p[ylx,9,a] = (1/2), ,
-1 -1- (1/2) q'(y,x,9)[E(a)] q(y,x,9).,

Interest usually centers in the parameter 9 with a regarded as a

nuisance parameter. If

a(9) =argmin s (9,a)a n

is easy to compute and the "concentrated likelihood"
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has a tractable analytic form then alternative formulas may be used. They are

as follows.

The maximum likelihood estimators are computed as

a =ace)

and these will, of course, be the same numerical values that would obtain from

a direct minimization of sn (e,a). Partition J as

[JOO Jea ] p rows
J =

Joe Jaa r rows

p r
cols cols

Partition V similarly. With these partitionings, the following relationship

holds (Rao, 1973, p33.)

We have from above that, asymptotically

One can show (Problem 6) that either

or
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will estimate

consistently. Thus, either may be used to estimate Vee'

Note that it is necessary to compute a total derivative in the formulas above;

for example,

= [-1/p(ylx,9,0)][(a/a9')p(ylx,9,0)+(a/aa')p(ylx,9,0)(a/ae')0(9)]10 =0(9)
A A_1

Suppose that Vee = X is used to estimate Vee' With these normal-

ization conventions, a 95% confidence interval on the i th element of 9 is

computed as

where Xij denotes the ijth element of the inverse of the matrix X and
-1z.025 = N (.0251 0 ,1).

Under normality,

nSn(9,0) = const. - + (1/2) det E(o)

which implies that
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Using the relations (Problem 4, Chapter 6)

A(S)I = tr [A(S)]-1(a/ae.)A(S),, ,
(a/ae.)[E(S)]-1 = -[E(S)]-l[(a/as.)E(S)][E(S)]-l, ,

and

p[ylx,S,a(S)] =const. - J(y,x,S)1

-1+ (1/2) det E(S) + (1/2)q'(y,x,S)[E(S)] q(y,x,S)

we have

p[ylx,S,a(S)],
= - tr{[J(y,x,S)]-1(a/ae.)J(y,X,S)},

-1+ q'(y,x,S)[E(S)] (a/ae )q(y,x,S)

where

In summary, there are four ways that one might compute an estimate Vee

of Vee' the asymptotic variance-covariance matrix of In(a - So). Either
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J or 9 may be inverted and then partitioned to obtain Vee or either

X or L may be inverted to obtain Vee.

As to computations, the full Newton downhill direction is obtained by

expanding sn(e,a) in a Taylor's expansion about some trial value of the

parameter AT = (eT,aT)

The minimum of this quadratic equation in A is

whence a full Newton step away from the point (e,a) and, hopefully, toward

the point (e,a) is

O(e,a)

A minimization algorithm incorporating partial step lengths is constructed

along the same lines as the modified Gauss-Newton algorithm as discussed in

Section 4 of Chapter 1. Often,

J(e,a)

can be accepted as an adequate approximation to

Problem 5.

To minimize the concentrated likelihood, the same approach leads to

o(e)

as the correction vector and



8-5-11

Xce) = I

as an approximation to _[Ca2/aeae')Sn(e)].

As remarked earlier, the three-stage least-squares estimator only relies on

moment assumptions for consistent estimation of the model parameters whereas

maximum likelihood relies on a correct specification of the error density. To

be precise, the maximum likelihood estimator estimates the minimum of

owhere p(ylx,Y) is the conditional density function of the true data

generating process by Theorem 3 of Chapter 3. When the error density pCela)

is correctly specified the model parameters e and the variance a are

estimated consistently by the information inequality (Problem 3). If not, the

model parameters may be estimated consistently in some circumstances (Phillips,

1982) but in general they will not.

Consider testing the hypothesis

where heel maps RP into Rq with Jacobian

H(e) = (a/ae')h(e)

of order q by P which is assumed to have rank q at eO.

The Wald test statistic is

where Vee denotes any of the estimators of Vee described above.



Let e denote the minimizer of sn(e,a) or s (e) =s [e,a(e)]n n
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sUbject

to the restriction that heel = 0, whichever is the easier to compute. Let

Vee denote anyone of the four formulas for estimating Vee described above

but with e replacing e throughout. The Lagrange multiplier test

statistic is

The likelihood ratio test statistic is

In each case, the null hypothesis H: h(eo) = 0 is rejected in favor of

the alternative hypothesis A: h(eo) 0 when the test statistic exceeds the

<xx 100 percentage point 2 of a chi-square random variable withupper \t q

degrees of freedom; 2 2 -1 q) • Under the alternative hypothesis,X = (X) (1-<X,
<X

each test statistic is approximately distributed as a non-central chi-square

random variable with q degrees of freedom and non-centrality parameter

where Vee is computed by inverting and partitioning the matrix

o 0x P(Ylxt,e ,a )dy.

