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ABSTRACT

We undertake a comprehensive investigation of price and volume co-movement
using daily New York Stock Exchange data from 1928 to 1987. We adjust the
data to take into account well-known calendar effects and long-run trends. To
describe the process, we use a seminonparametric estimate of the joint density
of current price change and volume conditional on past price changes and
volume. Six empirical regularities are found: 1) highly persistent price
volatility, 2) positive correlation between current price change and volume,
3) a peaked, thick-tailed conditional price change density, 4) large price
movements are followed by high volume, 5) conditioning on lagged volume
substantially attenuates the "leverage" effect, and 6) after conditioning on
lagged volume, there is a positive risk/return relation. The first three
findings are generally corroborative of those of previous studies. The last
three findings are original to this paper.



I. Introduction

1-1 Background and Motivation

The recent history of the stock market has been characterized by sharp

downward price movements accompanied by high volume and associated with

increased future volatility. On Black Monday II (October 19, 1987), the S&P

500 composite index plunged 22.9 per cent on the second highest volume ever

recorded (604 million shares). On the day after the crash of '87, the S&P 500.
index rose by 5.2 per cent on the highest volume ever recorded of 608 million

shares. Two days after the crash on October 21st, the S&P 500 index rose 8.7

percent (the 7th highest one day increase in the period from 1928 to 1989) with

the trading of 450 million shares. In 1989, the seven per cent drop on October

13th was accompanied by a fifty per cent increase volume and followed by

heavy trading on Monday, October 16th i of two and a half times the normal

volume.

These events of the late eighties suggest strong interrelationships among

the sign and magnitude of price movements, the volatility of prices, and the

trading volume. Studies of volatility dynamics (c.f. French, Schwert, and
•

Stambaugh (1987) and Nelson (1989a)) examine the relationship between large

price movements and increased volatility. In this study, we investigate the

joint dynamics of price changes and volume on the stock market. We use daily

data on the S&P composite index and total New York Stock Exchange trading

volume from 1928 to 1987.

Previous empirical work on the price and volume relationship has focused

primarily on the contemporaneous relationship between price changes and volume.

Transactions level, hourly, daily and weekly data on individual stocks, futures,
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and stock price indices have been used to document a positive correlatl0n

between the absolute value of stock prices changes and volume (see Karpoff,

1987, and Tauchen and Pitts, 1983, for a summaries of this literature). More

recently, Mulherin and Gerety (1988) use both hourly and daily volume and

returns data to document the relationship between the magnitude of price

changes and volume, as well as patterns in volume by time of day and week for

the period from 1900 to 1987. With the exception of Mulherin and Gerety, most

empirical studies examine relatively short time periods of between three and

five years.

Generally speaking, the empirical work on price/volume relations tends to

be very data-based and not guided by rigorous equilibrium models. The models.
are more statistical than economic in character, and typically neither the

optimization problem facing agents nor the information structure is fully

specified. The intrinsic difficulties of specifying plausible, rigorous, and

empirically implementable models of volume and prices are the reasons for the

informal modeling approaches commonly used. For nontrivial trading volume to

emerge endogenously, an economic model needs to incorporate heterogeneous..
agents and incomplete markets, both of which are substantive complications of

the familiar representative agent asset pricing models.

Recently, some interesting theoretical work investigates these

complications. For example, Admati and Pfleiderer (1988, 1989) explore the

implications for within-day and weekend volume and price movements of a model

comprised of informed traders and liquidity traders. Huffman (1987) presents

a capital growth model with overlapping generations that yields a

contemporaneous volume/price relationship. More recently, Huffman (1988) and
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Ketterer and Marcet (1989) examine trading volume and welfare issues in

various economies comprised of heterogeneous infinitely-lived agents facing

limited trading opportunities.

EXisting models, however, do not confront the data in its full complexity

and have not evolved sufficiently to gUide the specification of an empirical

model of daily stock market data. For instance, there seems to be no model
with dynamically optimizing heterogeneous agents that can jointly account for

major stylized facts -- serially correlated volatility, contemporaneous volume

volatility correlation, and excess kurtosis of price changes -- each of which

we discuss extensively below. The Huffman (1988) paper contains an

interesting discussion of just how far away-we are from having empirically
.

tractable models with trading volume and how knotty some of the theoretical

problems are. The Ketterer and Marcet paper illustrates the computational

difficulties associated with solving even the most elementary model with asset

trading among dynamically optimizing heterogeneous agents. The main factor

complicating all of this work is that the equilibria of these models generally

cannot be represented as the solution to a social planning problem. Thus, the•
usual theoretical and computational simplifications associated with this

construction are not available.

In this paper, we undertake an empirical investigation of the dynamic

interrelationships among price and volume movements on the stock market. Our

work is motivated in part by the recent events on the stock market, which

suggest that more can be learned about the market, and in particular about

volatility, by studying prices in conjunction with volume, instead of prices

alone. It is also motivated by an objective of providing a full set of
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stylized facts that theoretical work will ultimately have to confront. Because

of the limitations of existing theory, our empirical work is not organized

around the specification and testing of a particular model or class of models.

Instead, the empirical effort is mainly data-based. We begin with an informal

graphical look at the data and then proceed ultimately to the estimation and

interpretation of a seminonparametric model of the conditional joint density of

market price changes and volume in Section V. The conditional density is the

fundamental statistical object of interest, as it embodies all of the

information about the probabilistic structure of the data.

1-2 A Preliminary Look at the Price and Volume Data

Figure 1 presents both a histogram and normal probability plot of the price

change data. Throughout our analysis, we use an adjusted price change series,

denoted APt, which is 100 times the first difference of the log of the S&P

index, with the first difference being adjusted for systematic shifts in mean

and variance. (The adjustment process is outlined in Section II.) Figure 1

shows that the distribution of APt is symmetric in the main body of the

distribution, peaked near zero, and thick in the extreme tails -- classic shape
•

characteristics for financial price movements.

Figure 2 shows how the volatility of the price series relates to the

trading volume. Our volume series is an adjusted value of the log of volume

which has been expressed in terms of deviations from a quadratic trend line.

(See section II below for details.) The figure presents a scatterp10t of

adjusted price changes versus standardized adjusted volume as well as

boxplots of the distribution of APt for various volume ranges. The scatterp10t

shows that, for the most part, large price movements are associated with
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unusually high volume. The boxp10ts demonstrate that the dispersion of the

distribution of !Pt (the height of the box is the interquartile range)

increases uniformly as the volume increases. The patterns in the figure are

generally consistent with existing findings on the contemporaneous positive

correlation between the magnitude of price movements and volume.

Figure 3 is a simple time series plot of "weekly" cumulative price

movements for the entire sample period from 1928 to 1987. The top panel

presents the data from 1928 to 1956 in which the S&P composite index was formed

from 90 liquid stocks. In 1957, Standard and Poor's changed the composition of

the index from 90 to 500 stocks and the bottom panel shows the time series for

the 500 stock index. Weekly price movements are formed by taking the sum of
,

every five daily price changes. The time series of price changes clearly

exhibits very persistent patterns of changing volatility, a fact noted by

French, Schwert and Stambaugh. At least once per decade, there is an episode

of unusually high volatility which lasts for as long as four years (or over

1000 trading days).

1-3 Serially Correlated Volati7ity

The serially correlated volatility seen in Figure 3 has been detected and

fitted in a wide variety of studies employing variants of the ARCH model for a

number of different financial time series. For the S&P stock price index data,

French, Schwert and Stambaugh employ the GARCH specification developed by

Bo11ers1ev (1986). Engle and Bo11ers1ev (1986) extend the GARCH model to

include a unit root in the variance evolution term to accommodate the observed

strong persistence in conditional variances (see also Nelson (1989b) for a

discussion of stationarity properties of the integrated GARCH model). Nelson
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(1989a,c) introduces an lIexponential" GARCH model which overcomes some problems

with positivity restrictions and symmetry in the conditional variance function

associated with the standard GARCH models.

