
Parallelization Strategies:

Hardware and Software
(Two Decades of Personal Experience)

A. Ronald Gallant

Penn State University

Conference on ”Massively Parallel Computing in Economics,” Econometric

Institute, Erasmus University, Rotterdam, and Econometrics Department, VU

University, Amsterdam, May 11, 2012. Updated May 5, 2014.

These slides:

http://www.aronaldg.org/papers/mpcclr.pdf

Which are exerpts from these lectures:

http://www.aronaldg.org/courses/compecon/

Preamble

• The object oriented programming style minimizes a devel-

oper’s time by both by allowing faster coding, minimizing

errors, and reducing collateral damage during maintenance

• It follows that the better parallel strategies are those that do

not impede the object oriented programming style, all else

being equal.

• Throughout this talk, compatibility with the object oriented

programming style is a desideratum.

Object Oriented Programming

Object oriented programming is a style of programming devel-

oped to support modern computing projects. Much of the devel-

opment was in the commercial sector. The features of interest

to us are the following:

• The computer code closely resembles the way we think about a problem.

• The computer code is compartmentalized into objects that perform
clearly specified tasks. Importantly, this allows one to work on one part
of the code without having to remember how the other parts work: se-
lective ignorance

• One can use inheritance and virtual functions both to describe the project
design as interfaces to its objects and to permit polymorphism. Inter-
faces cause the compiler to enforce our design, relieving us of the chore.
Polymorphism allows us to easily swap in and out objects so we can try
different models, different algorithms, etc.

• The structures used to implement objects are much more flexible than
the minimalist types of non-object oriented language structures such as
subroutines, functions, and static common storage.

Parallel Computing: Overview

• Clusters.

⊲ Memory is not shared among all CPUs.

⊲ MPI (Message Passing Interface) can be used.

⋄ Most common coding strategy is master/slave (aka. administra-
tor/worker or leader/team) branches within a single program.

• Symmetric Multi-Processor (SMP) machines.

⊲ Memory is shared among all CPUs; cores count as CPUs.

⊲ MPI can be used.

⊲ Threads can be used

⊲ OpenMP can be used.

• Graphics devices.

⊲ A graphics device is a massively parallel SMP machine.

⊲ Uses threads that are automatically launched by the device.

⊲ OpenCL can be used.

⋄ Nvidia’s CUDA is not portable; becoming obsolete

.

net

master

node 0

node 1 node 2

node 3 node 4hub

node 5 node 6✪
✪

✪
✪

✪
✪

✪
✪

✪
✪

❡
❡

❡
❡

❡
❡

❡
❡

❡
❡

❡
❡

❡
❡

❡
❡

❡
❡

❡
❡

✪
✪

✪
✪

✪
✪

✪
✪

✪
✪

Typical small cluster configuration

Typical small cluster wiring

A serious SMP machine

Penguin Altus 1804i

Four AMD Opteron 6176, 12 cores, 2.3GHz, 48 cores in total

A serious cluster

NCAR’s bluefire

IBM Power 575: 128 nodes, 32 CPUs per node

Each CPU is 4.7GHz, 4096 CPUs in total

Graphics Devices

Combinations

• The machines that make up a cluster are usually SMP ma-

chines.

⊲ Newer machines have multiple CPUs with multiple cores.

⊲ MPI can distribute across all cores in a cluster.

• These SMP machines can, in turn, have graphics devices

installed.

• Enables mixtures of coding strategies

⊲ MPI to distribute across clusters

⊲ Threads or OpenMP within an SMP machine

⊲ OpenCL within threads

Coding Strategies

• Shell Scripts. Some programs, such as nonlinear optimizers that use
multiple, random starts, are so embarrassingly parallelizable, that paral-
lelization can be done with shell scripts alone.

• Message Passing Interface (MPI). The industry-standard protocol for im-
plementing parallel processing. PVM is similar. Allows communication
among processes running on different processors. Architecture indepen-
dent: Code written for a cluster will run on multiple-processor, shared-
memory machines. Mildly disruptive to serial code logic.

⊲ http://www.mpi-forum.org MPI reference

⊲ http://www.open-mpi.org software

⊲ http://ladon.iqfr.csic.es/docs/MPI ug in FORTRAN.pdf Fortran

⊲ ftp://math.usfca.edu/pub/MPI/mpi.guide.ps C & C++

• POSIX Threads (Pthreads). Allows functions with the same name but
different instances of the same argument to be run simultaneously. All
functions have full access to memory and other machine resources. Can
be disruptive to serial code logic and may require care to avoid simulta-
neous use of the same memory locations or other resources.

