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1. INTRODUCTION
LENNS is a set of FORTRAN programs to estimate the dominant Lyapunov ex-

ponent of a noisy, nonlinear system from a time series of measurements, using meth-
ods described by Nychka et al. (1992). The fundamental assumption is that the data
{z:,t = 1,2,...N} are generated by a nonlinear system of the form
T = f(xi1,%i-2, Tt_g) + o€

where z; € R! and ¢, is a series of independent, identically distributed random variables
with zero mean and unit variance. LENNS estimates f by nonlinear regression, and uses
the estimated map f and the data {z;} to produce an estimate of the dominant Lyapunov
exponent. A positive Lyapunov exponent (for a bounded system) is an operational defi-
nition of “chaos”, so one possible use of LENNS is to detect chaos in data from a noisy

system. However, negative exponents are also meaningful, as discussed below.

LENNS has three distinguishing features relative to other available methods for
estimating Lyapunov exponents from data:

1. The method in LENNS explicitly allows for dynamic noise (random perturbations

to the dynamics), and the estimated Lyapunov exponent refers to the noisy system,

rather than a hypothetical system from which noise has been removed. The method is

valid in principle even for large dynamic noise (¢ 3> 0). However the methods assume

that measurement errors are negligibly small compared to the fluctuations in the data,

i.e., Var(m;) < Var(z;) where m; is the error in measuring ;.

2. The map f is approximated by the input-output map of a feedforward neural network
with a single layer of “hidden units” (analog neurons). The number of units determines
the model complexity (i.e., a complicated f that comes close to interpolating the data,
versus a simpler f that smooths the data). The program output lets the user choose the
number of units based on based on generalized cross-validation or similar quantitative

criteria for model selection.

3. The data can be fitted with a model that includes periodic forcing of known period,
e.g. for data on biological populations affected by seasonal changes in environmental

factors, or on a periodically stimulated oscillator.

Parameters are estimated by nonlinear least squares, which is time consuming due to the
large number of local minima in the objective function. Consequently LENNS is limited in
practice to short data sets, meaning roughly 500 or so data points on current workstations

or 486 P(C’s. For larger data sets, it is probably preferable to use local approximations



(e.g., local polynomials as in Brown et al. (1991), or local splines as in McCaffrey et al.
1992).

In Section 2 we give some background on Lyapunov exponents and neural net time
series models. If you’re in the nonlinear dynamics game you can just skim it to get our
definitions and notation. Section 3 describes how to compile and use the programs. Section

4 goes through an example and discusses the output.

The programs, and this user’s manual (as a set of PostScript files) are in the files
lenns.tar.Z (UNIX compressed tape archive) and lennsarc.exe (DOS self-extracting archive
file). Those files are available via anonymous ftp at ccvrl.cc.ncsu.edu (128.109.212.20) in
directory pub/arg/lenns. The software is provided at no charge for research purposes, “as

is” without warranty of any kind, express or implied.

2. BACKGROUND

Traditionally the search for evidence of chaos in time series data has been based on
deterministic nonlinear models, and has been considered a distinct alternative to stochastic
modeling. However in many areas - e.g., economics, epidemiology, neurobiology, popula-
tion biology — there is no evidence to justify the a priori assumption of strictly deterministic
dynamics. A more comprehensive approach is to include both a nonlinear component de-
scribing the system’s endogenous (internal) dynamics, and a stochastic term that accounts
for perturbations by exogenous factors or random fluctuations in parameters affecting the

system.

Casdagli (1992a) has shown that the method of reconstruction in time delay coor-
dinates also applies to systems with forcing by an exogenous variable ;. In general, the

reconstructed dynamics take the form
(1) o= f(Xeo1,Usm1) ,  1SESN

where X;_1 = (2¢-1, ©t—2, - - -@:—4) is the reconstructed state vector, and U; = (us—1, us—2, -+ z1—xk)
is a vector of lagged inputs. Here we assume that the effect of the exogenous variables is
additive:

(2) T = f(Xt-l) + €t, ].S 1 S N

where {z;} are the data, f is an unknown function, and {e;} is a sequence of zero-mean,
independent random perturbations. This won’t be true in all cases, but may be a useful

first approximation; for example most time-series models in population biology assume



that the log-transformed data satisfy (2). The data can then be represented as a time

series of state vectors generated according to
3) X: = F(X¢-1) + E;

where E; = (es,0,...,0)T and F : R4 — R is defined to reproduce the dynamics of (2). It is
important to note that the random “noise” in (2) and (3) is not measurement error, but

is an intrinsic part of the dynamics.