Nelson notes the presence of an asymmetric variance function in which large

downward price movements are associated with much higher future price change

variability than large upward price movements. This asymmetry has been dubbed

the IIleverage" effect after early work by Black (1976) and Christie (1982) in

which changes in the equity value of a firm affect the riskiness of the firms

equity. Pagan and Schwert- (1989) explore a variety of conditional variance

models including a semi-parametric conditional variance function based on the

Fourier Flexible form advanced by Gallant (1981). Lamoureux and Lastrapes
,

(1989) enter volume directly into the GARCH variance equation in their analysis

of individual stock returns data.

Efforts to explore the determination of the risk premium for stocks have

employed a variety of ARCH-M specifications in which the conditional variance

enters directly into the mea" equation (see French, Schwert and Stambaugh,

Bollerslev, Engle and Wooldridge" (1988), and Nelson (1989a». Pagan and Hong

(1989) and Harvey (1989) use nonparametric techniques to study the risk

premium accorded stocks.

To summarize, the presence of ARCH-like variance shifts is well-documented,

though there is considerable disagreement about which variant of a parametric

ARCH model is most appropriate to describe the price change process. In

addition, it is not clear how volume should enter the ARCH specification nor

how to appropriately measure and detect a risk premium.
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1-4 Objectives

Our initial look at the data together with the existing literature leads us

to formulate four objectives: (1) to analyze the relationships between

contemporaneous volume and volatility in an estimation context that explicitly

accounts for conditional heteroskedasticity and other forms of conditional

heterogeneity; (2) to characterize the intertemporal relationships among

prices, volatility, and volume; (3) to examine the leverage effect and the

extent to which conditioning on past volume reduces or increases the symmetry

of the conditional variance function; and (4) to determine what, if any,

relationship there is between the conditional mean and variances of price

changes.

Many of the issues implicit in these objectives relate to features of the

time series probability distribution of the price change and volume data, and

not to the signs and magnitudes of specific parameters. Hence, as we noted

above, we employ a seminonparametric approach to estimate this distribution

directly, and we use kernel-based methods to corroborate our major findings.

The remainder of the paper is organized as follows. In Section II, we

describe the data sources and the adjustments made to remove systematic

calendar and trend effects from the location and scale of the price change and

volume series. In Section III, we review the seminonparametric approach to

modeling nonlinear time series and undertake the estimation, which involves a

specification search and diagnostic checking procedures. In Section IV, we

examine various features of the fitted SNP density in order to address the

basic research goals described above. In Section V, we summarize our

findings.



8

II. Data Sources and Adjustments

The basic raw data consist of the daily closing value of the Standard and

Poor's composite stock index and the daily volume of shares traded on the New

York Stock Exchange. Price index data for the period from 1928 to 1986 were

generously supplied to us by R. Stambaugh. We extended the price data through

1987 and culled the volume data from the Standard and Poor's Security Price

Index Record (various years). The Standard and Poor's composite price index is

a value-weighted arithmetic index of prices of common stocks, most of which

are traded on the NYSE. In the period before March 1, 1957, the S&P composite

index was made up of 90.stocks. On March 1, 1957, the index was broadened to

include 500 stocks. In July 1976, S&P added a group of financial stocks to.
the 500 composite index. Some of these financial stocks are traded Over-The-

Counter so that in recent years the 500 has included a few non-NYSE stocks.

The raw price index series, Pt , is differenced in the logs to create the

price movement series, 100(10g(Pt ) - 10g(Pt _1)), and is plotted in the top

panel of Figure 4. It is immediately obvious that there is a "U"-shaped

pattern in the vo1atility.of the raw price change series. In the early

thirties and the late eighties the volatility is very high, while in the

middle part of the sample the volatility is low. We do not expect to explain

or model very long-run shifts in the volatility of price changes. We decided,

therefore, to allow for a quadratic trend in the variance of the price changes

in order to focus our modeling efforts on the shorter run pattern of

conditional heteroskedasticity.

Many authors have noted systematic calendar effects in both the mean and

variance of price movements. Rozeff and Kinney (1976) report a January
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seasonal in stock market index returns, i.e. mean returns are higher in

January. Keim (1983) refined this analysis of the January seasonal by

studying the magnitude of the seasonal for various size-based portfolios of

stocks. Keim finds that most of the seasonal is associated with the returns

on small stocks in January. Constantinides (1984) points out that tax-related

trading might occur around the turn of the year but that some sort of

irrationality on the part of investors would be required to induce systematic

shifts in the mean of stock returns. Thus, we might expect to see a

January/December seasonal in the volume series even in the absence of a mean

effect on prices. French (1980) notes a weekend effect in stock returns with

lower than average returns on Monday. French and Roll (1986) study the

variance of stock returns around weekends and exchange holidays and document

shifts in the variance associated with these non-trading periods. Recently,

Ariel (1988) has uncovered evidence of a intra-month pattern of higher returns

in the first half of the month.

In order to adjust for these documented shifts in both the mean and

variance of the price and volume series, we performed a two stage adjustment•
process in which systematic effects are first removed from the mean and then

from the variance. We use the following set of dummy and time trend variables

in the adjustment regressions to capture these systematic effects:

1. Day of the week dummies (one for each day, Tuesday through Saturday).

2. Dummy variables for each number of non-trading days preceding the

current trading day (dummies for each of 1, 2, 3, and 4 non-trading

days since the preceding trading day). These "gap" variables capture

the effects of holidays and weekends. The distribution of these gaps
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in the trading record are as follows:

gap of one non-trading day: 1339
gap of two non-trading days: 1873
gap of three non-trading days: 223
gap of four non-trading days: 5

3. Dummy variables for months of March, April, May, June, July, August,

September, October, and November.

4. Dummy variables for each week of December and January. These

variables are designed to accommodate the well-known "January"

effect in both the mean and variance of prices and volume.

5. Dummy variables for each year, 1941-1945.

6. t, t 2, time trend variables.
,

(Note: these variables are not included

in the mean regressions for the price change.)

This list of variables is generally self-explanatory, though we should

elaborate on a few points concerning the "gap" variables in the second group.

If trading occurred on the preceding day, then there is no gap in the trading

record and no dummy is included; ° there are 12,686 such days. The Bank Holiday

of 1933 is associated with a gap of eleven days over which the increase in the

raw S&P index is the largest close-to-close movement in the entire data set.

No dummy is included for this single eleven-day gap because doing so would, in

effect, replace the largest upward change in the price index with the

unconditional mean of the price changes, which.in our view would not accurately

reflect what transpired over the Bank Holiday. Finally, in both the

adjustments for the mean and variance of volume, the coefficients of the four

gap variables are constrained to lie along a line. Without such constraints,
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the adjustment process itself appears to create some very extreme and

implausible values in the adjusted volume process, particularly for the five

days in which gapa 4.

To perform the adjustment, we first regress lOO(log(Pt ) - 10g(Pt _1» or

10g(Vt ) [Vt represents volume] on the set of adjustment variables:

W a x'P + u (mean equation)

Here w is the series to be adjusted and x contains the adjustment

regressors. The least squares residuals are taken from the mean equation to

construct a variance equation:

A2log(u ) a X'1 + E (variance equation)

This regression is used to standardize the residuals from the mean equation

and then a final linear transformation is performed to calculate adjusted w:

A

(
u )w • a a + b x ,

adJ exp(x'1/2)..
where a and b are chosen so that the sample means and variances of wand wadj
are the same. The linear transformation makes the units of measurement of

adjusted and unadjusted data the same, which facilitates interpretation of our

empirical results. In what follows, APt denotes adjusted

lOO[log(Pt ) - 10g(Pt _1)] and vt denotes adjusted 10g(Vt ).

