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ABSTRACT

The SNP method, popular in the econometrics literature, is proposed for use in population

pharmacokinetic analysis. For data that can be described by the nonlinear mixed effects

model, the method produces smooth nonparametric estimates of the entire random effects

density and simultaneous estimates of fixed effects by maximum likelihood. A new graphical

model building strategy based on the SNP method is introduced. The methods are illustrated

by a population analysis of plasma levels in 136 patients undergoing oral quinidine therapy.

KEY WORDS: Population pharmacokinetics; nonlinear mixed effects models; density es-
timation; nonparametric estimation, maximum likelihood, quinidine.
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INTRODUCTION

The statistical nonlinear mixed effects model has been used in population pharmacokinetic

analysis since the pioneering work of Beal and Sheiner[l]; see also [2, 3, 4]. These models

account for inter-individual variability in pharmacokinetic parameters and characterize the

distribution of these parameters. The parameters vary from individual to individual due

to variation in observable individual attributes and sampling variation in unobservable ran-

dom effects that follow a distribution. The objectives of an analysis based on these models

include estimation of population characteristics (mean, variance, etc.) of the pharmacoki-

netic parameters, assessment of the effect of individual attributes (weight, age, etc.) on the

population characteristics, and computation of empirical Bayes estimates of an individual's

pharmacokinetic parameters, which can be used in individual dosage adjustments [5]. The

work of Mallet [6], who proposed a nonparametric maximum likelihood (NPML) estimator,

and his co-workers Mentre, Steimer, and Lokiec [7], has generated an interest in estimation

of the entire distribution of the random effects and demonstrated the importance of nonpara-

metric estimation of the distribution when there is cause to expect departures from standard

specifications such as the normal or log normal distribution. One important departure is

multi- modality, which is often caused by omission of a relevant individual attribute from

the description of pharmacokinetic parameters in the model.

Here we discuss a nonparametric method called SNP that is particularly relevant to

population pharmacokinetic applications using the nonlinear mixed effects model. It is based

on a presumption that the distribution of the random effects has a smooth density. The

method was originally developed for the models of inter-individual heterogeneity that occur

in labor economics [8] and has also been used in time series analysis [9, 10, 11]. It was

adapted to nonlinear mixed effects models in [12], which contains an application of the

method to the population pharmacokinetics of phenobarbital and simulations assessing its

ability to fit multi-modal random effects densities. SNP is an acronym for seminonparametric

which is a usage that predates its application to nonlinear mixed effects models [13, 14].

With respect to nonlinear mixed effects models, smooth nonparametric would be a more

meaningful interpretation of the acronym.
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The SNP method simultaneously estImates the fixed effects and the entire distribution

of the random effects of the nonlinear mixed effects model. Subsequent computations based

on SNP estimates are convenient: statistical tests of the significance of individual attributes,

tests for normality of the random effects density, empirical Bayes estimation of individual

random effects, and simulation from the estimated density. The ability to simulate greatly

facilitates computation of the population characteristics of pharmacokinetic parameters that

are affected nonlinearly by the random effects.

In this article, we relate the SNP method to population pharmacokinetic applications,

introduce a new graphical model building strategy that exploits the tendency for omitted

individual attributes to produce disparate empirical Bayes estimates of individual effects,

and illustrate by application to clinical data on quinidine concentration.

MAXIMUM LIKELIHOOD ESTIMATION

The SNP method is similar to the NPML method of [6, 7] in that it invokes the likelihood

principle as the basis for estimation. Mallet et al. [7] provide an excellent discussion of the

underlying ideas, relating them specifically to population pharmacokinetics. The derivation

of the likelihood involves two steps: specification of an individual likelihood function in terms

of an individual's pharmacokinetic parameters and specification of the population likelihood

in terms of a distribution for the pharmacokinetic parameters. In both methods this distri-

bution is not restricted to belong to a parametric family but is estimated nonparametrically

in its entirety; the methods differ in choice of nonparametric estimation method.

Individual Likelihood Function

Let Yij, 1 j Ji' be the observed concentration measurements on individual i, 1 i n, at

settings Xij of a k-vector of independent variables such as time, dose, rate of administration,

etc. These are assumed to follow the intra-individual regression model

The function f describes the pharmacokinetics in terms of the independent variables Xij and
the p,a-vector of pharmacokinetic parameters f3i specific to the individual; eij denotes the
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intra-individual error associated with the jth observation on individual i. Note that eij is

unrestricted so that this assumption subsumes specifications such as Yij = f(xij,!3i)(1 + T/ij)

with T/ij either iid or serially correlated. The total number of observations is N = I:i=1 Ji .
Measurement error, primarily due to variation in the assay used to process samples, is

the largest component of eij. Specification of a distribution for this error completes the

description of the individual likelihood. Denote the joint density of the errors eij by

where !3i is as above and a is a pu-vector denoting parameters specific to the density such as
parameters that characterize the second and higher moments of the density. For example,

a common assumption is that the errors are independently and normally distributed with

standard deviation proportional to level [15] which is written as

J;

Pe(eil, ... , eiJ; lXiI, •.. , XiJ;, a, !3i) = II n{eiilO, [a f( Xij, !3i)]2},
j=1

where n(·Ip,w2) denotes the normal density with mean p and variance w2• Specifications

other than the constant coefficient of variation variance function [a f(Xih !3i)]2 are possible;

for example, see [7]. One can specify more general forms for Pe that, for example, account for

serial correlation, in which case the density would not be a product of individual marginal

densities.

Population Likelihood Function

The pharmacokinetic parameters !3i vary from individual to individual. Part of this inter-

individual variation may be explained by systematic dependence of pharmacokinetic parame-

ters on demographic and other individual attributes, also called covariates. The unexplained

portion is assumed to be random and is characterized by a probability density h. These

dependencies are usually represented by an inter-individual regression model of the form

The inter-individual regression function 9 describes the interaction of systematic and random

sources of variation. In this function, Wi is a vector of covariates, / is a p..,.-dimensional vector
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of unknown fixed effects, and Zi is an M-dimensional vector of inter-individual random effects

with density h(z). An example is a log-additive specification of clearance Cli for individual i

as a function of body weight Wli, an indicator variable W2i for ethanol abuse, and a random

effect Zli

which would be one equation from the system of equations g(w'I'z), Note that the dimen-

sion of 9 is P/3, the dimension of z is M, and they need not be equal, as in the case where a

pharmacokinetic parameter is assumed to be fixed (not random) across the population.

