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Abstract

We describe three methods for analyzing the dynamics of a nonlinear time series that is

represented by a nonparametric estimate of its one-step ahead conditional density. These

strategies are based on examination of conditional moment profiles corresponding to certain

shocks; a conditional moment profile is the conditional expectation evaluated at time t of

a time invariant function evaluated at time t + j regarded as a function of j. The first
method, which compares conditional moment profiles to baseline profiles, is the nonlinear

analog of conventional impulse-response analysis. The second assesses the significance of a

profile by comparing its sup-norm confidence band to a null profile. The third examines

profile bundles for evidence of damping or persistence. Experimental designs for choosing

an appropriate set of shocks are discussed. These methods are applied to a bivariate series

comprised of daily changes in the Standard and Poor's composite price index and daily

NYSE transactions volume from 1928 to 1987. The findings from these data are: (i) The

multi-step ahead conditional volatility profile exhibits a symmetric response to both positive

and negative price shocks. In contrast, the conditional volatility profile of the univariate

price change process exhibits an asymmetric reeponse. (ii) The one-step ahead response of

volume to price shocks is different than the ahead response. Price shocks produce

an increase in volume one-step ahead but decrease it in subsequent steps. (iii) There is little

evidence for long-term persistence in either the conditional mean or volatility of the bivariate

process.
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1 Introduction

The probability distribution of a strictly stationary, possibly nonlinear process, is completely

summarized by its one-step ahead conditional density function. From the nonparametric

perspective, the conditional density represents the process and is the fundamental object of

interest. Economic issues related to predictability, volatility, and other properties of the time

series are most naturally thought of as relating to characteristics of the conditional density.

Statistical tests of an economic model may be regarded as checks for how well the model's

description of selected characteristics of a process match those of the conditional density.

For a linear process with homogeneous errors, there is a comprehensive tool kit of meth-

ods for exploring the dynamics of a process and comparing them to the predictions of an

economic model. A central component of this tool kit is the impulse-response or "error

shock" methodology put forth in Sims (1980) and refined by Doan, Litterman, and Sims

(1984) and others. The key idea of impulse-response analysis is to trace through the system

the effects of small movements in the innovations, or linear combinations of the innovations.

There are various graphical and numerical techniques for tracing through the effects of inno-

vations. These techniques provide a means for exploring the characteristics of the conditional

density, which can be quite complicated even iv/linear processes.

There are some extensions of these ideas: Using a recursive system of GARCH models,

Engle, Ito, and Lin (1990), perform an error shock analysis of the effects of price shocks

on subsequent volatility. GARCH models have additive innovations defined by a linear

difference equation.

In this paper, we outline a strategy for performing an impulse-response analysis of non-

linear time series models. For the general nonlinear model, it is not possible to define an

innovation and compute the impulse-response function in the manner advocated by Sims.

However, the dynamic properties of the nonlinear model can be elicited by perturbing the

vector of conditioning arguments in the conditional density function. The dynamic response

to the perturbation can be traced out by computing multi-step ahead forecasts of the condi-

tional mean and conditional variance functions. The method can also be applied to general

functions such as those used to study turning points.
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If the time series is multivariate, then it is important to design a series of perturbation

experiments which take into account the contemporaneous relationships between series. It

may be unrepresentative to perturb one of the variables in the conditioning set without

simultaneously adjusting the values of others. Because the interpretation of a direct pertur-

bation to conditioning variables is somewhat more transparent than perturbing the errors of

a linear system, it can be easier to layout a representative experimental design in the space

of conditioning variables than in the space of additive errors to a linear system.

Nonlinear impulse-response analysis, as described above, involves a comparison of a con-

ditional moment profile to a baseline profile. A conditional moment profile is the forecast

made at time t of the time t + j value of a time-invariant function regarded as a function

of j. Equivalently, a conditional moment profile is the conditional expectation evaluated at

time t of a time-invariant function evaluated at time t + j regarded as a function of j. Other
conditional moment profiles are of interest. In particular, bundles of long-term profiles run

out from a subsequence of data points from the sample can be examined for evidence of

persistence. The statistical significance of a conditional moment profile can be assessed by

comparing a sup-norm confidence band on the profile with a null profile.

The methods we propose require a means TO sample the estimated conditional density

efficiently. Having an efficient algorithm to sim-llate a sample path, a conditional moment

profile can be obtained by running a time-invariant function out over many simulated sam-

ple paths and then averaging. Bootstrap estimates, which are used to compute sup-norm

confidence bounds on profiles, are obtained by simulating the sample path of the entire data

and re-estimating the density.

We apply these ideas to the conditional density that was estimated using the SNP method

by Gallant, Rossi, and Tauchen (1990) from a bivariate series comprised of daily changes in

the Standard and Poor's composite price index and daily NYSE transactions volume from

1928 to 1987. They examined the one-step ahead conditional density with the conditioning

arguments set at their unconditional means. Here, we perturb the vector of conditioning

variables away from the mean and trace out the effect of perturbations upon multi-step ahead

conditional mean and volatility profiles. Also, we examine bundles of long-term conditional

mean and volatility profiles for evidence of persistence. Of particular interest to researchers
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in finance is the effect of shocks on subsequent price volatility and volume.

The organization of the paper is as follows. Section 2 outlines a nonlinear impulse-

response methodology and discusses computations. Section 3 applies these methods to an

AR(l) model with ARCH(l) errors to provide a comparison with existing methods for lin-

ear difference equations. Section 4 presents the application to the price and volume data.

Section 5 summarizes the conclusions of the study.

2 Impulse-Response Analysis of Nonlinear Models

Let with YtfRM be a strictly stationary process with a conditional density function

that depends upon at most L lags. Denote the L lags of Yt+I by Xt = ... E RML

and write f(Yt+llxt) for the (one-step ahead) conditional density. Due to the strict station-

arity assumption, the functional form f(Ylx) of the conditional density does not depend on

the index t; that is, the density is time invariant.