Table 1 shows the estimated coefficients in the mean and variance

adjustment equations for the price movements series. The patterns confirm the

well-known day-of-week and January effects. Monday has a lower mean return
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than any other day of the week along with a lower variance than any other
weekday. Price changes are higher in the last week of December and the first

week of January. The variance is higher in the first week of January. The

effect of wartime seems to be confined to a reduction in the variance.

The APt series is plotted in the bottom panel of Figure 4. The
adjustments have considerably homogenized the series, allowing us to focus on

the day-to-day dynamic structure under an assumption of stationarity.

We do not regard the APt series as a market returns series since the S&P

index is not adjusted for dividend payout. If dividend payout is lumpy and the

payout has an appreciable effect on the index (due to groups of stocks going

ex-dividend together), then the lumpy dividends can yet another possible

systematic calendar effect. In order to investigate the lumpiness of dividend

payout, we obtained daily data on the total dividend payout of the S&P 100
. .
index in the period 1979 to 1987. (These data are used in Harvey and Whaley,

1989, and we thank the authors for allowing us access to this data.) Our

analysis, which is available upon request, indicates that dividends are lumpy

with payouts concentrated at certain times of each quarter. In spite of the

dividend lumpiness, the S&P index itself does not show detectable movements in

times of high dividend payouts. We therefore do not regard the failure to

adjust for dividends as an important factor in modelling the daily S&P price

index.

The top panel of Figure 5 shows the unadjusted log volume series. The

series exhibits a clear trend in level as might be expected. We experimented

with transforming the volume series into a turnover series by dividing the

volume by measures of the number of outstanding shares. However, plots
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revealed that the turnover series has a U-shaped pattern with very high

turnover in the late twenties and the late eighties. The pattern suggests

that division by the number of outstanding shares is an inadequate detrending

strategy. We thus decided to include a quadratic trend in both the mean and

variance equation for volume along with the same dummy variables to account

for calendar and wartime effects as were used in adjusting the price change

series.

As seen from Table 2, volume is lower on Monday and Saturday and there

are pronounced seasonal patterns by month of the year, with lower volume in the

summer months. In the war years, the level of volume was much lower than

normal. The adjusted log of volume series given in the bottom panel of Figure 5.
shows relatively homogeneous variation around a mean level.

Our adjustments procedures are designed to remove long-run trend and

systematic calendar effect which are well-documented. We took care to make

only those adjustments for which there is strong evidence either in the data

or from previous work and avoided making a large number of arbitrary

adjustments. The adjusted series exhibit homogeneous behavior and can

reasonably be modeled with a stationary time series model.
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III. Density Estimation

With 16,127 observations our time series is long enough that nonparametric

estimation strategies can be employed. Of the various objects that one might

attempt to estimate nonparametrically, the most useful is the conditional

density of the time series. As noted earlier, the conditional density

completely summarizes the probabilistic characteristics of the data. For
example, all aspects of predictability and volatility are embodied in the

conditional density.

To estimate this density, we use a nonparametric estimation strategy

proposed by Gallant and Tauchen (1989) and modified in Gallant, Hsieh, and

Tauchen (1989). Their SNP approach, which is explained below, has the
,

advantage of giving reasonably smooth density estimates even in high

dimensions. It is a series expansion whose leading term can be chosen to be a

particularly successful parametric model and whose higher order terms

accommodate deviations from the parametric model. In this section, we briefly

describe this nonparametric estimation strategy, our specification search, and

the kernel methods that we use to corroborate our SNP estimates .•

111-1 Seminonparametric (SNP) Estimators

The method is based on the notion that a Hermite expansion can be used as a

general purpose nonparametric estimator of a density function. Letting z

denote an M-vector, the particular Hermite expansion employed has the form

fez) « where P(z) denotes a multivariate polynomial of degree Kz
and denotes the density function of the (multivariate) Gaussian

distribution with mean zero and the identity matrix as its variance-covariance

matrix. The constant of proportionality is the divisor which
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makes f(z) integrate to one. Because of this division, the density is a
homogeneous function of the coefficients of the polynomial P(z) and these

coefficients can only be determined to within a scalar multiple. To achieve a

unique representation, the constant term of the polynomial part is put to one.

The location/scale shift y • Rz + where R is an upper triangular matrix
and is an M-vector, followed by a change of variables leads to a
parameterization that is easy to interpret f(YIO)

(The constant of proportionality is invariant to a

location/scale shift.) Because is the density
function of the M-dimensional multivariate Gaussian distribution with mean

and variance-covariance matrix I • RR', and because the leading term of the

polynomial part is one, the leading term of the entire expansion is the

multivariate Gaussian density function; denote it by When Kz is

put to zero, one gets exactly. When Kz is positive, one gets a

Gaussian density whose shape is modified due to multiplication by a polynomial

in the normalized error z • R-1(y - The shape modifications thus achieved

are rich enough to accurately approximate densities from a large class that

includes densities with fat t-like tails, densities with tails that are

thinner than Gaussian, and skewed densities.

The parameters 8 of f(YIO) are made up of the coefficients of the polynomial

P(z) plus and R and are estimated by maximum likelihood. Equivalent to

maximum likelihood but more stable numerically is to estimate 0 in a sample of

size n by minimizing sn(8) • (-1/n)r"t.l1n[f(YtI0)]. If the number of
parameters PO grows with the sample size n, the true density and various

features of it such as derivatives and moments are estimated consistently.
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Because the method is parametric yet has nonparametric properties, it is termed

seminonparametric to suggest that it lies halfway between parametric and

nonparametric procedures.

This basic approach is adapted to the estimation of the conditional density

of a multiple time series that has a Markovian structure as follows. By a

Markovian structure, one means that the conditional density of the M-vector Yt

given the entire past Yt-l' Yt-2' ... depends only· on l lags from the past.
For notational convenience, we collect these lags together in a single vector

denoted as xt -1 which has length M·l. As above, a density is obtained by a

location/scale shift Yt • RZt + Px off a sequence of normalized errors {Zt};

In time series analysis, the Zt are usually referred to as linear innovations.

Px is a linear function of xt -1 making the leading term of the

expansion nM(ylpx,I) which is a Gaussian vector autoregression or Gaussian

VAR. In order to permit the innovations to be conditionally heterogeneous,

the coefficients of the polynomial P(z) are, themselves, polynomials of degree

Kx in xt -1. This polynomial is denoted as P(z,x). When Kx • 0, the {Zt} are

homogenous, as the conditi.onal of Zt does not depend upon xt -1' When

Kx > 0, the {Zt} are conditionally heterogeneous.

To keep Kx small when the data exhibit marked conditional

heteroskedasticity, the leading term of the expansion can be put to a Gaussian

ARCH rather than a Gaussian VAR. This is done by letting R be a linear

function of the absolute values of (the elements of) lr of the lagged Yt'

centered and scaled to have mean zero and identity covariance matrix. The

classical ARCH (Engle, 1982) has Ix depending on a linear function of squared

lagged residuals. The SNP version of ARCH is more akin to the suggestions of
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Nelson (1989a) and Davidian and Carroll (1987). Denoting this function by Rx
and letting Ix - the form of the conditional density becomes f(Ylx,8) a

where z • . and 8 denotes the coefficients of

the polynomial P(z,x) and the Gaussian ARCH collected together.
nThe parameters are estimated by minimizing sn(8) - (-I/n)Lt_lin[f(Yt1xt_

1,8)].

