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SUMMARY

for

VARYING DEGREE POLYNOMIAL REGRESSION

II. ASYMPTOTIC NORMALITY

by

Russell D. Wolfinger and A. Ronald Gallant

For a regression model Yt = gO(xt ) + et , we set a normal-type confidence

interval around the kth derivative of the unknown function gO, evaluated at

some preassigned point. A consistent point estimator is found by regressing on

polynomial basis functions, allowing the degree to increase with sample size.

Asymptotic normality of this estimator is then shown by using a strong

approxmation result of Einmahl (1987). The estimator is viewed as the solution

to some member of a wide class of optimization problems, including those

associated with least squares, maximum likelihood, and M-estimators; an

M-estimator is used to illustrate the main results.
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1. Introduction. This paper is a continuation of Wolfinger and Gallant

(1989), henceforth referred to as (RC). In (RC) we consider univariate data

generated according to

1 S t S n

where gO is an unknown regression function possessing mderivatives, the xt's

are observed iid realizations from the beta(a,b) distribution (a and bare

known), and the et's are unobserved realizations from some distribution P(e)

and are independent of the xt's. We consistently estimate gO (in a norm

including derivatives up to order i < m) by fitting the parametric model

Pn 0Yt = L 8. + etj=l J J
1 S t S n

where is a multiple of the jth Jacobi polynomial, is the jth

parameter, and Pn is some increasing function of n satisfying Pn S n. This

follows Example 1 of Cox (1988) who calls this procedure varying degree

polynomial regression. See (RC) for a motivation.

Our goal for this paper is to find a confidence interval for the evaluation

functional

= (dk/dXk)90(X)lx=x
o

where k S i and Xo is some preassigned point in (0,1). This goal is

essentially achieved for least squares estimators in Andrews (1988), who proves

asymptotic normality for series estimators in semiparametric and his addditive

interactive models. We extend his results to the class of least mean distance

estimators, i.e. those that can be viewed as the solution to an optimization
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problem of the form

minimize:
(J E 8n

where 8n is some subset of is the Pn-vector with jth element and

s(-,-,-) is a suitable objective function. Examples of objective functions

include those associated with least squares, maximum likelihood, and

M-estimators. The theory for least mean distance estimators with Pn bounded

can be found in Chapter 3 of Gallant (1987); we thus extend these results to

the case where Pn is increasing with n. Our goal is to find constraints on Pn
that yield asymptotic normality for this entire class.

We now describe the general framework and preliminary assumptions. We

assume the true regression function, gO, is m-times differentiable with Omgo{x)

absolutely continuous, where Om is the mth differentiation operator. We also

assume that it has the expansion

o aD 0
g (x) = L (J.

j=1 J J

where is the generalized Fourier coefficients corresponding to the jth

basis function as defined in (RC). Oefine a norm on gO by

which we assume is finite. This is the II-11 2m norm defined by Cox; it is one

member of his scale of norms that vary with powers of j in the above

expression. Cox identifies this norm as being close to a weighted Sobolev

norm, and the consistency results in (RC) are proven in 11-11 21• We also use the

usual Euclidean norm 11-110, which we write as II-II.
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Define

which we assume exists and is unique, and where

p
an = (8 eRn

oand B = "g "22 + 1. B is thus unknown, but in practice this is irrelevant
A A

because the choice of Pn from (RC) guarantees that 8n satisfies "8n"22 < B a.s. for
n sufficiently large.

Our estimator of is where Po is the Pn-vector with jth

element This estimator is in a 12 norm; see (RC).
A

To show the asymptotic normality of we use the first order equations:

where is the Pn-vector with jth element and

Also

is the Hessian matrix where
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and

for some At E [0,1]. These equations are obtained from the first order

conditions of the optimization problem (Luenberger, 1984), followed by a Taylor

series expansion about The first order conditions are free of Lagrange

multipliers a.s. for n sufficiently large because of the consistency results of

(RC). These equations correspond to the usual normal equations in the least

squares case.

