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Chapter 2. Univariate Nonlinear Regression: Special Situations

In this chapter, we shall consider some special situations that arise with

some frequency in the analysis of univariate nonlinear models but lie outsiae

the scope of the standard least-squares methods that were discussed in the

previous chapter.

The first situation considered is the problem of heteroskedastic errors.

Two solutions are proposed Either deduce the pattern of the heteroskedas-

ticity, transform the model, and then apply standard nonlinear methods or use

least squares and substitute heteroskedastic-invariant variance estimates and

test statistics. The former offers efficiency gains if a suitable transforma-

tion can be found.

The second situation is the problem of serially correlated errors. The

solution is much as above. If the errors appear to be covariance stationary

then a suitable transformation will reduce the model to a standard case. If

the errors appear to be both serially correlated and heteroskedastic, then

least squares estimators can be used with invariant variance estimates and test

statistics.

The third is a testing problem involving model choice which arises quite

often in applications but violates the regularity conditions needed to apply

standard methods. A variant of the lack-of-fit test is proposed as a solution.

The last topic is a brief discussion of nonlinearity measures. They can be

used to find transformations that will improve the performance of optimization

routines and, perhaps, the accuracy of probability statements. The latter is

an open question as the measures relate to sufficient conditions, not necessary

conditions, and little Monte-Carlo evidence is available.
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1. HETEROSKEDASTIC ERRORS

If the of the errors in the nonlinear modei

is known to depend on xt ' viz.

t = 1,2, ... , n

then the situation can be remedied using weighted least squares -- see JUdge et

a1. (1980, Section 4.3) for various tests for heteroskedasticity. Put

and apply the methods of the previous chapter with "Yt and IIfll(xt,e) replacing

Yt and f(xt,e) throughout. The justification for this approach is straight-

forward. If the errors e t are independent then the errors

"e " = "y" _ IIfll(X eO)
t t t'

will be independent and have constant variance a2 as required.

If the transformation

t = 1,2, ... , n

depends on an unknown parameter T, there are a variety of approaches that one

might use. If one is willing to take the trouble, the best approach is to

write the model as
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2and estimate the parameters A = (S,T,a ) jointly using maximum likelihood as

discussed in Section 5 of Chapter 8. If not, and the parameters T do not

depend functionally on S -- or one is willing to forego efficiency gains if

they do -- then a two-step approach can be used. It is as follows.

Let S denote the least squares estimator computed by minimizing

Put

and estimate TO by T where (T,C) minimizes

c will be a consistent estimator of J(2a2/rr) if the errors are normally

distributed. The methods discussed in Section 4 of Chapter 1 can be used to

compute this minimum. Put

and apply the methods of the previous chapter with and "f"(xt,S) replacing

Yt and f(xt,S) throughout. Section 3 of Chapter 3 provides the theoretical

justification for this approach.

If one suspects that heteroskedasticity is present but cannot deduce an

acceptable form for another approach is to use least squares

estimators and correct the variance estimate. As above, let S denote the

least squares estimator, the value that minimizes
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and let et denote residuals

t = 1,2, ••. , n.

Upon application of the results of Section 3 of Chapter 3

wi th

J and can be estimated using

and

For testing

where h: RP Rq the Wald test statistic is (Theorem 11, Chapter 3)

where H
A A_1AA_l= (a/ae')h(S) and V = • The null hypothesis H: h(So) =0

is rejected in favor of the alternative hypothesis A: h(So) 0 when the test

statistic exceeds the upper x 100 percentage point x2 of a chi-square random
2 2 -1variable with q degrees of freedom; X = (X)
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As a consequence of this result, a 95% confidence interval on the ;th

element of eO is computed as

2 -1 -1where z.025 = (.95,1) =N (.02510,1).

Let e denote the minimizer of s (e), sUbject to the restriction thatn
h(e) =O. Let H, J and denote the formulas for H, J and above but

with e replacing e throughout; put

The Lagrange multiplier test statistic is (Theorem 14, Chapter 3)

Again, the null hypothesis H: h(eo) = 0 is rejected in favor of the alternative

hypothesis A: h(eo) 0 when the test statistic exceeds the upper a x 100

percentage point x2 of a chi-square random variable with q degrees of freedom;ex
2 2 -1

Xa = (X) (1-a,q).