Hereafter, we shall distinguish between the total number of lags under

consideration, which is L, the number of lags in the x part of the polynomial

P(z,x), which we denote by Lp' and the number of lags in Ix, which is Lr . The

vector x has length M·L where l - max(lr,lp)'

large values of Mcan generate a large number of. interactions (cross

product terms) for even modest settings of degree Kz; similarly, for M.Lp and

Kx' Accordingly, we introduce two additional tuning parameters, Iz and Ix, to

represent filtering out of these high order interactions. Iz·a means no

interactions are suppressed, Iz·l means the highest order interactions are

suppressed, namely those of degree Kz-l. In general, a positive Iz means all

interactions of order Kz-Iz and' larger are suppressed; similarly for Kx·Ix'

In summary, lr and lp determine the location/scale shift y = Rxzt + Ux and

hence determine the nature of the leading term of the expansion. The number of

lags in the location shift Ux is the overall lag length L which is the maximum

of Lr and Lp' The number of lags in the scale shift Rx is Lr . The number of

lags that go into x part of the polynomial P(z,x) is Lp' The parameters Kz
and Kx determine the degree of P(z,x) and hence the nature of the innovation

process {Zt}. Iz and Ix determine filters that suppress interactions when set

to positive values.
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Putting certain of the tuning parameters to zero implies sharp restrictions

on the process (Yt), the more interesting of which are:

Parameter setting

L -0, L -0, Kz-O, K-0r p x
L -0, Lp>O, K -0, K -0r z x
Lr>O, L -0, K -0, K -0p z x
Lr>O, Lp>O, Kz>O, K-0x

Characterization of (Yt )

iid Gaussian

Gaussian VAR

Gaussian ARCH

non-Gaussian ARCH,
homogeneous innovations

111-2 Hodel Selection

We used the model selection strategy suggested by Gallant, Hsieh, and.
Tauchen (1989) and Gallant, Hansen, and Tauchen (1989). The Schwarz criterion

1978; Potscher, 1989) is used to move along an upward expansion path

until an adequate model is determined. model is then

subjected to a battery of specification tests. These tests can indicate that

further expansion of the model is necessary to adequately represent the

complexity of the data. For data from financial markets, experience suggests•
that this strategy will inevitably select Lr Lp and Kz 4. Thus,

specifications that violated these conditions were excluded from consideration

a priori.

Specification tests are conducted for each fit from scaled residuals
A
CUt} which are calculated as follows. By computing analytically the

moments of the estimated conditional density, the estimated conditional
A A

mean &(ylxt -1) and variance Var(ylxt _1) are obtained at each xt -1 •

(Yt-L' •.• , Yt-l) in the sample. Using these, a scaled residual is computed
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A A -1/2 A A -1/2as ut • [Var(ylxt _1)] [Yt - &(ylxt -1)] where [Var(ylxt _1)] denotes

the inverse of the Cho1esky factor of the conditional variance.

We conduct diagnostic tests for predictability in both the scaled residuals

and the squares of the scaled residuals. Predictability of the scaled

residuals would suggest inadequacies in the conditional mean estimate implied

by the fitted density, and thus below such tests are termed mean tests.

Similarly, predictability of the squared scaled re5idua1s would suggest

inadequacies in the implied estimate of the conditional variance, and thus such

tests are termed variance tests. For both mean and variance, we conduct two

types of tests for predictability, one of which is sensitive to short-term

misspecification while the other is sensitive to long-term misspecification.

For the conditional mean, the short-term diagnostic test is a test for the

significance of a regression of scaled residuals on linear, quadratic, and

cubic terms on twenty lagged values of the elements of the series. The 10ng-

term test is a test for the significance of a regression of scaled residuals on

annual dummies to check for a failure to capture long-term trends. For the

conditional variance, the tests' are the same with the squares of the scaled

residuals as the dependent variable in these regressions. The significance

test is the F-test when the residuals are from the univariate price series and

is the Wilk's test when the residuals are from the bivariate price and volume

series. It should be noted that because of the "Durbin effects" of prefitting

discussed in Newey (1985) and Tauchen (1985), the p-va1ues could be somewhat

inaccurate, even asymptotically.

For each of the specifications considered, the settings of the tuning

parameters Lr , Lx' Kz' Iz' Kx' Ix' the number of parameters PO that they imply,
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A
the value of the minimized objective function sn(S}, Schwarz's criterion, and
the battery of diagnostic tests are reported in Table 3 for the univariate

price series Yt • APt and in Table 4 for the bivariate price and volume series

Yt • (APt,Vt )· All reported values are comparable as the same number of
leading observations (27) were set aside to provide the initial lags in every

fit. The net sample size is 16,100 observations.

First consider Table 3. The Schwarz criterion' is computed as
A

sn(S} + (1/2}(pSln}tn(n) with small values of the criterion preferred. The
A

criterion rewards good fits as represented by small sn(S} but uses the term

(1/2)(pSln)tn(n) to penalize good fits gotten by means of excessively rich

parameterizations. The criterion is conservative in that it selects sparser

parameterizations than the Akaike information criterion which uses the penalty

term Psln in place of (1/2}(pSln}ln(n). Schwarz is also conservative in the
sense that it is at the high end of the permissible range of penalty terms in

certain model selection settings (Potscher, 1989). Of the models in Table 3,

the Schwarz preferred model has Lr·16, Lp.2, Kz·4, Iz·O, Kx·l, Ix=O with PS=34.
The short-term variance diagnostic indicates that there is short-term,

conditional heterogeneity of some sort that that is not accounted for by the

Schwarz preferred model but is adequately approximated if the lag on the

polynomial part of the model is moved from Lp.2 to Lp.6, thus increasing PO

to 58. The long-term variance diagnostic indicates that there is heterogeneity

of some sort associated with long-term trends in variance that are not removed

by the adjustments described previously nor adequately approximated by any of

the SNP models. We return to this point below.
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Similar considerations applied to Table 4 have Lr-16, Lp.4, Kz-4, Iz-1,

Kx·2, Ix·1 with PS·368 as the Schwarz preferred model for the bivariate price

and volume process. The short-term diagnostics do not suggest movement away

from the Schwarz preferred model.

On the basis of these results, our preferred specification for the

univariate price series has Lr·16, Lx·6, Kz·4, Iz-O, Kx·1, Ix.O with a

saturation ratio of 277.6 observations per parameter. For the bivariate price

and volume series it is Lr·16, Lx·4, Kz=4, Iz=l, Kx=2, Ix·1 with a saturation

ratio of 87.5 observations per parameter.

We now turn to the issue of the long-term variance diagnostics and
investigate the ability of our SNP approximation to mimic the observed

persistent volatility. Figure 6 shows the long-term characteristics of

volatility in our data set. The top panel shows the monthly range of the price

change process. The monthly range shows long waves of volatility that are

characteristic of an ARCH process with a variance equation that is integrated,

or nearly integrated (Engle and Bollerslev 1986, Nelson 1989a, Bollerslev

(1986) and others). The bottom' panel shows the monthly average of the

estimated conditional standard deviation of price change computed analytically

from the preferred SNP fit to the bivariate process. The figure suggests that
the fitted model does an excellent job of tracking the long-term movements in

volatility. Hence, the omitted heterogeneity detected by the long-term

variance diagnostics is probably very slight and should not affect our

examination of the short-term and volume dynamics.
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111-3 Kernel Estimators
We use Gaussian kernel estimates of the conditional mean and variance as a

means of cross-checking seminonparametric estimates. AGaussian kernel

estimate of the mean conditional on an x comprised of l lags is computed as

A
I(Ylx) •

where nMl(xt_1Ix,I) denotes the multivariate Gaussian density function of

dimension Ml, mean x, and variance-covariance matrix I evaluated at

xt -1 - (Yt-l' .•• , Yt-l); note that Yt has length Mand xt -1 has length Ml.
The tuning parameters are L, I, and h. For all estimates we took I to be

diagonal with estimates of the unconditional variance of xt -1 along the

diagonal. Similarly, a kernel estimate of the variance-covariance matrix

conditional on an x of l lags is computed as

A
Var(Ylx) •

n A A
It_l[Yt-I(Ylx)][Yt-&(Ylx)]'nMl(xt_llx,hI)

As seen from the form of the estimator, a kernel estimate is a locally

weighted average. Points xt -1 that are far from x in the metric p(x,xt _1) a

nMl(xt_1Ix,hI) have little influence. Because of this, as one moves x to the

fringes where data is sparse, estimates become very erratic. SNP estimates are

not as erratic as kernel estimates in the fringes as the leading terms of the

expansion smooth and interpolate between points. Well outside the data, the

leading terms dominate completely. Inside the mass of the data, the SNP

estimates appear to behave qualitatively like kernel estimates, as seen later.