A useful operational definition of “chaos” for systems such as (2) is: bounded fluc-
tuations in {z;} with sensitive dependence on initial conditions (e.g., Eckmann & Ruelle,
1985); that is, exponential divergence of trajectories with similar initial conditions. The
dominant Lyapunov exponent, ), quantifies the divergence rate and remains well-defined
for noisy systems (Kifer, 1986). Thus the Lyapunov exponent can be used to quantify the
degree to which a system is stable or chaotic, without presupposing that the system is

deterministic.

Since {E:} are independent, the vector process {X:} is Markov, and we also assume
that the process is strictly stationary and ergodic. The ergodic property insures that

Lyapunov exponents can be expressed as a time average over a single trajectory.

Lyapunov exponents for stochastic systems. We use the standard definition of the

dominant Lyapunov exponent A for the system (3):

(4) A= rnl-llnoo L log||ImIm—1 -+ J1l,
where J; = DF(X;), the Jacobian matrix of F at X;, and || - | is the L, matrix norm,

14|l = (spectral radius of ATA)!/? (any matrix norm can be used but the L, norm is most
common in the literature). In the setting described above, with a regularity condition
on the Jacobians, the limit at (4) is constant with probability 1 (Kifer 1986). Thus A
gives the long-term rate of divergence between two trajectories that differ only in having
a “small” difference in their initial conditions (“small” meaning “infinitesimally small”,
so that the variational system on the right hand side of (4) describes how the trajectories
diverge). This definition of A for stochastic systems is discussed more fully by Casdagli
(1992a). Dynamical noise affects the distribution of X; and consequently it can affect
the stability of the system (e.g., move it into or out of chaos; Crutchfield et al. 1982).
Therefore A cannot be defined for (3) simply by deleting E; and applying the definition

for a deterministic system.

The sign of ) tells us whether the system’s endogenous dynamics, represented by f



in equation (2), amplifies or dampens over time the effects of exogenous perturbations. A
chaotic system (A > 0) is a “noise amplifier”: the effects of perturbations are compounded
and cannot be ignored in predicting the future state of the system. A non-chaotic system
is a “noise muffler”: the effects of a perturbation are transient and asymptotically have

no effect on the system’s long-term dynamics.

Estimating Lyapunov Exponents with nonlinear regression.  Approaches for esti-
mating X can be classified into direct methods and regression methods. Direct methods
seek to find similar pairs of state vectors within the observed series and estimate how the
subsequent trajectories diverge (Guckenheimer 1982, Wolf et al. 1985). This procedure is
sensitive to dynamic noise, since the trajectories being compared will not have the same
sequence of random shocks and will diverge due to the random component even if X < 0,

so inflated estimates of A are obtained (Sayers 1990).

Regression methods generate estimates of A through the intermediate step of esti-
mating the map f and its derivatives. Let J; denote the estimate of the Jacobian matrix
J; obtained from the approximate map f, and Ta = Jar - Ju—1 - - - J1. The obvious estimate
of A is then

5) A = 4 logli Tl

McCaffrey et al. (1992) provide a formal proof that if J is obtained from a consistent
estimator of the system map f and its partial derivatives, a consistent estimate of A can
be obtained (“consistent” means that the estimated X converges to the true value as the
sample size increases), and Ellner et al. (1990) discuss the convergence rate. The estimate
(5) is positively biassed (i.e.,E(Ax) > A with equality only in exceptional cases), so LENNS
calculates also the “QR” estimate suggested by Abarbanel (1992),

(6) An,qr = # log||Tll,

where v is a fixed vector of norm 1, usually v = (1,0,0, ...,0)T. Since (5) equals the supremum
of (6) over all vectors v of norm 1, Ay gr < An. The difference between (5) and (6) is usually
minor for 50 or more data points, but (6) has the smaller bias in our simulation studies
and would be the preferred estimate to report. However, a formal consistency proof is not

available for (6).

