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SUMMARY

The fixed parameters of the nonlinear mixed effects model and the density of the random
effects are estimated jointly by maximum likelihood. The density of the random effects is
assumed to be smooth but is otherwise unrestricted. The method uses a series expansion
that follows from the smoothness assumption to represent the density and quadrature to
compute the likelihood. Standard algorithms are used for optimization. Empirical Bayes
estimates of random coefficients are obtained by computing posterior modes. The method
is applied to data from pharmacokinetics, and properties of the method are investigated by

application to simulated data.

Some key words: Maximum likelihood; nonlinear mixed effects models; nonparametric; phar-

macokinetics.



1. INTRODUCTION

Data consisting of repeated measurements on each individual in a sample from a pop-
ulation arise in pharmacokinetics, pharmacodynamics, growth studies in agriculture and
medicine, labor economics, and other applications. In these applications, standard models
for the observations on a given individual are nonlinear in their parameters, as in the case
of poly-exponential pharmacokinetic models characterizing drug plasma concentration over
time. Although the functional form of the model remains the same for all individuals the
parameter values vary from individual to individual. Often, the objective of an analysis is to
characterize the population of these parameter values. Determination of parameter values
for a given individual may also be of interest, as in setting individual dosage regimens in
pharmacokinetics.

The nonlinear mixed effects model is a standard model for this situation. Intra-individual
variation is accounted for by the nonlinear model and a distribution for measurement error.
Inter-individual variation is accounted for by the assumption of a separate, random parameter
for each individual. Since this variation may partially depend on individual attributes, the
random parameters are often taken to be a function of these attributes, fixed effects, and
random effects. The distribution of the random parameters describes the population and is
of primary interest.

Estimates of the fixed effects and the first and second moments of the random effects are
often used to describe the distribution. Some methods taking this approach use individual
regression parameter estimates as building blocks (Steimer, Mallet, Golmard & Boisvieux,
1984; Beal & Sheiner, 1985; Racine-Poon, 1985; Davidian & Giltinan, 1993). Beal & Sheiner
(1982), Lindstrom & Bates (1990), and Vonesh & Carter (1992) suggest methods based on
linearization of the nonlinear mixed effects model in the random effects. Other methods
make distributional assumptions. For instance, Gelfand, Hills, Racine-Poon & Smith (1990)
describe a Gibbs sampling algorithm to generate samples of the random parameters based
on a full hierarchical Bayesian specification.

The estimation methods discussed above make a parametric assumption regarding the
distribution of the random effects, estimate only first and second moments, or require more
observations per individual than are often available. Features such as multimodality or
asymmetry will not be detected under standard parametric assumptions or from first and

second moments. A parametric specification that can represent these characteristics without



a priori knowledge of them is difficult. Therefore, it is important to have methods that can
estimate the entire distribution nonparametrically, even from sparse individual data (Mallet,
1986).

Mallet (1986) proposes a nonparametric maximum likelihood approach for estimating the
distribution of the random effects. The distribution is unrestricted. A side effect is that the
estimate of the distribution is discrete. The method is appealing since very little is assumed
about the form of the population distribution. However, as pointed out by Mallet, Mentré,
Steimer & Lokiec (1988), no estimates of the precision of the estimated population charac-
teristics or distribution are available, and a separate maximization is required to estimate
the fixed effects.

By sacrificing some generality in favor of a smoothness assumption, the density of the
random effects can be estimated jointly with the fixed effects by maximum likelihood, and
inference is possible. The method uses a series expansion that follows from smoothness as-
sumptions and that is due to Gallant & Nychka (1987) to represent the density and uses
quadrature to compute the likelihood. There is no reliance on linearizations or other ap-
proximations to the likelihood. Standard algorithms can be used for optimization. Empirical
Bayes estimates of random parameters are obtained by computing posterior modes.

In Section 2, we specify a general nonlinear mixed effects model which makes no paramet-
ric assumption about the form of the random effects distribution. In Section 3, we describe
the proposed estimation procedure. In Section 4, we illustrate the method by application
to data from a clinical study of neonatal population pharmacokinetics of phenobarbital. In
Section 5, we focus on the ability of the method to accurately track features of a population

such as bimodality by application to simulated data.

