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by
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ABSTRACT

Conditions under which a regression estimate based on p regressors is

asymptotically normally distributed when the minimum eigenvalue of X/X/n

decreases with p are obtained. The results are relevant to the regressions on

truncated series expansions that arise in neural networks, demand analysis, and

asset pricing applications.
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1. INTRODUCTION

The p leading terms of a series expansion are often used in

regression analysis to either represent or approximate the conditional

expectation with respect to x of a dependent variable y. Either explicitly or

implicitly, p usually grows with the sample size n in these applications. The

growth may follow some deterministic rule {Pn} or it may be adaptive with p

increased when a t-test rejects or some model selection rule such as Schwarz's

(1978) criterion, Mallow's (1973) Cp' or cross validation suggests an increase.

The most familiar examples of expansions viewed as representations are

experimental designs, which are Hadamard expansions in the levels of factors.

In this case, which we refer to as the first paradigm, the data are presumed to

have been generated according to the regression

tal, 2, ... , n.

Perhaps the most familiar examples of expansions viewed as approximations occur

in response surface analysis when the observed response is regressed on a

polynomial in the control variables. In this case, which we refer to as the

second paradigm, the data are presumed to have been generated according to the

regression

t = 1, 2, .•• , n.

p 0and gp(XI8) • is regarded as an approximation to g. While our

analysis covers both paradigms, the second provides the primary motivation.

In fact, it is three specific applications that motivate this work,

although our results obviously have wider applicability. These three
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applications are: (i) the statistical interpretation of neural networks (White,

1989) as used in robotics, navigation aids, speech interpretation, and other

artificial intelligence applications [feedforward networks can be viewed as

series expansion regressions (Gallant and White, 1988)], (ii) flexible

functional forms as used in consumer and factor demand analysis (Barnett,

Geweke and Vue, 1989), and (iii) Hermite expansions as used in asset pricing

and sample selection applications (Gallant and Tauchen, 1989; Gallant and

Nychka, 1987). For a variety of reasons -- mimicking biological structure,

avoiding unrealistic boundary conditions, or appending a leading special case

to the expansion either to improve the approximation or test hypotheses

these three applications share a common feature: the eigenvalues of the p x p

matrix

(or its first order counterpart if the analysis is nonlinear) decline as nand

p increase together.

In these applications, the independent variables {xt } are almost invariably

obtained by sampling from some common distribution #(x) so that results are

more usefully stated in terms of the p x p matrix

If one tried to state results in terms of conditions on the eigenvalues of

X'X/n (or other characteristics such as the diagonal elements of the hat

matrix)" results would be conditional upon the particular sequence {xt } that

obtained of which, presumably, only the first n terms are known. Moreover,

even if one were presumed to have the entire sequence {xt }t=1 available for
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inspection, one would still be involved in the conceptual circularity of having

to propose a rule Pn' check the eigenvalues of X'X/n as n tends to infinity,

and if that rule didn't work, to try again. Without our results, which we

believe to be new, one could not state a rule {Pn) a priori which would satisfy

the conditions on X'X/n for every sequence {xt ) encountered in applications.

Providing deterministic rules that achieve asymptotic normality under either

paradigm and that hold for (almost) every sequence {xt ) is the main

contribution of the paper. An extension to adaptive rules using results due to

Eastwood (1987) is possible; see Eastwood and Gallant (1987) or Andrews (1988)

for examples.

To help fix ideas, we illustrate the rates of decline one might encounter

in applications with an example taken from Gallant (1984) regarding the log

cost function of a firm when the firm's output is the only free variable. The

log cost function of a firm gives the logarithm of the cost to a firm over a

year, say, to produce x units of log output at log prices p of the factors of

production; x is a scalar and p is a vector. Since we shall hold p fixed, that

argument is suppressed and we write a log cost function as g(x). Units of

measurement are irrelevant, and the capital stock of the firm is fixed

(thus bounding feasible output from above and below), so we can assume that

o S x S without loss of generality. Data is generated according to

t = 1, 2, ... , n.

