
-1-Detecting nonlinearity and chaosin epidemic dataStephen Ellner1 , A. Ronald Gallant2 , and James Theiler3;41Biomathematics Graduate Program, Department of Statistics,North Carolina State University, Raleigh NC 27695-8203, USA;2Department of Economics, University of North Carolina, Chapel Hill NC 27533-3305, USA;3Santa Fe Institute, 1660 Old Pecos Trail, Santa Fe NM 87501 USA;4Center for Nonlinear Studies & Theoretical Division,Los Alamos National Laboratory, Los Alamos, NM 87545 USA.1. IntroductionHistorical data on recurrent epidemics have been central to the debate about the prevalenceof chaos in biological population dynamics. Credit for this interest in epidemics goes toScha�er and Kot (1985, 1986), who �rst recognized that the abundance and accuracy ofdisease incidence data opened the door to applying a range of methods for detecting chaosthat had been devised in the early 1980's. Using attractor reconstruction, estimates ofdynamical invariants, and comparisons between data and simulation of SEIR models, the\case for chaos in childhood epidemics" was made through a series of in
uential papersbeginning in the mid 1980's (reviewed by Scha�er et al. 1990). The proposition thatthe precise timing and magnitude of epidemic outbreaks are deterministic but chaoticis appealing, since it raises the hope of �nding determinism and simplicity beneath theapparently stochastic and complicated surface of the data.However the initial enthusiasm for methods of detecting chaos in data has beenfollowed by critical re-evaluations of their limitations. Early hopes of a \one size �ts all"algorithm to diagnose chaos vs. noise in any data set have given way to a recognition thata variety of methods must be used, and interpretation of results must take into accountthe limitations of each method and the imperfections of the data (e.g., Theiler 1990).Our goals here are twofold. First, we present an overview of methods for detectingnonlinearity and chaos in epidemic data. We identify features of epidemic data thatcreate problems for the older, better known methods of detecting chaos (Section 2), andwe then review some newer methods for detecting nonlinearity and chaos that are suitedto epidemic data, and have a more solid statistical basis (Sections 3-5). Our emphasis ison the essential ideas of each method, referring the reader to the relevant literature for



-2-the technical details which we omit. Second, we begin a re-evaluation of the claims fornonlinear dynamics and chaos in epidemics, by applying each of the newer methods to acollection of data sets on measles, mumps, rubella, and chicken pox. These results arenew, and publication elsewhere is not planned, so a fairly complete description is given.When we ask \are epidemics nonlinear?", we are not questioning the existence ofglobal nonlinearities in epidemic dynamics, such as nonlinear transmission rates. Ourquestion is whether the data's deviations from an annual cycle (for example, the biennialor triennial cycles that are often observed) are adequately described by a linear, noise-driven stochastic process, or whether a nonlinear description is mandated by the data.Our conclusion is that evidence for chaos is generally lacking, but at least for measleswe can reject the hypothesis of linear noise superimposed on an annual cycle. Thus nonlin-earity in the dynamics, and its interactions with stochastic perturbations, are manifestedin the data and should be taken into account when interpreting or attempting to predict
uctuations in the number of cases. In particular, our results suggest that short-term noiseampli�cation (Deissler and Farmer 1992) and \transient chaos" are likely to be common.2. Noise, seasonality, and the hunt for chaosThe task of detecting nonlinearity or chaos in epidemics is complicated by two un-avoidable features of the data: dynamic noise and seasonality. The literature on detectingchaos mostly ignores these features (apart from lip service), so many \consumers" of theliterature are unaware of their immense e�ects on methods for detecting chaos. Thosee�ects are the subject of this section.DYNAMIC NOISEThe prevalent attitude in the chaos literature is that any stochasticity is an unde-sirable corruption of the data. This attitude is reasonable for random measurement errors{ accurate data is indeed better than inaccurate data { and physicists have devoted con-siderable e�ort to methods for reducing measurement errors. However epidemic dynamicsalso are a�ected by \dynamic noise" { external, unpredictable perturbations (e.g., 
