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Convergence Rates for Feedforward Single Hidden Layer Networks

ABSTRACT
By allowing the training set to become arbitrarily large, appropriately trained
and configured single hidden layer feedforward networks converge in probability
to the smooth function which they were trained to estimate. A bound on the
probabilistic rate of convergence of these network estimates is given. The
convergence rate is calculated as a function of the sample size n. If the function
being estlmated has square integrable mth order partial derivatives then the Lo-
norm estimation error approaches Op(n 1/ 2) for large m. Two steps are required
for determining these bounds. A bound on the rate of convergence of
. approximations to an unknown smooth function by members of a special class of
single hidden layer feedforward networks is determined. The class of networks
considered can embed Fourier series. ﬁsing this fact and results on the
approximation propertiés of Fourier series yields a bound on Lg-norm

approximation error. This bound is less than O(q"l/ 2

) for approximating a
smooth function by networks with q hidden units.. A modification of Barron’s
(1991) results for bounding estimation error provides a general theorem for
calculating estimation error convergence rates. Combining this result with the

bound on approximation rates yields the final convergence rates.
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- 1. Introduction.

Many authors have investigated the universal approximation properties of
neural networks (Gallant and White, 1988; Cybenko, 1989; Funahashi, 1989;
Hecht-Nielson, 1988; Hornick et al., 1989, 1990; and Stinchcombe and White,
19898). Using a wide variety of proof strategies all have demonstrated that,
under gemeral regularity conditions, a sufficiently complex single hidden layer
feedforward network can approximate any member of a-class of functions to any -
desired degree of accuracy. The complexity of a single hidden layer feedforward -
network is measured by the number of hidden tnits in the hidden layer.

More recently, Barron (1991a) using a result of Jones (1991) has
ca.lcula.te-d tﬁe convergence rate for-approﬁmation error. Approximation error is
the Lo-norm of the difference between a function and a single hidden layer’
feedforward network configured to approximate the function. Barron gives his
rate in terms of the number of hidden units in the network. If g denotes the
number of hidden units, ther the approximation error is O(q']'_/ 2). This bound
applies to all functions satisfying a smoothness condition stated in terms of the

integrability of the Fourier transforms of the functions.

Barron (1991b) also determines estimation convergence rates. A network
estimator of an unknown function is a single hidden layer feedforward network
trained using a finite training set to leﬁn the unknown function.' Implicitly,
each output of the input-output pairs of the tra}ining set is assumed to be smooth
function of its ;:onesponding input plus a.n additional noise term. One unknown
function is assumed to have gemerated all the outputs. ~ White (1989)

demonstrated that if network complexity increases with the sample size, n, then
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the probability of making a large estimation error can be made arbitrarily small
by allowing for an arbitrarily large sample size. Barron furthers White’s result
by showing that the expected value of the square of the Ly-norm of the difference
between an unknown regression function and the network estimate is
0{n'1/2(logn)1/2}.

To ensure his conversion rate, Barron requires estimation méf a lattice of
possible connection strengths and assumes that the unknown function belongs to
the class of smooth functions discussed above. This paper offers an alternative
approach for calculating estimatién convergence rates. This alternative approach

" provides rates which hold for all functions in certain Sc;bolev function spaces and |

does not require estimation over a lattice of networks.

First an alternative bound on approximation error is given. This bound
holds for approximating functions with square integrable mth order partial
derivatives, When m is large this bound is less than O(ci'll 2). A direct
extension of Barron’s results for bounding estimation error provides a general |
theorem for calculating rates when estimating over an entire class of networks
rather than a grid or lattice. Combining this result with the alternative bound
on approximation rates yields an estimation error rate which approaches

Op(n'1/ 2) when m is large.

hY

The next section provides a detailed description of the networks under
consideration and a preliminary discﬁssion of the approach to determining error
rates. Sections 3 contains the development of the bound for approximation error.
Section 4 provides theoretical results to verify the hypothesis of the basic

theorem stated in Section 2. Combining these results with the rate given in
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Section 3 yields estimation error convergence rates. Finally, Section 5 contains a

discussion of the new results and possible avenues for further research. Proofs of

the technical results are contained in a mathematical appendix.



" 2. Background.

In the most general terms, a neural network uncovers the underlying
relationship between an input vector x and a scaler y. For example, in a
classification or pattern recognition problem, one uses a vector of descriptive
characteristics of an object, i.e. a pattern, and train the network to achieve the
correct classification, y. For forecasting problems, the network forecasts the
variable y based on the the values of the elements of the vector x. In each
example, the trained network provides a mechanism to relate the input x to a
target y.

‘I:he appropriate statistical model to describe the relationship between x
and y is the sta.ﬁdard regression model,

y =1(x) +e, |
where f is an unknown function and e is random error. The error term, e, allows
for situations where the relé.tionship between x and y is not precise; for example
when y is measured with error. In practice, a finite set of x’s and y’s which are
generq.ted according to this model are observed. This data is denc;ted
{(yp%e) Hoep With x; ¢RY for a fixed integer d and ¥y € RL, We will refer to this
data either as our sample or because the data is used to train the network, as a

training set.

Let % denote the range of the x;. The regression function f is assumed to
be an element of the set of all functions, h, which are m-times differentiable with
h e Ly(%) and all mbE order partial derivatives of h are also i1'1 Lo(%). The space

Lo(%) is the set of all functions h:%—R! such that J'hz(x)dx < oo, coupled with
B
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the norm || - || 2.8 where || h|| 2.5 -_-{c],'.shz(x)dx}l/ 2 This assumption requires {

to be smooth.

The following distributional assumptions concerning the x;'s and the e;’s
complete the statistical model. The x; and e; are realizations of random
variables defined on a probability space (2,%,P). The x;’s are independent and
identically distributed according to -a. common distribution function u(x) having
support %, which is the open set x?ﬁ 1(62r—€) = (e, 21r¥e)d, for some €> 0.
Furthermore, s(x) has a continuous, bounded density function. The e;’s are
independent of the x;’s and are symmetric independent identically distributed
P(e) with support 8. Each e, has zero mean and finite pth absolute moment,
p= (2m+d+5)/2. For details concerning probability spaces, distributions and
densities see Ash (1972).

The assumptions on the x,’s are not as prohibitive as they may first
appear. Any bounded random variable can be rescaled so that its support is
(e, 27r-e)d for some ¢>0. Therefore, the assumption simply requires bounded
Xy's.

