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Abstract. Childhood disease epidemics in large cities, notably measles, have been proposed
as a well-supported example of deterministic chaos underlying complex population dynamics,

but this remains controversial. Methods based on nonlinear time series modeling identify

these epidemics as nonlinear with substantial random noise, clustering near the transition

between stability and chaos. This conclusion has been challenged on the ground that the time

series models have lower forecasting accuracy than mechanistic models with chaotic dynamics.

However, the time series models in this comparison were all linear. Here we broaden the

comparison to include nonlinear time series models for the "noisy nonlinearity" hypothesis,

introducing an intermediate class of "semi-mechanistic" models which incorporate some

mechanistic structure while retaining statistical flexibility. All of the nonlinear time series

models exhibited higher prediction accuracy than deterministic chaotic models, but the semi-

mechanistic model was by far the most accurate. This comparsion suggests that for

forecasting, control, and other practical applications on populations other than measles, semi-

mechanistic modeling may be the most effective approach for characterizing and predicting

population dynamics from limited data. Characterization of measles dynamics based on the

semi-mechanistic models indicates that the dynamics have an appreciable random component,

are near the border between stability and chaos, and vary between local (in state space)

stability and chaos.
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Historical data on recurrent epidemics have generated sustained interest among
epidemiologists and population biologists interested in the causes, and the consequences for
control and prediction, of the complex mix of seasonal and non-seasonal oscillations often
observed. Much recent interest has resulted from influential papers by Schaffer, Kot, Olsen and
coworkers (reviewed by Kot et al. 1988, Schaffer et al. 1990) contending that the historical
record on measles in the developed world provides evidence of chaotic dynamics occurring in
a natural biological population. It remains uncertain whether or not any populations of macro-
organisms exhibit chaos, either in the wild or in the lab (Hastings et al. 1993). Recent analyses
based on nonlinear time-series modeling (Turchin 1993, Ellner and Turchin 1995) and
mechanistic population modeling (Hanskki et al. 1993, Dennis et al. 1995, Costantino et al.
1995) have identified several likely cases, but these methods need further testing and the data
sets on macro-organisms are all short (usually 30-100 data points). Epidemic data series are
longer, typically over 400 data points, and their accuracy is probably better due to the
importance attached to human disease notifications. Consequently as Tidd et al. (1993;
hereafter TOS) observe, "chaos in childhood diseases is thus something of a test case on which
hinges a good deal more than the dynamics of some half dozen pathogenic agents". A
convincing "case for chaos" in epidemics would increase the credibility of evidence for chaos in
other natural populations for which the data are less accurate and sparser.

The initial "case for chaos in childhood epidemics" (reviewed by Schaffer et al. 1990)
was based on methods developed in theoretical physics, such as algorithms to calculate fractal
dimension. Parallel studies of mechanistic epidemic models -- mainly SEIR models (described
below) revealed that certain features of the data were consistent with model output only for
parameter values where the models are chaotic. However it is now widely recognized that
those methods often give misleading results for data series (such as epidemics) that are short
and noisy by the standards of experimental physics (e.g., Stone 1992, Tidd et al. 1993, Hastings
et al. 1993, Ellner et al. 1995). Moreover, methods intended for controlled-environment
laboratory data are seriously confounded by seasonal and school-year driven variations in
transmission rate (Ellner et al. 1995); models with seasonal variation in parameters can
generate spurious "fieldmarks" of chaos that mimic closely those found in epidemic data
(Ellner 1991, Stone 1992).

Elsewhere (Nychka et al. 1992, Ellner & Turchin 1995, Ellner et al. 1995) we have
presented a different approach based on fitting a nonlinear time series model

(ll
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Here x, is the log of population size or number of cases at time t, e/ represents exogenous
environmental noise affecting the dynamics, and f is a "flexible nonlinear model whose
parameters are estimated from the data. The model in (1) is based on attractor reconstruction
in time-delay coordinates, generalized to allow for exogenous perturbations.. The fitted model
can be used to characterize the dynamics for stability vs. chaos (by calculating the Lyapunov
e:'..1Jonent A), and the level of predictability vs. randomness in the dynamics (quantified by the
r= of the fitted model). Ellner and Turchin (1995) explain these procedures and their
theoretical background; several related measures have been developed by H. Tong and co-
workers (see Yao and Tong 1995). Using NTSM, measles epidemics in large developed-world
cities were found to have non-negligible noise (Ellner et al. 1995; mean r 2 = 0.82 ± 0.09 (SD),
n=12 cities, for predictions one quarter ahead). The dynamics tended to be weakly stable, with
the distribution of estimated Lyapunov exponents clustering near the border between stable
and chaotic dynamics (dominant Lyapunov exponent 1.=0).

Proponents of NTSM have argued that SEIR models are a drastic simplification of the
system, so SEIR-based data analyses are over-constrained and can be strongly biased. In
particular, the omission of environmental variability biases the outcome towards chaos,
because chaos is then the only way to generate dynamics that are not almost exactly periodic.
TOS criticized NTSM for using strictly phenomenological models that treat the data as just a
series of numbers and ignore the considerable biological information that is incorporated in
mechanistic models .(e.g., transmission from infectives to susceptibles, seasonal trends in
contact rates). TOS argue that NTSM is therefore prone to miss departures from nonchaotic
null hypotheses, because the omission of information reduces the precision of estimates. To
support this claim TOS compared the forecasting accuracy of the phenomenological and
mechanistic models, on data that were not used to fit the model (out-of-sample forecasting, as
in Casdagli 1989, Sugihara and May 1990). TOS found that finite-population simulations of a
deterministic SEIR model had higher prediction accuracy than linear stochastic time series
models on measles data from several large cities, and interpreted this result as evidence for
underlying determinism in childhood epidemics.