Collecting the parameters I and u together into the single Pr-vector

r = (/,u),

the population likelihood can be written as

Pr = P"Y +pu,

n .

£(r, h) = IT!PY(Yib···,YiJilxib···,xiJilwj,r,z)h(z)dz.
i=I

Here, PY(YiI,"" YiJi IXiI,' .. , XiJi' Wi, r, Zi) is the joint density of the observations on In-

dividual i implied by the pharmacokinetic model! and the error density Pe. It is ob-

tained by substituting the equation eij = Yij - j[Xij,g(Wi'I,Zi)] into the error density

Pe[eib ... , eiJi IXib' .• ,XiJil u, g(Wi, I' Zi)] (because additive errors, Yij = !(Xij, {3i)+eij, imply
that the Jacobian of (eiI,"" eiJ;) with respect to (Yib' .. ,YiJ;) is the identity matrix of order

Some individual attributes may change over the period of observation. This situation

is accommodated by permitting the individual pharmacokinetic parameters to depend on j

as well as i and by writing the inter-individual regression model as {3ij = g(Wij, I' Zi). For

instance, in the example above write Clij = exp(IO+/IWlij+/2W2i+Zli) to indicate that mea-

sured body weight may change over the period of observation. In this case the joint density of

the observations on individual i has the form PY(Yib' .. ,YiJi IXib' .. ,XiJilWib' .. ,WiJil r, Zi).

SNP Estimation

In this framework, an important objective is determination of an appropriate inter-individual

regression model g(w, I' z) from the data. For each g, estimation of and inference regarding
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the parameters 7 = ("I, (J) is of interest. Another important objective is the determination
of h, as h characterizes the population of individuals.

Nonparametric estimation of h allows one to detect unusual features of the population

such as multi-modality, which often indicates the presence of systematic inter-individual

variability and the need for a more refined inter-individual regression model g. It also affords

protection against incorrect assumptions regarding h that can bias estimates of T and lead

to erroneous inferences.

Nonparametric estimation of h can be accomplished within the likelihood framework by

maximizing the likelihood £(T, h), either simultaneously or sequentially, in the fixed parame-
ters T and the density h. One maximizes with respect to h over a wide class of distributions.

The NPML estimator is obtained when the class of distributions is completely unrestricted.

A consequence is that NPML estimates are discrete densities that assign probability to a

finite number of points.

As the true density of the random effects associated with pharmacokinetic parameters is

likely to be smooth, estimates ought have this characteristic as well. One can either obtain

smooth estimates by smoothing the NPML estimator ex post or by imposing smoothness on

the estimator ex ante. The SNP estimator is obtained by adopting the latter approach.

To eliminate ambiguity in the sequel, let TO denote the true values of the fixed parameters,

let hO denote the true random effects density, let f3i, 1 ::; i ::; n, denote the true realized
values of the individual pharmacokinetic parameters, and let zi, 1 ::; i ::; n, denote the true
realized values of the random effects.

SNP estimates (f, h) maximize the likelihood

£(T, h) = ftJpy(Yib" . ,YiJ, IXib" . ,XiJ" Wi, T, z) h(z) dz,
.=1

where p(Yi1" .. , YiJ, IXil,' .. , XiJ" Wi, T, Zi) is the joint density of the observations on individual

i. The approach is based on the assumption that hO belongs to a class of smooth densities

1i described below. This assumption allows h to be written such that maximization of

£(T, h) over T and h becomes a standard nonlinear optimization problem. The method is

summarized in this section; for the theory see [8, 12].

The maximum likelihood estimates (f,k) of (TO,hO) may be equivalently computed by
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minimizing

over T and h E 1-l. Once the estimates (f, h) are obtained, empirical Bayes estimates of the
zi, 1 i n, are computed as the values Zi that maximize

From these, the empirical Bayes estimate of an individual's pharmacokinetic parameter Pi
is obtained by evaluating Pi = g(Wi' 1', Zi) [or Pij = g(Wij, 1', Zi)].
The true density hO is presumed to be in a class 1-l of smooth densities. The smooth-

ness restriction is that h must be at least M /2 times differentiable. This restriction rules

out unusual behavior such as kinks, jumps, or oscillation but does permit h to be skewed,
multi-modal, and fat- or thin-tailed relative to the M-variate normal density. The class 1-l
thus contains densities that accommodate a wide range of behavior. For a mathematical

description of 1-l see [8].
As a practical matter, it is the ability to represent multi-modal densities and densities

that are more spread-out than the normal density (fat-tailed) that is important. Multi-

modality is often a consequence of systematic dependence of a pharmacokinetic parameter

on an individual attribute that has been omitted from the inter-individual regression func-

tion g. Distributions that exhibit more heterogeneity than permitted by the normal density

(fat-tails) are not unusual in observational data on human subjects. Failure to track these

characteristics can distort empirical Bayes estimates of individual random effects and esti-

mates of population characteristics that are nonlinear in the random effects.

Gallant and Nychka [8] have shown that a density from 1-l can be written as the infinite
series expansion

h(z) = [ L a>.(R-l z)>'] 2nM(zIO, RR'),
1>'1<00

where: The M-dimensional vector A= (AI,"" AM) has nonnegative integers as elements; uA

is the monomial u>' = ••• of order IAI = Ak; nM(·Ij.L, E) denotes the multivariate
normal density of dimension M, with mean j.L, and with variance-covariance matrix E; and
R is an upper-triangular matrix.
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One can approximate h by truncating the infinite expansion, retaining only the leading

terms [PK(R-1z)]2nM(zIO, RR'), where PK(U) = L:IAI<K aAuAdenotes a polynomial of degree
K. The truncated expansion will be a density if the coefficients {aA : ° 1..\1 K} are

chosen so that it integrates to one, that is, J{PK(u)}2nM(uIO, I) du = 1. The easiest way to
impose this condition is to put ao=1 and write the truncated expansion as

The denominator is an easily computed weighted sum of products of the moments of the

standard normaldistribution [16, p. 47].

Let 0(1) be a vector whose elements are the coefficients {aA : ° 1..\1 K}, let 0(2) =
(rll,r12,r22,r13,r23,r33, ... ,rMM), let 0 = (O(1)lO(2»)' and let po denote the dimension of

the vector 0, which is determined solely by the degree K of PK. The vector 0 completely
describes the truncated expansion.

As an example of the truncated expansion, consider M = 2, K = 2. In this case

{..\: ° 1..\1 K} = {(O,O),(1,O),(O,1),(2,O),(O,2),(1,1)},

and

The denominator of h2(z) is a weighted sum of products of moments to the 4th order of

the standard normal distribution, and 0(1) = (aoo, alO, ao}, a20, a02, all), 0(2) = (rll, r12,T22),
0= (0(1),0(2»)' so that po = 9.