Originally linear regression was used to estimate the Jacobian matrices (Eckmann
et al. 1986), but more sophisticated methods are now used. Brown et al. (1991) discuss

methods for deterministic systems based on local polynomial regression, “local” meaning



that at each point x, a low-order polynomial is used to approximate f in a neighborhood

around x.

Neural network models. For limited time series data on noisy systems, we have ob-
tained the most reliable results when f is estimated using global nonlinear regression based
on neural networks (McCaffrey et al. 1992, Nychka et al. 1992). “Neural networks” refers
to a class of nonlinear models inspired by the neural architecture of the brain (e.g., McCul-
loch and Pitts 1943, IJICNN 1989). Statistical applications have mostly used feedforward,
single hidden layer networks. The form of this model is

(7) f(z1,22,... ,2a) = o + _Zk)lﬂﬂb(x"rj + i)
J=

where v; = (yj1,7j2,-7j4)* and ¢ is a univariate nonlinear “activation function”, typically
the logistic distribution function (u) = ¢*/(1 + e*). LENNS uses a rational approximation
to the logistic to reduce computation time. There are k(d+2)+ 1 free parameters in

model (7).

Function approximation properties of neural networks have been studied by Hecht-
Nielsen (1989), Hornick et al. (1989a), Cybenko (1989), Gallant and White (1991) and
Barron (1991a). For time series modeling the network parameters {8;, v, u:} are estimated
by nonlinear least squares or similar criteria. Some consistency results for least squares
estimates are given by White (1989), and McCaffrey (1991) has given upper bounds on the
convergence rate. Barron (1991a) has derived improved bounds for complexity-penalized
network estimates that are restricted to a discrete set of parameter vectors. See Casdagli
and Eubank (1992) for papers describing some successful applications of neural networks

for modeling time series data.

Why nets? Because they work — meaning that the functions often used as “typical”
examples of low-dimensional chaos (Hénon, Réssler, ...) are well approximated by neural
nets. Why should this be? Barron’s (1991b) results suggests that neural net models are
especially suitable for functions dominated by low-frequency components. Let I'. be the

class of functions f on R4 such that
Sl f(w)|dw < e

where f is the Fourier transform of f, and c is a fixed constant. Barron (1991b) shows

that a complexity-penalized fitting criterion can achieve convergence rate

R 1/2
BIf - Fll* = O oV )



for any fe I',, where N is the number of data points, fy is the estimate based on N data
points, and ||f||2 = [|f|? dp for some measure g with compact support. For large d, this
rate is better than the optimal rate for approximating arbitrary smooth functions (e.g.,
arbitrary functions in a Sobolev space) with a general-purpose nonparametric method
such as splines. An intuitive interpretation of this result is that nets can “beat” general
purpose nonparametric methods if the functions being estimated are high-dimensional but

otherwise fairly simple.

Smoothing parameter selection. In practice, fitting a neural network model involves
specifying the values of various “smoothing parameters” that control the complexity of
the fitted model:

. The number of units. This determines whether the network with least-squares pa-
rameters will interpolate or “smooth” the data (which are appropriate if noise is absent

or present, respectively).

2. Reconstruction parameters. One would like to use as few lagged variables as possible,
in order to hold the number of fitted parameters to a minimum. A strategy based on

the ideas of attractor reconstruction is to consider models of the form

zi41, = f(2, Tt—L, Tt-2L, ---» Tt—_(d-1)L)

T, is the prediction time, and L is usually called the “time-delay”.

Choice of smoothing parameters is critical to obtaining accurate results. A model
with too few units or too low an embedding dimension will not be able to approximate
the dynamics; a model with too many parameters will fit the noise instead of only fitting

the endogenous feedbacks.

One popular criterion for time series models is to select smoothing parameters to
maximize prediction accuracy (e.g., Casdagli 1989, 1992b, Sugihara and May 1990). To
avoid overfitting, prediction accuracy can be quantified by cross-validation: delete each
data point (one at a time), fit the model to the reduced dataset, and then use the fitted
model to predict the deleted point. Cross-validation is a standard approach for smoothing
parameter selection in nonparametric regression (e.g., Wahba 1990) and has been suggested
for choosing the embedding dimension d (Sugihara and May 1990, Cheng and Tong 1992).
Similar ideas for “optimizing” attractor reconstruction have appeared several times in the

chaos literature.