However, the comparison in TOS did not contain any models that represent the
hypothesis supported by NTSM, that epidemics are both nonlinear and "noisy" (beyond the
inevitable demographic stochasticity due to finite population size). If this "noisy nonlinearity"
hypothesis is admitted, the comparison in TOS is seen to have an incomplete experimental
design (Table 1). Because TOS only compare linear, stochastic, phenomenological models with
nonlinear, deterministic, mechanistic models, it is not possible to determine from their
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comparison where the dynamics fall on the attributes of interest: linear vs. nonlinear,
deterministic vs. stochastic, SEIR vs. not-SEIR.

Our goals in this paper are twofold. First, we complete the programme initiated by TOS
to provide a quantitative basis for choosing between these alternate characterizations of the
dynamics, by adding to the comparison models that represent the "noisy nonlinearity"
hypothesis. These complete the experimental design of TOS by filling in the lower-right comer
of Table lAo Secpnd, we introduce and evaluate a class of models intermediate between
mechanistic and phenomenological, which we call "semi-mechanistic". The semi-mechanistic
models incorporate some SEIR-style structure, and use mechanistic information to define a
priori a meaningful state space, but estimate the form of the contact rate equation from the
data.. When the dust settles, a semi-mechanistic model is the "winner" in our comparison. This
outcome suggests that TOS were correct in claiming that NTSM analyses are under-constrained
and imprecise, but it also indicates that SEIR is over-constrained and thus biased. We expect
(and are investigatUng) improvements in forecastUng accuracy by using extensions of SEIR with
additional mechanistic detail. However any mechanistic model is inevitibly incomplete,
especially if model complexity is constrained by the need to estimate parameters from limited
available data. Spatial structure, age structure, individual heterogeneity in susceptibility, and
long-term trends in birth rates are among the factors that a "valid" mechanistic epidemic
model would need to include, but there is little hope of obtaining data to estimate all of them
accurately.

Data analysis based on a completely specified mechanistic model is tacitly assuming
that we know everything there is to know about the dynamics and have the data needed to
estimate parameters for all relevant processes; in this ideal situation state we could, and
should, use the mechanistic model as the basis for data analyses, forecasting, and control. Data
analysis based on a purely phenomenological model assumes that we know nothing
whatsoever about the processes underlying the data. Our actual state of knowledge is typically
somewhere between these extremes, for epidemics and (we would argue) for virtually all
populations and ecosystems. A model representing our knowledge would therefore be partially
mechanistic, but would retain flexibility about poorly known aspects of the system. The
comparisons here illustrate how quantitative comparisons can be used to decide which
mechanistic information should be "hard-wired" into the model, and how the final model can
be employed to characterize the dynamics. These methodological aspects are generally
relevant to modeling the dynamics of populations and ecosystems, for a range of objectives
including forecasting, control, and elucidating mechanisms by comparing the goodness-of-fit
of models based on alternative mechanistic hypotheses.
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The literature on nonlinear dynamics and forecasting related to this paper is enormous
and mostly not written for biologists, so we do not attempt review. For a selective review see
Hastings et al. (1993); recommended entry points into the primary literature include Casdagli
and Eubank (1992), Ott et al. (1994), Weigend and Gershenfeld (1994), and Tong (1995).

METHODS AND MODELS

Data. The data are monthly case report totals for measles in 5 large cities (Figure 1).
The time span for each data series was chosen to terminate before vaccination (which began in
the 1960's) had any evident effect, and to avoid any obvious causes of non-stationarity in the
dynamics. The data for London therefore does not include the years of the Second World War,
during which many children were evacuated. For US cities those years are included; virtually all
cases occur before the age of 15, so the absence of those old enough for military service would
not greatly affect disease transmission.

Prediction accuracy. To assess prediction accuracy we followed the approach of TOS
"ith some technical modifications that increased accuracy. The forecasting problem is to
predict the number of cases in future months, given monthly case report totals C, up to the
present. We use XI =log-transformed monthly case report totals in order to mitigate the
"nonuniformity" in measles data (Kendall et al. 1994) that reduces forecasting accuracy.
Forecasts forward from time t are then based on a vector of past values,

x, = (x"x'_L"",x'_nrL) . (2)

X, is a reconstructed state-vector for the system in which past values act as surrogates for

unobserved variables, such as the number of susceptible individuals.

For each time t and each prediction interval Tp ' each model M was used to produce a

forecast ;;:T of X'+T ' which was the conditional mean of X'+T given X, in the model. The
p p p

conditional mean calculations differ among models, and are described below. Predictions are

made only for the second half of each data series, which was not used in fitting the models.

Prediction accuracy was measured by a quantity which we call the "prediction /". Prediction /

is computed by the usual formula for'; in a regression analysis:

P d"" 2 1 Mean square of residualsre Ictlonr =
Variance of data
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The sums in (3) run over the second half of the data series, and x is the mean of XI over the.
same set of times. TOS report results for two different measures of prediction accuracy (the

correlation coefficient, and the slope of the linear regression, between observed and predicted

values) but state that a measure equivalent to prediction-/ (the scaled error) gave "roughly

comparable results" (TOS p. 265). Here we use prediction-/ because of its familiar

interpretation as the proportion of total variance accounted for by the model; the correlation

coefficient used by TOS (which is for the linear regression between observed and predicted)

does not have that interpretation.

