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Abstract

We describe a method of nonlinear time series analysis suitable for nonlinear, stationary,
multivariate processes whose one-step-ahead conditional density depends on a finite number
of lags. Such a density can be represented as a Hermite expansion. Certain parameters of the
expansion can be set to imply sharp restrictions on the process such as a pure VAR, a pure
ARCH, a nonlinear process with homogeneous innovations, etc. The model is fitted using
maximurm likelihood procedures on a truncated expansion together with a model selection
strategy that determines the truncation point. The estimator is consistent for the true
densi.ty with respect to a strong norm. The norm is strong enough to imply consistency
of evaluation functionals and moments of the conditional density. We describe a method
of simulating from the density. Simulation can be used for a great variety of applications.
In this paper, we give special attention to using simulations to set sup-norm confidence
bands. Fortran code is available via ftp anonymous at ccvrl.cc.nesu.edu (128.109.212.20)
in directory pub/arg/snp; alternatively, it is available from the authors in the form of a
DOS formatted diskette. The code is provided at no charge for research purposes without

warranty. An appendix to this paper describes its use.



1 Introduction
1.1 SINP Models

Empirical modeling of time series data primarily concerns making inferences about the in-
tertemporal law of motion of the observed process. For a strictly stationary, multivariate
process, the law of motion is the one-step-ahead conditional density of the process given
its past. Under stationarity, the one-step-ahead conditional density is time invariant and
embodies all probabilistic information about the process. The conditional density is thus
naturally viewed as the fundamental statistical 6bject of interest.

This paper describes a nonparametric-type method, based on a modified Hermite series
expansion, for estimation of the conditional density of a general nonlinear stationary process.
The method was first proposed by Gallant and Tauchen (1989) in connection with an asset
pricing application, and has since undergone a number of refinements. Estimation entails
using maximum likelihood procedures on a truncated expansion together with a model selec-
tion strategy that determines the truncation point. Under reasonable regularity conditions,

the estimator is consistent for the true density under a norm that is strong enough to imply
consistency of evaluation functionals and conditional moments.

The method is termed seminonparametric, or SNP, to suggest that it lies halfway between
parametric and nonparametric procedures. The leading term of the series expansion is an
established parametric model known to give a reasonable approximation to the process;
higher order terms capture departures from that model. With this structure, the SNP
approach does not suffer from the curse of dimensionality to the same extent as kernels and
splines. In regions where data are sparse, the leading term helps to fill in smoothly between
data points. Where data are plentiful, the higher order terms accommodate deviations from
the leading term and fits are comparable to the kernel estimates proposed by Robinson
(1983).

For time series data, an expansion based on Hermite series is particularly attractive on the
basis of both modeling and computational considerations. In terms of modeling, the Gaussian
component makes it easy to subsume into the leading term familiar time series models,

including vector autoregressive models and ARCH models (Engle, 1982). These models are



generally considered to give excellent first approximations in a wide variety of applications.
In terms of computation, a Hermite density is easy to evaluate and differentiate. Also, its
moments are easy to evaluate because they correspond to higher moments of the normal,
which are computable using standard recursions. Finally, as described below, simulation from
the fitted SNP model is quite practicable, which is a capability with numerous applications

such as bootstrapping, assessing issues of long-term dependence, etc.

1.2 Refinements and Extensions

A sequence of empirical applications, beginning with Gallant and Tauchen (1989), has stim-
ulated extensions and refinements of the SNP methodology. The original asset-pricing ap-
'plication was a limited information maximum likelihood situation where both the likeli-
hood {which is the product of one-step-ahead conditional densities) and the Euler conditions
(strﬁctural equations) had to have nonparametric properties and be mathematically conve-
nient. This naturally lead to a series expansion type of approach so that standard algorithms
could be used to optimize the likelihood subject to the Euler conditions.
lIn his dissertation work, Hussey (1989a) developed the upward fitting and perturbation
strategy that we use. In related work, Hussey (1989b) used SNP methods in conjunction
with kernel methods to document the nonlinear structure of industrial employment data;
Hussey (1989¢) developed an approach for using an SNP estimate as a standard against
which to compare the predictions of simulated nonlinear structural models. Brunner (1989)
adapted the SNP method for the purpose of examining asymmetries in U.S. business cycles.
Extensions to better adapt the method to markedly conditionally heteroskedastic pro-
cesses such as exchange rate data were developed by Gallant, Hsieh and Tauchen (1989).
Further extensions to robustify the methodology against extremely heavy tailed processes
such as real interest rate data are reported Gallant, Hansen and Tauchen (1990). Processes
such as bivariate stock price and volume series can require a high degree Hermite polynomial
to fit them which generates a plethora of irrelevant interactions. Gallant, Rossi and Tauchen
(1990) described filters to remove them.

Our description of the SNP noanlinear time series methodology in Section 2 incorporates

the above refinements.



1.3 Inference

Strategies based on series expansions are also used for the estimation of systems of demand
equations. In this context, the data are presumed i.i.d. The estimation is thereby simpler,
and the statistical theory is correspondingly more advanced: Elbadawi, Gallant and Souza
(1983); Andrews (1989); Eastwood and Gallant(1987), and Gallant and Souza (1989). To
the extent that the results of this work carry over to the time series context, then standard
finite-parameter inference procedures should be asymptotically valid for SNP models, despite
the use data driven rules for choosing the number of terms of the series to include in the
expansion. That means that inferences based on the Wald test, the likelihood ratio test, and
the Lagrange multiplier test should achieve their nominal p-values asymptotically.

At the same time, given that the asymptotic justification for applying standard inference
procedu.res is conjectural with details still to be worked out, a parametric bootstrap off a
fitted model appears to be a reasonable complementary strategy for guiding statistical infer-
ence. Also, some computations such as sup-norm confidence bounds are easier to compute
using a parametric bootstrap. Using the bootstrap requires a means to sample from an SNP
one-step-ahead conditional density.

In Section 3 we develop an algorithm for sampling an SNP density that is surprisingly
efficient. This is the original contribution of the paper. In Section 4 we illustrate the SNP
methodology and compare with kernel fnethods by estimating the leverage function which
is the variance of the one-step-ahead conditional density for stock retu.rns considered as
a function of the most recent return, holding other conditioning variables fixed at their
unconditional means. We compute estimates of the leverage function from data on stock
returns alone, a bivariate stock returns and volume series, and a bivariate stock returns and
bond returns series. We display volatility scatter plots which one can use to form subjective
estimates for comparison and compute sup-norm confidence limits on the leverage function
using the algorithm developed in Section 3. '

Fortran code implementing the SNP methodology is available via ftp anonymous at
ccvrl.ce.ncsu.edu (128.109.212.20) in directory pub/arg/snp; alternatively, it is available
from the authors in the form of a 5-1/4 inch, 25/2D, DOS formatted diskette. In the Ap-

pendix, we walk the user through an application using this code. Data, code, and output

3



for this application are included. The code is provided at no charge for research purposes

without warranty.

2 Estimation and Model Selection

In this section, we describe an estimation strategy for nonlinear time series analysis proposed
by Gallant and Tauchen (1989) and its extensions. These extensions are: an ARCH leading
term, which better adapts the method to markedly conditionally heteroskedastic processes,
proposed by Gallant, Hsieh and Tauchen (1989); a logistic transformation, which robustifies
the methodology against extremely heavy tailed processes, proposed by Gallant, Hansen and
Tauchen (1990); and, filters, which remove the high order interactions in fits to multiple time
series, proposed by Gallant, Rossi and Tauchen (1990).

The derivation of the SNP model that we present here provides a fundamental under-
standing of the model so that one can easily appreciate the implications of the tuning pa-
rameters. It does not provide the mathematical connection with the results of Gallant and
Nychka (1987) that is required for theoretical work. For this, see Gallant, Hsieh and Tauchen
(1989).

2.1 Estimation

As stated above, the SNP method is based on the notion that a Hermite expansion can
be used as a general purpose approximation to a density function. Letting z denote an
M —vector, the particular Hermite expansion employed has the form A(z) o (P(2)]*4(z)
where P(z) denotes a multivariate polynomial of degree K, and ¢(z) denotes the density
function of the (multivariate) Gaussian distribution with mean zero and the identity matrix
as its variance-covariance matrix. The constant of proportionality is 1/ [[P(s)]?#(s)ds which
makes A(z) integrate to one. Because [P(2)]?/ [[P(s)]*$(s)ds is a homogeneous function of
the coefficients of the polynomial P(z), the coefficients can only be determined to within a
scalar multiple. To achieve a unique representation, the constant term of the polynomial
part is put to one.

