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Abstract. vVe discuss procedures based on nonparametric regression for estimating the

dominant Lyapunov exponent Al from time-series data generated by a system

xt =f(xt _l' x t _2' ... xt_d)+o-et , where XtEIR, and {et } is an iid sequence of random variables.

For systems with bounded fluctuations in x t ' '\1 >0 is the defining feature of chaos. vVe show

that any consistent estimator of the partial of/ax. can be used to obtain a consistent estimator
J

of .\. The rate of convergence we establish is quite slow. A better rate of convergence is

derived heuristically. and supported by simulations. Simulation results from several

implementations, one "local" (thin-plate splines) and three "global" (neural nets. radial basis

functions. projection pursuit) are presented for two deterministic (0- =0) chaotic systems.

Local splines and the neural nets yield accurate estimates of the Lyapunov exponent. IImvc\·er.

the spline method is sensitive to the choice of the embedding dimension. Limited results for a

noisy (0->0) Henon system suggest that the thin-plate spline and neural net regression

methods also provide reliable values of the Lyapunov exponent.
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1. INTRODUCTION

Nonlinear dynamical systems (e.g., difference or differential equations) can behave in

ways that are hard to distinguish from a random process. This phenomenon is called chaos.

and it is now recognized as ubiquitous in the nonlinear equations used to model a variety of

phenomena including fluid dynamics, chemical reactions, electrical circuits. physiological

feedback mechanisms, and disease epidemics (e.g. Buchler and Eichorn 1987, Eckmann ,wd

Ruelle 1985, Glass and Mackey 1988, May 1987, Moon 1987, Olsen and Degn 198,5, Schuster

1988). Consequently, methods of analyzing experimental or observational data for evidence of

chaos have been applied to observational data in such diverse fields as physics, geology.

astronomy, neurobiology, ecology, and economics (e.g. Albano et at. 1986. Babloyantz and

Destexhe 1986, Brandstater et at. 1983, Brandstater and Swinney 1987. Brock and Sayers

1988, Guckenheimer and Buzyna 1983, Kot et at. 1988, Kurths and Herzel 1987, Mayer-Kress

1986, Mpitosos et at. 1988ab, Ramsay et at. 1989, Sugihara and May 1990). The available

methods, developed over the last decade in theoretical physics (see Schuster 1988. \Iayer-Kress

1986). are based on calculating a few key quantities that characterize the dynamics: in

particular, fractal dimensions and the Lyapunov exponen ts (defined below). These methods

give reliable results if the data are abundant (thousands or tens of thousands of values i. if

measurement error is near zero, and if the data really come from a deterministic system. \Vith

limited data, or a system subject to non-negligible stochastic perturbations. the results ma\' i)e

incorrect or ambiguous (Ruelle 1990).

\Ve present here theoretical and simulation results on procedures to estimate Lyapuno\

exponents from time-series data, based on nonparametric nonlinear regression. An important

new feature of our procedures, is that they are applicable to systems which may

stochastic as \vell as nonlinear components contributing to the unpredictability. \V(, consider

here only the simplest example of such systems, the nonlinear autoregressive model

terms of a state vector X t = (xt , x t _1,

and a function F:[Rd.-. [Rd such that

( 1.1)

with xtE[Rl, {et }

( 1.2)

X t = f(x t _1· x t _2' ... x t _d ) + aet ,

a sequence of iid random variables. It is llseful to express this system in
T T· J... x t _d + 1) and error vector tt =(et,O,O.·· ·0) ill:R.

ylost of the theory focuses on properties of the map F, and applies to (1.2) without requiring

the special structure implied by (1.1).

Lyapunov exponents quantify how perturbations of the state vector affect the

subsequent history of the system. For deterministic chaotic systems, the trajectories of the
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system starting at two similar state vectors will diverge exponentially, until the trajectories are

no longer similar. This is the "sensitive dependence on initial conditions" which is a hallmark

of chaotic dynamics, and leads to the apparent unpredictability of chaotic systems. The

almost-sure rate of divergence (in the limit of infinitesimally small perturbations), is given by

the dominant Lyapunov exponent '\1' If '\1 is negative rather than positive. nearby trajectories

are converging rather than diverging. Thus. a common definition of chaos for deterministic

systems is bounded solutions with '\1 >0 (Eckmann and Ruelle 1985). In systems with

stochastic componen ts, '\1> 0 indicates that the nonlinearity is con tributing to the system's

unpredictability, so the value of '\1 is still the best operational indication of chaos.

In Section 2 of this paper, we review the definition and properties of Lyapunov

exponents for (1.1) and (1.2). In Section 3 we discuss estimation of '\1 via nonparametric

regression estimates of f, including consistency and rates of convergence. Section 4 surveys

some nonparametric regression methods with potential value for estimating f while Section .J

reports the results of a numerical study that apply our procedures to data from chaotic

systems. 'vVe discuss these numerical results in Section 6. This article establishes a frame\vork

for applying statistical analytic tools to an estimation problem which has been of concern for

nearly a decade in a variety of scientific disciplines .

.) LYAPUNOV EXPONENTS FOR NONLINEAR STOCHASTIC SYSTEMS.

This section outlines the basic theory of Lyapunov exponents by relating the exponents

to their more familiar counterparts for linear systems and indicates their significance for

characterizing nonlinear dynamics. We also review the methods curren tly Llsed to estimate

Lyapunov exponents, and motivate our approach to the problem.

Lyapunov exponents are a generalization to nonlinear systems of the eigenvalues or

roots of linear systems such as the linear difference equation
d

(2.1a) xt = L akx t _kk=l
or the linear autoregressive model

d
xt = L akxt_k + et ; xo' Xl' "', xd_1 gIVen.

k=l
In state-space form,

(2.2)

where A is the dxd matrix with [aI' a2' ... ad] in the top row, l's on the sub-diagonal, and O's

elsewhere. The characteristic polynomial for (2.2) is
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(2.3) p(,)=det(,I-A)=,d-t
k=1

whose (not necessarily distinct) complex roots are the eigenvalues of A.