Kernel estimates and SNP estimate both differ in kind from parametric estimates
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in that aberrant observations tend to have only a local effect, whereas they

have a global effect on parametric estimates.

Following Robinson (19B3) we selected the tuning parameters visually,

trying for smoothness within the data and disregarding erratic behavior in the

fringes. There is some trade-off between Land h; larger L can be compensated

by larger h. We put L to 4 so as to correspond to the SNP value lp • 4

determined above. However, one could equally as well put l to 5 or 6 and make

a compensating change to h and get approximately the same estimates as we

report. These values for L all imply some smudging of variance estimates,

because L should be much larger to control for conditional heteroskedasticity,

as seen above. Unfortunately, kernel estimates break down completely at large.
settings of L, and this smudging just has to be accepted. For mean estimates,

the selected values were h-lS for the univariate price process and h=8 for the

bivariate price and volume process. For variance estimates the values were h=7.

and h-4, respectively.

t .
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IV. Empirical Findings

In the Introduction, a number of issues concerning the properties of the

price process and the relationship between the price process and volume are

raised. Some of the issues pertain to the predictability of price movements,

the nature of the relationship between price volatility and volume, and the

shape characteristics of the probability density of Other issues concern

the nature of the so-called leverage effect and the relationship between the

risk premium and conditional price volatility.

By exploring the seminonparametric estimate of the one-step ahead,

bivariate, conditional density I vt -1: 16}, we will address
these issues. This density is a nonlinear function thirty four variables,

which makes it complicated to describe. The strategy we adopt for summarizing

the evidence embodied in the density is to examine various statistical features

of the density u marginals, low order moments,and conditional moment

functions -- and to interpret these features in view of the economic issues

raised before. Such a reporting strategy is naturally graphically oriented.

IV-l The Conditional Density at the Mean

First, we examine the shape of the bivariate, conditional density. This

step is mainly a diagnostic check to see if the density is reasonable in

appearance.

Figure 7 shows the bivariate, conditional density of given that

all lags in the conditioning set are put to their unconditional means, which is

denoted as h(APt,vt I APt-l:16 • mean, vt -1:16 • mean}. The surface plot in
the left-hand panel suggests that over most of its support the fitted density
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is quite smooth. There is some roughness as indicated in the contour plot in

the right-hand panel. (By roughness we mean oscillations in the fitted density

which occur when the SNP estimator attempts to fit small clumps of isolated

data points.) In this plot, we highlight roughness by choosing contours

associated with very low density values. From this plot, the roughness is seen

to be well out in the tails. All told, the SNP density estimation procedure

achieves a high degree of smoothing of the empirical distribution of price

change and volume. We should, however, remain alert to the roughness in the

tails, as it could heavily influence features of the density that depend

strongly on extreme tail behavior.

Figure 8 is a plot of the marginal, conditional density of APt given that

all lags in the conditioning set are put to their unconditional means, which is

computed as

hAP(APt I APt-l:16·' vt -1:16 • mean) •

f h(APt,vt I APt-l:16 • mean, vt -1: 16 • mean} dVt ,

along with a quantile-quantile plot. The density is slightly skewed to the

left. It assumes the classic shape for financial data -- peaked near zero and

thick in the extreme tails relative to the Gaussian density. The excess

kurtosis for this density is 4.14, versus 11.22 for the unconditional kurtosis

of the {APt) series. Thus, conditioning on past prices and volume removes

much, but not all, of the excess kurtosis.

IV-2 Contemporaneous Conditional Price/Volume Relationships

The next set of features of the density that we examine is the

contemporaneous relationships between price movements and volume. The strategy
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is to look at the conditional mean and variances of given vt ' and vice

versa, along slices of the bivariate density shown in Figure 7.

Figure 9 shows the first two moments of conditional on vt ' with all

lagged values of and vt set to their unconditional means. These are the

mean and variance of the univariate density obtained by slicing the bivariate

density shown in Figure 7 along a line through (O,vt ) parallel to the axis.

The horizontal axis is in standardized units, (vt - mu)/sigma, where mu and

sigma are the moments of the marginal, conditional density of v,

hv(vt I • mean, vt - l :16 • mean). The range of the horizontal axis
extends for three standard deviations on either side of mu. Outside that

range the moment functions become oscillatory. We determined that the

estimated moments of given such large vt were adversely affected by the

roughness seen in the extreme tails in Figure 7 and were therefore unreliable.

Interestingly, Figure 9 shows that the direction of the daily change in

the stock market is unrelated to contemporaneous volume. The market is as

likely to fall or rise on heavy volume as it is on light volume, at least over

the range of the data in which we can reliably estimate the contemporaneous

conditional moment functions.

On the other hand, volatility is related to contemporaneous volume. Days

with high volume are associated with high price volatility. The

contemporaneous conditional variance function for shown in Figure 9 is a

nonparametric conditional analogue of the function shown in Figure 1 of Tauchen

and Pitts (1983, p. 502) for Treasury Bill futures. Their estimate was

obtained from a fitted lognormal-normal parametric mixing model which did not
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take account of conditional heteroskedasticity. Still, the Tauchen-Pitts

plot possesses the same convex shape as the variance function in Figure 9.

Figure 10, which is constructed in a manner similar to that of Figure 9,

shows the conditional moments of vt given APt. The contemporaneous conditional

mean function is generally U-shaped, indicating that days with large price

movements in either direction tend to be high volume days. On the other hand,

the contemporaneous conditional variance function generally flat, indicating

that the variability of the volume is related to APt. The rise on the right is

most likely caused by roughness in the tails.

IV-3 The Conditional Moment Structure of APt

We now examine those features of the density to the conditional

mean and variance properties of APt. We are mainly interested in the symmetry

of the conditional variance function, as this relates to the leverage effect

discussed in the Introduction. In view of our previous findings regarding the

contemporaneous volume-volatility relationship, we are also interested in

understanding how lagged volume modifies the conditional variance function.
t .

Figure 11 shows the conditional mean and variance of APt as a function of

APt-1 in standardized units. Specifically, the figure shows

S(APt I APt-1 • uUAp ' APt-2:16 • mean, vt -1: 16 • mean)

Var(Apt I APt-1 • uUAp ' APt-2:16 • mean, vt -1: 16 • mean)

where u varies between -/+ 15 unconditional standard deviations of Ap. Since

uAp is about 1.15, the range along the horizontal axis corresponds to movements

in Apt_lover a band slightly wider than -15 percent to 15 percent.
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A linear analysis (VAR model) reveals only a very modest amount of

predictability in the price change series. The first order autocorrelation of

the adjusted {APt} series is .129; the unadjusted series has first order

autocorrelation of .065. This low level of autocorrelation is to be expected

in a value-weighted index such as the sap composite index. For example, the

weekly return on the CRSP value-weighted index computed by McCulloch and Rossi

(1989) has a first order autocorrelation of .089 over the period from 1963 to

1987); we might expect the autocorrelation coefficient of the S&P index to be

higher due to the thinner trading in the period 1928 to 1964. (See Lo and

MacKinlay (1988) for a discussion of the effects of non-synchronous trading.)