In this section we shall describe strategies for eliciting the dynamics of the process {Yt} as

represented by f(Ylx). To provide a familiar framework, we first summarize VAR error-shock

analysis. We then discuss conditional mean profiles, which are closely related to VAR error

shock analysis. Next, the ideas are extended t - .:onditional volatility profiles, which are of

particular interest to the finance literature. In the remaining subsections we discuss general

conditional moment profiles, computational issues, sup-norm confidence bands, and profile

bundles.

Because it is critically important to differentiate between one-step ahead and multi-step

ahead conditional moments, the terminology throughout the remainder of the paper adheres

to the following conventions. One-step mean is short for the "one-step ahead forecast of

the mean conditioned on the history of the process" which is £ (Yt+I I{Yt-dk::o) in general or
£(Yt+I I{Yt-k}r;d) for a Markovian process as above. Similarly, the one-step variance, also
called the volatility, is the one-step ahead forecast of the variance conditioned on history;

that is

or Var(Yt+I for a Markovian process. With respect to a conditional moment
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profile

j = 0,1,2, ..
the word moment refers to the time-invariant function g(Y-J, .. . ,Yo). Thus, the term con-

ditional mean profile is short for "the conditional moment profile of the one-step mean"

and conditional volatility profile is short for "the conditional moment profile of the one-step

variance" .

2.1 VAR Error-Shock Analysis

Since Sims's (1980) paper, impulse-response functions have been widely used to study the

dynamics of a linear process. Briefly, the ideas are as follows.

Suppose

where A(£) = I - L:t=l Ak£k, is a matrix polynomial in the lag operator £ and is

a sequence of iid innovations with mean CUt = 0 and variance matrix Var(Ut) = = n.
Suppose also that A(£) is invertible so that

where B(£) = [A(£)]-l = Bk£k. Denote the iph element of B(£) by Bij (£) =

bijk£k. The sequence can be viewed as the dynamic response of the ith

variable to a one-unit movement in the ph element of the innovation vector Ut.

The sequence can be computed as follows: Put Yt = 0 for negative t. Put

Yo = for t = 0, where is a vector with 1 in the ph position and 0 in the others. Iterate

the difference equation Yt = AsYt-s over positive t. The ith element of the sequence

is the sequence {bijdk:o' This method is a well known computational technique for

obtaining the iPh element of [A(£)]-l.

For later reference, note that due to linearity one could also compute as follows:

Let be an arbitrary sequence. Set Yd = yg + for t = 0 and yt = for negative

t. Iterate the difference equations Y? = AsY?_s and yt = Asyts for positive t. Put
A A+ AOYt = Yt - Yt·
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Also for later reference, note that fit is the conditional mean of the process with

initial conditions By the law of iterated expectations, yt is also the forecast of
the one-step mean t'(Yt+lI{Yt-i given initial conditions

In applied work, the contemporaneous covariance matrix f2 of the linear system is usually

not diagonal. In this case, a perturbation of one unit in Uit holding the other elements of Ut

constant is not considered representative of the typical shocks that impinge on the system.

Common practice in the literature is to restrict attention to orthogonalized shocks. An

orthogonalization is obtained by choosing a lower triangular matrix H such that Hf2H' = I,

and writing Yt = B*(£)u;, where B*(£) = B(£)H-I, and u; = HUt. The iph element

of B*(£) represents the response of variable i to orthogonalized innovation ujt, which is a

linear combination of the elements Ut. As is well known, in the absence of a priori information

about causality patterns, there is no unique way to perform this orthogonalization.

In the general nonlinear case, there is no direct way of perturbing an innovation and

tracing through the effects of the perturbation. However, if instead of viewing perturbation

of Ut as the primitive concept, the computational technique of perturbing Yo is viewed as the

primitive then the ideas extend directly, as we shall see in the subsections that follow.

As with VAR error shocks, issues arise the task of obtaining realistic shocks in
-'

the case of multivariate data. These issues are Lddressed more fully in Subsections 4.2 and

3.2. The strategy, which is rather different than orthogonalizing innovations, uses graphical

methods to develop an experimental design for the shocks.

2.2 Conditional Moment Profiles - Means

Consider the general case in which {Yd is a stationary process represented by the one-step

ahead conditional density f(ylx). Define the conditional mean profile correspond-

ing to initial condition x by

Yi(x) t'(Yt+ilxt = x)

Jyfi(Ylx) dy
where Ii (ylx) denotes the j-step ahead conditional density

i-I
fi(Yil x ) = j···j[nf(Yi+lIYi-L+l, ... ,YdJdYI ... dYi- 1

1=0
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with x = . (If a dummy variable of integration coincides with an element of
X, that integration is omitted.)

In empirical work, ji(ylx) is approximated by using a nonparametric estimate j(ylx) in

place of j(ylx). Given an efficient algorithm for sampling j(ylx), Yj(x) is easily computed

using Monte Carlo integration as discussed in Subsection 2.5 below.

Recall the interpretation of x = ... : Yo E RM represents a contem-

poraneous value, the y-k E RM , 1 ::; k ::; L - 1, represent lags. Let 5y+, 5y-ERM represent

small perturbations to the contemporaneous Yo where 5y+ is "positive" and 5y- is "negative"

in a sense to be made precise later. Put

Thus, x+ is an initial condition corresponding to a positive impulse or shock 5y+ added to

contemporaneous Yo, x- corresponds to a negative impulse, while XO represents the base case

with no impulse.

Now put

A+ Yj(x+)Yj
AO Yj(XO

)Yj

Yj Yj(x-)

for j = 0,1,2, .... The conditional mean profiles and are forecasts

of subsequent Yt+j for each of these three initial x values. The profile is the baseline

forecast.