Single hidden layer feedforward networks are considered. Given an input

vector, x, the output of such a network can be represented by

g(x) = Fo +i§1ﬁi¢('f{x +7g3)

where 3 is the activation function and the A’s and +’s are the connection
strengths. For more details on such networks see Rumelhart and McClelland
(1986). The activation function is assumed to be the cosine squasher originally

defined by Gallant and White (1988):






0 : . —w<u5-%
(u) ={ [cos(u+3D) +1)/2  ~F<usF
1 %5u<m

Traamng the network consists of selecting the connection strengths based
on the training set and accordmg to a learning rule. I B's and 4’s represent the
value of the connection strengths selected according to the learning rule, then

Bo+ 2 B ¢(11x+'“roi) is the single hidden layer feedforward network
estimate of the true regression function f. Whlte (1989) demonstrated that if the
learning rule is correctly specified, then the “error” associated with §n can in a
probabilistic sense be made a.rbitra.rily.sma.ll by allowing for an arbitrarily large

training set.

In this paper, we specify a learning rule which is similar to White’s and
determme a probabilistic bound for the rate at which error converges to zero as n
grows large. A network trained according to our rule, using the training set
{(Yt’xt)} will have connection weights set at the values that rninimize
n ): [yt g(xt)} . where g(-) is the output of a single hidden layer feedforward
network The mmnmza.tzon is taken over all network configurations such that
E |B;1 <An and E Z‘, Wl}l <Apqp. The set of all such network

1_._

con.ﬁguratxons is denoted by Ap. Thus, gp solves the minimization problem
ménélil;ze Ens(y.x; 8)

where y; = Y(x;,e;) =f(x;) +e and s:8x % x An-—»tRl has the form s[Y(x,e),x;g]

with s(y,x;g) = [y—g(x)]z. (For any measurable function w:8x5-R!, Equ(e,x)
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-ﬁ E u(et,xt) ) The function s(-,-, ) is referred as the objective function and
the class of functions containing f is demoted by A. That is, A={u :B-R1:
ueLy(%) and all mtB order partials of u are also elements of Lo(%)}. White

(1989) referred to {Ap} as sieves and gy as a connectionist sieve estimator.

¥

Because #, approximates an unknown function and we desire to provide
accurate estimates of f(x) for every xe, we use a global measure of error.
Specifically, we use the metric associated with the weighted Lo-norm, || - [} 2.
That is the distance between any two functions u and v is defined as
fu=vllg = = {g;[u(x) v(x)lzdp(x)}ll 2 Thus, |f-§n |12 is the estimation
-error generated by estimating a regression function using a single hidden layer
network trained with a finite training set of n observations to minimize

Eps(y,x; g) over all networks in Ay.

Let gp denote any element of A,; such that [[f-gnllg ‘ug Nf-gllg 4 for
E ]
all geAp. Approximation error refers to [{f—gnllo u Also, we assume that the
]

regression function uniquely solves the minimization problem:
minimize Eqs(y,x;g),
ge A 0 (Y: ’g)

where for each measurable w:8x%-R!, Eou(ex)= I j'u(e x)d’:‘?(e)dy(x) I
w:%—R! is measurable, then Epu(x) and Egu(x) denote ﬁ E u(xt) and
éu(x)dp(x) respectively.

Calculating the convergence rate requires determining the metric entropy
of each estimation space Ap. Let A be a subset of a metric space = with metric
p, and let €>0 be given. A family Uy,...,Up of subsets of = is called an ¢

covering of A if the diameter of each. U does not exceed 2¢ and if A C LIJlU Let
j=



11
N¢(A) denote the minimum value of [ such that there exists a family Uy, .. .,U;
which is an e covering. For a given positive ¢, the metric entropy of the set A is
denoted by H(e,A,p) and defined as the natural logarithm of Ng(A). A finite set
of points £, . . +{m from = is an e-net for A if

2y Smjisnn;p(ﬁ,ij) <e

Let m, be the sma.llest_va.lue of m for which there exists a set {7, . . vw&m which is
an e-net. Under general conditions (Kolmogorov and Tihomirov (1961), Theorem

5)
H(e,A,p) = logme.

We will assume that any metric of interest satisfies these conditions and consider

the two statements as equivalent definitions of metric entropy.

We have now provided the notation necessary to pose our problem in
precise terms, We determine a bound on the rate at which the estimation error
of a network trained with the training set {(y;,xi)}{=; converges to zero in
probability as n tends towards infinity. The network will be trained to minimize
Eps(y,x;g) over all network configurations which satisfy the constraints of Ap
and qn and Ap will grow appropriately large along with n. The following

theorem establishes our basic result.
Theorem 0. Consider the following conditions:

i. The sample of data {y,p,x;}p_ 1, satisfies Vin = f(X¢) + &4y for some
unknown regression function f. The x;’s are iid random variables with

distribution gz. The support of s is bounded and f is continuous. The ey, 's are a
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triangular array of are iid random variables with Egpe, =0 and Eone%nza%
and are distributed independently of the x,’s. For any function £, define

n
8(6) =a(y.%;€) = [y~ €012, and 7a(€) = Bus(€) -, &, efa 224 ron(€) = Fous() -

a'%. For some estimation space Sy, £ = argmin Ens(¢) and ép = argmin Bons(é).
€Zn {eZy

ii. The support of ey, t=1,...m, and the range of all { in Ep arte

contained in a known interval of length by, where bp—co as n—co.

iii. For any sequence of constants {vp}, there exists a sequences of
constants {en(vn)} _é.nd bounds k; and kg, such that for any §;, {3€Zn satisfying
P(fpfg) <é€n, implies l’-'on(f]_) -ron(fg)_ | < kg”n and |rn(fl) —fn(fg) | < len

&.8..

Under Conditions i-iii:

Given a sequence {un-}, if Hyp = H(ep(vn), Zn, p), then

Eon![f-én"%,p=o{ E=&nll %,#'*"T"""Vn}- o

Note that Theorem 0 is a general result and is not restricted to net;work
estimation, The notation ap=Op(by) indicates that the ratio of ag to by is
bounded in probability. That is given any €>0 there exists an Mg such that
Pr(}ag/bn| > M) <e. The notation ap =op(by) indicates that the ratio of ap
to by converges in probability to zero. That is given any ¢,6 > 0 there exists an

n(e,6) such that Pr(|ap/bp | > §) < ¢ for all n > ng.
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3. A bound on approximation error.

To use Theorem 0, we begin by studying approximation error. To find a
bound for approximation error, we use the results of Gallant and White (1988)
which relate our single hidden layer feedforward network to a Fourier series.
~ Using results concerning the best approximation available by a Fourier series we
then obtain bounds for approximation error. This technique, however, requires
that Ap be sufﬁcientiy large so as to include all the possible Fourier series we
wish to consider. Such restrictions on Ap translate to requirements on the
relative size of qg and Ap.- .