If one approximated gO(x) by the Fourier series

K
gp(XI8) • Uo + 2.L ujcos(jxt ) - vjcos(jxt )J=1

p = 2K + 1

and # were uniform over [0, then the eigenvalues of Gp would be bounded
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from above and below for all p (Tolstov, 1962). But this would imply that the

log cost function of a firm is periodic so that conditions at the lowest

feasible output are the same as at the highest feasible output which is silly.

(At the minimum, one would expect the first derivative of gO to be negative at

o and positive at 2w.)
One could improve the approximation and have the means to test against the

leading special case by adding a Translog cost function (Christensen,

Jorgenson, and Lau, 1975) to the expansion

2 K
gp(xI9) = Uo + bx + CX + 2.L ujcos(xt ) - vjcos(xt ) p = 2K + 3.

J=1
By minimizing 9'Gp9/9'9 over all 9 in R

P one gets the smallest eigenvalue of

Gp' For given band c, the solution to this minimization problem is gotten by

putting 9 - (-uO' b, c, -u1' vI' ... , -uK' vK) where uj and vj denote
the Fourier coefficients of bx + cx2 (Tolstov, 1962). The minimum itself is
lID -2 -2...K -2 -2Lj=K+l(uj + vj )/lj=l(uj + vj ) which by direct computation can be

-1 2shown to decline at the rate K when c ; 0 and b + (bx + cx is symmetric

about wwhen b • But this would imply that the log cost function of an

arbitrary firm has periodic second and higher derivatives which is implausible.

This difficulty can be overcome by assuming that the support of is

[E, for some small E > o. The minimum eigenvalue is gotten by:

extending bx + cx2 from [E, to [0, such that the extension is

periodic and infinitely many times differentiable, computing the Fourier

coefficients uj and vj of the extended function, and putting
lID - 2 - 2 K - 2 - 2 . ..= Lj=K+l(uj + vj )/Lj=l(uj + vj ). In th1S case 1S rap1dly

decreasing; that is, tends to zero with K for every m.
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In summary, as p increases one could have the minimum eigenvalues of Gp
bounded from below, declining at a polynomial rate, or rapidly decreasing.

In the literature related to our problem within the first paradigm, Huber

(1973) gives the basic result used to obtain asymptotic normality. Portnoy

(1985) extends Huber's and Yohai and Maronna's (1979) results to M-estimators

and gives a rich discussion of the history of research relating p to n so as to

achieve asymptotic normality when the eigenvalues of X'X/n are bounded from

above and below. His methods of proof are related to ours in that metric

entropy and an exponential inequality are used to get a uniform strong law with

a rate. We use these same ideas but at a more macro level by citing results in

the empirical process literature as found, for instance, in Pollard (1984).

Closely related work within the second paradigm is found in Severini and Wong

(1987) and Andrews (1988). Ours, Severini and Wong's, and Andrews' proof

strategies are similar. Severini and Wong consider maximum likelihood and

similarly structured sieve estimators. Their regularity conditions would

basically require the eigenvalues of X'X/n to be bounded above and below when

their results are specialized to regression. Andrews (1988) provides an

excellent history of work related to this problem and an extensive list of

nonparametric estimation strategies encompassed within the second paradigm.

His regularity conditions are not as closely related to applications as ours,

operating at a level closer to the results. Verification of Andrews'

regularity conditions is reasonably straightforward when the eigenvalues of

X'X/n are bounded above and below. He does not explicitly relate the

eigenvalues of X'X/n to those of Gp and so verification of regularity

conditions is conditional on {xt } and subject to the problems discussed above.
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He extends his results on deterministic rules to adaptive rules using results

of Eastwood (1987). This same extension covers our results as well. Overall,

one might view our work as moving Andrews' results closer to applications.
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2. ASYMPTOTIC NORMALITY UNDER THE FIRST PARADIGM