If 0"=0, the qualitative behavior of solutions to (2.2) is related to the magnitudes of the

eigenvalues. Suppose for simplicity that the eigenvalues of A are distinct. Then for initial

vector where v· is an eigenvector corresponding to the solution to (2.2) isf....J I I I I

Hence

(2.'1)
1 1

IIXt II t = IIAt xo II t ----max{ I'i I : a i #O} as t ---- ex).

Since all norms on a finite-dimensional vector space are equivalent, (2.'1) holds in any norm.

The Lyapunov exponents for (2.2) are the numbers numbered so that
I I

In terms of the Lyapunov exponents, (2.4) says that

(2.5)

The Lyapunov exponents give the possible asymptotic rates of exponential increase (or

decrease) for solutions of (2.2) with 0"=0. However, the asymptotic growth rate will be Al for

almost all initial vectors v (with respect to Lebesgue measure on iRd ). with the exceptional

vectors lying in a subspace of dimension (d-l) or smaller. Note that Al also gives the growth

rate for ilAtil.

The behavior of typical solutions consequently depends on whether the dominant

exponent Al is positive or negative (unless Al =0 exactly). If '\1 >0 (corresponding to a root of

(2.:3) outside the complex unit circle) typical solutions of (2.1a) will diverge exponentially. [I'

,\ 1< 0 all roots lie inside the unit circle, and all solutions of (2.1a) converge exponen tially to O.

This qualitative dichotomy carries over to the autoregressive model (2.1b): if '\1 <() :solutions

settle into stationary oscillations with bounded variance, while if .\1>0 the variance diverges

and there is no convergence to a stationary distribution.

The theory of Lyapunov exponents generalizes these results to stationary random

sequences of matrices and the behavior of the corresponding linear system

X t+1=AtXt . Let Ht =At_1·· .AO' so that the system's solution is X t =HtXO' The asymptotic
behavior of IIHt II and IIXt II will in general vary over initial vectors Xo and over realizations of
the process {At}. Under very general conditions, Oseledec's Multiplicative Ergodic Theorem

states that if {At} is ergodic, then Lyapunov exponents are well-defined. nonrandom with

probability 1, and give the possible rates of growth for log II Xtll. The Lyapunov exponen ts can
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be defined as

(2.6) A. =log ( lim I p. 1
1/ 2t )

I t ...... oo I,t

where {Pi,t}f=1 are the eigenvalues of (H* =conjugate transpose of M). See Cohen et al.

(1986) for a precise statement and proof of Oseledec's Theorem.

vVe are mainly concerned with the dominant exponent AI' The existence of /\1 was first

proved by Furstenburg and Kesten (1960): If {At} is stationary and ergodic, and log+!IA111

has finite expectation (log+ x=max(logx,O) ), then

( ') -)-.1 Al lim !tlog II Htll
t ...... oo

exists (as a random variable), and is constant with probability 1. This result is now an easy

consequence of Kingman's Subadditive Ergodic theorem (Hall and Heyde 1980), applied to the

subadditive process xst=log IIAt_lAt_2,,·Asll, s<t. As in the deterministic case, Al gives the

growth rate of "typical" solutions, i.e., for all Xo lying outside a subspace of \vith

dimension (d-1) or smaller, under the Furstenburg-Kesten assumptions (Cohen et al. 1986).

For nonlinear dynamical systems, consider the following generalization of our basic

model (1.2):

(2.8) Xt=Ft_1(Xt_1)' Xo given,
where and is a sequence of random variables taking values in the space of

differentiable functions from Q ....... Q. Stationary random matrices arise as the sequence of

Jacobians for this system (also more generally for dynamics on abstract spaces: see Arnold L\:

Wihstutz 1986, Kifer 1986).

Let and be solutions of (2.8) which differ only in their initial values. i.e .

(2.0) i=1,2, . (i) .
Xo given.

If the initial perturbation ;0=( is sufficiently small, then the subsequent
. y (X(I) X(-Y,) b . db I' . .separatIOn t = t -./ t can e approxImate y llleanzatlOn,

(2.10)

where Jt=DFt(Xt ), the Jacobian matrix of F t at Xt , In the formal limit of infinitesimally
small YO' (2.10) becomes exact and the solution is



(2.11)

The Lyapunov exponents for (2.8) are defined to be the Lyapunov exponents for the

linear system (2.11), whenever they exist. In particular, it must be assumed that the Markov

chain (2.8) has an invariant measure vI' If Xo is chosen at random from the distribution vI'

then {J t} is a stationary process and under suitable assumptions on F t the Multiplicative

Ergodic Theorem will apply to {Jt} (see Kifer 1986, Chapter III; the pair (F. DF) are a

"random bundle map" as defined by Kifer). >'1 >0 indicates "sensitive dependence on initial

conditions" in (2.8), since small perturbations to Xowill grow exponentially over time. As \ve

noted above. this is a key indicator of chaotic dynamics, and is responsible for the extreme

unpredictability of chaotic systems.

