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ABSTRACT

Rates of increase in the number of parameters of a Fourier factor demand
system that imply asymptotically normal elasticity estimates are characterized.
The main technical problem in achieving this characterization is caused by the
fact that the eigenvalues of the sample sum of squares and cross products
matrix of the generalized least squares estimator are not bounded from below.
This problem is addressed by establishing a uniform strong law with rate for
the eigenvalues of this matrix so as to relate them to the eigenvalues of the
expected sum of squares and cross products matrix. Because the minimum
eigenvalue of the latter matrix considered as a function of the number of
parameters decreases faster than any polynomial, the rate at which parameters
may increase is slower than any fractional power of the sample size.
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1 INTRODUCTION

The focus of this paper is the determination of a class of rules for

increasing the number of parameters of the Fourier factor demand system that

imply asymptotically normal elasticity estimates. The consistency of Fourier

flexible form elasticity estimates was established in Elbadawi, Gallant and

Souza (1983) and asymptotic distributions of test statistics under normal

errors were derived in Gallant (1982).

The Fourier factor demand system is a linear, multivariate model of the

form

t = 1, 2, ... , n

where "(x) is an Mby P matrix whose leading columns correspond to a Translog

factor demand system (Christensen, Jorgenson and Lau, 1975) and remaining

columns are derived from a multivariate Fourier series expansion. The true

data generating model is presumed to be

where fO is derived from a log cost function gO using Shephard's lemma (Deaton

and Muellbauer, 1980). The (N+l)-dimensional vector x contains log factor

prices and log output as elements; gO is defined over a closed, bounded

rectangle r c RN+l . Our methods of proof will accommodate drift so that one

can write and if desired.

Each equation of the system is a linear series expansion of the sort

studied by Andrews (1989) which is the most recent and comprehensive paper on
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the subject. Andrews' paper contains an extensive bibliography and some of the

sharpest results available.

In order to address our problem, we need to extend Andrews' analysis in two

directions. We must make the multivariate extension. And, we must explicitly

account for the fact that the sequence of minimum eigenvalues corresponding to

the sequence of p by p matrices

-1Gp = 8 t{x)Q t'{x) p = 1, 2,

mis rapidly decreasing; that is, p tends to zero for every positive

integer mas p increases. Andrews bounds this sequence from below so his

results do not apply to our problem. The first extension is reasonably

straightforward. The second is more delicate. To accomplish it, we prove a

uniform strong law with rate for the eigenvalues of the matrix

using results from the empirical process literature. For the technically

inclined, this uniform strong law is one of the more interesting aspects of the

paper. We study deterministic rules but these are easily extended to adaptive

rules using results due to Eastwood and Gallant (1987); see Andrews (1989) for

examples.

We derive sufficient conditions such that elasticity estimates are

asymptotically normal and examine the class P of rules and cost

functions b that satisfy them. Not surprisingly, given that is

rapidly decreasing, rules in P grow slowly, slower than any fractional power of

n. The functions in b are infinitely many times differentiable. This is not
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as restrictive an assumption as might first appear as the collection of

infinitely many times differentiable functions defined on 1 is a dense subset

of any Sobolev space Wm,q,1 (Adams, 1975); Wm,q,1 is defined in the next

section. Thus, it is a very rich collection with which to describe production

technologies. Alternatively, the drift mechanism can be exploited to expand

the class b; see Section 5. This amounts to an assumption that as data -is

acquired, the true model becomes an increasingly rich departure from the

Translog which is the leading special case. Some would regard this assumption

as a realistic description of the attitudes of practitioners and others would

find it unacceptable.

The reason that the minimum eigenvalues of Gp decline is that the Fourier

flexible form incorporates two modifications to the classical multivariate

Fourier expansion. To get rid of unacceptable boundary conditions, the domain

1 is effectively a subset of the natural domain Q= 2w] of a

multivariate Fourier series expansion of the form r = lIi=I[E, To

improve performance in finite samples and to provide a means to test

interesting hypotheses, a Translog model is added as the leading term of the

expansion. The rates of decrease due to various combinations of these two

modifications to the classical expansion are displayed in Table 1. We work out

the implications of the last entry in Table 1 because it is the expansion used

in practice. This analysis also covers the third entry. The other two admit

fractional powers of n as rules {Pn}.