Mechanistic models. We consider only the SEIR model, which TOS found to give the

highest forecasting accuracy. The SEIR model is a system of nonlinear differential equations

that models the changes over time in the fraction of Susceptible, QqJosed, Infective, and

Recovered individuals in the population (exposed individuals have caught the disease but are

asymptomatic and do not transmit the disease to others; infectives are symptomatic and can

transmit the disease). The model is

dSjdt =m(l- S)- b(t)SI
dEj dt =b(t )SI - (m+a )E
dljdt =aE - gI
R=l-(S+E+I)

(4)

where m is the mortality rate (assumed to be the same for all classes), bet) is the contact

intensity, and l/a and l/g are the mean duration of the exposed and infectious periods. This

form of the model assumes that all newborns are susceptible and that recovered individuals

have permanent immunity (which are appropriate for measles), and further that population

size is constant. bet) is assumed to follow a deterministic annual cycle due to seasonality and

the school year, transmission being more likely when school is in session. A sine-wave model

for bet) is often used for convenience, but we used the more realistic form introduced by Kot et

al. (1988), b(t) = Po (1 + PI rp( t )), q;( t) = 1.5(0.68 + cos(2m)) / (1.5 + cos(2m )).

Forecasts for the SEIR model were obtained by a refinement of the method in TOS. We

generated a 200-year-Iong series of simulated case totals {C;, 1= 0,1,,,·) , which were then log-
transformed and scaled in the same way as the real data, and converted into an "atlas" of

simulated state vectors I =0,1,···} . (Spot-checks on atlases up to 500 years long indicated
that an atlas longer than 200 years yields only minuscule improvement). Predictions forward in

time from any state-vector XI in the data series were obtained as a weighted average over
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trajectories originating at nearby state vectors in the atlas, in which closer vectors are

weighted more heavily:

(5)

Equation (5) is what statisticians call a kernel regression model, which provides a consistent

estimate of the conditional mean (Hardle 1990, Cheng and Tong 1992). The weights Wi,l are

given by k(djh), where di,t is the distance from Xr to the /" point in the atlas, k is a weighting

function which falls off with distance, and h (called the bandwidth) is a constant which controls

the rate at which more distant points are down-weighted. We used

=I / (l + Z2 + 0.5.:4 + 0.3=6), which falls off rougWy as but is computationally faster.

For each prediction time Tp ' the value of h was chosen by ordinary cross validation on the

simulated data (specifically, we used the value of h which gave the highest prediction / when

the atlas for predictions from XJ consisted of all X; with /j-kl>12 months). Because the

optimal h depends on the length of the atlas, it would be inappropriate to choose h by cross-

validation on the empirical data.

Following TOS we first implemented SEIR as a finite-population Monte Carlo simulation,

with a small amount of immigration (as in Kendall et al. 199-1) to prevent an unrealistically

high number of months with 0 cases. However, we found that substantially more accurate

forecasts could be obtained using the differential equations (4) to create the atlas. We used the

values of m, a, and 9 (which can be estimated directly) and of j3 from TOS. For each data serieso

we computed forecasting accuracy for /3]=0.20, 0.22, 0.2-1, 0.26, and 0.28, which spans the

range of empirical estimates and runs from simple periodic dynamics to chaos. Forecasting

accuracy was improved, especially at lower values of /3j, by adding small random variations

about the seasonal trend in contact rate intensity, b( r) =/3o(l + /3ICfJ(r) + err) where ::(r) was a
first-order Gaussian autoregressive process with unit variance and autocorrelation of 0.5 at

time lag of 2 weeks. For each value of /3] the value of O'was increased from 0 in increments of

0.01 until the model dynamics were qualitatively similar to the data (Le., a mix of 2-year-

periodic, 3-year-periodic, and aperiodic dynamics). These values of (j are thus the minimal

modification of the deterministic model necessary to generate realistic simulations. The largest

value of 0' was o.(n, at /3]=0.20; even small amounts of noise can mo\"e the SEIR model from
periodic to chaotic dynamics for /3, in the range considered here (Rand and Wilson 1991).
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Time-series models. We considered two phenomenological time-series models,.
feedforward neural networks (FNN) and the semi-nonparametric (SNP) model of Gallant and

Tauchen (1992). The FNN model is equation (1) with T=l and

(6)

where G is a sigmoid function such as G(u)=exp(u)/(l+exp(u)). In the neural interpretation,

each term in ( )'s represents the stimuli to a single neuron and G() is that neuron's firing rate.

However FNN was used here strictly as a statistical model. Given the amount of data available

on measles, our past experience and comparative studies favor FNN over competing models for

characterizing nonlinear dynamics (McCaffrey et al. 1992, Ellner & Turchin 1995). The

parameters (/3. r .. f.l.) were estimated by nonlinear least squares for each given value of k, and
I, I), I

the value of k was chosen by the Bayes Information Criterion (BIC), using methods described

elsewhere (Ellner et al. 1992, Nychka et al. 1992).