We assume that the largest derivative of interest, 1, satisfies

1 h + 1/2

where h z max(a,b,I/2), and recall a and b are the parameters of the beta

distribution of the xt's. Also, define the matrix t as being the n x Pn

matrix with rows and let

Gn = (I/n) t't.

Note that Gn is nonsingular wpI, and we assume the existence of positive

constants Land U such that

for all n, where Amin(e) and Amax(e) denote minimum and maximum eigenvalues,

respectively.

Finally, we assume that the objective function s is real valued and has the
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form s[Y(e,x),x,g(x)], where Y(e,x) = gO(x) + e and 9 is some function of x.
To be reasonable, s should be some measure of distance between go(x) and g(x),

and to avoid measurability problems we assume that it is continuous in all

three of its arguments.

We now illustrate our main results with the example from (RC).

EXAMPLE (M-estimator). Use the objective function

o= p[g (x) + e -

where

p(u) • log cosh(u/2).

Define also

,(u) = (d/du) p(u) = 1/2 tanh(u/2).

Assume that the errors possess finite r th moments, where r > 2 + 1/£, and

that 8 p(e) • 8 '(e) = O. This would be satisfied if the error density is
symmetric about zero. We set

. (£ - (1+1)(1+2£)/r
a = mln -------

h + 2£(1+2£)
1 ) - S

4i + 4

for a sufficiently small 1 > 0 and S > 0, where i = max(a+l,b+l,I/2). Assume

that m is large enough to satisfy

a 1/(2m-2q-3) > 0

where q = max(2£+a-l,2£+b-l,£-1/2).
Let Pn =na, where the symbol = means that the r.h.s. can be bounded

above and below by constant multiples of the l.h.s. Then conditionally on
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where un is the scale factor defined in Section 3. Our approximate confidence

interval takes the form

where za/2 is the 1 - a/2 quantile of the standard normal distribution
A

and un is an estimator of un satisfying

as n -+ CD.

The remainder of the paper is organized as follows. In Section 2 we list

our primary assumptions, and in Section 3 we state our main results. These are

then applied to the example in Section 4, proving the claims made above. We

give the proofs of the main theorems are given in Section 5, and then list some

possible extensions of our work in Section 6. The Appendix contains the proofs

of three lemmas stated in Section 3.
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2. The assumptions. Assumptions 51-56 and PI-PS from (RC) are in force

throughout the paper. We make the following additional assumptions, also

grouped into two categories: the objective function (Assumptions 57-510), and

rate constraints (Assumptions P6-P8).

ASSUMPTION 57. The second derivative of the objective function (with

respect to its third argument) evaluated at the true regression function can be

factorized as

where vl (·) and wl (-) satisfy the following conditions:

There exist positive constants Ll and Ul such that

and if we define

4then d exits and is finite and positive. The integral 81[wl (e)] also

exists and is finite, where 81 represents integration with respect to 1(e)

only.

Also, we assume that the third derivative of the objective function

(with respect to its third argument) exists and is bounded, i.e. there

exists a constant C3 such that
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where 8 is the support of P(e) and r = (0,1).

For the next assumption, define

o Pn 09 (x) = r 9.
n J J

oas the truncated counterpart of 9 .

ASSUMPTION S8. Define the following function:

Then

ASSUMPTION 59. The first derivative of the objective function (with

respect to its.third argument) evaluated at the true regression function can be

factori zed as

(a/ag)s[go(x) + e,x,gll 0 = vO(x) wO(e)
9 = 9 (x)

where VO(e) and WO(e) satisfy the following conditions:

There exist positive constantsLo and Uo such that

and if we define
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then exits and is finite and positive.

ASSUMPTION S10. The functions Wo(e) and Wl (e) as defined in Assumptions S9
and S7 respectively possess bounded first derivatives.

REMARK 2.1. Assumption S7 is used to invert the Hessian matrix.