The major limitations of the paper are twofold. We assume homogeneous

errors. While it is clear that we could accommodate heterogeneity by adapting

Eicker's analysis (1967, p. 77) to our situation, as does Andrews to his, we do
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not do so because what is at present a tidy, clean analysis would become a

cluttered mess, distracting from the main focus of the paper which is to gain a

qualitative feel for the rates of expansion that declining eigenvalues permit.

We consider the generalized least squares estimator rather than the

seemingly unrelated estimator because the latter is not essential to the

objective of the paper and the technical problems in treating a random scale
A

estimate 0 that depends the error process appear formidable. Apparently, a

specialized collection of uniform strong laws with rates would need to be

established. Were an independent estimate available, our analysis would cover

seemingly unrelated estimates. An estimate computed from a holdout sample

would satisfy this condition.



*Table 1. Rates at which eigenvalues decrease

1.5

Expansion

Fourier series on Q

Translog + Fourier series on Q

Fourier series on r
Translog + Fourier series on r

*See Section 5 for a verification.

Minimum eigenvalues of Gp

Bounded away from zero

Decrease at a polynomial rate

Rapidly decreasing

Rapidly decreasing



2.1

2. ESTIMATION ENVIRONMENT

The producer's cost-function c(p,u) gives the minimum cost of producing

output u during a given period of time using inputs q a (qI' q2' ... , qN)' at

prices p a (PI' P2' ... , PN)'. It is more convenient to work in terms of log
cost as a function of log prices and log output. Accordingly, let

and put

i. = in p. + in a.,
1 1 1

g(x) = g(i,v)

= 1, 2, ... , N

where i = (iI' i 2 , ••• , iN)' and x = (i', v)'.

The aI' ... , aN+I , AN+I are positive scaling factors. Their choice has no

substantive impact since a choice of ai other than unity for i = 1, 2, ... , N
only amounts to changing the units of measurement in which factor prices are

stated. If one works with quantities as data, the ith quantity in original

units would be divided by ai to get the quantity in the new units. If one

works with cost shares as data, there is no need to make any compensating

adjustments as the price and quantity adjustments would cancel, viz. si =

exp(ii)(qi/ai) = (aiPi)(qi/ai). The choice of AN+I and aN+I amounts to a choice
of a scale of measurement for output and is also irrelevant to the substance of

the discussion. We shall restrict attention to some closed rectangle 1 in RN+I

that contains the observed data and shall not attempt to approximate goff 1.
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The scaling factors are to be chosen so that 2W-E] C AX C

2w] for some small E and some positive Awhere AX indicates
multiplication of every element of 1 by A; see Gallant (1982) for additional

details. We shall assume that the observed sequence is a random

sample from a distribution function defined over 1 with a continuous,

bounded density function.

The cost function itself is assumed to possess the properties of linear

homogeneity, monotonicity, and concavity. Letting 1 denote a vector whose

entries are all ones, letting Vg = (a/a2)g(2,v), and letting v2g =
(a2/a2a2')g(2,v), the equivalent conditions on the log cost function g(2,v) are
[Gallant (1982)]

RO' Linear homogeneity: g(2 + 11, v) • 1 + g(2,v),

R1. Monotonicity: Vg > 0, I'Vg • 0, (a/av)g(2,v) > 0,

2R2. Concavity: V9 + VgV'g - diag(Vg) is a negative semi-definite matrix of

rank N-l with 1 being the eigenvector with root zero.

Letting s' = (PIQl' P2q2' ... , be the N-vector of input cost
shares, the firm's factor demand system is given by Shephard's lemma as

s = (a/a2)g(£,v).

Elasticities of substitution uij at a point X
o = (2°,vo) are elements of the

matrix

I • [diag(Vg)]-I[V2g + VgV'g - diag(Vg)][diag(Vg)]-I,

evaluated at xO and price elasticities are elements of the matrix
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= diag{Vg},

oevaluated at x where the rows of correspond to inputs and the columns to

prices [see Gallant {1982}]. We shall let a{g} represent a generic entry from

these matrices.