The conditional mean function displayed in Figure 11 is an essentially constant

function of APt-I. This indicates that no further nonlinear predictability is

detected in the fitted SNP model.

The conditional variance function shown in Figure 11 clearly displays the

sort of conditional heteroskedasticity found in many ARCH applications. Even

though the fitted SNP model does not impose symmetry on the conditional

variance function as the traditional ARCH and GARCH models do, the estimated•
function is symmetric. In order to insure that these findings are indeed

representative of the data and not an artifact of the SNP approach, we used

kernel methods to estimate the conditional variance and mean functions. (See

Section III above for a discussion of kernel methods.) The kernel-based

functions are displayed in Figure 12. The kernel-based estimates give an

independent confirmation of the SNP results. The kernel estimates are not shown

for APt-l exceeding five standard deviations. Beyond that range, the data are

exceedingly sparse and the method of local averaging used by the kernel
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estimator gives estimates of the conditional moment functions that are so

variable as to be of little use.

The evidence on symmetry of the conditional variance function is

interesting in view of the findings of Nelson (1989a,c), Pagan and Schwert

(1989), and others who find evidence for a leverage effect as described by

Black (1976). The leverage effect is a type of asymmetry in the conditional

variance function. The chief difference between our estimation and that of

these other papers is that we model a joint price and volume process, while the

other studies examine a marginal price process. This suggests that

conditioning on lagged volume at the mean is responsible. for producing the

symmetry seen in Figures 11 and 12.

We can confirm this conjecture. When we fit the univariate price change

process {APt} alone, we also uncover evidence of asymmetry. The fact that we

can reproduce the findings of others using only the price data is seen in

Figures 13 and 14. Figure 13 shows the conditional mean, &(APt I APt-l = UGAp '

APt-2:16 • mean), and variance, Var(Apt I APt-l = UGAp ' APt-2:16 = mean),
functions of u that are implied' by the preferred SNP fit to the univariate

price change process {APt}. (This estimation is summarized in the discussion

of Table 3.) The conditional variance function is higher on the left than on

the right, which is consistent with previous findings on leverage. Figure 14

is the kernel-based counterpart to Figure 13, and likewise provides

independent, corroborative evidence on the asymmetry obtained with only price

data.

Figures 15 and 16 help reconcile this disparate evidence on the

characteristics of the conditional variance function. Figure 15 is a scatter
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plot of 1APti versus APt-I' which is the cloud of points that the various
models are attempting to fit. Overall, the cloud appears to be asymmetric and

shows a leverage effect, in the sense of being oriented towards the northwest

instead of towards the vertical. This visual interpretation, though, also

appears to be heavily influenced by a few extreme events, as the central part

of the cloud appears more symmetric. The left panel of Figure 16 shows the

subset of the cloud obtained by selecting those observations for which

IVt _1 - 8vl is less than one standard deviation. This selection rule comes

close to conditioning on lagged v's equaling the unconditional mean, which is

the case 1n Figure 15. The right-hand panel of Figure 16 is the complementary
plot showing those points for which IVt _1 - 8vl exceeds one standard deviation.

Taken together, Figures 15 and 16 suggest that, in conditioning on

lagged volume at the mean has the effect of trimming out the extreme

observations that can lead to asymmetric estimates of the conditional variance.

function.

IV-4 Dynamic Price/Volume Relationships

To this point, the empirical evidence suggests two things regarding price
•

and volume relations. First, volume is contemporaneously related to price

volatility. Second, conditioning on lagged volume being at its mean makes the

conditional variance of APt a symmetric function of APt-I.

To fully describe the dynamic relationship between volume and price

changes, it is important to assess how much lagged volume contributes to the

prediction of the future distribution of price changes. We performed a series

of regressions in which lagged volume variables were added to the one step-

ahead predictors of the conditional mean and variance of the price series. The
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one-step ahead predictors used are the conditional mean and variance of the SNP

estimate of the univariate, conditional density. Thus, these predictors depend

only on past prices and not on volume. In the first equation, we regressed

dPt on &(dPt I dPt-l:16) to establish a baseline measure of goodness of fit and
then added 20 lags of vt ' v

2
t and v

3
t . Likewise, in the second equation, we

regressed the squared univariate residual, [dPt - &(dPt I dPt_l:16)]2, on the
conditional variance computed from the univariate fit and then added the

functions of lagged volume series. These regressions and associated

statistics are shown below:

F test on inclusion
of volume variables

Predictability in the Mean:

dPt on 8(dPt I dPt-l:16' vt -1:16 )
With volume variables included

.
Predictability in the Second Moment:

2
[dPt - &(dPt dPt-l:16' vt -1:16)]

on Var(dPt dPt-l:16' vt -1:16)
With volume variables

.0221

.0291

.1034

.1109

F(60,16038) = 1.936
p-va1 = 10-5

F(60,16038) z 2.273

p-va1 = 10-8

The F statistic reported is the joint test for the inclusion of the 60 volume

variables. It should be noted that the F statistic is not adjusted for the

conditional heteroskedasticity that is undoubtedly present in the residuals from

these regressions.

We form three conclusions from these regressions: 1) As to be expected,

there is a great deal of noise in daily data, 2) Volatility is surprisingly

predictable, and 3) Volume contributes slightly to the prediction of both

the mean and the variance of the price change series.
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We examine the effect that price volatility has on the volume in Figure 17.

The figure displays the conditional mean and variance functions of vt as a

function of APt-I' in standardized units. The figure shows

&(vt I APt_1 • uaAp ' APt-Z:16 • mean, vt _I : 16 • mean)

Var(vt I APt-l • uaAp ' APt-2:16 • mean, vt - l : 16 • mean)

as u varies between -15 and 15 standard The figure suggests that

large price movements lead to increases in both the mean and variability of the

volume. Both functions are fairly symmetric, indicating market declines have

the same effect on subsequent volume as market increases.

Figure 18 shows the effect that lagged volume has on current price changes.

Both abnormally high and low volumes are associated with increased future

price volatility, while the conditional mean of price change is constant across

a very wide range of lagged volume levels.

IV-5 The Risk Premium and Conditional Price Volatility

The final feature of the density we examine is the relationship between•
the conditional mean and variance of APt. Motivating this effort

is recent empirical work aimed at measuring the relationship between risk

premiums on financial assets and the conditional second moments of returns.

Bollerslev, Engle, and Wooldridge (1988), French, Schwert, and Stambaugh

(1987), and Nelson (1989a), use ARCH-in-mean specifications to relate risk

premiums to conditional second moments. Much of this effort is directed

towards measurement of an hypothesized monotone increasing relationship

between the risk premium on the market return and its own conditional

variance.
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The existence of such a relationship, though, has been the subject of

debate on both empirical grounds (Pagan and Hong, 1989) and theoretical grounds

(Backus and Gregory, 1988). This debate is perhaps not surprising given that,

in general, equilibrium asset pricing models relate the conditional means of

asset returns to generalized notions of a marginal rate of substitution (Hansen

and Jagannathan, 1989), and not directly to their own internal second moment

structure. Under special assumptions (Merton, 1973), there will there be a.
direct link between the risk premium and the conditional variance. Backus and

Gregory and Tauchen and Hussey (1989) study the reduced form relationships

between risk premium and conditional variance that emerge from more general

asset pricing models. They find that under the familiar eRR (power) utility

function, the direction of the relationship between risk premium and

conditional variance can go either way, as it is sensitive to assumptions

regarding the stochastic properties of the consumption endowment. At the same

time, Tauchen and Hussey find that the relationship is monotone and increasing

when the law of motion for the consumption endowment is calibrated in a

realistic manner from actual time series consumption data.