Assumption S8 allows us to invoke the strong approximation result of Einmahl

(1987) with the best possible rate. Assumptions S9 and S10 help us to estimate

the scale factor un'

For our first two rate assumptions, we define

B(p) = P 2L sup fPj(x)
j=1 xeX

P 2C(p) = L [sup l;j(x)ll
j=1

where = (d/dx)fPj(x).

ASSUMPTION P6. The truncation point Pn satisfies

.eim = o.
n-+CO n

ASSUMPTION P7. The truncation point Pn satisfies C(Pn) = 0(n l/ 2-1) for

some 1 > O.

ASSUMPTION P8. m is large enough to satisfy
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a 1/(2m-2q-3} > 0

awhere Pn z nand q = max(2i+a-l,2i+b-l,i-l/2}.

REMARK 2.2. By results from Szego (1975) on Jacobi polynomials and from

our choice of normalizing constants [see (RC)]

sup = O(jh-l/2}
xeT J

These can be used to show that

C(p} = O[p2(i+l}] as p

An alternative procedure would be to use basis functions that have B(-} and

C(-} bounded; however, one would then have to manage declining eigenvalues in

the regression matrix. See Gallant (1989) for such an approach. Nonetheless,

in terms of a, Assumptions P6 and P7 are respectively equivalent to

a < 1/(2h+4}

a < 1/(4i+4}.

Since h S i, Assumption P7 thus implies Assumption P6. Assumption P8 implies

Assumption P4 of (RC) because h S q.
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3. Statement of the main results. We define some more notation. Recall

the Hessian matrix

n
= (lin) L wntt=l

and by Assumption S7 we can write

where 9n(Xt } is between gO(Xt } and Let VI be the n x n diagonal

matrix with elements {vI(xt }}, let WI be the n x n diagonal matrix with

elements {wl(et }}, and let W2 be the n x n diagonal matrix with elements

We can thus write

= (lin) [d+'VI+ + +'(VIWI - dVI)+ + +'W2+]

= (lin) (d+,vl+}1/2 [I - Tn] (d+,vl+}1/2

where (d+'VI+}1/2 is the Cholesky factor of d+'VI+ , I is the Pn x Pn
identity matrix,

Tn = H'(dVI - VIWI}H - H'W2H

H = +(d+'VI+}-1/2.
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LEMMA 3.1 Under Assumptions 51-57 and P1-P6,

PROOF. The proof follows from Lemma 1 of Severini and Wong (1987). See

the Appendix. I

COROLLARY. Under the assumptions of Lemma 3.1, define

!XI I.
Sn = LT.

1.=1 n

Then

PROOF. The proof follows from the dominating first term of Sn. I

REMARK 3.1. If T is a real symmetric matrix with IAmax(T)/ < 1, then we
have expansion

where convergence is with respect to the operator norm (Kreyzig, 1978). Lemma

3.1 thus allows us to invert the Hessian matrix and write

where
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LEMMA 3.2 Under Assumptions 51-57 and P1-P6, let P be an arbitrary vector

of length Pn. Then

PROOF. Define Xn to be the n-vector Then the first

order equations are

t'X =n

Using these equations, the Cauchy-Schwartz inequality, and the

definition of Amax we have

n
Ip'Rn L Xntl

t=1
= IP'(dt'V1t)-1/2 Sn (dt'V1t)-1/2 t'Xnl

UP'(t'V1t)-1/2U IAmax[Sn (I - Tn)]1 -

= JB(Pn)/Jn] 0(1) Op(Jpn)

by the Corollary to Lemma 3.1 and Theorem 3.7 of (RC). I

We give a strong approximation result. First, note that if we ignore

Rn above, then the first order equations reduce to
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A 1 no = 00 - (dt'V t)- lpt Xntn n 1

where recall that

Subtracting the expectation of this expression with respect to P(e) and

premultiplying by p' Yields

p'O - = p'(dt'V t)-1 r lpt €ntn n 1 t=1

where

Note that {€nt: t = 1, .. ,n; n = I, ... } is a triangular array of rowwise

independent random variables, with each €nt having a zero mean and a variance

say, that depends upon Using common probability space methods,

we can construct a version of the array {€nt}' call it {Ynt}, on a new

probability space. By a version we mean that {Ynt} is also rowwise independent

and that Ynt has exactly the same distribution as €nt for every nand t. On

this new space we. can also construct a triangular array of random

variables, call it {Znt}' that is close to {Ynt} in the following sense.