The SNP model, developed for financial and macroeconomic time series, approximates

the one-step-ahead conditional density using a series expansion in which the leading term is a

linear autoregression with Gaussian noise. Departures from the linear model are described by

polynomials multiplying the leading term's density and modifying its shape, in which the

coefficients are polynomial functions of the current state. A complete description is given

elsewhere (Gallant and Tauchen 1992). After some trial-and-error (using only the first half of

each data series) the SNP model was constrained to use 24 past monthly values in the linear

autoregression but only the 4 most recent values in the polynomials. Methods used to estimate

parameter values and select the polynomial order are described elsewhere (Gallant and

Tauchen 1992).

The SNP and FNN models were fitted for a prediction time of one month ahead.

Predictions farther ahead were obtained by simulating the dynamics and averaging over

simulations to obtain the conditional mean. For SNP this involves repeated random draws from

the fitted one-step-ahead transition density. For FNN we iterated forward equation (1) with T=l

and random shocks er generated by random sampling with replacement from the residuals of

the one-month-ahead model.
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Semi-mechanistic model. Our objective in constructing a semi-mechanistic model was to.
"hard-wire" into the model the qualitative structure of disease transmission without specifying

the exact form of the rate equations. The model we used was

x/+! =g(S/,X/,X/_L,X/_2L,"',X/_mL) +e/
S/+1 = S/ - CI+I + 'i+1

(7)

where C/ is the (untransformed) total number of cases in month t, S/ is an estimate of the

number of susceptibles at the end of month t, and r/ is the total net recruitment into the

susceptible population in month t.

The first line in equation (7) represents new cases resulting from contact between

susceptibles and infectives, as in equation (4). (SI'Xl'x/_L,X/_2L ''',X/_mL ) should be viewed as a

reconstructed state vector in which the lagged case totals are surrogates for unobserved

variables. The second line in equation (7) is just mass-balance for the number of susceptibles.

To be exact it should read SI+! =S/ - E/+I + 'i+!, where Et is the number of individuals catching

the disease in month t. However, because the latent period for measles (roughly 1 week) is

short compared with the sampling interval (one month), we can assume that C/ == E/ and

thereby avoid using Et as an additional state variable. We used the FNN model for 9 in equation

(7), which we call the "SCFNN" model; parameters of 9 were estimated by least squares. We

also used a kernel model (as described above) for g, in which the atlas for prediction forward

from X j consisted of all X k with /j-kl >24 months, bandwidth chosen by ordinary cross

validation. The kernel model was used mainly to obtain an estimate of forecasting accuracy

based on the entire data set, using ordinary cross validation (as described above). This could

not be done with SCFNN because of the computational cost of re-fitting the model hundreds

of times with different subsets of the data deleted.

Values of Sf and rt were estimated from case report data using methods described

elsewhere (Bobashev et al. 1995). S/ differs from the actual number of susceptibles by an

unknown shift of location and scale; r f differs from actual recruitment by the same shift of

scale, which is approximately equal to the fraction of cases that are reported. The method

guarantees that the second line of equation (7) is valid. Predictions were generated by

simulation of model (7), as for FNN and SNP. The recruitment rate Ii was treated as a known

covariate, since it is an exogenous factor not predictable from epidemic data, but both x/ and

S/ were forecast by iterating equation (7) with the fitted g.
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Seasonal covariates. In previous studies (Ellner et al. 1995, Ellner and Turchin 1995) the.
prediction accuracy of FNN models for monthly population data was greatly improved by using

time-of-year as a covariate for predictions. This was done by adding a seasonal "clock" to the

basic model (equation 1), giving the seasonal FNN model

XI+T= /(xl'x/_L>""XI _mL .cos(2m / 12),sin(2m / 12»+ el
in which/is given by equation (6), and the seasonal semi-mechanistic model

X/+! =g(S/, XI' sin(2m / 12). cos(2m / 12»)+ e/

S/+! =S/ - C/+! + J;+I

(8)

(9)

where g is given by equation (6) or by a nonparametric kernel. Additional lagged values of XI (as

in equation 7) were also tried in equation (9), but this did not improve forecasting accuracy.

Seasonal models (equations 8 and 9) uniformly out-performed their nonseasonal counterparts

(equations 6 and 7), so we report results only for the seasonal models.

predictions implicitly include seasonality, because seasonal variation in the

contact intensity b(t)is built into the model. With time delay L=l the TOS prediction method

often bases predictions on neighboring state vectors that come from the wrong time of year

(Grenfell et al. 1994), but using larger values of L (as we do here) avoids this error and the

forecasting accuracy is much better. As a result we were unable to find any way of

incorporating seasonal covariates that improved SEIR forecasting accuracy. Use of susceptibles

actually reduced the average SEIR forecasting accuracy. These results indicate that

reconstruction of the SEIR state space from lagged cases really worked: seasonality and

susceptibles did not provide any additional information that was useful for prediction.

Model-free prediction. As baselines for interpreting prediction accuracies, we

determined the prediction / for two methods that make direct use of the data. The first uses

only the average seasonal trend: the forecast for time k is simply the mean of all values from

the same month in the first half of the data series. We refer to this as the "seasonal trend"

forecast. The second method is the same as that used for the SEIR-based prediction, except that

the atlas for each prediction consists of all data outside a 2-l-month window on either side of

the time for which predictions are made. This is similar to using the first half of the data to

predict the second, but makes more efficient use of the limited data. We refer to this as "data
,

atlas" forecasting. As a third baseline, note that a prediction r- < 0 occurs if model-based
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predictions are less effective than simply taking the unconditional mean value as the

prediction.

