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ABSTRACT
Previously Hansen and Jagannathan (1989) derived and computed mean-

standard deviation frontiers for intertemporal marginal rates of substitution
(IMRS) implied by asset market data. These frontiers give the lower bounds on
the standard deviations as a function of the mean. In this paper we develop a
strategy for utilizing conditioning information efficiently, and hence improve
on the standard deviation bounds computed by Hansen and Jagannathan. We
implement this strategy empirically by using the seminonparametric (SNP)
methodology suggested by Gallant and Tauchen (1989) to estimate the conditional
distribution of a vector of monthly asset payoffs. We use the fitted
conditional distributions to calculate both conditional and unconditional
standard deviation bounds for the IMRS. The unconditional bounds are as sharp
as possible subject to robustness considerations. We also use-the fitted
distributions to compute the moments of various candidate marginal rates of
substitution suggested by economic theory, and in particular the time
nonseparable preferences of Dunn and Singleton (1986) and Eichenbaum and Hansen
(1989). For these preferences, our findings suggest that habit persistence
will put the moments of the IMRS inside the frontier at reasonable values of
the curvature parameter. At the same time we uncover evidence that the implied
IMRS fails to satisfy all of restrictions inherent in the Euler equation. The
findings help explain why Euler-equation estimation methods typically find
evidence in favor of local durability instead of habit persistence for monthly
data.
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1. Introduction and basic setup

1.1 Volatility bounds

The goal of this paper is to use conditional moments of asset payoffs to

deduce volatility bounds on the intertemporal marginal rates of substitution of

consumers. Previously, Hansen and Jagannathan (1989) derived and computed

mean-standard deviation frontiers for the intertemporal marginal rates of

substitution. These frontiers give the lower bounds on the standard deviations

as a function of the mean and are of interest for a variety of reasons. First,

they can be used to assess which asset market data sets have the most startling

implications for a broad class of asset pricing theories. Second, they can be

used as diagnostics for helping to discriminate among various candidate

intertemporal asset pricing models. Finally, they can be used to assist in

isolating the source of failure of particular asset pricing models that are

diagnosed as being implausible using formal statistical

Following Hansen and Richard (1987) and Hansen and Singleton (1982), one

tractable way to incorporate conditioning information is to form additional

portfolios of asset payoffs using information available to economic agents when

securities are traded. Hansen and Jagannathan (1989) and Hansen and Singleton

(1982) used this conditioning information in an ad hoc manner. There is

typically a great degree of flexibility in the manner in which additional

portfolio payoffs can be formed using conditioning information. For instance,

it is typically possible to take a finite set of primitive securities and form

an infinite-dimensional set of portfolio payoffs using conditioning

information. In this paper we show how to use the conditioning information as

efficiently as possible, and hence improve on the standard deviation bounds

computed by Hansen and Jagannathan (1989).
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Even thought the volatility bounds deduced by Hansen and Jagannathan (1989)

apply to unconditional moments, we show that efficient use of conditioning

information knowledge of the first two conditional moment of the asset

payoffs. There are a variety of nonparametric and seminonparametric methods

that can be used to estimate these conditional moments. In this paper we use

the seminonparametric (SNP) methodology suggested by Gallant and Tauchen (1989)

to first estimate the conditional distributions of a vector of asset payoffs.

The conditional moments of the asset payoffs are then inferred from the

conditional distributions.

We also show how to compute the standard deviation bounds on intertemporal

marginal rates of substitution conditional on information available to economic

agents. A potential advantage to looking at conditional frontiers is that the

conditional distributions of the asset payoffs may have thinner-tails for most

realizations of the conditioning information. Hence, by conditioning, it is

often possible to control better for the impact of outlier events on the

moments of the asset payoffs. Among other things, we view conditioning as a

substitute to the commonly-used practice of splitting the sample into

smaller subsamples.

1.2 Basic setup

We follow Hansen and Richard (1987) in modeling asset prices. For the time

being, consider an economy in which asset trades occur at some initial date

and the payoffs on these assets occur at some future date. Information is

available to the consumers at the trading date and reflected in the equilibrium

asset prices. We focus on only two time periods, the trading date and the

payoff date, for notation convenience. We have in mind that the admissible
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asset payoffs and the corresponding prices are replicated over time in a

manner that is stationary, at least asymptotically, and ergodic. This

replication is for our empirical analysis because it permits us to

estimate consistently conditional and unconditional moments of the asset

payoffs. Hence, whiTe time subscripts are initially suppressed, they become

important when we describe methods for estimation and inference in later

sections of the paper.

We specify in turn the information, the space of admissible portfolio

payoffs and the representation of equilibrium prices.

Information: Let I be a conditioning information set available to economic

agents and an econometrician at a particular point in time. Agents are

presumed to use information in I to form portfolios of asset payoffs.

Portfolio payoffs: We let PI be a space of payoffs at some future date on

portfolios of assets. For convenience, we impose the restriction that E(p2 II )

is finite with probability one for all p in PI' In other words, we focus our

attention on payoffs that have finite conditional second moments. Given this

restriction we can define a conditional inner product

(1)

and a conditional norm

We impose two additional restrictions on PI' The first restriction is
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Conditional linearity: For any wI and w2 in I and any PI and P2 in PI'

wIPI + w2P2 is in PI·

To state the second restriction, we need to define a notion of a convergent

sequence and a Cauchy sequence in PI. The sequence {Pj} is conditionally Cauchy

if for any £>0,

(3)

The sequence {Pj} converges conditionally to Po if {UPj - poU I} converges in

probability to zero. The second restriction on PI is

Conditional completeness: Every sequence in PI that is conditionally Cauchy
converges conditionally to a point in PI.

The payoff space PI is constructed so as to be the conditional counterpart·

of a Hilbert space. As indicated in Hansen and Richard (1987), the space of

all random variables with conditional second moments that are finite almost

surely is conditionally linear and complete. For the empirical analysis,in this

paper, a smaller space is also of interest. Let x denote a vector of variables

observed by both the econometrician and economic agents in the current time

period, and let YI denote an MI-dimensional vector of asset payoffs at some

future date. Both of these vectors might be constructed from an underlying M-

dimensional stochastic process {Yt} observed by the econometrician. The vector

Yl is taken to be a subvector of the underlying process at some future date and

the vector x contains the current and a finite number of lags of this same

process.
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PI = {p: p • v-Yl
for some Ml -dimensional vector v of random variables in I). (4)

It is straightforward to verify that PI as given by (4) is conditionally

liner and complete.

1.3 Asset pricing

We assume that all payoffs in PI have asset prices that are unambiguously

finite and in the information set I. Hence we model asset prices as a function

wmapping PI into I. Hansen and Richard (1987) imposed the following

restrictions on w:

Conditional linearity: For any wI and w2 in I and any PI and P2 in

PI' w(wIPl+w2P2) = wlw(Pl) + w2w(P2)·

Conditional continuity: For any sequence {Pj} for which {IIPj IlI} converges in

probability to zero, {w(Pj)} converges in probability to zero.

Nondegenerate pricing: There exists a payoff Po in PI for which

Pr{w(po)=O} = O.