This discussion makes clear that the characteristics of the relationship

between the risk premium and conditional variance have not been fully

determined, either theoretically or empirically. More evidence is clearly

warranted.

Figure 19 summarizes the available evidence from our estimated conditional

densities. The figure consists of two scatterplots of the pairs (conditional

mean of price change, conditional standard deviation) computed from the fitted

conditional densities, each evaluated at every sample point. The top panel of
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Figure 19 presents the scatterplot for the conditional moments derived from the

univariate fit while the bottom panel presents the scatterplot for the moments

from the bivariate fit. The dashed curve is a smoothed estimate of the

regression function obtained from the lowess function in the S package (see

Cleveland (1979) for details.) The lowess function uses a locally weighted

robust regression procedure. For the univariate fit, the curve shows a slight

downward slope. However, the curve is not monotone decreasing and appears to

be influenced by several points in the four to six· sigma range. The negative

slope is similar to the findings of Pagan and Hong (1989) and Nelson

(1989a). In contrast to the results from the univariate fit, the bivariate fit
shows a monotone increasing relationship between the conditional standard

deviation and the mean. This finding is consistent with the finding of French,

Schwert, and Stambaugh (1987) regarding the relationship between predictable

volatility and the conditional mean.

In order to assess the extent to which these fitted risk premium

functions are influenced by outlying points, we identified all of the points

with very large sigma values. Most of these points are associated with the

crash of October 1987. When we divide the data into three equal sUbperiods,

the monotone increasing risk premium result for the bivariate fit holds up in

each of the subperiods. In the middle, "quiet" period of the data, the

difference between the univariate and bivariate fits is most apparent.

All told, our findings suggest that after conditioning on lagged volume,

there is a positive relationship between the risk premium and the conditional

variance of the return. The fact that the positive relationship holds up over

each of the three subperiods indicates that it is robust finding and is not

the result of a few extreme observations.
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Two caveats are in order regarding this discussion of the risk premium.

First, the mean price change is not expressed as a return in excess of the

return on a risk-free asset, which is correct theoretically and also nets out

inflation. Although using excess returns will not change the shape of the risk

premium function, it may alter the magnitude of the premium. Second, we should

note that our measure of return is the nominal daily percentage capital gain on

the Standard and Poor's Composite Index. Thus, it excludes the dividend

component of the total return. The data required to make these adjustments on

a daily basis are unavailable over the long time period of our sample. Still,

one can plausibly argue that, on a daily basis, the capital gain component

dominates other components. Nelson (1989a) presents some empirical evidence on

the extent to which the capital gain overwhelmingly dominates. Thus we believe

that our findings from Figure 19 are robust with respect to these adjustments,

if they could be made.

t '



36

v. Summary and Conclusion

Our main objective has been to undertake a comprehensive investigation of

the characteristics of price and volume movements on the stock market.

Motivating this effort were the recent events on the stock market together

with a desire to provide a comprehensive set of empirical regularities that

economic models of financial trading will ultimately need to confront. We

organized the effort around the tasks of estimating and interpreting the

conditional one-step-ahead density of joint price change and volume process.

For a stationary process, the one-step density is a time invariant population

statistic that subsumes all probabilistic about the process. In
particular, issues concerning predictability, volatility, and other

conditional moment relationships can be addressed by examining the conditional

density. Indeed, such issues seem more naturally thought of in terms of

features of. the population conditional and not in terms of the signs

and magnitudes of specific parameters.

The raw S&P price change and NYSE aggregate volume data display systematic

calendar and trend effects in both mean and variance, and thus are not

stationary. Prior to estimation, we undertook a fairly extensive effort to

remove these systematic effects. This effort resulted in series on adjusted

logarithmic price changes and adjusted log volume which appear to be reasonably

modeled as jointly stationary. All subsequent statements concerning the

the price changes and volume pertain to these adjusted series.

We estimated seminonparametric (SNP) models for'both the univariate price

change process and the bivariate price change and volume process. The SNP
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approach entails estimating the parameters of a polynomial series approximation

to the conditional density. It is a nonparametric method that enforces

considerably more smoothness across data points than other nonparametric

methods, in particular kernel methods. It therefore seems better suited to

handling high dimensional problems. Our problem is one of high dimension due

to the long dependence of the conditional distribution on the past. In the

version of the SNP method that we use, the leading term of the expansion is a

linear VAR model with a Gaussian ARCH-like error structure; higher order

terms accommodate deviations from that model. We find substantial evidence

that the higher order terms are needed to capture all complexity of the data.

Our main empirical findings are listed below as six key characteristics of

the joint price-volume process. To some extent t findings regarding

characteristics (1)-(3) are corroborative of findings from previous studies t

though there are claims to novelty for each of them as well. The findings.

regarding characteristics (4)-(6) are, to our knowledge, entirely original to

this paper. The six characteristics are:

(1) Persistent Stochastic Volatj7ity

Stock market volatility displays persistent ARCH-like stochastic shifts.

The evidence we uncover for serially dependent volatility is quite convincing

and confirms the findings of several recent studies of the stock market and

other financial markets.

(2) Contemporaneous Correlation

The daily trading volume is positively correlated with the magnitude of

the daily price change. This correlation is a characteristic of both the
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unconditional distribution of price changes and volume and the conditional

distribution given past price changes and volume constant.

The finding of an unconditional volume-volatility relationship is

consistent with many other studies (see Tauchen and Pitts, 1983; Karpoff,

1987), though it was obtained with a rather different data set. We use a very

long time series on changes in a market-wide index and overall volume, while

other studies almost exclusively examine price changes and volume for

individual financial assets.

The finding of a conditional volume-volatility association is more novel.

It means that the volume-volatility correlation is still observable after

taking account of non-normalities, stochastic volatility, and other forms of

conditional heterogeneity. The only other study we know of that also does a

conditional analysis is Lamoureux and Lastrapes (1989). Using daily

individual security data, 1981-1983, they find a positive conditional volume-

volatility relationship in models with Gaussian errors and GARCH-type

volatility specifications.

(3) Leptokurtic Conditional Price Change Density..
The distribution of daily stock market price changes is more peaked around

zero and thicker in the tails relative to the Gaussian (normal) distribution.

Leptokurtosis is a characteristic of the unconditional distribution of price

changes, which is a finding common to many other studies. It is also a feature

of the conditional distribution given past price changes and volume, though the

extent of the leptokurtosis is substantially diminished in the conditional

distribution relative to the unconditional distribution. The latter finding

complements those of Bo11erslev (1987) and Gallant, Hsieh, and Tauchen (1989)

for foreign exchange rates.
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(4) Large Price Movements Associated with Higher Subsequent Volume

Price changes lead to volume movements. The effect is fairly symmetric,

with large price declines having nearly the same impact on subsequent volume

as large price increases.

(5) Attenuated Leverage Effect after Conditioning on Lagged Volume

For bivariate price-volume estimations, the conditional variance of the

price change is essentially a symmetric function of the lagged price change.

This finding stands in contrast to those of Nelson (1989a) and Pagan and Schwert

(1989). Using univariate price data, they report evidence for an .asymmetric

conditional variance function, with price decreases being associated with

higher levels of subsequent volatility than price increases. This asymmetry

is called the leverage effect. Using price data alane, we also find a

leverage effect.

The reason we do not observe a leverage effect in the bivariate

estimation but we do in the univariate estimation is that conditioning on

lagged volume has a robustifying effect. In essence, the on

lagged volume trims out a few extreme observations that appear to be mainly

responsible for the findings of a leverage effect in univariate data.