2. MODEL AND NOTATION

Observed responses y;;, 1 < 7 < J;, on individual 7, 1 < ¢ < n, at settings z;; of a
vector of covariates are assumed to follow the intra-individual nonlinear regression model
vi; = f(xij, B:) + €ij. The J; are bounded by some J < co. The total number of observations
is N=37"J.

The function f is known up to the unknown parameter (3; and the joint density of the

errors €, Pe(€ity ..., €ig |, ..., xig, 0, 3;) is known up to the unknown parameter (o, 3;); o

and J; are vectors of dimension p, and pg respectively. This specification is flexible enough



to accommodate general intra-individual heterogeneity, in particular heteroskedasticity and
correlation.

The pg-dimensional parameter [3; is random and follows the inter-individual nonlinear
regression model 3; = g(w;,v, z;), where the function ¢ is known, w; is a vector of individual
attributes, v is a p,-dimensional vector of unknown fixed effects, and z; is an M-dimensional
vector of inter-individual random effects with density .

We assume that h belongs to a smooth class H. The primary objective is estimation of and
inference regarding the random effects density h and the fixed parameters T = (y,0) € RF7,
pr = py + po. Once 7 and h are determined, the individual parameters 3; can be estimated
by empirical Bayes.

To summarize, the quantities of interest are 7° and h° that denote the true values of the
fixed parameters and random effects density respectively, 37, 1 <1 < n, that denote the
realized values of the random parameters, and 27, 1 < ¢ < n, that denote the realized values
of the random effects.

One approach to estimation of h° and 7° is by maximum likelihood. The log likelihood
is

(o) = 3 10g [ Pl v,
=1

where p(ym < Yig

Tity ooy Tigy, Wi, Ty 2) h(2) dz.

Tity ..., Tig, Wi, T, 2;) 1s the joint density of the observations on indi-

vidual ¢. This density may be obtained by substituting e;; = vi; — f{xi;, g(wi, v, z)} into

pel€ity € |Tin, .y i, 0,9(wi,y, z) } because the Jacobian of (e1,...,€;5) with respect
to (Y1, ..., ¥ig,) is the identity matrix of order J;. We estimate h? nonparametrically, simul-
taneously with 7°, by maximizing the likelihood over & in ‘H and 7 in RP7. The procedure

is described in the next section.

3. ESTIMATION METHOD

[

The maximum likelihood estimate of (79, h?), 70 = (4°,0°), may be computed as (7, iL) =
argming cper pey Sn(7, h), where s,(7,h) = (=1/N){(7,h). The empirical Bayes estimates of

the effects 27, 1 <1 < n, are computed as

LTily - - -aximeivf—?Z) iL(Z)

2, = argmax S 173 3
7 ng%M p(yllv s YiJ,

From these, the empirical Bayes estimates of the random parameters 87,1 < ¢ < n, are

obtained by evaluating BZ = g(w;,¥, %;). These computations require a characterization of



‘H, a convenient representation of A € H, and an accurate and efficient means to compute
integrals of the form [ (z)h(z)dz. These are the topics of this section.

We follow Gallant & Nychka (1987) who propose a nonparametric estimator of A specif-
ically designed to be used with maximum likelihood computations. Their class ‘H of smooth
densities is described in terms of a weighted Sobolev norm:

Sobolev norm. Denote a partial derivative of a function f(z) on RM by

D) = (3 -+ ;ug;)f(z),

where A = (Ay, ..., A\y). Letting [A| = 3, [Axl, the Sobolev norm of f with respect to a
weight function u(z) is

o = { X [ID1GPa)a}" 1 <p<o

[Al<m

[ fllmoo = max sup [D*f(z)]u(z).

The class H, which is assumed to contain h°, is defined as follows:

Parameter space H. For some integer mg > M /2, some bound By, some small ¢, > 0,
some dg > M /2, and some strictly positive density function hg with ||hol|me2, < Bo, let
H consist of those density functions h that have the form h(z) = f?(z) + eoho(2), with
N Mo .20 < Bo, where po(2) = (1 + 2'z)%.