Cross-validation for smoothing parameter selection has a large amount of variability,
occasionally yielding estimates that drastically undersmooth the data. In Nychka et al.



(1992) it was found that inflating the effective number of parameters in the generalized
cross-validation (GCV) criterion avoids overfitting. This technique has also been reported
to be useful for other estimators (Friedman 1990, Hastie and Tibshirani 1990, Friedman
and Silverman 1989). For a model fitted to n data points, let p be the number of parameters
(or “effective number of parameters”, see Wahba 1990), and RMS the root mean square

prediction error. The modified generalized cross-validation function is
(8) Ve= {RMS/(1-p2)} ;

the standard GCV criterion is V, with c=1.

When a regression estimate is a linear function of the data (e.g., splines) there
are usually shortcuts in computing V;, but for nonlinear estimators such as neural nets
such simplifications are not possible and cross-validation is impractical. One shortcut is
to reserve part of the data strictly for evaluating the model’s prediction accuracy (e.g.,
Casdagli 1989, Sugihara and May 1990), but this reduces the data available for parameter
estimates. Consequently a number of criteria have been developed which approximate the
cross-validated prediction accuracy based on the error variance of the fitted model adjusted
by the number of fitted parameters. One such criterion, the Bayesian Information Criterion
or BIC, has been found effective for fitting neural net models to data from noisy, nonlinear
systems (Nychka et al. 1992, Granger and Terasvirta 1992). The BIC criterion is

(9) BIC= 1{1+log(2r) + 2log(RMS) + p '),

However Granger and Terasvirta (1992) observed that BIC is prone to overfit noisy linear
data, so BIC is recommended only if linearity has been rejected based on some other

criterion. In our experience V, with ¢ =2 is less prone to overfit linear data.

Autocorrelated data create some additional pitfalls for smoothing parameter selec-
tion based on prediction accuracy. If successive values are highly correlated, the best
one-step-ahead predictor is essentially a linear function of the most recent values, which
ignores the long-term dynamics that are the actual object of interest. For this reason,
cross-validation must consider prediction accuracy more than one step ahead. Another
potential problem is that for high-dimensional models containing many irrelevant lags, the
only data vectors close to X; will be X,_; and X;4;. Thus a function estimate that gives
most of its weight to X;—; and X;;; will do a good job of predicting the value at X;; this
favors complicated models that interpolate rather than smooth (e.g., a small bandwidth in

kernel models). A straightforward “fix” is the one suggested by Theiler (1986) for comput-



ing the correlation dimension: omit temporal neighbors. “Leave one out” cross-validation
should be replaced by “leave 2W+1 out”: omit an additional W points before and after (in
time) the point being to be predicted, with W large enough that there is no appreciable
correlation between the point being predicted and the data used to fit the model.

3. INSTALLING & USING THE PROGRAMS

The program files are:
lenns.for The main program and a few subroutines called only by the main. For a
range of model specifications, the main estimates network parameters by
nonlinear least squares, computes estimated Jacobians and uses them to
compute the estimated Lyapunov exponent.

lenns.par Parameter file. The entries in this file (explained below) control what
happens on a particular run of the program.

objfun.for = Subroutines to compute the RMS prediction error and its gradient as a
function of model parameters.

bfgsfmin.for Subroutines for minimizing a multidimensional function with user-supplied
gradient, for use in nonlinear least squares.

liapqr.for Subroutines to calculate the Lyapunov exponent estimates.

dblas_le.for
linpakle.for Some BLAS and LINPACK routines

util le.for “Utility” routines (e.g., a random number generator).

Also provided are:

makefile Instructions for UNIX or DOS “make” utilities

lennsl.par  Parameter filel for the example discussed in section 4

* asc Example data files

cvmbed.for Program to choose the time delay by ordinary cross-validation
cvmbed.par Parameter file for cvmbed.for

Portability: The programs have been tested on a SUN SPARCstation IPX (f77 compiler)
and a DOS 486 PC (Lahey f77L-EM/32 v.4 compiler). The programs are in orthodox
FORTRANT77 with one exception: the system clock is used to seed the random number
generator. In the SUN version this takes the form

iseed=time()
and for Lahey {77, integer*4 function time() is at the end of the lenns.for. For other
compilers you can modify function time() or substitute a read from the keyboard.