A natural definition of the nonlinear impulse response is the net effect of the impulse

5y+ (or 5y-). The net effect is obtained by comparing the profile for 5y+ (or 5y-) to the

baseline. Specifically the sequence, {Yf - represents the net response to the positive

impulse while {yj - represents the net response to the negative impulse. The impulse

responses depend upon the initial x, which reflects the nonlinearities of the system.
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Tracing out the impulse responses of a nonlinear system in this way is the exact ana-

logue of VAR error-shock analysis as was noted in the remarks regarding computations in

Subsection 2.1.

For multivariate nonlinear impulse-response analysis, the same Issues arIse as III the

linear case regarding the contemporaneous correlation structure among the variables. To be

concrete, suppose 8y+ contains a perturbation of unity for the first variable, so one is tracing

out the effects of a shock in the first variable. For the impulse responses to be realistic, the

remaining elements of 8y+ should be adjusted to take account of contemporaneous covariance.

One possible way to do this would be to enter for the remaining elements their predicted

values given the movement in the first variable. These can be calculated either from linear

projections, as in Sims (1980), or from the conditional expectations implied by the fitted

density of the data.

An alternative, which is used in Subsection 4.2 below, is to inspect a scatter plot of the

data cloud {Yd and visually determine shocks 8y+ and 8y- that appear typical relative to

the historical dispersion of the data. This strategy is available for two or three dimensional

data, but of course will not work directly for four or more dimensions. An interesting topic

for future research is explore the feasibility of using cluster analysis to determine reasonable
.J

shocks from higher dimensional point douds. 'Jf particular interest might be the robust

clustering strategies of Liu (1990).

2.3 Conditional Moment Profiles - Volatility

So far we have only considered tracing out the effects of shocks on the means of subsequent

y's. But there are macro and finance applications where one is interested not only in the

effects of shocks on the means of subsequent y's but also the effects on subsequent volatility.

In financial applications, for instance, y is a price change, which is nearly unpredictable,

but large price swings have strong implications for subsequent volatility (see Nelson, 1990a,

Bollerslev and Engle, 1989, and the references therein). In macro applications, one might be

interested in the effects of monetary disturbances on subsequent output volatility.

In the familiar case of a model that has a notion of an innovation, such as a VAR

A(L )Yt = Ut
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volatility is defined as the one-step variance of the innovation Ut. This is the concept usually

applied to ARCH and GARCH specifications of {ud. The one-step variance of Ut is, of

course, the same as the one-step variance of Yt+I which is computed as

Var(Ylx)

£(ylx)

J[y - £(Ylx)][y - £(ylx)], f(Ylx) dy
Jyf(Ylx) dy

It is of interest to trace out the effects of a shock on subsequent volatility by extending

the analysis above. To do so, note that the law of iterated expectations disguised the fact

that it is actually the effect of a shock on the one-step mean £(y Ix) of Y that is traced out

in Subsection 2.2. That is, Yj(x) = £[£(Yt+j !Xt+j-dlxt = x] and a conditional mean profile

is actually a forecast of the one-step mean of Y given contemporaneous x. The extension to

volatility is immediate.

Define

Vj(x) - £[Var(Yt+j IXt+j-dlxt = xl
j-l- J...JVar(YjIYj_I_L, .. . ,Yj-I)[J] f(Yi+lIYi-L+I, ... , Yi)] dYI ... dYj
1=0

for j=1,2, ... where x = ... , (If a uu!nmY variable of integration coincides with

an element of x, that integration is omitted.) Vj (x) is the forecast of the one-step variance
(or variance matrix) j steps ahead, conditional on Xt = x.

The analysis proceeds as before. XO defines baseline initial conditions, x+ corresponding

to a positive impulse or shock by+, and x- a negative impulse by-. The net effect of an

impulse is assessed by plotting its profile relative to the baseline. Examples are presented in

Subsections 4.1 and 4.2.

The conditional volatility profile, is different from the path described by the

j-step ahead mean square error of the process which is defined by

The contrast is best seen by writing

£{[Yt+j - £(Yt+jlxt+j-d][Yt+j - £(Yt+jlxt+j-dJ'/xt = x}

£{[Yt+j - £(Yt+jlxt)][Yt+j - £(Yt+jlxt)]'lxt = x}
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Thus )l;(x) and Mj(x) are seen to differ only in the centering for a mean square error

computation. The conditional volatility profile is centered at £(Yt+jlxt+j-t}, while thej-step

ahead mean square error is centered at £(Yt+j IXt).

Which concept is of primary interest depends upon the character of the application. The

conditional volatility profile appears to be the one better suited for studying the structure of

the second moment properties of the process separately from first moment properties. This

intuition is based on examples from parametric models (see Section 3) and the identity
i-I

Mi(x) = Vi(X) +L £{[£(Yt+ilxt+k) - £(Yt+ilxt+k-t}H£(Yt+ilxt+k) - £(Yt+il xt+k-t}l'IXt = x}
k=1

Thus, Mj(x) is a confounding of Vj(x) with the variability of the conditional expectation of

Yt+j as information accumulates between times t and t +j - 1. This confounding co-mingles
first and second moment characteristics of {Yd, which complicates the task of understanding

the second moment properties of the process.

On the other hand, for analyzing the properties forecasts of Yt+i given the history of the

process up through time t, Mj(x) would be the appropriate concept. This type of analysis,

while important in some applications, is of secondary interest in this paper.

2.4 Conditional Moment .- General Functions

The extension of the preceding analysis, which only considers the first two conditional mo-

ments of Yt, to general, possibly nonlinear, functions is straightforward.

Let g(y-J, Y-J+t, ... ,Yo) denote a time-invariant function of a stretch of y'8 of length

J + 1. Put

9i(X) £[g(Yt+j-J, ... ,Yt+j)lxt = x)]
j-lJ...Jg(Yj-J,···, Yj)[J1 f(Yi+t IYi-L+l,"" Yi)] dYl ... dYj
1=0

for j=O,l, ... where x = . , yb),. (If a dummy variable of integration coincides with
an element of x, that integration is omitted.)