uctu-ations in weather, teacher strikes, etc.) that a�ect disease transmission and consequentlyare an intrinsic part of the dynamics.Here we take the view, following Eckmann & Ruelle (1985), that the de�ning featureof chaos is bounded 
uctuations with sensitive dependence on initial conditions. This



-3-de�nition of chaos applies equally to completely deterministic systems and to systemswith dynamic noise. Formally, suppose that the data are generated by a stationary ergodicprocess of the form(1) Xt+1 = F (Xt; Et)where Xt 2 Rd and Et is a sequence of iid random variables. The system's sensitivity tosmall changes in initial conditions is quanti�ed by the dominant Lyapunov exponent �,given by(2) � = limm!1 1m log kDF (Xm; Em)DF (Xm�1; Em�1) � � �DF(X1;E1)k ,where DF (�; E) is the Jacobian matrix of F (�; E): � is well-de�ned and constant with prob-ability 1 under some mild regularity conditions (Kifer 1986). Thus � is a speci�c number,rather than a random variable, even for systems with dynamic noise. Note that the Jaco-bians in (2) only involve derivatives with respect to the state (X). Thus for noisy systemsthe Lyapunov exponent characterizes the exponential divergence of two trajectories withslightly perturbed initial conditions, but subject to the same random shocks (E).Dynamic noise can move systems into or out of chaos (Crutch�eld et al. 1982);in particular, the stability of seasonally forced SEIR models is very sensitive to smallrandom 
uctuations in the contact rate (Rand and Wilson 1991). Removing dynamicnoise by \noise reduction" techniques is not desirable: we want to characterize the realdynamics, which are noisy due to random forcing. Most methods for detecting chaosor nonlinearity in data, even methods that are robust against (or explicitly designed tohandle) measurement errors, have serious problems with dynamic noise. Methods in thiscategory include:Fractal dimension. Estimates of fractal dimension (see Theiler 1990 for a review)are seriously degraded by dynamic noise much smaller than the system's range of 
uctu-ations, even though much higher levels of measurement error can be dealt with (R. Smith1992ab). This re
ects a fundamental di�erence between the e�ects of measurement errorsand dynamic noise. With measurement errors, we are viewing a low-dimensional attractorthrough fogged-up glasses; with dynamic noise the attractor is in�nite dimensional.Lyapunov exponents by the Wolf et al. (1985) method. This method quanti�esthe sensitive dependence on initial conditions by �nding segments of the time series thatcome close together in phase space, and monitoring their subsequent divergence. Because



-4-divergence due to dynamic noise is confounded with divergence due to sensitive dependenceon initial conditions, dynamic noise generates \false positives" in the hunt for chaos (Sayers1990).Nonlinear prediction (Sugihara & May 1990). The method of Sugihara and May(1990) distinguishes between measurement error and deterministic chaos by comparing theaccuracy of short-term and long-term out of sample forecasts. In a chaotic system, long-term forecasts are less accurate due to sensitive dependence on initial conditions. Howeverdynamic noise also decreases long-term forecast accuracy, so distinguishing between chaosand dynamic noise by this method is generally not possible (Ellner 1991, Stone 1992).SEASONALITYSeasonality should not create any problems for methods of detecting chaos in data,because any periodically forced system can be re-expressed as an equivalent autonomoussystem by adding a state variable to serve as a clock. This frees us (in theory) to behaveas if our data come from an autonomous system. In practice, however, data analyses canbe confounded by strong seasonal forcing:Attractor reconstruction. The early claims of evidence for chaos in epidemics wasbased on the now-classic method of attractor reconstruction in time delay co-ordinates(Packard et al. 1980, Takens 1981, Sauer et al. 1991). However, Ellner (1991) showedthat the �eldmarks of low-dimensional chaos which had been observed in measles data{ graphically reconstructed attractors, Poincare sections, and Poincare maps { were al-so observed in a seasonally forced nonchaotic stochastic model which is really in�nite-dimensional.Lyapunov exponents. In the Wolf et al. (1985) method, and the modi�ed Wolfmethod proposed by Rand and Taylor (this volume), data segments nearby in phase spacecan correspond to di�erent times of year. Subsequent trajectories will diverge simplybecause they are following di�erent \clocks", creating a positive bias in estimates of �:The spurious neighbors also a�ect our method based on time series modeling (Nychka etal. 1992, McCa�rey et al. 1992); this invalidates Ellner's (1991) conclusion that measlesexhibits weak chaos. A �x-up for the method and updated conclusions are describedbelow.Some in