In the definition of H, By is an upper bound that both imposes a smoothness restriction
on members of H and bounds the tails of densities in ‘H from above. The fattest tails
permitted by this bound are t-like with h(2) oc (1 + 2’2)7%~7 for some small > 0. The
smoothness restriction rules out kinks, jumps, and oscillatory behavior. It does not rule out
skewed, leptokurtic, platykurtic, or multi-modal densities. The highest reasonable value for
mo that one can assume for h° determines the number mqo — M/2 of derivatives of h? that
are estimated consistently.

The density hg is a lower bound that is imposed both to impose positivity and to bound
the tails from below. In theory, one would choose hg(z)aexp{—(z'z)'*"} for some small
n > 0 to allow H to contain densities with tails that are thinner than the normal density.

Tity o Tig,, Wiy T, 2) f2(2) dz that

In practice, simply add € to the integral [ p(yi1,...,yiJ,
is near the smallest value for which log ¢ can be computed without error; for example, € =
1x107%% on a machine with Institute of Electrical and Electronics Engineers double precision

floats.



Representation of h. Writing a monomial as z* = 21 - - - Z]AWM, a density from H has the

representation

where the term €pho(z) is omitted as we do in applications, na(-|y, 2) denotes the multi-
variate normal density, and R is an upper triangular matrix. Equality is in the sense of the
norm ||« ||;mo—ar/2,00,40 Where p(z) = (1 + 2'z)° for some M/2 < § < .

Write a truncated expansion as { Px(R™'z)}*nar(2]0, RR'), where Pr(z) = Y\<x ayz
denotes a polynomial of degree K on RM. The truncated expansion will be a density if the
coefficients {a, : 0 < |A| < K} are chosen so that [{Px(2)}?num(2|0,1)dz = 1. Equivalently,
put ag = 1 and write the truncated expansion as
hae(z) = {Px(R™2)}*na(2]0, RR’)‘

J{Pre (w) Pras (w0, 1) du

The denominator [{ Pk (u)}?nar(ul0,)du is a sum of products of the moments of the

univariate standard normal distribution and is easily computed. Let 0y be a vector
whose elements are the coefficients {a) : 0 < |A] < K} arranged in some order, let
02y = (711,712,722, 713, 723, 733, - - -, "), let 0 = (0(1),0(2)), and let py denote the dimen-
sion of the vector 8, which is determined solely by the degree K of Px.

Let K, represent some rule for choosing a truncation point in a sample of size n. For
example, K, might be a deterministic rule such as K, =n® for some 0 < a < 1, or K, might
be an adaptive rule. Examples of adaptive rules are upward significance testing (Eastwood,
1991) and model selection according to the Schwarz criterion (Potscher, 1989). When such
a rule has been specified, the h component of the maximum likelihood estimator (7, iL) =
argmin, cqe- pey Sn (T, hKn), is a nonparametric estimator of A°. If lim,_ ., R’n = oo almost
surely then lim,, .. ||7 — 7°]| = 0 and lim,,—«. WL — P)|mg=M/2,00,0 = 0 almost surely (Gallant
& Nychka, 1987). The consistency norm || - ||, — /2,00, 15 @ strong norm. Convergence with
respect to this norm implies that the derivatives of A%, moments of ~°, and other functionals
such as o(h) = [¢(2)h(z)dz or o(h) = max, h are estimated consistently.

If h° satisfies [z h°(z)dz = 0 then this constraint may be imposed on h without altering
the consistency result. For K > 0, the off-diagonal elements of R can be constrained to be
zero which attenuates estimated correlations but does not affect the consistency result.

A direct consequence of the series representation of A° and the fact that adaptive rules are

permitted is that the bound By that appears in the definition does not need to be imposed



on the estimate. This implies that K is the sole tuning parameter of the nonparametric
estimator. Gallant & Nychka (1987) termed this estimator seminonparametric to suggest
that the method lies midway between parametric and nonparametric methods: standard
parametric algorithms are used yet the method has nonparametric properties. SNP is the
acronym.

The optimization problem (%,it) = argmin, cper pey Sn(7, by, ) is exactly the same as
occurs in standard, finite dimensional maximum likelihood estimation. As the derivatives
of hx are easily obtained, standard algorithms such as NPSOL (Gill, Murray, Saunders
& White, 1983) may be used to fit either the constrained or unconstrained version of the
problem.