UNIX systems: Get the file lenns.tar.Z (binary ftp) and issue the commands



uncompress lenns.tar.Z
tar xvf lenns.tar
make lenns.u

to uncompress the archive file; extract files and subdirectories from the archive; and com-
pile the code to produce the executable file lenns.u . If “make” fails, try editing the
makefile to suit your system, or combine all the *.for files into a single file and compile
it. If optimized BLAS or LINPACK libraries are installed on your machine, the program
will run faster if you edit the makefile to use those instead of compiling dblas_le.for and
linpakle.for .

DOS systems: Get the file lennsarc.exe (binary ftp). This is a self-extracting DOS
archive file. Issue the command
lennsarc
at the DOS prompt to extract the files into your current directory. The makefile provided
works with Lahey f77L-EM/32 v.4 ; otherwise compile and link the source files listed

above.

Running the program: You need to create a data file, edit the parameter file lenns.par,
and run lenns.u (UNIX) or lenns.exe (DOS).

The data file must be an ASCII file listing the data values from first to last, one per

line, in REAL format — so a data file that starts
7.0
86.0
99.0
6.0
is fine, but
7
86
99
6
will crash the program.

Here is the sample parameter file lennsl.par (the italics are not part of the file):

dmgm10.asc data file name: data are read from this file
dmgm10.1le output file name: results are written to this file
126 18 1 1 nezmaz Jt1 lUr ifreq

1 8 dmin dmaz < — ~min & maz # of lags

1 8 1 kmin kmaz kcrit < — —min & maz # of hidden units
1 3 Imin Imaz < — — min & maz time delay L

1 0.0 Tp a

0 12 Jforce jper

2.0 cgev

0.5 *scale

.000001 *toll

.0000000005 *tol2



800 10000 *itmazl  *itmaz2
50 250 *mazstepl *mazstep?
0 1 *ibrent  *fltol

nxmax: Number of data points to use. If nxmax is greater than than the number of data

points in the input file, the entire data set will be used.
Itr: 1 or 0. If ltr=1 the data are log-transformed.

ifreq: If ifreq= 1 every data value is read in; if ifreq= 2 only every other value is used; if

ifreq= 3 only every third value is used, etc.

dmin, dmax; kmin, kmax, kcrit; lmin, Imax: The program loops over all combinations of
d (#lags) and L (time delay) within the limits specified by these parameters. For each
such combination it fits network models with k= kmin, kmin+1, kmin+2, ..., kmax units,
but stopping once the criteria BIC and/or V, have failed to improve for two successive
k values. kcrit determines which criterion is used: BIC if kcrit= 0, V, if kcrit= 1, and
both if kcrit=2.

t1, Tp, o: The program fits a model of the form
z(t+Tp) = az(t)+ f(z(t),z(t - L),...)+ noise.

T, is the “prediction time”. If T, < 0 in the parameter file then T, = L is used, and T,

changes as L changes; otherwise T, is held fixed.

t; + 1 is the first value of t such that z(¢) is used as a value of the dependent variable
for fitting the model. ¢; is specified so that all models being compared within a run
are trying to predict exactly the same set of data. t; must be large enough that
t1 —T, —(d—1)L > 1 for all models fitted during the run. If the value of ¢, in the
parameter file is too small it is reset automatically to the smallest possible for the run,

so setting ¢, = 1 automatically selects the smallest possible ;.

jforce, jper: If jforce=1 the fitted model also includes periodic forcing of period jper. The

model then has the form
z(t+Tp) = az(t) + f(z(t), z(t—L),...z(t— (d — 1)L), cos(wt), sin(wt)) + noise.

with w = 27 /jper. If jforce= 0 the cos and sin terms are omitted and the value of jper is

irrelevant.



cgev: Value of ¢ for computing the modified GCV criterion V;; cgcv= 2 is recommended.

The remaining parameters (marked with an asterisk) are explained in Section 5; these
only affect the optimization subroutines, and can be ignored by the user unless something

goes wrong.