This is a deterministic version of factor demand theory and can be regarded

as implying observed factor cost shares follow some distribution with location

parameter {a/al}g{l,v}. When just factor cost shares are observed, the most

common distributional assumption in applied work is that

where Yt is the vector of observed factor cost shares St with the last element

discarded, and f{xt ) is (a/al)g{lt,vt ) with the last element discarded. Since

shares sum to one, any distributional fact regarding the last share can be
N-l-gotten from the identity SNt = 1 - Lj=lYjt. Were the last share not

discarded, the variance of the errors would be singular. Since the statistical

methods that we discuss below have the property that estimates are invariant to

which share is designated last, deletion is the simplest way to handle the

singularity.

When, in addition, total factor cost is observed, the model is

where: Yt is an N-vector with observed total factor cost as its first element

and Yt filling in the remaining elements; f{xt ) is an N-vector with g{xt ) as

its first element and f{xt } at the tail; and, similarly, et has an additional

error at the head and et at the tail.



2.4

We shall need a compact notation for high order partial derivatives:

where A= (AI' A2, ... , AN+I) has nonnegative integers as components. The

order of the partial derivative is IAI = and when IAI = °take
OOg(x) = g(x). In terms of this notation, the Sobolev norm is:

Sobolev norm. For q with I q < the Sobolev norm of g(x) with respect

to a distribution defined over r is

For q = the norm is

AUgUm r = sup sup 10 g(x)l·
" IAI xeT

To avoid clutter, let represent in a statement such as

B for all I q [J
The advantage of the Sobolev norm is that if the norm of the error

A

e = 9 - 9 is small for m= 2 then the error when approximating g-elasticities
A

by g-elasticities will be small. Stated differently, elasticities are

continuous in the Sobolev topology. This being the case, it is natural to

restrict attention to cost functions contained in some Sobolev space

= {g: <

that has m 2. The Fourier flexible form can be used to construct dense

subsets of It is defined in terms of elementary multi-indexes:
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Elementary multi-indexes. Amulti-index is a vector whose elements are

integers. Let

XN+l = {k: Ikl K}

denote the set of multi-indexes of dimension N+l whose length Ikl =
is bounded by K. First, delete from XN+l the zero vector and any k whose first

non-zero element is negative. Second, delete any k whose elements have a

common integer divisor. Third, arrange the k which remain into a sequence

XN+l = {ka : a = 1, 2, ... , A}

such that kl , k2, ... , kN+l are the elementary vectors and Ikal is non-

decreasing in a. Define J to be the smallest positive integer with

XN+l c {jka : a = 1,2, ... , A; j = 0, tl, t2, ... , tJ}. []
This construction can be automated using FORTRAN code in Monahan (1981) or

using PROC FOURIER in SAS (1986). In terms of this notation, the Fourier form

is written as:

Fourier flexible form. Define

[J
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NThe length of the parameter vector 8 is p = 1 + (N + 1) + A(I + 2J) =K
where a(K) =b(K) means that there exist two positive constants such that
clb(K) S a(K) S c2b(K) for all K. The following result implies that

is a dense subset of

THEOREM O. (Gallant, 1982) If g(x) is continuously differentiable up to

the order mon an open set containing the closure of T then there is a sequence

gK(oI9K) from m' such that

IIg - = o(K-m+.e+E) as K co

for every q with 1 S q S co, every .e with 0 S .e < m, and every E > O. If g is

also linear homogeneous and me denotes the linear homogeneous functions in
m' the result is true with me replacing m'. Similarly, if m02 denotes the
functions in m' that are both linear homogeneous and concave and g satisfies
both restrictions and so on for other combinations of the three restrictions

listed above. [J
It is easy to impose linear homogeneity on the Fourier flexible form:

Restrict the coefficients 8(0) = b' = (c', bN+I)' so that the leading N
elements sum to unity, that is, I'c = 1, and put 9(a) = 0 if the leading N
elements of ka = kN+1)' do not sum to zero, that is, if I'ra ; O. The

latter restriction is equivalent to restricting the choice of elementary multi-

indexes to the set
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when constructing gK(xI8). Methods for imposing the other restrictions are

discussed in Gallant and Golub (1984).

We shall assume throughout that the linear homogeneity restriction ROhas

been imposed, as is usually done in practice. This is an important assumption

as it amounts to reducing the dimension of x from N+ 1 to N; see Lemma 1 of

Gallant (1982). Were this assumption dropped, Nwould have to be replaced by

N+ 1 in every result regarding a rate that we report.