A change of variables using the location-scale shift y = Rz + p where R is an upper



triangular matrix and g is an M —vector, gives a density that is easier to interpret
f(yl6) o< {PIR (y ~ w)}*{8[R7 (v — )/ det(R)|}

The constant of proportionality is the same as above, 1/ [{P(s)]?$(s)ds. Because {qb[R‘l(ym
1)]/| det(R)|} is the density function of the M —dimensional, multivariate, Gaussian distri-
bution with mean g and variance-covariance matrix ¥ = RR/, and because the leading term
of the polynomial part is one, the leading term of the entire expansion is proportional to the
multivariate, Gaussian density function. Denote the Gaussian density of dimension M with

mean vector x4 and variance-covariance matrix I by nar(y|s, X) and write
F(y16) < [P(2)]*nar(yln, &)

where z = R~!(y — u) for the density above.

When K, is put to zero, one gets f(y|0) = nar(ylu, L) exactly. When K, is positive,
one gets a Gaussian density whose shape is modified due to multiplication by a polynomial
in.z = R~'(y —u). The shape modifications thus achieved are rich enough to accurately
approximate densities from a large class that includes densities with fat, t-like tails, densities
with tails that are thinner than Gaussian, and skewed densities (Gallant and Nychka, 1987).

The parameters & of f(y|6) are made up of the coefficients of the polynomial P(z) plus
i and R and are estimated by maximum likelihood. Equivalent to maximum likelihood
but more stable numerically is to estimate 8 in a sample of size n by minimizing s,(f) =
(=1/n) % In[f(y:]6)]. As mentioned above, if the number of parameters ps grows with the
sample size n, the true density and various features of it such as derivatives and moments
are estimated consistently (Gallant and Nychka, 1987).

This basic approach can be adapted to the estimation of the conditional density of a
multiple time series {y;} that has a Markovian structure. Here, the term Markovian structure
is taken to mean that the conditional density of the M—vector y; given the entire past
Y41, Ye-2, .. depends only on L lags from the past. For notational convenience, we collect

these lags together in a single vector denoted as z;.; which has length M - L

! Fi ! 4
Teor = (Yepr' ryt-zsyt-l)
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Note particularly that the serial order of the data is preserved in writing z;—,. (Preserving
order allows z,.; to be passed to a subroutine as a pointer into an array.) |

To approximate the density of {y,} using the ideas above, begin with a sequence of
innovations {z,}. First consider the case of homogeneous innovations; that is, the distribution
of z; does not depend on z,_;. Then, as above, the density of z; can be approximated by
h(z) « [P(2)]*$(z) where P(z) is a polynomial of degree I(,. Follow with the location-scale
shift y; = Rz, + g, where . is the linear function

Mz = bO + Bz
The density that results is
f(yla:,ﬂ) & [P(z)]gnM(ymr, E)

where z = R~Y(y — u). The constant of proportionality is as above, 1/ [[P(s)]*¢(s)ds. The
leading term of the expansion is nas(yluz, Z) which is a Gaussian vector autoregression or
Gaussian VAR.

"When K, is put to zero, one gets npy(y|p., &) exactly. When K, is positive, one gets
a density that can approximate over a large class whose shape is constant with respect to
variation in z; that is, a class which is conditionally homogeneous. Only the first moment of
the density depends upon z.

To approximate conditionally heterogeneous processes, proceed as above but let each
coefficient of the polynomial P(z) be a polynomial of degree K in . A polynomial in z of
degree K, whose coefficients are polynomials of degree K in z is, of course, a polynomial
in (z, ) of degree K, + K, (with some of the coefficients put to zero). Denote it by P(z,z).
The form of the density with this modification is

f(ylz,8) < [P(z1$)]2nM(y|ﬂ=:E)

where z = R™(y Fp,). The constant of proportionality is 1/ [[P(s,z)}*¢(s)ds. When K is
zero, the density reverts to the density above. When K. is positive, the shape of the density
will depend upon z. Thus, all moments can depend upon z and the density can, in principal,
approximate any form of conditional heterogeneity. (Gallant and Tauchen, 1989; Gallant,

Hsieh, and Tauchen, 1989).



In practice, especially in applications to data from financial markets, the second moment
can exhibit marked dependence upon z. In an attempt to track the second moment, K, can
get quite large. To keep K, small when data are markedly conditionally heteroskedastic,
the leading term of the expansion can be put to a Gaussian ARCH rather than a Gaussian
VAR. This is done by letting R be a linear function of the absolute values of the elements
of the vectors y._r, through y,_; after y,_z, through y,_, have been centered and scaled to
have mean zero and identity variance-covariance matrix.

The centering and scaling is easiest to accomplish by (1) computing estimates of the

unconditional mean and variance

7= (1/m) 2
= (1/n) Z,_‘: )@~ )

where §; denotes the raw data, and (2) applying the methods above to
ye = S (4 — §)

w}.lére‘ ‘.S"l/"' denotes the Cholesky factor of the inverse of S. That is; just replace the raw
data {f} by the centered and scaled data {y.} throughout. Because of the location-scale
shift y = Rz + u the consistency results cited above are not affected by the transformation
from g, to y:.

With this done, the variance-covariance matrix can be written
X, =R.R,

vech(R,) = po + Pla|

where vech{ R) denotes a vector of length M(M +1)/2 containinlg the elements of the upper
triangle of R and |z| denotes z with its elements replaced by their absolute values.

The classical ARCH (Engle, 1982) has I, depending on a linear function of squared
lagged residuals. The SNP version of ARCH is more ;dkin to the suggestions of Nelson
(1989) and Davidian and Carroll (1987). Denoting the function in L, lags of y by R, and
letting £, = R R., the form of the conditional density becomes

Fyle,8) o< [P(2, )] nar(wlpe, B2)
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where z = R;'(y ~ pz). The constant of proportionality is as above, 1/ [[P(s,z)]%¢(s)ds.
The parameter vector & denotes the coefficients of the polynomial P(z,z)} and the parameters
of the Gaussian ARCH ns(y|uz, ;) collected together. The parameters are estimated by
minimizing .

sa(8) = (=1/n) j:l,ln[f(yelxe—uf’)]

Hereafter, we shall distinguish between the total number of lags under consideration,
which is L, the number of lags in the z part of the polynomial P(z,z), which we denote
by L,, and the number of lags in R, which is L,. The vector z has length M - L where
L = max(L,, L,).

Large values of M can generate a large number of interactions (cross product terms) for
even modest settings of degree K, similarly, for M - L, and K,. Accordingly, we introduce
two additional tuning parameters, I, and I, to represent filtering out of these high order
interactions. I, = 0 means no interactions are suppressed, I, = 1 means the highest order
interactions are suppressed, namely those of degree K, — 1. In general, a positive /, means
all interactions of order K, — I, and larger are suppressed; similarly for K, — I,.

In summary, L, and L, determine the location-scale shift y = R;z; + p; and hence
determine the nature of the leading term of the expansion. The number of lags in the
location shift u. is the overall lag length L which is the maximum of L, and L,. The
number of lags in the scale shift R, is L,. The number of lags that go into the z part of the
polynomial P(z,z) is L,. The parameters K, and K, determine the degree of P(z,z) and
hence the nature of the innovation process {z}. I, and I, determine filters that suppress
interactions when set to positive values.

Putting certain of the tuning parameters to zero implies sharp restrictions on the process
{v:}, the more interesting of which are displayed in Table 1.

Time series data often contains extreme or outlying observations, particularly data from
financial markets. This is not a particular problem when the extreme value is considered
as a y; because it just fattens up the tails of the estimated conditional density. However,
once it becomes a lag or z;_,, and one has an ARCH leading term in the expansion, the
optimization algorithm used to minimize s,(f) can use an extreme value in z,.; to fit an

element of y, nearly exactly, reduce the corresponding conditional variance to near zero, and



Parameter setting Characterization of {y:}
L,=0,L,=0,K,=0,K,=0  iid Gaussian
L,=0,L,>0,K,=0,K;=0 Gaussian VAR
L,=0,L,>0,K,>0,K,=90 non-Gaussian VAR,

homogeneous innovations
L,>0,L,=0,K,=0,K,:=0 Gaussian ARCH
L,>0,L,>0,K,>0,K,=0 non-Gaussian ARCH,

homogeneous innovations

Table 1: Restrictions Implied by Settings of the Tuning Parameters

inflate the likelihood. This problem is endemic to procedures that adjust variance on the
basis of observed explanatory variables.