This section begins with an introduction into the additional notation
‘necessary to write a multivariate Fourier series. A multi-index k is a vector in
‘ R4 with integral components | Let {kq}o—g be a sequence of multi-indices
ordered so that kgl = ): 1k | is nondecreasing in « and complete in the sense
that all of the multx-mdxces with (ka| = . ., are prwent in the sequence. A

Fourier series of degree K is written as
h(x)=ag+ Y aqcos(kax)+by sin(kyX).
) kol SK
Define w; = k[i J2p where [t] denotes the integer part of t and b, =imod 2.
Because sin(kgX) = cos(ka’x-i-?-z"#), we can express a Fourier series of degree K as '
’ *
h(x) = b+ iglgi cos(w;x +b;%),

where 1 is a function of K and I~ K4 (Edmunds and Moscatelli, 1977). (I~K¢
means that there exists constants ¢y and ¢4 such that cll st5c2l or

equivalently constants ¢y and ¢ such that cle <lg cde.)
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Let Q =0, 27r]d. Because % = (¢, 27 - e)d for some €>0, we have $cQ

(& is the closure of ). For any heA, h can be extended to a function h:Q—-R

" such that T is periodic in each coordinate and (x) = h(x) for every xe%. For
any h ¢ A the Fourier series expansion of 1 is denoted by Toh and defined as

Tooh =29+ of: laa cos(ky'x) + bg sin(kex)

o=
where
o d _
ag = (2r) 2 [F (x) os((eax)dx
and ' _
4
bg = (2r) 2 [h (x)sin(kyx)dx.
s
Furthermore,

Tgh =8+ T ag c08(kyX) + by sin(ky ).
k[ <K
denotes the partial sum of ord;er K of the Fourier series expansion of h .

For each x e % let
Seoh(x) = Toch(x)
and for any K
~ Skh(x) = TKE(x).

We refer to Seoh as the Fourier series expansion of h and Sych as the Fourier
series approximation or expansion of h of degree K. From the above discussion

on TKh,

Sgh(x) = a9 + N ZI: 2 cos(kq'x) +basin(kyx)
al S '
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or
| SKh(x) =0, + iélei cos(w;x + big-)

These two equivalent expansions will be used interchangeably throughout the
remainder of this paper. See Edmunds and Moscatelli (1977) for details on

Fourier series.approximation.

The next result provides a rate of convergence for a Fourier series

approximation to any function in the function space A.

Theorem 1. (Edmunds and Moscatelli, 1977 Theorem 1) If heA then for

any €20,

Ih=Sghllg g =o(K™F9). o

This theorem indicates that there exists coefficients, &;, such that
}:, 8;cos(w; x+b ) converges to any function in A at a rate which depends only
on the order of approximation. The convergence is in terms of |-} 2.8 rather
than |} - || 2.1 the norm we are considering. However, the assumptions on the
distribution function s provide a bound for || - || 2,4 in terms of || + || 2,5 Let v
denote the density of s, note that by assumption v is bounded. Let

%= {sup [+(x)|}'/%. For aay he Lz(ﬂ%);
AP {$Ih(X)t2d#(X)}
= {é |h(x) | 2u(x)dx}§

1
< %{{ 1060) P}
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<%lbllg g

Thus, any bounds on ||« ||g g can be directly applied to | - |9 o Therefore,
¥ ?
Theorem 1 indicates that for any element of A, h, there exist Fourier series of
degree K which converge to h in the |- |9 M at rate of ag =oK™ *€) for any
]

e>0.

The following results demonstrate that, for large sample sizes, the
estimatic;n space embeds ,Fourier geries approximations of functions in the
parameter space. Combining these embedding result with the convergence rates
for Fourier series approxixﬁatioh yields the appro:dma;tion rates for networks.
The first result is the theorem of Gallant and White which establishes that a
network with cosine sciuashiné can embed a Fourier series. Their technique is
then used to develop a correspondence between .single-hidden layer network with
cosine squashing and Fourier series to compare network complexity to the degree

of the Fourier series.

Theorem 2. (Gallant and White, 1988). Let t(:) denote the cosine

squasher, then for any heA and finite K, there exists a vector of weights

(ﬁmﬁp”f}.i:‘ﬁo, s :ﬁq"?qlﬁqo)’: q= Q(K), such that
' q
Sgh(x) = Bo+ _zlﬂiip(“li'x + %)
==

for all xe%. O

We say the network embeds the Fourier series expansion. The following

lemma quantifies the relationship between K and q(K).
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Lemmal. Let heA.

a. Let X >0 be finite. For a feedforward single hidden layer network to
embed Sych requires q = O(K9+1) hidden units.

b. There exists a constant €, such that if K= CqI/ (d+1) tpen there exists

a feedforward single hidden layer network with q hidden units which embeds
Sgh. 0

Theorem 3 and Lemma 1 derive from the.fact that for each term in a
Fourier series expausion, Bicos(wi'x+b'i%), there exists weights such that
E ﬂjgb('yj’x-i-'yjo) = f:cos(w;'x +bi%) +const., for m<4|w;| and for all xe%.
Each ﬁj =20,, each 1= % and each o is a function of |w; | and b;. For details
see the proofs of Theorem 3 and Lemma 1 in the appendix.

Lemma 1 b, implies that ngtworks in the estimation space Ap have
sufficiently many hidden units to embed Fourier series expansions of at least
degree Ky = const. q}l/ (d+1) for some constant. The correspondence discussed in
the previous paragraph, however, demonstrates that embedding a Fourier series
in a network may require weights which exceed the bounds of the estimation
space, i%oléil < Ap and q)f % ['yijl <Apqp. This problem can be overcome

- i=li=

by selecting Ay judiciously.

' dn
First we investigate the requirements on Ap so that 3 18;1 < Ay is not

: o
restrictive. By a well known fact, in a Fourier series expansion of a function
with m derivatives, a term with |w;| =] has 8 =o(j™). A Fourier series of

degree qz'l/ (d+1) pas terms with {w; =1,2,...,[q_2‘1/ (d+1)]. FEach term with
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|w; | =], satisfies |w;x| ¢[-27j,2x(i+1)] and 4j+2 hidden units are required
to construct this term of the Fourier series. Let I(j) denote the number of multi-

indices in R4 which satisfy |w| <j. As discussed above, there exists a constant

¢ such that {(j) £ cljd for all j and therefore there exist less than clj‘:1 units with
jw; | =] (Note that ¢y > od +1 bBecause there exist 2d+1 indicies w with

|w| <1.) Theprevious discussion provides that,

an e+
Piars o @+Aeil™
1=1 =l .

/e

<const. 3 < jdm+1

_?=."