4. AN EXAMPLE

Run LENNS with the parameter file lennsl.par, to estimate A for the data file
dmgm10.asc. These simulated data were generated by the discrete Mackey-Glass system

(10) T = {a:ct-l + l—_l_bé";_';y; * ezp(0.1* Z;)

with a = 0.2,0 = 2.0,k = 2, and j = 6, where {Z,} is Gaussian white noise (independent with

zero mean and unit variance).

Results from 1 out of each 20 initial fits are written to lenns.tmp, which can be
erased once the program has terminated. The output file lists the following variables:

Columns 1-3: L (time delay), d (embedding dimension), and k (# of units).
Columns 46 : RMS error and the model selection criteria BIC and V..
Column 7: Number of fitted parameters in the model

Columns 8: Number of BFGS iterations

Column 9: “info” from BFGS (0 if minimization succeeded, 1 if it failed)
Columns 10-11: Estimated dominant LE, SVD and QR estimates

and it should look something like this (though not exactly):

@ /home/ellner/data/dmgmi0.asc Output from LENNS.FOR
Dependent variable data scaled to Std Dev ==
Parameter values:

126 18 1 1 < —— nx,jt1,ltr,ifreq
1 6 1 2.000 < —— kmin,kmax,kcrit,cgcv
1 0.00 0.50 <—— T _p,alfa,scale
0 12 < —— jforce, jper
0.100E-05 0.500E-09 <« —— ftoll,ftol2
800 10000 50 250 < —- itmax1,itmax2,maxstepl,maxstep2

output 1,d,k,RMS err,BIC,GCV,# params,iters,info,LE1:SV&QR @

1 1 1 0.985226 1.4915 1.1339 4 207 0 -4.897 -4.897
1 1 1 0.985296 1.4915 1.1340 4 200 0 -4.600 -4.600
1 1 1 0.985290 1.4915 1.1340 4 161 0 -4.626 -4.626
1 1 1 0.985273 1.4915 1.1340 4 257 0 -4.696 -4.696
1 1 1 0.985270 1.4915 1.1340 4 226 0 -4.710 -4.710
1 1 1 0.985299 1.4915 1.1341 4 96 0 -4.588 -4.588
1 1 1 0.985291 1.4915 1.1340 4 229 0 -4.619 -4.619
1 1 1 0.985232 1.4915 1.1339 4 152 0 -4.875 -4.875



[about 1500 lines omitted]

3 6 5 0.333966 1.2175 2.0431 41 5901 O 0.298 0.296
3 6 5 0.341999 1.2413 2.1426 41 10001 O 0.457 0.412
3 6 65 0.335903 1.2233 2.0669 41 9791 O 0.289 0.269
3 6 5 0.334318 1.2186 2.0474 41 10001 O 0.353 0.347
3 6 5 0.336277 1.2244 2.0715 41 10001 O 0.287 0.276
3 6 5 0.343566 1.2459 2.1623 41 10001 O 0.201 0.277
3 6 5 0.3353556 1.2217 2.0601 41 2645 O 0.355 0.346
3 6 5 0.334335 1.2187 2.0476 41 9269 O 0.293 0.280
3 6 5 0.328236 1.2002 1.9736 41 5330 O 0.186 0.176
3 6 5 0.325866 1.1930 1.9452 41 5042 O 0.226 0.223

Qending time= 714382763 elapsed time 116694Q

The output file is long for two reasons. First, smoothing parameters are chosen by
fitting a range of models with different choices of the time-delay L, embedding dimension d,
and number of units k, and afterwards finding the winner (a possible shortcut is suggested
below).

Second, fitting neural nets by nonlinear least squares is a numerical nightmare: the
parameter space is full of local minima, and directions along which the RMS error has an
asymptote rather than local minima (which can crash standard minimization routines).
The solution in LENNS is: if you’re shooting blind, shoot often. For each (L,d, k) com-
bination, 100 parameter sets are generated at random (uniform distribution in a cube
centered at 0), and the one with the lowest RMS is used as the initial point or iterative
minimization of the RMS error. If minimization fails without satisfying the convergence
criterion, a failure is declared (info= 1 on return from bfgsmin) and 100 new random pa-
rameter sets are drawn from the same cube. This is repeated 250 times with the cube
growing geometrically from “too small” to “too big”. The parameters and final RMS for
the 250 trial fits are saved, and the 20 parameter sets with the lowest RMS are “polished”

by continuing the minimization with a more stringent convergence tolerance.