We consider a regression model with p parameters

t = 1, 2, ... , n

Putting • •.. , the least squares estimator is

8= [ *
where

The objective of this section is to find rules relating p to n such that

x
/Var(p'81{xt }}

is asymptotically normally distributed when the data is generated according to

Yt • + et where {et } is an iid sequence with common distribution P(e},

{xt } is an iid sequence with common distribution p(x}, {Xt } is independent of

{et }, p is an arbitrary vector in R
P, and var(p'81{Xt }} =

The dependence of gO on n is to include the first paradigm within the
A

analysis. Under the first paradigm, p'8(81{xt )} is presumed to be an unbiased

estimate of the parametric function of interest and the results of this section

are all that is required for asymptotic normality. Under the second paradigm,

there is a bias term to deal with. An analysis of the bias term is deferred to

the next section.



2.2

Put

B(p) =r sup .
j-l xeT

We assume that B(p) is finite for each p. For instance, if Yt = gO(Xt ) +
and r • [O,2w] then one might fit

2 K
Yt - a + bXt + cXt + 2.r [ujcos(jXt ) - vjsin(jxt )] + utJ=l

by least squares using

A A A A 2 K A A
p'B • a + bxo+ cXo + 2.r [ujcos(jxo) - vjsin(jxo)]J=1

to estimate gO(xo) in which case p = 2K + 3 and B(p) • 1 + + + 2K.

If instead Yt = (d/dx)go(xt ) + et one might fit
K

Yt • b + 2cxt - 2.r j[ujsin(jxt ) + vjcos(jxt )] + utJ=1

by least squares, using

2 2 ° 0to estimate (d /dx )g (x ) whence p = 2K + 2 and B(p) = 1 + + K(K+l).

A A A
Fix a realization of {xt }. Then p'[B - 8(BI{xt })]/JVar(p'BI{xt }) is a

linear function of the errors, viz.

which is asymptotically normally distributed, conditional on {xt }, if and only

if (Huber, 1973)
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Letting !(G) denote the smallest eigenvalue of a matrix G, and G- 1/ 2 the
-ICholesky factor of G we have, ,using the Cauchy-Schwartz inequality,

s

Thus, any rule Pn relating p to n such that B(Pn)/[n !(Gn,Pn)] = 0 will
achieve asymptotic normality, conditional on {xt }. If the rule Pn does not

depend on knowledge of {xt }, other than knowledge that {xt } does not correspond

to some null set of the underlying probability space, then the unconditional
A A A

distribution of p'[9 - 8(91{xt })]//Var(p'91{xt }) is asymptotically normal as

well.

Our strategy for finding Pn depends on relating the eigenvalues of Gnp to

the eigenvalues of

Gp = f dp(x)

by establishing a strong law of large numbers that holds with rate En uniformly

over the family

when p = Pn. First, we need some additional notation and two lemmas.
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Let 8 denote expectation with respect to or as appropriate, and

let 8n denote expectation with respect to the empirical distribution of

or as appropriate. That is, for f(e,x)

and for f(x)

1 n
8 f = - r f(xt )n nt_I

8 f = II f(x,e)

8 f =I f(x) .

With this notation, Gnp = and Gp = 8 Note, there is a 0 with

0'0 - 1 and O'GnpO - !(Gnp) so is an f in 9p with !(Gnp)/B(p) = 8nf.
Letting !(G) and I(G) denote the smallest and largest eigenvalues of a matrix

respectively, put g(p) = B(p)/!(Gp) and ll(p) = B(p)/I(Gp).

LEMMA 1. The number of E-balls required to cover the surface of a sphere
in RP is bounded by 2p(2/E + l)P-l.