The likelihood ratio test cannot be used because J 3: see Theorem 15 of

Chapter 3. Formulas for computing the power of the Wald and Lagrange

multiplier tests are given in Theorems 11 and 14 of Chapter 3, respectively.
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2. SERIALLY CORRELATED ERRORS

In this section we shall consider estimation and inference regarding the

parameter eO in the univariate nonlinear model

t = 1, 2, ... , n,

when the errors are serially correlated. In most applications -- methods for

handling exceptions are considered at the end of the section -- an assumption

that the process generating the realized disturbances is

covariance stationary is plausible. This is to say that the covariances

cov(ut,U t +h) of the time series depend only on the gap h and not on the

position t in time. In consequence, the variance-covariance matrix r n of the

disturbance vector

(n x 1)

will have a banded structure with typical element Y.. = Y(i-j) where Y(h is the
'J

autocovariance function of the process, viz.

h = 0, ±1, ±2, .••

The appropriate estimator, were r known, would be the generalizedn
nonlinear least squares estimator. Specifically, one would estimate eO by the

value of e that minimizes

where

(n x 1)
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and

(n Xl) •

The generalized nonlinear least squares estimator is seen to be appropriate

from the following considerations. -1Suppose that Ln can be factored as

If we put

= (scalar).P'P .

"y" = Py, "f"(e) = pf(e), "e" = Pu

then the model

"y" = "f"(e) + "e"

satisfies the assumptions -- t;("e") = 0, C("e","e"') =<iI -- that justifies
the use of the least squares estimator and associated inference procedures.

However, the least squares estimator computed from the model

"y" = "f"(e) + "e"

is the same as the generalized least squares estimator above. This justifies

the approach. More importantly, it provides computational and inference

procedures one need only transform the model using P and then apply the

methods of Chapter 1 forthwith. For this approach to be practical, the matrix

P must be easy to obtain, must be representable using far fewer than n2

storage locations, and the multiplication Pw must be convenient relative to the

coding requirements of standard nonlinear least squares statistical packages.

As we shall see below, if an autoregressive assumption is justified, then P is
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easy to obtain, can be stored using very few storage locations, and the

multiplication Pw is particularly convenient.

When r n is not known, as we assume here, the obvious approach is to

substitute an estimator r in the formulas above. Section 4 of Chapter 9n

furnishes the theoretical justification for this approach provided that r n
depends on a finite-length vector T of random variables with In(; - TO)n n

obounded in probability for some T. A proof that r n computed as described

below satisfies this restriction is given by Gallant and Goebel (1975).

An assumption frequently satisfied in applications -- at least to within

errors which can reasonably be ascribed to sampling variation -- is that the

disturbances can be reduced to a white noise process by using a short linear

filter. Specifically, the time series is assumed to satisfy the

equations

t =0, ±1, ±2, ...

where is a sequence of independently and identically distributed

random variables each with mean zero and variance 0 2• In addition we assume

that the roots of the characteristic polynomial

mq + a mq- 1 + aq- 2
1 2 + ••• + aq

are less than one in absolute value. The necessity for this assumption is

discussed in Fuller (1976, Chapter 2); Pantula (1985) describes a testing

strategy for determining the validity of this assumption. A time series

which satisfies this assumption is called an autoregressive process

of order q.



2-2-4

EXAMPLE 1. (Wholesale Prices) The Wholesale Price Index for the years

1720 through 1973 provides an illustration. The data is listea in Table 1 and

plotted as Figure 1. Using least squares, an exponential growth model

t = 1, 2, •.• , n = 254

was fitted to the data to obtain residuals From these residuals,t t=1
the autocovariances have been estimated using

A n-h A A

Y(h) = (1/n)L t =1 UtU t +h h = 0, 1, ... , 60

and plotted as Plot Autocovariance in Figure 2. Using the methods discussed

below, a second order autoregression

A 254
was fitted to the residuals {u t }t=1 to obtain

A A2
(a l , a2 , a ) = (-1.048, 0.1287, 34.09).

Estimates of the autocovariances can be calculated from these estimates using

the Yule-Walker equations as discussed in Anderson (1971, p. 174). Doing so

yields the estimates plotted as Plot Autoregressive in Figure 2. The two plots

shown as Figure 2-- Autocovariance, unrestricted estimates requiring that 60

population quantities be estimated, and Autoregressive, requiring that only

three population quantities be estimated are in reasonable agreement and the

autoregressive assumption seems to yield an adequate approximation to the

autocovariances. Indeed, it must for large enough q if the process

is, in fact, stationary (Berk, 1974).



2-2-5

0
COm

0
tom

0vm
;J) 0
.u C\Im
,..,
v 0- 0
U. m
Hi... 0
I... CO

CO
(j)
UJ 0
.J to
0
I
1 OW

(j) 0

::l
C\Ico

0
1"" 0co
w
tt-..
0 0
H 0
IJ. ..

tom



AU
TO
CO
VA
RI
AN
CE

2
7
5
.,
..
-
-
-
-

25
0

22
5·
-

20
0

2
.
A
U
T
O
C
O
V
A
R
IA
N
C
E
S

A
N
D

A
P
P
R
O
X
IM
A
T
IO
N

AU
TO

RE
GR

ES
SI
VE

N L ""I Cf
'

-5
0
I

I
.I

I
I

I
I

o
10

20
30

40
50

60
LA
G



Table 1. U.S. Wholesale Prices
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Year Index Year Index Year Index Year Index