⊲ http://www.llnl.gov/computing/tutorials/pthreads

Coding Strategies (Continued)

• Parallelized Libraries. Allows sequential code to have some of the benefits
of parallelism. Works best on SMP machines. Can actually impede
performance if coupled with MPI.

⊲ http://www.nag.co.uk/numberic/fd/FDdescription.asp

⊲ http://www.goguewave.com/products/imsl-numerical-libraries/c-library.aspx

• High Performance Fortran. A sort of hybrid of the strategies above,
allows both threads and message passing. Worked poorly for us.

⊲ http://hpff.rice.edu

• Open Multi-Processing (OpenMP). Implements multiprocessing program-
ming in C/C++ and Fortran on SMP machines. It is a set of compiler
directives, library routines, and environment variables that influence run-
time behavior. Least disruptive to existing serial code. Similar to threads;
easier to code. Most compilers have it.

⊲ https://computing.llnl.gov/tutorials/openMP

⊲ http://www.openmp.org/mp-documents/spec30.pdf

Coding Strategies (Continued)

• Open Computing Language (OpenCL). A language for programming
GPU devices. Can be seriously disruptive to serial logic; especially when it
forces dependencies among objects that would otherwise be independent.
CUDA is similar and simpler but only works for Nvidia cards.

⊲ http://www.khronos.org

• ViennaCL. A scientific computing library that encapsulates OpenCL in
the style of the C++ Standard Template Library. Hides all OpenCL
unpleasantness from the user. Not disruptive to serial logic. By far the
easiest way to use graphics devices.

⊲ http://viennacl.sourceforge.net

Illustration of Coding Strategies

• Message Passing Interface – MPI

• POSIX Threads – Pthreads

• Open Multi Processing – OpenMP

• Open Computing Language – OpenCL

• Vienna Computing Library – ViennaCL

Introduction to MPI

• Pacheco, Peter S., A User’s Guide to MPI (1995), Manuscript,

Department of Mathematics, University of San Francisco.

ftp://math.usfca.edu/pub/MPI/mpi.guide.ps

• Open MPI documentation

http://www.open-mpi.org/doc

Hello World in MPI
main(int argc, char** argp)

{

int my_rank; // Rank of process

const int buflen = 100; // Max message size

char buffer[buflen]; // Buffer for messages

int no_procs; // Number of processes

int tag = 50; // Tag for messages

MPI_Init(&argc, &argp);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &no_procs);

if (my_rank != 0) { // Slave

sprintf(buffer, "\tGreetings from process %d \n", my_rank);

int dest = 0;

MPI_Send (buffer, buflen, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

else { // Master

for (int source = 1; source < no_procs; ++source) {

MPI_Status status;

MPI_Recv(buffer,buflen,MPI_CHAR,source,tag,MPI_COMM_WORLD,&status);

cout << buffer;

}

}

MPI_Finalize();

}

MacBook Pro, Intel Core i7, OS 10.7.3

Greetings from process 1

Greetings from process 2

Greetings from process 3

Greetings from process 4

Greetings from process 5

Greetings from process 6

Greetings from process 7

Comments on MPI

• Simple design, minimal disruption of serial code

⊲ Master reads data, sends data, receives results

⊲ Slaves receive the data, do the work, send results

• MPI is by far the most useful for my work: simulation esti-

mators for nonlinear models by MCMC

⊲ http://www.aronaldg.org/webfiles/emm/

⊲ http://www.aronaldg.org/webfiles/snp/

⊲ http://www.aronaldg.org/webfiles/gsm/

Posix Threads (Pthreads)

Threads are processes that can run independently and simulta-

neously within a process.

Reference: POSIX Threads Programming

http://www.llnl.gov/computing/tutorials/pthreads/

Thread Properties

• A thread exists within the process that creates it and uses

that process’s resources.

• A thread has its own independent flow of control.

• A thread has its own stack and registers.

• A thread shares memory and files with the process that cre-

ates it and with all other threads.

Consequences of Thread Properties

• Changes made by one thread to shared resources, such as

closing a file, will be seen by all other threads.

• Two pointers having the same value point to the same data.

• Reading and writing to the same memory locations is pos-

sible and therefore requires explicit synchronization by the

programmer.