If h is represented by the truncated expansion hK(Z), estimation of TO and hO becomes a
standard problem in nonlinear optimization. One minimizes Sn[T, hK(·IO)] in the variables T

and 0 to get f and 0. The estimate of hO is then hK(-) = hK(·IO).
Gallant and Nychka [8] show that hK is a nonparametric estimator by proving that if

the degree K of the polynomial increases with the sample size N then the estimates (f, h)
obtained in this way converge to the true values (TO, hO). Moments of 11, converge to their

true values as well. This· convergence property is called consistency. Confidence intervals

can be computed for the elements of T and characteristics of h using maximum likelihood

formulre [17].
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If hO is assumed to have mean zero, that is, f z hO(z) dz = 0, then the constraint may be

imposed when computing hwithout altering the consistency result. When the constraint is
imposed, the estimators with K = 0 and K = 1 are the same so that K = 2 is next in the
progression. For K > 0, the off-diagonal elements of R can be constrained to be zero which
attenuates estimated correlations but does not affect the consistency result.

Standard statistical model selection criteria can be used to choose the truncation point

K. Most criteria pick the value of K that minimizes an expression of the form sn(f, hK) +
c(N)(PnetlN) , where Pnet = PT + po - 1 if the constraint f zh(z) dz = 0 is not imposed

and Pnet = PT + po - M - 1 if it is. The term c(N)(PnetiN) is a penalty factor designed

to compensate for small Sn (f, hK ) achieved by fitting an over-parameterized model. The

standard criteria are: the Schwarz or BIC with c(N) = (1/2) log N, the Hannan-Quinn (HQ)
with c(N) = loglogN, and the Akaike or AIC with c(N) = 1.

These criteria have been extensively studied when (-N)sn( f, hK ) is replaced in the ex-

pression above by the optimized log likelihood of a linear regression model [18, 19, 17]. The

BIC criterion has the largest penalty that will not underfit in large samples with little re-

striction on regressors. The HQ criterion has the smallest penalty that will not overfit under

more stringent conditions on the regressors. The AIC criterion adds regressors at an appro-

priate rate when the regression is a series expansion. For the formula that relates this work

to the present context see [20, p. 366]. Note that the penalty increases as one goes from

BIC to HQ to AIC. Thus, K may, but need not, increase from BIC to HQ to AIC.

Our recommendation is to inspect plots such as Figure 1 for all models between those

chosen by the BIC and AIC criteria inclusively and make a visual selection. We cannot state

the case for visual inspection better than Silverman:

A natural method for choosing the smoothing parameter [K] is to plot out several
curves and choose the estimate that is most in accordance with one's prior ideas

about the density. For many applications this approach will be perfectly satis-

factory. Indeed, the process of examining several plots of the data, all smoothed

by different amounts, may well give more insight into the data than merely con-

sidering a single automatically produced curve. [21, p. 44]
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If one insists upon an automatic selection rule we recommend the HQ criterion because,

upon checking several published applications of the SNP method in the econometrics liter-

ature, we found that the HQ criterion usually selected the same model that the authors of

these articles had chosen after extensive diagnostic testing. The BIC criterion nearly always

selected a smaller model than the authors chose, and the AIC model nearly always selected

a larger model.

One structural aspect of the truncation estimator hK deserves comment. If K = 0 then

hK is the normal density; that is, the normal density is the leading term in the expansion of

hO. This is an advantage in applications when the normal distribution is a reasonable first

approximation and one only expects modest departures from the normal such as an extra

mode. Moreover, the fact that the leading term of the series is the normal density provides a

convenient means to test the hypothesis that hO is normal. One can compare the optimized

likelihood for K > 0 with that for K =0 using, say, either the model selection criteria above
or the asymptotic X2 test. The asymptotic X2 statistic for a choice between specifications

KH < KA havingpnet =PH and PA, respectively, is 2N[sn(fH, hKH)-Sn(fA,hKJ] on PA -PH·
degrees of freedom. In the econometric literature it has been noted that the asymptotic X2

tends to select unnecessarily large K and its use has been largely abandoned in favor of the

model selection criteria. Thus we prefer the model selection criteria for determining K.

For given K, the model selection criteria can also be used determine if the current spec-
ification of 9 should be augmented by additional covariates. The model selection criteria

are evaluated for both the current and augmented models. If the three model selection cri-

teria select the larger model, one has rather persuasive statistical evidence in favor of the

augmentation.

Imposing the constraint Jz k(z) dz = 0 usually has little effect on estimates and can be

convenient when reporting results. Sometimes, however, the constraint increases the value

of K required to obtain an adequate fit. We recommend not imposing it unless it leaves

the estimates of T, the selected value of K, and the visual appearance of the fitted density

essentially unchanged. When K = 1, Jz k(z) dz =0 imposes normality.
Putting the off-diagonal elements of R to zero improves numerical stability, especially

when M is large. We recommend that it be imposed if estimates of T and the visual appear-
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ance of the fitted density are little changed.

A Fortran program implementing the SNP method is in the public domain. It is called

nlmix and is available together with a User's Guide as a PostScript file either via ftp anony-

mous at ccvrl.cc.ncsu.edu (128.109.212.20) in directory pubjargjnlmix or from the Carnegie-

Mellon University e-mail server by sending the one-line e-mail message "send nlmix from

general" to statlib@lib.stat.cmu.edu. Nlmix computes parameter estimates, empirical Bayes

estimates of the random effects, data for plotting, and simulations from the estimated density.

Its use is illustrated in the next section.

PHARMACOKINETICS OF QUINIDINE
Kinetic Model

In their review article, Ochs, Greenblatt, and Woo [22] summarize the literature, mostly

experimental studies, on the pharmacokinetics of quinidine:

Typical ranges for kinetic properties of quinidine in healthy persons weighing

80 kg are: apparent volume of distribution, V, 160 L to 280 L; elimination rate

constant, ke , 0.06 hr-I to 0.14 hr-I; and clearance, Gl, 12 Ljhr to 24 Ljhr.