1720 16.98 1761 25.48 1802 39.04 1843 25.06
1721 15.48 1762 28.42 1803 39.29 1844 25.20
1722 16.07 1763 27.43 1804 43.30 1845 27.47
1723 16.60 1764 24.85 1805 47.84 1846 27.62
1724 17.51 1765 24.41 1806 43.94 1847 31.99
1725 19.03 1766 25.23 1807 41.85 1848 28.02
1726 19.89 1767 25.82 1808 37.01 1849 27.79
1727 19.22 1768 24.90 1809 42.44 1850 28.17
1728 18.28 1769 25.01 1810 45.03 1851 27.77
1729 18.22 1770 25.63 1811 45.12 1852 29.37
1730 19.30 1771 26.50 1812 45.77 1853 32.71
1731 17.16 1772 29.67 1813 53.76 1854 38.34
1732 16.47 1773 28.07 1814 65.06 1855 40.81
1733 17.73 1774 26.08 1815 59.92 1856 36.38
1734 17.18 1775 25.74 1816 53.12 1857 37.77
1735 17.29 1776 29.51 1817 53.95 1858 31.56
1736 16.47 1777 42.21 1818 50.48 1859 32.97
1737 17.94 1778 48.04 1819 41.86 1860 31.48
1738 17.94 1779 77.55 1820 34.70 1861 31 .11
1739 16.19 1780 77.21 1821 32.07 1862 36.35
1740 17.20 1781 74.12 1822 35.02 1863 46.49
1741 22.18 1782 57.44 1823 34.14 1864 67.47
1742 21.33 1783 44.52 1824 31.76 1865 64.67
1743 18.83 1784 34.50 1825 32.62 1866 60.82
1744 17.90 1785 31.58 1826 31.67 1867 56.63
1745 18.26 1786 29.94 1827 31.62 1868 55.23
1746 19.64 1787 28.99 1828 31.84 1869 52.78
1747 21.78 1788 25.73 1829 32.35 1870 47.19
1748 24.56 1789 27.45 1830 29.43 1871 45.44
1749 23.93 1790 31.48 1831 31.38 1872 47.54
1750 21.69 1791 29.51 1832 31.69 1873 46.49
1751 22.57 1792 30.96 1833 32.12 1874 44.04
1752 22.65 1793 34.60 1834 30.50 1875 41.25
1753 22.28 1794 36.63 1835 33.97 1876 38.45
1754 22.20 1795 44.43 1836 39.69 1877 37.05
1755 22.19 1796 50.25 1837 41.33 1878 31.81
1756 22.43 1797 45.20 1838 38.45 1879 31.46
1757 22.00 1798 42.09 1839 38.11 1880 34.96
1758 23.10 1799 43.47 1840 31.63 1881 36.00
1759 26.21 1800 44.51 1841 29.87 1882 37.75
1760 26.28 1801 48.99 1842 26.62 1883 35.31
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Year Index Year Index Year Index Year Index

1884 32.51 1908 32.08 1932 33.16 1956 90.70
1885 29.71 1909 34.48 1933 33.63 1957 93.30
1886 28.66 1910 35.91 1934 38.21 1958 94.60
1887 29.71 1911 33.10 1935 40.84 1959 94.80
1888 30.06 1912 35.24 1936 41.24 1960 94.90
1889 28.31 1913 35.60 1937 44.03 1961 94.50
1890 28.66 1914 34.73 1938 40.09 1962 94.80
1891 28.46 1915 35.45 1939 39.36 1963 94.50
1892 26.62 1916 43.61 1940 40.09 1964 94.70
1893 27.24 1917 59.93 1941 44.59 1965 96.60
1894 24.43 1918 66.97 1942 50.39 1966 99.80
1895 24.89 1919 70.69 1943 52.67 1967 100.00
1896 23.72 1920 78.75 1944 53.05 1968 102.50
1897 23.77 1921 49.78 1945 54.01 1969 106.50
1898 24.74 1922 49.32 1946 61. 72 1970 110.40
1899 26.62 1923 51.31 1947 76.65 1971 113.90
1900 28.61 1924 50.03 1948 83.08 1972 119.10
1901 28.20 1925 52.79 1949 78.48 1973 135.50
1902 30.04 1926 51.00 1950 81.68
1903 30.40 1927 48.66 1951 91.10
1904 30.45 1928 49.32 1952 88.60
1905 30.65 1929 48.60 1953 87.40
1906 31.52 1930 44.11 1954 87.60
1907 33.25 1931 37.23 1955 87.80

Source: Composite derived from: Wholesale Prices for Philadelphia, 1720 to
1861, Series E82, U.S. Bureau of the Census (1960); Wholesale Prices, All
Commodities, 1749 to 1890, Series El, U.S. Bureau of the Census (1960);
Wholesale Prices, All Commodities, 1890 to 1951, Series E13, U.S. Bureau of
the Census (1960); Wholesale Prices, All Commodities, 1929 to 1971, Office of
the President (1972); Wholesale Prices, All Commodities, 1929 to 1973, Office
of the President (1974).