Hansen and Richard showed that when wsatisfies these restrictions, there
*exists a payoff p in PI such that:

*w(p) = <p Ip>I for all p in PI . (5)

*Furthermore, since the pricing function is not degenerate lip III is strictly

positive with probability one. Result (5) is just the conditional counterpart

to the familiar Riesz Representation Theorem.
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*Although p is the unique random variable in PI that satisfies (5),

typically there are many random variables not in PI that also can be used to

Some of these other random variables are easier to interpret and

have more direct links to explicit dynamic models. The payoff space PI is

restricted to be tractable for econometric applications and is often smaller

than the span of the security market payoffs that economic agents can trade.

In the special case in which agents can trade a complete set of contingent

claims, the Arrow-Debreu prices can be presented in terms of a strictly
*positive random variable mthat can be used for p in (5) except that mmay

not be in PI. Since consumers equate marginal rates of substitution to prices,

m is also a measure of the common (across consumers) intertemporal marginal

rate of substitution (IMRS). More generally, if agents do not face a complete

set of securities markets, the individual IMRS's will not necessarily be

equated. The IMRS of any consumer can be used, however, to represent

Hansen and Jagannathan (1989) give several examples of the economic models and

the corresponding characterizations of IMRS's.

We focus on properties of random variables mthat satisfy

Restriction 1: <mlm>I < and <mlp>I- for all p in PI .

These random variables are candidates for IMRS's of consumers. 1 Whenever

Restriction 1 is satisfied, the pricing function is conditionally linear
*and complete. In addition, there exists a random variable p in PI that

satisfies (5) even if the pricing function is degenerate on PI. In this

paper we analyze implications of Restriction 1 for mgiven the data on asset

prices and payoffs.
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2. Conditional analysis

In this section we derive the conditional counterparts to the results

reported in Hansen and Jagannathan (1989). First we compute regressions of m

onto PI and a constant term conditioned on I. Then we characterize the mean-

standard deviation frontier for mconditioned on I.

* . *Since p satisfies (5), it follows that m-p is orthogonal to PI

conditioned on I:

*<m-p Ip>I = 0 for all p in PI . (6)

* *Recall that p is in PI. As a consequence, p is the least squares projection

of monto PI conditioned on I.

In many cases PI does not contain a payoff that is riskless conditioned on

I. In these circumstances, it is of interest to deduce the least squares

projection of monto a large space that is augmented by a riskless payoff. Let

p! = (p + w: p is in PI and w is in I) (7)

It is straightforward to show that pt is conditionally linear and complete
whenever PI is conditionally linear and complete. In addition, p! always

contains a payoff 0 that is identically equal to one. We compute the

conditional projection of monto p! by adding to p* the conditional

projection of monto the collection of all variables in pt that are
orthogonal to PI conditioned on I. Let po denote the conditional projection of

o onto PI. Then



<elp>1 = 0 for all p in PI' (8)

8

where e is the conditional regression error o_po. Any random variable in p+

that is conditionally orthogonal to PI is the product of a random variable in I

and e. Hence, the conditional projection of monto p! is given by

(9)

where w is the conditional regression coefficient

w = <elm>I/<ele>1 (10)

obtained by regressing monto e conditioned on I. In general this regression

coefficient will depend on conditioning information in I. Notice that the two

terms on the right side of (9) are conditionally orthogonal [see (8)]. In

addition, p+ satisfies the following two conditional moment restrictions:

and

+<m-p 10>1 = 0 .

(11)

(12)

Condition (12) is equivalent to the restriction that mand p+ have the same

mean conditioned on I. It follows from (11) and (12) that the conditional

covariance of m-p+ and p is zero for any p in PI. As a consequence, the

standard deviation of mconditioned on I, denoted std(mll), is greater than or

equal to std(p+II).
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It turns out that the conditional regression coefficient w depends on the

conditional mean of m. Taking.conditional expectations of both sides of (9)

yields

*E(mll) = E(p II) + wE(ell) . (13)

Also, Pr{e = O} is zero whenever Pr{<ele>1 = O} is zero. In this case given

knowledge of E(mll), equation (13) can be solved for w. Conversely, for any

choice of w in I there exists a corresponding random variable E(mll) satisfying

(13).

Since E(mll) is not specified a priori, we consider the indexed family of

random variables {mw: w in I} where

*mw= p + we.

Each member of this family satisfies:

Hence each member is a valid candidate for msatisfying Restriction 1.

(14)

(15)

Without knowledge of E(mll), all we can say is that the conditional projection

of monto pi is in the set {mw: w in I}. Each member of this set is on the

conditional mean-standard deviation frontier for m. That is, even without

knowledge of E(mll), the ordered pair [E(mll), std(mll)] must be in the set
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It is of interest to determine when the region SI touches the horizontal

axis with probability one. This occurs when std(mwII) is zero with probability

one for some w or equivalently mw is equal to w. In this case

w(p) = wE(pII),

and therefore we cannot rule out risk-neutral pricing.

(17)

We now illustrate the construction of the indexed family {mw: w in I} when
*PI is given by (4). To construct this set {mw: w in I} we must compute p

and po. Since p* and po are in PI' they can be represented as v*.Yl and vO.Yl

for some vectors v* and VO of random variables in I. It follows from (5) and

(8) that

(18)

When E(YlyiII) is nonsingular with probability one,

(19)

Hence the conditional mean-standard deviation frontier for m is constructed

using the first two conditional moments of Yl and the vector of prices of Yl.

In particular,

(20)
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3. Unconditional analysis

In this section we deduce implications for the first two unconditional.
moments of m. The notation "." and <·1.> without an I subscript is used to
denote the unconditional counterparts to (1) and (2). Let P be the space

of all random variables in PI with finite unconditional second moments. This

space can be infinite dimensional even when P is constructed from a finite-

dimensional random vector Y1 as in (4). The fact that consumers use

conditioning information in I to form portfolios can increase dramatically the

dimension of P. Hansen and Richard (1987 Lemma A.4) showed that P is

(unconditionally) linear and complete. Hence P is a Hilbert space. For the

unconditional analysis to be of interest we must strengthen Restriction 1.

Restriction 2: <mlm> < and = for any p in P.

Our strategy in this section is to replicate the analysis in Section 2.

using P in place of PI and using unconditional projections in place of

conditional projections. Since mand 0 have finite second moments, the

unconditional least square projections of mand 0 onto P are the same as the

conditional projections of these random variables onto PI [see the proof'of

Theorem A.2 in Hansen and Richard (1987)]. Hence p* and po are the

unconditional projections of mand 0 onto P. We define

p+ = {p + c: for some p in P and some c in R} •

In this case, the projection of monto p+ is given by

(21)

(22)
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where c is the regression coefficient <mle>/<ele>. Finally, the unconditional

standard deviation of m, std(m), is greater than or equal to std(p+).

Computing the regression coefficient requires knowledge of the unconditional

mean of m. When this mean is not known a priori, we consider the family of

random variables {mc: c in R} where

*mc = p + ce (23)

Notice that each random variable in c in R} is also in {mw: w in I} because

random variables that are constant almost surely are in I. Hence mc satisfies

Restriction 1. Since mc is in p+, <mclmc> is finite and mc satisfies

Restriction 2 as well.