Also,
_ 1 ,
1Bo] = w°+-21[8i'9i2(2Mi+1)]1
1=
[
= |6~ X [6;(4M;+1)]1.
=1 !
Because less than cljd of the M; equal j, j= 1,2,".’[%11/ (d-+1)]’
/(@)
| Bo| < |85} +const. 3 jdrm+1
J=

Thus, if m > d+3 then Ap converging to infinity at any rate would be sufficient
and Ap > const. q%/ (d+1), for a fixed positive constant, is sufficient if m > d.

Similar arguments determine a lower bound for Ap so that the constraint
qEn % |7ij| <Apap does not place a restriction on the selection of the
1c?o'e’flﬁ_cients of an embedded Fourier series. In a network configured to embed a
Fourier series each v; is equal to wy for some v. Reconstructing a term of a

Fourier series expansion with cos(wy% + fy) requires 4| wy| +2 hidden units and
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fewer than cljd of the wy satisfy |wp| =] Therefore, a network configured to
ecabed a Fourier series of degree o/ (71 has less than ;(4j +2)j¢ hidden units
with 191 =y j=12-alas 1), This implies that

qn
PIREA
i=1

qn d
2 2 1yl =
i=lj=1
/@) |
= ¥ Z Inl
=1 %=
ERUCIE
< % o4+2)i4)
=1
[q:l‘l(d+l)]
< X const.jd+2
'j’—"'].
b &/ (D),

< cons

Furthermore, if 7; =Wy, |wy| =], then 7io=%“mi2"° or 7i0=-3§“-'+mi27r for

some integer m; € [i,j]. Therefore, [7;,] < .3§7£+ | m; | 27 and

an [q:/(d+1)] ' j
Zimels % eid & BF+iml2r)
1= p—1 =J
/)
< _zl const.j912
J=

< const. (T (G+1),
This implies that

dn
P> 2% Wij | < const.qn(q%/ (d+1)), for some fixed constant.
1=1j=

Thus, if m>d, then there exists some constant ¢ such that Ap > Cq%/ (d+1) 4

sufficiently large so that for any heA the weights of the qp hidden unit network
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configured to embed SKnh, Kn=const..q111/ (d+1), satisfy the constraints

d
% 181 & Ap and % = 1) < Apgq for all large n.
i=0 i=1j=0
The following theorem summarizes these results.

Theorem 3. Let mp>d, and gqq,Ap—co a8 1—® .such that

%2/ (@+1)_ o(Ap) . Then there exists a constant Cy such that if

then for any heA,
SKnh € An, )

for all large n. o

" In particular, Theorem 9 holds for the regression function f. Combining

Theorem 2 with Theorem 1 yields an upper bound for approximation error.

~ Theotem 4. Given an unknown function fe A. If g satisfies

5n“—"3~f%1?:m Wi-gnllg ,
and if qp,Ag—oo as n—oo with

2
a2/ @D = o(An)
then for any €> 0,

N-gally , ol @D ¥ asnoo. O
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4. Convergence in Ly-Norm

Theorem 0 is_applied to Ep=An, p(g):89) = ;tezgs [gl(x)—gz(x)l and
training sets {(yp.xg)lf=1 t° determine a convergence rate for metwork
estimation error. Direct application of Theorem 0 to the training sets described
in Section 2 is impossible because the error terms do not satisfy Condition ii. of

the theorem. That is theey, t =1,.. .1, in y; = f(x;) +e; have support 8 which

ma.Sr not be contained in an interval known length by.

Theorem 0 is thereforé is used to find convergence rates for a surrogate
network g#. The convergence rate for gp is then found by comparison of g to -

g# . The network gn# satisfies

o = argminl 3" [i(x,) + e - B1%
Agp  t=1 '

where étn' t=1,...mn, is a truncation of e;. In other words, ey, =eil{e; elp}
where I{e; eIp} denotes the indicator function for the set {e,eIn}. That is,
ey elp} =1if e eI and zero otherwise. The interval I = [ - Ap, Ap] is chosen

so that {e;}} _ ; satisfy Conditions i. and ii. of Theorem 0.

Recall that Condition i. reqﬁrm that for each n: 1) the e, = etI{etAé In}
t=1,...,n, be iid; 2) Egney, =0, where Eqp denotes expecta.tio-n taken with
respect to the distribution induced by truncation; and 3) Eone%n equal a finite
constant 0',21. Furthermore, Condition ii. requires that the support of ey, t=1,.

., be a subset of the interval containing the range of functions in the

estimation space Ap.

For each g e Ap g satisfies

an
sup fg(x)| € ), 181 £hq.
W igo ="
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Thus, Iy = [~ Ap, Ap] satisfies Condition ii. and the value of the associated by is
-2An. Because the e;, t=1,...,n, are iid the e, will be also. By symmetry,
Ege;l{e; elp} =0 and because Eone%n = EqleI{e; € In}]2 <E,e2, the variance
condition is immediate. Thus, if Ip=[~Ap,An] then {e }_ | satisfy

Conditions i. and ii. of Theorem 0.
1 2 12
Let rn(g) = ﬁtzl [f(xt) +&pn— g(xt)] - -ﬁtZ}flem and Ton(g) =

Eon[f(xj+e~g(x)]2-a,23 where e, 's are the truncations defined above and Eyp
defines expectation taken with respect to the distribution induced by the
truncations. Using Theorem 0 to determine the rate at which g# converges to f

requires that rp and rop satisfy Condition iii. of the theorem.

The following lemma establishes the absolute continuity of rp and rgp

with respect to the sup-norm metric.
Lemma 2. If g;,.89€An with sgp lg1(X) - go(X) | < ep, then,

|on(g;) ~Ton(8g) | $58nen and

|tn(g1) ~rn(g9) | < 7Anén ass.. a

Thus, the bounds k; and &y of Theorem 0 equal 7 and 5 respectively and given
" any sequence {vp} the corresponding sequence {en(vn)} satisfies en(¥n) = ¥n/ Ao,
n=12,...

Given a sequence {vp}, the truncated errors satisfy all conditions of

Theorem 0 and therefore,

4AZH Ay,
Eop Il -2 I 3 ,=0{llf-gul %,#_*.____ﬂk[en(:n) wel L,
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Approximation error is independent of the training set. Thus for any €>0,
-2m/(d . 2/(d+1

- gn"z#mo(qn m/( +1)+€) provided Qn/( + )—_—o(An). | The

convergence rate for g# is determined by selecting values for vy which balance

the approximation error against the term involving the metric entropy. The first

step to establishing this balance is to calculate a boind for the metric entropy of

A in terms of gy and Ap.