The profiles and are the forecasts of g'8 starting

from the initial conditions x+, xo, and x-, respectively. Profiles compared to baseline
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are the dynamic impulse responses of g(Yt-J+j, Yt-J+j+l,"" Yt+j) to shocks by+ and by-.

This general setup subsumes a wide variety of cases. By suitably defining the function

g, it covers the earlier cases where the impulse responses are defined for the one-step means

and variances. Another potential application is turning point analysis. Under one notion of

a downturn, the function

g(Yt-3, Yt-2, Yt-b Yt) = I(Yt-2 Yt-3, Yt-l < Yt-2, Yt < Yt-d

where 1(.) is the zero-one indicator function, takes the value unity if a downturn occurs

between t-3 and t. Hence, a forecast of g(Yt-3+j, Yt-2+j, Yt-l+j, Yt+J, j 1, is the conditional

probability of a downturn between t - 3+ j and t+j. Examination of the impact that shocks
to Yt have on these conditional probabilities can possibly provide insight in the character

of business cycle fluctuations and, in particular, insight into the asymmetric character of

business cycles.

2.5 Computations

In general, analytical evaluation of the integrals in the definition of a conditional moment
j

profile is intractable. At the same time, though, evaluation is well suited to Monte Carlo

integration. The steps involved in Monte Carlo integration are outlined for the general case.

Specialization to conditional mean and volatility profiles is obvious.

Let r = 1,2, ... ,R, denote R simulated realizations of the process starting from
Xo = x. In other words, yr is a random drawing from f(Ylx) with x = yb),;

is a random draw from f(Ylx), with x = ... ,Yb, yr)', and so forth.

As above, g(Y-h ... ,Yo) denotes a time-invariant function of a stretch of {Yd of length

J +1. Then

with the approximation error tending to zero almost surely as R --t 00, under mild regularity

conditions on f and g.
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2.6 Sup-Norm Confidence Bands

The significance of a profile (or of a linear combination of profiles) may be assessed by

comparing its sup-norm confidence band with a null profile. A null profile describes a null

response to an impulse and would usually be a horizontal line through zero or some other

unconditional moment. If the band includes the null profile, the effect of the impulse is

judged insignificant.

Sup-norm bands are constructed by bootstrapping: Additional data sets of the same

length as the original data are generated from the fitted conditional density j(ylx) using the

initial conditions of the original data. A conditional density estimated from each data set

and a profile computed from it. A 95% sup-norm confidence band is an E-band around the

profile from j(ylx) that is just wide enough to contain 95% of the simulated profiles.

To illustrate, consider setting a sup-norm band on a difference between conditional volatil-

ity profiles of the first element Ylt of Yt

j = 1, .. . ,J

as in Subsection 4.2. The computations proceed as follows. Let denote the r th

simulated data set from the conditional density l(ylx), r = 1, ... ,R, computed as described
j

in Subsection 2.5. In these simulations, i,he conditions x = .. . , are held the

same for each r whereas the seed of the random number generator is reset randomly for

each r. Let jr(ylx) denote a nonparametric estimate of f(Ylx) fitted to {yD. For each r,

the quantities NJ, j = 1, ... , J, are computed from jr(ylx) as described in Subsection 2.3.

Compute

M r = max IN! - Njl
for each r where N j is computed from j(ylx) as described in Subsection 2.3. Lastly, letting

MO.95 denote the 0.95 quantile of the sup-norm confidence bands on Nj are

fir ± Mo.95J

2.7 Profile Bundles

j = 1,2, ... ,J

Bollerslev and Engle (1989) develop interesting theoretical notions of co-integration and

persistence in variance. Following Bollerslev and Engle (1989), we will say that {Yd is not
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integrated in mean if

for all t

with probability one, where Ft is the sigma-field generated by {Yt-j The process is

integrated in mean if the condition fails. Similarly, the process is not integrated in variance

if

for all t

with probability one. The process is integrated in variance if the condition fails. The idea

is that the process is integrated in either mean or variance if the corresponding long-term

forecasts of the one-step mean or variance remain sensitive to the initial condition in the

limit as j 00.

For example, consider Yt+l = PYt + Ut+l where Yt is real valued and Ut is iid (0, 0- 2 ).

£[£(Yt+jIFt+j-dIFt]= pjYt. For 0 < P < 1 a plot against t + j will damp toward zero; for
P= 1 a plot will remain at Yt indefinitely.

These notions suggest a strategy for checking for integration in mean or variance. Namely,

look for excessive sensitivity to initial conditions in both the conditional mean profile

and the conditional volatility prof' J Given that the notion of a

unit root is intrinsically a linear concept, this seems to be the only practical strategy for

investigating issues of integration in a model fitted to a general nonlinear process.

A reasonable empirical strategy for checking the sequences and for

excessive sensitivity to initial conditions is to over-plot profiles for sequences over a wide

range of x values and see whether the thickness this bundle of overplotted profiles tends

to collapse to zero or retain its width indefinitely. In a sample large enough to permit

nonparametric estimation of j(Ylx), the {xtl sequence

( , ')'Xt = Yt-L+l'···' Yt t = L,·· ·,n

obtained directly from the data should provide an adequate range of values. An application

is in Subsection 4.3.
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3 Examples Based on Parametric Models

This section uses a familiar parametric model to examine the properties of the concepts

introduced in Section 2 and discusses implications for nonlinear impulse-response analysis.