We propose to fit the model

t = 1, 2, ... , n

to data that was actually generated according to

using generalized least squares. Above, fK(xI8) is constructed from gK(xI8)

exactly as f(x) is constructed from g(x). Generalized least squares estimates

estimates are gotten by minimizing

As fK(xI8) is a linear function of 8 it can be represented as t'(x)8 where t'

is an N by p matrix. Thus s(8,0) is a quadratic form in 8

with minimum
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From this estimate, 9 can be estimated by gK = gK(-19} and an elasticity
1\ 1\

U =u(g} by uK =u[gK(-19}]. If the cost function is not estimated together

with factor demands, then f and fi replace f and 0 above and "(x) has N - 1

rows. In order to have a generic notation that represents either case, let .'

have Mrows.

We shall henceforth adopt the convention that as K is increased, columns are

appended to the end of .' rather than inserted. This implies a rearrangement
of the elements of 9 from that given above but we have no need to devise a

notation to keep track of it because any finite dimensional calculation that

concerns us is invariant to the ordering of the columns of ". Also, because

of the way that the matrix C is parameterized, some columns of "(x) will be

exact linear combinations of predecessors for every x in r. We assume that

these have been deleted in forming .' and 9.

Infinite dimensional representation_ With these conventions, one can

choose a point = (91, 92, ... ) in and use its leading elements

8K= (81, 82, ... , 8p) to compute gK(-18K}. If there is a 9 in such
that

write to represent g. Every 9 in has such a representation

(Edmunds and Moscatelli, 1977). We shall usually suppress the subscripts and

K and let the context determine whether or its truncation 8K is intended. [J
Our methods of proof can accommodate drift. As drift may be relevant to

hypothesis testing or other applications, we will assume that the true cost
ofunction is indexed by the sample size n and denote it by gn' The
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ocorresponding data generating mechanism is denoted as Ynt • fn(xt ) + et with et
o 0as above and fn constructed from gn as above.

An elasticity a(g) is called an evaluation functional since it is necessary

to be able to evaluate g, Vg, and V2g at the point XO in order to compute it.

Thus, our interest is focused on estimates of for IAI S 2. The

estimate DA9K(XoIS) is a linear function in S of the form p'S. As an

elasticity estimate is a rational function of such estimates its asymptotic

distribution can be gotten by the delta method if the asymptotic normality of

p'S - can be established for each Awith IAI S 2. In the next

section we determine rules Pn relating p to n, equivalently rules Kn relating K
A

to n, such that p' 9 is asymptotically normal when'centered about its
A

conditional expectation 8(p' 91{xt }). In the section after that, we determine

the subset of rules Kn that drive the bias term 8(P I SI{Xt }) -
to zero rapidly enough to be negligible relative to the error term

A A
p' 9 - 8(p' 91{xt }). The sum of the error and bias terms is the estimate

centered about the object of interest p'S - which will in

consequence be asymptotically normal.
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3. ASYMPTOTIC NORMALITY OF THE RELATIVE ERROR

Of the assumptions of the previous section, the subset required for the

results of this sectlon are as follows.

Assumptions. The observed data is generated according to

t = 1, 2, ... , n; n = 1, 2,

o N+l Mwhere {fn} is a sequence of functions that map !, a subset of R ,into R •

Throughout we shall write Yt instead of Ynt; Nand Mare finite and fixed

throughout. The error process is an iid sequence of random variables

that have common distribution P(e) with mean zero and variance-covariance

matrix

o = fee'dP(e).

We assume that 0 is nonsingular and factor its inverse as

0- 1 =P'P.

The process (xt }t=l is an iid sequence of random variables with common

distribution defined on !; {xt } and {et } are independent processes.