Lemma 3. For any €>0, the metric entropy for Ap (with the metric

induced by the sup norm) satisfies

H(e, Ag, £) < 1054 +[an(2+d) +1]{logd+ log An(1+ 2arAp)]
+qp{d+1)logqp. O

Let An=qg/(d+1)logn, then qg/ (d+1)/An—-0 as n—oo a;nd Ay satisfies

the conditions of Theorem 4. Therefore, ||f—-gn ||% pso(qu/ (d+1)+6)

G2m/(d+1)

for

2m/(d 4 1)/An'

any ¢>0. Setting vp= implies that eg(vp) =

Substituting these values of Ay, v and én(vp) into Lemma 4 yleIds a bound on

Hien(vn); Any pl-

Lemma 4. If en=q;12m/(d+1)/An, Anquzl/(d+1)logn and qp = 0% for

some constant «, then

H(en, Ap; p) < O(aplogn). O

A bound on the convergence rate for g# follows immediately from this lemma.
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Theorem 5. Let m > d, Ag =a2/ @ Dlogn, qq =@+ D/@m+d+5) 54

ot = sxgmind 3 lixy) + o4 - 80xe)%
Ap  t=1
where e, = I{e;elp}, t=1,.. .. with the {e;}}; defined as in Section 2

and with the intervals Iy = [~ Ap, Anl, then for any €>0,

The value for_qnw_.-n(d'!'l)/ (2m+d+5) gerives from equating the order of the
approximation error to the order of the bound for the metric entropy term. That

is qp solves

@ +51/@d+Dgogn)3
_ ) .

-2m/f(d+1) _ A%qnlogn
4n =——1n—

Because the convergence rate will be dominated by the larger of qn 2m/(d+1) o

A%qnlogn the best rate obtains from equating these two expressions. The
convergence rate for network estimation error follows as a corollary to Theorem

5.

Corollary 1. Let m2d, An‘—‘qgl(c.l-'-l)logn and qn=n(d+1)/(2m+d+5),

then for any € >0

1£-8all %,y - Op(n'2m/(2m +d+35) +6), . a
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4. Summary and Directions for Further Research.

The optimal rate for nonparametric regression estimates given by Stomne
(1982) is Op(n"zm/ (2m+d)). Thus, nf term, this approach to calculating conver-
gence rates for neural networks gives a rate which differs from the optimal only

by a constant in the denominator of the exponent.

Barron (1991a) calculates a rate of Op(n'l/ 2(logn)1/ 2). In fact, Barron’s
results can be extended by using Theorem 0 to give this rate ever'if estimation is
not restricted to a grid. ~Barron’s rate hinges on his approximation rate
Hf=gnll % = O( '1) (Barron, 1991c). This rate holds only when f is in the set
of all function with | diwi |#(w) | dw < C for some constant C, where f is the
Fourier transform of f Km>d+1isa reasonable assumption, then using the
Fourier series bound given in Theorem 3 provides a faster approximation rate. If
9m > d +5 then Theorem 5 yields faster rates and allows the regression function'
to be in a more general function space. The assumption 2m >d+35 requires that
the noise terms, {et}; have finite 3(d +5)/2 moments. Normal random variable
satisfy this constraint. Another special case which satisfies the moment
assumption is the case where the support of e; is contained in a bounded

interval.

Assuming this special case and that the parameter space, A, containing f
satisfies sup sup 1g(X)| < % for some fixed constant %, then the coefficients of the
"Fourier series expa.nslon of f will also be bounded. Under this assumption, the

set Ap of all network satisfying ): |8;1 <Aqn and E E |*yu] < Tpan where

i=1j=0
Ap =logn and an-sqle/ (d+1) woqld be sufficient to achieve 2m/ d+D

approximation rates. The rates given by Theorem 4 would then be on the order
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of n—2m/ (2m+d+1) (the nf term). This very special case is the case considered
by Barron. Thus with minimal smoothness or relatively small dimension using
the Fourier series bound improves Barron's dimensionless bound for finding

" estimation rates.

When d is large the rates given by Theorem 4 may be slower than n']'/ 2

Under the special case discussed in the preceding paragraph, however, this upper
bound capnot be exceed. This demonstrates the true strength of the
dimensionless bound. The value of m is unknown, and therefore high
dimensional estimation is risky even with ,‘it}zditional nonparametric regression
estimators which achieve the 0ptima1' rate ; of n-2m/ (2m+d). With neural
petworks the rate is guaranteéed to be at least as fast as n']'/ 2 even for large
dimensions. Thus, the result given in Section 4 provide a compliment to
Barron’s results. Our results ensure fast convergence for smooth functions and
relatively small dimensions. Barron’s work guarantees reasonable rates for large

dimensional problems.

Both Barron’s work and Theorem 4 require strong restrictions on the

noise terms. These assun;ption can be relaxed at the price of slower rate.
Assuming only a finite eighth moment for the noise terms, and using the uniform
convergeﬁce results of Severini and Wong (Severini and Wong, 1987) based on
Pollard’s (Pollard, 1984 Cl;apter 2) techniques in conjunction with the Fourier

series bound McCaffrey (1991) arrives at a convergence rate of n'm/ (2m+d+1)

-

(ignoring log terms).

One direction for further research is to improve the currently available

bound on approximation error. The obvious goal of such research is to derive a
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rate which accounts for both the smoothness of the functions in A and the
adaptive projective nature of networks. Such a convergence rate would increase
with the smoothness of the function without paying a penalty for larger
dimension.

One short coming with Theorem 0 is that this theorem only proﬁdes rates
for error‘ defined terms of the Loy norm. Convergence rates for stronger norms
which ensure convergence of derivatives are also important, see McCaffrey et al.
(1990). Therefore, another area fof further research is to develop rates for
‘stronger norms either by expanding uniform convergencé results or by developing

new techniques for determining convergence rates for networks.
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Mathematical Appendix.

Theorem 0 is a direct extension of Barron’s Convergence Theorem for

Complexity Regularization (1991b) and the proof uses several of his arguments.

Proof of Theorem 0. Let Zp’ be an ep-net for Zp with respect to the metric
p (i.e. Ep' is a finite set and for each £ eZp there exists a ¢'eZp’ such that
p(€,€) < en).‘ We use a preliminary result from Craig’s derivation of the Berstein

Inequality (Craig, 1933). For independent random variables u; i=1,...n,

nevar(t)

which satisfy |u;-Eu;| <3h, P{u-Ba2 fe+ 2(1-¢)

} < exp{-r}, where 7>0
and 0<éhgc<l, |

Let I, denote the interval ‘of length by which contains the support of the
ey =1, .. 0 Because e, 's are mean zero random variables contained in an
interval of length by, €] Sbp, t=1,... 0. Otherwise, the support of each
ey (the interval Ip) would consist of either entirely positive or negative numbers
and therefore e, could not be mean zero. Thus, I, straddles zero and is of
length by where bp—co. Because % is bounded and the regression function f is

continuous, f(X) eIy for all X ¢ % and all large n.