3.1 AR(l) with ARCH(l) Errors

Following Engle (1982), suppose

Yt+1 = )..Yt + Ut+1

where {Ut+d are N(O'O";+1) variables such that

and where -1 < ).. :::; 1, a > 0, and 0 :::; a :::; 1. The mapping to the notation of Section 2 is:

Xt = (Yt-l, Yt)'; x = (Y-ll Yo)'; and the perturbed and baseline initial conditions are x+ =

(Y-ll Yo + 8y+)', x- = (Y-l, Yo + 8y-)', and XO = (Y-ll Yo)', respectively, with 8y- = -8y+.

For this model, a reasonable notion of the typical dynamic response of the one-step mean

to a unit shock 8y+ = 1 is the sequence Similarly, a reasonable notion of the typical

dynamic response of volatility to a unit shock is the sequence {ai As we shall see,
j

for the AR(l) model with ARCH(l) errors, the impulse-response sequence for a unit shock

is regardless of initial conditions. If the baseline initial condition is appropriately

chosen, then the volatility impulse-response sequence to a unit shock is as well.

The AR(l) part of the model determines the conditional mean profile which is fli(x) =

)..i yo . The corresponding impulse-response sequences are fI; - flJ = )..i 8y+, and flj - flJ =

)..i8y-. The response is symmetric; that is, fI; - flJ = -(flj - flJ).
Both the AR(l) part and the ARCH(l) part determine the conditional volatility profile

which is
O<a<l

The corresponding impulse-response sequences are
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The volatility impulse-response sequences depend upon the initial XO = (Y-l, Yo), and are

not symmetric, which reflects the nonlinear character of the process. However, if the initial

condition is the unconditional mean XO = [£(y), £(y))' = (0, 0) and tSy+ = -tSy- = 1, then
vt - VJ = VT - VJ = ai, the anticipated pattern for the typical response of volatility to

shocks in the ARCH(l) model.

Basic calculations show that if baseline XO were drawn randomly from the unconditional

distribution of Xt, then £Avt - VJ) = ai, where the expectation is with respect to the

unconditional distribution of Xt, f(xt). To put this another way, if the sequence {vt -
were computed for a large number of XO drawn randomly from f(xt)' then their average would

also plot, approximately, as {ai In this sense, the average of the volatility impulse

responses equals what one anticipates for the typical response of volatility ARCH(1) model.

Interestingly, then, for the ARCH(1) model, it makes no difference whether one first sets

XO = £(x) and computes the impulse-response sequence {vt - or whether one draws

xO randomly from f(xt) and then averages the impulse-response sequences. Either way de-

livers as the response to a unit shock. This equivalence is due to the linear-quadratic

structure of the ARCH(l) model. It extends directly to general ARCH and GARCH models,

but not to other models of conditional heteroskedasticity with different functional forms.
,)

The characteristics of the profile bundles to check for integration in mean or variance

are determined as follows:

Jim {Yi(Xtl) - Yi(Xt2)}
) .....00

lim {VAxtJ - Vi (XtJ }
) .....00

(Ytl - Yt2) Jim >.i
) ..... 00

[(Ytl - >'Y t l_d2 - (Yt2 - >'Yt2_d2] Jim ai
) ..... 00

The profile bundles for the mean will thus reveal long-term dependence on the initial condi-

tion when>. = 1 and will not otherwise. Likewise, the profile bundles for the volatility will
show long-term dependence if a = 1, which is integration in variance, and will not otherwise.

By putting a = 0 in the variance equation 0-;+1 = a +au; so that 0-;+1 = 0-2 = canst,

the contrast between a conditional volatility profile and a j-step ahead conditional mean

square error path becomes readily apparent. With this restriction, the conditional volatility

profile becomes Vi(x) = 0-2 , for all j, and the corresponding impulse-response sequences are

such that vt - VJ = VT - VJ = 0, for all j. The conditional volatility profile and impulse-
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response sequences do not depend upon j and will plot as horizontal lines. By way of contrast,

the j-step ahead conditional mean square error path is M j = £ {[Yt+j - £(Yt+jIXt)]2Ixd =

a2(1- )..2j )j(1 - )..2) if )..2 < 1, and Mj = a2j if )..2 = 1. The dependence ofM j on ).. reflects

the confounding of mean and variance parameters characteristic of the j-step ahead mean

square error path.

3.2 Computing Typical Impulse-Response Sequences

Unlike a linear model, the impulse-response sequences of a nonlinear model depend upon the

conditioning argument XO used as the initial condition. It is clearly impractical to report the

impulse-response sequences for many different xO, and it is desirable to report the "typical"

or average impulse-response sequences. There are two basic strategies for accomplishing this

averaging. One is to use £(Xt) for xO and start the impulse responses from that point; this

is the strategy employed in Section 4. The other is to draw xO randomly from the marginal

density of Xt, compute the impulse-response sequence for each simulated xO, and then average

the sequences over the drawings. For an ARCH model these two strategies are equivalent, as

noted in Subsection 3.1. In general, though, the strategies can be expected to give somewhat

different pictures of the typical impulse-response sequence. The strategies differ in the orders
.I

in which the operations of function evalua.tion and integration take place. Neither strategy

dominates the other, and there are advantages and disadvantages to each.

An advantage of the first strategy, which simply sets XO = £(x), is that it ensures that

the conditioning vector lies near the center of the data where the conditional density is most

precisely estimated. Also, it is far less computationally demanding than the second. On the

other hand, as noted in the discussion of Figures 5 through Figure 7 below, the baselines

for the volatility and volume panels show upward drift. The baseline drift is due the fact

that a vector with all elements constant represents an abnormally calm period in terms of

market volatility. The second strategy will not show such baseline drift, and in that sense

might come closer to providing a typical impulse response. But, this strategy is considerably

more demanding computationally and, in particular, sup-norm confidence bands are beyond

the reach of current equipment. In addition, the second computation is arguably less robust

because it will be influenced be extreme x's.
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There are some interestingly possibilities for modifying and extending the second ap-

proach. Rather than drawing the X'S from the marginal stationary distribution and then

applying the shock to each draw, we could search through the data for x configurations

"close" to the perturbed unconditional mean vector. We could then average the conditional

moment profiles over these x configurations.