Quinidine clearance is reduced in the elderly, in patients with cirrhosis, and in

those with congestive heart failure. Oral quinidine is available either as relatively

rapidly absorbed conventional tablets (usually quinidine sulphate) or as a variety

of slowly absorbed sustained release preparations. The fraction available, F, is

generally 0.7 or greater. Values of the first order absorption rate constant, ka ,

range from 0.63 hr-I to 2.97 hr-I. Evidence of a dependence of F or ka on dosage

form is conflicting. Quinidine is 70 to 90% bound to plasma protein, primarily

to albumin but also to a number of other plasma constituents such as aI-acid

glycoprotein. Binding is reduced in patients with cirrhosis, partly because of

hypoabuminremia, but is not influenced by renal insufficiency,

Recently, Fattinger et al. [23] obtained estimates within the ranges above from routine

clinical data on 60 patients treated with quinidine for arrhythmias. They found that weight,
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age, and mild or moderate heart failure had no effect on clearance but that renal insufficiency,

severe heart failure, and severe liver failure reduced clearance.

In the literature, a one-compartment open model with first-order absorption and a two-

compartment open model with zero order absorption are the two most common characteri-

zations of quinidine disposition [22, 24, 23]. Because the data used here have been analyzed

using several statistical methodologies at an American Statistical Association Invited Paper

Session [25] using a one-compartment open model with first-order absorption, that model is

used here to permit comparison:

For the non-steady state at a dosage time, t = tf.

For the steady state at a dosage time, t = tf.

- (FDdV)(1 -

(FDdV) ka [(1- - (1 _
ka - ke

Between dosage times, tf. < t < tf,+l

where tf., f = 0,1, ... are the times at which doses Df. are administered, X(t) is the con-

centration of quinidine at time t, Xa(tf.) is the concentration of quinidine in the absorption

depot at time tf., Xa(to) = F Do/V, X(to) = 0, F is the fraction of dose available, ka is the

absorption rate constant, ke = Ol/V is the elimination rate constant, 01 is the clearance, V

is the apparent volume of distribution, and is the steady state dosing interval.

Data

The data, from [26], consist of quinidine concentration (mg/L) measurements for 136 hospi-

talized men treated for either atrial fibrillation or ventricular arrhythmias with oral quinidine

therapy. A total of 361 quinidine measurements ranging from 1 to 11 observations per pa-

tient were obtained by enzyme immunoassay during the course of routine clinical treatment.
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Concentration measurements ranged from 0.4 mg/L to 9.4 mg/L with mean 2.45 mg/L and

standard deviation 1.22 mg/L. These measurements were taken within a range of 0.08 hr to

70.5 hr after dose, with mean 6.10 hr after dose and standard deviation 5.78 hr.

Time periods over which patients were observed ranged from 0.13 hr to 8095.0 hr. The

drug was administered as quinidine sulphate to 53 patients, as quinidine gluconate to 57

patients, and in both forms to 26 patients. Doses were adjusted for differences in salt content

between the two forms by conversion of both forms to mg of quinidine base; doses ranged from

83 mg to 603 mg. Under steady state conditions, the mean dosing interval was 6.25 hr for the

sulfate form and 7.70 hr for the gluconate form. Initial body weights ranged from 41 kg to 119

kg with mean 79.58 kg and standard deviation 15.64 kg; initial ages ranged from 42 years to

92 years with mean 66.88 years and standard deviation 8.92 years; and heights ranged from

60 in to 79 in with mean 69.63 in and standard deviation 3.37 in. There were 91 Caucasians,

10 Blacks, and 35 Latins; 91 non-smokers and 4p smokers; 90 non- or social drinkers, 16

ethanol abusers, and 30 ex-abusers; and 40 with severe, 40 with moderate, and 56 with no

or mild congestive heart failure. There were 84 patients with measured creatinine clearance

greater than 50 ml/min throughout the observation period, 41 with creatinine clearance

less than 50 ml/min, and 11 whose creatinine clearance varied about 50 ml/min. Albumin

concentration (g/dl) measurements were available for some but not all patients so that this

attribute cannot be incorporated into the inter-individual regression model but its potential

importan.ce can be assessed graphically as seen below. aI-acid glycoprotein concentration

measurements (mg/dl) were taken periodically on all patients and varied considerably within

each patient; these ranged from 39 mg/dl to 316 mg/dl overall; the initial measurements on

each patient had mean 118.54 mg/dl and standard deviation 46.23 mg/dl.

Analysis

The basic set of three pharmacokinetic parameters that we considered were the clearance

Gl, the apparent volume of distribution V, and the absorption rate constant ka • These three

constitute the vector f3ij. The j index indicates that some covariates that appear in the final

specification of the inter-individual regression function change over the period of observation.

There were an insufficient number of samples collected during the absorption phase to
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allow precise estimation of the ka value. Common practice in this situation is to treat ka

as a fixed parameter that has a prespecified value based on previous results. A value of 0.9

hr-1 is reasonable with respect to the range of values 0.63 hr-1 to 2.97 hr-1 above. The

alternatives to this approach are to treat ka as either a fixed parameter to be estimated or

as a random parameter. For completeness, we report results for all three cases:
Case 1. ka fixed and prespecified at 0.9 hr-1 •

Case 2. ka fixed and estimated.

Case 3. ka random.

In all cases, the constraint Jzh(z)dz = 0 was imposed so the progression of SNP specifica-
tions is K=0,2,3, ....

These data do not permit estimation of the' fraction of dose available, Fj therefore we

specified F = 1. As the lowest previous estimate of F reported by [22] was 0.7, the largest

possible upward bias in our estimates of V and Cl is 40%.

The intra-individual errors associated with measured plasma concentration were taken

as normally distributed with constant coefficient of variation.

The SNP methodology is suited to a graphical model building strategy which we shall

illustrate here. The procedure relies on the tendency, noted earlier, for omission of influential

factors from the inter-individual regression function g(w, '7, z) to induce multi-modality on
nonparametric estimates of the inter-individual random effects density h(z). Empirical Bayes

estimates of the inter-individual random effects computed from a multi-modal estimate will

be separated, a well known phenomenon in the nonparametric literature. The separation

will be related to the omitted factors. This relationship can then be detected graphically.

We recommend fitting models with no covariates and increasing I< until empirical Bayes

estimates of the random effects separate. Next, plot these estimates against each potential

covariate and look for a relationship.