3.1 DIRECT METHODS FOR ESTIMATING THE LYAPUNOV EXPONENTS

There are two classes of methods in use for estimating >'1 from experimental or

observational data. "Direct" methods, proposed by Guckenheimer (1985) and successfully

implemented by Wolf et al. (1985), are based on the assumption that II Ytll in (2.10) will grow
exponentially at rate >'1' The available data are searched for pairs of times (t 1.t2 ) when

IIX t ! -Xt2 11 is sufficiently small. Then the growth of 'to t=IIX t ! +t -X t2 + t ll is recorded until the

trajectories diverge beyond some pre-set limit (or, for some pre-set amount of time). The data

are then searched for a replacement point X t which is sufficiently near Xt +t and also3 1
sufficiently near the line connecting Xt1+t and X t2 + t , and the process is repeated. The

average divergence rate over the entire data set is the estimate of >'1'

In "Jacobian" methods, the data are used to estimate the Jacobians DF(Xt ). and '\1 is

calculated from the estimated Jacobians. Our procedure falls into this category. Jacobian

methods were proposed by Eckmann and Ruelle (1985), and an implementation based on

linear regression was tested by Eckmann et al. (1986). To estimate DF(X t ), Eckmann et al.

(1986) identify all data points Xs lying within some specified distance of Xt . The

approximation

justifies a linear model Xs+ 1 -Xt + 1 and the At from a least-squares fit is the

estimate for DF(X t ). The At'S are substituted into equation (2.6). Let Vi denote the i
th

largest eigenvalue of HNHN then we obtain the estimated exponents \- (1/2N)/log (vi)'

In tests with simulated data from low-dimensional systems, the direct and linear

Jacobian methods both appear to be adequate if there is an abundant supply of very accurate



data, the system is deterministic or nearly so and the correct dimension (number of

lags in the model) is known (Mayer-Kries 1986). Since the correct dimension is unknown, a

common strategy is to increase the dimension until the estimates of Al reach a plateau. The

linear Jacobian method can generate spurious exponents when the dimension is too large. so

this strategy may fail (see Vastano and Kostelich 1986). Eckmann et al. (1986) claim that the

spurious exponents can be eliminated by proper choice of the method's free parameters, but it

appears that discrimination between "real" and "spurious" solutions is essentially ad hoc and

requires much trial-and-error tuning of the free parameters.

However, the direct methods are less suited to mixed stochastic/nonlinear dynamics. It

is easy to see that direct method will be positively biased when 17>0, and that measurement

error will also inflate the estimate of AI' To eliminate these biases, the divergences will have to

be fit to a more complicated growth model, which allows for the stochastic dynamics. If a

model such as (1.1) is believed to represent the dynamics, then the appropriate model for the

divergences would involve complicated Xt and Y t dependence in the growth of Y t·

Consequently, we believe that Jacobian methods are preferable for stochastic nonlinear

systems, but must either incorporate a criterion for choosing the dimension, or else employ an

estimator for DF(Xt ) that is less sensitive to extraneous lags in the model. Procedures for

fitting nonlinear time-series models to chaotic data have been very successful at generating

estimators of F (Abarbanel et al. 1989, Casdagli 1989, Farmer and Sidorowich 1987.

1988a,1988b) despite ad hoc fitting methods. These successes were the motivation for our

approach, in which the .Jacobian estimates are derived from nonlinear estimation of F.

:3.2 ESTIlVIATING Al FROM THE MAP JACOBIANS.

\Ve consider in this section the properties of Jacobian-method estimates for '\1 tbat are

based on nonlinear regression estimates of f (for equation 1.1) and/or F (for equation 1.2).

Under reasonable assumptions abou t the underlying process (1.1) and the regression estimates.

we derive a rigorous upper bound for the estimation error. 'vVe also give a conjecture for the

asymptotic behavior for the error.

Let F denote an estimate of F based on N observations of the time series, and

let j k denote the matrix obtained by substituting estimated for exact partial derivatives,

jk=DF(Xk ). We require that the estimate jk be consistent, specifically:

Assumption L There exists {3N --0 such that
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From the theory of non parametric regression, ,aN can be expected to converge to zero at a

rate of the form N-8, where 8 depends on the form of the nonparametric estimate and the

differentiability of f. For example if f is the m th order thin plate spline in d dimensions, f has
m continuous partial derivatives and 0">0 in (1.1), then (Cox 1984). Moreover. in

the case that noise is not present (0"=0) , one can expect that 8>1.

A second requirement is ergodicity, so that a single realization of the process represents

(with probability 1) the "typical" behavior. Formally,

Assumption 2. The AIarkov chain (1.2) has a unique invariant measure p, and Xo is chosen by

sampling from this measure. The stationary process {Jt}={DF(Xt )} is ergodic, and

Jlog+ II DF(x)11 dp(x) < +00.

Under these assumptions, the sequence of estimated jacobians {Jt}, l:::;t:::;N can be

used to obtain consistent estimates of AI' To simplify notation, for the remainder of this

section we write A for AI' Also for any matrix A let IIAI12 =largest eigenvalue of AT A . It will be

necessary to distinguish between the "sample size" N (number of observations) used to

estimate jt' and the "block length" M which will be the number of matrices jt used in

estimating A. Let where TM=JMJM_1· .. J1' and let 'YM' 1':'1 be the

estimates obtained by using j's in place of J's. Then with probability 1. and

is the Jacobian estimator for A based on sample size N, and block length :\1.

Define i by A=log -f. The main error bounds are summarized by the following theorem.

Theorem 3.1 Under assumptions 1 and 2.

Let 0'

Then

(3.2)

sup Pkll and suppose that there is a O<p<-r such that
k>11 I

The proof of these results is given in the Appendix.

For accurate estimation of AI' M should be taken as large as possible. Su badditivity of

xst (as defined in Section 2) has the unfortunate implication that with strict inequality
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unless xst is actually additive. Additivity is not to be expected in general, since xst is additive
r

only if II JrJr_1···Jkll and Jill have the same distribution for all O::;k::; r<oo.

Unfortunately, the error bounds in Theorem 3.1 imply that the growth in M must be

unattractively slow in order to guarantee that If PN=O(N- b) with b<l as

expected, then N) is necessary. However, we conjecture that (3.1) and (3.2) are

overly pessimistic, and the actual error is sufficiently small so that M=o(N b) implies

Conjecture:

(3.3) P(PN) as N, M-oo such that }vIPN-O.