LEMMA 3.3 Let {€nt}' {Ynt}, and {Znt} be as above and define
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Assume that

for some 2 < s S 8. Then a construction is possible such that

where 1 is any positive real number, and the a.s. is with respect to the new

probability measure.

PROOF. The proof follows from Proposition 1 of Einmahl (1987). See the

Appendix. I

for all n, where Xn(e,xj is defined in Assumption S8.

PROOF. By Taylor's theorem and Assumptions S7 and S9

o 023 3 0 I+ [g (x) - gn(x)] (a jag )s[g (x) + e,x,g] _
9 = gn(x)

where 9n(X) is between gO(x) and The lemma follows from
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Assumptions 57 and 59 and the fact that

o 0sup [g (x) - gn(x)] = 0(1)

[see Lemma 3.5 of (RC)]. I

Now define

2a =n

=

REMARK 3.2.
2a =n

By Lemma 3.4,
p'(t'V1t)-1 (t'Vot) (t'V1t)-lp

+ P'(t'V1t)-1 (t't) (t'v1t)-lp

= p'(t'v1t)-1 (t'Vot) (t'V1t)-lp [1 + 0(1)].

where Vo is the n x n diagonal matrix with elements Note that

should therefore decline at the same rate as (l/n)p'(Gn)-l p because of

Assumptions 57 and 59. Also note that to obtain a consistent estimate of

one only needs consistent estimates of aO and d; these are found in Theorem 3.8

below.

LEMMA 3.5. Under Assumptions 57-59 and P7,

PROOF. 5ee the Appendix. I
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THEOREM 3.6. Under Assumptions 51-59 and P1-Pl,

d
- N(O,I) as n (I)

p
where p is an arbitrary vector of length R nand

THEOREM 3.7. Under Assumptions 51-510 and P1-PB

- 0
O'n

where and O'n are defined as above with p = po·

THEOREM 3.8. Under Assumptions 51-510 and P1-P5, define

A2 n 2 A A n A

O'0n = (I/n) L wO(ent ) dn = (I/n) L wI(ent )t=I t=I

A A

where ent = Yt - fPi8n· Then as n (I),

A2 P 2 A P
O'0n - 0'0 dn - d.

REMARK 3.3. Our final confidence interval takes the form

where za/2 is the 1 - a/2 quantile of the standard normal distribution.

An alternative to this type of interval is the regression percentile method

used by Efron (1989).
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4. Application to the example. We first verify Assumptions S7-S10 for the

M-estimator. For Assumption S7

2= 1/4 sech (e/2)

2so we choose v1(x) = 1/4 for all x E rand w1(e) = sech (e/2). Note

that

2 '
d = 8psech (e/2)

exits and is finite by nature sech2(.) and we assume that the error

distribution is such that d is also positive.

also exists and is finite. Finally

(a3/ag3)s[go(x) + e,x,g] = -1/8 sech2{[e+gO(x)-9]/2}

x tanh{[e+go(x)-g]/2}

and C3 can be taken to be 1/8.

For Assumption S8

which is bounded for all n and x because Itanh{')1 is bounded above by 1.

For Assumption S9

(a/ag)s[go(x) + e,x,g]1 ° = -.(e)
9 = 9 (x)

-1/2 tanh(e/2)

So vO{x) can be taken to be 1/2 for all x and wO(e) = -.(e), which we assume

has mean zero. We also have
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which we assume is positive.