RESULTS
Embedding parameters. The forecasting accuracy of each method depends on the choice

of embedding parameters in the state vector XI (equation 2), namely the time-delay L, and the

number of lags O=m+l. TOS used L=l month and 0=4 or 6, but as noted above L=4 greatly

improved the forecasting accuracy on measles data for England and Wales (Grenfell et al. 1994).

We used data-atlas forecasting accuracy as the criterion for choosing embedding parameters

(as in Sugihara and May 1990), on the principle that a "good" embedding for the data should

also be "good" for an accurate model. For our data sets, L=3 or 4 with 0=5 or 6 gave much

more accurate forecasts (Figure 2). In most of the cities, forecasts with L=3 or 4 were better,

and forecasts with L=l were worse, than forecasts based solely on the seasonal trend. The

highest average forecasting aCGuracy (averaging over all values in Figure 2) was obtained at

L=3, 0=6, which has been the most popular choice for analysis of measles data in past studies.

We therefore report results here using L=3, D=6 for the SEIR, fNN, and data-atlas forecasts; all

results were very similar for any of the better embedding parameters (L=3 or 4, 0=5 or 6). For

the seasonal fNN model, the 6-dimensional state vector consisted of 4 past values plus the 2

sin/cos covariates; otherwise it consisted of 6 past lags.

Seasonality in the SEIR modeL SEIR prediction accuracy also depends on the level of

seasonality (PI) used in the simulations generating the atlas (Figure 3). For each of the 5 cities,

we report results for the value of PI that gave the highest average forecasting accuracy for 1-24

months ahead using embedding parameters L=3, 0=6: PI=0.20 for New York City and London,

PI=0.22 for Detroit, PI=0.24 for Baltimore and PI=0.26 Milwaukee.

Prediction accuracies of the models. SEIR-based forecasts were slightly less accurate

overall than forecasts based on phenomenological time series models representing the "noisy

nonlinearity" hypothesis, SNP and the seasonal fNN model (Figure 4). SNP forecasts were

markedly better than SEIR for London and Milwaukee, and nearly identical to SEIR in prediction

accuracy on the other cities. FNN forecasts were markedly better than SEIR for Milwaukee, but

were only slightly better on average than SEIR for the other four cities. The semi-mechanistic

SCfNN model was better overall than SEIR in each of the cities (Figure 5), and had a higher

prediction ,-2 than SEill in 89% of the (city x prediction interval) combinations examined.
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Comparing all four models, the highest average prediction / was achieved by SCFNN in three.
cities (New York, Detroit, Milwaukee), FNN in one city (Baltimore), and SNP in one city (London).

SCFNN outperformed FNN on average (mean prediction /=0.61 for SCFNN, 0.53 for FNN) and

in 71% of the (city x prediction interval) combinations: the semi-mechanistic model "beat" the

purely phenomenological model. SNP and SEIR had lower average prediction r2 than either of

the neural-net based models (mean prediction /=0.52 for SNP, 0.32 for SEIR).

SEIR-based forecasting was reported to be more successful at "peak-to-peak" prediction,

in which the next outbreak maximum is predicted based on the most recent outbreak

maximum, with intermediate months ignored (Tidd et al. 1993, Kendall et al. 1994). We

therefore compared the peak-to-peak prediction accuracy of the SEIR and SCFNN models (by

fitting a smoothing spline to the time-series of successive maxima in long simulations of the

models). Again SC_FNN gave consistently more accurate forecasts (Table 2), however (in

contrast to SEIR) the peak-to-peak forecasts were less accurate than one-year-ahead forecasts

obtained by iterating forward one month at a time (Figure 5).

Characterizing the dynamics: Unpredictability. The model fitted to a data series can be

used to estimate significant features of the dynamics. Some features of interest for population

and epidemic dynamics are the level of predictability vs. unpredictable "noise" in the

dynamics, the overall extent of chaos. vs. stability, and how both of these vary as a function of

the system's current state.

Estimates of short-term unpredictability (1- r 2 ) for each city are summarized in Table

3. The SEIR model has lower forecasting accuracy and therefore gives slightly higher estimates

of unpredictability, but the three models give similar estimates. Moreover, there is good

(though imperfect) agreement between the models on the relative unpredictability for the

different cities, as indicated by linear correlations (p values in the Note to Table 3).

The interpretation of Table 3 is confounded by the effect of measurement errors in the

data. Even a perfectly deterministic system will appear to be somewhat unpredictable if the

data are corrupted by random errors, and estimates of unpredictability such as those in Table

3 are consequently biased upwards. Thus Table 3 really gives an estimated upper bound on the

unpredictability. A lower bound is also available, based on the fact that the effect of

measurement errors on apparent predictability is rougWy independent of the prediction

intcrval (Sugihara and May 1990). Figure G illustratcs this relationship for our data. When
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simulated measurement errors were added to the data, the forecasting profiles p2(T)
• p

(estimated prediction r 2 as a function of prediction interval) shifted progressively downward.

Thus if we could somehow remove the measurement errors, the result would be an upward

shift in the forecasting profile. The magnitude of the upward shift can be at most 1- p2(l) ,

because even with perfect data the one-month-ahead forecasting accuracy cannot be above l.