Rationale: Expanding the leading-order term in T M - t M ( see A.l and A.2) we see

that it is the sum of M products with the form

JMJM_1 .. ·Jk+l (Jk-J k ) .J k_1 .. ·J 1·

Since IIJk-Jkll=O(PN) and IIJill::;a by assumption, these terms together are O(MaM-13X)'

which is the rate obtained rigorously in the proof of Theorem 3.1. However, except for a

vanishingly small fraction of such products as M -00, both k and M-k will be large.

Consequently, the asymptotic growth rates
(k-l)

(3.4) II.JMJn_1 .. IIJ k_1 · .. J 111""1
should be sharper than the crude upper bounds used in the proof of (3.1), which have 0, in

place of I' Assuming that (3.4) applies simultaneously to all terms in (A.2), and repeating the

arguments used in the proof of Theorem 3.1 we obtain an argument to support the

conjecture.

:3.3 SIMULATIONS OF ESTIMATION ERROR

Some simulations supporting this conjecture are summarized in Figure 1. The "data"

were generated by the Henon map (Schuster 1988)
.)

(3.5) xt = 1-1.4xt_1+O.:3x t _2
and the block size was varied over the range 50 ::;?vI::; 1000.

The "estimation error" matrices Ut were simulated by choosing all entries independently from

the uniform distribution on [-p/2, p/2] where p=5/{M. Uniform errors were chosen because

II Util::; P in the L2 norm. Because (3.3) is based on convergence in probability rather than
almost-sure convergence, we compared the right hand side of (3.3) to the mean, the 95th

percentile, and the maximum of over 1000 replicated values of .\M and The

bound (3.3) is well above the mean error, and mostly well above the 95th percentile. However.

the maximum error was larger than the 9.Sth percentile by an order of magnitude, and was not
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bounded by (3.3).

The results above suggest that M N may be necessary for obtaining a consistent

estimate of AM' This raises the issue of optimal block length for estimating A. In practice. one

would presumably obtain 's for each of the roughly N1M blocks and use their average as an

estimate of A. The error - A) for block n then consists of

Block bias: b(M)=E(AM)-A

Block error: v(n)=AM n -ECAM ),
Estimation error: -A".1

j ,n IV ,n
\V'here E(·) refers to the stationary measure for the true system.

Optimizing the choice of M requires information on the convergence rate for each of

these error components. The block error and bias are properties of the stationary random

matrix product generated by the true system. Unfortunately, the rates of convergence of these

components can only be conjectured.

The most reasonable hypothesis for the block bias is

(3.6) E( AM) - A= D(11M).
This is known to hold for positive matrices which satisfy a mixing condition (Heyde 1986). but

the Jacobians for a nonlinear system with bounded trajectories cannot be positive everywhere.

The only reasonable conjecture for the block error is

(;3.7) Std DevCAM )=D(l/{M).
1 \1

The rationale for (3.7) is that A"1 can be written as '1 " ¢(X.,S.) where S.=T. 111 IT, 111
IV IV ·1.J1 J J J J- J-

J=
(Furstenburg and Kesten 1960), and in our case ¢(X,S)=log

II DF(X)SII· Since (Xj,S) is a Markov chain, central limit behavior is expected for /\.\1' Such
results are available for independent random matrices (Bougerol, P. and Lacroix .J. 1986) and

for positive matrices under mixing assumptions (Heyde and Cohen 1985). It will generally be

reasonable to assume that {Xt } is a Harris-recurrent chain, hence the Jacobian matrices {.Jt}
will strong-mixing (Athreya and Pantula 1986).

Both (3.6) and (3.7) are consistent with simulation results for the Henon map (3.5)

and also for the model

(3.8)

Equation (3.8) is a discretized analog of the Mackey-Glass delay differential equation (Schuster

1988), which we devised to mimic financial market data. The results for the Henon map are

summarized in Figure 2, and the results for (3.8) were very similarand thus are not reported.



-11-

Linear regression fits to (3.6) and (3.7), had r2>O.9S in all cases.

vVhen the block size is smaller than the data series length several estimates of ,\ can be

calculated based on nonoverlapping time intervals. In this case it seems most reasonable to

take the average of these estimates as the overall estimate of ,\ for the system. Suppose that N

factors as MB and let j(M, N), denote the average estimate over B blocks. The block and

estimation errors would presumably be reduced by order 1I {B although the block bias would

remain on the order of 11M. Adding this to our roster of conjectures and appropriately

modifying (3.3) and (3.7), it appears that the block bias component of the overall error has the

slowest asymptotic convergence rate. Determining the block bias for the estimated model. and

subtracting it from '\, might be helpful in reducing the overall bias.
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4. METHODS FOR ESTIMATING THE JACOBIAN OF THE MAP

From the theoretical results in Section 3 the consistency of the estimated Lyapunov

exponent depends on the nonparametric estimates of the map.

In this section we describe four different approaches for estimating the map. These

methods can be classified as to whether they give a global approximation to the map or are

based on a local approximation to F at the lagged values of X. One important aspect of these

methods is their ability to support a range of smoothing situations. This would include

interpolating the observed data in a situation when the system is deterministic (0"=0) to
smoothing the data when there is a significant random component in (1.1). The

introduction of some form of data smoothing is crucial for accurate derivative estimates based

on noisy data.

The last part of this section discusses the relationship between the accuracy of the

exponent estimate and mean squared prediction error.