uential �gures are now arguing, based on the problems with the oldermethods, that the program of \detecting chaos" is doomed to failure by the need for



-5-massive amounts of very accurate data. We disagree, so long as the standards of \success"are those of �eld biology, where imperfect and limited data are the norm, rather thanthose of laboratory physics. A limited data set may not allow us reject a null hypothesisthat could be rejected with additional data, but with methods grounded in experimentalstatistics we can still say that a given data set does or does not provide evidence for a givenhypothesis, and attach statistical measures of con�dence to our conclusions. A chance oferror is unavoidable, so overall conclusions often must emerge from a series of studies withdi�erent limitations, rather than from a single decisive experiment (Hastings et al. 1993).3. Surrogate dataWe now turn to some more promising methods for epidemic data. Surrogate datamethods provide a Monte-Carlo approach for testing whether data are consistent with a(possibly transformed) linear autoregressive model with Gaussian dynamic noise (Theileret al. 1992, and references therein). The basic procedure is to simulate \surrogate" datasets which have the same power spectrum as the real data, and compare the values ofa test statistic on the real and simulated data. One method for generating surrogates isto Fourier transform the data, randomize the phases in the complex Fourier coe�cientswhile preserving the amplitudes, and inverse Fourier transform to obtain a surrogate dataset. The surrogate data have the same discrete power spectrum and therefore the same(circular) linear autocorrelations as the real data, but any couplings between modes dueto nonlinear structure in the data have been obliterated. Repeat as often as desired, usingan apt test statistic, and you have a statistical hypothesis test ofH0: the data arise from a static transform of a Gaussian linear autogressive process.An important strength of the surrogate data method is that any computable measureof nonlinearity can be used as the test statistic. Even if the numerical value of the measureon any single data set may be inaccurate (e.g., biased due to dynamic noise), di�erencesbetween the real and surrogate data still can provide evidence of nonlinearity which is noless reliable than any other statistical test of a null hypothesis.Of course it is not quite that simple. If the real data aren't Gaussian they should bemade Gaussian by a transformation; care is needed when computing the power spectrum;and it is not clear how to generate good surrogates for data with strong spectral peaks.See Theiler et al. (1992, 1993) for the details. To avoid false negatives, the test statisticmust key into some di�erence between linear and nonlinear dynamics: a statistic that canbe computed from the linear autocorrelations is useless because it will have exactly the



-6-same value on the real and surrogate data. It is also helpful if the test statistic measuresa physical or intuitively identi�able quantity. Detecting nonlinearity is just the �rst step;ultimately, one wants to be able to characterize it.For epidemic data the null hypothesis given above is clearly false due to seasonality.We therefore examined the more interesting null hypothesis(3) H0: data = seasonal trend + transform of a Gaussian linear AR process.In many cases the data appear to have a biennial or triennial cycle. This is clearly adeparture from an annual cycle, but it is not necessarily a nonlinear departure, becausea linear �lter acting on white noise can produce spectral peaks at biennial or triennialperiods. If the data exhibit a biennial or triennial cycle, failure to reject (3) would indicatethat the multi-year cycle can be described as a linear response by the system to externalforcing; while rejection of (3) would imply that the system's response is