Proof. The proof is patterened after Kolmogorov and Tihomirov (1959). Let

M be the maximum number of non-intersecting balls of radius E/2 and center on

the surface of the unit sphere. If 8 is a point on the surface, then an E/2

neighborhood must intersect one of these balls; hence 0 is within E of its

center. If Vdenotes the volume of a shell in RP with outer radius 1 + E/2 and

inner radius 1 - E/2 and v denotes the volume of an E/2-ball, then MS Vivo

V/v -
+ E/2)P - (I - E/2)P]/[pr(p/2)]
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[by the mean value theorem]

p-l p-l
S 2p(1 + E/2) /(E/2) I

LEMMA 2. Let p and E 0 as nn n
2If nEn > 1/8 then

Proof. The proof uses results from Pollard (1984, Chapter II) which

require a demonstration that jp is bounded and a computation of the metric

entropy of jp. The first two paragraphs take care of these details. The third

paragraph has the main argument.

If f is in jp then sUPxe! If(x)1 S 1 because the Cauchy-Schwartz inequality

implies (8'fP)2/B(p) S 118112I1fPII2/B(P) s S 1. A consequence of

this bound is that 8nf2 S 1 and Var(8nf) S l/n for each f in jp.

From Lemma 1, the number of E/2-balls required to cover the surface of the

unit sphere in RP is bounded by N1(E,p) = 2p(4/E + I)P-l. Let OJ denote the
- 2 2centers of these balls and put gj = (8jfP) /B(p). Since f = (8'fP) /B(p) must

have 8 in some ball we have

minj Igj - fl = minj I(8'fP)2 - (OjfP)2 1/ B(P)

= minj IfP'(8 - 0j)1 18'fP + OjfPl/B(P)

S minj IIfPlI 118 - Ojll (1I81111fPlI +1I0j llllfPll>/B(P)
S 2[lIfPII 2/B(p)](E/2)
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Let • where ut takes on the values ±I with equal

probability, independently of From Pollard (1984, p. 31)

p( sup ISnf - Sfl > 8En) S 4 p( sup > 2En)
fdpn

p( sup > 2Enl (Xt }) s 2 NI(En,Pn) exp[- ! sngj) ]
fEjpn

provided var(Snf)/(4En)2 s 1/2. By the bound above we have maxj S I and

Var(Snf) S I/n whence, substituting for NI , the second inequality becomes

p( sup . > 2Enl (Xt }) s 4Pn(4/En + I)Pn-1 exp[- ! .
fEjpn

provided var(Snf)/(4En)2 s S 1/2. Since the right hand side does

not depend on the conditioning random variables {xt } we have

p( sup > 2E) S 4Pn(4/En + I)Pn-1 exp[- ! .
fEjpn

provided > 1/8. Substitution into the first inequality yields the result.(

Lemma 2 can be used to establish a uniform strong law with rate:

LEMMA 3. Let Pn S na for some a with 0 S a < I.. If 0 S P S (I - a)/2 then

p( sup ISnf - Sfl > n-P/2 infinitely often) = o.
fEjpn

Proof. If r;=1 - Sfl > 8En) < G for En = n-P/16 then the
result will follow by the Borel-Cantelli lemma. With this choice of En'
2 1-2P a .nEn = n /256 n /256 WhlCh exceeds 1/8 for n large enough. By Lemma 2, we
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will have r;.1 - 8fl > 8En) <

[Pn(4/En + I)Pn-
I exp(- i nI+c S B

for some B, c > o. Taking the logarithm of the left hand side we have for

large n that

2log Pn + (Pn - I)10g(4/En + 1) - nEn/2 + (1 + c)log n

Slog na + (na - + 1) - + (1 + c)log n

a a• 10g(65)n + (1 + a + c + )log n - n /256

a< log n - n /256.

The right hand side is negative for n large enough because 0 S a < 1 - I

We can now state and prove the main result of this section; recall that

• which will be a polynomial in p or rapidly decreasing in

typical applications.

THEOREM 1. If Pn satisfies

S

2.7

o S a < 1 -

then

P[ p ) > infinitely often ] = O.
, n
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Proof. Suppose SUPfejpnl8nf - 8fl s n-P/2. There is an f =
in 9pn such that = 8nf whence

•
2 -P/B(Pn) - n /2

- n-P/2
= l/g(Pn) - n-

P/2
n-P/2.