An upper bound on the forecasting accuracy can therefore be estimated by applying this

maximum possible upward shift, which yields P\l) - P\j) as a lower bound on the j-month-

ahead unpredictability 1- r 2(j).

For our data, the lower bound on unpredictability is apparently quite conservative

(Figure 7). Figure 7 was derived from the same simulations as Figure 6. For each data series we

applied the upward-shift method to each of the replicates with additional simulated

measurement errors (CV=O.l, 0.2 or 0.3); the resulting 30 lower bounds on unpredictability are

shown as dashed lines in Figure 7. In all cases the lower bound is well below the

unpredictability for the data without any simulated measurement errors.

We thus have upper and lower bounds for the intrinsic unpredictability of the system

itself, given by 1- f2(j) and f\1) - f2(j) respectively. These bounds on short-term

unpredictability are summarized for each city in Table 4. For predictions 6 months ahead, the

average lower bound on unpredictability was 23%, with considerable variation among cities.

To give a standard of reference for these unpredictability estimates, we computed

unpredictability by the same method for the data and for SEIR model output (Figure 8), in the

finite-population Monte Carlo implementation which incorporates demographic stochasticity

(see Methods: Mechanistic models). The models exhibited lower unpredictability on average than

any of the 5 cities, but for London and New York there was little difference between the

models' unpredictability and the lower bound on the data unpredictability.

Characterizing the dynamics: stability vs. chaos. Overall stability vs. chaos can be

quantified by the dominant Lyapunov exponent A. The Lyapunov exponent gives the long-term

sensitivity to initial conditions, Le. the rate of growth (or decay) over time of the effect of a

small perturbation in the system's state. Thus A>O indicates sensitive dependence on initial

conditions, which is the classical defining feature of chaotic dynamics. The mathematical

definition of Afor systems with random perturbations, and methods for estimating Ain such

cases, are discussed by Ellner and Turchin (199 J).
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Based on the comparison of forecasting accuracy, we used the SC_FNN model to

estimate A. Parameter values were estimated from the entire data series, retaining the model

specification that gave the best out-of-sample prediction r. The estimates of A are shown in
Figure 9 (top pane!), with 95% confidence intervals based on asymptotic distribution theory for

a likelihood ratio statistic (see Bailey 1996, Bailey et al. 1996 for details). These estimates

support the previous conclusion (Ellner et al. 1995) that measles epidemic dynamics are

clustered near the transition between stable and chaotic dynamics (A,,=O). They are neither

strongly stable, nor strongly chaotic, and for 4 of the 5 cities the 95% confidence interval for A

contains o.
Short-term stability vs. instability can be characterized by the local Lyapunov exponents

(LLE) Am(t) (e.g., Abarbanel et al. 1991, 1992, Wolff 1992, Bailey 1995). Am(t) is the short-term

rate of growth (Am(/) > 0) or decrease (,,1,11/(1) < 0) in the effect of a perturbation at time t, over

the time interval from t to (t+m). If the system is deterministic, Am(/) depends only on the

system state at time t; in noisy systems it is a random quantity that depends on the system

trajectory between times 1 and (t+m).

In each of the cities, there was substantial variation in the local Lyapunov exponents

over the course of epidemics, including a roughly 50: 50 split between positive and negative

values (Figure 9, lower 3 panels). The variation in local exponents within each city (as indicated

by the gap between the 10th and 90th percentiles of the distribution) is far larger than the

variation between cities in the global exponent. Thus in all cases the near-O global exponent

results from alternation between short-term sensitive and insensitive dependence on initial

conditions. The local Lyapunov exponents are constant in a linear system, so the large

variation seen here is additional evidence of significant nonlinearity in measles dynamics.

DISCUSSION

The main biological implication of our analyses is that measles epidemics are best

described as a mixture of nonlinearity and "noise", with neither component being small

enough to disregard. The dynamics are not essentially deterministic, nor are they just random

deviations from a seasonal trend. The data exhibit unpredictable variation beyond what can be

accounted for by measurement error, or by finite-population effects in an otherwise

deterministic SEIR model. The nature of this "noise" arolmd the model predictions is an
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important question that our analyses here do not resolve. Epidemics are likely to be perturbed.
by both environmental variability and demographic stochasticity (Bartlett 1957, Grenfell et al.

1995b). The biological details omitted from our models, such as age structure and spatial

heterogeneity, may also contribute to forecasting errors. However the observed levels of

predictability are quite high for at least 6 months into the future, and the dynamics are

reasonably well described by a simple semi-mechanistic model.

The estimates of the global Lyapunov exponent A, and the local exponents AmCt) (Figure

9) indicate that the epidemic dynamic are clustered very near the border between stable (1.<0)

and unstable (1.>0) dynamics, but there are large fluctuations in the degree of short-term chaos

vs. stability (i.e., short term sensitivity vs. insensitivity to initial conditions). These findings

imply that interactions between noise and nonlinearity are a significant aspect of the

dynamics. During periods of short-term sensitivity to initial conditions (Am(t»O) the system is

acting as a "noise amplifier", in which the disease transmission dynamics amplify the effect of

random "shocks" to the system. During these periods, much of the unpredictability is

internally generated, as in a chaotic system. When AmCt)<O there is short-term insensitivity to

initial conditions, and unpredictability is generated only by the external shocks, as in a stable

system with random perturbations. A characterization of this kind of dynamics as "chaotic" or

"nonchaotic" might be correct, but it would be incomplete and misleading.