nonlinear.To test (3) we subtracted o� the seasonal trend (estimated by averaging over years inthe data), normalized the deviations from the trend to have seasonally constant variance,and generated surrogates for the normalized deviations. We used several test statistics:1. The Ramsay & Rothman \time-reversal" statistic�i;j(m) = Sample average of (xit xjt+m � xit xjt�m) ,for i 6= j (Rothman 1990, Ramsay and Rothman 1991). The distribution of a linear processwith independent Gaussian innovations is unchanged by time reversal, so excessively largevalues of j�i;jj signal a departure from H0: We calculated j�1;2(m)j for m =1 through 16quarters and used the maximum and median of the 16 values as our test statistics.2. Statistics related to the correlation integral C(r), which is the fraction of recon-structed data vectors whose distance apart is less than or equal to r. The statistics weused were two percentiles of the distance distribution, r:01 and r:001, de�ned by C(rp) = p,and a crude estimate of the correlation dimension D2 (Grassberger and Procaccia 1983):bD2 = logC(r1 )�logC(r2 )log(r1 )�log(r2 ) ,using r:01 and r:001 as r1 and r2. This formula for bD2 does not give a very accurate estimateof fractal dimension. However, as noted above, such inaccuracies do not a�ect the validityof surrogate data methods because the conclusions are based on di�erences between realand surrogate data sets. We used reconstruced state vectors of dimension 8 (i.e, each state



-7-vector consisted of 8 consecutive quarterly case counts), so that these statistics would belooking for \long-range" structures not captured by the linear autocorrelations.3. \Prediction" accuracy backwards in time (suggested by Robert May following ourtalk). For nonlinear maps with stretching and folding, the folds make it hard to tell whereyou came from even if you can predict where you're going. For example in the logisticmap, given xt you can predict xt+1 exactly but there are two possibilities for xt�1 andno way to identify the correct choice. Our test statistics were the \prediction" accuracy1 year into the past for kernel time series models using 2, 3, and 4 future values, withthe kernel bandwidth chosen by ordinary cross validation. For these statistics only theseasonal trend was not removed from the data, because trend removal could obscure asimple nonlinear relationship.The results (Table 1) give consistent, and occasionally very strong, evidence fornonlinearity in measles. Of the 12 measles series analyzed, 10 were signi�cantly nonlinearat the .05 level for at least one of the test statistics. This conclusion is modest relativeto other claims which have been made about measles, but it rests on solid statisticalfoundations and should be di�cult to dispute. The pattern is reversed in the other diseases:only 3 of the 10 data sets had a signi�cant nonlinearity at the .05 level.We chose two of the cases where nonlinearity was detected with P< 0:01; and plottedthe value of the summary statistic for both the original and the surrogate data sets. AsFig. 1 shows, the di�erences are not only statistically signi�cant, but are numericallysubstantial as well. The value of r0:01 for detrended Copenhagen measles is roughly 20%smaller than the average value for the surrogate time series; and the crudely estimateddimension D2 for detrended New York City measles is less than half of the average valuefor the surrogates.On the other hand, we remark that no one statistic consistently identi�es nonlinear-ity in all of the measles time series. So we cannot say that measles epidemics in generalexhibit low dimension, or high backward predictability. The data provide convincing evi-dence nonlinearities are present in the underlying process, and also are manifested in theobserved dynamics. However, the tests in this section do little to characterize the natureof that nonlinearity.Our �ndings are in line with Casdagli's (1992) results for NYC measles, based on hisexploratory method for detecting nonlinear dynamics. Casdagli's (1992) method involvescomparing the short term prediction accuracy of a series of models that range from linear