One can compensate for this effect by an additional transformation
£ = (4/c) exp(cz)/[1 +explca)] =2/ i=1,,M L

with ¢=1/2 (z; denotes the elements of z,_1). This is a one-to-one (logistic) transformation
that has a negligible effect on values of z; between -3.5 and 3.5 but progressively compresses
values that exceed +£3.5 so they are bounded by +4. The inverse transformation is z =
(1/¢) In[(2 + ¢£)/(2 — ¢&)]. This transformation is roughly equivalent to variable bandwidth
selection in kerne} density estimation. Because it affects only z, and not y, the asymptotic
properties of SNP estimators discussed above are unaltered. Also, note the order in which
the transformations are to be applied
af - Yt - Ty Tiey ~ Pz Sz

raw — centered, — lagged — logistic — mean,
data scaled data data data variance

In the sequel, we shall use z to mean either z or % ; in applications, substitute # for z in

any formula involving z if the logistic transform is employed.

2.2 Model Selection

A model selection strategy that seems to work well is described and illustrated below. It is

based on experience acquired in the sequence of applications: Gallant and Tauchen (1989);

g .



Log Price Dillerance

Log Voiume

Figure 1: Daily NYSE S&P, 1928-1987, Adjusted for Calendar Effects

Hussey and Tauchen (1989); Gallant, Hsieh, and Tauchen (1989); Gallant, Hansen, and
Tauchen (1990), Gallant; Rossi and Tauchen (1990). These papers also recount experi-
ence with number of alternative model selection procedures that did not work well, notably
Akaike’s (1969) criterion, the Brock, Dechert, and Scheinkman (1987) statistic, and upward
likelihood ratio testing.

The data used for illustration is a bivariate series of log differences of daily closing values
of the Standard and Poor’s composite st'ock.index (denoted as yy, or Ape) and (2) the log
daily volume of shares traded on the New York Stock Exchange (denoted as y or v;) from
1928 to 1987 (t=1,...,,16127) after adjustment for calendar effects. The data were taken
from Gallant, Rossi and Tauchen (1990) which lists sources and describes the adjustment
process. The data are plotted in Figure 1. The most notable feature of the data is the
marked conditional heteroskedasticity as indicated by alternating periods of quiescence and
volatility, especially in the price series.

The model selection procedure is straightforward. We first use the Schwarz criterion
(Schwarz, 1978; Potscher, 1989) to move along an upward expansion path until an adequate
model is determined. This Schwarz-preferred model is then subjected to a battery of spec-

ification tests designed to check for features of the data that the model fails to adequately
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Specification tests

Annual dummmies Ten lag cubic
Mean Yanance Mean Variance
Lr Ly K: I. K: I 7o Obj Schwarz ~ W p-val W p-val W peval W pval
Data 617 0000 577 .0000 .244 .0000 .210 .0000
2 2 0 0 0 0 25 2.1083 2.1158 .974 .0001 928 0000 900 0000 930 .000O
3 3 0 0 0 4] 35 2.0707 2.0812 980 .0001 934 .00D0 .933 0030 951 .00CO
4 4 0 0 0 0 45  2.0519 2.0655 .984 .0001 942 .0000 .950 0000 960 .0001
4 4 4 0 0 0 59 19187 1.9365 887 .0001 .942 0000 .941 .000C .958 .000O
4 4 4 0 1 0 179 1.8624 1.9162 .985 0001 .950 .0000 963 .0QQ1 977 .0OO1
6 4 0 0 0 0 65  2.0293 2.0489 987 0001 .949 .0001 963 0001 971 .0001
8 4 0 0 V] 0 85 2.077 2.0432 988 0001 950 .0001 969 .0001 971 .0001
i0 4 0 0 0 0 105 2.0085 2.0400 988 0001 851 0001 875 .0001 971 0001
12 4 0 v} 0 0 125 2.0022 20387 .990 0023 952 0001 976 .0001 971 .0001
12 4 4 2 0 0 13¢ 1.8110 1.9512 .978 .0001 948 000t 958 .0001 .953 .0001
12 4 4 2 1 0 214 1.8634 1.9277 985 0001 954 0001 .983 0001 981 .0QO1
12 4 4 1 1 0 232 1.82680 1.8957 989 0005 954 .0001 983 .0001 885 .0001
12 4 4 0 1 0 259 1.8130 1.8958 .989 0005 855 0001 983 0001 .986 .00O1
12 4 4 2 2 1 294 1.8358 1.9241 985 0001 958 0001 .991 0962 987 .0001
12 & 4 2 1 0 254 18518 1.9279 986 0001 956 0001 984 .0001 .876 .0001
16 4 0 0 0 0 185 1.9950 2.0445 990 0109 954 0001 976 .0001 .87T1 .0Q01
16 4 4 2 0 0 174 1.9058 1.9581 979 0001 950 0001 957 0001 .953 .0Q01
16 4 4 2 1 0 254 1.8577 1.9340 985 0001 954 .0001 984 0001 978 .0001
16 4 4 2 2 1 334 1.8275 1.9278 985 0001 959 0001 991 0961 988 .0001
16 4 4 1 2 1 368 1.7848 1.8953 988 0001 961 0001 992 1674 990 0027
16 4 4 Q 2 1 419 1.7735 1.8694 989 0006 .960 0001 992 .1620 .988% .0005
Table 2: Optimized Likelihood and Residual Diagnostics
approximate.

- The Schwarz criterion is computed as .
sn(0) + (1/2)(pe/n) In(n)

with small values of the criterion preferred. The criterion rewards good fits as represented
by small s,(8) but uses the term (1/2)(ps/n)In(n) to penalize good fits gotten by means
of excessively rich parameterizations. The criterion is conservative in that it selects sparser
parameterizations than the Akaike information criterion which uses the penalty term pefn
in place of (1/2)(ps/n)In(n). Schwarz is also conservative in the sense that it is at the high
end of the permissible range of penalty terms in certain model selection settings (Potscher,
1989).

To illustrate, for each of the specifications considered, the settings of the tuning param-
eters L., Ly, K., I, K;, I;, the number of parafneters ps that they imply, the value of
the minimized objective function sn(é), Schwarz’s criterion, and the battery of specification
tests (discussed below) are reported in Table 2 for the bivariate price and volume series
y: = (Apy,w,). All reported values are comparable as the same number of leading observa-

tions (27) were set aside to provide the initial lags in every fit. The net sample size is 16,100
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observations.

Of the models in Table 2, the Schwarz preferred model has L, = 16, L, = 4, K, = 4,
I, =1, K. =2, I, =1 with py = 368 at a saturation ratio of (2 - 16100)/368 = 87.5
observations per parameter.

As mentioned above, to guard against the conservative nature of the Schwarz criterion,
specification tests are conducted for each fit as follows.

First, we get scaled residuals by computing analytically the moments of the estimated
conditional density and using them to compute the estimated conditional mean &(y|z,_,)
and variance Var(y|z,.,) at each z,_, = (#t-Ly...,Yt-1) In the sample. Using these, a
scaled residual is computed as &, = [Var(y|z,_,)]""*[y, — &(y|z,-1)] where [Var(ylz,_,)}-1/?
denotes the inverse of the Cholesky factor of the conditional variance,

.Next, we conduct diagnostic tests for predictability in both the scaled residuals and
the squares of the scaled residuals. Predictability of the scaled residuals would suggest
inadequacies in the conditional mean estimate implied by the fitted density, and thus such
tests are termed mean tests. Similarly, predictability of the squared scaled residuals would
suggest inadequacies in the implied estimate of the conditional variance, and thus such tests
are termed variance tests. For both mean and variance, we conduct two types of tests for
predictability, one of which is sensitive to short-term misspecification while the other is
sensitive to long-term nﬁsépeciﬁca.tion.

For the conditional mean, the short-term diagnostic test is a test for the significance of a
regression of scaled residuals #, on linear, quadratic, and cubic terms of lagged values of y,.
The long-term test is a test for the significance of a regression of scaled residuals on annual
dummies to check for a failure to capture long-term trends. For the conditional variance,
the tests are the same with the squares of the scaled residuals as the dependent variable in
these regressions. The significance test is the F-test when the res‘idua.is are from a univariate
series and is the Wilk’s test when the residuals are from a multivariate series such as the
bivariate price and volume series that we are using for illustration. It should be noted that
because of the “Durbin effects” of pre-fitting discussed in Newey (1985) and Tauchen (1985},
the p-values could be somewhat inaccurate, even asymptotically.