The transformation matrix P based on the autoregressive assumption is

computed as follows. Write the model in vector form

compute the least squares estimator 9 , which minimizes

SSE(9) = [y - f(9)]'[y - f(e)]

compute the residuals

u =y - f(9)

from these, estimate the autocovariances up to lag q using

2-2-9

put

= (1/n)rn- 1hl u u, t=l t t+lhl h = 0, 1, "'r q;

YeO)

Y( 1 )

Y( 1)

YeO)

Y(q-1)

Y(q-2)
(q x q)

Y(q-1) Y(q-2) YeO)

[Y( 1), Y( 2) , ... , Y(q)]' (q x 1)

and compute a using the Yule-Walker equations

-1 Ya = -rq q

A2
YeO) + a'Y<:J = q

(q x 1)

(1 x 1)
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factor

= pIp
q q

using, for example, Cholesky's method and set

Jci Pq o
1

q rows
J

p =
aq-1 a,

a a aq q-l "

n-q rows

As discussed above, P is used to transform the model y = fee) + u to the

model "y" .. "f"(e) + "e" using

"v" =Py, "f"(e) .. Pf(e), "e" =Pu
Thereafter the methods discussed in Chapter 1 are applied to "y" and "f"(e).

This includes computation of the estimator, methods for testing hypotheses, and

for setting confidence intervals. The value e left over from the least

squares estimation usually is an excellent starting value for the iterations to

minimize

"SSE"(e) = ("y" - "f"(e)]'["y" - "f"(e)].

Note that after the first q observations,

"y" =t t = q+l, q+2, .. ., n
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"f"(x ,e) =t

+ ... + a f (x t ,e)q -q t =q+1, q+2, ... , n

which ;s particularly easy to code. We illustrate with the example.

EXAMPLE 1 (continued). Code to compute e for the model

t = 1, 2, •.• , n = 254

t = 0, ±1, ±2, ...

using the data of Table 1 is shown in Figure 3.

Most of the code has to do with the organization of data sets. First, the

least squares estimator e is computed PROC NLIN and the residuals from the fit

are stored in WORK01. The purpose of the code which follows is to arrange

these residuals so that the data set WORK03 has the form

"y" "X"

u

o
o

o
u

o

o
o
u

whence familiar regression formulas can be used to compute

rq = (1/n)X'X a = _(XIX;' X'y

[ 252.32 234.35 ] [ 213.20 ]= =
234.35 252.32 234.35

42
a = y'y - a'X'Xa

=34.0916

using PROC MATRIX. Note that the columns of "X" have been permuted to permute
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the columns of a in this code. The transformation P is put in the data set

WORK04 whose first two rows contain (P /0) and remaining rows containq

(a2,a1,1). The transformation is merged with the data, and lagged values of

the data, and stored in the data set WORK06. The appearance of the data set

WORK06 is as follows:

OBS COLl COl2 COl3 Y1 Y2 Y3 Xl X2 X3

1 0.991682 -0.9210 ° 16.98 15.48 16.07 1 2 3
2 0.000000 0.3676 0 16.98 15.48 16.07 1 2 3
3 0.128712 -1.0483 1 16.98 15.48 16.07 1 2 3
4 0.128712 -1.0483 1 15.48 16.07 16.60 2 3 4
•
•
•
254 0.128712 -1.0483 1 113.90 119.10 135.50 252 253 254

Using PROC NlIN one obtains

e = (12.1975, 0.00821720)'

as shown in Figure 3.
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Figure 3. Example 1 Estimated Using an Autoregressive Transformation.

SAS Statements:

PROC NLIN DATA=EGOl METHOD=GAUSS ITER=50 CONVERGENCE=1.E-l0;
OUTPUT OUT=WORKOl RESIDUAL=UHAT;
PARMS Tl=l T2=.003;
MODEL Y=Tl*EXP(T2*X); DER.Tl=EXP(T2*X); DER.T2=Tl*X*EXP(T2*X);

OATA WORK02; SET WORK01; KEEP UHAT; OUTPUT;
IF _N_=254 THEN DO; UHAT=O; OUTPUT; OUTPUT; END;
DATA WORK03; SET WORK02;
UHAT_O=UHAT; UHAT_l=LAG1(UHAT); UHAT_2=LAG2(UHAT);
IF _N_=l THEN 00; UHAT_l=O; UHAT_2=0; END; IF _N_=2 THEN UHAT_2=0;

PROC MATRIX;
FETCH Y DATA=WORK03(KEEP=UHAT_0); FETCH X DATA=WORK03(KEEP=UHAT_2 UHAT_l);
GG=X'*X#/254; G=X'*Y#/254; A=-INV(GG)*G; SS=Y'*Y#/254-A'*GG*A;
SPQ=HALF(SS#INV(GG»;
ZERO=O/O; ONE=l; P=SPQIIZERO; ROW=A'I lONE; DO 1=1 TO 252; P=P//ROW; END;
OUTPUT P OUT=WORK04;