By changing c we vary the unconditional mean because

*E(mc) = E(p ) + cE(e) (24)

and E(e) is different from zero as long as 0 is not in P. Therefore, for any m

satisfying Restriction 2, the ordered pair [E(m), std(m)] is in the regiqn:

In this sense random variables in {mc: ceR} are on the unconditional mean-

standard deviation frontier for IMRS's.

If S touches the horizontal axis, then without restricting Em there are no

restrictions on std(m) other than the trivial restriction that it be nonnegative.

The region S touches the horizontal axis if, and only if there is a real

number c such that std(mc) = 0 or equivalently mc is equal to c. In this case,
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w(p) ,. cE(pII) . (26)

This is a considerably stronger restriction than (17). It requires that the

prices on all securities be proportional to their conditional means where the

proportionality factor cannot depend on conditioning information ..

It is of interest to compare results in this section to related results in

Hansen and Richard (1987) and Hansen and Jagannathan (1989). Our conclusion

that {mc: c in R} is a subset of {mw: w in I} can be thought of as the dual to

the result in Hansen and Richard (1987) that asset returns that are on the

unconditional mean-standard deviation frontier are also on the conditional

mean-standard deviation frontier. Hansen and Jagannathan (1989) derived a

region similar to S given in (25). Their region, however, was deduced by

regressing mand 0 onto a space that can be much smaller than P. More

precisely, they form a finite-dimensional subspace of P and project mand 0

onto this space. As a consequence, the region they derive contains the region

S given in (25).
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4. Strateg;es for est;mat;ng mean-standard dev;at;on front;ers

The H-dimensiona1 process {Yt } of observab1es is assumed to be strictly

stationary and to possess a one-step-ahead conditional density

h(Yt+lIYt-L+l' Yt -L+2' ... ,yt) that depends on at most L lags. For brevity

we write xt • (Yt-L+l Yt-L+2 ... Yt)', which is HLxl, and we denote the
one-step density as h(Yt+l1xt) or h(Ylx). In the empirical work, Yt consists

of asset payoffs and other variables that contain information about returns.

Let Yl,t+l denote the HI-dimensional subvector of Yt+l containing asset
payoffs. All payoffs are assumed to have unit prices; that is, the payoffs are

gross returns (1 + net returns). Hence the vector u1 of the time t prices of

Yl,t+l consists of HI ones. 2

For a given x, the conditional mean-standard deviation frontier for m is

constructed using the first and second moments of Yl under h(Ylx). Put

q(h,x) = IYlh(YIX)dY,

Q(h,x) = fYIYih(YIX)dY,

V(h,x) = Q(h,x) - q(h,x)q(h,x)',

which are the conditional mean, second moment matrix, and covariance matrix of
A

Yl given x. Let h denote an estimate of h. As can be checked using

elementary least squares formulas, the conditional frontier described in

Section 2 can be obtained by tracing out the parabolic-shaped region

a(mclx) = ([u1 - cq(h,X)]'V(h,x)-1[U1 - cq(h,x)]}1/2

E(mclx) = c

as c varies over R. The minimum value of a(mclx) is



15

which is the length of the residual vector from an oblique projection of U1
A A 1onto the space {cq(hlx)}cSR using V(hlx)- as the weighting The

A 1 Avalue of E(mcIX) at the minimum of the frontier is uiV(h,x)- q(h,x)/

UiV(h,x)-IU1 which is the coefficient of the projection.

The estimate of the unconditional frontier is more involved as it depends

upon the conditional moments at each data point. Put

P;(h) = ul'Q(h,Xt_l)-IYlt

et(h) = 1 - q(h,Xt_l)'Q(h,Xt_l)-IYlt.

Then the estimate of the unconditional mean-standard deviation frontier is

obtained by tracing out

as c varies over R, where n denotes sample size. An equivalent way to do the

calculation is, for each scalar E(m), to determine the c such that the first

equality holds and then calculate the corresponding u from the second

equation.

Below, we report estimates of conditional and unconditional frontiers
A

using SNP methods to obtain the estimate h of h.
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5. Data

Two data sets are used in this paper. The first is a long monthly time

series on the ex-post real returns on stocks and T-bills, 1926-87, and is

described more fully below. The second is used mainly for some auxiliary

calculations. It consists of a shorter monthly time series, 1959-84, on ex-

post real returns for the same two assets together with consumption data, which

become available monthly beginning in 1959. This data set is described more

fully in Gallant and Tauchen (1989).

The long time series consists of 744 monthly observations, 1926:01-1987:12,

on the ex-post real return on the value weighted NYSE and the ex-post real

return on a one-month T-bill. (Throughout, the format for·referencing dates is

yyyy:mm where yyyy denotes the year and mm denotes the month.) The length of

this series appears to be sufficient for reliable estimation of the conditional

density. Furthermore, the sample period covers several sub-periods of intense

activity on financial markets, including among other things, two crashes.

A deflator must be used to convert nominal returns to real returns.

Common practice in testing intertemporal asset pricing models is to use the

consumption deflator. This index has some appeal on theoretical grounds: but

is only available monthly from 1959 forward. To our knowledge, there are only

two monthly price indexes available back as far as 1926. One is the wholesale

price index and the other is the consumer price index. Muoio (1988) examines how

closely year-to-year percentage changes in annual aggregates of each of these

price indexes correspond to those of the annual consumption deflator over the

period 1913-1983. His work (Chapter 2, Figures 1 and 2, p. 33) indicates that

percentage movements in the annual consumer price index are quite close to

those of the consumption deflator, and the agreement is better than for
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movements in the wholesale price index. On this basis, we elected to use the

consumer price index.

The data are plotted in Figures 1 through 2. Table 1 displays sample

means, standard deviations, etc. in the top part of the table and the extreme

points in the data expressed in units of standard deviation in the bottom part.

Looking at the figures, the secular movements in the volatility of the two

series appear to be related, and in particular, the volatilities are higher

prior to 1947. From the table, the data are seen to be fat-tailed as evidenced

by the large (raw) sample kurtosis and the magnitudes of the extremes. A

sample of size 744 from the t-distribution with seven degrees freedom would

have about 1% of the sample exceeding ±3.5 which is in rough agreement with the

number of extremes in our data.

Some of these extremes can be associated with distinct events. For

instance, the 1946:07 drop in the T-bill return occurred because the nominal T-

bill rate was essentially frozen at that time while the price index took a

sharp rise in July, 1946, when price controls were lifted. We have not made

any special adjustments for this exceptional drop in the T-bill return or any

other extreme observations. There are other periods in the data set when

prices were controlled during or after wars and nominal rates were slowly

changing, though not to the same extent as in 1946. Taken together, these

special events are, in our view, reasonably modeled as being the outcome of a

stationary process, and should be included in the data set. The remarks of

Leamer (1978, pp. 278) are an interesting commentary on the practice of

selecting endpoints for the purpose of excluding influential observations.

One model that is suggested by a theory of speculative markets and that can

account for data with these characteristics is an ARCH-type model with a fat-



18

tailed innovation distribution (Gallant, Hsieh, and Tauchen, 1989). Our

estimation strategy, discussed below, can track data that follow this model and

can accommodate (nonlinear) departures from it, if present.