As seen from Table 2, the Schwarz preferred model does reasonable well with respect to

12



the short term diagnostics but apparently fails to capture long term heterogeneity of some
sort. In the next section we will use simulation to try to determine what features of the
series the model doesn’t approximate well. However, moving the truncation point beyond
the Schwarz preferred model does not appear to help much, so we will stick with the Schwarz
preferred model. This outcome is somewhat unusual in our experience. Usually, increasing

the tuning parameters one or two notches beyond the Schwarz preferred model will reduce

the diagnostic to insignificance.

3 Simulation

In this section, we describe the algorithms used to simulate from an SNP density. This

material, and a few of the applications in the next section, are the original contributions of
the paper.
3.1 Rejection Methods

The rejection method for sampling from a (multivariate) density h(z) depends on finding a

positive, integrable function b(z) that dominates h(z), viz.
0 < h(z) € b(2)

The dominating function b(z) is called an upper envelope for h(z) or majorizing function.

Derive a density g(v) from b(z) by putting .

g(v) = b{v)/ [ bls)ds

Using b(z) and g(v), a sample from A{z) is generated as follows.

Generate the pair (u,v) by generating v from g(v) and  from the uniform distribution
on {0,1). If
u > h{v)/b{v)

reject the pair (u,v) and try again. If
u < h{v)/b(v)

accept z = v as a sample from h(2).

13
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The method works because
Plz<t) = Pl{(u,v):v < t}{(u,v) : u < h(v)/b(v)}]
Focr o PY*) g4} dudy
Jugeo 3 g(v) dudv
qut h(v)/[f 5(s) ds] dv
Jogoo B(v)/[f b(s) ds] dv
= / o) d

Above z, s, v, and ¢ are vectors and inequalities such as z < ¢ are interpreted to mean

inequality element by element. Also, it probably.goes without saying but we mention it to
be safe, the draws (u,v) are independent of each other and u is drawn independently of v
within each pair.

For this approach to work well, A(v v)/b(v) must be near one over regions where g(v)
assigns high probability and g(v) must be easy to sample. The g{v) that we construct in the
next section can be sampled using standard algorithms and the upper envelope 4(z) from
which it is derived ach:eves a hit rate of about 50%.

See Kennedy and Gentle (1980, Section 6.4.3) for a addltxonal details on rejection methods

and a literature review.

3.2 Upper Envelope

In this subsection, we drive an upper envelope for the conditional density of a conditionally
heterogeneous innovation.

This density is written as

hele) = (P(s,2)P(z)/cla)
o(@) = [[P(s,2)*¢(s)ds

The polynomial P(z,x) that appears in the conditional density is the polynomial in z
K,

Z aa(:!:)za

|aj=0

with coefficients depending on a polynomial in z

Ky
aqo{z) = Z aqgz”

6i=0
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where

az(alyah"':aM)’ ﬁ=(ﬁhﬁ2)"':ﬂML)’

are multi-indices (vectors with integer elements), and

M ML
o = > les] 181 = > 18l
=1 1=1
M ML
ya — Hy?t xﬁ - H x?t
i=1 =1
Some of the a,z will have been put to zero to reflect the filtering out of interactions when
I, or I, are positive.

Since
K,
2 0@ < 5 faula)lof

Jel=0 |erf=0

where |z| denotes the vector z with each element replaced by its absolute value,
b(zlz) —[Z |aa( 33)/\/0 1z 4(z
laf=0

is an upper envelope for A(z|z).

3.3 Simulating an Innovation

In this subsection we develop an algorithin to simulate from g(v|z) which is embedded in an
algorithm to sample k(z|z) by rejection. .
To obtain the density g(v|z), note that b(z|z) is weighted sum of Chi density functions

21-(v/2)
S (7P)

sl 55

by writing b{z|z) as
;; l; (el ] pia 4+ 0/ L x4

Having observed that d(z|z) is a weighted sum of Chi density functions, an algorithm
to sample from g(v]z) can be developed without having to derive an explicit expression for

g(v|z) as follows.
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Normalize the weights to sum to one, viz.

__ lea(z)as (=) TIE, Tl + 7i + 1)/2)
T pieo Titeo{laa(@)ay ()| T, Tl(es + 7 + 1)/2])

These weights define a distribution F(a,v) over {{e,7) : 0 < [of £ K;, 0 < 4| € K.}

Weyy

To have a convenient way to traverse this set, let the elements of {(a,4) : 0 < |a] < K,
0 < |y| € K.} be ordered in some arbitrary way so that they can be indexed by the sequence
(a,7), where 7 = 1, ..., N. In forming this sequence, one may wish to delete those («a, 7) for
which w,, = 0 for all z to keep N small when I; > 0. Put w, = w,., where (a,7) = (a, 7).

The algorithm for sampling from k(z|z), and g(v|z) as an intermediate step, is as follows:

1. Sample (a,+) from the distribution F(a,v). This is easiest to do by genefa.ting u from
the uniform distribution on [0, 1], finding the largest T such that Y7_, w, < u, and

taking (a,7v) = (a,v)r as a sample from F{q,7).

2. Generate the sequence sy, ..., spr by independently sampling from x(s1, a1 + 11 + 1),

oy XMy am + 0 + 1),

3. Randomly change the sign of s; with probability 1/2 and assign the result to v; for
i =1, .., M. That is, draw u from the uniform distribution on 0,1} and put v; = s; if

u > 1/2 and v; = —s; if u £ 1/2. Put v = (v, vy, ... , vm)'; v is a sample from g(v|[z).

4. Generate u from the uniform distribution on [0,1]. If u > A{v|z)/b(v|z) reject the pair

(u,v) and return to 1. If u < A(v]z)/b(v|z) accept 2z = v as a sample from h(z|z).
We use the algorithm by Schrage (1979) to sample from the uniform and the algorithm by
Monahan {1987) to sample from the Chi.
3.4 Simulating Data

Given a sample z from h(z|z), a sample from f(y|z,8) is obtained from the location-scale
shift
y = Rz4+p.
Hr = by + Bz
vech(R;) = po+ Pzl
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Recall that if the logistic transformation is employed, & replaces z in these formulas.

Figure 2 is a simulated sample path from the model fitted in Section 2 of the same length
n = 16,127 as the data, started using the first 27 lags of the data. -

Comparing with Figure 1, the fitted model captures the qualitative features of the data
quite well. Most interestingly, the simulation contains several market crashes, as does the
data. However, it does appear that the fitted model has some trouble capturing the duration
of spurts of volatility. But, if the time axis is magnified in Figures 1 and 2, this discrepancy
seems to disappear. It is clear from the plots and the tests reported in Table 2 that there is
some aspect of sample paths having to do with duration of episodic events that the model

does not capture but it is hard to characterize it exactly..

4 Conditional Variance Function

.

In this section, we shall focus on estimation of a particular functional of the conditional

density, the conditional variance function

Var(ylz)

[t - €@olly - Elo) folvla) dy
Ele) = [yfulyle)dy
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where fo(y|r) denotes the true, one-step-ahead, conditional density for the process {y,}. It
is estimated by

P

Vartyle) = [ly = Elalo)ly ~ EGle)] Fulyle, B) dy
Ewle) = [uixtuleb)dy

where fx(ylz,6) is the estimate using the truncated expansion of f.,(y|z) described in Sec-
tion 2.

More specifically, we are interested in the symmetry of the leverage function L(Ap;.1)
which is the conditional variance function above with every entry yi—; in 2oy = (yeer, -y
Y;-1) put to its sample mean e
n ; Y

except y,-, which is put to (Ap;_1, ¥2) in the case of the bivariate price-volume series

=
il

and to Ap,_, when considering the univariate price series obtained by deleting the volume
component of the bivariate series.

- The leverage function has been actively studied, see Nelson (1989a, 1989b), Schw-
ert(1989), and Pagan and Schwert (1989) and their references. Of particular interest is
the fact that estimates show larger conditional variance following down-ticks than up-ticks.
That is, the estimated models predict more market volatility following a crash than a sharp
rise of the same maghitude. This fact is of some interest to agencies charged with regulation
of financial markets. Also of interest is the fact that the asymmetry is markedly reduced
when other variables such as volume, as in this paper, or interest rates, as in Glosten, Ja-
gannathan, and Runkle, (1989), are added to the conditioning set.