4.1 LOCAL THIN PLATE SPLINES

Spline functions have been identified by numerical analysts as an efficient and accurate

way of approximating complicated functions. The fundamental definition of a spline is as the

solution to a variational problem. For example consider the one dimensional curve fitting

problem based on (xt,yt) l::=:;t::=:;N where in analogy to (1.1), Yt=f(xt )+ O"et . For a tixed value

of /-l>O, and let

A cubic smoothing spline approximation to f is defined as the function that minimizes:

(4.1 )

over all h such that J(h)< 00. The second component of i... can be interpreted as a measure of

the amount of curvature or roughness of h. Thus the smoothing parameter, /-l, controls the

relative weight between fitting the data well and the smoothness of the resulting spline. vVhen

measurement error is not present (0"=0), the spline estimate should interpolate the data. This
can be achieved by considering the limiting smoothing spline obtained as /-l-+O. This limit will

also be the solution to the minimizing J(h) subject the interpolation constraint: Yt=h(xt )

l::=:;t::=:;N.
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It should be emphasized that the quality of the resulting spline function depends

strongly on the choice of J-l and it is good practice to investigate the sensitivity of the estimate

to this parameter.

The generalization of splines for multivariate approximation involves replacing the one-

dimensional roughness measure by a multivariate measure of curvature. Suppose h: IRd _1R

and all mixed partial derivatives of h up to order m are contained in L2(lRd ). vVe will consider:

Unlike the one-dimensional roughness measure, J d involves derivatives of higher order thanm,
second degree. This generalization is necessary to guarantee that the spline approximate will

be consistent for higher dimensions. Although J d has a complicated form, the mixedm,
partials enter in a way so that this curvature measure is invariant to rotation of the

coordinates axes. Replacing J by J d in (4.1) a thin plate spline is defined as the minimizerm,
of .L over all h such that J d(h) <00. The same interpolation properties hold when J-l-O.m,

Although spline functions are defined abstractly as the solution to a minimization

problem, they are readily computable. The solution will be a linear combination of the (d+;-l)

monomials of degree less than d and a set of N radial basis functions (Wahba 1989). The

coefficients for the spline are found by solving a system of N linear equations and for the

special case of one-dimensional cubic smoothing splines efficient algorithms (O( N)) are

available.

Thin plate spline approximations were used to give to give local estimates of the

Jacobian of the map. The estimate at any particular point X t was based on the L nearest

state vectors with respect to Euclidian distance. There are two reasons for considering a local

estimate rather fitting a single thin plate spline to the entire times series. The storage

requirement for computing a thin plate spline is on the order of N2 and becomes prohibitive

for the sample sizes typically encountered in the study of chaotic systems. Also. a global spline

function uses a single smoothing parameter to smooth all parts of the surface. This is not

desirable if the actual curvature of the map varies. A local fit to the surface has the potential

to adapt to varying curvature and sharpen the accuracy of the approximation. One

disadvantage of local estimates is that the variance of the resulting estimates are inflated

because the effective sample size has been significantly reduced. In order for these local

estimates to be consistent the number of nearest neighbors used to calculate the spline must

increase as N -00.
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4.2 RADIAL BASIS FUNCTIONS

The form of a thin plate spline as a linear combination of polynomials and radial basis

functions suggests a global approximation to the map. For any pair of m and d such that

2m-d>O, let {¢j(1,!)} IS j S (d+:;-l) denote the set of all monomials of degree less than d.

Let {Uk} for lSkSK be a set of vectors in IRd and consider the radial basis:

!Pk(:S) = 11:s-Ud2m-d for d odd

for d even

Thus the estimate of f(X) has the form:

(4.2)

and the coefficients for this approximation can be computed by least squares. Note that each

li'k will be a bowl-shaped function centered at the point Uk' The locations of these points

should be adapted to the data and for our application this set was taken as a random sample

from {Xt }. In this way the coverage of the basis follows the density of the the X's.

4.3 NEURAL NETS

The use of neural nets to approximate the map of a chaotic process were found to be

competitive with the best approximation methods studied by Casdagli (1989) and performed

significan tly better than several other methods considered by Lapedes and Faber (1987). '.Ve

used a single hidden layer feed forward neural network. The functional form for this

configuration is

. K T
f(X)= I: ,8.Gb· X + fl·)·

. 1 J J JJ=

where G(u)= eU j(l+eu ) is the logistic distribution function and 'Y.ElRd . The parameters are
J

estimated by nonlinear least squares and the resulting function yields a global approximation

to f. In comparison to the preceding functional approximations, the neural net form is not

sensitive to increasing d. Although the lengths of the vectors 'Y' increases the functional form
J

remains a sum of simple univariate functions. This property contrasts sharply with the

complexity of the thin plate spline where the number of polynomial terms grows exponentially

with d and the spline order (m). The quality of this approximation is influenced by the

number oflogistic functions in the sum. The results in Gallant and White (1989) however



-15-

suggest that performance may not be sensitive to the choice of K provided that the saturation

ratio K(d+2)/N is approximately 1/30 and 500S;N <5000.

4.4 PROJECTION PURSUIT

Projection pursuit approximation is an ambitious attempt to combine the projective

power of neural nets with the flexibility of spline estimates. It was first proposed in the context

of identifying interesting low dimensional structure in a high dimensional data set ( Friedman

and Stuetzle 1981). Although this method yields a global approximation, storage requirements

are minimal because the estimate is computed by solving a sequence of univariate problems.

Note that if aElRd and lIall= 1 then (aTX)a defines the projection of X onto the one

dimensional subspace spanned by a. Given K such projections indexed by the vectors {ak}'

1S;kS; K then the projection pursuit approximation has the form:

(4.4)

Unlike the neural net representation, the G k , known as ridge functions, do not follow a rigid

parametric form and are estimated. They are defined as the solution to minimizing

(4.5)

over all G k such that J(Gk )< 00. In this manner any given set of projections imply a

particular approximant, h. The specific set of projections are found by minimizing:

(4.6)

The projections and ridge functions are calculated by an iterative process known as the

backfitting algorithm. The main feature of this algorithm is that the multivariate minimization

of (4.5) and (4.6) is broken up into a series of one dimensional estimation problems. For

example, suppose that {Gk,ak } for ki=j are known. Given aj one can determine Gj based on

fitting a one-dimensional smoothing spline to the regression data (aJXt , Yt- L Gk(aJXt ))

1S;t S; N. The idea of the backfitting algorithm is to estimate each ridge isequentially.