Because the graphics for Case 3 (ka random, M = 3) take more space to report than

those for Cases 1 and 2 (ka fixed, M = 2) and because we arrived at the same specification

for the pharmacokinetic parameters in terms of the covariates in all three cases, we only

illustrate the model building strategy for Case 2. In all three cases, however, we report

parameter estimates.
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Fig.!. Estimated inter-individual random effects density and corresponding empirical Bayes esti-
mates, Case 2, no covariates. Panel (a) is the perspective plot of the estimated joint normal (K = 0)
inter-individual random effects density and (b) is the contour plot at quantiles 10%, 25%, 50%, 75%,
90%, and 95% together with the empirical Bayes estimates of the random effects (dots). Panel (c) is
the perspective plot of the estimated joint SNP (K =2) inter-individual random effects density and
(d) is the contour plot at quantiles 10%, 25%, 50%, 75%, 90%, and 95% together with the empirical
Bayes estimates of the random effects (dots).

We begin the Case 2 analysis by fitting the SNP models K=O,2,3 usmg a log-linear

inter-individual regression function [27] without covariates:

C1 = exp(,l + Zl)
v =exp(,2 + Z2)

ka = exp(,3)'

With these data it is essential to enforce positivity of the pharmacokinetic parameters during

nonlinear optimization. In other data sets we have found that this complication does not

arise and enforcement of positivity during computations is not as important. One would,

however, be unlikely to tolerate a specification whose converged estimates were negative for

any admissible setting of the covariates or inter-individual random effects, which is a tedious

condition to verify. The log-linear specification enforces positivity during computations and

eliminates the need to check for global positivity.

Figure 1 plots the estimated densities for K =0 and K - 2 together with the correspond-

ing empirical Bayes estimates Zi for each specification. The tendency for omitted, influential
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factors to induce multi-modal estimates is seen in the J( = 2 plots as is the separation of
empirical Bayes estimates of the inter-individual random effects.

The separation is due to omitted covariates in the inter-individual regression. Thus,

for each pharmacokinetic parameter, a univariate regression of each individual's estimated

random effect on his demographic attribute suggests the importance of that attribute as

a covariate in the inter-individual regression function. A regression against measured con-

centration reveals the importance of all omitted covariates taken as a group. It is easier to

interpret a univariate regression when it isoverlaid upon a scatter plot of the underlying data.

Omitted curvilinearity that attenuates slope, influential outliers, and other characteristics

can be immediately assessed by eye. When the data are categorical rather than measured

along a continuum, boxplots take the place of scatter plots. Examples and a description of

boxplots are in Figure 2.

The shallow slope of the regression of the empirical Bayes estimate of the V random

effect on measured concentration in the lower panel of Figure 2 suggests that there are no

omitted covariates in the V equation. The steep slope for the C1effect in the upper panel

does suggest omitted covariates in the C1 equation.

To determine these omitted covariates, we inspect the remaining plots in the upper panel

of Figure 2. Slopes for the regressions for categorical variables are not comparable to the

slopes for continuous variables; comparisons must be made within variable types. On this

basis, creatinine clearance is the most important categorical variable. Next in importance

is race. But the race relationship is due entirely to Blacks, as seen from the graph, of

which there are only ten in the sample; thus, we do not include race as a covariate. No

other categorical variables seem as important. aI-acid glycoprotein concentration is the

most important continuous variable. It is hard to judge between age, height, and weight as

next in importance. These are correlated variables in these data, anyone of them could be

expected to proxy for the other two; we selected weight. No other continuous variables seem

as important.

The graphical analysis implies the inter-individual regression model

C1 = exp[,1 +T4(weight) +T5(glyco.) +T6(creat.) +ZI]
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Fig. 2. Inter-individual regression graphics, Case 2, no covariates. Empirical Bayes estimates of inter-
individual random effects for clearance (upper panel) and volume (lower panel) plotted against initial values
of candidate covariates and quinidine concentration. Plots against continuous variables such as age are scatter
plots with least squares lines superimposed; the extra line for albumin concentration has the unmeasured
(zero) values excluded. Plots against categorical variables such as dosage form are boxplots: A horizontal
line is drawn in the box at the median, the upper and lower ends of the box are at the upper and lower
quartiles, vertical lines go up and down from the median to 1.5 times the interquartile range, extreme points
are plotted by themselves, and least squares lines through the medians are superimposed.
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Table I. Optimization Results, Case 2, Covariates: Weight, at-acid Glycoprotein
Concentration, Creatinine Clearance

Specification Ka sn(f, hKt BICd HQe AIel

Without covariates 0 7 1.24547 1.30256 1.27985 1.25486
With covariates 0 10 1.10133 1.18289 1.15045 1.12903

Without covariates 2 10 ·1.23415 1.31571 1.28327 1.26185
With covariates 2 13 1.08493 1.19096 1.14878 1.12094

Without covariates 3 14 1.22912 1.34331 1.29788 1.26790
With covariates 3 17 1.07520 1.21386 1.15870 1.12229

With covariates 0 10 1.10133 1.18289 1.15045 1.12903
With covariates 2 13 1.08493 1.19096 1.14878 1.12094
With covariates 3 17 1.07520 1.21386 1.15870 1.12229

aK is the degree of the polynomial part of hK.
bpnet is the effective number of parameters.
Csn(f, hK) is the negative of the optimized log-likelihood divided by the total num-
ber, N = 361, of measured concentrations.
dBIC is the Schwarz model selection criterion.
eHQ is the Hannan-Quinn model selection criterion.
I AIC is the Akaike model selection criterion.

For this model, we repeated the computations and graphics, reporting them as Table I,

Figure 3, and Figure 4.

In Table I, the inclusion of weight, creatinine clearance, and aI-acid glycoprotein concen-

tration in the C1equation is strongly supported by all criteria in all specifications, K = 0,2,3.
For the models with covariates, the conservative BIC criterion selects the normal (K = 0),

and HQ and AIC criteria select the K = 2 specification.

As seen from Figure 3, the covariates have removed the multimodalityin the SNP (K = 2)

estimate which suggests that there may no longer be omitted covariates.

The lower panel of Figure 4 indicates that there are no omitted covariates in the V

equation; the slope of the regression of the V effect against measured concentration is flat
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Fig. 3. Estimated inter-individual random effects density and corresponding empirical Bayes esti-
mates, Case 2, covariates: weight, aI-acid glycoprotein concentration, creatinine clearance. Panel
(a) is the perspective plot of the estimated joint normal (K = 0) inter-individual random effects
density and (b) is the contour plot at quantiles 10%, 25%, 50%, 75%, 90%, and 95% together with
the empirical Bayes estimates of the random effects (dots). Panel (c) is the perspective plot of the
estimated joint SNP (K = 2) inter-individual random effects density and (d) is the contour plot at
quantiles 10%, 25%, 50%, 75%, 90%, and 95% together with the empirical Bayes estimates of the
random effects (dots).

as are those for all variables.