The output file gives the results for all 20 polished fits, to let the user determine
whether there are multiple local minima with similar RMS’s but different LE’s. Multiple
minima with significantly different LE’s mostly occur at specifications more complex than
those selected by BIC or GCV. Problems at the BIC- or GCV-preferred specification are
a sign that the neural net model doesn’t fit the data well.

The output file needs to be summarized, and we suggest two graphical summaries:
1. A scatterplot of estimated LE vs. V. or BIC (Fig. 1a). For each (L,d,k) combination
in the output file, the plot shows LE and V, for the single best fit. It helps to use different

symbols for each value of L, and it is essential to identify points corresponding to the



optimal k (lowest V;) for each (L,d) combination, because networks that are too simple or
too complex will underestimate or overestimate A, respectively. In Figure la, V, clearly
picks the correct time delay (L= 1) and the better fits all give fairly accurate estimates of
X (the true value is about 0.14).

2. A plot of estimated A vs. the number of lags (d), for the L of the single best fit (Fig.
1b). In theory A should be constant as the number of lags in the model is increased above
the minimum number needed for a valid reconstruction. For each d, we plot the single
best fit (over all fits at all values of k) and the mean=+1 standard deviation for the 10 best
polished fits at the k of the best fit. Estimated A’s that don’t become roughly constant as
d is increased are a sign of trouble, e.g., data that are too high dimensional for the “best”
fit to be any good. A large standard deviation indicates that estimates are unreliable due
to the numerical inaccuracy of parameter estimates. In Fig. 1b, there is a definite plateau

for d> 2 and the numerical inaccuracy is negligibly small.

Figure 2 summarizes the corresponding results for a 4th-order linear approximation
to the discrete Mackey-Glass system,
(11) ye = .06ye_1 — 66yt—2 — 12p_a + 0 Z;
where g, = Inz, , o = 0.36, and the {Z,} are Gaussian white noise (data file ardmg4.asc).
The coefficients in (11) were chosen by maximum likelihood fitting to logged “data” from
dmgm10.asc . The true value of A for this system is —0.46, and the estimated value is about
—0.3 . This is qualitatively OK - the system is identified as nonchaotic — but it illustrates
the desirability of having confidence intervals instead of point estimates (which we hope

to provide soon).

Of course with real data the results can be less tidy (Figure 3). The results for
prediction time T, = 1 (Fig. 3a) favor L= 1, and the estimated ) is stable with increasing
embedding dimension (Fig. 3b). However this data set (predll.asc) has a strong auto-
correlation at lag 1, so linear extrapolation based on the last two lags would be a good
short-term predictor even if the dynamics are nonlinear (indeed the lowest V. occurs at
L= 1, d= 2). To check for this possibility we re-estimated X with 7, = 2 (Fig. 3c), and longer
time delays were favored as expected, L= 2 or 4. For these L’s there is no real plateau as
d increases (Fig. 3d,e), so while it seems safe to say that A < 0, it would be difficult to

choose a single estimate.

In the discrete Mackey-Glass example, the fits for L= 2 and 3 were wastes of CPU
time. Given enough data it is often possible to identify one or two “good” L and d val-
ues by the ordinary cross-validation (OCV) method of Cheng and Tong (1992), with the



modifications discussed above to account for autocorrelations. OCV is much quicker than
running LENNS for multiple L and d values. The program cvmbed.for is an implementa-
tion of the OCV method; the parameter file cvmbed.par follows the same conventions as

lenns.par.