One then loops back and reestimates the individual ridge functions until the complete estimate

converges. If the projections are kept fixed, the backfitting algorithm is related to the Gauss-

Seidel method for solving linear systems ( Buja, Hastie and Tibishirani 1989) and the resulting
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limit from backfitting will be the minimizer to (4.5). The complication for computing the

projection pursuit approximation, however, is that the projections are also optimized in the

backfitting steps. An outline of the algorithm used here can be found in Nychka (1988).

4.5 PREDICTION ERROR OF THE ESTIMATED MAP

One measure of the accuracy of the map estimate is prediction error. Let {xs}

denote a time series generated according to (1.1) but independent of f. An estimate of the
error in using the estimated map to predict a subsequent observation of the series is given by

Under Assumption 2 from Section 3 and the independence of the error process it follows that

(4.7) as

Thus for large S, 0-2 differs by a constant from the integrated squared error of f over the
attractor.

The integrated squared error (ISE) is a useful measure of the closeness of f to f because
it can be estimated directly from the data by cross-validation. One problem with this norm is

that it is not strong enough to imply convergence of the Lyapunov exponent. For example, it

is possible that the ISE can converge to zero as N-00 but j may not converge to the Jacobian

matrix of F.

A practical concern is that "tuning" parameters of the map estimates that are selected

by minimizing 0-2 may not yield the best values for estimating AI. For example. the

embedding dimension is usually unknown in practice and an incorrect value for d will lead to

biased estimates of the Lyapunov exponents. According to general theory for systems without

a random component (Casdagli 1989), 0- 2 should be large for small choices for d and decrease

to zero and remain small as d is increased beyond the minimum embedding dimension. This

property suggests that the embedding dimension might be chosen to minimize 0-2 . Note that

by (4.7) minimizing 0-2 over d is asymptotically equivalent to minimizing the ISE. From the

remarks above this may not be the appropriate choice for using the map to estimate AI. One

reason for the numerical study was to investigate the relationship between the best choice for

d and the dimension minimizing ISE.
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5 SIMULATION RESULTS

A simulation was carried out to study the feasibility of estimating the largest

Lyapunov exponent for moderate sample sizes. For a sample size in the range of 2000-2500

and no measurement error we evaluated the performance of the four approximation methods

described in Section 4 ( Local Spline, Radial Basis, Neural Net, Projection Pursuit) for two

simple chaotic systems (Henon, Rossler). Because no measurement error is present we can

expect that ,BN=o(l/N). Under the assumption that the conjecture in Section 3.2 is true one

may use use M=N for and still obtain a consistent estimate. To keep the results simple,

this is what was done. The estimates of A1 for these cases are summarized in Table 5.1 by the

number of lags (d) used in the approximation. The asterisk indicates the estimate associated

with the smallest 0-2 .

A second set of simulations were run to investigate the sensitivity of the estimates

when a random component is present. Attention was restricted to the Henon map and two

approximation methods (Local splines and Neural Nets). Because the model is not

deterministic, the consistency results from Section 3 suggest that the block size ?vI must be

smaller than the total number of observations. Accordingly, estimates of the Lyapunov

exponent were calculated based on several block sizes ( N=2000, M=50, 100,500,2000). The

results of these simulations are reported in Table 5.3. A more useful summary of these results

however is given by Figure 3. Here boxplots of the estimates of A1 indicate how the

distribution depends on M, the number of lags (embedding dimension) and the nonparametric

method.

The remainder of this Section gives details concerning the different levels for the

factors and ends with an overview of the simulation results.

5.1 HENON AND ROSSLER SYSTEMS

The Henon map is given at (3.5) and it is evident that it has the form of (1.1). The

largest Lyapunov exponent is approximately .419±.001.

The other system considered is derived from the Rossler continuous time, system of

equations:

x= -(y+z)

y= x + .15y

z= .2 + z(x-10)

These equations were numerically integrated with a fixed time step of .6.t=.Ol and x was
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sampled at every 50 steps. Although this time series is the result of sampling a single

component of a continuous system, Takens' embedding theorem (Takens 1981) indicates that

for d sufficiently large there exits an f: IRd _1R such that xt =f(xt _l' ... , xt -d-l)' Thus the

Rossler time series also follows (1.1). Although the form of f is unknown, the value of ).1 is

known to be approximately .04505.

To generate a sample from either of these systems first 5000 values were calculated

based on a randomly selected starting values. The next 20000 values were taken to be points

on the attractor of the map. To create a sample of size N the starting value to was randomly

selected in the range [1, 20000-N] and the resulting index was taken as the starting point of

the time series.

For the second simulation study, the random component added to each iteration of the

Henon map was a uniform random variable on the range [-.012,.012]. This range was chosen

because empirically it was found that perturbations with a larger variance eventually caused

the Henon system to become unstable. From a qualitative point of view the shape of the

attractor for this noisy system had the same overall shape as the strange attractor for the

deterministic system. (Of course the fractal properties of these two sets are very different.)·

Since the invariant measure for the noisy system differs from the deterministic case the

Lyapunov exponents will also differ. For the noisy system ).1 = .408±.001.