For Assumption 510

wo(e) = -tanh(e/2) 2w1(e) = sech (e/2),

both of which also have bounded first derivatives.

REMARK 4.1. Note that in Assumptions 57 and 59, v1(x) and vO(x) do not

depend on x. This is also the case with the least squares objective function

(which also satisfies Assumptions 57-510). We include this generality to make

for an easier extension to more complex scenarios.

For the rate constraints, note that our choice of a and msatisfy

Assumptions PI-P5 of (RC), and thus the consistency results of that paper

apply. 5ince we make Assumption P8 outright, the only new constraint is

Assumption P7 (see Remark 2.2), which is satisfied by using the min(-,-).
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5. Proof of main theorems. In this section are given the proofs of the

theorems stated in Section 3. To summarize, Theorem 3.6 is our asymptotic

normality result, conditional on {xt }. It utilizes Lemmas 3.1-3.2, which

invert the Hessian matrix, and Lemmas 3.3-3.5, which borrow from a strong

approximation result of Einmahl (1987). Theorem 3.7 shows that our

standardized bias, - converges to zero; it makes use of the

lower bound on the growth rate of Pn imposed by Assumption P8. Theorem 3.8

constructs consistent estimates of d and u by using an empirical integration of

residuals. The factorizations in Assumptions S7 and S9 make the above analyses

tractable.

PROOF OF THEOREM 3.6. By the first order equations we have

Using the common probability space methods of Lemma 3.3, the first term on the

r.h.s. has the same distribution as

By Lemma 3.5 the last term in this expression is 0(1) a.s. For the second term

on the r.h.s., recall that in the proof of Lemma 3.5 we derived the following
<

lower bound for un using Assumptions S7 and S9:
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an (O'O/d) [1 + 0(1)] IIP'(t'Vltfl/211
x Amin [(t'Vlt)-1/2 (t'Vot) (t'v lt)-1/2]

(O'O/d) [1 + 0(1)] IIP'(t'Vlt)-1/2 11 (U Ul )/(L

Using this along with Lemma 3.2 we have

which is 0p(l) by Assumption P6. Slutsky's theorem (see Serfling, 1980) yields

the desired result. I

REMARK 5.1. Note that the N(O,I) distribution does not depend on the

sequence {xt } upon which we have been conditioning. This implies that

A

p'e - J.'n n d
- N(O,I) as n -+ co

unconditionally as well.

REMARK 5.2. Our proof strategy for asymptotic normality is qUite different

from that used in say Portnoy (1985) or Eubank (1988). These works make direct

use of iid-type central limit theorems, while we use the independent-non-

identically distributed result of Einmahl. Einmahl's work is an extension of

iid strong approximation results such as those found in Csorgo and Revesz

(1981).
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k 0PROOF OF THEOREM 3.7. We can write - 0o(g )]/un as

Using the lower bound for un given in the proof of Theorem 3.6. and

Cauchy-Schwartz, the absolute value of the second term is less than or

equal to

where C is a constant independent of n. By the argument used in the last part

of the proof of Lemma 3.6 of (RC), this term is 0(1). As for the first term

above, use the same lower bound for un to conclude that

provided that pip does not converge to zero (it should not converge to zero

because the differentiation operator invokes multiplication by powers of j).
In fact, pip may go to infinity with n, but no faster than p2q+2 where q =n
max(2!+a-l,2!+b-l,!-1/2), because

This result along with

shows that the first term satisfies
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which is 0(1) by Assumption P8. I

= o(jn p-m+q+3/2)n

REMARK 5.3. Theorem 3.7 shows that our standardized bias converges to zero

with the only new assumption being the lower bound on Pn given in Assumption

P8. This conflicts with many of the spline and kernel results in which a

different but similar standardized bias converges to some positive constant

such as 1/4. If one really wanted to match such results, one could fix mand

then choose Pn so that the first term in the proof of Theorem 5 above converges

to some constant. This approach seems to deviate from our goal of setting a

confidence interval on We thus make Assumption P8 and proceed with a

straightforward normal-type confidence interval.