() =% i {[Ym - £(X,t)]2 —e%n = -% ‘2‘, uy = -1, where ug =
t=1 t=1

e%n—[ytn-f(xt)]z. Eonrn(£) =r1on(£) and the variance of rp(¢), Vafon{fn(f)]:

satisfies
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aVargp[rn(§)] < %télEon{[Ytn - f(xt)lz - e%n}2 :
<k £ Bunfli0%y) - €001 - 200K - ¢XIP
5 {Eon [(X,) - 61 ~ 4Eonefo(Xy) - €K1}

Note that [f(Xy)—&(Xy)I? < b and  ron(€) = Eonlyt - EXI2 —0h =
Fonff(Xy) - §(Xy)]%. Thus,

aVarunlra(6)] sk £ (o Bunlf(X) - €K1 + 408 BonliXy) - §(XI}:

The variance of all random variables restricted to the interval Ip is less than
b,21/4_, the variance of a random variable which assumes either of the endpoints of

I, with probability 1/2. Thus, 0% is less than b2/4 and
nVaron[rn()] < 2b1211'on(€)~

Purthermore, w, = —2[f(Xy) - éXp)leen - [E(Xy) - X)) < -3b3. Thus, —Eontl
=ron(£), nVaren(d) < 2b%ron(£) and Ju;-0} < 3b,21 =53h. Let e=1/ 3b% and
¢ = ¢h = 1/3, then for each £ ¢=p’ |
P{zon(€) ~ra(€) 2 m+-‘°(—;'-—‘-fl }<Plu-Bguz fre 2ot ) <o
Let 7 = Hp, +log(1/8) and a = eb3/(1~c) =1/2, then
2
Plroa(6) -xa(8) 2 Hu3bi | argn(e) + BB, for all ¢ ey}

3bZlog(1/6)
e

3> Pron(€) —ra(6) 2 TR 4 aron(€) +

'-'n

<exp{-Hp +logé +Hp} -
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<é.

Note that the values of e and ¢ were chosen so that both ¢ and o are less than 1.

Any values which satisfy this constraint will suffice.

For any ¢ e Zp, there exists ¢’ ¢ Zp’ such that p(€, &) <en and tﬁerefore by
Condition iii, |rn(é7) -rn(ég) | < kivn a.s. and lfon(fl)-_'fon(fgﬂ < kovp. This
implies that |

con(€) = n(€) = fon(€) = Fon(€) + Fon(§) ~n(€) + (€ ~7a(®)

< |7on(€) - ron(€) | + ron(€) =ta(€) + | rn(¢) ~rn(é)|
3bnlog(1 /6) -
it AT

2
< oy + 38358 1 aryn(€) + +kyvn

except on a set with probability less than 6. Note that rop(£') < ron(€) + kv, s0

ron(€) —tn(€) < kyvn +-I-i-11§-tﬁ + atkgup + aTon(§) +§‘ﬁ‘3§i¥ﬁl+ kyvn.
This implies that except on a set w{th probability less than &

roﬁ(én) - rn(%n) < kgvy +Egﬁ%—%+ akovy + m‘on(én) + w} +kqvn, -
or |

(l'a)ron(én) < Tn(én) +kovn +§E;13'lﬁ+ akov —*Izﬁ)ng-(}"/i) +kyvn
and

(1-e)ron(én) < tn(én) +kg¥n +&§'b—2' +akoyn +w +kyvn

where {p= a.tgmm NE-£€lig " This last inequality holds because
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fa = argmineoa(s).
€Zn

Define u, = [y, - £(X,)|2—€f,. Then 1q(€) = and Epn¥@ =1on. As with
u; and U defined above, |u,—%| 53b,21 and nVargn(%) < 2b121r0n(£). However,
% Eopll = 1g(€) —=ton(£). Applying the modified Berstein inequality to these uy’s

with 7 =log(1/6), we have |

P gf.n(gn) =ron(én) 2 MéM'l‘ aton(én) } < 6.

"~

Thus, e}écept on a set with probability less than 26,

X . 2 -'2 .
- (oJron(Ba) < (1 +&)ron(€n) + Fqvn + BBOE oy + S0RI0BA/E)

n H 2
Let v = (1-)ron(&) — (1 + @) on(£n) + kqvn] ~ 2828 _ kv, then

2
by » SB0R1/8) | o

6b2log(1/6) J=Plv> 6bZlog(1/6) } and

Let v =max(v,0). Then P{v'>
Eonv < Eopv’. Let § =exp{-nt/6b%}, then by an application of Fubinni’s
Theorem (Ash, 1970 p. 101),

2
Eonv < Eonv’ < TP{v' > t}dt < T2exp{-nt/6b3}dt = 1228,
. 0 H

Thus,

12b

Eofon(fn) s ( ){fon(ﬁn + kgl’n] + (—)[

Hpb2
< %{ron(én) +vn + l1):1 I}



32
for some constant % and all large n.  The result follows because

ron(é) = ilf"‘f"%"u for all functions &. 0

Proof of Theorem 2. Let heA be arbitrary and K > 0 be finite. As noted

in Section 2,
]
Sgh(x) =6+ )319i cos(w;x + %),
j=1" - .

for some coefficients 0, i=0,1,...,] and where |w;| <K, bi=imod2 and

I~ Kd.- The thrust of this proof is to note that with ¢ as the cosine squasher

m‘;ﬁﬂd;( -t +5’2"~- m2r) + (b -—3275+ m2rm) - 1]

0 -0 < t <-2rM
{ cos(t)—=1 -2AM <t<2m(M+1)
0 2x(M+1)<t<oo .

See Gallant and White (1988) for details. For any xe¢$, x e [e,27r—e]d and for all
i=1,2,..., wi'x+bi%e [-27M;,27(M; + 1)] for some M; < K. Therefore

2_:‘ 20, {4 - (w'x +b5) + T - m2r] + ${(w;'x + 55 -3 4 m2n])
= Gicos(wi'x + b%) - 8i “+ 9i2(2Mi + 2)

or

4M

)f: B+ ) = ycon(x+ bg) -0, +8,2(2M; +2)
where By =28, Yo = Wi( - 1)k mod2 and

1

Tiko = (b5 + 1)%-4— 2m( - l)km°d2{-Mi + [L—‘-él] -(j- 1)mod2}. For any real number,
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¢, [t] denotes the integer part of & Furthermore, if

Bo=08s+ 25 [6; - 6,2(2M; + 2)], then for any x e %,

i=1

1 aM+2
Sih(x) = Bo+ Z Z: ﬂik’*”“ik”‘ + 7iko)'