5.2 TUNING PARAMETERS OF THE MAP ESTIMATES

Local thin plate spline estimates were based on 20 nearest neighbors for d=[1,2,3] and

50 neighbors for d=[4,5]. Since no noise is present f.L=0 and thus f(Xt _ 1) is equal to xt . Due

to computational efficiency 0- 2 was computed using within sample cross-validation. Let x t
denote the prediction of xt based on the time series where xt has been omitted. In this

situation

For the radial basis estimates the value of m was varied as a function of the number of

lags: mEld, d+3]. The estimate reported in Table 5.1 correspond to the value of m that

minimized 0- 2 for a given d.

The neural net estimates were computed using K=7. As is typical in nonlinear least

squares estimation problems the minimization is not always an automatic procedure. Some

outside intervention is required in the fitting procedure to eliminate spurious solutions
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associated with local minima.

The projection pursuit estimates depend on the number of ridge functions, K, and the

smoothing parameter, p,. For the Henon map the estimate was computed for the 30

combinations of K=[2,3, ... ,6] and log(p,)=[-6, -10, -14, -18]. For the Rossler system the

estimate was computed for the 24 combinations of K=[2,3, ... ,9] and log(p,)=[ -2, -4, -6].

The map estimate was found using 20 backfits. The first time through the backfitting

algorithm (4.6) was minimized over each projection using a coarse search of several thousand

points on the d dimensional unit sphere followed by a simplex search with 200 iterations.

Subsequent iterations of the backfitting algorithm only employed the simplex search.

5.3 SUMMARY OF RESULTS FOR DETERMINISTIC SYSTEMS

For these two chaotic systems the neural net estimator tends to yield estimates within

5% of the unknown exponent. Besides giving accurate estimates of .\1 the sequence of as a

function of the embedding dimension follows the characteristic pattern suggested by Casdagli

(1989). After a certain point the estimates stabilize and remain unaffected by increasing the

embedding dimension. The local thin plate splines also work well provide that one uses the

value for d that minimizes the expected value of 0-2 . Unlike the neural net estimates.

increasing the embedding dimension degrades the accuracy of Finally it should be noted

that in comparison these two methods the projection pursuit and radial basis functions yield

poor estimates of .\1 for the Rossler system. The radial basis functions gave the only case

where the best estimate of the exponent did not coincide with the embedding dimension found

by minimizing 0-2.

5.4 SUMMARY OF RESULTS FOR THE NOISY HENON SYSTEM

The distribution of Lyapunov exponent estimates for a noisy Henon system are

summarized by Table 5.2. Figure 3 gives a graphical display of the simulation results using

boxplots. As a reference, estimates results based on the true Jacobians are also reported. For

all the cases except local splines with d=2 and M=100, estimates .\M well. The estimates

have a small bias relative to the standard deviation and the variability of these estimates is

comparable to the estimates when the Jacobian is known. For this particular noisy system

there is a large block bias relative to the the variability of Therefore while the

nonparametric regression methods yield accurate estimates of.\M for small M they differ from

the actual Lyapunov exponent. As M increases the block bias decreases and we see that a

block size on the order of the length of the series gives a nearly unbiased estimate of .\.
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6 DISCUSSION

The simulation study of the estimated exponent yielded some expected results

connected with estimating high dimensional surfaces and also some surprising results on the

accuracy of neural net approximations.

The poor performance of the thin plate splines and the radial basis functions for

increasing d is to be expected. This phenomenon, known as the "curse of dimensionality", is

related to the dramatic effect increasing dimension has on a convergence rate for

nonparametric regression curve estimates. One symptom of this problem is the exponential

increase in the number of monomials of a fixed degree as d increases. Intuitively the difficulty

in recovering a high dimensional surface increases rapidly as a function of the dimension and

this increase easily overwhelms the modest increases in sample sizes usually encountered in

practice.

One way to avoid the problem of estimating an arbitrary high dimensional surface is to

restrict attention to a subspace. This strategy is successfully employed by the neural net

approximation. 'With little tuning and a relatively small number of parameters ( 7(d+2) ) the

neural net functional form appears to nearly interpolate f. This might be expected for the

Henon system where f is a simple polynomial but is surprising for the Rossler system. The

question posed by these striking results is how well such a basis spans the space of chaotic

maps typically encountered in the study of dynamic systems.

Although the projection pursuit approximation is similar to the neural net method it

did not inherit the same accuracy for the Rossler system. There are several possible

explanations for this difference in performance. Due to the iterative nature of the backfitting

algorithm, projection pursuit does not optimize the objection function (4.6) simultaneously

over all the projection vectors. This feature may reduce the flexibility of the approximation.

Another problem is that the smoothing step by it very nature will always reduce the accuracy.

For example, if the true ridge functions actually had the form of cubic smoothing splines, the

projection pursuit estimate would still not be able to reproduce the ridge function exactly.

One modification that would address this deficiency is to use one smoothing parameter to

estimate the projections and another to determine the ridge functions once the best projections

have been found. Finally, due to the inefficiency of the backfitting algorithm and the simplex

optimization (and possible local minima in the objective function) it is possible that the

backfitting algorithm was ended before a global minimum was reached.
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The simulation results for a noisy system while very limited have promise. Both

methods yield accurate estimates of A provided that the block size is chosen correctly

(M=N=2000). Unlike the results for the deterministic Henon system, the accuracy of the local

spline estimates are not sensitive to embedding dimensions larger than 2. This stability may

be due to the smoothing of the observed data rather than interpolation. It is interesting to

relate the results for a noisy system to the discussion of block bias in Section 3. Although we

must have M-oo at a slower rate than N to obtain consistency, the simulation results indicate

that the best block size is equal to N. This apparent contradiction can be resolved by noting

that the estimation error associated with the Jacobians is much smaller than the bias due to

small block sizes. This fits with our conjecture that the block bias will tend to be the dominant

term in the total error of the estimate. Thus, in this particular case the best estimate is

obtained by taking M as large as possible. There is no guarantee, however, that this is a good

strategy for other noisy systems.