No matter what, the computational demands of averaging over many possible x vectors

are potentially very great. For each x vector, we must compute the conditional moment

profile by Monte Carlo integration. In addition, the parametric bootstrapping would require

the same n-fold increase in computations where n is the number of x configurations sampled.

With our existing computing equipment it would be difficult to compute conditional moment

profiles for much more than 50 configurations.

4 Applications: Stock Price and Volume Dynamics

A thorough review of the literature on the contemporaneous price-volume relationship is

in Karpoff (1987). This literature documents a positive correlation between volume and

the magnitude of price changes and a peaked and thick tailed price change distribution.

Bollerslev, Ray, Jayaraman, and Kroner (19!Y'; review the literature on the dynamics of

volatility. That literature finds persistent volatility when past prices are the only conditioning

variables. Gallant, Rossi, and Tauchen (1990) study the one-step ahead conditional density

of price change and volume. They find that large price movements are followed by large

volume one-step ahead. They also find that the "leverage effect" (asymmetry of the one-

step ahead forecast of the variance when plotted against contemporaneous price) is sharply

attenuated when volume is modeled jointly with prices. From an economic perspective,

the empirical findings established in this literature represent the stylized facts that a fully

articulated, general equilibrium model will have to confront.

In this section, we extend these findings to multi-step ahead dynamics. Specifically, we

apply the methods suggested in Section 2 to the nonparametric estimate of the conditional

density f(Ylx) for stock price changes and volume obtained by Gallant, Rossi, and Tauchen

(1990) using the SNP method.

The data set consists of n = 16,127 observations, 1928-1987, on the daily logarithmic
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price change, D.Pt = 100[log(pt) -log(pt-d], where Pt is the Standard and Poor's Composite
Price Index, and on the logarithm of the daily trading volume on the NYSE, Vt. Both the

D.Pt and Vt series are adjusted to remove systematic calendar and trend effects, including a

quadratic trend for volume, and are reasonably taken as jointly stationary. For reporting

results, the D.Pt series is in units of percentage changes, that is, D.p = 1.0 is a a one-percent

movement in the index. The Vt series is in units of standard deviations relative to the mean,

so Vt = 1.0 means one standard deviation above the quadratic trend.
The SNP method, which is summarized in Gallant and Tauchen (1990), uses a Hermite

polynomial expansion to directly approximate the conditional density. The leading term of

the expansion is an ARCH. The higher-order terms in the expansion have coefficients which

are functions of the conditioning data. In this manner, the polynomial expansion allows for

shape deviations from normality and conditional heterogeneity of unknown form. Gallant

and Tauchen (1990) derive an efficient rejection method for sampling the fitted conditional

density.

Gallant, Rossi, and Tauchen (1990) applied the SNP technique to the univariate series

price change series alone, Yt = D.Pt, and to the bivariate series, Yt = (D.Pb Vt)'. The estimation

thus produces two fitted conditional densities, jtYt+llxt), one for the univariate series and the
.J

other for the bivariate series. In either case, tests and other analysis indicate

that a lag length of L = 16 is required to fit the data. Hence Xt is of length 16 in the

univariate fit and of length 32 in the bivariate fit.

4.1 Univariate Stock Price Dynamics

Figure 1 shows the dynamic impulse responses of future I::1p to shocks in contemporaneous

stock price; Figure 2 shows the corresponding impulse responses for volatility. Specifically,

Figure 1 shows the three profiles, {ilt, ilJ, ilj obtained by evaluating the sequence

j = 0,1,···.,20

at initial conditions Xt = x = x+, xo, x-, where the expectations are computed from the SNP

univariate estimate j(ylx). E(Yt+jlxt+j-d is evaluated analytically, E[ ·IXt = x] is evaluated
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by Monte Carlo integration. The initial conditions are

X+ (/lAP' /lAp, .. " /lAP)' + (0,0, ... ,5.0)'
XO (/lAp, /lAp," . ,/lAP)'

X (/lAp, /lAp," . ,/lAP)' + (0,0, ... ,-5.0)'

where /lAp = 0.0163 is the sample mean of the price changes, which is essentially zero on the
scale of the figures. The initial condition XO is thus the baseline where ClPt-i is pegged to

the mean for j O. The initial condition x+ corresponds to a five percent rise in the index

from t - 1 to t, starting from ClPt-i set to the mean for j < O. Similarly, x- corresponds to

a price decrease of five percent starting from the mean.

The two interesting features of Figure 1 are the extent to which the impulse responses

are symmetric about the baseline and heavily damped. These features suggests that the

conditional mean of the {ClPtl series exhibits essentially no interesting higher order structure

or serial dependence beyond lag one, and exhibits a mild linear dependence at lag one.

Figure 2 shows impulse responses of price volatility to these same three shocks. The

figure shows the three profiles, {Vf, VJ, VT for volatility. These profiles are obtained by

evaluating the sequence )

j = 1,2, ... ,20

at each of the three initial x values, x+, xo, and x-, defined above. Var(Yt+i !Xt+i-l) IS

evaluated analytically, £[ ·IXt = xl is evaluated by Monte Carlo integration. The impulse
responses shown in Figure 2 indicate a clear leverage effect in which the price decrease has

a larger effect on subsequent volatility than does the price increase. The wedge between

the effects of positive and negative price shocks remains until about 15 days after the initial

shocks. The responses also indicate that the effects of the price shocks on volatility are

exceedingly slowly damped relative to the baseline, which is very close to I-GARCH behavior

described by Bollerslev and Engle (1989). Note that the baseline shows a mild upward drift.