In the upper panel, the slope of the regression of the CI effect against quinidine concen-

tration has been considerably attenuated from Figure 2. It is interesting to note that the

plots for weight, aI-acid glycoprotein concentration, and creatinine clearance are flat. This

attenuation and the shallow slopes of the regressions against the other variables suggests

that there are no omitted covariates.

To confirm this impression, we computed the BIC, HQ, and AIC criteria for inclusion

of each of dosage form, age, height, race, ethanol abuse, and congestive heart failure as an

incremental variable in the equation

Cl = exp[,I + '4(weight) + ,s(glyco.) + /6(creat.) +ZI]

for the K = 0 and K = 2 specifications. The BIC and HQ criteria do not support inclu-

sion of these covariates for either the K = 0 or K = 2 specifications. The AIC criterion

supports inclusion of congestive heart failure, ethanol abuse, race, and height for the K = 0
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Fig. 4. Inter-individual regression graphics, Case 2, covariates: weight, 1-acid glycoprotein concentration,
creatinine clearance. Empirical Bayes estimates of inter-individual random effects for clearance (upper panel)
and volume (lower panel) plotted against initial values of candidate covariates and quinidine concentration.
Plots against continuous variables such as age are scatter plots with least squares lines superimposed; the
extra line for albumin concentration has unmeasured (zero) values excluded. Plots against categorical vari-
ables such as dosage form are boxplots: A horizontal line is drawn in the box at the median, the upper and
lower ends of the box are at the upper and lower quartiles, vertical lines go up and down from the median to
1.5 times the interquartile range, extreme points are plotted by themselves, and least squares lines through
the medians are superimposed.

19



specification but does not support inclusion of any covariates when K = 2.

Because [23] reported lowered clearance for serious liver failure or serious congestive heart
failure, we converted the tri-variate ethanol abuse and congestive heart failure variables to

bi-variate categories by pooling non- or social drinkers with the ex-abusers and no or mild

congestive heart failure patients with those experiencing moderate heart failure and repeated

the above analysis, including both of the new variables simultaneously. For the K = 0

specification both the HQ and AIC criteria support inclusion of these covariates. For K = 2,

only the AIC supports inclusion.

The graphical analysis in Cases 1 and 3 leads to the same log-linear specification of the

inter-individual regression equation for 01 and V as for Case 2. In Case 3, the equation ka
is log-linear without covariates, ka = exp(13 + Z3).

Results

We found that no measured individual attributes affect the absorption rate ka or the

apparent volume of distribution V. We found that clearance 01 is positively related to weight,

decreased in patients with impaired renal function (creatinine clearance < 50), and decreased
by increased levels of aI-acid glycoprotein concentration. We found weak statistical evidence

that clearapce may be reduced in patients with severe congestive heart failure or ethanol

abuse. These results agree with previous results as summarized above.

Parameter estimates for Cases 1, 2, and 3 and specifications K = 0 and K = 2 are shown
in Table II for the inter-individual regression

01 = exp[,1 + ,4(weight) +15(glyco.) +16(creat.)] exp(zl)

V = exp(,2) exp(z2)

ka =exp(,3) exp(z3)
where Z3 is interpreted as having zero variance in Cases 1 and 2. Estimates of the fixed

effects 1 the intra-individual coefficient of variation u are remarkably stable across cases

and specifications as are the estimated variances of the random effects, with the exception of

var(z3). Correlation estimates are small and unstable; in Case 3 with K = 0 it was necessary

to constrain them to zero to achieve numerical stability in the optimizations.
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Table II. Parameter Estimates

Case 1 Case 2 Case 3

Parametera Estimate Std.Dev.b Estimate Std.Dev. Estimate Std.Dev.

Normal EffectsC

11 InCI 2.483840 0.161038 2.488578 0.160400 2.558929 0.162336
12 In V 5.424166 0.064146 5.360088 0.084944 5.242221 0.134361
IS Inka -0.105361 constr. -0.889899 0.293296 -1.292581 0.365426
14 Weight 0.005010 0.001697 0.005878 0.001636 0.005550 0.001711
IS Glyco. -0.004205 0.000426 -0.004592 0.000479 -0.004802 0.000458
16 Creat. 0.182166 0.037989 0.165075 0.041611 0.154950 0.042073
u CV(y) 0.250014 0.011076 0.242044 0.010580 0.239513 0.010364

var(zI) InCI 0.060156 0.009506 0.066420 0.010348 0.067296 0.010333
var(z2) In V 0.082108 0.051643 0.142595 0.066383 0.070784 0.089063

In ka 0.0 constr. 0.0 constr. 0.630126 0.497739
P(Z1,Z2 InCI, V 0.137148 -0.013377 0.0 constr.
P(Z1,ZS) InCI, ka 0.0 constr. 0.0 constr. 0.0 constr.
P(Z2, zs) In V, ka 0.0 constr. 0.0 constr. 0.0 constr.

SNP

11 InCI 2.621325 0.153507 2.647315 0.157191 2.623371 0.151130
12 In V 5.429789 0.068826 5.356483 0.083635 5.222166 0.157562
IS Inka -0.105361 constr. -1.065291 0.300597 -1.153077 0.428943
14 Weight 0.003769 0.001667 0.004802 0.001671 0.004735 0.001599
15 Glyco. -0.004338 0.000410 -0.004947 0.000441 -0.004963 0.000417
,6 Creat. 0.121290 0.045138 0.112014 0.046321 0.169517 0.042232
u CV(y) 0.241634 0.010388 0.234707 0.009639 0.225575 0.009972

InCI 0.086285 0.025013 0.086321 0.025638 0.083067 0.019849
var(z2 InV 0.081184 0.048667 0.181529 0.101930 0.136504 0.107092
var(zs) Inka 0.0 constr. 0.0 constr. 0.910501 0.897072
P(Z1,Z2) InCI, V -0.215559 -0.381538 0.010591
P(Z1,ZS) InCI, ka 0.0 constr. 0.0 constr. -0.201680
P(Z2,ZS) In V, ka 0.0 constr. 0.0 constr. 0.082857

aModel: The intra-individual pharmacokinetic model, represented as y = f(x, {3) + e, is a one-
compartment open model with first-order absorption where {3 = (C/, V, ka ) are the pharmacoki-
netic parameters, CI is clearance in L/hr, V is the apparent volume of distribution in L, and ka
is the absorption rate constant in hr-1. Quinidine concentration, y, is in mg/L, and the experi-
mental variables x = (dose,time) are in mg of quinidine base and hr respectively. The errors e are
normal with mean zero and standard deviation uf(x,{3). The inter-individual regression model
for the pharmacokinetic parameters is InCI = 11 + 14(weight) + Is(glyco.) + 16(creat.) + Zl,
InV = 12 + Z2, and Inka = IS + Zs where the z's are the random effects. Weight is in kg,
a1-acid glycoprotein concentration is in mg/dl, and creatinine clearance is in mljmin. Var(·)
denotes the variance of a random effect and p(.,.) a correlation. Cases differ with respect to
which parameters are constrained.
bconstr. means that the estimate is constrained to have the value shown.
cNormal Effects: maximum likelihood estimates with normal (I( = 0) random effects density.
dSNP Effects: maximum likelihood estimates with SNP (I< = 2) random effects density.
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Table III. Population Characteristics of the Random Effects