DATA WORK05; SET EG01;
Y3=Y; Y2=LAG1(Y); Yl=LAG2(Y); X3=X; X2=LAG1(X); Xl=LAG2(X);
IF _N_=3 THEN DO; OUTPUT; OUTPUT; END; IF _N_>2 THEN OUTPUT;
DATA WORK06; MERGE WORK04 WORK05; DROP ROW Y X;

PROC NLIN DATA=WORK06 METHOD=GAUSS ITER=50 CONVERGENCE=1.E-l0;
PARMS Tl=l T2=.003;
Y = COL1*Yl + COL2*Y2 + COL3*Y3;
F = COL1*Tl*EXP(T2*Xl) + COL2*Tl*EXP(T2*X2) +COL3*Tl*EXP(T2*X3);
01 = COL1*EXP(T2*Xl) + COL2*EXP(T2*X2) +COL3*EXP(T2*X3);
02 = COL1*Tl*Xl*EXP(T2*Xl) + COL2*Tl*X2*EXP(T2*X2) +COL3*Tl*X3*EXP(T2*X3);
MODEL Y = F; DER.Tl = 01; DER.T2 = 02;

Output:
SAS

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE Y

5

SOURCE

REGRESSION
RESIDUAL
UNCORRECTED TOTAL

OF

2
252
254

SUM OF SQUARES

4428.02183844
5656.56502716
10084.58686559

MEAN SQUARE

2214.01091922
22.44668662

PARAMETER

T1
T2

ESTIMATE

12.19756397
0.00821720

ASYMPTOTIC
STD. ERROR

3.45880524
0.00133383

ASYMPTOTIC 95 %
CONFIDENCE INTERVAL

LOWER UPPER
5.38562777 19.00950018
0.00559029 0.01084410
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A word of caution. This example is intended to illustrate the computa-

tions, not to give statistical guidance. Specifically, putting xt = t violates

the regularity conditions of the asymptotic theory and visual inspection of

Figure 1 suggests a lack of stationarity as the variance seems to be growing

with time .•

Monte-Carlo simulations reported in Gallant and Goebel (1976) suggest that

the efficiency gains, relative to least squares, using this procedure can be

sUbstantial. They also suggest that the probability statements associated to

hypothesis and confidence intervals are not as accurate as one might hope but

are certainly an improvement over least squares probability statements. These

fact hold true whether the series that generates the data is actually

an autoregressive process of order q or some other covariance stationary

process such as a moving average process that can be approximated by an

autoregression

The order q of the autoregressive process which best approximates the

error process {ut } is unknown in applications. One approach is to attempt to

determine q from the least squares residuals {u t }.

This problem is very much analogous to the problem of determining the

appropriate degree of polynomial to use in polynomial regression analysis. The

2, ..• , q, may be tested
A_1

diagonal element of r byq

correct analogy is obtained by viewing rqa = -Yq as the normal equations with
2 A A A

solution vector a =-rq and residual mean square s = [yeO) + a'Yq]/(n-q).

The hypotheses H:a i = 0 against A:a i ¢ 0, i = 1,
A 2Aii Aii . thusing t. = la.I/J(s Y ) where Y 1S the i

1 1

entering tables of t with n - q degrees of freedom. Standard techniques of

degree determination in polynomial regression analysis may be employed of

which two are: test sequentially upward, or start from a very high order and

test downward (Anderson, 1971, Section 3.2.2).
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Akaike's (1969) method is a variant on the familiar procedure of plotting

the residual mean square against the degree of the fitted polynomial and

terminating when the curve flattens. Akaike plots

against q for all q less than an a priori upper bound; in this computation put

..., u =o.1-q That q at which the minimum obtains is selected as

the order of the approximating autoregressive process.

The methods discussed above are appropriate if the error process {u t } is

covariance stationary. If there is some evidence to the contrary, and a

transformation such as discussed in the previous section will not induce

stationarity, then an alternative approach is called for. The easiest

is to make no attempt at efficiency gains as above but simply correct the

standard errors of least squares estimators and let it go at that. The method

is as follows.

As above, let e denote the least squares estimator, the value that

minimizes

and let ut denote residuals

t =1, 2, ••• , n.

Upon application of the results of Section 4 of Chapter 9, approximately -- see

Theorem 6 of Chapter 9 for an exact statement --
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J and can be estimated using

j = 't'=-lt(n) l

and

where is the integer nearest (n)1/5,

2 31 -61xl + 6lxl
w(x) =

32(1-lxl)

and

In't' =

For testing

where h: !P Rq the Wald test statistic is (Theorem 12, Chapter 9)
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o 5 x 5 1/2

1/2 5 x 5 1

't' < 0



where H - --1---1= (a;ae')h{a) and V = . The null hypothesis H: h{ao) = 0
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is rejected in favor of the alternative hypothesis A: h(ao) 0 when the test

statistic exceeds the upper a x 100 percentage point x2 of a chi-square ranaoma
2 2 -1variable with q degrees of freedom; = (X) (1-a,q).