We consider the random variable

where

and t'(x) maps each x in ! to an Mby p matrix. Note that t depends only on p
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A
and that 8 depends on both nand p. The objective of this section is to find

rules Pn relating p to n such that

A
RelErr(p'81{xt }) •

A A
p'8 - 8(p'81{xt })

x
/Var(p'81{xt })

is asymptotically normally distributed where var(p'91{Xt }) =
In this section, but not elsewhere, p is an arbitrary, nonzero vector in RP, p

can take on any positive integer value, and the choice of p for one value of

(p,n) need not have any relation to the choice for another. []

The ambiguity that arises when does not exist is resolved by putting

the linearly dependent rows and columns of Gnp to zero to get GO' putting the

corresponding elements of p to zero, and letting be a g-inverse of GO'

Thus defined, is unique and can be factored. When the conditions of

Theorem 5 are in force, Gnp is nonsingular with probability one for all n large

enough so one could adopt any resolution of the ambiguity. However, with this

construction the algebra below is correct whether Gnp is nonsingular or not.

A
Fix a realization of {xt }. Then RelErr(p'81{xt }) is a linear function of

the errors, viz.

-1
A n [(l/n)p'G +(X )P' ]

RelErr(p'81{xt }) = L np _It
t=1 /[(1/n)p'Gnpp]

We have the following result:
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THEOREM 1. If {xt } is a fixed sequence (a nonrandom sequence) then

lim sup
lstsn

= 0 .

A
implies that RelErr(p'81{xt }) is asymptotically normally distributed.

Proof. We can write the relative error more compactly as

A n
RelErr(p'81{xt }) = Lt=1

where = ut = Pet' and = The result
will follow if we verify Lindeberg's condition (Billingsley, 1979, p.310)

for every E > 0 where u = Pe and I(A) denotes the indicator function of a set

A. By the Cauchy-Schwartz inequality

which tends to zero with n because

integrable.
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Let Z(x) • +(x)P' with elements denoted as Zja(x) where j = I, ... , P is
the row index and a = I, ... , M is the column index. Put

M p
B(p) • L L sup Z3a(X) .

a=1 j=1 xeX

The following result relates the condition for asymptotic normality to the

ratio of B(p) to the smallest eigenvalue of Gnp' It is stated and proved in

terms of the following notation: Amin(G) and Amax(G) denote the smallest and

largest eigenvalues of a matrix G, tr(G) the trace of G, G(a) the ath column of
G, and G- I/ 2 the Cholesky factor of G- I ; that is, G- I = (G- I/ 2)'G- I/ 2.

THEOREM 2.

sup
Istsn

Proof. The square of the left hand side is

, -1+( ) -1+,( )-1P Gnp xt 0 xt GnpP
np'G-lpnp

S

np'G-1pnp

S (l/n)tr[G- I/ 2+(x )O-I+,(X )(G- 1/ 2),]np t t np

=
M

=



M -1
S

B(p)

3.5

[J
The implication of this result is that if Pn is a rule relating p to n with

A
B(Pn)/[n Amin(Gnpn) = 0 then RelErr(p'81{xt }) is asymptotically

normal conditional on {xt }. If the rule Pn does not depend on knowledge of

{xt }, other than knowledge that {xt } does not correspond to some null set of

the underlying probability space, then the unconditional distribution of
A

RelErr(p'81{xt }) is asymptotically normal as well.

Our strategy for finding Pn depends on relating the eigenvalues of Gnp to

the eigenvalues of

I -1Gp = t(x)O t'(x)

by establishing a strong law of large numbers that holds with rate En uniformly

over the family

when p = Pn' First, we need some additional notation and two lemmas.

Let 8 denote expectation with respect to or as appropriate, and

let 8n denote expectation with respect to the empirical distribution of

or as appropriate. That is, for f(e,x)

8nf =*r f(et,x t ) 8 f = II f(x,e)
t=l

and for f(x)
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I n I8nf =n L f(xt ) 8 f = f(x) .
t=1

With this notation, Gnp = 8n+O-
I+, and Gp = 8 +0- 1+,. Note, there is a 0 with

0'0 = I and 9'Gnp9 = Amin(Gnp) so there· is an f in with Amin(Gnp)/B(p) = 8nf.

LEMMA 1. The number of E-balls required to cover the surface of a sphere

in RP is bounded by 2p(2/E + I)p-I.

Proof. The proof is patterned after Kolmogorov and Tihomirov (1959). Let

Mbe the maximum number of non-intersecting balls of radius E/2 and center on

the surface of the unit sphere. If 9 is a point on the surface, then an E/2

neighborhood must intersect one of these balls; hence 9 is within E of its

center. If Vdenotes the volume of a shell in RP with outer radius I + E/2 and

inner radius I - E/2 and v denotes the volume of an E/2-ball, then M V/v.