Our results also have more general implications for the study of dynamics in other

ecological and epidemiological systems. Our results support TOS's argument that analyses

based on phenomenological time series models omit useful information and therefore sacrifice

precision. However, contrary to TOS, our results do not support analyses based on a simple

mechanistic model such as SEIR. The main flaw in the TOS study was the use of linear models

as the benchmark to evaluate the performance of a candidate mechanistic model. A linear

model is not a fair "straw man" because it is not the best of the phenomenological models now

in use. We have demonstrated that a nonparametric autoregressive estimator such as a neural

net that attempts to track the first conditional moment, or a completely nonparametric time

series estimator such as SNP that attempts to track all conditional moments, are the

appropriate phenomenological models to use as benchmarks. However the most accurate

description of the dynamics, as measured by out-of-sample forecasting accuracy, was obtained
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with a semi-mechanistic model that incorporates some reliable biological information but uses.
the data to estimate the correct form of some terms in the rate equations.

The main difference between the SEIR and semi-mechanistic models is that the former

uses the conventional "strong homogeneous mixing" contact rate equation (Anderson and May

1991), in which the infection rate is proportional to the product of the number of susceptibles

and the number of infectives. The SEIR and semi-mechanistic models operate at exactly the

same levels of detail - citywide monthly case totals - so the difference in performance is not

simply a matter of one model being more detailed than the other. The lower predictive power

of the SEIR model therefore suggests that the conventional contact rate equation may not be

adequate. If so, this might provide an explanation for the persistent discrepancies between the

empirical data and SEIR-type models (Bolker and Grenfell 1993). Alternatively, the flexibility of

the semi-mechanistic model may be allowing it to account, at least in part, for some of the

biological details omitted from our models. The most serious omission is probably age

structure, which can have significant effects on the dynamics of epidemic models (Schenzle

1984, Anderson and May 1991, Bolker and Grenfell 1993). It is also not yet clear to what extent

the irregular, aperiodic fluctuations observed in the data (Figure 1) are intrinsic to the disease

dynamics (Grenfell et al. 1995a), or arise from demographic factors such as secular changes in

birth rates (Grenfell et al. Of the models considered here, only the semi-mechanistic

model takes account explicitly of variations in birth rates.

The polar alternatives of fitting simple mechanistic models, and purely descriptive

statistical techniques, have been the dominant approaches for modeling and quantifying

population fluctuations. While it is recognized that both approaches have limitations, both are

widely used. Our results suggest that better forecasts, and more accurate characterizations of

observed dynamics, may be possible by an appropriate combination of statistical and

mechanistic modeling approaches. What is "appropriate" will be difficult to prescribe in

general. Rather, the analyses here and in TOS illustrate how a suite of models can be evaluated

objectively to identify the kind, and amount, of mechanistic information that ought to be hard-

wired into the model, to obtain the most reliable and accurate predictions. The same kinds of

comparisons could provide a basis for dissecting the determinstic and stochastic components

to identify underlying mechanisms, and determining the importance of factors omitted from

candidate mechanistic models. In principle our approach could be recommended for any long-
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term data set on population or ecosystem dynamics, but there are few that approach the.
duration and accuracy of human disease notifications. It therefore remains an important

challenge (May 1992) to invent and validate methods which compensate for limited duration in

time by exploiting spatial or other forms of replication.
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Table 1

A. The experimental design in Tidd et al. (1993).
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linear

Nonlinear

Mechanistic

SEIR, RAS

Phenomenological

Ml, M2, M3

B. The experimental design in this paper.

Mechanistic Semi-mechanistic Phenomenological

Nonlinear SEIR FNN,SNP

Note. - (A) The prediction models compared by Tidd et al. (1993) were either nonlinear
mechanistic models (SElR, RAS) in which the only noise is demographic stochasticity due to
finite population size, or linear phenomenological models driven by high levels of
environmenal noise (MI, M2, M3). SElR and RAS are described in the text. MI is a linear
Gaussian autoregressive process, M2 is nonlinear transformation of a linear Gaussian
autoregressive process, and M3 is a linear Gaussian autoregressive process superimposed on
an annual periodic trend. Thus MI is a special case of M2, which is a special case of-M3. (B) In
this paper we compare SElR with models that allow both nonlinearity and substantial levels of
environmental noise (FNN, SNP, SCFNN models described in the text)..
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Table 2. Prediction r 2 for peak-to-peak prediction by the SEIR and semi-mechanistic neural net
(SCFNN) models for measles epidemics.

SCFNN

SEIR

New York

0.51

0.43

Baltimore

0.43

0.17

Detroit

0.47

0.19

Milwaukee

-0.11

-0.76

London

-0.05

-0.09
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Table 3. Short-term unpredictability estimates (I-prediction r 2 ) by SElR, SNP, and semi-.
mechanistic neural net (SCFNN) models for measles epidemics, for prediction intervals 1 and 3
months.

SElR SNP SCFNN

1 month 3 months 1 month 3 months 1 month 3 months

New York 0.12 0.19 0.06 0.22 0.0-1 0.13

Baltimore 0.22 0.-16 0.1-1 0.55 0.12 0.31

Detroit 0.18 0.36 0.09 0.31 0.08 0.2-1

Milwaukee 0.30 0.66 0.15 0.53 (Ul 0.37

London 0.17 0.30 0.07 0.20 0.09 0.22

Mean

Std. Dev.