Confidence intervals can be computed for the elements of 7 and functionals o(h) of h
using maximum likelihood formulae since o(hx) will be a function of 6; for example, if
o(h) = [ 2 h(z)dz then o(hy) is the ratio of two polynomials in f. In simpler settings than
the one considered here, confidence intervals constructed from truncation estimators in this
fashion are asymptotically correct (Andrews, 1991; Eastwood & Gallant, 1991; Eastwood,
1991; Gallant & Souza, 1991). Simulations by Eastwood & Gallant (1991) suggest that
deterministic rules such as K, = n® do not yield accurate confidence intervals in small
samples, because they do not use the sample information to adapt to the roughness of A°,
whereas adaptive rules do.

Most adaptive rules are based on criteria that pick the value of K that minimizes an
expression of the form s, (7, fALK) + ¢(N)(pret/N ), where pyetr = pr + pg — 1 if the constraint
[ zh(z)dz = 0 is not imposed and ppe: = pr + po — M — 1 if it is. The term ¢(N)(ppet/N)
is a penalty factor designed to compensate for small s,(7, iLK) achieved by fitting an over
parameterized model.

These criteria have been extensively studied when (—N)s,(7, iLK) is replaced in the ex-
pression above by the optimized log likelihood of a linear regression model F(y;) = 2.3 for
which the rule of formation (w1, %2,..., ;) = ) of the regressors is known, as in the case
of lags in time series analysis or the case of successive terms of a Fourier series expansion.
For the formula that converts a rule based on the residual sum of squares to a rule based
on the log likelihood see Gallant (1987, p. 366). Under standard regularity conditions with
the true value of p assumed to be finite, any criterion that satisfies lim, . ¢(N)/N = 0

will not underfit in large samples (Potscher, 1989). When the true value of p is assumed to



be finite but standard regularity conditions are violated because (1/N) X, 2zt does not

converge to a constant, the largest penalty factor that does not underfit in large samples
is ¢(N) = (1/2)log N which corresponds to the Schwarz criterion (Potscher, 1989). Under
standard regularity conditions with the true value of p assumed to be finite, the smallest
penalty factor that does not overfit in large samples is ¢(/N) = log log N which corresponds to
the Hannan-Quinn criterion (Hannan, 1987). If p is assumed to be infinite, the penalty factor
that adds terms at an optimal rate puts ¢(/N) to a constant which is the Akaike criterion
when ¢(N) =1 (Eastwood & Gallant, 1991; Eastwood, 1991).

Our recommendation is to inspect plots such as Figure 2 and 3 for all models between
those chosen by the Schwarz and Akaike criteria inclusively and make a visual selection. We

cannot state the case for visual inspection better than Silverman:

A natural method for choosing the smoothing parameter [K] is to plot out several
curves and choose the estimate that is most in accordance with one’s prior ideas
about the density. For many applications this approach will be perfectly satis-
factory. Indeed, the process of examining several plots of the data, all smoothed
by different amounts, may well give more insight into the data than merely con-

sidering a single automatically produced curve. (Silverman, 1986, p. 44)

If one insists upon an automatic selection rule we recommend the Hannan-Quinn criterion
because, upon checking several published time series applications of Hermite expansions, we
found that the Hannan-Quinn criterion usually selected the same model that the authors of
these articles had selected after extensive diagnostic testing. The Schwarz criterion nearly
always chose a smaller model than the authors and the Akaike criterion nearly always selected
a larger model.

As pointed out by a referee, one can also use a mixture of seminonparametric densities
weighted by a prior distribution on K if desired.

One structural aspect of the truncation estimator iy deserves comment. If K = 0 then
hg is the normal density; that is, the normal density is the leading term in the expansion of
h°. This is a substantial advantage in applications, especially in high dimensional applica-
tions, where the normal distribution is a reasonable first approximation making the estimator
hy an ideal candidate for nonparametric time series analysis, which is where it has seen most

frequent use. See Gallant, Rossi & Tauchen (1992), for a time series application in which



the estimated density receives an extensive graphical examination; see their references for
additional applications and comparisons with other nonparametric estimators. Also, the fact
that the leading term of the series is the normal density provides a convenient means to test
the hypothesis that 4° is normal. One can compare the optimized likelihood for K > 0 with
that for K’ = 0 using one of the model selection criteria discussed above or the asymptotic
x? test. The asymptotic x? statistic for a choice between specifications Ky < K4 having
Prnet = pg and py, respectively, is ZN{Sn(f'H,iLKH) — Sn(%A,iLKA)} on py — pg degrees of
freedom. When the asymptotic y? test is used for model selection it behaves very much like
the Akaike criterion when N or p4 — py are large.