Estimates of the leverage function for large values of Ap,_, are not very precise in the
sense that estimates are quite different depending on estimation method and model. One
can see why from Figure 3. In the upper panei of Figure 3 is a scatter plot of Ap? against
Ap_y for all n=16,127 points (less one for the lag). In the lower panel is a scatter plot of
Ap? against Ap,.., after points where |Ap;_; — 71| > (1.5)StdDev for j = 2, 3, or 4 have been
deleted; there are 5749 points in the lower panel. Basically, estimating a leverage function is
equivalent to trying to put a (nonparametric) regression line through the scatter plots shown

in Figure 3. These fits will be heavily influenced by the few outlying points at the extreme
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Figure 3: Scatter Plot of Squared Price on Lagged Price

left of the plots. (The point at about (-5,320) in the upper panel is Friday, October 16, 1987,
and the point at about (-15,20) is Monday, October 19, 1987.)

~One can see the effect that this has on estimates in Figures 4, 5, and 6. The kernel
estimate was fitted by methods suggested for time series analysis by Robinson (1983) with the
bandwidth parameter selected by visual inspection of plots such as Figure 4. The univariate
SNP fit was fitted by the methods described in Section 2 resulting in a model with L, = 16,
Ly=6,K,=4,1, =0, K; =1, I; = 0 with pg = 34 at a saturation ratio of 277.6
observations per parameter. The leverage function was computed analytically from the
SNP estimate using the standard recursions for the moments of the normal distribution; a
moment of an SNP density is just some higher moment of a normal. Figure 6 is the same
SNP specification robustified using the z;_, — .-, logistic transformation.

The influence of extreme points on the fit decreases progressively in Figures 4 through 6.
Kernel estimates are most sensitive. As mentioned above, the leading term of an SNP
expansion tends to fill in where data is sparse and give more realistic estimates over sparse
regions than kernel estimates. The logistic transformation has the intended robustifying
effect and gives estimates that accord better with a visual fit to the scatter plots in Figure 3.

Figures 7 and 8 are kernel and SNP estimates of the leverage function using bivariate

data instead of univariate data. Again, the bandwidth parameter for the kernel estimate was
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selected visually. The bivariate SNP fit is that described in Section 2; sup norm confidence
bands are superimposed on the estimate using methods discussed below.

-‘The most striking feature of Figures 7 and 8 is the sﬁbstantial lessening of the asymmetry
by comparison with Figures 4, 5, and 6. Qur preference is to ascribe the asymmetry to
influential points in the data whose impact is lessened when another explanatory variable is
entered in the model and to view seeking an explanation by appeal to economic theory as
unwarranted. Supporting this view are both the fact that Glosten, Jagannathan, and Runkle
(1989) observe the same effect when interest rates replace volume and also the instabilities
in Figures 4, 5, and 6.

The sup norm confidence bands were constructed from the bivariate SNP fit by a para-
metric bootstrap: Using the methods discussed in Section 3, 250 independent sample paths
similar to Figure 2 were generated. The bivariate SNP specification L, = 16, L, = 4, K, = 4,
I,=1, K, =2, I, = 1 was fit to each; that is, there was no specification search. A leverage
function was computed for each fit. The bands shown in Figure 8 are just wide enough to
contain 95% of them.

In this connection, it is of interest to check that SNP methods confirm Glosten, Jagan-

nathan, and Runkle’s findings. We used a real, monthly, bivariate stock and bond returns

22
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Figure 9: SNP Estimate of the Leverage Function: Stock and Bond Returns
series taken from Callant, Hansen, and Tauchen (1990). The results are reported in Figure 9.
The upper panel is a scatter plot of Ap? against Ap,_; for n = 737 points; the second panel
is the leverage function computed from analytical moments from an SNP fit to price returns
alone; and the third panel is the leverage function for the bivariate price and bond returns
fit. Our computations confirm their results: the leverage function conditional on both past
stock and bond returns is more symmetric than the leverage function conditional on past

stock returns alone.
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6 Appendix: Fitting SNP Models

Fortran code that imﬁlements the SNP methodology is available from the authors. Details
on installing and using the code are available in Subsection 6.2 below.

In addition to facilitating model estimation, the code makes it easy to retrieve residuals,
predicted conditional means, and predicted conditional variances. These statistics useful

for diagnostic testing, model evaluation, forecasting, and related purposes. In addition, the
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code provides the ordinates of the SNP conditional density over a rectangular grid of points,
which is useful for plotting purposes and for performing numerical integration against the
SNP conditional density. Finally, it can generate Monte Carlo simulated realizations of

arbitrary length from the SNP density, a capability with a variety of applications.

6.1 Fitting Strategy

As discussed in Section 2, the model selection strategy entails moving upward along an ex-
pansion path. The fitted SNP models becomes more richly parameterized at each level along
the path. The expansion tentatively stops when the best model under the Schwarz criterion
is obtained. The Schwarz-preferred model is then subjected to a battery of specification tests
on the conditional first and second moments. Often, but not always, some further expansion
of the model is needed in order to achieve satisfactory performance on the diagnostics.

Experience suggests that care is needed in fitting the SNP model at any particular level
along the expansion path. Estimates at one level provide start values for the next, so the
user should be cautious of hitting a local-opt'imum at any level. Among other things, a false
optimum could adversely affect computations at all subsequent levels in the path.

The software is thus designed to facilitate the process of checking for a local optimum, so
that the user can have reasonable confidence in the computations before proceeding to the
next level. On a single run, the program is capable of performing a wave of optimizations
with start values and perturbation factors read in from various files. In typical practice,
between one and three waves of runs, with five to ten optimizations within each wave, might
be performed to compute the SNP model at a particular level before proceeding to the next.
In making the decision as to whether to accept the computations at one level and proceed to
the next, the user should look for convergence to the same overall optimum from several start
values. This agreement can sometimes be difficult to obtain for exceedingly large models, and
near the end of the expansion path the user might simply have to accept the best computed
ob jectivé function value out of a wave of fits. In numerical experiments, we have found that,
near the end of the path, this probably does little harm as the various optima differ only in
their implications for extreme tail behavior. |

‘Table 2 provides an example of a computed expansion path. Each level, i.e. row in
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Figure 10; Monthly NYSE Returns, 1926-1987, Not Adjusted for Calendar Effects

the table, was computed using the software in the above-described manner. In the next

subsection we walk the reader through the steps of computing a similar table.

6.2 Using the Program

Fortran code is available via ftp anonymous at ccvrl.cc.ncsu.edu (128.109.212.20) in directory
pub/arg/snp; alternatively, it is available from the authors in the form of a 5-1/4 inch,
23/2D, DOS formatted diskette. The code is provided at no charge for research purposes
without warranty. It has run on Sun workstations, IBM 3090 MVS mainframes, 386 DOS
PC’s, and DEC VAX minicomputers. It relies on a fairly widely distributed optimization
routine by Gill, Murray, Saunders, and Wright {(1983) which is available as NPSOL from
the Office of Technology Licensing, Stanford University, 350 Cambridge Avenue, Suite 250,
Palo Alto, CA 94306 and as EQ4UCF in the Nag Library which is available from Numerical
Algorithms Group, 1400 Opus Place, Suite 200, Downers Grove, IL 60515-5702. The SNP
code is written so that it is easy to substitute another optimization routine. However, we
have experimented with several alternatives but found nothing that works as well as NPSOL.
The SNP code is documented in comments to the main. The purpose of this appendix is to
walk the user through an application under the assumption that ambiguities can be resolved

by reference to the documentation. The data that we use for illustration is a monthly, real,
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value weighted stock series for 1926 through 1987 taken from Gallant, Hansen, and Tauchen
(1990). The data are plotted in Figure 10. Data, code, and output for this application are
on the distribution diskette. |

Program control is through a subroutine written by the user to read the data, getdat,
and three text files. The names assigned to these files are determined by the subroutines in
the file snpopen.f on the distribution diskette, which will probably have have to be edited to
reflect the idiosyncrasies of the Fortran compiler and operating system under which it will
be compiled and run. An example of sppopen.f, as edited for SunOS, that will define the file

names in the subsequent discussion is:

snpopen.f

SUBROUTINE OPENFL

OPEN(UNIT=3 yFILE="detail.dat’,status=’0ld’,form=’'formattaed’)
OPEN(UNIT=11,FILE=’pointer.dat’,status=’old’,form=’formattad’)
0PEN(UNIT=12,FILE=’control.dat’,status='old’,form=’formatted')
OPEN(UNIT=14,FILE='stocks.dat’,status='old’,form=’'formatted’)
OPEN(UNIT=27,FILE=’scratch.dat’,status=’old’,form=’formatted’)
RETURN