The reason is that for data displaying ARCH-like behavior, volatility will be atypically low

at an initial condition ClPt-i = /lAp, j 2: 1, which is more quiescent that usual. Hence

volatility must drift upwards from that point.
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4.2 Bivariate Price -Volume Dynamics

The next set of impulse-response simulations pertain to the effects that price and volume

shocks have on subsequent volatility and volume. These results are obtained from the SNP

fit to the bivariate series Yt = (!:lPt, Vt)', where a.s before !:lPt is the adjusted log daily price
J

change and Vt is the adjusted log daily vob.!me. 1',) ease interpretation, all results are reported

with Vt expressed in units of unconditional standard deviations.

A complicating factor for the bivariate error shocks is the contemporaneous volume-

volatility relationship. As is well known (Karpoff, 1987, Tauchen and Pitts, 1983), days

with large price movements in either direction are accompanied by higher trading volume.

This association is analogous in some respects to the contemporaneous correlation that

complicates linear VAR error shock analysis, as it should be accounted for in defining realistic

shocks to the bivariate system. It differs from the usual correlation, though, in that it relates

the variance of one of the variables, !:lPt, to the level of the other variable, Vt. There is

essentially no relationship between !:lPt and Vt.

Figure 3 is a scatter plot of the data, (!:lPt, Vt), which reveals clearly the contemporaneous

volume-volatility relationship. The triangular shape of the point cloud shows that days with

small price volatility tend to be days with lower than average volume, while days with large
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price volatility are high volume days.

The scatter plot is useful for defining shocks to prices and volume that are consistent

with the historical range of the data. In particular, the scatter plot suggests the following

design, with three types of error shocks labeled A, B, and C, is typical of the variation of

the data: j

by! 5.0, 2.0 )'

by;' (-5.0, 2.0 )'

(5.0, 0.0 )'

bYB (-5.0, 0.0 )'

(0.0, 2.0 )'

bYe (0.0, -2.0)'

The A shocks are combined price-volume shocks where the price movements are ±5.0

percent and volume is 2 standard deviations above its unconditional mean. The B shocks

are pure price shocks of ±5.0 percent with volume pinned at its mean. Finally, the C shocks

are pure volume shocks of ±2.0 standard deviations with no price movements. Figure 4 is a
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diagrammatic representation of the three types of shocks. Comparing Figure 4 to Figure 3

indicates that each of the three classes of shocks do occur in the data set. The comparison

also indicates that the layout of the design comes reasonably close to tracing out the extreme

edges of the point cloud in Figure 3.

The analysis reported here concentrates exclusively on the effects of shocks on the one-

step variance of t:i.Pt (volatility) and the one-step mean of Vt. The effects of price and volume

shocks on forecasts of t:i.Pt+j, j 1, are either very heavily damped, as in Figure 1 above,

or negligible, and thus are not reported. Price and volume shocks do affect the one-step

covariance of t:i.Pt+j with Vt+j and the one-step variance of Vt+j. But since these effects

are less interesting from an economic perspective than the direct effects of shocks on price

volatility and volume, they are not reported. Figures 5, 6, and 7 show the impulse responses

of price volatility and volume to A, B, and C shocks, respectively. The volatility responses,

shown in the top panels, are computed as

j=1,2,···,20

evaluated x+, xo, and X-. The volume responses, shown in the bottom panels, are computed

as

j = 0,2"",20

evaluated at the same three x's. For A shocks, the initial conditions are

... + (0,0, ... ,oy1')'
( " , )'Py,Py,···,Py

... + (0,0, ... ,oY"A')'

where is the sample average of the {Yd process. For Band C shocks, the initial conditions

are defined similarly with the appropriate oY in the rightmost place. Note that the shocks oY

were determined from inspection of Figure 3, and are at the extreme edges of an unconditional

point cloud. Relative to the conditional distribution of Yt+I given Xt at the means, these

shocks are even that much more extreme.

The three profiles shown in each of the panels of Figures 5, 6, and 7 are computed using

Monte Carlo methods as described in Subsection 2.5. The computation of £(Vt+jIXt+j_l) and
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IXt+j-l) are exact as a function of Xt+j-b but their forecasts given Xt = x must

be done by Monte Carlo. This type of analysis differs from Hardouvelis (1990), who uses

linear VAR analysis to examine the impulse responses of volatility and volume to changes in

legal margin requirement changes.

Inspection of Figures 5, 6, and 7 reveals four characteristics of the behavior of volatility

and volume dynamics. First, the asymmetry of volatility (leverage effect) is greatly attenu-

ated in the bivariate system, as can be seen by comparing the top panels of Figures 5 and

6 to Figure 2. This extends to multi-step ahead volatility the finding of Gallant, Rossi, and

Tauchen (1990), who detect attenuated leverage in one-step ahead volatility. Second, the

impulse responses of volume to volume shocks are symmetric and extremely slowly damped,

as can be seen in the bottom panels of Figures 5 and 7. Third, volume shocks have a very

small effect on subsequent price volatility, as is evident in the top panel of Figure 7. This

very mild feedback from volume to volatility is consistent with the R2 calculations of Gallant,

Rossi, and Tauchen (1990) and the findings of Schwert (1989). Fourth, pure price shocks,

that is, type B shocks, increase volume in the very short run but decrease volume over the

longer term, as can be seen in the bottom panel of Figure 6. The short-run positive effect

is evident in the work of Gallant, Rossi, and Tauchen (1990) who examine one-step ahead
)

volatility. The very slowly damped long-term negative effect is a new finding of this paper.