-8-to strongly nonlinear (speci�cally, locally a�ne models based on di�erent numbers ofnearest neighbors). A substantial improvement in forecasting accuracy by nonlinear vs.linear models is taken as indicating nonlinear dynamics. For NYC measles, Casdagli(1992) found that nonlinear models could achieve a 25% reduction in RMS forecastingerror compared with the linear model, which was interpreted as evidence for nonlinear(though not necessarily chaotic) dynamics.4. Lyapunov exponents via time series modelingOne rough characterization of nonlinear dynamics is whether the dynamics are chaot-ic or stable, as indicated by the value of the Lyapunov exponent � (de�ned above). In thissection we describe methods for estimating � from time series data, and present estimatesof � for epidemic data.Our approach is to estimate � by �rst estimating the nonlinear map generating thedata. This allows us to account explicitly for dynamic noise and to estimate its magnitude,and to estimate � in a way that is not positively biased by dynamic noise. The �rst step isreconstruction in time delay coordinates (Sauer et al. 1991, Casdagli 1992b), so in practicethe procedure amounts to �tting a nonlinear autoregressive model(4) xt+T = f(xt�L; xt�2L; � � �xt�dL) + et .and using derivatives of the estimated map to compute an estimate of �: In equation (4),L is called the \time delay" and T is the prediction time.Equation (2) is positively biased for �nite m, and our simulation results suggest thata better estimate is(2') b�= 1m log kDF (Xm; Em)DF (Xm�1; Em�1) � � �DF(X1;E1)~vk ,where ~v = (1; 0; 0; :::; 0)0: McCa�rey et al. (1992) give supporting statistical theory, Nychkaet al. (1992) discuss practical implementation on short, noisy data series, and Ellner etal. (1991) discuss convergence rates.Once again, it is not quite that simple. Some families of prediction models workmuch better than others. With short, possibly noisy data sets we have achieved the bestoverall performance from the \feedforward neural net" (FNN) model. The FNN modeldecomposes an arbitrary function into a sum of sigmoids,f(x1; x2; � � �xd) = �0 + kPi=1 �iG(�i+ dPj=1 
ijxj);



-9-where G is a univariate sigmoid function such as the logistic eu=(1+ eu): FORTRAN sourcecode and a user's manual for our implementation are available by anonymous ftp at lya-punov.ucsd.edu in /pub/ncsu. Thin-plate splines and similar extensions of polynomialmodels are also e�ective for low-dimensional �tting and are much faster to compute, butthe number of parameters increases too rapidly for use in higher dimensions (Ellner andTurchin 1993).Also, precautions must be taken both against over�tting and against under�tting.To guard against over�tting, Nychka et al. (1992) recommend that the model complexity(e.g., the value of k the FNN model) be chosen by the GCV (generalized cross validation)criterion with the number of model parameters in
ated by a factor of 2; this tactic appearedto drastically reduce the chance of over�tting without introducing much bias. If the dataare highly autocorrelated, it is likely that GCV will select a linear model that makesaccurate short-term predictions but ignores the long-term dynamics. To guard againstthis, Ellner and Turchin (1993) recommend choosing L to be the smallest lag such thatthe autocorrelation between xt and xt�L is below 0.5, and using T= L: Here we simply usedquarterly total case reports, which did not have a tight autocorrelation between successivevalues.Seasonality also requires special treatment. When model (4) is �tted to data with astrong seasonal trend, one of the lagged variables usually winds up serving as a surrogate\clock". The estimate of � then includes derivatives with respect to time, but it shouldn't:resetting the clock is not a perturbation of the system's state. To remove the need for asurrogate clock, we explicitly added a real clock to the model:xt = f(xt�1; xt�2; � � �xt�d; sin(t=K); cos(t=K)) + etwhere K is the number of data points per year. The e�ect of including the clock is asexpected (Table 2): the estimated � drops, and fewer past values are needed to makepredictions.The results on epidemic data (Table 3) are again quite consistent: the dynamics areidenti�ed as stable rather than chaotic. In fact there appears to be a mode at or justbelow the transition to chaos (� = 0) in the distribution of Lyapunov exponents (Figure2). The location of the mode is probably in
uenced by the weak bias towards under�ttingin the procedures used here (Nychka et al. 1992). In simulation trials on low-dimensionalmodels (Ellner and Turchin 1993), the bias towards under�tting was too small to alter thequalitative conclusion from Table 3, that epidemics tend to be neither strongly stable nor