A Simple Threaded Program – 1 of 2
// Compile with -pthread flag

#include "libscl.h" // http://www.aronaldg.org/webfiles/libscl

#include <pthread.h> // Header for pthread

#include <unistd.h> // Header for sysconf

namespace {

struct arg_type {

INTEGER threadid;

std::string message;

};

void* write_arg(void* arg_ptr)

{

arg_type* arg = (arg_type*)(arg_ptr);

arg->message += scl::fmt(’d’,2,arg->threadid)() + "\n";

std::cout << arg->message;

pthread_exit(NULL);

}

}

A Simple Threaded Program – 2 of 2
int main(int argc, char** argp, char** envp)

{

#if defined _SC_NPROCESSORS_ONLN

INTEGER num_threads = sysconf(_SC_NPROCESSORS_ONLN);

#else

INTEGER num_threads = 2;

std::cerr << "The variable _SC_NPROCESSORS_ONLN is not defined, using "

<< num_threads << " threads instead\n";

#endif

pthread_t threads[num_threads];

arg_type args[num_threads];

int rc, t;

for(t=0; t<num_threads; t++){

args[t].threadid = t;

args[t].message = "Hello from thread number ";

rc = pthread_create(&threads[t], NULL, write_arg, (void*)(&args[t]));

if (rc) scl::error("Cannot create thread");

}

pthread_exit(NULL);

}

MacBook Pro, Intel Core i7, OS 10.7.3
Hello from thread number 0

Hello from thread number 1

Hello from thread number 3

Hello from thread number 6

Hello from thread number 5

Hello from thread number 2

Hello from thread number 7

Hello from thread number 4

Comments on Pthreads

• Need not disrupt serial code at all

⊲ Can be entirely encapsulated within objects

⊲ Need to take care that no shared resources are used un-

intentionally

• Application: particle filters

⊲ Gallant, A. Ronald, Han Hong, and Ahmed Khwaja (2010),

“Bayesian Estimation of a Dynamic Game with Endoge-

nous, Partially Observed, Serially Correlated State”

http://www.aronaldg.org/papers/socc web.pdf

OpenMP

Some references

• http://en.wikipedia.org/wiki/OpenMP

• https://computing.llnl.gov/tutorials/openMP

• https://computing.llnl.gov/tutorials/openMP/exercise.html

• http://www.openmp.org/mp-documents/spec30.pdf

• http://www.openmp.org/mp-documents/OpenMP3.0-SummarySpec.pdf

OpenMP

• Multithreading master/slave parallelization for SMP machines.

• The code that runs in parallel is marked with a preprocessor

directive, i.e. a pragma.

• Pragmas are controlled by clauses for data sharing, synchro-

nization, and scheduling.

• Library functions provide environment information

• After the execution of the parallelized code, the threads

”join” back into the master thread.

Hello World
// Compile and link with -fopenmp flag

#include "libscl.h"

#include <omp.h>

using namespace std; using namespace scl;

int main(int argc, char** argp, char** envp)

{

INTEGER tid, nthreads;

string msg;

#pragma omp parallel private(nthreads, tid, msg)

{

tid = omp_get_thread_num();

msg = "Hello from thread =" + fmt(’d’,3,tid)() + "\n";

cout << msg;

if (tid == 0) {

bool inpar = omp_in_parallel();

msg = "\n";

if (inpar) msg += "Code block running in parallel\n";

else msg += "Code block running serial\n";

nthreads = omp_get_num_threads();

msg += "Number of threads =" + fmt(’d’,3,nthreads)();

msg += "\n\n";

cout << msg;

}

}

return 0;

}

MacBook Pro, Intel Core i7, OS 10.7.3
Hello from thread = 1

Hello from thread = 0

Hello from thread = 6

Hello from thread = 5

Code block running in parallel

Number of threads = 8

Hello from thread = 4

Hello from thread = 3

Hello from thread = 2

Hello from thread = 7

Advantages of OpenMP

• Simple.

• Data layout and decomposition is handled automatically by

directives.

• Incremental parallelism: Can work on one portion of the pro-

gram at a time, no dramatic change to code is needed.

• Unified code for both serial and parallel applications: OpenMP

constructs are treated as comments when sequential compil-

ers are used.

• Original (serial) code statements need not, in general, be

modified when parallelized with OpenMP. This reduces the

chance of inadvertently introducing bugs.

Disadvantages of OpenMP

• Risk of introducing difficult to debug synchronization bugs

and race conditions

⊲ A race condition is two or more threads trying to write to

the same memory location simultaneously

• Only runs in shared-memory multiprocessor platforms

• Requires a compiler that supports OpenMP.

• Scalability is limited by memory architecture.

• Reliable error handling is missing.