Vlv =
+ E/2)P - (I - E/2)P]/[pf(p/2)]

[by the mean value theorem]

p-I p-I2p(1 + E/2) I(E/2) [J
LEMMA 2. Let Pn and En 0 as n 2If nEn > 1/8 then
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Proof. The proof uses results from Pollard (1984, Chapter II) which

require a demonstration that is bounded and a computation of the metric

entropy of The first two paragraphs take care of these details. The third

paragraph has the main argument.

If f is in then sUPxe! If(x)1 S 1 since

9'+0-I+'9/B(p) • 9'ZZ'9/B(p)

S 1.

A consequence of this bound is 8nf2 S 1 and Var(8nf) S lin for each f in

From Lemma 1, the number of E/2-balls required to cover the surface of the

unit sphere in RP is bounded by NI(E,p) = 2p(4/E + I)P-I. Let OJ denote the
- -1 - -1centers of these balls and put gj = 8j+0 +'9j/B(p). Now f = 8'+0 +'8/B(p)

must have 8 in some ball so

= minj [(8 - 0j)'Z][Z'(8 + OJ)]IB(p)

S min j U(9 - 8j )'ZUUZ'(8 + 8j )U/B(p)
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= min j J{r:.1[{9 - 8j )/Z{a)]2r:=I[{9 + 8j )/Z{a)]2}/B{P)

min j J[ - 8j 1121IZ{a) 11
2
][ + 8j 112I1Z{a) 11

2
J}/B{P)

= min j 119 - 8jlll19 + 8jl{

minj 119 - 8jlHII911

(E/2){2)B{p)/B{p) E.

Let = where at takes on the values ±I with equal

probability, independently of From Pollard (I984, p. 31)

p( sup 18nf - 8fl > 8En) 4 p( sup > 2En)fE9pn fE9pn

p( sup > 2Enl (Xt }) 2 N1{En,Pn) exp[- l 8n9}) ]fE9pn

provided Var{8nf)/{4En)2 1/2. By the bound above we have maxj 1 and

Var{8nf) I/n whence, substituting for NI , the second inequality becomes

p( sup > 2£n l (Xt }) 4Pn{4/En + l)Pn- l exp[- i .
fE9pn

provided Var{8nf)/{4En)2 1/2. Since the right hand side does

not depend on the conditioning random variables {xt } we have

p( sup > 2E) 4Pn{4/En + l)Pn- l exp[- l .
fE9pn

provided > 1/8. Substitution into the first inequality yields the result.[J
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Lemma 2 can be used to establish a uniform strong law with rate:

THEOREM 3. Let Pn S n
a for some a with 0 S a < 1. If 0 S PS (1 - a)/2

then

p( sup 18nf - 8fl > n-P/2 infinitely often) = o.

Proof. If P(SUPfe9Pnl&nf - &fl > 8En) < for En = n-P/16 then the
result will follow by the Borel-Cantelli lemma. With this choice of En'
2 1-2P a .nEn = n /256 n /256 whlch exceeds 1/8 for n large enough. By Lemma 2, we

will have P(SUPfe9PnI8nf - 8fl > 8En) < if

[Pn(4/En + I)Pn-l exp(- i n1+c S B

for some B, c > O. Taking the logarithm of the left hand side we have for

large n that

2log Pn + (Pn - 1)10g(4/En + 1) - nEn/2 + (1 + c)log n

Slog na + (na - 1)£og(64nP + 1) - nl -2P/256 + (1 + c)£og n

a a 1-2P= £og(65)n + (1 + a + c + pn )log n - n /256

a 1-2P< 2pn log n - n /256.

The right hand side is negative for n large enough because 0 S a < 1 - 2p. [J
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We can now state and prove the main result of this section.

THEOREM 4. If Pn satisfies

o s fJ < 1/2

o S a < 1 - 2fJ

then

P[ > 2nfJ infinitely often ] = O.

Proof. Suppose SUPfejpnl8nf - 8fl s n- fJ/2. There is an f = 8" O-I"8/B(Pn)
in 9pn such that = 8nf whence

= 8n8' ,o-I"8/B(Pn)
88 " O-I"8/B(Pn) - n-

fJ/2
-fJ- n /2

n- fJ/2.