Thus, sUPfejp 18nf - 8fl s implies P )/B(Pn) n-P/2. The
n ' n

contrapostitive is > 2nP implies SUPfejpnl8nf - 8fl > n-P/2.
Thus

Apply Lemma 3. I

Asymptotic normality follows immediately.

THEOREM 2. If Pn satisfies

then

A A
p'[8 - 8(81{Xt })]

x
./Var(p'81{xt })

o s P< 1/2

o S a < 1 - 2P

t
- N{O, I)

both conditionally on {xt } and unconditionally.
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Proof. By Theorem 1 B(Pn)/[n > nP-1/2 i. 0.] a 0 whence
lim B(p )/[n A(G )]. 0 except for realizations of {xt } that correspondn- n - n'Pn .
to an event in the underlying probability space that occurs with probability

zero. I

Under assumptions (i) 0 < b S !(Gn p ) < p ) S B< and (ii) 0 <
, n ' n

b' S B(p)/p s B' < which are often imposed in studies that relate p to n,

asymptotic normality will hold with Pn growing as fast as Pn/n o. When a

strong law is invoked, the rate typically deteriorates to 0 (Portnoy,

1985). Theorem 2 would require 0 under these assumptions. The reason

for this slower rate is the use of the bound max j S 1 in the proof of

Lemma 2. Our method of proof will provide better rates when better bounds on
28ngj are available. For example, under assumptions (i) and (ii) above,

recalling that gj S 1, the bound on is S 8ngj S (B/b')/Pn and the
2 2conclusion of Lemma 2 would read: If nPnEn > (B/b')/8 then

The last line of the proof of Lemma 3 would have 0 S a < 1 + a - 2P instead

of 0 S a < 1 - 2p. Since 0 < b S !(Gn p ) implies 0 < b" ) (Lemma 3),
, n n

B'p/b" S nP, Pn S na, and 0 S a < 1 + a - 2{J would imply asymptotic normality.

That is, under assumptions (i) and (ii) our method of proof delivers asymptotic

normality for o.
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3. ASYMPTOTIC NORMALITY UNDER THE SECOND PARADIGM

In the previous section we were able to find rates for Pn such that

A A
A p'[8 - 8(81{Xt })]RelErr(p'81{xt }) • JVar(p'81{xt })

is asymptotically normally distributed when the data is generated according to

t = 1, 2, ... , n.

without putting conditions on or describing what p'O is intended to

estimate. Here we must be more specific.

In the applications that motivate this work, usually does not depend on

n and has domain X which is a subset of RM. Usually an evaluation functional

such as

is the object of interest. Above, A • (AI' A2, ... , AM) and the absolute value

IAI = gives the order of the partial derivative; the zero order

derivative is the function itself, DOg =g. The dependence of gO on n does not

make the proofs more difficult and might be useful if one wanted to consider a

notion analogous to a Pitman drift, so we shall retain it. These considerations

make it natural to regard as a sequence of points in a (weighted) Sobolev

space and to assume that the sequence is a dense subset of that space.

A Sobolev space is the set 'Wm,q,cS of g with a finite Sobolev norm IIgllm,q,cS.
The Sobolev norm is defined as



IIgllm,q,cS =

IIgllm,q,X ..

[ L J 10Ag(x)l q dcS(x) J1/q
Amax sup 10 g(x)1

xeX

1 q < Q)

3.2

To avoid clutter, IIgllm will be understood to represent IIgllm X in a,Q),o ,Q),
statement such as "lIgllm,q,cS B for some 1 S q Q)"; in these instances X is
the support of cS. W =nQ) oWm For many choices of X and cS theseQ),q,o -m= ,,0
norms are interleaved in the sense that for each q with 1 q < Q) the

inequality 119I1m,q,cS cIl9I1m,Q),x cIl9I1m+M/ q+1,q,cS holds for some c that does
not depend on g. Obviously, IIgllm,q,cS IIgllm,Q),x holds if cS is a P-measure.
For details see Adams (1975). Gallant and Nychka (1987) contains some results

on interleaving for weighted norms with X unbounded.