Another characteristic that one might note in Table 1 is the extent to

which the mean of the stock return exceeds that of the T-bill return. This

reflects the so-called equity premium anomaly, which we discuss further in

Sections 7 and 8 below.

Table 2a contains a summary of linear VAR estimation. There is evidenGe

for autocorrelation in both variables, though the R2,s indicate that the linear

predictability of the stock return is very slight and substantially below that

of the T-bill series. The Granger tests reveal some evidence of linear

feedback from the stock return to the T-bill return at the lower order lags.

The p-values for the tests shown in the table were computed using the

conventional formulas for linear models, and should thus be interpreted with

some caution. We do not regard them as precise tools for inference but rather

as familiar statistics that give a qualitative feel for the underlying

characteristics of the data.

Table 2b contains a summary of the results of fitting linear VAR models to

squared residuals from VAR models in Table 2a as a crude indicator of

conditional heteroskedasticity.. The results suggest that relative to the

information set comprised of past VAR squared residuals, there is some

predictability in the magnitude of the stock residual but very little

predictability in the magnitude of the T-bill residual. The same caveat

regarding the p-values applies.
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6. Seminonparametr1c estimation of the conditional density h(Ylx)

6.1 SNP models

We utilize seminonparametric (SNP) methods to estimate the conditional

density of the observed data. In subsequent sections, the fitted density is used

to derive estimates of conditional moments for the frontier calculations. It is

also used to compute expectations of certain nonlinear functions that are

important for the interpretation of the frontiers.

SNP methods (Gallant and Tauchen, 1989) are a nonparametric approach for

time series density estimation. The SNP density, denoted by hK(ylx), is the Kth

term in sequence of approximations to the underlying density h(Ylx). The

leading term of the approximation is a linear vector autoregression with
Gaussian errors. The higher order terms accommodate departures from Gaussianity

and possible conditional nonlinear dependence in moments, to the extent these

higher order effects need to be introduced.

An SNP approximation takes the form

where bO is Mxl, B is MLxl, R is an MxM upper triangular matrix, and fK(zlx),

zeRM, is a modified Hermite density to be defined presently. The vector bO
and the matrix B are the parameters of the conditional mean of a VAR model and

R is the upper triangular square root of the error covariance matrix. Hence,

fK(zlx) is an approximation to the conditional density of the standardized VAR

error. Its form is

=
I(a,x)



where is the Mdimensional standardized multivariate normal density,

I(a,x) is the integral of the numerator over ZSRM, K=(Kz,Kx), and the rest of

the notation is as follows. The vector a is a multi-inuex of length M,

that is, an Mxl vector whose elements are nonnegative integers, and

a a l a2z = (zl) -(z2) -
lal = al + a2 + ... + aM'

Likewise, ft is a multi-index of length ML and

ft ft l ft2 ftMLx = (xl) -(x2) -(xML),

. Iftl = ft l + ft2 + ... + ftML,

The approximation fK(zlx) takes the form of a squared polynomial in z and x

times the standard normal density. The polynomial is of degree Kz in z and K. x
in x, and the coefficients are {aa,ft}' with aO,O normalized to equal unity.

There are three tuning parameters, L, Kz' and Kx' of the SNP

approximation. In the discussion below, we shall use the notation

SNP(L,Kz,Kx) to identify the corresponding density hK(ylx). When it is

important, we will write h(Ylx;8), where 8 is a vector containing the

polynomial parameters and the VAR parameters of the model. The parameter

vector 8 is estimated using standard maximum likelihood methods. In order to

obtain consistency using this representation, both Kz and Kx must grow with

sample size, either deterministically or adaptively (Gallant and Nychka, 1987;

Gallant and Tauchen, 1989).

SNPRX models were developed in Gallant, Hsieh, and Tauchen (1989). An

SNPRX is similar to an SNP model, except that the leading term is an ARCH-type

model with Gaussian errors, a linear conditional mean, and a conditional

20
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covariance matrix that depends upon the past of the process. The higher order

terms thus accommodate deviations from this model. The motivation for

introducing this class of models is the extensive set of empirical results

presented by Rob Engle and his collaborators that document the presence of

strong conditional heteroskedasticity in financial market data (see Engle and

Bollerslev, 1986, for a review). To the extent that a good parameterization
can be found for the conditional covariance matrix, then the SNPRX models

permit one to subsume into the leading term of the model aspects of the data

that, on a priori grounds, are likely to be important.

The structure of an SNPRX model is similar to that of an SNP model, except

that the matrix R is allowed to depend upon x. An SNPRX(L,Kz,Kx) model has as

its leading term a linear vector autoregression with mean, bO+ Bx, and

Gaussian errors with conditional covariance matrix R(x)R(x)'. The higher order

terms capture deviations from that model. In the estimations reported below,

the parameterization

vech(R(x»
ML

= PO + L p.abs(x.)
j=l J J

is used, where Pj is a parameter vector of length M(M+1)/2, j=O,l, ... ,ML. In

the estimation, the series {Yt} is linearly transformed to have mean zero and

covariance matrix 1M. Thus, the upper triangular square root of the covariance

matrix of the leading term depends linearly on the absolute values of L lags

of the process, after centering and rescaling. The parameterization makes it

straightforward to impose positivity on the implied conditional variance

matrix, at the expense of creating multiple peaks in the likelihood surface.
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In a multivariate context like this, the optimization algorithm can use an

extreme value from one series as an explanatory variable for another series.

This allows it to fit an observation nearly exactly, reduce the corresponding

conditional variance to near zero, and inflate the likelihood. This problem is

endemic to procedures that adjust variance on the basis of observed explanatory

variables. We have compensated for this effect by an additional transformation

Xi = (4/c)exp(cxi )/[I+exp(cxi )] - 2/c i = 1, ... , ML

with c = 1/2. This is a one-to-one (logistic) transformation that has a

negligible effect on values of xi between -3.5 and 3.5 but progressively

compresses values that exceed ±3.5 so they are bounded by ±4. The inverse

transformation is x = (l/c)in[(2+cx)/(2-cx)]. This transformation is roughly

equivalent to variable bandwidth selection in kernel density estimation.

Because it affects only x, and not y, the asymptotic properties -of SNP

estimators discussed above are unaltered.

6.2 SNP estimation

Previous experience (Gallant, Hsieh, and Tauchen, 1989) suggests a

reasonable strategy for choosing the tuning parameters L, Kz' and Kx' The

first is step is to use the Schwarz criterion (Schwarz, 1978) to select

an initial tentative model. Since the Schwarz criterion was developed

for different estimation contexts and is known to be conservative, a second

step undertakes a battery of specification tests to check for whether the

initial model has missed any important conditional variation in the first two

moments. The initial model is then expanded, if need be, to the point where

the specification tests are passed at conventional significance levels. This

strategy gives sensible results, though there is certainly a need for further
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theoretical work on strategies for optimally selecting the tuning parameters of

these models.