As a consequence of this result, a 95% confidence interval on the i th

element of aO is computed as

2 -1 -1where z.025 = -J{X} (.95,1) =N (.02510,1).

Let a denote the minimizer of s (a), sUbject to the restriction thatn
h(a} =O. Let H, J and denote the formulas for H, J and above but

with a replacing a throughout; put

The Lagrange multiplier test statistic is (Theorem 16, Chapter 9)

Again, the null hypothesis H: h(ao) =0 is rejected in favor of the alternative

hypothesis A: h(ao} 0 when the test statistic exceeds the upper a x 100

percentage point x2 of a chi-square random variable with q degrees of freedom;a
x2 = (X2}-1(1-<X,q).a

The likelihood ratio test cannot be used because J see Theorem 17 of

Chapter 9. Formulas for computing the power of the Wald and Lagrange

multiplier tests are given in Theorems 14 and 16 of Chapter 9, respectively.
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3. TESTING A NONLINEAR SPECIFICATION

Often, it is helpful to be able to choose between two model specifications:

and

The unknown parameters are and w of dimension u, q, and v, respectively.

The functional forms, and g(x,w), are known. The errors, e t , are

normally and independently distributed with mean zero and unknown variance a2 •

Parametrically, the situation is equivalent to testing:

H: = 0 against A: 0

regarding w, and a2 as nuisance parameters.

It would be natural to employ one of the tests discussed in Section 5 of

the previous chapter. In the formal sense, the Lagrange multiplier test is

undefined because w cannot be estimated if =o. The likelihood ratio test is

defined in the sense that the residual sum of squares from the model

can be computed and used as SSE(9). But one must also compute the

unconstrained estimate of

9 = w,

to obtain SSE(9) in order to compute the likelihood ratio test statistic; the

Wa1d test statistic also requires computation of 9. When H is true, this

dependence on 9 causes two difficulties.
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1. It is likely that the attempt to fit the full model will failor, at

best converge very slowly as seen in Figure 6 and Table 4 of Chapter 1.

2. The regularity conditions used to obtain the asymptotic properties of

the unconstrained least-squares estimator e -- and also of test statistics

that depend on 9 -- are violated as neither the identification condition or

the rank condition discussed in Section 3 of the previous chapter are

satisfied.

It is useful to consider when the situation of testing H against A using

data which support H is likely to arise. It is improbable that one would

attempt to fit a nonlinear model which is not supported by the data if one is

merely attempting to represent data parametrically without reference to a

substantive problem. For example, in the cases considered in Table 4 of

Chapter 1, plots of the observed response Yt against the input x3t failed to

reveal any visual impression of exponential growth for values of 194' less

than .1. Consequently, substantive rather than data analytic considerations will

likely have suggested A. As we shall see, it will be helpful if these same

substantive considerations also imply probable values for w.

The lack-of-fit test has been discussed by several authors (Beale, 1960;

Halperin, 1963; Hartley, 1964; Turner, Monroe, and Lucas, 1961; Williams, 1962)

in the context of finding exact tests or confidence regions in nonlinear

regression analysis. Here the same idea is employed, but an asymptotic theory

is substituted for an exact small-sample theory. The basic idea is straight-

forward: If TO =0, then the least-squares estimator of the parameter 0 in the

model

where the w-vector Zt does not depend on any unknown parameters, is estimating
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the zero vector. Thus any (asymptotically) level q test of

against

is a (asymptotically) test of

against

Note that since Zt does not depend on any unknown parameters, the computational

problems that arise when trying to fit A by least squares will not arise when

fitting A.

When H is true, any of the tests considered in Section 4 of Chapter 1 are

asymptotically level q. Regularity conditions such that the Wald and

likelihood ratio test statistics for H against A follow the noncentral F-

distribution plus an asymptotically negligible remainder term when A is true

are in Gallant (1977). Simulations reported in Gallant (1977) suggest that the

problem of inaccurate probability statements associated to inference based on

the Wald test statistic are exacerbated in the present circumstance. The

simulations support the use of the likelihood ratio test; the Lagrange

multiplier text was not considered.