Thus, sUPfejp 18nf - 8fl S n- fJ/2 implies P )/B(Pn) n- fJ/2. The
n ' n

contrapostitive is B(Pn)/Amin(Gn,Pn) > 2n fJ implies sUPfe9Pnl0nf - 8fl > n- fJ/2.
Thus

Apply Theorem 3. [J
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Asymptotic normality follows immediately.

THEOREM 5. If Pn satisfies

then

A A
p'[8 - 8(81{Xt })]x
./'Iar(p'81{xt })

o 13 < 1/2

o cr < 1 - 213 .

i
- N(O, 1)

both conditionally on {xt } and unconditionally.

Proof. By Theorem 4 P[ B(Pn)/[n Amin(Gn,Pn)] > n13- 1/2 i. 0.] = 0 whence

B(Pn)/[n Amin(Gn,Pn)] = 0 except for realizations of {xt } that correspond
to an event in the underlying probability space that occurs with probability

zero. [J
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4. A BOUND ON THE RELATIVE BIAS.

In addition to the assumptions listed in the previous section we require

the following assumptions for the results of this section.

Assumptions (continued). The log cost functions are (m+l)-times
continuously differentiable on an open set containing X which is a closed,

t t 1 . RN+1 L. h .t .. dOd (10)nonemp y rec ang e 1n . 1near omogene1 y 1S 1mpose on gn an gK· .

The distribution #(x) has a continuous· density function defined over X. The

objective of this section is to find rules Kn relating K to n such that the

relative bias

A

RelBias(p'OI{xt }) =

tends to zero with n where IAI = i m. Unlike the previous section where p

could be any positive integer and p was arbitrary, in this section each p will

correspond to some K so that p takes discrete jumps as K increases and p is

defined by the relation: DA9K(XoI8) = p'8 for all 8 in RP. [J
The bound on relative bias that we derive is stated in terms of the error

in a Fourier flexible form approximation to a log cost function:

Truncation error. For the sequence of cost functions above define

[J
When ; gO for all n, Theorem 0 is not enough to deliver a polynomial

rate of decay for TK, One can impose polynomial decay using the following

construction: In the representation note that each element 0i of 8
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except the first few corresponds to a sine or cosine term with argument

Put ai = Aljl Ikal for these and ai = A for the first few. Choose
- m+1- 00i 0 to satisfy Li=l(ai ) 0i In forming the sequence (gn)'

restrict attention to in with S 0i and put =
With this construction, TK= 0(K-

m+2+f ) for every f > O. Similarly, to force

the sequence (TK) to decrease rapidly than any polynomial (called a

rapidly decreasing sequence) choose 0i 0 to satisfy L7=1(ai )mOi < for

every integer m> 0 and form the sequence as above.

Incidentally, a bound on B(p) can be deduced from these ai since

S ai for w = 1, ... , N and z

z KN+2. For additional details, see Gallant and Monahan (1985).

The next theorem bounds the relative bias. Notice that this bound does not

depend on (Xt ) so the relative bias is bounded both conditionally and

unconditionally.

A -1THEOREM 6. RelBias(p'OI(xt }) S jnTK[2jAmaxO + B(p)/p'p].

Proof. = 8(91(Xt }) minimizes 8n[gK(xI8) - -

where, recall, 8n denotes expectation with respect to the empirical distribution

of Let represent First we derive two
inequalities:

1@(,AOI(})OAg_(XoIOon)1p xt - _

A A 0 0 A 0 0 AO 0s 18(p'01(xt }) - 0 gK(x 10n)1 + 10 gK(x IOn) - 0 10n)1

= - + -



I '(G-1/2)'(G1/2),(0* - 0°)1 + T .
S P np np n n K

S - - + TK

-1 * ° -1 * °= [jp'Gnpp]j8n[9K(xIOn) - 9K(xIOn)]'O [9K(xIOn) - 9K(xIOn)] + TKo

*[because On is the minimizin9 value]

-1 ° °S 2[JAmaxO ]\I9K(·IOn) - 9nllm,«l,X
-1S 2[JAmaxO ]TKo

Substitutin9 the second inequality into the first we have:

1\

RelBias(p'OI{xt })