END

SUBROUTINE OPEN89(FILES,FILES)-

CHARACTER*13 FILES,FILES
OPEN(UNIT=10,FILE=’summary.dat’,status=’old’,form=’formatted’)
OPEN(UNIT=8,FILE=FILES,status=’old’,form='formatted’)
OPEN(UNIT=9,FILE=FILE9,status='o0ld’,form='formatted’)

END

The purpose of getdat is straightforward. It fills an M by N matrix with the data {§)",

where M is the dimension of § and N is the number of observations. An example says it all.

getdat.f

SUBROUTINE GETDAT(DATA,M,N)
IMPLICIT REAL*8 (A-H,0-2)
REAL*8 DATA(M,N)
DO 10 I=1i,N
READ(14,14001) DATA(1,I)
10 CONTINUE
RETURN
14001 FORMAT(1X,D18.12)
END '

The file control.dat assigns file names to FILES and FILES and sets the perturbation to be

applied to the incremental coefficients in the polynomial part of the Hermite expansion on
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a restart from a lower order polynomial. The format is FORMAT(2A13,F10.0). For our

example, we shall use the following file names.

control.dat

§300000.in0 s300000.0ut 0.0

The file pointer.dat gives the number of lines of control.dat that are to be skipped. The
format is FORMAT(14):

pointer.dat

0

The parameter file s300000.in0 sets all program parameters and options. The easiest way to
deal with a parameter file is to start by describing a fit that is to commence with a VAR start
because the amount of information required for a VAR start is minimal. A new parameter
file will be written to s300000.out. This new file can then be edited to produce additional

fits or choose various options. The file s300000.in0 is as follows.

s300000.in0
Stock FORMAT(AS,66X,F3.1) 7.5
i H FORMAT(IS)
744 N FORMAT(IS)
8 IDROP FORMAT(IS)
3 0 LRX, LPOLY FORMAT(IS,1X,I3)
0 O IDEGY, LINTY FORMAT(IS5,1X,I3)
0 0 IDEGX, LINTX FORMAT(IS,1X,I3)
0 ISTART FORMAT (15}
400 ITMAX FORMAT(I5)
1.0D-05 TOLER FORMAT(D9.1)
¢ O NLOG, IDIAG FORMAT(IS,1X,I3)
3.0 SFAC FORMAT(DS.1)
50 NGRD FORMAT(IS)
0 TUNITS FORMAT(15)

In the first line, Stock is a user chosen label and the 7.5 in column 72 is obligatory. M is
the dimension of 3, N is the number of observations, IDROP is the number of observations
at the beginning of the series to skip to produce initial lags; this should be larger than any
value of L, or L, envisaged in any fit. LRX is L,, LPOLY is L,, IDEGY is K., LINTY
is I,, IDEGX is K, LINTX is I, setting ISTART to 0 means a VAR start, ITMAX is
an iteration limit that is passed to NPSOL, and TOLER is a convergence tolerance that is

passed to NPSOL. Setting NLOG to 1 means suppress the logistic transform, setting IDIAG
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to 1 i)uts the off diagonal elements of S to zero prior to the transformation § — y:.. SFAC
determines the plotting increment; 3.0 is usually about right. NGRD is either the number
of plot points for a graphic or the seed for a simulation.

IUNITY states what is to be written to unit 9 after estimation. If IUNIT9=0, a new
parameter file is written to unit 9 that can be used to move from a sparse parameterization
to a richer one or to summarize an estimation for subsequent simulation, plotting, or mo-
ment computations. The other choices are: TUNIT9=1, the residuals used for diagnostics
a.ré written to UNIT 9; IUNIT9=2, the mean of the one-step-ahead conditional density is
computed at each z,_; in the sample and written to unit 9; IUNIT9=3, the upper triangle
of the variance-covariance matrix of the one-st;zp-ahead conditional density is.computed at
each z,_; in the sample and written to unit 9; IUNIT9=4, plot data is written to unit 9; and
IUNIT9=5, a simulation is written to UNIT 9. To suppress a re-estimation when [UNIT9=2,
3, 4, or 5 put ITMAX to 0.

Upon running the program one gets:

pointer.dat

1

summary.dat

TWK= 0.0000 ITR= 7/ 400 INF= O VAR Stock300000 8 1.31286 s300000.out

$300000.0ut

Stock 8300000.out  from s300000.in0 with TWEAK = 0.0000 by SNP 7.5
1 ¥
744 N
IDROP
LRX, LPOLY
IDEGY, LINTY
IDEGX, LINTX
ISTART (O VAR START, 1 PARMFILE START)
ITMAX
S5 TOLER (D9.1)
0 NLOG, IDIAG
0 SFAC (F9.1)
NGRD
IUNITS (O PARMFILE, 1 RES, 2 MEAN, 3 VAR, 4 PLOT, § SIM)
LRXO 0 LPOLYO 1 H
IDEGYO 1 KYO 0 LINTYOQ
IDEGXO 1 KX0 0 LINTXO
- 0.1000000000000000D+01  0.0000000000000000D+00 THETA( 1)
-0.1397253183944389D-01  0.3441934196989738D-01 THETAC 2)

-2
oOQWo o OgOHOO&)O}
]
lo]

OOoOOo

(1]
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-0.8323603380299298D~02 0.47624515332605739D-01 THETA( 3)
~0.9344250653346974D-02  0.5477343529603911D-01 THETA( 4)
0.8056675316624475D-01  0.4302966945632105D-01 THETA( 5)
0.5089763104139401D+00  0.1777389057763482D-01 THETA( &)
0.2169310766190776D+00  0.3310732852507569D-01 THETA( 7)
0,3069599594169708D+00  0.2748515884740973D-01 THETA( 8)
0.1193061671637246D+00  0.3180382071492907D-01 THETA( 9)
0.6751395602658273D-02  PLOT POINTS: LAG 3, MUSTAT( 1)

0.6751395602658273D-02  PLOT POINTS: LAG 2, MUSTAT( 1)

0.6751395602658273D-02  PLOT POINTS: LAG 1, MUSTAT( 1)

At this point, we have the wherewithal to make some progress. We shall now move upward
toan L, =3, L, =2, K, =4, I, =0, K, = 1, I, = 0 parameterization with a perturbation
of -0.0001 applied to the incremental coefficients of the polynomial part of the model by

editing this file to read as follows.

$324010.in0

Stock 8300000.out  from s300000.in0 with TWEAK = 0.0000 by SNP 7.5
1 M
744 N

6 iDROP

3 2 LRX, LPOLY

4 0 IDEGY, LINTY

1 0 IDEGX, LINTX

1 ISTART (O VAR START, 1 PARMFILE START)

400 ITMAX
1.0D-05 TOLER (D9.1)

0 O NLOG, IDIAG

3.0 SFAC (F9.1)

50 NGRD .

0 IUNITS (O PARMFILE, 1 RES, 2 MEAN, 3 VAR, 4 PLOT, § SIM)

3 LRX0 0 LPOLYO | M

0 IDEGYO 1 KYO 0 LINTYO

0 IDEGX0 1 KX0 0 LINTXO
0.1000000000000000D+01  0.0000000000000000D+C0 THETA( 1)
-0.1397253183944389D-01  0.3441934196989738D-01 THETA( 2)
-0.8323603380299298D-02 0,4762451533260579D-01 THETA( 3)
-0.9344250653346974D-02  0.5477343529603911D-01 THETA( 4)
0.8056675316624475D-01  0.,4302966945632105D-01 THETA( 5)
0.5089763104139401D+00  0.1777389057763482D-01 THETA( 6)
0.2169310766190776D+00  0.3310732852507569D0-01 THETA( 7)
0.3069599594169708D+00 0.2748515884740973D-01 THETA( 8)
0.1193061671637246D+00 0.3180382071492907D-01 THETAC 9)
0.6751395602658273D-02  PLOT POINTS: LAG 3, MUSTAT( 1)
0.6751395602658273D-02  PLOT POINTS: LAG 2, MUSTAT(' 1)
0.6751395602658273D-02

PLOT POINTS: LAG 1, MUSTAT( 1)

and editing control.dat to read:

control.dat

33000
83240

00.in0
10.in0

8300000 .0ut
8324010 .0ut

0.0

0001
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Running SNP we get:

summary.dat

THK=
THK=

For purposes of illustration, we shall accept s324010.out as our final fit. In practice this
is ill advised. We have found it much better to move slowly upward in small increments
from a VAR and construct a table like Table 2. Before moving upward, a complete set of

perturbations from, say, £0.00001 through £0.1 should be tried and the best outcome of the

0.0000 ITR=
~0.000t ITR=

7/ 400 INF=
32/ 400 INF=

0 VAR

set should be selected as the .out file.