The results of Chapter 3 justify these statistical methods. The algebraic

relationships needed to reduce the general results of Chapter 3 to the formulas

above are given in the problems. A set of specific regularity conditions that

imply the assumptions of Chapter 3, and a detailed verification that this is

so, are in Gallant and Holly (1980).
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In the dynamic case, the structural model has the same form as above

with q(y,x,e) mapping V x X x e c RMx Rkx RP onto c RM and determining

the one-to-one mapping y =Y(e,x,e) of onto V. Unlike the regression

case, lagged dependent variables

may be included as components of xt and the errors may be correlated.

When lagged values are included, we shall assume that the data

are available so that q(Yt,xt,e) can be evaluated for t = 1, 2, ... , R. Let

denote the elements of other than the lagged values.

The leading special case is that of independently and identically

distributed errors where the joint density function of the errors and

predetermined variables

has the form

In this case the likelihood is (Problem 1)

and the conditional likelihood is
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One would rather avoid conditioning on the variables YO' y-1' ••. , but

in most applications it will not be possible to obtain the density p(yo' ... ,

Taking logarithms, changing sign, and normalizing leads to the same

sample objective function as above

sn(e,a) =

= P[q(Yt,xt,e)!aJ} .

A formal application of the results Sections 4 and 6 of Chapter 9 yields the

same statistical methods as above. The algebraic relationships required in

their derivation are sketched out in Problems 3 through 6.

Sometimes models can be transformed to have identically and independently

distributed errors. One example was given above. As another, if the errors

from ut = appear to be serially correlated, a plausible model

might be

with xt = (Yt-1'v t ,vt - 1) and e =

As noted, these statistical methods obtain from a formal application of the

results listed in Sections 4 and 6 of Chapter 9. Of the assumptions listed in

Chapter 9 that need to be satisfied by a dynamic model, the most suspect is the

assumption of Near Epoch Dependence. Some results in this direction are given

in Problem 2. A detailed discussion of regularity conditions for the case when

q(y,x,e) = y f(x,e) and the errors are normally distributed is given in

Section 4 of Chapter 9. The general flavor of the regularity conditions is
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that in addition to the sort of conditions that are required in the regression

case, the model must damp lagged y's in the sense that for given e, vt ' and

e one should have "Yt " < .

In the general dynamic case, the joint density function

can be factored as (Problem 1)

Put

Thus, the conditional likelihood is

the sample objective function is

and the maximum likelihood estimator is
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A formal application of the results of Section 4 of Chapter 9 yields that

approximately (see Theorem 6 of Chapter 9 for an exact statement),

wHh

[ e eo]In A 0
a - a

- N (O,V);
p+r

J and can be estimated using

J = J

and

where

o x 1/2

1/2 x 1.

n { A A }(lIn) (a/aA)Rn[p(YtIXt' .•• , xl' Yo' ..•. , Yl-R,e,a)]

= x .•• , xl' yO' .... , 0,

< O.
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For testing

where A = (e,a) the Wald test statistic is (Theorem 12, Chapter 9)

where H = (a/aA)h(A). The null hypothesis H: h(Ao) = 0 is rejected in

favor of the alternative hypothesis A: h(Ao) 0 when the test statistic

exceeds the upper

variable with q

a x 100 percentage point of a chi-square
2 2 -1degrees of freedom; Xa = (X) (l-a,q).

random

As a consequence of this result, a 95% confidence interval on the i th

element of e is computed as

and a 95% confidence interval on the i th element of a is computed as

a. ± z 025J(V +' +,)/In.1 • Pl,Pl

Let A = (e,a) denote the minimizer of Sn(A), subject to the

restriction that h(A) =O. Let H, J and denote the formulas for H,

J and above but with A replacing A throughout; put

The Lagrange multiplier test statistic is (Theorem 16, Chapter 9)



Again, the null hypothesis oH: h{A ) = a
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is rejected in favor of the alter-

native hypothesis A: h{Ao) a when the test statistic exceeds the upper a x

100 percentage point x2 of a chi-square random variable with q degrees ofa
2 2 -1freedom; = (X) (1-a,q).

The likelihood ratio test cannot be used because J 9; see Theorem 17 of

Chapter 9. Formulas for computing the power of the Wald and Lagrange

multiplier tests are given in Theorems 14 and 16 of Chapter 9, respectively.
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PROBLEMS

This problem set requires a reading of Sections 1 through 3 of Chapter 9

before the problems can be worked.