Case 1 Case 2 Case 3

Characteristica Estimate Estimate Estimate

Normal Effectsb

CV(exp zt) GI 0.248875 0.263182 0.269232
V 0.299589 0.401253 0.277401

CVexp z3 ka 0.0 0.0 0.931264

GI 1.026680 1.030480 1.039373
£ exp Z2 V 1.039255 1.071143 1.037394
£(exp Z3) ka 1.0 1.0 1.361435

var(exp zt) GI 0.065288 0.073551 0.078306
V 0.096939 0.184727 0.082814

var exp Z3 ka 0.0 0.0 1.607458

exp Zl, exp GI, V 0.111926 -0.036051 0.0
P exp Zl ,exp Z3 GI,ka 0.0 0.0 0.0
p(exp Z2, exp Z3) V,ka 0;0 0.0 0.0

SNP Effects C

GI 0.321833 0.314340 0.327505
CV exp Z2 V 0.288746 0.537890 0.387419
CV(exp z3) ka 0.0 0.0 1.684499

rpZ1j CI 1.042353 1.040531 1.050885
£ exp Z2 V 1.035648 1.105573 1.075237
£ exp Z3 ka 1.0 1.0 1.647813

GI 0.112536 0.106982 0.118453
var exp Z2 V 0.089424 0.353640 0.173528
var(exp Z3) ka 0.0 0.0 7.704733

p(exp Zl, exp Z2) GI, V -0.193330 -0.319158 0.026915
exp Zl, exp GI, ka 0.0 0.0 -0.079568

p exp Z2, exp Z3 V,ka 0.0 0.0 0.026544

aModel: The inter-individual regression model for the pharmacokinetic
parameters is GI = exp['y! + 'Y4(weight) + 'Y5(glyco.) + 'Y6(creat.) + Zl],
V =exp(-Y2+z2), and ka =exp('Y3+Z3) where GI is clearance in L/hr, V is
the apparent volume of distribution in L, ka is the absorption rate constant
in hr- l , and the z's are the random effects. Weight is in kg, ol-acid gly-
coprotein concentration is in mg/dl, and creatinine clearance is in ml/min.
GV(.) denotes the coefficient of variation of a random effect, £ (.) denotes
the mean, var(·) the variance, and p(.,.) a correlation. Cases differ with
respect to which parameter estimates are constrained, see Table II. The
moments are computed by Monte Carlo integration using 2000 repetitions.
bNormal Effects: maximum likelihood estimates with normal (/{ =0) ran-
dom effects density.
cSNP Effects: maximum likelihood estimates with SNP (/{ = 2) random
effects density.
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The population characteristics of [exp(zl), exp(z2), exp(z2)] are required in order to as-

sess the population characteristics of the pharmacokinetic parameters as is seen from the

inter-individual regression equations for f3 = (Gl, V, ka ) above. Since it is easy to sim-

ulate from the SNP density [12], as noted above, an estimate of a population charac-

teristic such as a mean £ exp(zl) = Jexp(zdhO(z) dz can be computed by Monte Carlo

integration by drawing a sample {zdI=1 from the estimated SNP density hK and av-

eraging t exp(zl) ..:. (1/1) 2:[=1 exp(zli)' Similarly, a percentile would be computed as

the corresponding percentile of {exp(zli)}!=I' These computations can be made as accu-

rate as desired by taking the number of Monte Carlo repetitions I large enough. Using

this procedure, the coefficients of variation, the means, the variances, and correlations of

[exp(zl), exp(z2), exp(z2)] were computed and are shown in Table III for Cases 1, 2, and 3

and specifications K = 0 and 2.
The most notable feature of Table III is the high coefficient of variation of exp(z3), which

corresponds to absorption rate ka , and its interaction with the coefficient of variation of

exp(z2)' which corresponds to volume V. Treating ka as a fixed parameter to be estimated,

Case 2, increases the coefficient of variation of volume over both the case when ka is fixed and

specified, Case 1, and when treated as a random effect, Case 3. This is apparently due to an

insufficient number of samples collected during the absorption phase. It is also interesting

to note the stability of population characteristics of exp(zl), which corresponds to quinidine

clearance Gl, across Cases 1, 2, and 3.

Because the inter-individual regression model is multiplicative, estimates of the popula-

tion characteristics of the pharmacokinetic parameters are obtained by rescaling the random

effect estimates. For instance, at a given setting of weight, aI-acid glycoprotein concentra-

tion, and creatinine clearance

tel = exp[1I +14(weight) +1s(glyco.) +16(creat.)]£ exp(zd

SiJ(Gl) = exp[1I + 14(weight) +1s(glyco.) +16(creat.)]v/@(expzd

where t exp(zl) and Vaf(exp Zl) are the entries from Table III. Table IV displays estimates of
population characteristics of the pharmacokinetic parameters f3 = (Gl, V, ka ) at some repre-
sentative settings of the covariates weight, aI-acid glycoprotein concentration, and creatinine
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Table IV. Population Characteristics of the Pharmacokinetic Parameters