Imposing the constraint [ z iL(Z) dz = 0 usually has little effect on estimates and can be
convenient when reporting results. Sometimes, however, the constraint increases the value of
K required to obtain an adequate fit. We recommend not imposing it unless the K selected,
the estimates of 7, and the visual appearance of the estimated density remain essentially
unchanged. When K =1, [z iL(Z) dz = 0 imposes normality.

Putting the off-diagonal elements of R to zero improves numerical stability, especially
when M is large. We recommend that it be imposed if estimates of 7 and the visual appear-
ance of the fitted density are little changed.

Now consider computation of an integral of the form [ (z)hx(z)dz which is a ratio with
numerator [(z){Px(R™'2)}?np (2|0, RR')dz and denominator [{Pg(u)}*nar(ul0,1)du.
The denominator is easily computed as noted above. A change of variables puts the nu-
merator in a form suited to Gauss-Hermite quadrature (Davis & Rabinowitz, 1975)

/ / (V2R Pr (\/20)T —M/2 Hexp ) dt;,

=1

where ¢t = (¢1,...,tm). A Gauss-Hermite rule has the form [0 &(s)exp(—s?)ds =~
L Wi(s;). Thus,
L L M
/;/)(Z){PI((R_lz)}an(zm, RR)dz ~ Z e Z ;/)(\/ZRS)PK(\/ZS)W_M/Q H Wi,

11=1 =1 Jj=1

where s = (s;,,...,5i,,)". The abscissae s; and weight factors W; can be obtained from

tabulations such as Table 25.10 of Abramowitz & Stegun (1964) or can be computed as

needed using an algorithm due to Golub (1973); see also Golub & Welsch (1969). Note that

if ¢ is differentiable then analytic derivatives with respect to 8 of the expression on the right

are easily obtained.



4. PHARMACOKINETICS OF PHENOBARBITAL

We illustrate the use of the proposed methods by application to routine clinical phar-
macokinetic data collected from n = 59 newborn infants treated with phenobarbital during
the first sixteen days after birth as reported by Grasela & Donn (1985). Each individual
received an initial dose of phenobarbital (pg/kg) followed by one or more sustaining doses by
intravenous administration. A total J; of anywhere from 1 to 6 blood samples were obtained
from each individual at times (hours) other than dosage times as part of routine monitor-
ing. Phenobarbital concentration (ug/ml) was determined for each blood sample by high
pressure liquid chromatographic assay. The total number of concentration measurements
was N = 155. Information collected from each individual included birth weight (kg) and
5-minute Apgar score. These data are described in detail and analyzed by Grasela & Donn
(1985); see also Boeckmann, Sheiner & Beal (1990).

The pharmacokinetics of phenobarbital may be described by a one-compartment open
model with intravenous bolus administration and first-order elimination (Grasela & Donn,
1985). This model states that mean plasma concentration of phenobarbital in individual ¢ at
time t due to a dose D;; administered at time t,; is given by (D;; /B2 ) exp{—(t —t;;)B1i/ B2},
t > t;;, where (31; is the total clearance of phenobarbital in (liter/hour)/kg and fs; is the
apparent volume of distribution of phenobarbital in liter/kg. Since individuals received
several doses over the study period, concentration is a sum of such terms; one term for each
dose with t;; < t. Usually this model is written not as a sum but as a recursion (Grasela &
Donn, 1985).

Blood concentration measurements are often approximately normally distributed and
exhibit variability that increases with level (Beal & Sheiner, 1988). This phenomenon is
attributable in part to the error in the high pressure liquid chromatographic assay used to

process blood samples. Thus an assumption that

~

wila-"vxiJmo-vﬁ H el]HUf xl]vﬁ)} ]

pe(eﬂ, ceey 60T

is both reasonable and permits comparison of our results with Grasela & Donn (1985).
Grasela & Donn (1985) adopted the inter-individual regression model (1, = ~yjw;e™,

Bai = y2w;(1+736;)e™, after extensive model evaluation, where w; is the birth weight of the

ith individual and §; is a dummy variable which is 1 if the 5-minute Apgar score of individual

¢ is less than 5 and is 0 otherwise. With this specification, if the z; are symmetrically



distributed then clearance and volume will have skewed distributions, which accords well
with experience with this type of data. We used this specification to permit a comparison
with previous analyses of these data (Grasela & Donn, 1985; Boeckmann, Sheiner & Beal,
1990) but comment further below.