Table 3a contains a summary of estimated (logistic) VAR and SNPRX models

fitted on 738 observations on a bivariate process comprised of the. stock return

and the T-bi11 return, 1926:07-1987:12. The first six observations of the 744

available, are not used so that values of the objective function across models

with different lag lengths are comparable. The table shows the tuning

parameters, the number of parameters in each model, the value of the objective

function, and the Schwarz criterion. Because the objective function is

proportional to minus log likelihood,

the values shown in the table decrease when more parameters are-included in

the model. Due to the sign change, models with smaller values in the column

labeled 'Schwarz' perform better under that criterion.

In Table 3a, the SNPRX(L,O,O) models are seen to perform substantially

better under the Schwarz criterion than the VAR(L) models, which are

linear Gaussian vector autoregressive models save for the logit transformation

to x. Of the SNPRX(L,O,O) models, the preferred model is the SNPRX(3,0,0),

which indicates that a lag length of three is needed to capture the conditional

heteroskedasticity. Of all of the models shown in the table, the preferred

model under the Schwarz criterion is the SNPRX(3,4,0). This model has a

homogeneous error density with the polynomial component being a quartic

constrained to include at most quadratic interactions. A quartic was chosen

because the results of (Gallant, Hsieh, and Tauchen, 1989) indicated that

a quartic is needed to make the density assume the shape -- peaked near zero
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and thick in the extreme tails -- that is characteristic of the probability

density of long time series on movements in financial market data.

Table 3b shows the outcome of the battery of specification tests for each of

the models in Table 3a. The tests for homogeneous location are the regression

F tests from regressions of the standardized residuals (the residuals divided

by the square roots of the predicted conditional variances) on constants and

six lags of linear terms, squared terms, and cubic terms of the two series.

The tests for homogeneous scale are similar except that the dependent variables

are the squared standardized residuals. Because of the "Durbin effects" of

prefitting discussed in Newey (1985) and Tauchen (1985), the p-values reported

in Table 3a are probably too large and certainly should be interpreted with

caution. However, they do suggest that there is additional conditional scale

variation in the stock return that is not accounted for by the SNPRX(3,4,O}

specification and that a SNPRX(3,4,1} specification is preferred. Because the

Schwarz criterion is known to be conservative, we accept this implication and

adopt the SNPRX(3,4,1} model as the preferred specification.
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7. Conditional frontier estimates

We begin with a discussion of the general properties of the conditional

frontiers and then proceed to an analysis of their economic implications.

7.1 Location and shape properties of conditional frontiers

Figure 3 shows mean-standard deviations frontiers conditional on x

equaling its unconditional mean over the data set. Conditioning on this

particular x value confines the analysis to the central part of the data and

thereby helps circumvent the effects of the influential observations. The

conditional frontiers shown in Figure 3 (and subsequent figures) were computed

using the method described in Section 4 above. The figure shows frontiers

calculated from four estimated specifications of the conditional density of the

bivariate stock and T-bill returns series:

(A) YtlXt-l - SNPRX(3,4,1)

(8) YtlXt-l - SNPRX(3,O,O)

(C) YtlXt-l - SNP(3,O,O)

(D) YtlXt-l - mu constant, sigma constant

,
Specification (A) is the preferred specification obtained in Section 6 above.

This specification entails conditional heteroskedasticity and a conditionally

dependent non-Gaussian error density. Specification (8) entails only

conditional heteroskedasticity with a conditionally homogeneous Gaussian error

density. Specification (C) is essentially the standard VAR model with a

linear mean and constant conditional covariance matrix, except for the logit

transformation to x (see Section 6 above); the logit transformation

essentially has no effect in the central part of the data. Specification (D)

uses no conditioning information at all and is obtained by calculating the
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unconditional first two moments of the series. The figure also shows points

corresponding to conditional mean and standard deviations of the

reciprocals of the (gross) stock and T-bill returns. The expectations were

computed from the preferred SNPRX{3,4,1) specification. These points are shown

because they help provide a visual sense of scale and because the reciprocal of

the stock return is a candidate IMRS under certain assumptions about

preferences.

Some interesting features of Figure 3 are the similarities between the

frontiers computed under specifications A and 8 together with the contrasts

between these two frontiers and those computed under specifications C and D.

80th the A and 8 specifications account for conditional heteroskedasticity

while the C and D specifications do not. The similarity between the A and 8

frontiers indicates that, in the central part of the data, the estimate of the

conditional frontier is quite robust with respect to the specification of the

model, once conditional heteroskedasticity is taken into account. Some

confirmatory evidence on robustness is the frontier computed under an

SNPRX{3,4,O) specification, which is not shown in Figure 3 but is shown

Figure 4 (to be discussed below). The fact that the extra complications

entailed in specification A relative to 8 do not have noticeable effects on

the frontiers is due to ignoring tail behavior by conditioning on a point in

the central part of the data.

In Figure 3 the minimum of all of the frontiers occur at a

value for E{mlx) very near the conditional mean of the reciprocal of the
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T-bill return. The minimum of the conditional frontier corresponds to the

oblique projection of a vector of ones onto the conditional mean vector, with

the weighting matrix being the inverse of the conditional variance matrix.

(See Section 4 above.) Because of low variability of the T-bill return

relative to the stock return, the T-bill component dominates that projection.

As discussed in Section 2 above, the conditional frontier touches the

horizontal axis if the conditional means of the returns are equal. In this

case risk neutral asset pricing cannot be ruled out. The simplest way to test

the hypothesis of equal unconditional means is to test for equal unconditional

means using the paired t-test on the difference between the stock and T-bill

returns. There are advantages to this approach: Any errors in converting

nominal returns to real returns net out (approximately) and the t-statistic is

asymptotically normally distributed even in the presence of heteroskedasticity.

(The null hypothesis implies all autocorrelations are zero so serial correlation

need not be taken into account in computing standard errors.) The paired t-test

rejects the hypothesis of equal conditional returns at a p-value of 0.003. We

are relying on the large sample (744 observations) and have not done

to determine if the fat-tails or heteroskedasticity are severe enough to affect

this conclusion.

The hypothesis can also be viewed as a conditional moment restriction on

the density which can be tested using the methods in Gallant and Tauchen

(1989). The top part of Table 4 shows the outcome of tests of this restriction

when imposed on the bivariate fits. When imposed on the SNPRX(3,0,0)

specification, the restriction is rejected at the same p-value as the paired t-

test. This specification allows for conditional heteroskedasticity but imposes

a normal innovation distribution. When a fat-tailed innovation distribution is
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allowed, an SNPRX(3,4,0), the p-value increases to 0.1096 and one would accept

the restriction at conventional significance levels. Due to problems with

numerical stability the restriction was not fully imposed on the SNPRX(3,4,1)

specification. Thus the p-value is overstated and is only suggestive of the

consequence of allowing for additional nonlinearities in the fit. The bottom

part of the Table 4 shows the results of testing the restriction that the

conditional means are equal and constant, which is a stronger form of risk

neutrality that implies a constant IMRS. The test outcomes provide substantial

evidence against this hypothesis.