Let denote the least-squares estimator for the model A and define:

= the n by u matrix with typical element ,

Z h b . °th tth I=ten y w matrlx Wl row Zt'

Let denote the least-squares estimator for the model H, and define
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The likelihood ratio test for H against A rejects when

-
L =---------

- u - w)

exceeds F , the upper a-l00 percentage point an F-random variable with wa
numerator degrees of freedom and n - u - w denominator degrees of freedom;

F =F- l (l-a;w,n-u-w).a
The objective governing the choice of the vector Zt of additional

regressors is to find those which will maximize the power of the test of H

against A when A is true. The asymptotic power of the likelihood ratio test

is given by the probability that a doubly noncentral F statistic exceeds Fa
(Gallant,1977). The noncentrality parameters of this statistic are

for the numerator, and

for the denominator, where

o 0 0h = [h(xl ,w ), h(x2,w ), ... , h(xn,w )]' •

Thus one should attempt to find those Zt which best approximate h in the sense

of maximizing the ratio

h'Q Z(Z'Q'Q Z)-l Z'Q'h/h'Q hG G G G G
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while attempting, simultaneously, to keep the number of columns of Z as small

as possible. We consider, next, how this might be done in applications.

In a situation where sUbstantive considerations or previous experimental

evidence suggest a single point estimate for wO, the natural choice is

Zt = h(xt,w).

If, instead of a point estimate, ranges of plausible values for the

components of ware available then a representative selection of values of w,

{W.: i =1,2, ... , K}
1

whose components fall within these ranges can be chosen -- either

deterministically or by random sampling from a distribution defined on the

plausible values -- and the-vectors h(w.) made the columns of Z. If,,
following this procedure, the number of columns of Z is unreasonably large, it

may be reduced as follows. Decompose the matrix

B=[h(w1)1

into its principal component vectors, and choose the first few of these to make

up Z; equivalently, obtain the singular value decomposition (Bussinger and

Golub, 1969) B = USV' where U'U = V'V = VV' = I, and 5 is diagonal with

nonnegative entries , and choose the first few columns of U to make up Z. We

illustrate with an example.

EXAMPLE 2 (Preschool Boys' Weight/Height Ratio). The data shown in Figure 4

are preschool boys' weight/height ratios plotted against age and were obtained

from Eppright et al. (1972); the tabular values are shown in Table 2. The

question is whether the data support the choice of a three-segment quadratic-

quadratic-linear polynomial response function as opposed to a two-segment
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Table 2. Boys' Weight/Height vs Age

W/H Age W/H Age W/H Age

0.46 0.5 0.88 24.5 0.92 48.5
0.47 1.5 0.81 25.5 0.96 49.5
0.56 2.5 0.83 26.5 0.92 50.5
0.61 3.5 0.82 27.5 0.91 51.5
0.61 4.5 0.82 28.5 0.95 52.5
0.67 5.5 0.86 29.5 0.93 53.5
0.68 6.5 0.82 30.5 0.93 54.5
0.78 7.5 0.85 31.5 0.98 55.5
0.69 8.5 0.88 32.5 0.95 56.5
0.74 9.5 0.86 33.5 0.97 57.5
0.77 10.5 0.91 34.5 0.97 58.5
0.78 11.5 0.87 35.5 0.96 59.5
0.75 12.5 0.87 36.5 0.97 60.5
0.80 13.5 0.87 37.5 0.94 61.5
0.78 14.5 0.85 38.5 0.96 62.5
0.82 15.5 0.90 39.5 1.03 63.5
0.77 16.5 0.87 40.5 0.99 64.5
0.80 17.5 0.91 41.5 1.01 65.5
0.81 18.5 0.90 42.5 0.99 66.5
0.78 19.5 0.93 43.5 0.99 67.5
0.87 20.5 0.89 44.5 0.97 68.5
0.80 21.5 0.89 45.5 1.01 69.5
0.83 22.5 0.92 46.5 0.99 70.5
0.81 23.5 0.89 47.5 1.04 71.5
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quadratic-linear response function. In both cases, the response function is

required to be continuous in x (age) and to have a continuous first derivative

in x. Formally,

and

where

Tk(z) • {

k when z 2 0,z

0 when z < 0;

see Gallant and Fuller (1973) for a discussion of the derivation and fitting of

grafted polynomial models.

The correspondence with the notation above is:

= + + - x),

h(x,w) =T2(W - x).

The parameter w is the join point associated with the quadratic term whose

omission is proposed.
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Suppose plausible values for ware w1 = 4, Wz = 8, and W3 = 12. The

matrix B, described above, has typical row

The first principal component vector of a, with elements

was chosen as the additional regressor. This choice yields

=0.03789865 (from Figure 5),

= 0.03769031 (from Figure 5),

(0.03789865 - 0.03769031)/1
L = ----------

0.03769031/(72 - 4 -1)

= 0.370,

P[F(1,67) > 0.370] =.485.
These data give little support to A.

Simulations reported by Gallant (1977) indicate that the best choice for Zt

in this example is to take as Z the first principal component of B. For

practical purposed, the power of the test is as good as if the true value W
O

were known.
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Figure 5. Lack of Fit Test Illustrated Using Example 2.