We fit this model subject to the constraint [zh(z)dz = 0 for K = 0,2,3,4 using the
methods described in Section 3. The optimization results are displayed in Table 1. Also
displayed in Table 1 are the Schwarz, Hannan-Quin, and Akaike criteria. The Schwarz and
Hannan-Quin criteria select the normal density (K = 0) whereas the Akaike criterion selects
the K = 2 seminonparametric density.

The estimates for both specifications K = 0 and K = 2 are displayed in Table 2 together
with the estimates of Grasela & Donn (1985) who used the First Order linearization method
due to Beal & Sheiner (1982) as implemented by Boeckmann, Sheiner & Beal (1990).

Graphics associated with the models selected by the Schwarz, Hannan-Quin, and Akaike
criteria are shown in Figure 1. The most interesting feature is the bi-modality of the semi-
nonparametric estimate hy seen in panels (a) and (b) which divides the sample into the two
groups seen in panels (c) and (d). In response to a query, Professor Grasela told us that the
seven infants represented by diamonds in panels (¢) and (d) had low measured concentra-
tions after the loading dose. The initial concentration measurement is more influential for
apparent volume of distribution than for clearance in this model, which is well known in the
pharmacokinetics literature and explains the appearance of panel (d). These low concen-
trations did not seem to be associated with any attribute that was measured in the study.
A relevant, unmeasured attribute or a misspecified inter-individual regression are possible
explanations.

We took the specification of the inter-individual regression model above as a given in order
to illustrate our proposed method by comparison with previously reported results. However,
it is usually necessary to determine an appropriate inter-individual regression model from the
data. Rather than using hypothesis tests to determine the model, Davidian & Gallant (1993)
suggest a graphical strategy based on seminonparametric empirical Bayes estimates. Other
procedures based on empirical Bayes estimates have been proposed; see Maitre, Buhrer,
Thomson & Stanski (1991) and Mandema, Verotta & Sheiner (1992). We caution, however,
that validity, reliability, and comparative performance of procedures based on empirical

Bayes estimates is an open problem.
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5. SIMULATION RESULTS

We applied the method to four simulated data sets in order to assess its ability to reveal
modes or bumps in the random effects density under conditions likely to be encountered
in practice: sparse and unequal numbers of observations per individual and coefficients of
variation of the random parameters around 27%.

In the simulation, the intra-individual regression function was the unit-dose mono-
exponential f(x;, ;) = (1/02) exp{—(81:/P2)xi;}, where x;; is the time of observation j,
1 <y < J;, on individual 7, 1 < < 110. Intra-individual errors were normal with standard

deviation proportional to level

~

Tity .oy Tig;, 0, B) H [ei;10,{a f( xl]vﬁ)}]

pe(eﬂ, e A

with ¢ = 0.05. The inter-individual random parameters for clearance and volume were
B = eNTA By, = 72172 respectively, where v = log(0.1,0.5).

For each individual, J; was randomly selected from the uniform distribution on the in-
tegers 1 through 5. The times of observation, given .J;, were randomly selected from the
UJ0, 0.9] distribution on the scale of proportion of dose eliminated with respect to the rate

constant [ (31/B2h(z)dz

Bi-modal random effects densities h(z) were generated by mixing two normal distributions
N(u, RR') and N(—pu, RR') with mixing proportion o and pu = {(sep/2)/(r?, +ri,),0}. For
sep > 2, this density has a visually perceptible second mode or bump. The separation in
the modes or bumps is with respect to the random effect for clearance z; with the modes
separated by sep standard deviations of z;. The four simulations correspond to values of
a = 0.3, 0.5 and sep = 2.5, 4.0.