By dense one means that for each 9 in Wm,q,cS there exists a sequence of

coefficients {9j } such that

lim II 9 - gp(-19) 11mq cS .. 0
J>-D ' ,

where

p
9 (xI9) '"' L' 1 9·fP·(x).P J" J J

In this section, we shall take 9 to be the infinite dimensional vector

and we shall let the context determine when its truncation to a p-vector is

intended, 9'Gp9 for instance. For given 9, if 9p(-19) has limit 9 in Wm,q,S

in the sense above, write 9Q)(-19). 9Q)(-19) represents 9 and denseness implies

that every 9 in Wm,q,S has such a representation; 9 is not necessarily unique.



3.3

It would be unnatural to consider a regression on under the second

paradigm if these conditions were not in force for some choice of m, q, and S.

A A 0 A
p'S - D gp(X IS)

p A A 0- .r SjD ).
J-l

In the motivating examples it is the case that

AD f ... ,

As an example, a typical term of a multivariate Fourier expansion is cos(k'x)

where k is an M-vector with integer elements and

22020(a /ax1)cos(k'x ) = -(k1) cos(k'x );

similarly for most polynomial expansions such as the Hermite.

Due to these considerations, we shall consider the case when

for some XO in r and the elements Pj of P are increasing at some known

polynomial rate. The case when Pj is decreasing with j is not of much interest

because simpler methods of proof would yield stronger results. This situation

would arise, for example, if the functional f fgO were the object of
ointerest and f,g f
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Centering the estimate about the object of interest, rather than the
A

conditional expectation of p'e, we have

where

A
RelBias(p'el{xt }) =

Thus, a verification of asymptotic normality requires both the results of the

previous section and a determination of the rate at which the relative bias

decreases.

The behavior of the relative bias is intimately related to the truncation

error

inherent in the series expansion To illustrate, if g mapping RMinto R

is in Wm,q,& where puts its mass on r = and gp(-18) is a

multivariate Fourier series expansion of degree K then p = KMand for any q

with 1 S q S and any small 1>0 the order of the truncation error is Tp =
-m+l+1 .o(K ) (Edmunds and Moscatelll, 1977). If, instead, g E W (which

implies g is infinitely many times differentiable) then Tp is rapidly
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decreasing. In these two examples, there is no dependence of 9 on n. Tp does

not depend on n which is to say that the condition above is uniform in n.

Additional structure such as gn E j; = {g: IIgllm+1,co,.T B} would be required to
obtain the requisite uniformity for these examples when a dependence on n is

permitted.

We have considered two paradigms, the first where is put equal to
ogp(oI8n) so as to force the relative bias term to zero leaving the relative

error as the only concern, and the second where is put equal to gco(xI80 ).

As alluded to above, one might want to entertain a third paradigm where is

moved slowly away from some leading special case as n increases. For instance,

in demand analysis, one might want to let drift slowly away from the

Translog model. The effect would be to move Tp to zero with p faster than the

natural rate of the series expansion. This is completely analogous to the use

of Pitman drift to obtain asymptotic approximations to the power of test

statistics. It would also allow one to break free of the confines of Stone

(1980) regarding the inherent limits of multivariate nonparametric estimation.

Our results are general enough to accommodate this third paradigm.