(6) Positive Conditional Risk/Return Relation after Conditioning Lagged Volume

For bivariate price-volume estimation, there is evidence for a positive

association between the conditional mean and the conditional variance of daily

stock returns. The finding is useful in view of the fact that equilibrium

asset pricing theory is silent on the manner in which the conditional first two

moments of the market return co-vary in response to shocks to the economy. As

we discussed above, in some special models the conditional mean and variance
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stocks should command a higher return in periods of high volatility. In

general, however, the direction of the relationship is indeterminate, as it is

sensitive to the specification of the dynamics of the consumption endowment

(Backus and Gregory, 1988; Tauchen and Hussey, 1989).

The finding of a positive conditional mean-variance relationship is also

interesting in view of other empirical work on this issue. As we note above,.
some studies using univariate price data find a negative relationship between

the conditional mean and variance (Pagan and Hong, 1989; Nelson, 1989a). On

the other hand, French, Schwert, and Stambaugh (1987) find evidence for a

positive relationship between the risk premium and predictable volatility.

Using conditional moments from our univariate we find a negative
relationship. But we also find evidence that lagged volume contains some

additional predictive power (over and above that embodied in past prices) for

both the mean and the variance of the price change. With volume incorporated

into the analysis, we find a positive relationship between the conditional

mean and variance.
, .

In closing we note that there are models that can account for various

subsets of these six characteristics, but no single model seems capable of

explaining all six of them jointly. For instance, familiar representative

agent asset pricing models can produce persistent volatility and 1eptokurtic

price change densities, but are silent on the contemporaneous relationship

between price and volume as well as price/volume dynamics. For the effect of

volume on the risk/return relation, representative agent models suggest that

volume should be incorporated into the information sets but fail to explain why

volume might affect volatility. On the other hand, models based on random

40



mixing (Tauchen and Pitts, 1983; Harris, 1986) can exhibit persistent

volatility and accommodate the observed contemporaneous and dynamic

price/volume relationship, but have no direct bearing on the attenuation of

leverage effects or the risk/return relation. Furthermore, as we noted in the

Introduction, these mixing models are closer to being statistical models than

economic models. Thus, we think it would be quite challenging, and

theoretically progressive, to develop a complete equilibrium model comprised

of dynamically optimizing heterogeneous agents that can jointly account for

all six of the characteristics.

, .
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Table 1
Adjustment Regressions for
Daily Data, 1928-87, 16,127 obs

Location Variance
------------------- ------------------.
Coef. St.Dv. p-val Coef. St.Dv. p-val

Day of Week
Mon
Tues 0.115 0.065 0.079 0.349 0.136 0.010
Weds 0.167 0.066 0.011 0.294 0.137 0.032
Thur 0.122 0.066 0.065 0.171 0.138 0.215
Fri 0.142 0.065 0.030 0.179 0.137 0.190
Sat 0.220 0.071 0.002 -0.742 0.149 <.001.

Number of calendar days since
preceding trading day
GAPI -0.125 0.059 0.035 0.385 0.124 0.002
GAP2 -0.117 0.068 0.083 0.517 0.142 <.001
GAP3 -0.257 0.083 0.002 0.443 0.174 0.012
GAP4 0.439 0.519 0.398 0.617 1.078 0.567

Month or week
Jan 1- 7 0.206 0.078 0.008 0.294 0.163 0.071

8-14 0.033 0.072 0.652 0.070 0.150 0.640
15-21 -0.003 0.072 0.970 -0.177 0.150 0.239
22-31 0.077 0.063 0.225 -0.122 0.131 0.354

Feb
March 0.016 0.045 0.722 0.026 0.094 0.782
April 0.053 0.046 0.245 0.036 0.095 0.708
May -0.032 0.045 0.486 0.093 0.095 0.325
June 0.060 0.046 0.190 0.117 0.095 0.217
July 0.086 0.046 0.060 0.078 0.095 0.410
August 0.064 0.045 0.156 0.029 0.094 0.757
September 0.060 0.046. 0.191 0.357 0.096 <.001
October 0.000 0.045 0.989 0.239 0.094 0.011
November 0.031 0.047 0.502 0.430 0.097 <.001
Dec 1- 7 0.094 0.072 0.195 0.137 0.150 0.362

8-14 -0.078 0.072 0.283 0.013 0.150 0.929
15-21 0.016 0.072 0.826 -0.111 0.150 0.459
22-31 0.201 0.067 0.003 -0.183 0.140 0.187

Year
1941 -0.094 0.068 0.1621 -0.528 0.141 <.001
1942 0.008 0.068 0.8992 -0.338 0.141 0.017
1943 0.028 0.068 0.6798 -0.586 0.141 <.001
1944 0.016 0.068 0.8163 -0.907 0.142 <.001
1945 0.075 0.069 0.3020 -0.373 0.145 0.010

Trend
(t/16127) -8.678 0.270 <.001
(t/16127)**2 7.112 0.260 <.001
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Table 2
Adjustment Regressions for Log Volume
Daily Data, 1928-87, 16,127 obs

Location Variance
------------------- -------------------
Coef. St.Dv. p-val Coef. St.Dv. p-val

Day of Week
Mon
Tues 0.035 0.022 0.109 0.292 0.110 0.008
Weds 0.065 0.022 0.003 0.263 0.113 0.020
Thur 0.058 0.022 0.009 0.317 0.114 0.005
Fri 0.023 0.022 0.307 0.339 0.113 0.003
Sat -0.776 0.025 <.001 0.. 574 0.127 <.001

Number of calendar days since
preceding trading day
GAP1 -0.069 0.022 0.001 0.545 0.110 <.001
GAP2 -0.008 0.020 0.697 0.374 0.104 <.001
GAP3 0.053 0.026 0.043 0.204 0.134 0.129
GAP4 0.115 0.036 0.002 0.033 0.185 0.858

Month or week
Jan 1- 7 0.040 0.029 0.169 -0.0'45 0.148 0.750

8-14 0.077 0.027 0.004 -0.074 0.136 0.587
15-21 0.021 0.027 0.424 -0.019 0.136 0.890
22-31 0.025 0.023 0.278 -0.074 0.119 0.532

Feb
March -0.025 0.017 0.143 -0.047 0.085 0.582
April -0.010 0.017 0.548 -0.106 0.086 0.219
May -0.063 0.017 <.001 0.045 0.086 0.602
June -0.114 0.017 <.001 -0.053 0.086 0.540
July -0.134 0.017 <.001 -0.204 0.086 0.018
August -0.211 0.017 <.001 -0.059 0.086 0.493
. September -0.067 0.017' <.001 -0.073 0.087 0.399
October -0.029 0.017 0.085 0.035 0.086 0.680
November 0.022 0.017 0.198 -0.064 0.088 0.470
Dec 1- 7 0.021 0.027 0.433 -0.051 0.137 0.710

8-14 0.060 0.027 0.024 -0.051 0.137 0.711
15-21 0.055 0.027 0.041 -0.219 0.137 0.110
22-31 0.028 0.025 0.254 0.018 0.126 0.890

Year
1941 -0.779 0.025 <.001 -0.414 0.128 0.001
1942 -1.058 0.025 <.001 -0.436 0.128 <.001
1943 -0.266 0.025 <.001 -0.181 0.128 0.159
1944 -0.311 0.025 <.001 -0.418 0.129 0.001
1945 0.080 0.026 0.002 -0.666 0.131 <.001

Trend
(t/16127) -5.117 0.048 <.001 -3.651 0.244 <.001
(t/16127)**2 9.577 0.046 <.001 1.486 0.235 <.001
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Bivariate Price Change and Volume Process: SNP Estimate
Conditional Mean and Variance of deltap Given v
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