SAS Statements:

DATA B; SET EG02;
Z1=(4-AGE>0)*(4-AGE)**2; Z2=(8-AGE>O)*(8-AGE)**2; Z3=(12-AGE>0)*(12-AGE)**2;
PROC MATRIX; FETCH B DATA=B(KEEP=Z1 Z2 Z3); SVD U Q V B; OUTPUT U OUT=WORK01;
DATA WORK02; MERGE EG02 WORK01; KEEP AGE WH Z; Z=COL1;

PROC NLIN DATA=WORK02 METHOD=GAUSS ITER=50 CONVERGENCE=1.E-10;
PARMS T1=1 T2=.004 T3=-.002 T4=12; X=(T4-AGE>0)*(T4-AGE);
MODEL WH = T1+T2*AGE+T3*X**2;
DER.T1=1; DER.T2=AGE; DER.T3=X**2; DER.T4=2*T3*X;

PROC NLIN DATA=WORK02 METHOD=GAUSS ITER=50 CONVERGENCE=1.E-10;
PARMS T1=.73 T2=.004 T3=-5.E-5 T4=21.181 0=-.4; X=(T4-AGE>0)*(T4-AGE);
MODEL WH = T1+T2*AGE+T3*X**2+Z*D;
DER.T1=1; DER.T2=AGE; DER.T3=X**2; DER.T4=2*T3*X; DER.D=Z;

Output:

SAS

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE WH

3

SOURCE

REGRESSION
RESIDUAL
UNCORRECTED TOTAL

OF

4
68
72

SUM OF SQUARES

53.67750135
0.03789865
53.71540000

SAS

MEAN SQUARE

13.41937534

5

NON-LINEAR LEAST SQUARES SUMMARY STATISTICS DEPENDENT VARIABLE WH

SOURCE

REGRESSION
RESIDUAL
UNCORRECTED TOTAL

OF

5
67
72

SUM OF SQUARES

53.67770969
0.03769031
53.71540000

MEAN SQUARE

10.73554194
0.00056254
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4. MEASURES OF NONLINEARITY

Consider the nonlinear model

with normally distributed errors. As we have seen, the statistic

* * * * -1 '*[y - f(e )]'F(e )[F'(e )F(e)] F'(e)[y - f(e )]/p
R1 =---------*-:---------------SSE(e )/(n - p)

is distributed exactly as an F with p numerator degrees of freedom and n - p

denominator degrees of freedom when a null hypothesis that completely specifies

the parameter,

*= e,

is true. Beale (1960) studied the extent to which confidence contours

constructed using R1 coincide with contours constructed using the likelihood

ratio test statistic

*[SSE(e ) - SSE(e»)/p
L =

SSE(e)/(n - p)

On the basis of this study, he constructed measures of nonlinearity that

measure the extent of the coincidence and suggested corrections to critical

points based on these measures to improve the accuracy of confidence

statements. Coincidence is a sufficient condition for accurate probability

statements, not a necessary condition. Thus a large value of Beale's

nonlinearity measure does not imply inaccurate probability statements and it is

possible that Beale's corrections can actually be counter productive.



2-4-2

Simulations reported by Gallant (1976) indicate that there are instances where

such is the case.

Bates and Watts (1980) take a geometric approach in deriving their measures

of nonlinearity, an approach somewhat related in spirit to Efron (1975);

Ratkowsky (1983) summarizes their work and contains FORTRAN code to compute

these measures. The most interesting aspect of their work is that they break

their measure into two pieces, one a measure of intrinsic curvature and the

other a measure of parameter-effects curvature. The latter can be reduced be

reparameterization, the former cannot. In their examples, which are rather

extensive, they find that the parameter-effects curvature is more important

than the intrinsic in each case.

What is interesting about the work is that it sheds some intuitive light on

the question of why the likelihood ratio statistic leads to more accurate

probability statements regarding the size of tests and level of confidence sets

than the Wald statistic. We have seen that the Wald test is not invariant to

nonlinear transformation which means that there may exist a transformation that

would make the total nonlinearity nearly equal to the intrinsic nonlinearity

and so improve accuracy. The Bates and Watts measure provides some guidance in

finding it; see Bates and Watts (1981). The likelihood ratio test is invariant

to reparameterization which means that it can be regarded as a statistic where

this transformation has been found automatically so that it is only the

intrinsic nonlinearity that is operative. This is, of course, rather intuitive

and speculative, and suffers from the same defect as was noted above: the

measures, like Beale's, represent sufficient conditions, not necessary

conditions; see Cook and Witmer (1985) in this regard.
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Our advice, above, was to avoid the whole issue as regards inference ana

simply use the likelihood ratio statistic in preference to the Wald statistic.

A reparameterization will probably destroy the principal advantage of the Wald

statistic in that it provides ellipsoidal confidence regions on model

parameters. After a reparameterization, the ellipsoid will correspond to new

parameters that will not necessarily be naturally associated to the problem and

one is no better off in this regard than with the likelihood ratio statistic.

As regards computations, reparameterization can be very helpful; see Ross

(1970).
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