-10-strongly chaotic.Contrary to our urgings that the hunt for chaos should be pursued in a statisticalframework, we have not provided standard errors for the estimates in Table 3. Our feelingis that given the current state of the art, it would be easy to compute a standard errorbut hard to say exactly what that number means, and we wish to avoid overstatingthe (statistical) signi�cance of our conclusions. The reliability of our conclusions is bestindicated by the consistency across multiple data sets, which we leave for the reader toevaluate. 5. E�cient Generalized Method of Moments (GMM)If enough is known about the system of interest, we may prefer to �t a mechanisticmodel rather than a purely descriptive time series model. A mechanistic model may beoverly (or incorrectly) constrained and therefore unable to really match the dynamics, butmechanistic models have the advantage that time series data can be supplemented withinformation from other sources. For example, the duration of the infectious period can behard-wired into an SEIR epidemic model.Fitting of mechanistic models is frequently complicated by the unavailability of thelikelihood in a closed or easily computed form. A popular alternative is to use a \methodof moments": choose parameters so that model output matches some features of the data.The features may be genuine moments (mean, variance, autocorrelations, etc.), or anyother functions of a simulated trajectory (period of a limit cycle, fractal dimension,etc.).This leads to �tting criteria such asMinimize Pi Cif Mi(�) �Mi(data) g2where Mi are the features, � is the parameter vector of the mechanistic model, and Ci arepositive weights. However it is not clear which \moments"Mi to use, and how they shouldbe weighted, to get the most accurate estimates of �:Gallant and Tauchen (1992) have proved that with appropriate Mi and weighting,and some smoothness and identi�ability conditions, GMM is asymptotically equivalentto maximum likelihood estimation of the mechanistic model's parameters. The Mi areobtained by choosing a statistical model f(xt+1 jxt; �) for the transition probabilities gov-erning the time series, such that the parameter vector � of the statistical model is easyto estimate by maximum likelihood. For example, f may be a nonparametric regression



-11-model with appropriate error structure. The generalized moments to be matched as wellas possible are then(5) Mi(�) = E� � @@�i ln f(xt+1jxt; �� ) � ,where �� is the maximum likelihood estimate of � from the empirical data, and E�fg isexpectation with respect to the distribution of (xt+1; xt) in the mechanistic model withparameter vector �:E�f g in (5) is computed by simulating the model (i.e., by Monte Carlo integration).If E� is replaced by the empirical distribution of (xt+1; xt); then the expression in (5)is exactly 0 by the �rst order condition for maximizing the likelihood. Thus a goodmechanistic model should give small values of Mi(�): The right weighting is a quadraticform MT�I�1M where �I is an estimated information matrix; see Gallant and Tauchen(1992) for precise statement of the results, extension to more general settings, and proofs.The advantage of GMM is that the statistical model f doesn't have to be \right", i.e.it doesn't need to duplicate exactly the transition probability of the process generating thedata. It just needs to be su�ciently general, or well enough adapted to the application,so that it discriminates parameters of the mechanistic model, i.e., Mi(�) = 0 for all i if andonly if � = �0; where �0 is the true value of �:For an epidemiological application of this method, we estimated contact rate pa-rameters for a deterministic SEIR model, using the monthly measles case reports seriesfrom New York City 1928-1963. To mitigate excessive fadeouts in the model we added asmall exchange of individuals (at rate �) with an \outside world" having �xed levels of thedisease: dSdt = m(1� S) � �(t)SI + �(S0 � S)dEdt = b(t)SI � (m+a)E + �(E0 � E)dIdt = aE � (m+g)I + �(I0 � I)This model is a bit simplistic for measles (see Grenfell, Kleczkowski and Bolker, thisvolume), and the migration terms are admittedly an ad hoc way of bringing the model moreclosely in line with the data. Our justi�cation is simply that this is our �rst exploratoryattempt at using GMM for �tting a mechanistic epidemic model. As we gain experienceand hone the implementation, it should become possible to deal with more realistic models.