Case 1 Case 2 Case 3

Characteristica Estimate Estimate Estimate

Normal Effects b

£Gl: low weight, low glyco., creat.<50 12.374220 12.788633 13.378630
low weight, low glyco., creat.>50 14.846755 15.083957 15.620883
low weight, median glyco., creat.<50 10.262462 10.425062 10.804575
low weight, median glyco., creat.>50 12.313039 12.296169 12.615417
low weight, high glyco., creat.<50 7.957304 7.896319 8.080459
low weight, high glyco., creat.>50 9.547280 9.313563 9.434740
median weight, low glyco., creat.<50 13.678364 14.384003 14.949213
median weight, low glyco., creat.>50 16.411483 16.965667 17.454695
median weight, median glyco., creat.<50 11.344043 11.725579 12.072977
median weight, median glyco., creat.>50 13.610735 13.830105 14.096403
median weight, high glyco., creat.<50 8.795940 8.881378 9.029063
median weight, glyco., creat.>50 10.553487 10.475422 10.542331
high weight, low g yeo., creat.<50 15.426014 16.563289 17.079154
high weight, low creat.>50 18.508337 19.536094 19.941613
high weight, median glyco., creat.<50 12.793443 13.502093 13.793116
high weight, median glyco., creat.>50 15.349744 15.925470 16.104837
high weight, high glyco., creat.<50 9.919776 10.226974 10.315511
high weight, high glyco., creat.>50 11.901879 12.062527 12.044386

£V 235.725999 227.878890 196.160421
£ka 0.9 0.410697 0.373797

SNP EffectsC

£Gl: low weight, low glyco., creat.<50 13.274630 13.860196 13.597986
low weight, low glyco., creat.>50 14.986423 15.503025 16.109975
low weight, median glyco., creat.<50 10.944244 11.121494 10.903329
low weight, median glyco., creat.>50 12.355529 12.439709 12.917528
low weight, high glyco., creat.<50 8.417936 8.244829 8.075273
low weight, high glyco., creat.>50 9.503448 9.222076 9.567038
median weight, low glyco., creat.<50 14.313951 15.257347 14.948660
median weight, low glyco., creat.>50 16.159767 17.065778 17.710163
median weight, median glyco., creat.<50 11.801111 12.242575 11.986346
median weight, median glyco., creat.>50 13.322891 13.693670 14.200613
median weight, high glyco., creat.<50 9.077008 9.075933 8.877382
median weight, high glyco., creat.>50 10.247509 10.151690 10.517323
high weight, low glyco., creat.<50 15.669101 17.121058 16.747712
high weight, low creat.>50 17.689667 19.150392 19.841559
high weight, median glyco., creat.<50 12.918361 13.738027 13.428887
high weight, median glyco., creat.>50 14.584213 15.366375 15.909639
high weight, high glyco., creat.<50 9.936359 10.184573 9.945763
high weight, high glyco., creat.>50 11.217675 11.391736 11.783069

£V 236.232459 234.357272 199.279249
£ka 0.9 0.344628 0.520155

aWeight: low, 10th percentile, 59.0 kg; median, 79.0 kg; high, 90th percentile, 103.0 kg. al-acid
glycoprotein concentration: low, 10th percentile, 69.0 mg/dl; median, 113.5 mg/dl; high, 90th
percentile, 174.0 mg/dl. Creatinine clearance: creat. < 50 ml/min; creat. > 50 ml/min. Coefficients
of variation and correlations for Gl, V, and ka are as for exp(zI), exp(za), and exp(za), respectively,
in Table III. Cases differ with respect to which parameter estimates are constrained, see Table II.
bNormal Effects: maximum likelihood estimates with normal (K =0) random effects density.
cSNP Effects: maximum likelihood estimates with SNP (K =2) random effects density.

24



clearance.

DISCUSSION

We propose the SNP method, taken from the econometrics literature, for the analysis of

population pharmacokinetic data that can be described by a nonlinear mixed effects model.

It produces smooth nonparametric estimates of the entire random effects density and simul-

taneous estimates of fixed effects by maximum likelihood. The benefits of estimating the

entire distribution nonparametrically rather than a few leading moments have been discussed

in [7]. We also introduce a new graphical model building strategy that exploits an inherent

tendency of a nonparametric method to produce disparate empirical Bayes estimates when

covariates have been omitted from the model. We illustrate by an analysis of the population

pharmacokinetics of quinidine.

Because the SNP method is based on the· principle of maximum likelihood and because

the SNP density has a convenient representation, subsequent computations essential to a

complete statistical analysis are straightforward: estimation of the precision of the estimates

of fixed effects, statistical tests of the significance of covariates, tests for normality of the

random effects density, empirical Bayes estimation of individual random effects, and esti-

mation of population characteristics of pharmacokinetic parameters including those that are

affected nonlinearly by the random effects. More elaborate, computationally intensive sta-

tistical analyses are also possible such as setting sup-norm confidence bands on a marginal

density of a random effect or pharmacokinetic parameter [10] or placing a global restriction

on the density such as unimodality [9].

The NPML [6, 7] method maximizes a likelihood over all distribution functions whereas

the SNP method maximizes over a class of distributions restricted to have a smooth density.

That is the difference between them. Both the NPML and SNP method require a complete

specification of the intra-individual likelihood. The advantages the smoothness assumption

confers upon the SNP method, relative to the NPML method, are as follows: Any unknown

parameters that are fixed across individuals are estimated simultaneously with the distribu-

tion rather than requiring a two-step estimation procedure. Thus, for example, covariates in

the inter-individual regression for the pharmacokinetic parameters are easily accommodated.
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The SNP density estimate is inherently smooth; a subsequent smoothing computation is not

required. Statistical inference is possible: one can test for normality and set confidence

intervals on parameters.

If the true random effects distribution violates the smoothness assumption, however,

the NPML estimator will be consistent and the SNP estimator will not. Empirical Bayes

estimation of the random effects is convenient with both the SNP and NPML methods, and

thus both allow use of the graphical model building strategy that we describe.

Mallet et ai. [7] compare the features of nonparametric methods to other procedures for

the analysis of the nonlinear mixed effects model: the popular first-order (FO) approximation

with extended least squares (ELS) estimation [1, 28, 3], which provides estimates of fixed

effects, allows empirical Bayes estimation based on normality, and is implemented in the

powerful NONMEM package [29, 30]; and two-stage (TS) methods [31, 2]. Nonparametric

methods are indicated when a knowledge of the entire distribution is required, not just first

and second moments, and when there may be reason to doubt a parametric assumption, such

as normality, for the purpose of computing empirical Bayes estimates, for example. Nonpara-

metric estimation of the entire distribution may be based on the use of two-stage methods;

these methods, however, require a sufficient number of observations on each individual to al-

low accurate estimation of individual pharmacokinetic parameters. Thus, two-stage methods

are usually not applicable to clinical data, which are typically sparse.

In addition, as we have illustrated here, nonparametric methods are inherently well suited

to model building. Even when there is no other reason to use nonparametric methods, their

unique ability to fragment empirical Bayes estimates, thereby exaggerating their relation to

influential individual attributes, can be of value in allowing graphical screening of a large

number of attributes for their potential as covariates.
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