Continuing, we edit s324010.out by putting ITMAX to 0 and IUNIT9 to 1, 2, 3, 4, 5
to get $324010.inl, $324010.in2, s324010.in3, $324010.in4, $324010.in5 respectively. As an
example, here is 5324010.in4.

$3240

Stock
1
744

—_
o, .
b e O SOOr M a0

33

S5tock300000
0 S300000 Stock324010 22

8 1.31286 s300000,0ut
1.22099 s324010.0ut

THETA(
THETA(
THETA(
THETA(
THETA(
THETA(
THETA(
THETA(
THETA(
THETA(
THETA(
THETA{
THETA(
THETA(
THETA(
THETA(
THETA(

with TWEAK = ~0.0001 by SNP 7.5

10.in4
3324010.0ut from s324010.in0
M
N
IDROP
2 LRX, LPOLY
0 IDEGY, LINTY
0 IDEGX, LINTX
ISTART (O VAR START, 1 PARMFILE START}
ITHMAX
D-05 TOLER (D9.1)
0 NLOG, IDIAG
3.0 SFAC (F9.1)
NGRD
TUNITS (O PARMFILE, 1 RES, 2 MEAN, 3 VAR, 4 PLOT, § SIM)
LRXO 2 LPOLYO 1 M
IDEGYO 5 KYO 0 LINTYO
IDEGXO 3 KXo 0 LINTXO
. 1000000000000000D+01 0.0000000000000000D+00
,1832444438423234D+00 0. 1088300010005072D+00
.8086331136253797D-01 0.1436681211316008D+00
.5129142049707111D-02  0.9758806356144807D-01
.3976197974533604D~01 0.5532179802038235D-01
.2861808833896622D-01 0.6184155416769808D-01
,2869080742497851D+00  0.4084437538333630D-01
.2018410408237735D+00  0.4206488919761711D-01
.1683752734514798D-01  0.47351695592854587D-01
.1101964481284351D-01 0.1997621742563651D-01
.7932235094232168D-02  0.1355720827176593D-01
.1034517096810649D-01  0.1187138122000073D-01
.2488169930252172D-01  0.5938401260026879D-02
.2020288668801402D-01  0.6176820920266395D-02
.3191018761082451D-02 0.6964328124506381D-02
.1423966151358360D-01  0.1083215509080528D+00
L2261225785502205D-01 0.4284527354136315D-01



.9416190148597978D-01 THETA({ 18)

.1454904302528228D-01 0

.6304842943102193D-01  0.6745747275466799D-01 THETA( 19)
.7869221447263167D+00 0.6817635810986175D-01 THETA({ 20)
.2688792679247046D+00  0,6511947113209941D-01 THETA( 21)
.3497565740644625D+00  0.7579948874685423D-01 THETA( 22)

.2023487967577421D-02  0.64333832832122(7D-01 THETA( 23)
.67513956026582730-02  PLOT POINTS: LAG 3, MUSTAT{ 1)
.6751395602658273D-02  PLOT POINTS: LAG 2, MUSTAT( 1)
.6751395602658273D-02  PLOT POINTS: LAG 1, MUSTAT( 1)

CQOOOOQOO0O0

We then edit control.dat to read as follows.

control.dat

o

8300000.in0 s300000,.0ut
8324010.in0 s324010.0ut
8324010.in1 s8324010.res
8324010.in2 3324010.mu

8324010,in3 s324010.sig
8324010.in4 s8324010.plt
3324010.in5 s324010.sim

20001

jof=NoRe el o
OCO0OO0OOCO

Running SNP we get

summary.dat

TWK= 0.0000 ITR= 7/ 400 INF= O VAR’ Stock300000 8 1.31286 s300000.0ut

TWK= -0.0001 ITR= 32/ 400 INF= 0O S300000 Stock324010 22 1.22099 s324010.cut
TWK= 0.0000 ITR= 0/ O INF= 4 S324010 Stock324010 22 1.22099 s324010.res
TWK= 0.0000 ITR= O/ 0 INF= 4 S324010 Stock324010 22 1.22099 s324010.mu

TWK= 0.0000 ITR= 0/ O INF= 4 S324010 Stock324010 22 1.22099 s324010.sig
TWK= 0.0000 ITR= 0/ O INF= 4 5324010 Stock324010 22 1.22099 s324010.plt
TWK= 0.0000 ITR= 0/ O INF= 4 S324010 Stock324010 22 1

.22099 3324010.sim

The information in summary.dat is, reading across a row, the perturbation applied, the
number of iterations, ITMAX, the NPSOL return code, a description of the starting model

in the format
sL LK, I, K; I,

the fitted model in the same format with the user determined label replacing the leading s,
P, $x(8), and the file name of the file written to unit 9.

The file s324010.sim contains a simulation of length N=744 from the fit using NGRD=50
as the seed and the segment z,_, of the series from 1 to IDROP:G'to start the simulation
off. This simulation is plotted as the second panel of Figure 10. The units in .sim, as well
as .plt, .sig, and .mu, are in the original units of the data; that is, in the same units as {§}.

The file s324010.plt contains data with which to plot the one-step-ahead density condi-
tional on the values §i_r, <+, §i—2, §i—1 that are appended to the end of s324010.in4. The
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Figure 11: Monthly NYSE Returns, 1926-1987, Not Adjusted for Calendar Effects

. program itself will append §..r, - -, §t-2, i1 set to the mean § and in this case we merely
accept them:
1 0.6751395602658273D-02  PLOT POINTS: LAG 3, MUSTAT( 1)

0.6751395602658273D-02  PLOT POINTS: LAG 2, MUSTAT( 1)
0.6751395602658273D-02  PLOT POINTS: LAG 1, MUSTAT( 1)

To plot conditional on a different point, edit these values appropriately. These plot points
are in the original units of the data, #:, the program takes care of the transformation g; —
y, — 2, (and — &,_; if necessary).

The output file s324010.plt contains: first, £ (ﬁ;]m,_-l), M values; second, the upper triangle
of Var(fizi_1) stored columnwise, M*(M+1)/2 values; third, the grid increment, M values;
thereafter, # and fK(g,lm,_l,é) written end to end, there are (M+1)*(2*NGRD+1)**M of
these. Total file length is M+M*(M+1)/2+M+(M+1)*(2*NGRD+1)**M. The reason for
pre-pending é(§¢|:c¢_1) and Var(ﬁ,la:,_l) is that one often wants to compare the plot with
the normal distribution at the same mean and variance as in Figure 11 which is a plot of
the data in $324010.plt. The density fx(7i|¢-1,8) displays the typical shape for data from
financial markets: peaked with fatter tails than the normal with a bit of asymmetry.

The options described above do not cover every contingency. For instance, to estimate

a leverage function one would have to code numerous .in4 files and strip the conditional
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variance out of the corresponding .plt files. The flexibility to perform these sorts of compu-
tations is provided by isolating the plot and simulation drivers so that they can be recoded
to handle special situations. All control parameters and data that we could anticipate that
one might need are passed through the argument lists of the subroutines in the packet of
drivers. Nearly all other program control parameters and data reside in labelled common
so that in cases where we anticipated incorrectly, inserting a labeled common statement in
snpopen.f or one of the drivers will provide the necessary controls.