Figure 4 shows the conditional frontiers computed from the unrestricted

SNPRX(3,4,0) specification and the same specification restricted to have

equal conditional means, both fitted using the bivariate series. The

SNPRX(3,4,0) is the most liberal)y parameterized model for which the

restriction could be fully imposed. Since the p-value for the restriction

when tested against the SNPRX(3,4,0) model is about 0.11, the downward shift

in the frontier indicates the width of an approximate 10 percent confidence

about the frontier in the vicinity of E(mlx) = 1. In view of the other

p-values reported in Table 4, a 10 percent confidence band about the frontier

computed under the SNPRX(3,0,0) specification would be narrower while a band

for the frontier computed under the SNPRX(3,4,1) would probably be somewhat

wider.

Each of the conditional frontiers shown in Figures 3 and 4 was computed

at an x value set to the unconditional means of the series. Figures 5 and 6

provide some indication as to extent to which the time series variation in x

shifts the conditional frontier. Each of the two figures pertain to the

SNPRX(3,4,1) specification fitted to the bivariate stock and T-bill returns.
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Figure 5 is a plot of the the minimum value of u(mlxt ) along the conditional

frontier, while Figure 6 is a plot of the value of E(mlxt ) at which the minimum

occurs. Figure 5 indicates that nearly all of the time series variation in

the minimal u(mlx) is concentrated in a band between 0.00 and 0.30. Figure 6

indicates the value of E(mlx) where the minimum occurs is substantially more

volatile in the period 1926-1951 than in the subsequent period.

7.2 Conditional first and second moment properties of IMRS's based on time
separable utility

Under certain aggregation conditions (Eichenbaum and Hansen, 1989) the

intertemporal marginal rate of substitution can be related to the preference

function of a fictitious representative agent. Under further assumptions about

time separability and homotheticity, the IMRS between time t and t+l can be

expressed as mt ,t+l = where is a subjective discount factor

between zero and unity, 1 0 is a curvature parameter, and {ct } is the

equilibrium consumption process. This is the IMRS based on the eRR or power

utility specification, which has been used in empirical work by Grossman and

Shiller (1981), Hansen and Singleton (1982), Grossman, Melino, and

(1987), and many others.

In this sub-section we examine the extent to which the conditional first

and second moments of this candidate IMRS violate the bounds implicit in

estimated conditional mean - standard deviation frontiers. Because the

analysis is conditioned at the mean of the data, the moment bounds we examine

are, in one sense, weaker than those examined by Hansen and Jagannathan (1989).

The reason is that this candidate, like any other, could conceivably satisfy

the moment bounds in the central part of the data while not in the extremes.
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We begin with the special case 1 = 1, which is logarithmic preferences.

In this case one can arguably measure the implied IMRS without utilizing

consumption data. In particular, one can show (Rubenstein, 1976) that m=
* *l/r , where r is the return on an aggregate wealth portfolio. This measure of

m is also implied by a particular version of preferences that are not state

separable (Epstein and lin, 1989). In this case, though, the implied m is not

necessarily representable as a consumption ratio as is the case for state

separable preferences. Figures 3 and 4 give an indication of the extent to

which this candidate IMRS violates the conditional moment bounds when we take
*r to be the stock return variable of the long time series.

More generally, though, conducting a conditional analysis of the first two

moment properties of consumption-based IMRS's using monthly data requires that

we confine attention to a period beginning in 1959, which is when monthly

consumpti9n data first becomes available. Figure 7 shows the conditional

frontier implied by the SNP(2,2,1) specification that Gallant and Tauchen

(1989) estimated for a trivariate series comprised of stock and T-bill returns

together with consumption growth, 1959:05-1984:12. The asterisks are points

indicating the conditional mean and standard deviation of P(ct+1/ct )-1

by the fitted SNP model, with numerical integration used to compute required

conditional expectations. The parameter P is set to unity and 1 varies from

zero to 19 in increments of one. Lower values of P simply translate the set of
asterisks leftwards. The asterisk at (0.0,0.0) corresponds to 1=0.0, and the

points move up and to the left as 1 increases. The asterisks trace out a

parabola laid on its side, and ultimately pass back through the frontier at 1

values in excess of 200. The figure suggests that this candidate IMRS can

accommodate large conditional risk premiums only with very high values of 1.

This finding is the conditional analogue of findings by Mehra and Prescott

(1985) and others.



31
8. Conclusion

We conclude by using unconditional frontier analysis to interpret recent

empirical work utilizing time nonseparable preference specifications in asset

pricing applications. A discussion of some robustness cons·;derations precedes

the analysis.

8.1 Robustness

Estimates of unconditional frontiers that fully utilize the conditioning

information in the data turn out to be fairly sensitive to model specification,

and are thus not reported. The reason for the lack of robustness is both

subtle and interesting. The calculations entail computing sample moments of

quantfties that depend directly on the data and on the conditional second

moment matrix of the asset returns at each data point. That matrix can be

written as + It, where is the predicted conditional mean vector and It

is the predicted conditional variance matrix. Because returns fluctuate in a

relatively narrow band about unity, the matrix is very close to the

matrix whose elements are unity. Furthermore, the elements of It are fairly

small, being on the order of 10-3 to 10-5. Hence, in a few places in the data

the conditional second moment matrix can become very close to being a one

matrix. For example, the 1984:08 observation is an otherwise innocuous looking

observation, but the ratio of the largest to the smallest eigenvalue of the

conditional second moment matrix of returns is 2319, which is a very large

condition number. A large condition number means that the elements of

+ I t )-1 will be very sensitive to small changes in the elements of It,

which appears be the cause of the lack of

This difficulty is intrinsically multi-dimensional and will not arise when

and It are scalars. We can therefore circumvent it by estimating separate
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mean - standard deviation frontiers, each based on the implied conditional

marginal distributions from the long series estimation, and then take their

intersections. 3 The strategy still exploits conditioning information, but not

to its full extent. The individual frontiers are estimated using the method

outlined in Section 4. In each case, the {Yt} process is the bivariate stock

and T-bills series, and the fitted conditional density is the preferred

SNPRX(3,4,1) specification. One frontier is obtained by taking the {Y1t}
process to be the stock return alone, while the other is obtained by taking

{Y1t} process to be the T-bill return. Additional work suggested that these

individual frontiers are reasonably robust.

Figure 8 shows these separately estimated frontiers along with pointwise

two-sigma confidence bands. The one on the left corresponds to stocks while

the other corresponds to T-Bills. The confidence bands were computed using the

method described in Hansen and Jagannathan (1989). Covariance terms to lag

seven and Parzen's weights were employed in the weighted covariance estimation.

The confidence bands only give a rough indication of the estimation uncertainty

and should be interpreted with caution, as they do not take account of the

estimation of the incidental parameters of the fitted conditional density.

Doing so in a reliable manner appears to entail some extensive Monte Carlo

work, which we defer to subsequent research.

8.2 Time nonseparable preferences

Sims (1980), Novales (1989), and many others have argued that time non-

separable preferences might be needed to reconcile the time series properties

of asset returns and consumption. A particularly convenient specification for

time nonseparable preferences was introduced by Dunn and Singleton (1986) and

Eichenbaum and Hansen (1989). In their specification, the IMRS is
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where ct is consumption goods acquired in period t, It is time t information,

is a subjective discount factor, 1 is a curvature parameter, and a is a

parameter capturing the intertemporal service flow from previously acquired

consumption goods.