Let g= Z(4M +2) and the result follows o
i=1
Proof of Lemma 1.
a. Theorem 3 provides that there exists weights such that
M43
Sgh(x) = fo+ E )3 ﬂ,k¢(7,k X+ 71ko)
where M; <K a.nd [~ Kd. Thus, embedding SKh requires q hidden units,

q= Z(4M +2) <4Ki+20=0(K3+1) for IargeK
i=1 .

b. Recall that there exist /(K) terms in a degree K Fourier series and I(K)
satisfies ¢{K < I(K) < c2K for some constaats ¢{, cg > 0. The constants cq and cg
do not depend on K and without loss of generality we can assume cy > 1. Let

23-10; and K =Cq1/ (d+1). As show in the proof of Theorem 3, for each term

in Syh, cos(wi’X+bi%), i=1, ... I(K), {w;l Sgo 1/(d+l) and for x restricted

°2

to %, the function cos(wi’x-i-bi%) can be constructed with no more than

1/(d+1)

2 l/(d'{'l)-r-l) hidden units. For large q, 2<z— 1 and

2ge, 9 5, 4
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2(231—q1/(d+ 1) +1) g %‘ql/(d'k 1). Because K = qul(d + 1), there are at most

2

c2('glc§q1/ (d'*']'))"lI terms in Syh. Thus, embedding Sih by a network requires
less than <:2(51 1 (d+1))d 515 1/ (d+1) < q hidden units. In other words, if
K =Cq1/ (d+1) then there exists a vector of weights (B8, 10 + +
,ﬂq,vq',ﬁqo)’, suth that Sgch(x) =fo+ iilﬁiv,l_:('yi’x+ ;o) for all xe®.

me of Theorem 3. By Lemma 1b there exists a constant €, such that if
_ Kn=(‘31q111/ d+1) then there exists a ve;:tor .of weights (ﬂo,ﬁl,'yl’,'ylo, cs

’ ~4n

BagrVan'i7qqo)> such that SKnh(x) = ﬂ0+i§:1ﬁi¢('yi’x+fyio), for all xe%. By
the d.iscﬁssion foliowing Lemma 1 there also exists a eonstant Cy such that if
Ap > Coan 2/(d+1) then these weights satisfy the constraints q}f ! Bil <Ay and
% E |7 | € Apaq for all large n. Because 2/d+1) _ o(A }s 2/(d+l)/A -0

1=1j=0
and C q%/ (d+1) <A,; for all Iarge n. Thus the weights of the network which
2

embeds SKnh satisfy the constraints of Ay for all lafige n.

Proof of Theorem 4. By Theorem 3 there exists Kp = O(an 1/ (d+1)) such
that San € Ay for all large n. Because gp = a.rﬁr:m f-gnll 2.1 and San eAq,

NE-gllg , < NE=Sg fli2

=o(Kg ™€)
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= 0(%m/(d+1)+e)

for all e> 0. 2|

Proof of Lemnma 2.
|von(8y) ~Ton(g9) | = | Eonlf(X) - 81(X) + 112 ~ Eonlf(X) - g5(X) + 21} |
= | Eon{[(X) - 25(X) + 1] + (g (X) - (K]}
~ Eonlf(X) - g3(X) +e1,/|
= | 2Eon(f(X) - g9(X) + e ](8; (X) - 89(X)]
~ Eonlgy (X) - go(X)I?|
< 2eqFon | 1(X) = g9(X) | +€3.
For sufficiently large n, mépu(xn <Ap and ey $Ap. Furthermore, for any
geha apls00] < 160l +ii§1ﬂi;up;¢(1i'X+vio)| <Ap This implies that
ITon(81) — ron(gg) | < 5Anen.
Similarly,
|7a(g;) - rn(gy) | = -ég{2[f(xt)-gz(xt)+etnus1(xt)-gz(xt)l
- [g1(X) - g3(X)1 %}

saﬁgt (X)) - gg(Xt)|+ Zletn|+e%
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By definition jey, ] <Ap as. for t=1,...,n, 8o %illetn-l <Ayp as.
. t= ’
Therefore,
|rn(g;) ~tn(89) | <4Anen +2An€n+5:21 a.s.

<TApén a.s. o

Lemma 4 is similar to White’s Lemma 4.3 (1990) and many of the details-
of this proof have been taken from White’s proof of that lemma.

Proof of Lemma 3. From the definition of metric entropy, to calculate the
metric entropy of Ap, H(e, Ap,p), requires finding an e-net for Ap and setting

H(e, Ap, p) equal to natural log of the number elements in this net. Recall that
an ) ™
An = {gRI-RL: g(x)=fo+, zlﬂi"b(7i X+ Yg;) W“h..EO |B;1 <&n
1=1" i=

Qn d
and 3 3 171 < Anan}

i=1j=0
Let
qn
B={8ecRUTL ¥ 161<An},
1=0
dn
G= {'YEan(d+1)= 2 2 175 < Apgn} and
i=1j=0
D =BxG,
then

4n .
Ap = {g:IRd—»RI: g(x) = o+ Zlﬂ;'.b(‘)'i'x + 7io) with
1=
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b= (ﬁo:ﬁlf?l') R ,ﬁqn:'fqn')’ a.nd 6€D}.
Let By be an 7-net for B in terms of the metric induced by the Li-norm. If

ueRY then the Ly-norm of u is |Ju|l = f: |y | Similarly let Gy be an n-net for
i=1

G aud Dy =ByxGy. ,Dyis an g-net for D. Let
Ap = {gRE-RL: > g ith §&D
n={gRI-RY: g(x)=fo +i_§1ﬂi¢(‘7ix+’¥io) with & € Dy}

We now show that by selecting 7 correctly Ap is an e-net for Ap.
Let €>0 be given and geAy be  arbitrary - with
| w . » |
g(x) =fo+ Elﬂilli('yix»i-*yiu). Because By and Gy are n-mets for B and G
1=
. . * * g *
respectively there exists A% and 4™ such that > 1B;=B | <n and
~ i=0 '
£ % -t s Let & =Bl .. Bigrag)  ead
i= j-_-o 71] 71] s o - 0y 1171 IR I | q_n"yqn
an :
g*(x) =53 + Elﬁf 'ﬁ(‘?’;‘ x+7fo) then §* ¢ Dy, and ghe Ag.
i=
sup |g(x)~g*(x)| =sup Iﬂo+q§ﬂ-¢(7-'X+7- )=
Xe% XeS% je=1 ! ! 10
B+ 8 BHAT ey |
O+i-—z-:1 PP x+75) |
<sup | Bo— B3+ 2 (B - BIW(r{x+ 1)
"erS o=Fot.2 Pi=F VX + 700 |
2 Brtwty B+ )]
AR AR i
an
<3 16-FF
1=0

n *- ’ *e *
+>?2%3i§1 | 871 1901 % +730) = ¥(0 x +7) |-
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The Mean Value Theorem provides that for any u, u'e Rl, u<u,
19(u) -$(0) | S Pu*)lu-u'|,

where u* ¢ (u,w"). However, 0 < #/(u*) <1 for all u* eR! and thus

| p(u) - p(u)| < [u—u].