We illustrate with the modification to pltdrv.f that produced the data to plot the leverage

function shown in the second panel of Figure 9:

pltdrv.f

SUBROUTINE PLTDEF(N,M,L,NGRD,SFAC,NPLOT,ISW)
IMPLICIT REAL*8 (A-H,0-2)
NPLOT=100
NGRD=1"
RETURN
END
SUBROUTINE PLTGET(X,MUSTAT,CSTAT,DATA,IDROP,N,M,L,IPLOT,NGRD,SFAC)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 X(M=L) ,DATA(M*(IDROP+N)) ,HMUSTAT(M) ,CSTAT(H;M)
X(1)=0.6751395602658273D-02
X(2)=0.6751385602658273D~02
X(3)=-0.4d0+(DFLOAT(IPLOT)/100.D0)*0.8D0
WRITE(9,9000) x(3)
RETURN
9000 FORMAT(® ’,D25.18)
END
SUBROUTINE PLTPUT(D,IPLOT,IPUT)
IMPLICIT REAL*8 (A-H,0-Z)
IF (IPUT.EQ.2) WRITE(S,S000) D
RETURN
9000 FORMAT(’ ’,D25.16)
END .
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Recent IMA Preprints

Author/s Title
J. David Logan, Wave propagation in a qualitative model of combustion under equilibrium
conditions

M.L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra Systems

Allan P. Fordy, Isospectral flows: their Hamiltonian structures, Miura maps and
master symmetries

Daniel D. Joseph, John Nelson, Michael Renardy, and Yuriko Renardy, Two-Dimensional
cusped interfaces

Avner Friedman and Bei Hu, A free boundaty problem arising in electrophotography

Hamid Bellout, Avner Friedman and Victor Isakov, Stability for an inverse problem in
potential theory

Barbara Lee Keyfitz, Shocks near the sonic line: A comparison between steady and
unsteady models for change of type

Barbara Lee Keyfitz and Gerald G. Warnecke, The existence of viscous profiles and
admissibility for transonic shocks

P. Szmolyan, Transversal heteroctinic and homoclinic orbits in singular perturbation
problems

Philip Boyland, Rotation sets and monotone periodic orbits for annulus homeomorphisms

Kenneth R. Meyer, Apollonius coordinates, the N-body problem and continuation of
periodic solutions

Chjan C. Lim, On the Poincare-Whitney circuitspace and other properties of an
incidence matrix for binary trees

.L. Cooke and 1. Gydri, Numerical approximation of the solutions of delay differential
equations on an infinite interval using piecewise constant arguments

Stanley Minkowitz and Matthew Witten, Periodicity in cell proliferation using an
asynchronous cell population

M. Chipot and G. Dal Maso, Relaxed shape optimization: The case of nonnegative
data for the Dirichlet problem

Jeffery M. Franke and Harlan W. Stech, Extensions of an algorithm for the analysis
of nongeneric Hopf bifurcations, with applications to delay-difference equations

Xinfu Chen, Generation and propagation of the interface for reaction-diffusion equations

Philip Korman, Dynamics of the Lotka-Volterra systems with diffusion

Harlan W, Stech, Generic Hopf bifurcation in a class of integro-differential equations

Stephane Laederich, Periodic solutions of non linear differential difference equations

Peter 1. Olver, Canonical Forms and Integrability of BiHamiltonian Systems

S.A. van Gils, M.P. Krupa and W.F. Langford, Hopf bifurcation with nonsemisimple
I:1 Resonance

R.D. James and D. Kinderlehrer, Frustration in ferromagnetic materials

Carlos Rocha, Properties of the attractor of a scalar parabolic P.D.E.

Debra Lewis, Lagrangian block diagonalization

Richard C. Churchill and David L. Rod, On the determination of Ziglin monodromy groups

Xinfu Chen and Avner Friedman, A nonlocal diffusion equation arising in terminally attached
polymer chains

Peter Gritzmann and Victor Klee, Inner and outer j- Radii of convex bodies in finite-
dimensional normed spaces

P. Szmolyan, Analysis of a singularly perturbed traveling wave problem

Stanley Reiter and Carl P. Simon, Decentralized dynamic processes for finding equilibrium

Fernando Reitich, Singular solutions of a transmission problem in plane linear elasticity
for wedge-shaped regions

Russell A, Johnson, Cantor spectrum for the quasi-periodic Schrodinger equation

Wenxiong Liu, Singular solutions for a convection diffusion equation with absorption

Deborah Brandon and William J, Hrusa, Global existence of smooth shearing motions of a
nonlinear viscoelastic fluid :

James F. Reineck, The connection matrix in Morse-Smale flows II

Claude Baesens, John Guckenheimer, Seunghwan Kim and Robert Mackay, Simple
resonance regions of torus diffeomorphisms

Willard Miller, Jr., Lecture notes in radar/sonar: Topics in Harmonic analysis with applica-
tions to radar and sonar

Calvin H. Wilcox, Lecture notes in radar/sonar: Sonar and Radar Echo Structure

Richard E. Blahut, Lecture notes in radar/sonar: Theory of remote surveillance algorithms

D.V. Anosov, Hilbert’s 21st problem (according to Bolibruch)

Stephane Laederich, Ray-Singer torsion for complex manifolds and the adiabatic limit
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Geneviéve Raugel and George R. Sell, Navier-Stokes equations in thin 3d domains: Global
regularity of solutions I

Emanuel Parzen, Time series, statistics, and information

Andrew Majda and Kevin Lamb, Simplified equations for low Mach number combustion with
strong heat release

Ju. S. Iyashenko, Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation

James F. Reineck, Continuation to gradient flows

Mohamed Sami Elbialy, Simultaneous binary collisions in the collinear N-body problem

John A. Jacquez and Carl P. Simon, Aids: The epidemiological significance of two different mean
rates of partner-change

Carl P. Simon and John A. Jacquez, Reproduction numbers and the stability of equilibria of SI
models for heterogeneous populations

Matthew Stafford, Markov partitions for expanding maps of the circle

Ciprian Foias and Edriss S. Titi, Determining nodes, finite difference schemes and inertial manifolds

M. W. Smiley, Global attractors and approximate inertial manifolds for abstract dissipative equations

M.W. Smiley, On the existence of smooth breathers for nonlinear wave equations

Hitay Ozbay and Janos Turi, Robust stabtllzatlon of systems governed by singuiar integro-differential
equations

Mary Silber and Edgar Knobloch, Hopf bifurcation on a square lattice

Christophe Golé, Ghost circles for twist maps

Christophe Golé, Ghost tori for monotone maps

Christophe Golé, Monotone maps of T x R" and their periodic orbits

E.G. Kalnins and W, Miller, Jr., Hypergeometric expansions of Heun polynomials

Victor A. Pliss and George R. Sell, Perturbations of attractors of differential equations

Avner Friedman and Peter Knabner, A transport model with micro- and macro-structure

E.G. Kalnins and W, Miller, Jr., A note on group contractions and radar ambiguity functions

George R. Sell, References on dynamical systems

Shui-Nee Chow, Kening Lu and George R. Sell, Smoothness of inertial manifolds

Shui-Nee Chow, Xiao-Biao Lin and Kening Lu, Smooth invariant foliations in infinite dimensional spaces

Kening Lu, A Hartman-Grobman theorem for scalar reaction-diffusion equations

Christophe Golé and Glen R. Hall, Poincaré’s proof of Poincaré’s last geometric theorem

Mario Taboada, Approximate inertial manifolds for parabolic evolutionary equations via Yosida approxi-

mations
Peter Rejto and Mario Taboada, Weighted resclvent estimates for Volterra operators on unbounded inter-

vals

Joel D. Avrin, Some examples of temperature bounds and concentration decay for a model of solid fuel
combustion

Susan Friedlander and Misha M. Vishik, Lax pair formulation for the Euler equation

H. Scott Dumas, Ergodization rates for linear flow on the torus

A, Eden, A.J. Milani and B. Nicolaenko, Finite dimensional exponential attractors for semilinear wave
equations with damping

A, Eden, C. Foias, B. Nicolaenko & R. Temam, Inertial sets for dissipative evolution equations

A. Eden, C. Foias, B, Nicolaenko & R. Temam, Hélder continuity for the inverse of Mané’s pro-
jection

Michel Chipot and Charles Collins, Numerical approximations in variational problems with potential
wells

Huanan Yang, Nonlinear wave analysis and convergence of MUSCL schemes

Ldszlé Gerencsér and Zsuzsanna Vagd, A strong approximation theorem for estimator processes in
continuous time

Laszlé Gerencsér, Multiple integrals with respect to L-mixing processes

David Kinderlehrer and Pablo Pedregal, Weak convergence of integrands and the Young measure
representation

Bo Deng, Symbolic dynamics for chaotic systems

P. Galdi, D.D. Joseph, L. Preziosi, S§. Rionero, Mathematical problems for miscible, incompressible fluids
with Korteweg stresses

Charles Collins and Mitchell Luskin, Optimal order error estimates for the finite element approximation
of the solution of a nonconvex variational problem

Peter Gritzmann and Victor Klee, Computational complexity of inner and outer j-radii of polytopes in
finite-dimensional normed spaces

A. Ronald Gallant and George Tauchen, A nonparametric approach to nonlinear time series analysis:
estimation and simulation

H.S. Dumas, J.A. Ellison and A.W. Sdenz, Axial channeling in perfect crystals, the continuum model and

the method of averaging