The elements of the upper triangular matrix R determine the coefficients of variation for
(31 and (3, and were chosen to achieve coeflicients of variation between 25% and 28% for both
(1 and 3 throughout. In each case ros = 0.24, r15 = 0.0; whereas r; = 0.16 for sep = 2.5
and rq; = 0.12 for sep = 4.0.

We generated one data set for each case using the same initial seed. Using the density

Tity ..., Tig, Ty zi) implied by the unit-dose mono-exponential model with con-

p(yi, - -

stant intra-individual coefficient of variation that was used to generate the data sets, we

applied the method of Section 3, increasing K until the Akaike criterion, the least stringent,

11



ceased to decline. The results of the optimizations are reported in Table 3. In all but one
case, the three model selection criteria selected the K = 2 specification. For the case sep = 4,
a = 0.3, the criteria split between the K =1 and K = 3 specifications; graphs of these two
estimated densities differ very little and would lead to the same conclusions regarding the
shape of the density in any application.

Figures 2 and 3 are graphical displays of the estimated densities with K = 2 for the
two extreme cases sep = 4, a = 0.5 and sep = 2.5, a = 0.3. The estimated and true
densities agree reasonably closely; more importantly, the estimated densities convey the

correct qualitative impression. The same is true of the two omitted plots.

6. DISCUSSION

In this paper we propose a method for maximum likelihood estimation of the fixed param-
eters of the nonlinear mixed effects model together with the density of the random effects.
It is a truncation method based on a series representation of the density due to Gallant &
Nychka (1987) that follows from an assumption that the density is smooth. Once estimates
are obtained, empirical Bayes estimation of the random parameters is straightforward.

We applied the method to pharmacokinetic data reported by Grasela & Donn (1985) and
discovered interesting features of the inter-individual random effects density unlikely to be
revealed by the use of parametric methods.

Application of the method to simulated data suggests that it can produce reliable qualita-
tive information regarding the possibility of bumps and modes in the random effects density.

A Fortran program implementing the method is in the public domain. It is avail-
able, together with a User’s Guide as a PostScript file, either via ftp anonymous at
ccvrl.cenesu.edu (128.109.212.20) in directory pub/arg/nlmix or from the Carnegie-Mellon
University e-mail server by sending the one-line e-mail message “send nlmix from general”
to statlib@lib.stat.cmu.edu. The program computes parameter estimates, empirical Bayes
estimates of the random effects, data for plotting, and simulations from the estimated den-
sity. Runtimes for the computations reported in Sections 4 and 5 were less than 15 minutes
on a Sun SparcStation 2 from every start value we tried; the time required to generate plots,

empirical Bayes estimates, and simulations is much less.
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Table 1. Optimization results for phenobarbital data,
n = b9 individuals: degree of the polynomial part of
hi (K); effective number of parameters (ppet); the
negative of the optimized log-likelihood divided by the
total number (N = 155) of measured concentrations
(sn(7, h)); the Schwarz (BIC), Hannan-Quinn (HQ),
and Akaike (AIC) model selection criteria.

K pne  sn(f hg)  BIC HQ AIC

0 7 279914 291302 2.87221 2.84430
2 10 277116  2.93385 2.87555 2.83567
314 276630 2.99406 2.91244 2.85662
4 19 275613 3.06524 295447 2.87871

Table 2. Parameter estimates for phenobarbital data, n = 59 individuals : as
reported by Grasela & Donn (1985) (Grasela & Donn), maximum likelihood
estimates with normal (K = 0) random effects density (Normal Effects),
mazimum likelihood estimates with seminonparametric (K = 2) random ef-

fects density (SNP Effects).
Grasela & Donn Normal Effects SNP Effects

Parameter Est. Std.Err. Est. Std.Err. Est. Std.Err.

ol 0.0047  0.0002 0.0048 0.0002 0.0047  0.0003
Yo 0.96 0.024 0.9780  0.0300  0.9808  0.0362
V3 0.135 - 0.1449  0.0638 0.1054  0.0596
1% 0.107 - 0.1129  0.0126  0.1096  0.0131
var(uy ) - - 0.0471  0.0189  0.0450  0.0359
var(us) - - 0.0224  0.0092 0.0271 0.0143

cov(uy, us) 0.0 constr.  0.0179 0.0122 0.0144 0.0176
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Table 3. Optimization results for four simulated data sets, n = 110 individuals sampled from a
mizture of two normal distributions: degree of the polynomial part of hx (K); effective number of
parameters (ppet); the negative of the optimized log-likelihood divided by the total number (N = 336)
of measured concentrations (s, (7, h)); the Schwarz (BIC), Hannan-Quinn (HQ)), and Akaike (AIC)
model selection criteria; separation of the clearance random effect in standard deviations (sep) and
the mizture proportion (o).