-12-We assumed that the contact rate �(t) has the form�(t) = b0 (1 + �et) + b1�(t)where �(t) is the seasonal forcing function proposed by Kot et al. (1988),�(t) = 1:58<: 0:68+cos(2�t)1:5+cos(2�t) 9=;� :4(we added the \�:4" so that the average of � over the year would be zero), and �et areautocorrelated random 
uctuations with mean 0, variance �2; and autocorrelation 0.95between values 1 month apart. We estimated the values of b0 and b1; assuming that allother parameters of the model were known. We took � = :05 to represent small year-to-year
uctuations in contact intensity; results for � = :01 (not presented) were essentially thesame. The statistical model was a neural net with 5 lags and 3 units, as in the best-�tneural net model for monthly NYC measles data (Table 2).Simulated measurement errors were added to the output from the SEIR model; thiswas necessary to produce a reasonable match between the power spectra of the simulatedand real data at higher frequencies (1-2 months). The simulated errors were lognormalwith coe�cient of variation based on the estimate that 1/8 of all cases are reported (B.Grenfell, pers. comm), and assuming that cases are reported or not in independent clustersof size 2 representing a pair of cases in a family. The clustering assumption increases thevariance of the simulated measurement errors, and a cluster size of 2 or 3 was necessaryto produce the observed amount of power at high frequencies.The results are encouraging for the method, but somewhat discouraging for �ttingSEIR models from time series data alone. The encouraging result is that our automaticprocedure produced a value of the relative forcing intensity b1=b0, that is in line withgenerally accepted estimates. A contour plot of the GMM �tting criterion (Figure 3a)has a steep \valley" of better �ts (smaller values of the criterion) roughly along the lineb1 = 0:2b0, and a univariate plot of optimal GMM vs. b1=b0 has a well-de�ned minimum(Figure 3b). The discouraging results are �rst that, as can be seen in Fig. 3a the terrainalong the valley 
oor is rather 
at, so the absolute values of b0 and b1 are less well identi�ed.Second, the entire terrain is rough (Figure 4). It is not clear how much of the roughnessis due to Monte Carlo error (�nite sample size in computing E�fg); vs. intrinsic roughnessof the exact surface. If the latter is dominant, then standard asymptotic methods basedon Taylor series approximations will not be available for setting con�dence regions or forhypothesis testing based on GMM.



-13-6. ConclusionsWe would like to close by speculating on the implications of our �ndings. Our\surrogate data" results indicate that nonlinear departures from annual periodicity are aconsistent feature of the measles data, but less common in the other diseases examined.The statistics r:01 and r:001; based on the correlation integral, were especially powerful atpicking out nonlinearity. The property detected by these statistics (as used here, withstate vectors corresponding to 2 years of data), is that 2-year-long stretches of data aremore similar to each other than would be expected strictly from the linear autocorrelations.Thus nonlinear modeling, and nonlinear forecasting, should be an improvement over linearprediction methods.According to our Lyapunov exponent estimates, chaos (� > 0) appears to be veryrare or absent. However, measles is often identi�ed as being near the transition to chaos,with a mode in the distribution of exponents near 0. The same qualitative result wasobtained in a survey of natural and laboratory animal populations (Ellner and Turchin1993). In such cases the dynamics can easily vary between periods of stable behavior, andperiods of chaos-like behavior (i.e., �nite-time sensitive dependence on initial conditions:see Deissler and Farmer 1992). One way to quantify this type of behavior is by computinglocal (�nite-time) Lyapunov exponents �m; de�ned by equation (2) with a �nite value ofm (Abarbanel et al. 1991, 1992; Wol� 1992 and references therein). Figure 5 shows a plotof �m over time for the Copenhagen measles series, for m= 1 or 2 years; because � is near0 there are frequent transitions between sensitive and insensitive short-term dependenceon initial conditions. For this type of dynamics, a precise estimate of � may be less usefulthan a rough characterization of the pattern of 