PROOF OF THEOREM 3.8. By Taylor's theorem and Assumption S10

where

o Aand ent is some number between et and [et + g (xt ) - gn(xt )]. Squaring this

expression and summing over t gives
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The first term on the r.h.s. converges in probability to by the weak law of

large numbers. The second term is 0p(Pn/n) by Theorem 3.7 of (RC) and the

boundedness of cnt . The final term is 0p(/Pnl/n) by Cauchy-Schwartz. A
A

similar argument yields the consistency of dn. I
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6. Possible extensions. We conclude by discussing some possibilities for

further research. First, our assumption that the xt's follow a beta

distribution could be generalized; see Remark 1.1 of (RC). Next, we assume

that Pn is a deterministic function of n. The empirical evidence in Eastwood

(1987) suggests that it may be more appropriate to let Pn depend upon the data.

He develops techniques to make the extension from deterministic to adaptive

truncation rules, and they appear to be applicable to our setting. The fact

that we let Pn increase like a power of n is in contrast to Gallant (1989), in

which Pn may be required to increase only at a logarithmic rate. In that case,

he also must require gO to be infinitely differentiable in order for the bias

terms to converge to zero. If one is willing to make this assumption though,

our techniques should be extendable to the Fourier flexible form basis

functions (which consist of constant, linear, and quadratic terms, and then

additional terms of the form sin(kx) and cos(kx), k = 1,2,3, ... ).
Another extension of interest would be the inclusion of a nuisance

parameter in the objective function, as is done in Chapter 3 of Gallant (1988).

This would allow one to employ such methods as iteratively rescaled

M-estimation and two and three stage least squares. The generalization to the

case of multivariate dynamic models in Chapter 7 of Gallant would also be

useful.

Though we only consider the linear functional one might be

interested in setting a confidence interval around h(go)' where h(o) is some

nonlinear functional. This could probably be most easily accomplished by

another application of Taylor's theorem and the imposition of regularity

condidtions on h(o). Our method of strong approximation seems suited to such a

generalization. The common probability space approach is also useful in
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obtaining a Gaussian approximation to a relevant stochastic process (see Cox,

1984).

Finally, a general theory of selection procedures that encompasses our

problem and the associated kernel and spline problems would be desirable.



APPENDIX

In this Appendix we give the proofs of Lemmas 3.1, 3.3, and 3.5.

PROOF OF LEMMA 3.1. Note that

by Assumption 57. By Cauchy-Schwartz

n 2
(lin) Amax [t'W2t] = sup (lin) r

lIell=I t=I

sup (lin)
lIell=I t=I t=I

by the final part of Assumption 57. The sum in this expression equals

where A is some number between 0 and 1. By Lemma 4 and Assumption P4

the first term in<this expression is O(Pn) and the second term is 0p(Pn)

by Theorem 3 of Section 3.4. The cross-product term is 0p(Pn) by

Cauchy-Schwartz. Therefore

A.I
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We now show that

using Lemma 1 of Severini and Wong (1987), which we state now as our Lemma A.l.

LEMMA A.l. Let (f,{3n},d) satisfy condition (L) with constants {Mn} and

let (f,{3n}) satisfy condition (W). If for some sequence of constants {En}

for every E > 0, then

Conditions (L) and (W) are given below when we verify them, and recall that

H(.,.,.) is the metric entropy function as defined in (RC). In order to make

use of this result, note that

where we have defined
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and
p

= {E E R nl E'E = I}.

Note further that

because 8 f(e,x;E) = 0 and we have interchanged the absolute value and

the supremum. So the desired result will follow provided we can verify

conditions (L) and (W) and can choose

We now verify the two conditions.