Therefore,
sup |g(x)—g"(x)| <n+sup %5 181 1(1; % +730) = (% +75) |
Xe® XeBi=] 1 i
qn qp
<n+AR[T =Tl + X sup [1%-7% 1]
i=1 . 0 Sixes 1 1

qn qn d :
< + A Y. + su Xz — *.x'
i n[i21”‘° Yol iEljxlxep %475 = 755 )

a d )
<+ 27"431}513,50 1735 = 75!

< +2x0p7.

. If n=¢/(1+2rAp) then p(g,g*) < ¢ and because g was arbitrary Ay is an e-net
for Ap.

To find H(e,Ap,p) we must determine the number of elements in Ay,
n=¢/(1+2rAy). We can determine this value by calculating the number of
elements in Dy. Because Dy =Bpx Gy we have #Dp = #Bn'#Gm where # is
the cardinality operator, i.e. for any set A, #A =the number elements in A.
Using the results of Kolmogorov and Tihomirov (Theorems V, IX and X, 1961)
we have #By < 2(2An/n)qn+1 and #Gy < 2(2Anqn/n)qn(d+l). Thus
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log #Dy < logl4(2An/n) 0™ (28540 /7) (4 HD)

< log4 +{qn(d +2) + 1]log(2An/n) + qn(d +1)logay
<log4+[an(d +2) + 1][log(3) +log(Ag + 27 A%)] + qn(d + 1)log an.

The lemma follows because of the one-to-one correspondence between Dy and A,

Proof of Lemma 4. From Lemma 3, if 8= t_i—+'-2 and v =m/(d +1) then

3($, Ap, p) < logt+[anf+1][log q8” +log(1 +2mAp)] +qn(d + 1)logqn
| Bec.;a.us.e Ap—oo there exists an ng such that Aﬁ>(1 +27) for all n>n,. Thus,
H(%IE’ Ag, p) < logd+[agf + 1][log a2 + logAg] +qn(d +1)logqn

for all n>n, . Because qp—oo, logqn>log4 >0 for all large n, so that
log4 +qp(d +1)logqn < (qnB +1)logqn and qnf>1. Without a loss of generality
we can assume this holds for all n>n,y. Thus for all n>n,,

A
H(;g%, A p) < [aaB+1][logAZ +log ag” +log ag),
< 2qpfllogAZ i+,

The result follows because by the assumption that Ap = 2/ (d+1)logn and

qq < 0 for some constant afl

Proof of Theorem 5. Under the conditions of the theorem, Theorem 0

holds and
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4A%H[5n(ri’n)a Ap, P} +vg}

Eon I -8 13, = O{llf-gnll} .+

for any sequence of constants {vp}. Furthermore, An=q?‘1/ (d+1)logn implies
that q,21/ d+1)_ o(Ap).  Therefore, Theorem 4 holds and

Hf-gnll %’# =o(qn_2m/(d+1)+e) for any €>0. Let vy = q{fzm/(d+ 1) Then
ap = @+ 1)/(2m +d +5) and Lemma 5 provide that
Hlen(vn), An» 4} < O(aalogn) and 4% H(en(vn), Anspl/n =

O(qg:1 +5)/(d+ 1)log n/n). Thus,

: - . (d+5)/(d+1)
Bonllf—a 13, = Ofaman(ay 22/ + Ve a7 logay,,

implies that qu

g = n(d+1/(m+d+5) -2m/(d+1) , (d+8)/@+ 1)y 4ng

Fonli-gff 13 , = Ofag 2/ @+ D+ s o =2/ @mrd ) ey
Finally, by Chebyshev's inequality Eog [1f-glf 13 , = Ofn ~20/(m+d+5)+¢)

implies that 1|f—g#||%”u.—.-.Op{n_zm/(2m+d+5)+e} or [|f—-g#||2”u=

Op{n—m/(2m+d+5)+e}. 0

The following technical lemma is used in the proof of Corollary 1.
Lemma A.l. Under the conditions of Theorem 5, Pr{g# # gn}—0 as n—oo.
Proof of Lemma A.l. If all the e, ¢Ip then g# = gpn.. Thus, . ﬁ 1{et elp}c
{g}&‘E =gn} and {g?i’E #8n}C . o {e;#In}.  Because the e, are iid the

Pr{e; ¢In} =Pr{e; ¢In} =Pr{|e;| 2Ap} for t=1,...,n and Pr{g# #8&n} <
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. )%lPr{et £In} =oPr{e; ¢In} = nPr{| eyl 24p}. Let p=(2m+d+5)/2.

Using the definition of qn and Ay given in Theorem 5 yields Ay =n1/ Plogn or
n< AL This yields nP{|e;| >Ap} SAgP{lell >Ap}.  For every P-
measurable set B, let A(B) = IB [eLl PdP. By the assumptions on ey given in
Section 2, A is a finite measure, Let By = {111 2 Ap}; because Ap—oco, Bp—B*

e

with P(B*) =0. Thus, A(By)—0 and

-

0> nliggoBI ley | PdP > nl_iggoBf ARdP = lim ABP{|e;] > Ap} 20
. n o
and
0< li_xgoPr{g##én}s lim oP{|e, | ?.Ag}snl_iggoﬂﬁP{lelI >An} =0
a

Proof of Corollary 1. For any ¢ >0, let ap ___n—m/(2m+d+5). Given any
6 >0, by Theorem 5 there exists an M & such that

Pr{i|f-gff Il , > anMg} <3,

for all large n. If I1f-gf Il , <2aM; and gff =2y, then N1f-2all, , < anMg,
Thus, {(11£-gl 115, < 2aMg) N (el =)} < (15l 15 , < 2y} and

Pr{Nf-gf llp, < oaMg} 2 P{(NE~gF I, <o) 0 (e = £a)}

=1-Pr{(I£-gf 5 ,>anMp) U (elf #20)
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21-Pr{lif-gf I, >anMg} ~Pr{ef #a}.
By Theorem 5 Pr{ |j{ -g# o, ,u>a'ﬂM6} < 6/2 for all large n and by Lemma A.l

Pr{g# # &n} < 8/2 for all large n also. Pr{ ||f—gn# I 2.4 apMg}—1 as n—oo and

1£-58 1, = Oplan) by definition. 0



-
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