0.20

0.07

0.39

0.18

0.10

0.0-1

0.36

0.15

0.09

0.03

0.25

0.09

Note: Table entries are the mean square prediction error expressed as a fraction of the overall

variance of the data. This value can be interpreted as the fraction of the data variance that is

not accounted for by the model. Correlations (p) between the unpredictability estimates from

the three models are significant for both one month ahead and three month ahead forecasts

(One month: P(SNP,FNN)=0.85, P=.03; P(SNP,SEIR)=0.92, P=.01; p(FNN,SEIR)=0.81, P=.0-1. Three

months: P(SNP,FNN)=0.88, P=.05; p(SNP,SEIR)=0.86, P=.0-1; p(FNN,SEIR)=0.98, P=.009. P-values are for

randomization tests against the null hypothesis of independence).
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Table 4. Short-term unpredictability (I-prediction /) estimated by kernel-based semi-.
mechanistic model with bandwidth chosen by ordinary cross validation. "Upper bound" is the

unpredictability from applying the model to the empirical data, corresponding to the estimates
in Table 2. "Lower bound" is the under-estimate obtained by the vertical shift method, which
over-corrects for effects of measurement error: the curve of prediction r 2 vs. prediction
interval is shifted vertically upward so that the value for one month ahead is r2 =1.0.

Upper bound Lower bound
1 month 3 months 6 months 3 months Gmonths
ahead ahead ahead ahead ahead

New York .07 .13 .20 .06 .13

Baltimore .10 .23 .33 .13 .23

Detroit .08 .20 .27 .11 .18

Milwaukee .14 .36 .55 .23 .41

London .08 .18 .27 .10 .19

Mean

Std. Dev.

.09

.03

.22

.09

.32

.13

.13

.06

.23

.11

Note: Table entries are the mean square prediction error expressed as a fraction of the overall

variance of the data. This value can be interpreted as the fraction of the data variance that is

not accounted for by the model forecasts.
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FIGURE LEGENDS
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Figure 1.Data used to evaluate forecasting accuracy, measles montly case report totals for New
York City, Baltimore, Detroit, Milwaukee, and London. New York City data from London and
Yorke (1973), London data from the Registrar General's Weekly Report; Baltimore, Detroit, and
Milwaukee compiled and provided by William M. Schaffer.

Figure 2. Comparison of data-atlas prediction accuracy for different embedding parameters.
Predictions for the second half of each data series were made by a kernel regression model
fitted to the first half of the data series (see text for details).

Figure 3. Comparison of SEIR prediction accuracy for different levels of the seasonality
parameter Pl' The results shown are for embedding parameters L=3, D=6, chosen on the basis
of data-atlas forecasting accuracy.

Figure 4. Comparison of prediction accuracy between SEIR, SNP, and FNN model-based forecasts
1 to 2-1 months ahead.

Figure 5. Comparison of prediction accuracy between the SEIR model and the SCFNN semi-
mechanistic model.

Figure 6. Forecasting accuracy using the semi-mechanistic model (equation 9) with
nonparametric kernel estimate of g, for complete case report time series (solid curve) and for
the same data with simulated measurement errors (dotted curves). Measurement errors were
Gaussian, with zero mean and standard deviation proportional to the data value; the
proportionality constant is the coefficient of variation (CY), which was 0.1, 0.2, or 0.3. Dotted
curves show the mean over 10 replicates for each value of CY.

Figure 7. Lower bounds on unpredictability derived from the simulations in Figure 8. The
upward-shift method (described in the text) was applied to the forecasting profiles with
simulated additional measurement errors (IO replicate trials each at CY=O.1, 0.2, and 0.3). This
procedure resulted in 30 different estimated lower bounds for the unpredictability in the
original data. The lower bounds are plotted as dashed curves; the solid curve is the
unpredictability 1-/ in the original data, corresponding to the solid curve in Figure G.
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Figure 8. (a) Comparison of unpredictability between the data, and ouput of the SEIR model in
finite-population Monte Carlo simulations. The unpredictabilities plotted for the data are the
lower bound from the upward-shift method, which overcorrects for the effects of
measurement errors. The model output are "measured" exactly and therefore we did not do
any adjustment of the estimated unpredictability. The solid curves are the average of 1-/ over

25 successive segments of length 450 months each, from two long simulation run at
populations of 1 million and 5 million. Standard errors are below 0.01 for all plotted values. (b)
Typical segments of SEIR model output: monthly case totals expressed as percentage of the
total population (1 million or 5 million).

Figure 9. Estimates of global and local Lyapunov exponents for each of the cities. Estimated
values are indicated by the solid box, and the error bars show 95% confidence intervals
obtained by the method of Bailey et al. (1996). The top panel shows the estimated global
Lyapunov exponent A, with the dashed line at 0 indicating the transition between stable (A<O)
and chaotic (//'>0) dynamics. The three other panels refer to the local Lyapunov exponents
Am(!) for m=12 months ahead, which give the short-term rate of growth (Am(t) > 0) or
decrease (Ant(t) < 0) in the effect of a perturbation at time t. The panels show confidence
intervals for the fraction of Ant(t) values which are postive, and for the 10th and 90th
percentiles of the distribution of Ant(t) over the course of the data series.
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