• Can’t be used on GPUs

CESM Climate Model on Bluefire

• Uses MPI to distribute across clusters

• Uses OpenMP within a cluster

• Uses special code, PIO, to eliminate MPI I/O bottleneck

OpenCL

References

• Matthew Scarpino (2011) OpenCL in Action, Manning Publications, Shelter Island, NY

• http://www.khronos.org/opencl/registry/cl

⊲ OpenCL 1.2 Specification.pdf

⊲ OpenCL 1.1 C++ Bindings Specification.pdf

A Kernel to Add Two Vectors

__kernel void squareArray(__global float* input, __global float* output)"

{

output[get_global_id(0)] = input[get_global_id(0)]*input[get_global_id(0)];

};

Fig 1. Work Items, Work Groups, and Memory

OpenCL Addresses – 1

Indexes, called work-items, are used both to index the PEs and

to determine the memory addresses that a PE uses. There can

be up to three such indexes: (x, y, z). I will use two, x and y, for

illustration.

There are Gx × Gy PEs available with global work-items gx =

0, · · · , Gx − 1 and gy = 0, · · · , Gy − 1 indexing them.

The PEs are divided into work-groups of sizes Sx and Sy with

work-items sx = 0, · · · , Sx − 1 and sy = 0, · · · , Sy − 1 indexing PEs

within a work-group.

There are Wx×Wy work-groups with work-items wx = 0, · · · , Wx−

1 and wy = 0, · · · , Wy − 1 indexing them.

OpenCL Addresses – 2
The relationship among work-items is

gx = wx ∗ Sx + sx

gy = wy ∗ Sx + sy

Within the kernel

gx = get global id(0)

gy = get global id(1)

wx = get group id(0)

wy = get group id(1)

sx = get local id(0)

sy = get local id(1)

with similar calls to get Gx, Wx, Sx, etc.

OpenCL Speed

The speed of OpenCL code is governed by the same rules as for

serial code. They are

• Access memory sequentially.

• Localize computations so that all fetches are from the cache.

There is no cache on a graphics card so one has to make one’s own from

local memory. Local memory is fast; global memory is slow.

• Avoid if statements.

If you must use them, arrange code so that they evaluate to true more

frequently than false because pipelines usually make that assumption.

Some Timings

matrixvecmult.cpp and matrixvecmult.cl at

http://www.aronaldg.org/webfiles/compecon/src/opencl/

exhibit five different coding strategies in illustrate gains due to

better memory management.

• The kernels compute

W = MV

where M is a matrix and V is a vector.

• M is 100000 by 1100

Telsa C1060 Timing
Tesla C1060

CPU took 0.168037 sec

Testing MatrixVectorMul1

WorkGroupSize = 64 GlobalSize 100032

Average kernel execution time 0.137472

Testing MatrixVectorMul2

WorkGroupSize = 64 GlobalSize 3840

Average kernel execution time 0.132226

Testing MatrixVectorMul3

WorkGroupSize = 64 GlobalSize 3840

Average kernel execution time 0.0278443

Testing MatrixVectorMul4

WorkGroupSize = 64 GlobalSize 3840

Average kernel execution time 0.0219479

Testing MatrixVectorMul5

WorkGroupSize = 64 GlobalSize 3840

Average kernel execution time 0.0206547

OpenCL Classes

1. Platform

2. Device

3. Context

4. Program

5. CommandQueue

6. Buffer

7. KernelFunctor

Seriously tedious!

ViennaCL

• A scientific computing library

• Includes a BLAS

• Exceptionally easy to use.

⊲ http://http://viennacl.sourceforge.net

ViennaCL Regression Example – 1

• using libscl

realmat X(n,p);

realmat y(n,1);

realmat C = T(X)*X;

realmat b = invpsd(C)*(T(X)*y);

• memory layout is same as realmat if tag = column major

viennacl::matrix<float,viennacl::column_major> gpu_X(n,p);

viennacl::matrix<float,viennacl::column_major> gpu_C(p,p);

viennacl::vector<float> gpu_y(n);

viennacl::vector<float> gpu_b(p);

ViennaCL Regression Example – 2

• copy X and y from CPU to GPU

viennacl::fast_copy(X.begin(), X.end(), gpu_X);

viennacl::fast_copy(y.begin(), y.end(), gpu_y.begin());

• compute b = invpsd(T(X)*X)*(T(X)*y) on the GPU

gpu_C = viennacl::linalg::prod(trans(gpu_X), gpu_X);

gpu_b = viennacl::linalg::prod(trans(gpu_X), gpu_y);

viennacl::linalg::lu_factorize(gpu_C);

viennacl::linalg::lu_substitute(gpu_C, gpu_b);