The sign of the parameter a reflects the nature of the time non-

separability of preferences. When a is positive, then newly acquired

consumption goods have a locally durable component. Acquisitions of

consumption goods in nearby periods are thus substitutable, which is a

characteristic of preferences consistent with the arguments of Huang and Kreps

(1987). On the other hand, when a is negative, then consumption goods are

complementary across adjacent time periods. This characteristic of preferences

is consistent with notions of adjustment costs and habit persistence.

Constantinides (1988) argues that IMRS's based on preferences displaying habit

persistence can account for the equity premium anomaly.

When this preference specification is estimated using GMM-Euler equation

methods, then the estimates of a are generally statistically significant and in

the range 0.10 to 0.50 (Dunn and Singleton, 1986; Eichenbaum and Hansen,

1989). This evidence is consistent with local durability of consumption.

Gallant and Tauchen (1989) likewise examine the empirical implications of time non-

separability, though using a different preference specification and estimation

strategy. Their estimation strategy enables them to produce estimates of the

means of asset returns subject to the Euler equation restrictions. They find

that sets of preferences that best fit the data, in the sense of not failing
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tests of overidentifying restrictions, also display local durability but at the

same time predict an equity premium that is too small relative to the observed

premium.

Figure 9 is useful for interpreting these empirical findings .. The figure

displays evidence on the impact that various assumptions regarding local

durability and habit persistence have on the first two moment properties of the

IMRS. The frontier shown in the figure is the intersection of the two

separately estimated frontiers presented in Figure 8. The figure also shows

the points corresponding to (E(m),u(m» for the IMRS implied by the time

nonseparable preferences under various assumptions about 1 and a. We

calculated the coordinates of these points using the SNP(2,2,I) model fitted by

Gallant and Tauchen to the shorter 1959-84 data set. We used numerical

integration to compute the conditional expectations required fot and we

then formed sample moments of This calculation presumes

that agents' information set It is current and lagged values of the two

asset returns and consumption growth. The (E(m),u(m» points in Figure 8 are

for these candidate IMRS's when a is set to -0.50, 0.00, and 0.50, and

indicated by minus signs, zeros, and plus signs, respectively. The 1 values

increase from zero in increments of I. The points for a = 0.00 and a = 0.50

leave the left edge of the diagram for 1 above 12 and then cut back through

the frontier at 1 values in excess of 100. In all work is set to unity;

other values for simply rescale the calculated means and variances

equiproportionally.

When a equals 0.00, these preferences are time separable. For modest

values of 1, the associated (E(m),u(m» points are seen in Figure 9 to violate

the moment restrictions embodied in our frontier estimate based on the long
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time series. This is consistent with the findings of Hansen and Jagannathan

(1989) and Mehra and Prescott (1985). The same is true in Figure 10, which

shows the means and standard deviations for these candidate IMRS's compared

to the frontier Hansen and Jagannathan estimated using monthly scaled returns,

1959-86 ..

When local durability is introduced by setting a equal to then the

extent of the violation of the moment bounds is exaggerated relative to the

case a = o. This is interesting in view of the fact that Euler equation

methods generally give positive estimates of a. Apparently, the statistical

characteristics of the data are such that Euler-equation methods will place

more weight on fitting other moments, in particular the cross serial

correlation structure of the IMRS and the observables, and relatively less

weight on fitting the first two moment properties of the IMRS.

When habit persistence is introduced by setting a equal to -0.50, then the

first two moment properties of these candidate IMRS's are seen to change rather

dramatically. In this case the (E(m),u(m» points come closer to satisfying

the moment restrictions with much smaller values of 1, and in particular'will

enter the frontier when 1 equals to 14. The pattern is consistent with an

argument that habit persistence can account for the apparent anomalies

regarding the unconditional first two moments of asset returns. In light of

the previously discussed empirical work, however, one might expect that

candidate IMRS's with a negative might not do well on Euler equation checks.

We computed the R2,s from regressions of the associated Euler equation errors

on three lags each of the stock return, T-bill return, and consumption growth,

using the 1959-84 monthly data set. With a = -0.50, 1 = 14, the calculation

gives R2 = 0.37 for the stock return error and R2 = 0.35 for the T-bill
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equation error, and suggests that is predictability in the Euler

equation errors. The p-values of the regression F statistics are below

0.0001. Because of prefitting effects, one should not take the p-values too

seriously, and we prefer to view the R2,s as simple estimates of population

quantities. By way of contrast, for the time separable logarithmic

preferences, 1 1, a = 0, the Euler equation check gives much smaller R2,s:
0.04 (p-value = 0.28) for stocks, and 0.19 (p-value < 0.0001) for T-bills.

Hansen and Jagannathan (1989) also explore the effects that introducing

local durability and habit persistence has on the first two moments of this

IMRS. Their approach does not employ an estimate of the law of motion of asset

returns and consumption, which precludes computing the and also entails

working only with excess returns. They present indirect evidence that would

lead one to expect to see the patterns we obtain in Figures 9-10. However,

using only excess returns, they could uncover virtually no evidence against the

hypothesis that the candidate IMRS with a negative satisfies the Euler

equations. If we use only excess returns then we can produce that same

finding, as our calculation gives R2 = 0.02 (p-value = 0.67) for the Euler
equation check on the excess return using the IMRS generated by the 1 = 14, a =

-0.50 parameter configuration. Above, however, we uncover evidence against the

same hypothesis, which suggests that additional discriminatory information has

been incorporated into the analysis.



Appendix

We first describe the construction of the variables in the data set and

then give the detailed sources.

Stock Return: This is the real value weighted return on the NYSE computed as

gross: (I + vwt ) (cpit_l/cpi t )

net: (I + vwt)(cpit_l/cpi t) - 1
where vWt is the net nominal value weighted return from the end of month

t-I to the end of month t, and cpi t is the consumer price index in month t.

T-bill Return:" This is the real one-month return on a one-month T-bill

computed as

gross: (I + tbt ) (cpit_l/cpi t )

net: (I + tbt)(cpit_l/cpi t ) - 1

where tbt is the net nominal return on a one-month T-bill and cpi t is the

consumer price index in month t.

Sources

Both the nominal stock and T-bill returns were obtained from the CeQter

for Research in Security Prices (CRSP), University of Chicago,Chicago,

Illinois. The nominal stock return is the CRSP Value Weighted Index for the

New York Stock Exchange. The nominal T-bill return is Ibbottson and

Sinquefeld series on the one-month return on one-month Treasury Bills.

The price index is the Consumer Price Index - All Urban Consumers (CPI-U;

1967=100). The specific sources are as follows:
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1986:12-1987:12 -- U.S. Department of Commerce, Bureau of Economic

Analysis, Survey of Current Business, January

1988, Vol. 68, No.1, p. S-5.

1925:12-1986:11 -- Computer printout supplied by U.S. Department of

Labor, Bureau of Labor Statistics, Washington

D.C., 20212.