uctuations in local exponents (e.g., theirvariance, autocorrelation, frequency of sign changes).Methods are still evolving rapidly, so our results and conclusions are hardly the lastword on nonlinearity and chaos in epidemics. One promising direction, encouraged bythe feasibility of GMM model �tting, is to hybridize between mechanistic and statisticalmodeling. We expect that models that are mechanistic insofar as possible, but rely onstate-space reconstruction and nonparametrics where ignorance forces that upon us, havethe potential to provide more reliable characterizations of the dynamics, and more reliableprediction methods. LITERATURE CITED
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-17-Table 1. Surrogate data tests for nonlinearity based on quarterly case reports, using teststatistics based on time reversal, the correlation integral C(r), and \prediction" accuracy 1year backwards in time. The test statistics are described in the text. Reported signi�cancelevels are based on n = 500 surrogates for each data set for time-reversal and C(r) statistics,n = 250 for back-prediction. Symbols indicate signi�cance levels P > .1(-), P <.1(+),P <.05(*) and P <.01(**).Time reversal C(r) Back-predictionMax Median bD2 r:001 r:01 d= 2 d= 3 d= 4MEASLESNYC * - ** * - + - -Baltimore - * * * - - - -Detroit - - - - - + + +Milwaukee - + - - - - - -Copenhagen - - - * ** ** ** **London ** ** - + * - - -Bristol - - - - - - - +Liverpool - - - - - ** ** **Manchester ** + - - * + * *Newcastle - - - + ** - - -Birmingham ** ** - - - - - -Sheffield - - + * + - - -MUMPSNYC - - - - - - - -Milwaukee - - - - - - - -Copenhagen - - - ** ** - - -RUBELLASt.Louis - - - - - - - -Copenhagen - - - - - - - -CHICKENPOXNYC - - - - - - - -Detroit - - * ** * - - -St.Louis - - - - + - - -Milwaukee - * - + + - - -Copenhagen - - - - - - - -



-18-Table 2. Estimated Lyapunov exponents by neural net time series models for measlesmonthly data. All models used L= 3; with the numbers of lags (d) and units (k) in themodel chosen by the GCV criterion as described in the text. Nonseasonal models onlyuse lagged values of the time series; seasonal models include sin(2�j=12) and cos(2�j=12)as covariates (j= time in months).SEASONAL NON-SEASONAL#lags #units � #lags #units �Baltimore 5 4 �0:11 8 7 +0:09NYC 5 3 �0:08 6 6 +0:02Detroit 6 5 �0:05 6 6 +0:025Copenhagen 5 6 �0:01 8 6 +0:06Table 3. Estimated Lyapunov exponent � for quarterly case reports using seasonal neuralnet model. All models used L= 1; with the number of lags (d) and units (k) chosen by theGCV criterion as described in the text.#lags #units � r2 dfMEASLESNYC 3 2 �0:67 0.93 123Baltimore 4 2 �0:07 0.83 109Detroit 6 2 �0:08 0.85 145Milwaukee 2 2 �7:78 0.77 103Copenhagen 2 3 �0:06 0.87 135London 2 1 �0:23 0.67 51Bristol 3 1 �0:13 0.77 50Liverpool 2 1 �1:56 0.72 51Manchester 2 2 �0:24 0.90 45Newcastle 2 1 �3:61 0.71 51Birmingham 2 2 �0:16 0.92 45Sheffield 5 1 �1:93 0.84 48MUMPSNYC 5 2 +0:01 0.94 119Milwaukee 2 2 �0:39 0.74 153Copenhagen 2 3 �0:24 0.86 135RUBELLASt.Louis 2 2 �0:27 0.76 61Copenhagen 2 1 �0:87 0.71 99CHICKENPOXNYC 6 2 �0:14 0.95 117Detroit 2 1 �0:33 0.78 61St.Louis 1 1 �1:46 0.86 68Copenhagen 1 1 �0:61 0.81 107Milwaukee 2 2 �0:37 0.86 129



-19-FIGURE LEGENDSFigure 1. (a) The statistic r:01 is shown for the Copenhagen measles data ( ), and for 500surrogate time series (+): The value is signi�cantly smaller for the actual data than forthe surrogates. (b) The estimated correlation dimension D2 is shown for New York Citymeasles data ( ), and for 500 surrogate time series (+): Again, the actual data exhibits amuch smaller dimension than is seen in the surrogate time series.Figure 2. Histogram of estimated Lyapunov exponents for quarterly disease case reports.Values in Table 3 were multiplied by 4 to express exponents in units year�1:Figure 3. (a) Contour plot of the GMM objective function; smaller values correspondto better �ts between model and data. Contours based on values computed at a regular31�31 grid over the range of values shown for b0 and b1; with a simulation of 5000 monthsduration for each parameter combination. (b) Plot of minimum GMM objective functionas a function of the relative intensity of seasonal forcing b1=b0: For both (a) and (b) thefollowing parameter values were used in the SEIR model: m= 0:02; a= 55; g= 60; S0 = 0:05;E0 = I0 = 0:001; � = :01:Figure 4. Plot of GMM objective function (computed as in Figure 3) at a grid of valuesnear the best-�t parameter values.Figure 5. Finite-time \local" Lyapunov exponents for Copenhagen measles, data basedon the best-�t seasonal neural net model for quarterly data.
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