Condit;on (l). There exists a sequence of real-valued Borel-measurable

functions {mn(·,·)} such that

for all e, x, and for all EI ,E2 E where

(i) 8 mn(e,x) S Mn < for all n

(ii) Var mn(e,x) = as n I

Note that for our case (using Cauchy-Schwartz)

2If(e,x;EI) - f(e,x;E2)1 S IvI(x)1 Id - wI(e)1 +

x HE I - E2H,



A ,.,
n

A.4

so we can choose Mn = O[B(Pn}] for part (i) and part (ii) obtains

easily.

Condition (W). There exists a sequence of constants {An} such that

(i) A = 8 sup f2(e,x;e) < for all nn (: -
n

(ii) Var sup f2(e,x;e) = as n I
ee?:n

For our case (again using Cauchy-Schwartz)

4228 sup vl(x) [d - wl(e)]
lie II'"1

s Varp[wl(e}] 8
j=lJ

where we have used Assumption S7 and the orthonormal property of the

basis functions. By a similar argument

422Var sup vl{x) [d - wl(e)]
lIell=l

4 2 2 2S 8 {sup vl(x) [d - wl(e}] }
lIell=l

It is sufficient to verify condition (ii) for an upper bound for An rather than

for An itself. Using the upper bound derived above, this reduces to requiring

that B(Pn)/nPn 0 as n which is true by Assumption P6. We thus have



verified conditions (L) and (W), and we now proceed to showing that

for every E > 0, where

By Gallant (1989)

Thus by choosing An = O[B(Pn) Pn] and Mn = O[B(Pn)] we have for some

constant c1

for another constant c2 and for n sufficiently large. Now substituting

Pn z na , B(Pn) = O(n
2ha), and En z n-P, the bound becomes

c2 a n
2ha + a 10g(n) + c2 (2ha + P) n2ha + 2a 10g(n)

= O[n2ha + 2a 10g(n)].

Now z nl -2P , and so the desired result holds provided

2ha + 2a < 1 - 2P

or

P < 1/2 - a - ha.

A.5



A.6

Finally,

corresponds to = 1/2 - 3a/2 - ha, and since En can be replaced by EEn for any

E > 0 in the above argument, the result is proved. I

PROOF OF LEMMA 3.3. By Proposition 1 of Einmahl (1987), a construction is

possible such that for every n

where Po is the new probability measure, {on} is a sequence of positive real

numbers satisfying

nl / 4+E = 0(0 )n

for. some E > 0, cl ana c2 are positive constants independent of n and on'

and

Note that both o-sKsn(S) and 0-2Ln (0) are less than or equal to

-s n so r 8p [ I€nt I ]t=1

which is o-sO(n) by hypothesis. Choosing

S = n2/ s + '1n



and applying the Borel-Cantelli lemma yield the desired result. I

PROOF OF LEMMA 3.5. By Remark 3.2 and Cauchy-Schwartz we have

A.7

by Assumptions S7 and S9. Note that

We now use integration by parts as in Cox (1984) to show that

[C(p )]1/2n

For a real number u E [0,1] and for every n, define the partial

sum process

[nul
Vn(u) = L Y tt=l n

where [0] denotes the greatest integer function. Let be the

empirical distribution function of the xt's, i.e.



A.S

n
L I(xt x)
t=1

where I(e) is the indicator function, and on (0,1) define

Define Wn(e) and Wn(e) analogously with Ynt replaced by Znt. Then we can

write

where the integral is Lebesgue-Stieltjes and is the Pn-vector with

elements jth element Now integrating by parts

f: ,(xl d(Vn - Wnl • [Vn(l) - Wn(I)] ,(I)

-f: [Vn(x) - Wn(xl] ;(x) dx
where is the Pn-vector with jth element Note that

and that



A.9

$0 by definition of C(p) and the fact that B(p) S C(p),

"E:'1 (Ynt - lnt)" • "f: d(Vn - Wn)"

S max 1St - Ttl [C(p )]1/2
Istsn n

which is the desired inequality.

Now combining our inequalities we have

=

By Lemma 3.3 the first term is 0(1) a.s. and the final term is bounded by

Assumption P7. I
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