• copy b from GPU to CPU

viennacl::fast_copy(gpu_b.begin(),gpu_b.end(),b.begin());

ViennaCL Timing, Linux, libscl
const INTEGER p = 30;

const INTEGER n = 100000;

Linux 2.6.18, Intel Xeon 3.16GHz 6144 KB cache,

Telsa C1060, libscl

libscl least squares time = 0.205742

viennacl X & y copy time = 0.013628

viennacl least squares time = 0.001215

viennacl b copy time = 0.085871 <-- GPU to CPU expensive

viennacl total time = 0.100714

GPU/CPU total time = 48.9516 per cent

GPU/CPU least squares time = 0.5905 per cent

ViennaCL Timing, Linux, libsclcb
const INTEGER p = 30;

const INTEGER n = 100000;

Linux 2.6.18, Intel Xeon 3.16GHz 6144 KB cache (unified),

Telsa C1060, libsclcb

libscl least squares time = 0.043693

viennacl X & y copy time = 0.013632

viennacl least squares time = 0.001202

viennacl b copy time = 0.08596 <-- GPU to CPU expensive

viennacl total time = 0.100794

GPU/CPU total time = 230.6868 per cent

GPU/CPU least squares time = 2.7510 per cent

ViennaCL C = AB Timing, Linux
Arows = 1000

Acols = 10000

Bcols = 1000;

Linux 2.6.18, Intel Xeon 3.16GHz 6144 KB cache (unified),

Telsa C1060, libscl

libscl_float mult time = 14.9863 <----

viennacl A & B copy time = 0.661133i compare

viennacl mult time = 0.001064 <----

viennacl C copy time = 0.632763

viennacl total time = 1.29496

GPU/CPU time = 8.64098 per cent

Linux 2.6.18, Intel Xeon 3.16GHz 6144 KB cache (unified),

Telsa C1060, libsclcb

libscl_float mult time = 1.68685 <----

viennacl A & B copy time = 0.660871 compare

viennacl mult time = 0.001028 <----

viennacl C copy time = 0.633325

viennacl total time = 1.29522

GPU/CPU time = 76.7837 per cent

Moral: Minimize copies between CPU and GPU

Better: Use pthreads to do something simultaneously

ViennaCL C = AB Timing, Apple
Arows = 1000

Acols = 10000

Bcols = 1000;

Mac OS X 10.6.8, Intel i7 2.66GHz 256 KB L2 (per core), 4MB L3

GeForce GT 330M libscl

libscl_float mult time = 10.8579 <----

viennacl A & B copy time = 0.68326 compare

viennacl mult time = 0.063123 <----

viennacl C copy time = 3.37502

viennacl total time = 4.1214

GPU/CPU time = 37.9576 per cent

Mac OS X 10.6.8, Intel i7 2.66GHz 256 KB L2 (per core), 4MB L3

GeForce GT 330M libsclcb

libscl_float mult time = 3.85385 <----

viennacl A & B copy time = 0.643956 compare

viennacl mult time = 0.064301 <----

viennacl C copy time = 3.39043

viennacl total time = 4.09868

GPU/CPU time = 106.353 per cent

Moral: Minimize CPU↔GPU copies, esp. GPU→CPU

Better: Use pthreads to do something simultaneously

ViennaCL Summary

• ViennaCL is exceptionally easy to use.

⊲ http://http://viennacl.sourceforge.net

• No need to use the OpenCL classes

1. Platform,

2. Device,

3. Context,

4. Program,

5. CommandQueue,

6. Buffer,

7. KernelFunctor,

• But you can to get more control or to run your own kernels

⊲ A ViennaCL device can be an SMP machine’s CPU’s

⊲ There can be more than one device

Memory Transfer Bottleneck

• Chris Gregg and Kim Hazelwood (2011) “Where is the Data?

Why You Cannot Debate CPU vs. GPU Performance With-

out the Answer”

⊲ http://people.virginia.edu/ chg5w/resources/Publications

⊲ We have benchmarked a broad set of GPU kernels on a

number of platforms with different GPUs and our results

show that when memory transfer times are included, it

can easily take between 2 to 50x longer to run a kernel

than the GPU processing time alone.

• Not a serious problem when solving GE problems

Aldrich, Eric M., Jesús Fernández-Villaverde, A. Ronald Gallant, and Juan F. Rubio-

Raḿırez (2011), “Tapping the Supercomputer Under Your Desk: Solving Dynamic

Equilibrium Models with Graphics Processors,” Journal of Economic Dynamics and

Control 35, 386–393.