SETUP. To summarize, we shall study the limiting behavior of the relative
bias term

1\

RelBias(p'81{xt }) =
1\ A 0 08(p'81{xt }) - 0 gco(x 18n)x
jVar(p'81{xt })

when p'8 = OAgp (Xo I8) , the elements Pj of P increase at some known rate with j,

the data are generated according to

t = 1, 2, ... , n.
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as described in the previous section, and the sequence (Tp) of truncation errors

declines at a known rate with p for some m

We begin by establishing two results, a lemma and a theorem. The first

relates the bias to the truncation error and conditional variance. The second

relates the maximum eigenvalue of Gnp to the maximum eigenvalue of Gp to get an

upper bound on It derives its relevance from the inequality

A -I - -nVar(p'81(xt }) • p'(Gnp)p •

which bounds the conditional variance from below.

LEMMA 4. RelBiaS(p'91(Xt }) SJnTp{2 + I/J[nVar(p,9 1(Xt })]}.

Proof. 8:. 8(91(Xt }) minimizes Ugp(·18) - over RP where #n
denotes the empirical distribution of

A 0 0 0 0 0 0
S 18(p'81{xt }) - 0 gp(X 18n)1 + 10 gp(X 18n)- 0 18n)1

* 0 0 0 0 0= Ip'(8n - 8n)1 + 10 9p(X 18n)- 0 18n)1
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* 0
U9p(-19n) -

* 0 0 0
S U9p(-19n) - + U9n -

o 0 0 0
S U9p(-19n) - + U9n -

o 0 0 0
S U9p(-19n) - + U9n -

We can now state and prove the main result of this section; recall that

U(p) • B(p)/I(Gp) which in most applications will be a polynomial in p.

THEOREM 3. If Pn satisfies

a s 1 < 1/2

a s a < 1 - 21

then

P[ B(Pn)/I(Gn,Pn) < (2/3)n1 infinitely often] = o.

Proof. Suppose - 8fl s n-1/2. There is an f =
in jPn such that I(Gn'Pn)/B(Pn) = 8nf whence

- 2A(Gn P )/B(Pn) = /B(Pn)
, n 2-1

S /B(Pn) + n /2

S I(Gpn)/B(Pn) + n-
1/2

= I/U(Pn) + n-1/2
S (3/2)n-1 .
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Thus, SUPfejPnl&nf - &fl n-1/2 implies (3/2)n-1. The

contrapositive is < (2/3)n1 implies SUPfejPnl&nf - &fl > n-1/2.
Thus

Apply Lemma 3. I

THEOREM 4. If Pn satisfies

o 1 < 1/2

o a < 1 - 21

then

Proof. By Lemma 4 and the inequality immediately preceding Lemma 4

By Theorem 3, for almost every realization of {xt } there is an N such that n>N

implies P )/B(Pn)] /[(3/2)n-1]. I
, n

Note that ll(p) 1. Thus if [B(p)/p'p] is bounded 1 = 0 is the least
stringent choice in an application of Theorem 4.
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4. CONCLUSIONS

We conclude with an application. The most interesting case is rapidly

decreasing !(Gp) because it is representative of the motivating examples cited
in Section 1. For specificity, let the smallest eigenvalue of X'Xln decrease
exponentially as !(Gp) • e-

ap where a is positive, which is a rapidly

decreasing sequence. Also, let B(p) • p'p • p. With these choices, Theorem 2

admits rules of the form

• apiog(p) •

with in the interval 0 < < 1/2. Since B(p)/p'p is bounded ll(p) 1

for all p, the relevant value of 1 in Theorem 4 is 1 • O. With this choice,

the bound on the relative bias is proportional to

-bp/nTp • /ne .

Substituting for n using the rule for p above we have

If this term is to decrease, the truncation error of the series expansion Tp
must decrease exponentially with p.

Within the second paradigm, this severely restricts the·class of functions

gO that admit of asymptotically normal estimates. As seen from the examples,

in many instances the implication of this restriction is that gO must be a very

smooth function. However, in many applications this restriction may be more

palatable than the boundary conditions one would have to accept in order to

slow the rate at which the smallest eigenvalue of X/X/n decreases. Moreover,

in some applications, notably neural networks, one does not have the option of

modifying the expansion or assumptions and must accept the problem as posed.
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