Of these four characteristics, the more interesting and novel are the first, which pertains

to long-term attenuation of leverage, and the fourth, which pertains to the contrast between

the short- and long-term effects of price shocks on volume. Figures 8 and 9 show 95 percent

sup-norm confidence bands around quantities relevant for these findings, and thereby provide

an indication of the statistical significance. Figure 8 shows a 95 percent confidence band

around the estimates

j = 1,2", ,,20

If the population volatility function is symmetric, that is, the leverage effect is absent, then

the above differences should be jointly insignificant. That is, the confidence bands should

include the horizontal axis, which is almost the case for the first few days after the shock

and is certainly true beyond day five or so.
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The confidence bands are 95 percent sup-norm confidence bands obtained by bootstrap-

ping the estimation as described in Subsection 2.6. Sup-norm bands have the appealing

property that they contain the entire function of interest with 95 percent confidence, and

are thereby more useful than bands obtained by plotting 95 percent pointwise confidence

intervals. Furthermore, being based on a boots ..I.p procedure, the bands do not require the

usual mean value (delta method) approximations of conventional asymptotics.

The top and bottom panels of Figure 9 show similarly constructed 95 percent confidence

bands around the effects of pure price shocks on volume relative to baseline. The top panel

shows

fJ.(x+) - fJ·(XO) ± f'j.0.95J B J B + j = 1,2", ',20

while the bottom panel shows

fJ.(x-) - fJ·(XO) ± f'j.0.95J B J B - j = 1,2,"',20

where the f'j.'s are computed as described in Subsection 2.6. The confidence bands indicate

that the short-run increase in volume generated by the price shock is marginally statistically

significant at the 95 percent level. On the other hand, the long-term decrease in volume is

more strongly significant.
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4.3 Persistence in Variance

An important issue in empirical finance is the character of the persistence of shocks to

volatility. As is well known (see Engle and Bollerslev, 1986), when a GARCH model is fitted

to short-term financial price movements, the implied volatility process looks integrated, or

very nearly so. Nelson (1990b) presents theoretical evidence that one should expect to see

a "unit-root" in variance as data are sampled more frequently, even if the true process is

stationary. His findings are the second-moment analogues of Sims's (1984) findings regarding

the martingale-like behavior of financial prices.

In Subsection 2.7 we described methods for studying persistence. We now implement

these ideas for the SNP model fitted to the bivariate price and volume process.

The top panel of Figure 10 shows overplots of conditional mean profiles for

x E {Xt : t = 28,156,284, ... ,16, 028}. Some subsetting of the 16,100 available x values is

needed to keep the plots from becoming overly dense. The choice of every 128th Xt, which

generates 125 profiles, was determined by experimentation. The middle panel of Figure 10

shows overplots of similarly constructed profiles for the volume. For each t, the profile is

computed out J = 100 steps.

The profiles for and v in Figure 10 sugg- that neither series is integrated. The

profiles are very strongly damped to the unconditional mean. The v profiles are much more

slowly damped, but still they seem to show convergence setting in after 100 days.

The bottom panel of Figure 10 shows the conditional volatility profiles

for x E {Xt : t = 28,156,284, ... , 16,028} which is the same set of x's used in the condi-

tional mean profiles. The volatility profiles suggest that shocks to variance are very slowly

damped, but do seem to die out. The volatility shows little evidence of integration 100 steps

out. While the bivariate fits do not exhibit much persistence in volatility, the conditional

volatility profiles of the univariate fitted SNP are unstable and persistent. The conditional

volatility profiles shown in Figure 2 for the univariate fit show no evidence of convergence

to the baseline. This evidence from the univariate fit is consistent with the findings of

researchers working with GARCH and E-GARCH models who find near unit-roots in the

variance equation for models fitted to asset returns series (see Bollerslev, Chou, Jayaraman,

and Kroner (1990) for an excellent survey of this work).
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Some caution should be exercised in interpreting our findings on persistence. The Marko-

vian structure of the SNP model allows for only a finite number of lags of the variables in the

conditioning set. To capture extremely long-run persistence may require a very large num-

ber of lags. Diagnostics performed by Gallant, Rossi, and Tauchen (1990) suggest that the

fitted bivariate SNP model fails to capture some of the movements of volatility at a yearly

frequency. However, evidence in Gallant, Rossi, and Tauchen (1990) shows that volatility

computed from the fitted bivariate SNP closely conforms to movements in volatility on a

monthly and shorter term basis. The bias against long-run persistence in the fitted model

may have some effect on the profiles computed for 100 days, although this bias is likely to

be quite small.

5 Conclusion

This paper considers strategies for examining the dynamics of a nonlinear time series process

as represented by a nonparametric estimate of the one-step ahead conditional density. For

Markovian models, the one-step ahead conditional density of the series given finite lags of

the past embodies all the information about the dynamics of the process. Three strategies

are examined in detail: The first is an exter··.)O of the error shock analysis applied in

conventional linear time series models. Multi-step ahead conditional moment profiles are

examined by comparing a profile to a baseline profile. The second assesses the significance

of a profile by comparing its sup-norm confidence band to a null profile. The third examines

profile bundles for evidence of damping or persistence. Experimental designs for choosing

an appropriate set of impulses are discussed. These strategies depend on efficient simulation

of long realizations of the process by drawing from the conditional density.

We apply these strategies to explore the multi-period dynamics of an SNP density fitted

to the bivariate process of the change in the Standard and Poor's stock price index and the

transactions volume on the NYSE. One finding is that the multi-step ahead volatility of price

changes responds symmetrically to positive and negative price shocks even though there is

some evidence that the one-step ahead response is asymmetric. Another is that the effects of

price shocks on the level of volume are different in the near and longer term. A price shock

induces a one-step ahead increase in volume followed by a long run decline in volume.
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Following Bollerslev and Engle (1989), persistence in variance is defined as the extreme

sensitivity of volatility to changes in initial conditions. Conditional volatility profiles up to

100 days ahead reveal that the effect of initial shocks damps off suggesting that volatility

changes are not very persistent in the fitted bivariate SNP model. This finding contrasts

markedly with the findings for both SNP and conventional parametric ARCH models fitted

to the univariate price change series.
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