For the noisy Mackey-Glass system, 125 data points are not enough to pick out the
correct time delay (L= 1), and 250 data points are barely adequate (Table 1); even with 250
data points the correct embedding dimension (d= 2) could not be picked with confidence.
Thus for this example the Lyapunov exponent is easier to estimate than the embedding,
in terms of the amount of data required, because the estimate of A is robust to over-
estimating the dimension. However the Lyapunov exponent is much harder to estimate in

terms of the CPU time required, by several orders of magnitude. Which brings us to....

b 5. FINE-TUNING THE OPTIMIZATION

The optimization algorithm is standard BFGS, with the BHHH steplength algorithm
(Berndt et al. 1974), and the convergence criterion suggested by Gill et al. (1981) for

unconstrained minimization. So about those * parameters:

scale: sets the range of cube sizes for the initial conditions. The data are re-scaled inside
LENNS to unit variance, and then scale= 0.5 seems to be a good choice in that the

best fits almost always come from intermediate cube sizes.

toll, tol2: these set the convergence tolerances for the 250 initial fits and the 20 “polished”
fits, respectively.

itmax1, itmax2: maximum number of BFGS iterations for the 250 & 20 fits.

maxstepl, maxstep2: maximum number of BHHH iterations per BFGS iteration during
the 250 & 20 fits.

ibrent, fitol: If ibrent= 1, then for the polished fits, BFGS will attempt an “exact” line-
minimization using Brent’s quadratic interpolation method to choose the step length,
with the BHHH steplength as the initial guess. fltol is the convergence criterion for
the line minimization (accurate to +£10% if fltol= 0.1, etc.). Try setting ibrent= 1 if
the “polished” are good but not great (too much difference between fits, or too many
failures to converge). Brent’s method is less robust than BHHH, but it may improve

the final accuracy if the initial parameters are near to a minimum.

BFGS/BHHH is the most efficient and reliable public-domain method we found for



fitting neural net models by least squares, but equally good results are obtained somewhat
faster with the (copyrighted) package NPSOL (Gill et al. 1986). The same algorithm is
available as NAG routine e0fucf. LENNS is written so that calls to NPSOL or ef4ucf can
easily be substituted for the calls to bigsfm in lenns.for. The speedup is about 25%. If
you switch to NPSOL we recommend the parameter settings

MAJOR ITERATION LIMIT= 400 (initial fits), 1200 (polished fits)

OPTIMALITY TOLERANCE= 10-% (initial fits), 10~2 (polished fits)
and otherwise the NPSOL defaults are OK. Subroutine MAKEOPT (in util le.for) can be
called to set up the options files for NPSOL.
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Table 1. Results from ordinary cross-validation to choose embedding parameters, based
on 125 and 250 data points from dmgml0.asc, using the method of Cheng and Tong
(1992) with a kernel regression model (rational approximation to a Gaussian kernel).
Window length 18, W= 3, data log transformed and scaled to unit variance. CV, the
cross-validated estimate of RMS prediction error, was calculated for L= 1 to 3, prediction
time T, = 1 to 4 time steps ahead, and embedding dimensions (# lags) d=1 to 6. CV,
is the minimum value of CV (optimized over bandwidth and embedding dimension), and

dopt is the embedding dimension at which CV,,; occurred.

Tp L 125 points 250 points

dopt C Vopt dopt CVopt

1 1 2 .38 2 .3
2 2 .9 4 .87

3 3 .71 3 .63

2 1 1 .33 2 .30
2 1 .33 1 .33

3 1 .33 2 .33

3 1 2 .66 2 .58
2 2 .88 3 .90

3 2 .77 2 .1

4 1 2 .70 2 .60
2 1 .72 1 .70

3 2 .69 2 .64



FIGURE LEGENDS

Figure 1. Summary of results in dmgm10.lel, for 125 simulated data points from the
noisy Mackey-Glass system (10). (a) Scatterplot of V. with ¢ = 2 vs. estimated Lyapunov
exponent for the best fit at each (L, d, k) combination. Time delays L = 1(x), L=2(+),L =
3(A) ; circles indicate the best fit at each (L, d) combination. (b) Plot of estimated LE vs.
embedding dimension (#lags) for L = 1. The plot shows the LE at the single best fit (D),
and the mean (A) + 1 standard deviation (dots) for the 10 best fits at the best value of k.

Figure 2. As in Figure 1, for 125 simulated data points from the fourth-order linear

approximation (11) to the noisy Mackey-Glass system.

Figure 3. As in Figure 1 for an experimental data set on predator-prey population oscil-
lations, 98 values of population abundance of the predator mite Blattisocius dendriticus
(Burnett 1964, Fig. 7b). (a), (b): prediction time T, = 1. (c),(d),(e): prediction time
T, = 2. Symbols as in Fig.1,except V indicates L =4 in (a) and (c).
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