The numerical results suggests that the embedding dimension found by minimizing the

expected prediction error is also good for exponent estimates. Note that the results are given

with respect to the expected prediction error rather than the single estimate, 0-2 , found from a

particular sample. One aspect that needs further study are better data- based estimates of 0-2 .

The prediction error for the local spline was found from within sample using cross-validation.

Such methods are known to yield nearly unbiased estimates but may have a large variance.

For the estimates of A not based on local splines, 0- 2 was calculated out of sample using a

large set of measurements independent from the data. This approach is not feasible if the

amount of data is limited and within sample estimates need to be studied.

In conclusion we have demonstrated the paten tial of non parametric regression

estimates to extract an accurate estimate of the Lyapunov exponent. Although much work

remains, we have identified the analysis of chaotic dynamical systems as a well-posed

statistical problem.
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APPENDIX

Proof of Theorem 3.1

Then

(A.l)

To simplify the product, we need to index the possible combinations of terms involving J and

U. Let 3 denote the set of all 2M w=(w1' w2' ... wM) where each wk=O or 1. Let

Ak(w)=wkJk + (l-wk)Uk, and Iwl=L: wk' Then (A.1) may be rewritten as
k=l

(A.2) .

Hence, using the assumed bounds on Pkll and IIUki!,

(A.3)

li
T. -T II < " a1wl,B(M-lwl)M M-. L.J

wE3,lwl<M

= (a+,B)M_aM=aM[ (1 + (/3la) )M_l].
k=O

=Op(MaM-1,BN ).

To show (3.1) let ..\M= log(-YM) and logei'M)' By the elementary inequality
11M 11M 1/wr .la -b and (A.3) It follows that

_ . 11M 11M
=Op(!3N )

Now by the mean value theorem,

(1;'*) liM-AfM'
where Af* lies between i'M and 'M' With this bound, (3.1) now follows.

Now (3.2) will be considered. From the hypotheses on ON and (A.3),

IITM-TMII=op(pM-1). It follows from the Furstenburg-Kesten theorem that

From this fact it follows that IITM-TMII/IITMII-O in probability and by the triangle

inequality IITMII/IITMII-E.1. Using the relation



The result now follows immediately from (A.2) and (AA).
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Figure 1. Comparison of the conjectured convergence rate for with simulations of the

Henon map (3.5). The graph shows equation (3.3) (dashed line), and the mean (x),

95th percentile (box), and maximum (triangle) of the absolute error over 1000

simulations for each (M,,8) pair. The block length was M=5/,JP, so that ,8 ----0 corresponds to

N, M ----00 with M,8N = 5,JP ---- O. For each replicate, the initial condition (xO' xl) was chosen

at random from a file of 20,000 values on the Henon map's attractor. Error matrices Ut were

chosen independently for each replicate at each (M,,8) value. See text for further details.

Figure 2. Rates of convergence of the block bias and block error for the Henon map (:3.8).

Each replicate consists of 10000 iterations. For each block length M one value of \\'1 was

computed from the first M Jacobians. (a) Average AM vs. M; the solid line was fit by linear

regression of average AM on l/M. The actual exponent in this case is .419, (b) Standard

deviation of AM vs. M; the solid line was fit by linear regression of the standard deviation on
. ')

1/.,[M. For both regressions R->.99.

Figure 3. Distribution of Lyapunov exponent estimates from the noisy Henon system. Boxplots

summarize the distribution of estimates as a function.of method ( Local Spline, Net),

the embedding dimension ( 2,5) and the block length (M). The horizontal line locates the true

value of A1 for this system. The boxplots are based on 14 observations for the local splines and

16 for the neural nets. The four arrows in the upper right plot indicate four points out of

bounds.
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Table 5.1 Estimated Lyapunov Exponents

Henon System

Map Estimate J:L d

1 2 3 4 5

Local spline1 2500 5.7602 .4188* .0750 -.0251 .0259
(.042) (.005) (.011) (.013) (.013)

Neural Net 2000 .1147 .4106 .4227 .4236*

Projection 2000 .4163 .4058 .4026*
Pursuit

Rossler System

Map Estimate J:L d

1 2 3 4 .5 6 7

')
2500 7.1229 .0992 .0461* 1.7099 1..567Local

(.055) (.004) (.002) (.011) (.021)
Radial Basis 2000 .0629 .7778* 10.24 10.26
Neural Net 2000 .0010 .1272 .6940 .0482 .0414 .0466*
Projection 2000 .0966* .0146 -.2792 -.0640
Pursuit

1 Average of .5 estimates with standard deviation.

2 Average of 10 estimates with standard deviation.
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Table 5.2 Estimated Lyapunov exponents for the Henon map with noise
as a function of block size1.

Map Estimate .Q.

Map Estimate .Q.

Local spline2 2

Neural Net3 2

Exact Map4 2

2000 20000

.416
(.015)

.408
(.009)

.408
(.019)

2000

.408
(.009)

.404
(.008)

.405
(.009)

M
50 100 500

.421 .426 .417
(.015) (.014) (.015)

.416 .412 .408
(.020) (.020) (.020)

.415 .414 .409
(.010) (.009) (.009)

M
50 100 500

.417 .431 .406
(.009) (.009) (.008)

.417 .411 .406
(.007) (.009) (.009)

5

5Local spline

Neural Net

1 Each Lyapunov exponent estimate is the average of the exponents obtained from N j l\[
disjoint blocks of the data series.

2 Average of 14 estimates with standard deviation.

3 Average of 16 estimates with standard deviation.

4 Average of 200 estimates using the true Jacobian matrix. The standard deviation has been
adjusted to be comparable with the other estimates. ( reported S.D.=sample s.D.jill where
B=N jM.)
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Expected Value of the Lyapunov exponent based on a finite block size
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Variability of the Lyapunov exponent based on a finite block size
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