-1 -1 -1S [(jP'Gnpp)(2)(jAmaxO )TK+ TK]/j[(l/n)p'(Gnp )p]

-1 -1= jnTK[2jAmaxO + l/p'(Gnp )p]o

403



The argument is completed using the inequality Amax(Gnp)/B(p) 1 from the

proof of Lemma 2 to get

4.4
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5. ASYMPTOTIC NORMALITY OF ELASTICITY ESTIMATES

As seen from the results of Section 3, the behavior of the sequence of

minimum eigenvalues {Amin (Gp)};=l of the matrices Gp = f +(x)O-l+,(x)
codetermines the class P of sequences {Pn}n=l that imply asymptotic normality of

the relative error in an estimate of a derivative. Given a sequence {Pn} from

P, the results of Section 4 determine the rate at which the sequence of

truncation errors must decline in order that the relative bias in an

estimate of a derivative tends to zero with n. The rate of decrease in the

sequence {TK} determines the class b of log cost functions that admit of

asymptotically normal elasticity estimates. In this section, we work through

this construction to determine P and b. Throughout, every p corresponds to
Nsome K; recall that p = K

GO
Put AK = Amin(Gp)' We claim that the sequence (AK}K=l is rapidly

decreasing; recall that rapidly decreasing means = 0 for every m.

This claim is verified as follows: Without loss of generality, assume that

putting the scale factor in the definition of the Fourier form to unity makes

the closed rectangle r a proper subset of Q= 2w] without boundary

points in common with Q. Given values for the elements of ° in gK(oIO) that

correspond to the Translog part of the Fourier form, Uo + b'x + (1/2)x'Cx,
there is a periodic function h defined on Q that possesses partial derivatives

of every order and agrees with the Translog part on r (Edmunds and Moscatelli,
1977). A Fourier series expansion hK of h will have UH -

-m+1+E .IIh - hKU1,co,Q = o(K ) for every m and every E > 0 (Edmunds and Moscatelll,
1977). Put the negatives of these coefficients in the corresponding entries of

° in gK(oIO) and one has
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< O'G 0/0'0- P

-1 2
S lmax(O )[Uh - /0'0

= O(K-m+1+E)/0'0.

Parseval's equality implies that 0'0 has a finite limit as K

A useful characterization of a rapidly decreasing sequence is obtained as
mfollows. If KlK 0 then 2og1K+ m20gK for any m. This implies that for

each m, 2og1K/2ogK < -m for all K large enough. Thus 2og1K/2ogK = -a(K) for
some positive, increasing function a(K). Equivalently lK = K-a(K).
Conversely, lK = K-a(K) for some positive, increasing function a(K) implies lK

is rapidly decreasing. "As an example, lK = e- bK corresponds to a(K) = bK/2ogK.

We can now determine the class P; recall that B(p) S KN+2. The first

condition of Theorem 5 requires that B(p)/lK S for some 0 S < 1/2,

which implies [N + 2 + a(K)]2og(K) S Thus, {Kn) must satisfy

for some 0 S < 1/2.

The implication of this relation is that Kn must grow slower than any

fractional power of n; more precisely, na/Kn 0 as n for any a > o. Since

p = KN, the same is true of Pn. As Pn increases slower than any fractional

power of n, the second condition of Theorem 5 is always satisfied and we have

that

is the set of rules that satisfy the conditions of Theorem 5.
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*
To determine b, we first note that the*sequence with = /n

bounds every sequence in P. Since = /nTK* /nTK for every
-1 n n n

{Pn} in P, the bound /nTK[2/AmaxO + B(p)/p'p] of Theorem 6 cannot decrease if

Ka(K)TK= TK/AKdoes not tend to zero as K Thus the set b of sequences of

log cost functions for which we can make use of Theorem 6 (having already

invoked Theorem 5) satisfies

If one is not willing to exploit drift and holds fixed at some gO for
oevery n then g must be infinitely many times differentiable if TK is to

decrease fast enough to damp l/AK.

If one is willing to work within a paradigm that assumes that the true cost

function moves slowly away from the Translog as data is acquired, then one

cQn always choose a sequence that will drive TK to zero as rapidly as

required by the choice of {Pn} from P. The extreme form of this view is that

the fitted model is correct (Huber, 1973) in which case TK=0 regardless of
the tail behavior of in the representations =
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