K pnet  sn(7, hg) BIC HQ AIC K pnet  sn(7,hK) BIC HQ AIC
sep =4, a = 0.5 sep = 2.5, a =05

0 5 -0.4847  -0.4414 -0.4585 -0.4698 0 5 -0.4751  -0.4318 -0.4489 -0.4602

1 7 -0.5923  -0.5317 -0.5556 -0.5715 1 7 -0.5284  -0.4678 -0.4917 -0.5075

2 10 -0.6256  -0.5391 -0.5732 -0.5959 2 10 -0.5883  -0.5018 -0.5359 -0.5586

3 14 -0.6346  -0.5134 -0.5612 -0.5929 3 14 -0.5916  -0.4704 -0.5183 -0.5500

sep =4, =0.3 sep = 2.5, a = 0.3

5 -0.4974  -0.4542 -0.4712 -0.4826
7 -0.6397  -0.5791 -0.6030 -0.6188
10 -0.6512  -0.5647 -0.5988 -0.6215
14 -0.6743  -0.5531 -0.6009 -0.6326
20 -0.6890  -0.5158 -0.5841 -0.6294

-0.5357  -0.4924 -0.5095 -0.5208
-0.5702  -0.5096 -0.5335 -0.5493
-0.6319  -0.5453 -0.5795 -0.6021
-0.6361  -0.5149 -0.5627 -0.5944

s QLo — O
W — O
s
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Fig. 1. Estimated inter-individual random effects densities and empirical Bayes estimates of inter-
individual random effects for the phenobarbital data: (a) perspective plot of the estimated seminon-
parametric (K = 2) density; (b) contour plot of the estimated seminonparametric (K = 2) density
at quantiles 10%, 25%, 50%, 75%, 90%, and 95%; (c) 10% quantile contour of the estimated nor-
mal density (K = 0) and corresponding empirical Bayes estimates of the inter-individual effects
(dots and diamonds); (d) 10% quantile contour of estimated seminonparametric density (K = 2)
and corresponding empirical Bayes estimates of the inter-individual effects (dots and diamonds).
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Volume

Diamonds flag the same individuals in both panels.

18

0.2 04 06

-0.2

-0.6

0.6

0.2

-0.2

-0.6

=

-0.5 0.0 0.5

Clearance

-0.5 0.0 0.5

Clearance




[Te]
S
g
o
2 o
>
0
?
-1.0 -0.5 0.0 05 1.0
Clearance
(c) (d)

10

10
=

T Q

< o -
[Te)

S 10

o

= o

o o

0.5 0.0 0.5 -1.0 0.5 0.0 05 1.0
Volume Clearance
Fig. 2. FEstimated seminonparametric inter-individual random effects density (K = 2) and true

density for simulated data, sep = 4.0 and o = 0.5 : (a) perspective plot of the estimated joint
seminonparametric density; (b) contour plot of the estimated joint seminonparametric density at
quantiles 10%, 25%, 50%, 75%, 90%, and 95% and the simulated random effects (dots), the middle
contour is 10%; (c) marginal density for volume, integral of the joint seminonparametric density
(solid line) and true density (dotted line); (d) marginal density for clearance, integral of the joint
seminonparametric density (solid line) and true density (dotted line).
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ig. 3. Estimated seminonparametric inter-individual random effects densi [ = and true
Fig. 3. Est ted t t dividual d ts d ty (K 2 dt

density for simulated data, sep = 2.5 and o = 0.3 : (a) perspective plot of the estimated joint
seminonparametric density; (b) contour plot of the estimated joint seminonparametric density at
quantiles 10%, 25%, 50%, 75%, 90%, and 95% and the simulated random effects (dots); (¢) marginal
density for volume, integral of the joint seminonparametric density (solid line) and true density

(dotted line); (d) marginal density for clearance, integral of the joint seminonparametric density
(solid line) and true density (dotted line).
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