38



Table 1

Basic Statistics, 1926:01-1987:12

39

Mean Std. Dev. Skewness Kurtosis Min Max

Stocks 1.006751 0.057370 0.3882
T-bi11s 1.000369 0.005765 -1.6319

10.8331
17 .1875

0.7153 1. 3805
0.9446 1.0234

Extremes in Units of Standard Deviation

Lowest Date Highest Date

---------- Stocks -----------
-5.08394
-4.21136
-3.99084
-3.92780
-3.52938

1931:09
1938:03
1940:05
1987:10
1929:10

3.50645
3.97934
5.58224
6.48917
6.51820

1933:05
1938:06
1932:07
1932:08
1933:04

---------- T-Bi11s ----------
-9.68646
-4.90222
-4.08944
-3.98466
-3.74431

1946:07
1933:07
1946: 11
1947:09
1946:08

2.72965
2.74393
2.80872
3.82211
3.99518

1930:07
1931:01
1932:02
1927:07
1932:01



Table 2a

Summary of Bivariate Linear Vector Autoregressive Estimation
Period: 1926:07-1987:12

Adjusted R2

Lag

Dep. Var. 1 3 6

Stocks .02 .03 .03
T-bills .30 .34 .35

Granger Causality Tests

40

Lag = 1 Lag = 3

Dep. Var. Stocks T-bills Stocks T-bills

Stocks ** * ***
T-bills *** *** ***

*** denotes p-value .001
** denotes .001 < p-value .01
* denotes .01 < p-value .05

Incremental Granger Causality Tests

Lag = 6

Stocks T-bill s

***
*** ***

Dep. Var.

Lag 1 of 1

Stocks T-bill s

Lag 2,3 of 3

Stocks T-bi 11 s

Lag 4,5,6 of 6

Stocks T-bill s

Stocks
T-bills

** ****
**
*** *** *

***

*** denotes p-value .001
** denotes .001 < p-value .01
* denotes .01 < p-value .05



Table 2b

Summary of Bivariate Autoregressive Estimation on Squared Residuals
Period: 1926:07-1987:12

Adjusted R2

Lag

Dep. Var. 1 3 6

eeST .07 .10 .09
eeTB <.01 .02 .01

Granger Causality Tests

Lag = 1 Lag = 3 Lag = 6
Dep. Var. eeST eeTB eeST eeTB eeST -eeTB

eeST *** *** ***
eeTB

*** denotes p-value S .001
** denotes .001 < p-value S .01
* denotes .01 < p-value 5 .05

Incremental Granger Causality Tests

Lag 1 of 1 Lag 2,3 of 3 Lag 4,5,6 of 6

Dep. Var. eeST eeTB eeST eeTB eeST eeTB

eeST *** ***
eeTB

*** denotes p-value S .001
** denotes .001 < p-value 5 .01
* denotes .01 < p-value S .05
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Table 3a

Bivariate Models for Stocks and T-bills
Period: 1926:07-1987:i2

Fitted Models

a L Kz Kx SchwarzModel pS sn

VAR 0 0 0 5 2.837857 2.860075
VAR 1 0 0 9 2.651005 2.690997
VAR 2 0 0 13 2.636136 2.693902
VAR 3 0 0 17 2.618241 2.693782
VAR 4 0 0 21 2.608032 2.701348

SNPRX 1 0 0 15 2.482177 2.548831

SNPRX 2 0 0 25 2.390109 2.501199
SNPRX 2 4 0 34 2.242368 2.393449
SNPRX 2 4 1 74 2.177562 2.506386

SNPRX 3 0 0 35 2.296991 2.452516
SNPRX 3 4 0 44 2.180962 2.376479
SNPRX 3 4 1 84 2.125640 2.498900

SNPRX 4 0 0 45 2.254970 2.454931

Note: a. In models with Kz > 0 third and higher order interactions have been
deleted. In models with Kx > 0 the lag length of the polynomial inx is 2.
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Table 3b

Bivariate Models for Stocks and T-bills
Period: 1926:07-1987:12

Specification Tests

Location Scale

Stocks T-bills Stocks T-bills
b L Kz Kx F p-val F p-val F p-val F p-valModel

VAR 0 0 0 2.93 .00 13.39 .00 10.07 .00 3.43 .00
VAR 1 0 0 2.60 .00 3.49 .00 9.70 .00 1. 78 .00
VAR 2 0 0 2.59 .00 2.83 .00 9.69 .00 1.67 .01
VAR 3 0 0 2.32 .00 2.30 .00 9.56 .00 1.62 .01
VAR 4 0 0 2.25 .00 1.90 .00 9.70 .00 1.67 .01

SNPRX 1 0 0 1. 76 .00 2.41 .00 4.47 .00 1.82 .00

SNPRX 2 0 0 1.44 .05 1.80 .00 .00 1.94 .00
SNPRX 2 4 0 1.62 .01 1.81 .00 2.88 .00 1.85 .00
SNPRX 2 4 1 1.27 .14 1. 72 .01 1.42 .05 1. 90 .00

SNPRX 3 0 0 1.18 .22 1.09 .34 1.41 .06 1.04 .41
SNPRX 3 4 0 1.42 .05 1.08 .34 1.90 .00 1.19 .21
SNPRX 3 4 1 1.20 .20 1.11 .31 0.86 .71 1.18 .22

SNPRX 4 0 0 1.04 .41 0.70 .91 1.35 .09 0.74 .87

Note: b. The location diagnostic is a regression of residuals from the fit on
6 lags of linear, quadratic, and cubic ST TB. The scale diagnostic
is a regression of squared residuals on same. The F has 36 degrees
freedom in the numerator and 701 in the denominator.



Table 4

Bivariate Tests That Frontiers Touch the Horizontal Axisa

Conditional Frontiers

a L Kz Kx Schwarz p-valueModel Pe

Constrained 3 0 0 28 2.311790 2.436210 .0027
SNPRX 3 0 0 35 2.296991 2.452516

Constrained 3 4 0 31 2.194144 2.331895 .1096
SNPRX 3 4 0 44 2.180962 2.376479

Constrained 3 4 1 67 2.139290 2.437010 .2668
SNPRX 3 4 1 84 2.125640 2.498900

Unconditional Frontier

a L Kz Kx Schwarz p-valueModel Pe sn

Constrained 3 0 0 22 2.414714 2.512473 .0000
SNPRX 3 0 0 35 2.296991 2.452516

Constrained 3 4 0 31 2.284002 2.421752 .0000
SNPRX 3 4 0 44 2.180962 2.376479

Constrained 3 4 1 54 2.199811 2.439764 .0000
SNPRX 3 4 1 84 2.125640 2.498900

Note: a. In models with Kz > 0 third and higher order interactions have been
deleted. In models with Kx > 0 the lag length of the polynomial inx is 2.
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Footnotes

1. For the purposes of this discussion we are ignoring the restriction that m

be strictly positive. Hansen and Jagannathan (1989) showed that additional

implications are obtained by imposing positivity.

2. In our empirical analysis we use asset returns, i. e., asset payoffs with

unit prices. Scaling payoffs to have unit prices is more than just a

normalization in our analysis unless the scale factors are incorporated into

the information set used by the econometrician. A computational advantage to

using returns is that we do not have to augment the information set with the

asset prices because these prices are degenerate by construction.

3. Notice that volatility bounds on the IMRS could also be obtained by

examining the univariate law of motion for a single security return. Cochrane

(1988) exploited this in deducing bounds implied by market-wide

returns from the New York Stock Exchange.
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