1. (Derivation of the likelihood in the dynamic case). Consider the model

where

Define the ! and e(!) by

en q(Yn,xn,e) Yn
en- 1 q(Yn-l ,xn- 1,e) Yn-l
• • •
• • •
• • •

e(O = e1 = q(Yl ,xl ,e) ! = Yl
eo YO YO
• • •
• • •
• • •

Show that (d/d!')e(!) has a block upper triangular form so that

Show that the joint density function

can be factored as
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and hence that the conditional density

can be put in the form

2. (Near Epoch Dependence) Consider data generated according to the

nonlinear, implicit model

t=1,2, •••

y = 0t t 0 .

That is, there must exist

If such a model is well posed then it mustare univariate.e t
as a function of

andwhere Yt

define

a reduced form

Assume that Y(e,y,v,e) has a bounded derivative in its first argument

I (a/ae)Y(e,y,v,e)1

and is a contraction mapping in its second

I (a/ay)Y(e,y,v,e)1 d < 1.

Let the errors {et } be independently and identically distributed and set
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et =a for t S O. With this structure, the underlying data generating

sequence {Vt } described in Section 2 of Chapter 9 is Vt = (0,0) for t S a
Suppose that eO is estimated by

maximum likelihood; that is, e minimizes

where pee) is the density of the errors. We have implicitly absorbed the

location and scale parameters of the error density into the definition of

q(Yt'Yt-1,vt ,e).

Let
j

Zt = r· 1d let ·1,J= -J

where the supremum above is taken over the set

Assume that for some p > 4

<

Show that this situation satisfies the hypothesis of Proposition 1 of Chapter 9

by supplying the missing details in the following argument.



Define a predictor of Ys of the form

as follows
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t 0

o < t

s max(t-m,O)

max(t-m,O) < s t

By Taylor's theorem, there are intermediate points such that for t 2 0

•
•
•

t-l j=At'. 0 diet .1-toJ= -J

For m > 0 and t - m > 0 the same type of argument yields
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•
•
•

m -= d IY - Y It-m t-m

j=f!jd 1.. 0 diet .1J= -m-J

where the last inequality obtains by substituting the bound for IYt - Yt '
obtained previously. For t - m < 0 we have

At m-t j
IYt-Yt I =d IYo - Yo' = 0 f!jd 1.. 0 diet ·1,m J= -m-J

In either event,

At j m
IIYt - Yt , mil p f!jd 1.. 0 d II e t ·11 KJ.\d / ( l-d) .J= -m-J P

Letting

klal lla.,£0 1= 1

we have

s (9)n

with
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For t 2 1

Letting q = p/(p+l) < p, r =p/2 > 4, and

we have

'l1 = suptll IW - wt I IIp :5 2KAdm/(1-d) < CIO •'m t t-m

The rate at which falls off with m is exponential since d < 1 whencem
"\n is size -q(r-l)/(r-2). Thus all the conditions of Proposition 1 are

satisfied.

3. (Information inequality) Consider the case where the joint density

function of the errors and predetermined variables

has the form

and let



8-5-25

Assume that P(Y/X,A) is strictly positive and continuous on V. Put

u(y,X) = -

and supply the missing details in the following argument. By Jensen's

inequality

expcfvu(Y,X)P(YIX,AO)dY]

fVeU(Y,X)P(YIX,AO)dY

=fVP(YIX,A)dY =1.

The inequality is strict unless u(y,x) = 0 for every y. This implies that

>

ofor every A for which P(YIX,A) P(YIX,A ) for some y.

4. (Expectation of the score). Use Problem 3 to show that if

exists then it is zero at A =AO. Show that

if Assumption 1 through 6 of Chapter 9 are satisfied then

5. (Equality of J and Under the same setup as Problem 3, derive the

identity

-1 2P (YIX,A)(a /aA.aA.)p(Ylx,A), J

= +, J , J
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Let denote the i th elementary vector. Justify the following steps,

f p-1[Y(e,x,e)IX,A]{(a2/aA.aA.)p[Y(e,x,e)IX,A]}p(ela)de
, J

=
,.-v 'I.J J , J

= .nh-1f
•.-v 'I.J J ,

=

=
•.-v 'I.J J , ,

-1= ·0 = o.

This implies that

6. (Derivation of X and L). Under the same setup as Problem 3, obtain

the identity

and use it to show that

2 2 -1 2- [( a /aeaa')s (e,a)][ (a /aaaa') s (e,a)] [( a /aaae ') s (e,a)] I (e) .n n n a=a
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Obtain the identity

= =ace)

Approximate J60 and Joo by 960 and

to show that

9 , and use the resulting expression
00
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